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Reconfigurable cluster-state generation in specially poled nonlinear waveguide arrays
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We present an approach for generating cluster states on-chip, with the state encoded in the spatial component
of the photonic wave function. We show that for spatial encoding, a change of measurement basis can improve the
practicality of cluster-state algorithm implementation and demonstrates this by simulating the Grover’s search
algorithm. Our state generation scheme involves shaping the wave function produced by spontaneous parametric
down-conversion in on-chip waveguides using specially tailored nonlinear poling patterns. Furthermore, the form
of the cluster state can be reconfigured quickly by driving different waveguides in the array.
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I. INTRODUCTION

Cluster states are highly entangled, multiparticle quantum
states [1] that have drawn significant interest for their potential
in quantum information processing [2,3]. These multiqubit
states form a complete basis for one-way quantum computa-
tion, where algorithms are carried out by successive measure-
ment of qubits, causing information to flow through the state
via entanglement [4,5]. Crucially for practical applications,
cluster states have been shown to be robust to decoherence
and loss of qubits [6]. In solid-state physics, cluster states
are naturally produced in spin lattices interacting by an Ising-
type Hamiltonian [1,7,8], but increasingly they are considered
useful in quantum photonic systems [9].

In quantum photonics the nonlinear interactions required
for gates between single photons are challenging to real-
ize [10], while measurement-based approaches to quantum
computation, including those employing cluster states, can
be more readily implemented [11]. Cluster states based on
photonic polarization qubits have been generated in bulk
optical systems utilizing nonlinear optics [12–18] or peri-
odically driven quantum dots [19] to achieve the required
entanglement between multiple photons. The basic elements
of quantum computation have been demonstrated with these
polarization qubit states, including qubit rotation, two-qubit
gates, and small-scale versions of algorithms, such as Grover’s
algorithm [12]. Photonic cluster states can also be created
using continuous-variable quantum entanglement [20–22],
where the qubits are encoded in the time-dependent quadra-
ture of the field. Furthermore, large cluster states have been
demonstrated on-chip using frequency space encoding of the
qubits [23]. Here we consider the generation of cluster states
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using a fully spatial encoding of each qubit, which is well
suited for on-chip implementation.

Typically photonic cluster states are generated in bulk
optical setups by passing a pulsed pump laser twice through a
nonlinear crystal, generating a pair of photons by spontaneous
parametric down-conversion (SPDC) on each pass, giving a
four-photon polarization entangled state [12]. Whereas up
to 12-photon entanglement was reported recently [24,25],
realization of multiphoton cluster states remains a challenging
problem. Alternatively, just two photons can be used, since
by exploiting hyperentanglement in spatial and polarization
degrees of freedom multiple qubits can be encoded into each
photon [13,16]. This approach has the advantage of reaching
higher photon count rates while still producing nontrivial
four-qubit cluster states. Encoding multiple qubits in a single
photon has the potential to significantly increase the size of
cluster states that can be realized, and it has been shown
that such states can be used for quantum algorithms [13].
However, it is important to note that having multiple qubits
encoded into a single photon decreases the flexibility of the
overall system to execute arbitrary algorithms, since pairs of
qubits encoded into a single photon must always be measured
at the same time. Furthermore, for each extra qubit encoded
into a photon via this method the number of modes the photon
can occupy must be doubled, which is impractical beyond a
small number of extra qubits per photon.

So far the realization of spatially encoded cluster states
has been largely restricted to bulk optical setups, but in-
evitably, scalable cluster-state generation will require full on-
chip integration. Cluster states based on hyperentanglement
between polarization and spatial degrees of freedom have
been demonstrated on-chip [17], but a more natural and
convenient realization would be based on just the spatial
degree of freedom, since processing orthogonal polarizations
in the same waveguide requires highly specialized fabrication
platforms. In principle, existing silicon photonics approaches
[26] could generate spatially encoded cluster states through
use of reconfigurable linear optics to tune the wave function
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created by on-chip photon sources. However, it is interesting
to consider the design of nonlinear sources which directly
generate cluster states from a nonlinear interaction with no
linear optical postprocessing step.

Here, we describe a method for the generation of cluster
states within a nonlinear photonic chip with no reconfigurable
elements where the state is fully encoded in the spatial
properties of the photons. This method allows switching be-
tween different cluster states all optically, without a need for
complex reconfigurable components to be integrated on-chip.
The paper is organized as follows. In Sec. II we introduce
our general method for the generation of spatially entangled
photon states in arrays of coupled nonlinear waveguides.
Then, in Sec. III we specify how the domain poling patterns
in the waveguides can be designed to produce cluster states.
In Sec. IV we demonstrate how simple computations could be
carried out on the generated cluster states. Finally, we present
conclusions and outlook in Sec. V.

II. NONLINEAR SPATIAL
ENTANGLEMENT GENERATION

We consider a photonic chip with second-order nonlin-
earity so that pairs of photons can be generated via type-I
spontaneous parametric down-conversion [27–30]. It has been
shown that SPDC in arrays of coupled waveguides provides a
stable source of highly entangled two-photon states [31] and
that χ (2) poling in the array can be engineered to produce
tailored two-photon quantum states [32]; thus it is a natural
platform to consider for the generation of cluster states.
Similarly to Refs. [13,16], we propose to use two-photon
states to encode four-qubit cluster states. However, instead
of exploiting hyperentanglement between polarization and
spatial modes, we will use spatially distributed entanglement
across an array.

We demonstrate a potential for cluster-state generation
in an array of eight nonlinear waveguides, where specially
tailored χ (2) poling allows the production of specific two-
photon states via SPDC. We consider the regime where the
signal and idler photons are indistinguishable spectrally, while
their state is engineered (via the nonlinear poling pattern) such
that observing one photon in an odd-numbered waveguide
guarantees the other is in an even-numbered waveguide (i.e.,
perfect spatial antibunching). Thus the system consists of
two photons, each with four states available to it, giving a
total of 16 distinct two-photon states. As shown in Fig. 1,
each of these two-photon states can be mapped to a different
four-qubit state by encoding two computational qubits into
the state of each photon. For example, the physical two-
photon state |1〉odd |2〉even, with one photon in waveguide 1
and the other in waveguide 2, would correspond to the four-
qubit state |0〉1 |0〉2 |0〉3 |0〉4. Here the state of computational
qubits |...〉1 and |...〉2 is defined by the physical state of the
down-converted photon in the four odd-numbered waveguides
(|...〉odd), and qubits |...〉3 and |...〉4 are defined by the state of
the other down-converted photon in the four even-numbered
waveguides. Thus four-qubit cluster states can be generated
in the eight-waveguide system when the two-photon spatial
wave function is shaped accordingly.

FIG. 1. Conceptual diagram of a cluster state encoded in an
array of eight waveguides. The array is driven by a pump laser
(blue) producing a pair of entangled photons (red). The encoding
from the two-photon eight-waveguide state to a four-qubit cluster
state is shown in the table, whereby a photon in the odd-numbered
waveguides represents the first two binary qubits of the four-qubit
cluster state (red-cluster-state qubits), and the photon in the even-
numbered waveguides represents qubits 3 and 4 (green).

III. DOMAIN POLING AND CLUSTER STATES

In order to shape the wave function in the array, we propose
to use tailored domain poling patterns to allow control of
the local effective nonlinearity and thereby define the local
phase of SPDC photon-pair generation at different points
along the pumped waveguide. In combination with the con-
tinuous photon-pair coupling to neighboring waveguides, this
allows tailoring of the output spatial wave function. Similar
methods have allowed wave function engineering in specially
poled bulk nonlinear crystals [33–35] and in arrays of up to
four coupled waveguides [32,36]. Here we show how such
control of the wave function can be achieved in eight coupled
waveguides using only a single size of inverted χ (2) domains,
making fabrication of the structures feasible to implement
with existing technology.

Using special domain poling patterns to control the two-
photon wave function can be preferable to adjusting the linear
properties of the chip such as the interwaveguide coupling
rate. This is because poling structures affect only the nonlinear
interaction, whereas the interwaveguide coupling rate affects
both linear and nonlinear properties of the chip. With our
approach each waveguide can be given a different nonlinear
poling pattern to produce a different state; see the mathemat-
ical formulation in Appendix A. This allows the chip to be
quickly reconfigured to produce different cluster states simply
by driving different waveguides with the pump laser. This
also avoids the need to integrate complex thermal or electro-
optic phase shifters onto the chip to reconfigure the wave
function. Thus, inhomogeneous waveguide poling provides
a straightforward approach to generating and reconfiguring
different photonic wave functions on-chip.

To this end we develop a class of nonlinear poling patterns
that give precise control over the local effective nonlinear
coefficient of each waveguide; see the mathematical details in
Appendix B. Particularly, we focus on designing patterns that
would be easy to fabricate, thus avoiding varied domain sizes
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FIG. 2. (a) Diagram of the poling technique. Every second “up”
domain can be translated by �z to alter the local effective nonlinear-
ity. (b) The local effective nonlinearity (normalized to unity) vs the
domain translation (�z), showing full control with a translation of
half a coherence length (LC/2).

such as in Refs. [32,34]. This is achieved by superimposing
two fourth-order periodic poling patterns [Fig. 2(a)]. Fourth-
order patterns have a period equal to 4 times the decoherence
length of the SPDC process (4 LC), and in this case we
consider patterns where the “up” domain length is 0.5 LC and
the remaining 3.5 LC is poled down. Two of these patterns are
then superimposed, as in Fig. 2(a), to make a second-order
phase-matched poling pattern. The displacement between the
two fourth-order patterns, �z, determines the phase difference
between the two-photon wave function generated from each
poling pattern. Accordingly, the local effective nonlinearity of
the poling structure can be controlled by varying this displace-
ment as shown in Fig. 2(b). Translating the whole structure
(with respect to other sections of poling on the waveguide)
changes the overall phase of the wave function generated
from that section of poling. Therefore the displacement of
overlapping fourth-order patterns with respect to one another
(�z) controls the magnitude of the effective nonlinearity,
while translating the whole structure controls the phase.

A key consideration for experimental realization of these
poling patterns is the tolerance of the output two-photon wave
function to fabrication errors in the poling structure. Previous
work simulated random errors in domain-boundary location
and found that high-fidelity states could still be produced,
despite Gaussian errors in all domain positions with standard
deviation 1 μm [32]. However, the output state would not
be so robust to systematic errors in the domain-boundary
locations. These are likely to occur because the growth of
ferroelectric domains is a complex process, and fabrication
parameters such as electrode size must be determined em-
pirically to produce the required domain size [37]. Thus it
is difficult to fabricate domains with a range of different
sizes on the chip, and domains spaced too closely together
can interact or fuse together during the inversion process,
producing systematic errors. We avoid these systematic errors
by using a poling pattern where all inverted domains are the
same size, and no two domains are spaced so closely that they
interact during the domain inversion process, as can be seen
in Fig. 2(a).

In order to create tailored wave functions using this pol-
ing technique, we divide each waveguide in the nonlinear
waveguide array into 34 different sections and allow each
section to have a different poling pattern of the form shown in
Fig. 2(a), and thus a different effective nonlinearity. Through
algorithmic optimization of the effective nonlinearity in each

FIG. 3. (a), (b) Structure of the box and star cluster states, where
red (green) spheres represent qubits physically encoded in the signal
(idler) photon. (c), (d) Average number of down-converted photons
in each waveguide during the generation of the box and star cluster
states, respectively, using special waveguide array poling described
in Fig. 2. (e), (f) Corresponding output two-photon wave functions
produced when pumping waveguides 8 and 1 of the array, where (e)
has a fidelity of 99.8% to the perfect box cluster state and (f) has a
fidelity of 99.9% to a perfect star cluster state.

section, we can design tailored poling structures to produce,
via SPDC, a desired two-photon state at the output of the
array. For a practical source of cluster states we design an
eight-waveguide device that produces the box or star cluster
states [Figs. 3(a) and 3(b)] when waveguides number 8 or
1, respectively, are driven by the pump laser. The simu-
lated average number of down-converted photons along each
waveguide in the device is presented in Figs. 3(c) and 3(d) for
generation of the box and star cluster states, respectively. The
full output wave functions produced from the poling structures
are presented in Figs. 3(e) and 3(f), with fidelity to the ideal
box and star cluster states of 99.8% and 99.9%, respectively.
Note that, relative to the usual representation, the cluster states
shown here have a Hadamard transformation applied to each
qubit for reasons that are explained in the following section.

IV. CLUSTER-STATE ALGORITHMS

Once the photons are created, cluster-state computa-
tion algorithms proceed by sequentially measuring differ-
ent qubits in the state. The basis used to measure qubit
number i is denoted Bi(α), with basis states |ψ (±α)〉i =
(|0〉i ± eiα |1〉i )/

√
2, where the value of α is adjusted for

each qubit measurement, depending on the algorithm being
implemented [3]. In the context of a waveguide array this
measurement basis is nontrivial to implement because it re-
quires spatial transformations on the output waveguides to
rotate to the B(α) measurement basis, regardless of the value
of α. However, we observe that for many simple operations,
such as propagating a state through a circuit or performing a
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controlled-NOT CNOT gate, only measurements in the bases
B(0) and B(π ) are required [3,5]. Under a Hadamard trans-
formation, these bases are mapped to direct measurements
in the waveguide mode basis, i.e., Ĥ (|0〉i − |1〉i )/

√
2 = |1〉i

and Ĥ (|0〉i + |1〉i )/
√

2 = |0〉i, so there is no need to perform
any linear transformation before measurement. Thus in order
to implement spatially encoded cluster-state algorithms more
efficiently in our proposed encoding scheme, a Hadamard
transformation should be applied to all the measurement bases
used for the algorithm. Additionally, to preserve the form of
the algorithm, Hadamard transformations should be applied
to each qubit in the cluster states itself. Thus the cluster states
we designed above are the typical cluster states but with a
Hadamard transformation applied to each qubit in the state.

After Hadamard transformations are applied to each qubit
of the star cluster state, the resulting wave function is

Cstar
4 = |+〉1 |+〉2 |+〉3 |0〉4 + |−〉1 |−〉2 |−〉3 |1〉4 , (1)

where |±〉i = |0〉i ± |1〉i. The corresponding spatial two-
photon wave function of this state is shown in Fig. 3(f). Such
a state could be used to implement a CNOT gate [3], provided
the measurement basis is the Hadamard transformation of the
typical basis. Similarly, we define the box cluster state as

Cbox
4 = |+〉1 |+〉2 |+〉3 |+〉4 + |+〉1 |−〉2 |+〉3 |−〉4

+ |−〉1 |+〉2 |−〉3 |+〉4 − |−〉1 |−〉2 |−〉3 |−〉4, (2)

and the representation of this state as a two-photon spatial
wave function is shown in Fig. 3(e).

The box cluster state can be used for an implementation of
Grover’s search algorithm [12–14,38]. For the simple case of
a two-qubit database, this search consists of two steps. First,
a two-bit state is prepared in the |+〉 |+〉 state, and a two-bit
string to be recovered (e.g., 01) is encoded into the state by
inverting the sign of the corresponding wave-function element
(e.g., |0〉 |1〉). In the next step, the amplitude of the quantum
state representing this encoded string is amplified by inverting
the entire state about the mean. For the two-qubit case the
answer is produced in a single iteration.

The measurements required to implement this algorithm
using the box cluster state are shown in Fig. 4(a), with
our implementation in the eight-waveguide spatial encoding
shown in Fig. 4(b). As discussed above, for spatially encoded
cluster states we propose to use a measurement basis that
is the Hadamard transform of the usual measurement basis.
We now define the basis explicitly as BĤ

i (α) with basis
states |ψ (±α)〉i = (|+〉i ± eiα |−〉i )/

√
2, where detection of

one of the two basis states is interpreted as a logical 0 or
1, respectively. To implement the Grover’s search algorithm
in this spatial encoding, at first the qubits 1 and 2 are mea-
sured, which physically involves detecting which odd-number
waveguide the signal photon is in. The choice of measurement
basis determines the bit string that is marked for recovery.
Measuring qubit i ∈ {1, 2} in the basis BĤ

i (π ) [or BĤ
i (0)] will

encode a logical 0 (or 1) into the ith element of the bit string to
be recovered. If both measurement results, s1 and s2, are 0, the
initial encoding of the two-bit string was successful; otherwise
unsuccessful encoding can be compensated for by feeding
forward the measurement results and using them to rotate the
measurement bases for qubits 3 and 4. To recover the encoded

FIG. 4. Operation of Grover’s search algorithm: (a) cluster-state
diagram of the implementation of Grover’s search and (b) imple-
mentation in the eight-waveguide system. Measurements are made
directly in the waveguide output mode basis.

bit string via Grover’s search algorithm, the remaining two
qubits, 3 and 4, are measured in the basis BĤ

i (π ), physically
achieved by detecting the idler photon in one of the even-
numbered waveguides. In place of rotating the measurement
basis of qubits 3 and 4, postprocessing of results can instead
be used, reinterpreting the final result as (s1 ⊕ s3, s2 ⊕ s4).
This recovers the marked bit string with certainty.

V. CONCLUSION AND OUTLOOK

In conclusion, we have shown how to design a nonlinear
photonic chip to generate and optically switch between differ-
ent four-qubit cluster states. This is achieved using a nonlinear
waveguide array with specially tailored poling patterns, which
are optimized to be easy to fabricate with typical electric
field poling methods. Importantly, this can provide a stable
integrated source of cluster states, with potential to scale to
larger states by increasing the number of waveguides in the
array. We also propose a change of measurement basis to
implement the cluster-state algorithms with spatially encoded
photonic qubits.

Clearly, nontrivial demonstrations of cluster-state quantum
computing will require resource states of significantly more
than four entangled qubits. To achieve this, simple cluster-
state sources such as the one proposed here must be multi-
plexed in time, space, or both. However, spatial multiplexing
via cluster-state fusion operations [9] requires destructive
measurement of a photon in each input state; thus at least
three photons are required in each input state for fusion to
produce a cluster state with more qubits than either of the
input states. Therefore, to make a scalable cluster-state source,
it is worth considering extending the technique presented here
to the generation of four-photon states via χ (2) nonlinearity so
that fusion operations could be applied. Another promising
route to scalability is via temporal multiplexing of cluster
states generated sequentially by a pulsed pump. The temporal
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multiplexing has been demonstrated for continuous-variable
(CV) states [39,40]. The generation of CV states within pho-
tonic chips has recently been realized [41], and we anticipate
that nonlinear poling techniques in waveguide arrays might be
also applied to shape the spatial entanglement of CV states
which could subsequently be multiplexed in time to create
large multidimensional cluster states.
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APPENDIX A: SPDC IN A POLED WAVEGUIDE ARRAY

In the main text we have described how custom nonlinear
poling patterns could be used to generate two-photon cluster
states. This Appendix provides complete mathematical details
on the poling patterns used in the main text. We follow
the general framework of Ref. [32] but introduce special
aspects in the analysis to ensure that the poling patterns are
practical to fabricate using typical electric field poling with
lithographically defined electrode masks.

The two-photon wave function at position z along the prop-
agation axis of the χ (2) waveguide array obeys the equation
[31,32]

i
∂�ns,ni (z)

∂z
= i

N∑
np=1

Anpdnp (z)ei�β (0)zδns,npδni,np

− C
[
�ns,ni+1 + �ns,ni−1 + �ns+1,ni + �ns−1,ni

]
.

(A1)

Here ns and ni are the waveguide numbers of the signal
and idler photons, N is the total number of waveguides, the
first term on the right-hand side represents the generation
of the photon pair via SPDC, with classical laser driving
amplitude Anp and second-order nonlinear coefficient dnp (z)
in waveguide number np, and the phase mismatch of the
nonlinear process is �β (0). The last term on the right describes
the evanescent coupling of signal and idler photons between
neighboring waveguides with the coupling rate given by C.
Integrating this equation along the length (L) of the array in
the basis of eigenmodes of the nearest coupling operator gives

fks,ki (L) = eiβkski L
N∑

np=1

Anp sin

(
πkinp

N + 1

)

× sin

(
πksnp

N + 1

) ∫ L

0
dnp (z)ei(�β (0)−βkski )zdz. (A2)

Here ks and ki are the indices for the two-photon eigen-
modes, βkski = 2C[cos( πki

N+1 ) + cos( πks
N+1 )], the contribution to

the phase mismatch term resulting from photon coupling
between waveguides. Following the approach in [32], we note
that typically β (0) � βkski , meaning that to a good approxima-
tion the integral from Eq. (A2) can be separated into quickly

and slowly varying terms according to

L/�∑
m=1

e−i(βkski m�) 1

�

∫ m�

(m−1)�
dnp (z)ei�β (0)zdz. (A3)

Here � is a length equal to a small integer number multiple
of the decoherence length LC (where by definition LC =
2π/�β (0)). We will choose � = 4LC for our structure. Note
that L/� is the total length of the array divided by �. For
simplicity, we will assume the total length of the array is such
that this quotient will produce an integer, i.e., the length of the
array will fit a whole number of lengths �.

The slowly varying integral approximation according to
Eq. (A3) allows Eq. (A2) to be written as

fks,ki (L) = eiβkski L
N∑

np=1

Anp sin

(
πkinp

N + 1

)

× sin

(
πksnp

N + 1

) L/�∑
m=1

Dm
np

e−i(βkski )m�, (A4)

where Dm
np

is the integral of the quickly varying term from
Eq. (A3), given by

Dm
np

= 1

�

∫ m�

(m−1)�
dnp (z)ei�β (0)zdz. (A5)

We refer to Dm
np

as the aggregate nonlinearity, since it gives
the net effect of poling and phase mismatch for a section
of waveguide from distance (m − 1)� to distance m� along
waveguide number np.

As we demonstrate below in Appendix B, for poling pat-
terns of “up” and “down” ferroelectric domains [i.e., where
dnp (z) is restricted to values of ±χ (2)], the aggregate non-
linearity |Dm

np
| can take any value less than the maximum

of (2/π )χ (2), and any phase can be achieved simply by
translating the poling pattern in the z direction (with a cyclic
shift at the boundaries).

Therefore in Eq. (A4) we can treat Dm
np

as a matrix of
any set of complex numbers and optimize this matrix to
produce the desired wave function fks,ki (L) in the waveguide
array eigenmode basis. This optimization can be carried out
computationally by vectorizing Eq. (A4). Vectorization is best
done by assuming only a single waveguide is pumped by the
laser, so that Anp = 0 for all np except the pumped waveguide,
n′

p. Then Eq. (A4) can be written as

fks,ki (L) = eiβkski LAn′
p

sin

(
πkin′

p

N + 1

)
sin

(
πksn′

p

N + 1

)

×
L/�∑
m=1

Dm
n′

p
e−i(βkski )m�. (A6)

Here Dm
n′

p
is interpreted as a (L/�) × 1 vector while the

remaining terms are a N2 × (L/�) matrix, i.e.,

fk =
L/�∑
m=1

Mk,mDm, (A7)
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where Mk,m represents all variables on the left of Eq. (A6) ex-
cept Dm

n′
p
, and k is an index concatenating all N2 permutations

of the eigenmode indices ks, ki into a single index. This matrix
can be inverted numerically to give the vector of aggregate
nonlinearities (Dm) required to produce a certain output wave
function.

Note that so far, as defined in Eq. (A4), we have allowed the
aggregate nonlinearity to change along the propagation axis in
discrete steps every distance of �. However, this is typically
an unnecessarily large number of free parameters compared
to the number of parameters required to solve Eq. (A7) for ar-
bitrary wave function �ns,ni (L), since the number of elements
in the two-photon wave function are of the order of N2. Thus,
we restrict Dm to be constant within particular regions along
the waveguide to simplify the final poling pattern. In the case
considered in this paper, where we have eight waveguides,
the laser-driven waveguide is divided into 34 different regions
of constant aggregate nonlinearity. This provides enough free
parameters in Eq. (A6) to produce the desired two-photon
cluster states.

APPENDIX B: DESIGN OF NONLINEAR
POLING PATTERNS

Once the required aggregate nonlinearity is known,
Eq. (A5) can be used to find a suitable poling structure. One
way to do this is to simply vary the duty cycle of the poling
pattern [32]. However, as explained in the main text, here we
aim to find poling patterns that would be easy to create using
standard electric-field-induced poling using lithographically
defined electrode masks. Two key considerations for the prac-
ticality of complex poling patterns are as follows. First, the
inverted domains should have a constant size throughout the
chip because the relationship between electrode size and poled
domain size is complex. Secondly, two inverted domains
should not be too close together (say closer than LC/2), since
the domains could interact during the electric field poling
process, producing errors in the final poling pattern.

With these constraints in mind we used a poling pattern
consisting of two fourth-order patterns superimposed as il-
lustrated in Fig. 2(a). The location of the two “up” domains
in each period of the poling structure shown in Fig. 2(a) is
mathematically defined as follows:

if mLC + z1 < z < (m + 0.5)LC + z1,

then dnp (z) = +χ (2), (B1)

if (m + 2)LC + z2 < z < (m + 2.5)LC + z2,

then dnp (z) = +χ (2), (B2)

otherwise dnp (z) = −χ (2). (B3)

Here m is allowed to be only multiples of 4 (i.e., 0, 4, 8...),
since the poling pattern has a period of four decoherence
lengths. The terms z1 and z2 are translations of each of the
two inverted domains along the propagation axis. We restrict
−LC � z2 − z1 � LC to prevent the inverted domains from
getting too close together.

The aggregate nonlinearity produced by the poling struc-
ture specified above can be found by integrating dnp (z) over a
length of 4LC according to Eq. (A5). Dividing the integral into
the poled up and down parts gives

Dm
np

= −χ (2)

�

∫ (m+4)LC

mLC

ei�β (0)zdz

+ 2χ (2)

�

∫ (m+0.5)LC+z1

mLC+z1

ei�β (0)zdz

+ 2χ (2)

�

∫ (m+2.5)LC+z2

(m+2)LC+z2

ei�β (0)zdz, (B4)

where the integration of the negative part of the poling has
been carried out over the whole length (0 to 4LC), and twice
the positive parts added to simplify the calculation. Noting
that LC = 2π/�β (0) and � = 4LC , we obtain the following
after integration:

Dm
np

= iχ (2)

2π
(ei2πz1/LC + ei2πz2/LC ). (B5)

We now define the relative shift of up domains as �z = z2 −
z1 and obtain

Dm
np

= iχ (2)

π
eiπ (z1+z2 )/LC cos(π�z/LC ). (B6)

We see that by adjusting �z in the range [0, LC/2], any
absolute value of Dm

np
can be achieved, below the maximum

of χ (2)/π . Furthermore, by increasing both z1 and z2 by the
same amount (in the range [0, LC]) any phase shift of Dm

np
can

be achieved, independently of the absolute value.
Thus the poling structure described above allows arbitrary

variation of the aggregate nonlinearity while guaranteeing
that the structure is practical to fabricate. Accordingly, to
determine the poling pattern to produce a specific output wave
function, we have solved Eq. (A7) to calculate the required
aggregate nonlinearity and subsequently used Eq. (B6) to
find the parameters of specific up or down poling structure
required to achieve the aggregate nonlinearities.
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