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Abstract

Decisions surrounding the presence of infectious diseases are typically made in the face of

considerable uncertainty. However, the development of models to guide these decisions

has been substantially constrained by computational difficulty. This paper focuses on the

case of finding the optimal level of surveillance against a highly infectious animal disease

where time, space and randomness are fully considered. We apply the Sample Average

Approximation approach to solve our problem, and to control model dimension, we propose

the use of an infection tree model, in combination with sensible ‘tree-pruning’ and parallel

processing techniques. Our proposed model and techniques are generally applicable to a

number of disease types, but we demonstrate the approach by solving for optimal surveil-

lance levels against foot-and-mouth disease using bulk milk testing as an active surveillance

protocol, during an epidemic, among 42,279 farms, fully characterised by their location, live-

stock type and size, in the state of Victoria, Australia.

1 Introduction

Increasing globalisation and mobility has heightened the risk of bio-invasions by invasive alien

species (IAS) and transboundary animal diseases (TAD) [1]. The damages caused by IAS and

TAD to biodiversity and the economy are substantial [2, 3]. While prevention is the first line

of defence, focusing on ports of entry, border quarantine and main pathways, complete pre-

vention at the border (and through pre-border activities) has proven impossible. For this rea-

son, a good deal of attention in the literature and in policy making has been paid recently to

local or post-border surveillance, where there exists a trade-off between spending on surveil-

lance against an IAS/TAD, at any point in time, and the cost of controlling its establishment

and spread in the future [4, 5].
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Methodologically, finding the optimal level of local surveillance against an IAS/TAD is an

especially challenging task for two main reasons. First, an invasion is typically random in both

time and space [6–8]. Second, its diffusion is highly dependent on local spatial characteristics

[6, 9, 10]. These features make the search for optimal surveillance, or the best point of early

detection, a difficult stochastic spatial dynamic optimisation problem which almost certainly

faces the ‘curse of dimensionality’, or a computational impasse due to the excessive size or

dimension of the model [11].

At the risk of oversimplification, there are four standard modelling approaches to aid deci-

sion-making in this class of biosecurity problems. The first is the aggregate approach which

largely ignores or reduces the spatial dimension (e.g. [4, 12–15]). However, as Wilen [16] and

Meentemeyer et al. [17] suggest, treating spatial heterogeneity in a (near) uniform manner in

this way can produce misleading results. The second approach focuses on the spatial aspect of

invasions, thus determining a one-time surveillance effort [18–20], or designing long-term

equilibrium surveillance programs using steady-state analysis [21]. Recently, Epanchin-Niell

and Wilen [22] proposed a third approach that explicitly and fully considered both time and

space dimensions, but in a deterministic setting. Their model has been extended by Chalak

et al. [23] to incorporate a limited range of stochasticity, but is only able to accommodate a

small range of landscape heterogeneity (i.e., a 15-cell x 15-cell). This limited spatial heteroge-

neity is likely insufficient for most practical bio-invasion modelling exercises.

In parallel, some studies abandon optimization routines altogether to avoid the curse of

dimensionality, and choose instead simulation methods to retain all of the features of time,

space and randomness [9, 24–31]. However, the downside of these simulation methods is their

inability to generate optimal solutions as only a small number of policy and disease transmis-

sion scenarios can normally be simulated.

A fourth approach, a simulation-based optimisation has also been proposed [32, 33]. Tech-

nically, this approach involves two stages. In the first stage, a detailed spread model is devel-

oped to simulate the development of the disease over both time and space in a random

manner. Simulation outcomes are used to estimate the average trend of the invasion develop-

ment or dispersal parameters. In the second stage, an optimisation model is solved using

only the estimated parameters, thus facing no issues with dimensionality. Despite their

important contribution, these models are not fully spatially explicit, and are thereby at risk of

missing some important spatial features of an invasion during the estimation of transmission

parameters.

In general terms, the approach to stochastic optimisation is highly dependent on the struc-

ture of a particular problem. Stochastic optimisation problems are generally classified based

on the number of time periods at which decisions are made. The optimal surveillance problem,

our focus, can be formulated as a two-stage problem, the most widely-used form in stochastic

programming. At the first stage, a decision has to be made on how much to spend on early

detection before a bio-invasion is realised in the second stage. Thus, the task boils down to

minimising the sum of the active surveillance cost in the first stage and the expected damage

caused by the invasion in the second stage. Given time and space dimensions, the number

of probable invasion scenarios can be very large, making it impossible to solve the problem

directly.

One solution method to this class of problems is the Sample Average Approximation (SAA)

approach. It is arguably preferred over other more popular approaches, such as gradient

approximations, because it does not impose any structure on the spread function—a require-

ment that has been criticised in recent literature (e.g. [34]). Technically, SAA is a two-part

method that uses sampling and deterministic optimisation [35]. The sampling techniques help
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reduce the scenario set to a manageable size and accordingly find solution candidates by using

sample averages. Deterministic optimisation is then used to search for the optimal solution.

SAA is best known for its simplicity and desirable asymptotic statistical properties. Esti-

mates of global optima are guaranteed if the set of decisions is convex and the objective func-

tion is convex in policy choices for all scenarios. Nonetheless, the challenge that prevents its

full application is computational expense, since scenarios are processed in a batch manner

while solution quality depends on the sample size of scenarios. Therefore, while SAA has been

applied in various fields, it often remains limited to problems of small size [36, 37]. In contrast,

surveillance problems where time, space and randomness are explicitly and fully considered

are prohibitively large in dimension, making simulations, let alone optimisation procedures,

especially challenging [10].

Against this background, we aim to make two specific contributions to the surveillance lit-

erature on TADs. First, we circumvent computational complexity by: (a) designing an ‘infec-

tion tree model’ to capture infection paths, instead of the more typical approach of tracking

farms and ‘contacts’ as in network models; and (b) using a combination of innovative ‘prun-

ing’ of the infection tree and parallel processing methods. With this contribution, SAA

becomes amenable to stochastic surveillance optimisation problems for TADs. In our paper,

in short, we broaden this class of models to include problems that involve finding optimal con-

trol strategies in a stochastic setting, where the dimensions of space and time are fully speci-

fied, while avoiding a computational impasse. Second, we demonstrate our approach by

solving for optimal surveillance against foot-and-mouth disease (FMD) using bulk milk testing

(BMT), as an active surveillance protocol, across 42,279 farms, fully characterised by their loca-

tion, livestock type and size, in Victoria, Australia.

2 Model formulation and methods

Without any policy interventions, an animal disease can be either ‘naturally immunised’ (i.e.,

assuming post-infection recovery) or detected by front-line people such as farmers, thus con-

trolled or eradicated, albeit usually late in the disease spread process. Disease notification in

this manner is called ‘passive surveillance’ [38]. Meanwhile, ‘active surveillance’ is a policy

choice, an active procedure to detect a disease early so that an outbreak is manageable and

damages can be avoided [39]. The question is how much to spend on active surveillance so

that the total cost of controlling an incursion, along with total damages and the cost of detect-

ing it early, is the smallest.

With this in mind, we formulate the surveillance problem as a two-stage stochastic pro-

gramming problem. A decision has to be made on how much to spend on active surveillance

in the first stage, after which the spread of an outbreak is known. This spread is independent of

the first stage decision which is assumed to be fixed once it is made. Thus, our problem can be

expressed in the form:

c�
|{z}

the minimum cost

¼ min
q2Q

fE½Cðq; xÞ�g ¼ CasðqÞ|fflffl{zfflffl}
active surveillance cost

þ lE½Coutbreakðq; xÞ�|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
expected outbreak cost

ð1Þ

where C(q, ξ) is a cost function of q 2Q, a decision vector representing active surveillance

efforts; ξ 2 ξ, is a multi-dimentional random vector associated with how an outbreak unfolds;

and λ is an outbreak arrival rate which is assumed to be known.

The goal here is to find some policy q that is feasible for all the possible scenarios and mini-

mizes the expectation E½Cðq; xÞ�. However, as the number of outbreak scenarios can be very

large when the spread is over both time and space, not to mention highly contingent upon the
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characteristics of the disease, directly computing E½Cðq; xÞ� is likely to be infeasible for most

surveillance problems. Therefore, we approximate the problem using SAA.

2.1 The sample average approximation method

SAA is a two-part method that uses sampling and deterministic optimisation [40]. The idea is

to approximate E½Cðq; xÞ� using sample average estimates which are derived from indepen-

dently and identically distributed (iid) samples of ξ. For each scenario of ξ, the problem (1) is

deterministic, and therefore, deterministic optimisation techniques can be applied. The pro-

cess is repeated with many different scenarios and samples, and candidate solutions are tested

and validated until convergence to the ‘true’ solution becomes clear.

Specifically, the implementation of SAA involves a three-stage procedure. In the first (train-

ing) stage, a lower bound for the objective function c� is estimated as:

�cN ¼
1

M

XM

m¼1

cmN ð2Þ

where c1
N ; c

2
N ; . . . ; cMN are objective values obtained from M independently and identically dis-

tributed (iid) generated samples of size N. Associated with these objective values are candidate

policy solutions q̂1; q̂2; . . . ; q̂M. In the second (testing) stage, an iid sample of size N0, typically

being much bigger than N and generated independently from previous samples is used to esti-

mate an upper bound for c� for any feasible point q̂ 2 Q by:

ĉN0 ðq̂Þ ¼
1

N 0
XN0

n0¼1

Cðq̂; xn0 Þ ð3Þ

Naturally, the best candidate solution q̂� selected is the one that gives the smallest objective

value ĉN0 ðq̂�Þ, or q̂� 2 arg minfĉN0 ðq̂Þ : q̂ 2 fq̂1; q̂2; . . . ; q̂Mgg. In the third (validating) stage,

another iid sample N@, being also much larger than N, is generated independently from previ-

ous samples to check the quality of the solution by estimating the ‘optimality gap’ as:

gapðq̂�Þ ¼ ĉN00 ðq̂�Þ � �cN ð4Þ

The three-stage procedure repeats with increasing samples N, until the gap ðq̂�Þ is small

enough to ensure convergence of the estimated solution to the true one [41]. Finally, the stan-

dard errors of SAA estimators in Eqs (2)–(4) are estimated using otherwise standard statistical

methods (for relevant formulas, see [40]).

SAA has all of the desirable asymptotic statistical properties due to being underpinned

by the ‘Law of Large Numbers’ (LLN), so that as sample size grows, the estimated mean gets

closer to the ‘true’ average of the population. It particularly suits surveillance problems since it

removes the need of specifying a functional form disease spread, and random factors are real-

ised outside the optimisation routine (a so-called exterior sampling technique). Estimates of

global optima are guaranteed if the set of decisions is convex and the objective function is con-

vex in policy choices for all scenarios [42]. While the first assumption is likely in our case, the

second is also expected since dangerous AIS/TAD spread swiftly and generally outpace the

economies-of-scale, if any exist, of control measures.

Nonetheless, as indicated, the challenge faced by SAA applications is their computational

expense. All scenarios are processed at once, in a batch manner, to find the optimum, so the

procedure is memory-demanding. However, solution quality depends on the number of sce-

narios. This challenge explains the absence of SAA in the biosecurity literature, in which prob-

lems with time, space and randomness all being considered, forcing the need for an extremely
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large dimensional platform. In this context, we propose techniques, described in the following

sub-sections, to manage the dimensionality of TAD surveillance problems so that SAA can be

effectively applied.

2.2 Infection tree model

To facilitate the application of SAA, we design an infection tree with two key features. First, it

allows multiple independent contacts between farms over time, resembling reality. Specifically,

a farm can be the source of infection for several farms, and likewise, one farm can be infected

by several farms. Second, the infection path evolves independently from policy choices. Here,

each tree is an outbreak without any interventions, and it serves as a control case, to which dif-

ferent policies are applied and compared.

To demonstrate the infection tree’s advantage, we use a simple example with three farms,

namely A, B and C. Between any two consecutive points in time, there are nine distinct con-

tacts possible, including those made with themselves (e.g. A!A, A!B, A!C, B!A, B!B,

etc.). Note that the direction of contacts is essential here and represented by an arrow!.

Without loss of generality, at the outset (t = 0), suppose only farm C is infectious. We further

assume that only two successful contacts C!A and B!C are made between t = 0 and t = 1.

Consequently, at t = 1, A is newly-infected with the source of infection being C while C

remains infectious. Contact from B!C, though successful, does not and will not affect the

development of the infection tree, as B is not infectious. Therefore, there is no need to record

this contact in the model to save memory. Moving to t = 2, suppose, only A!C, A!B, and

C!B are successful. Thus B is newly-infected with two sources of infection, namely A and C,

and all three farms are infectious at t = 2.

Our infection tree model keeps only contacts/infections made by infectious farms (i.e.

Infectious! Susceptible and Infectious! Infectious). Thus, for this example, there are five

infections, including the first one, in which C is the source of infection for itself. Infections are

denoted as in where n = 1, 2, . . ., 5 indicate the order of infection time (the left panel of Fig 1).

For each infection, four pieces of information are kept. They include the name/id of the

infected farm which is located at the beginning of each solid line; the name/id of the source

farm that spreads the infection, located at the beginning of each dashed-line; and the times the

infected farm gets infected and removed, respectively, represented by the two endpoints of the

solid line. To this end, the length of the solid line is the age of an infection.

The infection tree yields three benefits to the application of SAA. First, keeping infections

with only the information needed for modelling is efficient in data storage. Second, indepen-

dence among infections is key to efficient computing. It allows an infection tree to be pruned

easily when different policies are applied. For example, as seen in the right panel of Fig 1, sup-

pose a policy that clears A at t = 1 is applied. This results in a cut of the branch that grows from

the infection that begins with A being infected at t = 1. This cut does not affect any other infec-

tions. Therefore, no computing effort is required to know whether B remains infectious at

t = 2 since, in this case, the infection C!B remains intact. Finally, the infection tree facilitates

tracing the source farm and finding the age of an infection, thus further easing computation.

The latter is important to identify whether an infected farm reaches the point where it can be

naturally detected or immunised.

The infection tree’s benefits might be better seen in comparison with a network model, a

commonly-used tool to represent objects and their relationships [43]. The previous example is

now presented in Fig 2 for illustration: the left panel shows solid balls as infected farms, solid

lines as successful contacts, and dashed lines as probable but unsuccessful contacts, while the

right panel shows the same case but with A being cleared. As can be seen, the network model

PLOS ONE Optimal surveillance against foot-and-mouth disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0235969 July 9, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0235969


has at least three problems, due mainly to its focus on farms and contacts. First, it needs con-

siderable memory, at each time step, to keep the state of all farms and all successful contacts

including B!C, which does not matter to the disease progression. Second, it requires large

computational time to sort out the state of each farm once a policy is applied. The reason is

that one farm can be infected by several source farms, but these infection paths are not kept

separately. Specifically, B is infected even when A is removed, as B is infected by not only A

Fig 1. Infection tree model.

https://doi.org/10.1371/journal.pone.0235969.g001

Fig 2. Network model.

https://doi.org/10.1371/journal.pone.0235969.g002
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but also C. In contrast to our infection tree model, the state of B in the network model is not

known without performing a substantial computing exercise, which costs computational time

and memory. Third, it is difficult to establish the infection age of each farm, which is vital for

disease progression. In short, a network model is not amenable to surveillance problems of

large dimension given its computational inefficiency.

2.3 Infection tree pruning rules

Despite their benefits, infection trees, when they grow large, can substantially slow down the

SAA procedure. To enhance computational efficiency, we introduce five pruning rules to cut

infections that are not possible or sensible in any tree, irrespective of policies applied. These

rules are relevant to Susceptible-Infectious-Removed (SIR) models where animals are either

removed or immunised after being infected.

Rule 1: No backward infection. This rule trims infections that spread the disease back to their

source farms. For example, in Fig 3, panel (a), infection i2 has A as the source farm of B.

From B, any infections such as i3, in which B becomes the source farm of A, are not sensible.

The reason is clear. Future contacts with A by other infected farms do not change the infec-

tion status of A since A is already infected. Furthermore, infection i2 which creates i3 would

not exist without A being infectious in the first place. Therefore, infection i3 is not possible

under any policies. Under this rule, it is cut from the tree together with its subsequent

infections.

Rule 2: No infection to older ‘sisters’. This rule trims infections in which younger sisters spread

the disease to older sisters. For example, in Fig 3, panel (b), infection i1 (mother) generates

infection i2 (older child) and then infection i3 (younger child); later on, infection i2 creates

infection i5 (grandchild) while infection i3 creates infection i4 (grandchild). In this case, i3,

i4 and their ‘children’ are younger than i2, and hence are not able to generate i2 because i2
already exists when they are created.

Rule 3: Passive surveillance and immunisation pruning. An infection eventually ends with the

infected farm either being detected by passive surveillance or by natural immunisation. If

detected by passive surveillance, the infected farm will be removed. On the other hand, if

naturally immunised, the infected farm will not be infectious. For that reason, Rule 3 trims

all infections created by the ones detected by passive surveillance such as infection i3 in Fig

3, panel (c), and the ones that have infected farms being naturally immunised.

Rule 4: Tracing-related pruning. When an infected farm is detected by passive surveillance,

there will be forward and backward tracing processes. Rule 4 trims all successful tracing

cases. For example, in Fig 3, panel (d), infection i3 is detected by passive surveillance. For

the backward-tracing, infection i1 which creates infection i3 will be trimmed if it is success-

fully traced. For the forward-tracing, on the contrary, any children of i3 and their subse-

quent infections will be cut with certainty, since i3, once detected and removed, is no longer

able to create them.

Rule 5: No long-distance infections after the first TAD detection. The application of this rule is

country-specific. Successful detection of TAD generally leads to a national livestock stand-

still, or movement restrictions, at least, followed by quarantine and severe movement con-

trols [44]. Consequently, Rule 5 trims long-distance infections and their subsequent

infections after the first TAD detection by passive surveillance is made.
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2.4 Parallel processing

Parallel processing makes large-sized problems feasible in an SAA application. It can be

applied to both simulation and optimisation routines. Various worker-processors can be used

simultaneously to generate many large samples and calculate sample averages as specified in

Eqs (2) and (3). Furthermore, parallel processing also plays an essential role in an SAA optimi-

sation process, which is based on a direct search for the optimal point. Accordingly, in stage

two (testing), objective function values for various policies applied to a large sample N0 of

infection trees can be calculated simultaneously by many worker-processors. These worker-

processors will then send their outputs to a master-processor to determine what is optimal.

In the same fashion, Eq (4) can be executed with each worker-processor computing various

upper bound estimates. These estimates are then sent to the master-processor to estimate

the optimality gap. In short, many dimensionality issues in SAA applications can be largely

addressed by parallel processing.

3 Case study: Optimal active surveillance against foot-and-mouth

disease in the state of Victoria, Australia

Although generally useful, our proposed methods are applied here to the problem of optimis-

ing BMT-based active surveillance against FMD in Victoria during an epidemic or post-incur-

sion. Specifically, we focus on exploring the potential use of BMT as an active surveillance tool

Fig 3. Infection tree pruning rules.

https://doi.org/10.1371/journal.pone.0235969.g003
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when FMD has been found in the environment—an exercise highly policy-relevant to FMD-

free countries in general and Australia, in particular, should an incursion occur. The surveil-

lance problem is as specified in Eq (1), but with the arrival rate λ = 1. For this problem, our

recent study finds that the optimal application of BMT is every day [33]. Our application aims

to investigate whether this result holds with a better optimisation approach, in which time,

space and randomness are fully considered.

3.1 Foot-and-mouth disease, active surveillance measure and the study area

FMD is one of the most dangerous TADs. It affects cloven-hoofed animals by causing debili-

tating effects such as weight loss, decrease in milk production and mortality in young animals

[45]. Of the most concern is the ability of the FMD virus to survive in different environments

for a long time and spread via various pathways [44–46]. Given its dangers, FMD ranks high

in the list of notifiable animal diseases by the World Organisation for Animal Health (OIE),

thereby causing substantial trade barriers to endemic countries, which now account for two-

thirds of the world [1]. In spite of implementing stringent prevention measures, FMD-free

countries remain under constant threat of an FMD outbreak due to increasing animal mobil-

ity, tourism and travel [47]. Indeed, over the last 15 years, these otherwise FMD-free countries

alone have lost roughly $US 25 billion due to FMD outbreaks [3].

From this perspective, increasing attention has been paid to enhancing local surveillance

against FMD, in FMD-free countries, to ensure early detection and quicker return to the

market. A few measures have been proposed for active surveillance [48–50]. However,

none has been applied in practice to the best of our knowledge. In theory, bulk milk testing

(BMT) seems a promising measure since it can be embedded in the existing system that

mass-screens milk for common and indigenous diseases [38]. BMT uses a real-time reverse

transcription-polymerase chain reaction (rRT-PCR) [51]. The idea of the test comes from a

finding that the milk from FMD incubating cattle contains an FMD virus for up to 4 days

before clinical signs of the disease become evident [52, 53]. Therefore, we consider BMT as

an active surveillance measure for detecting FMD, operating on top of the existing passive

surveillance system.

In terms of the study area, there are a few reasons to choose the state of Victoria in Austra-

lia. First, Australia is one of the world’s largest exporters of livestock [54]. Since its agricultural

system is highly exposed to the world market, damages from a possible FMD outbreak are

undoubtedly substantial [55, 56]. Second, Australia is exploring more active ways to enhance

early detection of FMD, a system which generally relies solely on passive surveillance [57, 58].

Third, the state of Victoria is thought to bear the largest relative risk of an FMD introduction,

establishment and spread [59]. The reason for this is straightforward. Victoria has the highest

livestock and human population density in Australia, and its livestock production is relatively

close to high volume air and sea ports. Its environmental conditions are also generally suitable

for FMD virus survival. Furthermore, the state is vulnerable to a widespread outbreak due to

the scattered distribution of pig farms which carry the biggest risk of being exposed to and

infected by the FMD virus among all cloven-hoofed animals [57]. Finally, Victoria is the centre

of Australia’s dairy production [60], making it the most suitable state for using BMT as an

active surveillance measure.

As a state, Victoria has 42,279 farms in total. As seen in Fig 4, farms are classified into seven

categories, including beef, dairy, sheep, pig, mixed beef-sheep, smallholder, and feedlot. How-

ever, even within in each category, farms are not homogeneous in size as well as livestock com-

position. In summary form, Victoria is home to 62% (1.6 million head), 22% (0.5 million

head), 21% (14 million head) and 9% (2.1 million head) of Australia’s populations of dairy
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cattle, pigs, sheep and lambs, and meat cattle, respectively, while occupying just over 3% of

Australia’s land mass [61].

3.2 FMD dispersal

In line with existing literature, our farms are classified as either susceptible, infectious or

removed. Consider a large population of farms F. At the outset, a random farm gets FMD-

infected from an outside source. This farm is called the seed farm which spreads the disease to

other farms via successful contacts.

In addition to being random, the transmission between farms also depends on farm-level

characteristics such as livestock size and type, and the distance between susceptible and infec-

tious farms (e.g. [8, 62]). Accordingly, the probability πf that a susceptible farm f becomes an

infected one f0 in a given day is defined as:

pf ¼ 1 � exp½� STPf

P
f 0 ðT

TPf 0K þ dÞ� ð5Þ

where ST and TT are the transposes of the L × 1 vectors of susceptibility (risk of catching the

disease) and transmission (rate of spreading the disease), respectively, associated with livestock

type i, where i 2 L = {cattle, pig/sheep, others}; P is the farm-level livestock size L × 1 vector;

and K 2 K is the dispersal kernel F × F matrix with its elements determined by a three-parame-

ter function, decreasing in the distance df,f0 between susceptible and infectious farms [63], in

Fig 4. Farm distribution in Victoria.

https://doi.org/10.1371/journal.pone.0235969.g004
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the form:

Kðdf ;f 0 Þ ¼
ko

1þ ðdf ;f 0=d0Þ
a

and δ explains some random factors, especially long distance jumps which are not well

explained by S, T and K [64].

3.3 The infection tree

FMD transmission is a stochastic spatial dynamic process, for which each realisation forms an

infection tree or an outbreak scenario. Stochastic factors can be grouped under two categories:

those related to the creation of an infection in the tree and those determining how an infection

ends. The first group gives information on names/id of the source and the infected farms, as

well as the time an infection begins (tb) while the second group lets us know when an infection

ends (te).
The creation of an infection is governed by Eq (5). It is worth noting that there is a latent

period (τlatent) when an infection begins, during which the farm is not infectious [65]. We take

this period into account in our computation.

Meanwhile, an infection can end in one of the three ways. First, an infected farm can be

detected and removed by passive surveillance after τps days, with a probability pps, which

depends on farm type. Alternatively, if BMT-based active surveillance is applied, te will

depend on not only τps and pps, but also the BMT frequency q. Second, an infected farm can be

detected and removed via tracing activities after a tracing period of τtrace. Finally, an infected

farm can be naturally immunised and becomes non-infectious after a clinical period of τim,

which also depends on the farm type.

To describe the disease dynamics, we first introduce some notations. We denote xj
t as the

infection state of farm j at time t where j 2 F. There are two values in xj
t : xj

t ¼ 0 means the

farm is susceptible (i.e., being a farm of type f), while xj
t ¼ 1 means the farm is infectious (i.e.,

being a farm of type f0). We denote yjt as the control state of farm j at time t, with two values:

yjt ¼ 1 means the infection at farm j ends due to being detected through surveillance or by trac-

ing activities; otherwise, yjt ¼ 0. We denote gj
t as the immunisation state of farm j at time t,

with two values: gj
t ¼ 1 means the infection at farm j ends by natural immunisation; otherwise,

gj
t ¼ 0. Finally, we denote Xt, Yt and Gt as F × 1 vectors of infection, control and immunisation

states of all farms at time t.
Initially (i.e., t = 0), vector X0 has all elements equal to zero with one exception for the seed

farm, being randomly drawn from the pig farms, the most likely case according to [58]. Mean-

while, vectors Y0 = 0 and G0 = 0. That is, at the outset, the infected seed farm is not at te for any

reason while the remaining farms are all susceptible.

Moving forward in time, the infection state of each farm xj
t at t where t> 0 depends on four

factors. They include (i) its probability p
j
t of getting infected at t as governed by Eq (5); (ii) its

infection state in the previous time period xj
t� 1; and (iii) its control state yj

t and (iv) immunisa-

tion state gj
t . The value of xj

t thus can be determined using:

xj
t ¼

1 if xj
t� 1 þ p

j
t � 2ðyj

t þ gj
tÞ � 1

0 otherwise
for j 2 F; t 2 ½0;Toutbreak�

8
<

:
ð6Þ

where Toutbreak is the end point of an outbreak which depends on how an outbreak unfolds
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and the effectiveness of passive and active surveillance; the control and immunisation states of

each farm, yjt and gj
t at t which also depend on their states in the previous time period and the

realisation of random factors as follows:

yjt ¼
1 if yjt� 1 þ ε

jy
t � 1

0 otherwise
for j 2 F; t 2 ½0;Toutbreak�

8
><

>:

gj
t ¼

1 if gj
t� 1 þ ε

jg
t � 1

0 otherwise
for j 2 F; t 2 ½0;Toutbreak�

8
><

>:

ð7Þ

where ε
jy
t and ε

jg
t depend on how an infection ends (as described earlier) and the states of

other farms in the previous period. It is worth noting that yj
t and gj

t are mutually exclusive, i.e.,

if yj
t ¼ 1 first, then gj

t;...;Toutbreak ¼ 0, and vice versa.

3.4 Economic costs

We aim to find the optimal surveillance policy q̂� that minimizes the approximate E½Cðq; xÞ�,
specified in Eq (1). To do so, we need to calculate C(q, ξ) for each infection tree and each value

of q. That is, each tree is first built without any policies and as a scenario of ξ which comprises

random factors described in sub-section 3.3. Each policy of q is then applied to the tree to trim

it, and to find the corresponding value of C(q, ξ).

In a typical surveillance problem, C(q, ξ) has four components, including (i) the cost of

active surveillance Cas; (ii) revenue loss Cr; (iii) outbreak management cost Cm; and (iv) the

cost of eradication Ce, for which the last three cost components amount to outbreak cost in

Eq (1).

Our estimation of Cas follows Garner et al. [58] and Kompas et al. [33]. Accordingly, a

tanker is assumed to visit h farms in one trip to collect milk every day, and q is the testing

interval of BMT (i.e., one test per q day(s)). The BMT-based Cas is calculated as:

Cas ¼ cbmt �
Mdf

q� h � Doutbreak þ Eone� off �Mfac ð8Þ

where cbmt is the unit cost per rRT-PCR milk test; Mdf is the number of dairy farms; Doutbreak is

the outbreak duration starting from the time FMD is detected by passive surveillance, plus the

time for culling, and the time for quarantine, minus the time for setting up BMT testing equip-

ment; Eone-off is the one-off cost of the testing equipment; and Mfac is the number of milk col-

lection points or factories in Victoria.

The revenue losses are largely caused by immediate and prolonged bans of exports to Aus-

tralia’s FMD-sensitive markets and depressed domestic prices [56]. The impact of an FMD

outbreak on revenues can be long-lasting, and is largest in the first year [55]. Therefore, the

revenue losses are calculated as:

Cr ¼ cr1ðDoutbreak þ Dmkt1Þ þ cr2Dmkt2 ð9Þ

where cr1 and cr2 are the daily revenue losses in the first and the following years, respectively;

Doutbreak is outbreak duration starting from the time FMD is detected by passive surveillance,

plus the time for culling, τcull, and the time for quarantine, τquar; Dmkt1 and Dmkt2 are the corre-

sponding durations when markets react to an FMD outbreak, inducing revenue losses.
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The cost of outbreak management is calculated as:

Cm ¼ cm � Doutbreak ð10Þ

where cm is the daily operating cost of a FMD disease control centre(s).

Finally, the cost of eradication which includes expenses on compensation to farms, slaugh-

tering and disposal, as well as decontamination [66–68] is calculated as:

Ce ¼
PT

t¼0

P
j c

j
e

yj

wj

 !

for j 2 F ð11Þ

where cje is a row vector of the farm specific eradication cost, yj is defined earlier, and wj is a

vector of farms culled as a preemptive measure, which is typically dependent on the controlled

farm (yj).

3.5 Parameterisation

FMD susceptibility and transmissibility coefficients in Eq (5) are estimated using 200 simula-

tions by the AusSpread—the FMD spread model for Australia [28]. AusSpread is built as a sus-

ceptible-latent-infected-recovered (SLIR) model. Its input is farm point-location data with

detailed information on herd size, animal and production types, among others. It can simulate

the spread of disease by way of animal movements through saleyards, wind-borne spread, and

local spread, as well as by direct and indirect farm-to-farm contact. The model simulation out-

comes are a series of random iterations, thus forming a set of random data, which can be used

to estimate parameters for an epidemic. For this application, all estimates are statistically sig-

nificant at 1% level and have expected signs (Table 1).

Values for other epidemiological parameters are from existing literature or the AusSpread

model (Table 2). In particular, the FMD latent period τlatent is 4 days according to [65]. The

time that FMD can be detected by passive surveillance varies by farm type. The probability of

FMD being detected by passive surveillance, or pps, is the product of the reporting probability

Table 1. Foot-and-mouth disease susceptibility and transmissibility coefficient estimates.

Coefficient Description Cattle Pig/Sheep Other livestock type

S Susceptibility coefficient 1 0.0524� 0.0427�

(0) (0.0033) (0.0027)

T Transmissibility coefficient 0.446� 0.0354� 0.00367�

(0.021) (0.0040) (0.0139)

k0 Kernel function parameter 1 1 1

0 0 0

d0 Kernel function parameter 1.571� 1.571� 1.571�

(0.041) (0.041) (0.041)

α Kernel function parameter 3.61� 3.61� 3.61�

(0.103) (0.103) (0.103)

δ Long distance jump coefficient 0.00000870� 0.00000870� 0.00000870�

(0.000000402) (0.000000402) (0.000000402)

• Estimation based on an average outbreak in 200 simulated outbreaks from the AusSpread model. Parameter values of S for cattle and k0 are fixed at one to avoid

having an undefined problem, in which the number of equations are fewer than the number of unknowns. Standard errors are reported in parenthesis. (�): statistically

significant at the 1% level.

• In Auspread, a farm can not be infected twice in an outbreak (no further infection to the same farm), therefore we adopt an adjustment coefficient (approximately

50% higher) to the (estimated) infection probability to better accommodate our infection tree modelling context.

https://doi.org/10.1371/journal.pone.0235969.t001
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by owner/manager which also depends on farm type, ranging from 0.005 to 0.836, and the

probability of their reports being adequately investigated which is equal 0.59 for all farms1

Author’s assumption and estimate based on AusSpread model. Based on the AusSpread model,

the culling time τcull is from 1 to 3 days, depending on farm type, while other parameter values

such as the tracing time τtrace (3 days), the quarantine time τquar (90 days), and the pre-emptive

culling applied to direct contacts, which are random and governed by Eq (5). Finally, infected

farms become naturally immunised after τimm of 28 to 32 days, conditional on farm type.

As for economic costs (Table 2), Garner et al. [58] and Kompas et al. [33] discuss in detail

the possibility of implementing BMT and its costing in Australia, noting that BMT is not yet

commercially available. We follow their assumptions and estimates. Specifically, a typical

milk tanker of 20,000 litres can collect milk from about five farms since the average size of an

Australian dairy herd is 225 cows and the average yield is 17 litres/cow/day (i.e. 17 × 225 ×
5�20,000 litres). Thus there will be 552,552 milk samples to test on a daily basis for 7590 dairy

farms in Victoria (i.e. (7590 farms/5) × 52(weeks) × 7(days)). It is required that two to four

infected cows per farm and at least one infected farm contributing to a tanker for the test to

have analytical sensitivityof 10−3 to 10−2.5 (i.e. 2 × 17 litre to 4 × 17 litre/20,000 litre� 10−3 to

10−2.5). We use the farm level threshold of three infected cows for detection (�10−2.6), which

gives 95% diagnostic sensitivity of milk rRT-PCR. We assume a delay of two days from when

milk is tested until FMD is confirmed to allow for the traceback of individual farms and confir-

mation on investigations and testing. The efficacy of bulk milk testing is not sensitive to the

testing interval (Garner et al. [58] and Kompas et al. [33]).

Table 2. Parameter values and description.

Parameter Description I II III IV V VI VII Unit

τlatent Latent period(a) 4 4 4 4 4 4 4 day

τps Time from becoming infectious to reaching 20% clinical prevalence(c) + τlatent 13+4 11+4 11+4 12+4 20+4 16+4 10+4 day

pps Passive surveillance detecting probability(c) 0.0602 0.3723 0.4932 0.5216 0.0030 0.0407 0.0454

τim Duration of clinical period above 20% clinical prevalence threshold(c) + τps 16+17 16+15 15+15 14+16 8+24 12+20 14+14 day

τtrace Tracing time(c) 3 3 3 3 3 3 3 day

τcull Culling time(c) 2 3 1 3 2 2 1 day

Unit cost per farm slaughtering, disposal and decontamination(d) 49,322 218,428 70,461 91,599 49,322 49,322 8,103 $

For the whole outbreak

cbmt Unit cost per bulk milk test(e) 36 $

cm Daily operating cost of an FMD disease control centre(s)(f) 0.475 $ Mil

cr1 Daily revenue loss in the first year(b) 14.8 $ Mil

cr2 Daily revenue loss in the 9 following year(b) 0.246 $ Mil

τquar Quarantine time(d) 90 day

For the whole outbreak Unit

h Number of farms visited by a milk tanker in one trip(e) 5 farm

τequip Testing equipment set-up time(e) 7 day

Mdf Number of dairy farms(e) 7,590 farm

Eone-off One-off cost of testing equipment(e) 500,000 $

Mfac Number of milk factories(e) 25 factory

Farm types: I (Beef); II (Beef feedlot); III (Dairy); IV (Pig); V (Sheep); VI (Mixed sheep/beef); VII (Smallholder); All values are in Australian Dollar 2014; (a): [65]; (b):

[55] and [56]. (c): Author’s assumption and estimate based on AusSpread model; (d): Calculated from [69]; For compensation, unit values per animal type are: $802 per

cattle in beef farms and cow in dairy farms; $75 per sheep; $240 per pig; $ 942 per cattle in beef feedlot farms; and $372 per animal in other farm types. (e): [58] and [33];

(f): Calculated based on [70] and [69];

https://doi.org/10.1371/journal.pone.0235969.t002
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The eradication cost is farm-specific. It comprises: (a) compensation to farms based on the

value of their livestock, and (b) slaughtering, disposal and decontamination expenses. Com-

pensation is the product of the unit price from [69] and the quantity of each animal type in

each farm. In contrast, estimates of slaughtering, disposal and decontamination expenses are

by farm type as given by [69].

Meanwhile, daily revenue losses are applied to the whole outbreak. They are estimated

based on the revenue losses due to an FMD outbreak of $5.4 and $0.807 billion in the first year

and for the following 9 years, respectively. The cost breakdown for average revenue losses of

$6.21 billion for a small FMD outbreak in Victoria are obtained based on a control strategy

using a ‘stamp-out’ policy [56], and the assumption of 87% of these revenue losses being

incurred in the first year [55]. Finally, the cost of BMT is from [33] and [58] while the daily

operating cost of an FMD disease control centre is based on [69] and [70].

3.6 Results

Application of the SAA method to our case study is highly computer-intensive. In terms of

required code and software, we use Fortran, C and R. For parallel processing, we use 24 pro-

cesses over 3 quad core CPU computers with Hyper-Threading. The possible simulation

numbers in our computational platform is thus 24 times larger than that in a similar uni-pro-

cessing process. As shown in Table 3, when repeating the three-stage procedure of SAA, we

increase the sample size N until the optimal gaps are stabilised at less than 0.5% (N! 4320),

while keeping M, the number of samples, constant at 50. As a result, the number of

Table 3. Estimated outbreak costs with bulk milk testing implemented on top of passive surveillance and optimality gaps.

Estimates of Trade losses not considered (at the estimated optimal BMT frequency q̂� ¼ 5)

Outbreak cost without BMT 67.48 67.47 67.52 67.49 62.51 67.4 67.41 67.41 67.58

(0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0294) (0.0293) (0.0294)

Lower bound (A) 62.54 62.46 62.62 62.73 62.86 62.79 62.72 62.67 62.70

(0.164) (0.102) (0.079) (0.071) (0.072) (0.054) (0.059) (0.050) (0.044)

Upper bound (B) 62.74 62.69 62.72 62.71 62.74 62.66 62.67 62.68 62.77

(0.0446) (0.0445) (0.0446) (0.0445) (0.0446) (0.0446) (0.0444) (0.0444) (0.0446)

Optimality gap (C = B-A) 0.200 0.230 0.100 -0.020 -0.120 -0.130 -0.050 0.010 0.070

(0.209) (0.147) (0.124) (0.115) (0.116) (0.099) (0.103) (0.095) (0.089)

Percentage of the lower bound D = (C/A)�100% 0.32% 0.37% 0.16% -0.03% -0.19% -0.21% -0.08% 0.02% 0.11%

Trade losses considered (at the estimated optimal BMT frequency q̂� ¼ 2)

Outbreak cost without BMT 6277 6278 6278 6278 6278 6276 6277 6277 6279

(12.428) (12.430) (12.430) (12.431) (12.430) (12.426) (12.428) (12.428) (12.433)

Lower bound (A) 6168 6171 6169 6170 6171 6171 6171 6170 6170

(1.98) (1.30) (1.03) (1.00) (0.89) (0.74) (0.75) (0.65) (0.54)

Upper bound (B) 6170 6170 6170 6171 6171 6170 6170 6170 6171

(0.567) (0.567) (0.566) (0.568) (0.568) (0.568) (0.566) (0.567) (0.570)

Optimality gap (C = B-A) 2.35 -0.43 1.41 0.37 -0.63 -1.58 -0.77 0.91 0.96

(2.55) (1.87) (1.59) (1.57) (1.46) (1.31) (1.32) (1.22) (1.11)

Percentage of the lower bound D = (C/A)�100% 0.04% -0.01% 0.02% 0.01% -0.01% -0.03% -0.01% 0.01% 0.02%

N 480 960 1440 1920 2400 2880 3360 3840 4320

M = 50; N0 = 144,000; N@ = 144,000; Number of processes = 24. Value in AUD Million (2014). Standard errors are reported in parenthesis. All estimates are significant

at 1% level except for the ones of the optimal gap which are statistically insignificant at 10% level.

https://doi.org/10.1371/journal.pone.0235969.t003
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simulations in the first stage increases up to 216,000 simulations. In the second and third

stages, the sample sizes N0 and N@, in order to find the candidate optimal solution and check

its quality remain constant at 144,000. Algorithms used for our computation are available

upon request.

We present results for both cases, with and without trade losses. We do so because trade

losses, the much more likely case with a disease outbreak, are substantial and tend to dominate

other variables while at the same time they can be hard to quantify precisely. The estimated

optimal BMT testing interval q̂� found for the case with trade losses is 2 days while that without

trade losses is 5 days. These results are illustrated in Fig 5 using a sample of 144,000 infection

trees. A clear trade-off is seen between active surveillance effort and the cost of outbreak con-

trol in both cases: without trade losses (panel (a)), and with trade loss (panel (b)). It is worth

noting that in both cases, the minimized cost is much smaller than that of the control case

which relies entirely on passive surveillance, thus making BMT-based active surveillance an

economically-efficient policy.

Estimated outbreak costs with BMT-based active surveillance are presented in Table 3. The

quality of these results is illustrated in the estimated optimality gaps. For brevity, we only pres-

ent the results in the range that shows the convergence of the estimated solutions (i.e., the esti-

mated optimality gap is not statistically significant from zero at any conventional level). The

outbreak cost without BMT is about $6.28 billion and $67 million AUD with and without

trade losses considered, respectively. The net gains of implementing BMT, which are the dif-

ference between the outbreak costs with and without BMT, are about $100 million and $5 mil-

lion and AUD with and without trade losses considered. It is important to note, again, that an

outbreak would generally result in trade losses (even if it is a small outbreak and relatively

quickly eliminated).

Finally, we compare our results with those using the equation-based optimisation approach.

Only the case when trade losses are considered is available for comparison. Our estimated opti-

mal BMT frequency is now 2 days against 1 day found previously [33]. This result implies a

saving of about $2.71 million AUD in active surveillance investment per outbreak. Our

Fig 5. Total cost of an FMD outbreak versus BMT testing intervals.

https://doi.org/10.1371/journal.pone.0235969.g005
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estimated outbreak costs are also lower, in the magnitude of $70–80 million AUD. These

gains come at the cost of needing a more complex computational setting, but using the SAA

approach and trimming methods outlined above makes the problem readily tractable. With

the added use of a parallel processing routine, the results can be obtained in a few hours of

computational time.

4 Discussion

IAS and TADs are incredibly harmful to the economy. The risk of their incursion has been

on the rise due to rapid globalisation and increasing mobility in the world over the past few

decades. This trend, coupled with the lack of perfect prevention measures, has made local sur-

veillance against IAS/TAD an important instrument in many national biosecurity strategies.

However, identifying an optimal level of surveillance against IAS/TAD is challenging due to

the complexity of the problem and the fact that time, space and randomness in IAS/TAD

transmissions need to be fully and explicitly considered. As a result, research and optimal eco-

nomic results for early detection in this setting have not been available. This limits the best-

practice biosecurity policy.

To narrow this gap, this paper has proposed some new techniques to circumvent the curse

of dimensionality in this class of problems. In particular, we design an infection-independent

tree model and use it in combination with pruning methods and parallel processing techniques

to apply an SAA approach to a problem which otherwise would be too dimensionally large to

solve. We demonstrate our model and techniques in identifying optimal active surveillance

against FMD using BMT as an active surveillance protocol among more than 40,000 farms in

Victoria, Australia, when uncertainty and spatial dynamics are taken fully into account. To

this end, our application shows the considerable potential of using SAA, which is basically

absent in economic literature, to solve biosecurity problems.

We find that it is optimal to implement BMT every two and five days with and without

trade losses considered, respectively. The expected net gain of implementing BMT in these

cases is 100 million and 5 million AUD, respectively. Compared with existing literature, our

estimated optimal BMT frequency saves about $2.71 million AUD in active surveillance

expenses per outbreak, with outbreak costs much lower at $70–$80 million AUD. The method-

ology proposed in this paper, which takes into full account all of the factors relevant to TAD

spread dynamics, clearly enhances the precision of the analysis. We believe that this methodol-

ogy is especially useful for biosecurity decision-making, where cost-effective economic mea-

sures are essential.

We envisage at least a couple of possible ways in which our work can be further improved

in the future to aid policy choices for practical problems. The first and possibly the most

important one is to allow surveillance policy to vary across the planning horizon. This deci-

sion-making process, albeit common in practice, is hardly addressed in the biosecurity litera-

ture due to the challenge of solving an unusually large multi-stage spatial-temporal, stochastic

dynamic programming problem. To date, it has only been investigated in a single previous

study, albeit in a deterministic setting and with a small range of spatial heterogeneity [22]. The

second extension is to account for farm-level strategies that could potentially change the IAS/

TAD spread. A mechanism of between-farm interaction has been suggested [71], but this is yet

to be incorporated into an optimization surveillance model. With innovative modelling and

efficient computational techniques, coupled with more computational power, future research

could include richer variations in the decision-making process, while retaining the fundamen-

tally spatial-temporal and stochastic nature of the problem.
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