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Abstract— According to the DeGroot-Friedkin model of a
social network, an individual’s social power evolves as the
network discusses individual opinions over a sequence of issues.
Under mild assumptions on the connectivity of the network,
the social power of every individual converges to a constant
nonnegative value as the number of issues discussed increases. If
the network has a special topology, namely the “star topology”,
then all social power accumulates with the individual at the
centre of the star. This paper studies the strategic introduction
of new individuals and/or interpersonal relationships into a
social network with the star topology so as to reduce the
social power of the centre individual. In fact, several strategies
are proposed. For each strategy, we derive necessary and
sufficient conditions on the strength of the new interpersonal
relationships, based on local information, which ensures that the
centre individual no longer has the greatest social power within
the social network. Interpretations of these conditions reveal
that the strategies are remarkably intuitive and that certain
strategies are favourable compared to others, all of which is
sociologically expected.

I. INTRODUCTION

In recent years, the systems and control community has
turned to study of networked systems and multi-agent sys-
tems in the context of social sciences. Of particular interest
are social networks, where groups of people interact with
acquaintances through interpersonal relationships.

One problem of “opinion dynamics” has been of particular
interest: how do the opinions of individuals for a given issue
evolve as they discuss this issue in a social network? A recent
survey on opinion dynamics is presented in [1]. An important
aspect is social power, which in one sense can be consid-
ered as the weight/power/influence an individual has on the
opinion discussion, relative to the weight/power/influence of
the other individuals in the social network. This relativity
arises due to interpersonal relationships and their strengths
(which may be unidirectional). This concept has been studied
in the seminal works [2], [3]. The dynamical evolution of
social power has been studied in [4]. Selecting the most
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influential individual in social diffusion models has been
studied in [5]. The centralised DeGroot-Friedkin model for
the evolution of social power has been proposed and analysed
in [6]. Distributed discrete- and continuous-time DeGroot-
Friedkin models have been proposed and studied in [7] and
[8], respectively.

According to French Jr. and Snyder in [9], “leadership
is the potential social influence of one part of the group
over another.” From the perspective of opinion dynamics,
a leader can therefore be seen as an individual or a group
of individuals that has a disproportionate amount of control
over the opinion discussion process. In the context of social
power, one can therefore refer to a leader/leader group as the
socially dominant individual/group of individuals. The fact
that social power tends to accumulate with one individual
or a subgroup of individuals in a social network has been
reported empirically in [4] and theoretically in [6]. This in-
dividual or subgroup is defined explicitly by the interpersonal
relationships in the social network. Motivated by this concept
of social dominance/leadership, and using the centralised
DeGroot-Friedkin model to describe the social network, we
begin in this paper with network topologies that have a single
socially dominant individual, and seek to study strategies,
including introduction of new individuals into the network
and/or establishment of new interpersonal relationships, that
will cause the social dominance to shift to another individual.
The DeGroot-Friedkin model will be introduced formally in
the sequel, but we describe it here at a high level so the reader
is better able to understand the contributions of the paper.
The DeGroot-Friedkin model considers a social network
which discusses opinions of individuals on a sequence of
issues/topics. At the end of the discussion of any given issue
(which occurs when consensus on opinions is reached), each
individual reflects on its influence, i.e. social power, on the
overall discussion. For the following issue, each individual
sets its self-weight (the weight the individual places on its
own opinion relative to its neighbours’ opinions) to be equal
to its social power from the previous issue. The DeGroot-
Friedkin model describes the dynamical evolution of the
social power of all individuals over the sequence of issues.

It was shown in [6] that if the social network has a
constant topology, each individual’s social power converges
to a constant (equilibrium) value as issues were sequentially
discussed. For the special star topology, all social power
at equilibrium accumulated with a single individual k, in
an “autocratic configuration”. In this paper, we show that
by strategic introduction of new individuals and/or new
interpersonal relationships into the social network, not only is



the autocratic configuration broken but if the new relationship
is sufficiently strong, other identifiable individual(s) will
have social power at equilibrium greater than individual k.
Specifically, we derive necessary and sufficient conditions
based on local information for the relationship strength.
This is in contrast to many control strategies on networked
systems which rely on global information [5], [10]. In fact,
a number of different strategies are considered.

While the results are initially presented mathematically as
inequalities, we provide detailed analysis and interpretation.
In doing so, we show that the strategies are remarkably
intuitive and precisely what one would expect when con-
sidered within a sociological context. While the strategies
are intuitive, the novel contributions of this paper are the
necessary and sufficient conditions for guaranteeing that
the strategy succeeds, expressed as analytic functions of
key interpersonal relationship strengths. The fact that the
strategies affect the social power of individuals in a social
network which is sequentially discussing issues implies that
we have developed strategies for affecting/influencing the
opinion dynamics process.

The rest of the paper is structured as follows. In Section II,
we provide notations, an introduction to graph theory and
the DeGroot-Friedkin model. At the same time, a formal
problem statement is given. The main results are presented
in Section III and conclusions are drawn in Section IV.

II. BACKGROUND AND FORMAL PROBLEM STATEMENT

We begin by introducing some mathematical notations
used in the paper. Let 1n and 0n denote, respectively, the
n× 1 column vectors of all ones and all zeros. For a vector
x ∈ Rn, 0 � x and 0 ≺ x indicate component-wise
inequalities, i.e., for all i ∈ {1, 2, . . . , n}, 0 ≤ xi and 0 < xi,
respectively. Let ∆n denote the n-simplex, the set given by
{x ∈ Rn : 0 � x,1>nx = 1}. The canonical basis of Rn
is given by e1, . . . , en. Define ∆̃n = ∆n\{e1, . . . , en} and
int(∆n) = {x ∈ Rn : 0 ≺ x,1>nx = 1}. Note that the terms
“node”, and “individual” are used interchangeably.

A. Graph Theory

The interaction between individuals in a social network
is modelled using a weighted directed graph, denoted as
G = (V, E). Each individual is a node in the finite, nonempty
set of nodes V = {v1, . . . , vn}. The set of ordered edges is
E ⊆ V×V . We denote an ordered edge as eij = (vi, vj) ∈ E ,
and because the graph is directed, in general eij and eji
may not both exist. An edge eij is said to be outgoing with
respect to vi and incoming with respect to vj . The presence
of an edge eij connotes that individual j learns of, and
takes into account, the opinion value of individual i when
updating its own opinion. The relative interaction matrix
C ∈ Rn×n associated with G has nonnegative entries cij ,
termed “relative interpersonal weights” in [6]. The entries of
C have properties such that 0 < cij ≤ 1 ⇔ eji ∈ E and
cij = 0 otherwise. It is assumed that cii = 0 (i.e. with no
self-loops), and we impose the restriction that

∑n
j=1 cij = 1

(i.e. that C is a row-stochastic matrix).

A directed path is a sequence of edges of the form
(vp1 , vp2), (vp2 , vp3), . . . where vpi ∈ V, eij ∈ E . Node i is
reachable from node j if there exists a directed path from vj
to vi. A graph is said to be strongly connected if every node
is reachable from every other node. The relative interaction
matrix C is irreducible if and only if the associated graph G
is strongly connected. If C is irreducible then it has a unique
left eigenvector γ> satisfying γ>1n = 1, with all entries
strictly positive, associated with the eigenvalue 1 (Perron-
Frobenius Theorem, see [11]). Henceforth, we shall call γ>

the dominant left eigenvector of C, with ith entry γi.

B. The DeGroot-Friedkin Model

We define S = {0, 1, 2, . . .} to be the set of indices of
sequential issues which are being discussed by the social
network. For a given issue s ∈ S , the social network’s
opinion dynamics process is described using the discrete-
time DeGroot opinion pooling algorithm (with constant
weights throughout the discussion of the issue). At the end of
the discussion (i.e. when the DeGroot model has effectively
reached steady state), each individual reflects upon, and
judges its impact on the discussion. This mechanism is
termed reflected self-appraisal, with “reflection” referring
to the fact that adjustments to weights are made following
the completion of discussion on the particular issue s. The
individual then updates its own self-weight (the weight an
individual applies to its own opinion value in the DeGroot
algorithm) and discussion begins on the next issue s + 1
(using the same DeGroot algorithm but now with adjusted
weights). We now explain the mathematical modelling of
the opinion dynamics for an issue, and the updating of self-
weights from one issue to the next.

For each issue s ∈ S , individual i updates its opinion
yi(s, ·) ∈ R at time t+ 1 as

yi(s, t+ 1) = wii(s)yi(s, t) +

n∑
j 6=i

wij(s)yj(s, t) (1)

where wii(s) is the self-weight individual i places on its own
opinion and wij(s) is the weight given by individual i to the
opinion of its neighbour individual j. Note that wij(s),∀ i, j
is constant for any given s. The element wij , j 6= i is defined
as wij = (1−wii)cij which ensures that

∑n
j=1 wij = 1 for

any wii, because we have assumed above that
∑n
j=1 cij =

1. In other words,
∑n
j=1 wij(s) = 1 continues to hold as

wii(s) is updated (the precise mechanism for updating wii(s)
will be detailed shortly). It was shown in [6] that if C is
irreducible, and ∃ i : wii > 0 then consensus of opinions is
reached: yk(∞) = yj(∞),∀ k, j.

We now detail the updating of the self-weight (also
referred to as individual social power, self-confidence or
self-esteem) of individual i, which is denoted by xi(s) =
wii(s) ∈ [0, 1] for convenience [6]. Define the vector x(s) =
[x1(s) · · · xn(s)]> as the vector of self-weights for the
individuals of the social network, with starting self-weight
0 ≤ xi(0) ≤ 1 satisfying

∑
i xi(0) = 1. The DeGroot-

Friedkin model states that the self-weight vector x(s) is



updated as
x(s+ 1) = F (x(s)) (2)

where F (x(s)) is defined as

F (x(s)) =



ei if xi(s) = ei, for any i

α(x(s))


γ1

1−x1(s)

...
γn

1−xn(s)

 otherwise

with α(x(s)) = 1/
∑n
i=1

γi
1−xi(s)

. We omit the details on the
precise formulation of the model, and the derivation of the
map F due to space limitations; we refer the reader to the
original work [6] which introduces the model.

Much of this paper will deal with scenarios where the
underlying graph has a star topology or its variants, the
definition of which is now given.

Definition 1 (Star topology). A strongly connected graph1 G
is said to have star topology if there exists a node i, which
is called the centre node, such that every edge of G is either
to or from node i

Note that the irreducibility of C implies that the star
topology must include edges in both directions between the
centre node vi and every other node vj , j 6= i. We now
provide two results regarding the convergence of F (x(s))
as s→∞, with an interpretation given in Remark 1.

Lemma 1 (Lemma 3.2, [6]). Suppose that n ≥ 3, and
suppose further that G has star topology, which without
loss of generality has centre node v1. Let C be the row-
stochastic and irreducible relative interaction matrix, with
zero diagonal entries, associated with G. Then for all initial
conditions x(0) ∈ ∆̃n, lims→∞ x(s) = e1.

Theorem 1 (Theorem 4.1, [6]). For n ≥ 3, consider the
DeGroot-Friedkin dynamical system (2) with a relative inter-
action matrix C that is row-stochastic, irreducible, and has
zero diagonal entries. Assume that the digraph G associated
with C does not have star topology and define γ> as the
dominant left eigenvector of C. Then,

(i) For all initial conditions x(0) ∈ ∆̃n, the self-weights
x(s) converge to x∗ as s→∞. Here, x∗ ∈ int(∆n) is
the unique fixed point satisfying x∗ = F (x∗).

(ii) There holds x∗i < x∗j if and only if γi < γj , for any i, j,
where γi is the ith entry of the dominant left eigenvector
γ. There holds x∗i = x∗j if and only if γi = γj .

(iii) The unique fixed point x∗ is determined only by γ>,
and is independent of the initial conditions.

C. Formal Problem Statement

In this paper, we investigate how additional nodes and/or
edges strategically connected to a star topology can change
the social power at equilibrium, x∗. To that end, we begin

1While it is possible to have a star graph that is not strongly connected,
this paper, similarly to [6], deals only with strongly connected graphs.

first by providing definitions which will aid in describing our
problem and discussing the results obtained. Moreover, we
are interested in comparing the social power of individuals
within the network at equilibrium, i.e. when s → ∞. We
will therefore refer to the equilibrium value x∗i as the social
power of individual i when there is no ambiguity (as opposed
to the evolving xi(s) when s <∞). To simplify the problem,
we do not study the evolution of the opinions yi(s, t), which
as observed below (1), will always reach a consensus if C
is irreducible and x(0) ∈ ∆n.

Definition 2 (Autocratic Network). A social network is said
to be an autocratic configuration, with node vi being the
autocrat, if x(s) = ei.

Definition 3 (Social dominance/leadership). Node vi is said
to be the socially dominant/leader node in the network if
x∗i > x∗j for all j 6= i. In other words, at equilibrium, the
social power of individual i is greater than the social power
of any other individual in the social network.

Remark 1 (Autocratic tendency). Lemma 1 has an important
social connotation. One can consider xi(0) as individual i’s
estimate of its social power when the social network is first
formed, before any discussions occur. For any initial estimate
x(0) ∈ ∆̃n (that is, no individual i believes xi(0) = 1), the
star topology network tends to an autocratic configuration
at equilibrium, x∗ = e1. This implies that, for initial issues,
opinion discussion will occur with everyone contributing to
the final consensus value. However, the centre individual
increasingly guides the outcome of discussions until, for
s =∞, only the centre individual’s opinion value matters.

Remark 2. In [6], the constant entries cij of C are termed
“relative interpersonal weights”, and we will stay with this
terminology. However, one can also consider cij as the
amount of relative “trust” individual i allocates to individual
j. In other words, cij captures the strength of a unidirectional
interpersonal relationship (unidirectional since cij 6= cji in
general).

For a given graph G with star topology, with centre node
v1, let us call the other nodes subject nodes in the sense that
they are subjects to the autocrat centre node. We are going to
study how the autocracy can be disrupted by introduction of
a perturbation to the star graph. This leads us to define a new
type of node. An attacker node is a node vj which forms
edges eji, eij with a subject node. In doing so, we modify
the graph G to become Ḡ which is no longer a star. In Fig. 1,
v1 is the centre node, while nodes vi, i = 2, ..., 7 are subject
nodes, and node v8 is the attacker node, forming edges with
node v7. We call node vj an attacker node because, as it
will become apparent in the sequel, the weights cji and cij
can modify/reduce the social power x∗1 of the centre node
v1. In other words, vj attacks the social dominance of v1.
Note that two edges, eji, eij must be formed to ensure that Ḡ
remains strongly connected. Actually, there are a number of
interesting ways to attack the social dominance of v1, and we
list below some of the most important/fundamental methods.



An example of each is given in Figures 1-4.

Topology Variation 1 (Single Attack). Suppose that n ≥ 4.
Suppose further that G has star topology, with v1 being the
centre node, and with n−2 subject nodes, vi, i = 2, ..., n−1.
A single attacker node vn attaches to subject node vn−1 by
forming edges en−1,n, en,n−1, forming the graph Ḡ.

Topology Variation 2 (Coordinated Double Attack). Sup-
pose that n ≥ 5. Suppose further that G has star topology,
with v1 being the centre node, and with n − 3 subject
nodes, vi, i = 2, ..., n − 2. Two attacker nodes vn−1 and
vn attach to subject node vn−2 by forming the set of edges
{en−2,n−1, en−1,n−2, en−2,n, en,n−2}. This forms Ḡ.

Topology Variation 3 (Uncoordinated Double Attack). Sup-
pose that n ≥ 5. Suppose further that G has star topology,
with v1 being the centre node, and with n−3 subject nodes,
vi, i = 2, ..., n − 2. One attacker node vn−1 attaches to
subject node vn−3 with edges en−3,n−1, en−1,n−3. A second
attacker node vn attaches to subject node vn−2 with edges
en−2,n, en,n−2. This forms Ḡ.

Topology Variation 4 (Two Dissenting Subjects). Suppose
that n ≥ 4. Suppose further that G has star topology, with
v1 being the centre node, and with n − 1 subject nodes,
vi, i = 2, ..., n. There are no attacker nodes. Subject nodes
vn−1 and vn form edges en,n−1, en−1,n, forming Ḡ.

In the next section, we investigate the above topological
variations of the star graph. Note that Topology Variations 1-
4 have modified graphs Ḡ which do not have star topology.
From Theorem 1, it immediately follows that x∗1 < 1 for
all Topology Variations. In other words, v1 is no longer
the autocrat but if the perturbation from the star topology
(caused by the new edges) is small, v1 remains socially
dominant. What we will show is that if the interpersonal
weights associated with these new edges exceed a given
threshold, the socially dominant node changes from v1 to
some other node. Of particular note is that the thresholds
depend only on local information. It is worth emphasising at
this stage that, in Variations 1-3, it is useless for an attacker
node vn to attach to the centre node v1 instead of a subject
node; the topology remains a strongly connected star, and
thus v1 remains the socially dominant autocrat.

Note that when new edges are introduced, we assume each
individual i adjusts its weights cij to ensure that the new C
is row-stochastic. Take Topology Variation 4 as an example.
The relative interaction matrix C, associated with star graph
G (without edges en,n−1 and en−1,n), is assumed to be row-
stochastic. The relative interaction matrix C̄ associated with
Ḡ is also implicitly assumed to be row-stochastic with zero
diagonal. That is, after the addition of edges en,n−1, en−1,n,
adjustments are made to the original weights cn,j , cn−1,k to
ensure that C̄ is row-stochastic.

Remark 3 (Ordering of Social Power). Although Theorem 1
states that x∗ is uniquely determined by γ>, there are no
results available which allow one to analytically compute the
value of x∗ given γ>. What is available is Statement (ii) of

Theorem 1, which states that the ordering of x∗i is consistent
with the ordering of γi. A recent paper [12] computed an
upper bound on x∗i which is dependent on γi. However, we
are in this paper interested in the ordering of individual
social power, as opposed to the precise values of social
power. This is reflected in Definition 3.

III. MAIN RESULTS

In order to place the focus on discussion of the social
connotations of each result, and due to space limitations,
the proofs of the results presented in this section are not
included in this paper. The proofs for each theorem and
corollary, which all follow the same format, can be found in
the extended version of this paper on arXiv [13]. Simulations
demonstrating our main results are also provide in [13].

Topology Variation 1 is in fact a special case of Topology
Variation 2, obtained by setting cn,n−2 = 0 and by removing
node vn. As such, the first result we present will be on Vari-
ation 2, the discussions on Variation 2 are all applicable to
the fundamental strategy Variation 1 with minor adjustments.

A. Topology Variation 2: Coordinated Double Attack

Consider now Topology Variation 2. Firstly, define β1 =
cn−2,n−1 ∈ (0, 1) and β2 = cn−2,n = (0, 1) as the two
adjustable interpersonal weights associated with the two at-
tackers. Note that because C̄ is assumed to be row-stochastic,
it is implied that β1+β2+cn−2,1 = 1⇒ β1+β2 < 1 because
cn−2,1 > 0. It is straightforward to observe that

C̄(β1, β2) =



0 c12 . . . c1,n−1 0 0
1 0 . . . 0 0 0
...

...
. . .

...
...

...
1− (β1 + β2) 0 . . . 0 β1 β2

0 0 . . . 1 0 0
0 0 . . . 1 0 0


We do not display the exact form of C̄ for other Topology
Variations in this paper due to space limitations, but they are
provided in the Appendix of [13].

Theorem 2 (Coordinated Double Attack). For a social
network with Topology Variation 2, with initial conditions
x(0) ∈ ∆̃n, and described by the DeGroot-Friedkin model,
the following statements are true:

(i) For all β1, β2 ∈ (0, 1), there holds x∗i < x∗1 for all
i 6= 1, n− 2, n− 1, n, and x∗n, x

∗
n−1 < x∗n−2.

(ii) There holds 1) x∗1 > x∗i ,∀, i 6= 1 if and only if β1+β2 <
1−c1,n−2 =

∑n−3
i=2 c1,i, or 2) x∗n−2 > x∗i ,∀, i 6= n−2 if

and only if β1+β2 > 1−c1,n−2. There holds x∗1 = x∗n−2
if and only if β1 + β2 = 1− c1,n−2.

(iii) There holds x∗n > x∗1 (respectively x∗n−1 > x∗1) if and
only if β2 > (1 − β1)/(1 + c1,n−2) (respectively β1 >
(1− β2)/(1 + c1,n−2) ).

(iv) There holds x∗n−1 < x∗n or x∗n−1 > x∗n if and only if
β1 < β2 or β1 > β2 respectively. If β1 = β2, then
x∗n−1 = x∗n.

Corollary 1 (Generalised Placement of Coordinated Double
Attack). Suppose that instead of attaching to subject node
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Fig. 1. Topology Variation 1 (Single Attacker)
with n = 8, attacker is green.
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Fig. 2. Topology Variation 2 (Coordinated Dou-
ble Attacker) with n = 9, attackers are green.
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Fig. 3. Topology Variation 3 (Uncoordinated
Double Attacker) with n = 9, green attackers.
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Fig. 4. Topology Variation 4 (Two Dissenting Subjects) with n = 7.

vn−2, attacker nodes vn−1, vn can attach to any subject
node vi, i ∈ {2, ..., n − 2} by forming the set of edges
{en−1,i, ei,n−1, en,i, ei,n}. The lower bound on β1 + β2 =
cn−1,i+cn,i required to have x∗n−2 > x∗1 is minimised if vn−1
and vn attach to vk where k = argmaxj∈{2,...,n−2} c1,j .

The above mathematical results can be interpreted in the
following social context. From Statement (i), we conclude
that subject individual i, for i ∈ {2, .., n−3}, will never have
greater social power at equilibrium than the centre individual
v1, x∗i < x∗1, regardless of how β1, β2 changes. Moreover,
the attacker nodes vn−1, vn will never have greater social
power than the subject node vn−2 which it is attached to.

Remark 2 states that cij can be considered the trust level
accorded to individual j by individual i. The key result
is Statement (ii), which indicates that the combined trust
given to attackers vn−1 and vn by subject node vn−2 must
exceed the combined trust given to subjects v2, ..., vn−3
by centre node v1, in order for centre node v1 to lose
social dominance (and thus subject vn−2 becomes socially
dominant). It is most interesting to note that it is only the
sum of the trust/influence β1 + β2 that is relevant, and there
is no requirement on the individual magnitudes of β1, β2.

Corollary 1 delivers an intuitive, powerful, and socially
relevant result. It states that the attackers vn−1, vn should
seek to form an interpersonal relationship with the subject
individual vk that individual v1 trusts the most. This will
minimise the required amount of trust subject vk accords at-
tacker vn before centre individual v1 loses social dominance.

Statement (iii) reveals that the attackers can also obtain
social power greater than the centre individual v1 if β1 and
β2 exceed some lower bounding inequalities. Specifically,
we observe that the inequality, which if satisfied ensures
that attacker vn has social power greater than centre v1,

simply involves the variables β1, β2 and c1,n−2. Moreover,
there always exists a pair β1, β2, satisfying β1 + β2 < 1
(and thus maintaining

∑n
j=1 cn−2,j = 1), which ensures both

attacker individuals vn−1, vn have social power greater than
the centre v1. This is detailed in the proof [13, Theorem 2]
and is desirable from the view point of the two attacker
individuals.

B. Topology Variation 3: Uncoordinated Double Attack

Define β1 = cn−3,n−1 ∈ (0, 1) and β2 = cn−2,n ∈ (0, 1).

Theorem 3 (Uncoordinated Double Attack). For a social
network with Topology Variation 3, with initial conditions
x(0) ∈ ∆̃n, and described by the DeGroot-Friedkin model,
the following statements are true:

(i) For all β1, β2 ∈ (0, 1), there holds x∗i < x∗1 for all
i ∈ {2, . . . , n− 4}, and x∗n−1 < x∗n−3 and x∗n < x∗n−2.

(ii) There holds x∗1 > x∗i for all i 6= 1 if and only if
β1 < 1−c1,n−3 and β2 < 1−c1,n−2. If β1 > 1−c1,n−3
(respectively β2 > 1 − c1,n−2), then x∗n−3 > x∗1
(respectively x∗n−2 > x∗1).

(iii) For i ∈ {1, 2}, there holds x∗n−2+i > x∗1 if and only if
βi > 1/(1 + c1,n−4+i).

(iv) There holds x∗n−3 > x∗n−2 if and only if
1−β2

1−β1
>

c1,n−2

c1,n−3
⇔ c1,n−3

cn−3,1
>

c1,n−2

cn−2,1
.

Due to space limitations, we discuss social implications of
Theorem 3 only if the conclusions differ significantly from
the discussion in the previous subsection.

The most interesting conclusion drawn from Theorem 3
arises when we compare to Theorem 2 which concerns
Topology Variation 2. With Topology Variation 2, for the
centre individual v1 to lose its social dominance we require
the sum of the trust values β1 +β2 to exceed a lower bound,
and there are no separate lower bounding inequalities for β1
or β2. With Topology Variation 3, centre individual v1 loses
social dominance if and only if either β1 or β2 exceed their
respective lower bounding inequalities. Importantly, these
two lower bounding inequalities are independent of each
other. This clearly points to the fact that a coordinated attack
on the social dominance of the centre node is more desirable,
an idea which is socially intuitive.

From Statement (iii), both attacker nodes have larger social
power than the centre node if and only if β1 > 1/(1 +
c1,n−3) and β2 > 1/(1 + c1,n−2), which implies that β1 +
β2 > 1/(1 + c1,n−3) + 1/(1 + c1,n−2). From Statement (iii)



Theorem 2, with Topology Variation 2, both attacker nodes
have larger social power than the centre node if and only if
β2 > (1−β1)/(1+ c1,n−2) and β1 > (1−β2)/(1+ c1,n−2),
which implies that β1 +β2 > 2/(2+c1,n−2). Since both 1+
c1,n−2 and 1 + c1,n−3 are smaller than 2 + c1,n−2, it follows
that 1/(1+c1,n−3)+1/(1+c1,n−2) > 2/(2+c1,n−2), which
implies that a coordinated attack on the social dominance
of the centre node is also more efficient for the attackers.

C. Topology Variation 4: Two Dissenting Subjects

Topology Variation 4 is different from the ones studied
above in the sense that there are no attacker nodes. Instead,
one can consider this variation as one where two subjects
form a relationship in dissent from the leader. Letting β1 =
cn−1,n ∈ (0, 1) and β2 = cn,n−1 ∈ (0, 1), analysis yields:

Theorem 4 (Two Dissenting Subjects). For a social network
with Topology Variation 4, with initial conditions x(0) ∈ ∆̃n,
and described by the DeGroot-Friedkin model, the following
statements are true:

(i) For all β1, β2 ∈ (0, 1), there holds x∗i < x∗1 for all
i 6= 1, n− 1, n.

(ii) There holds x∗n > x∗1 if and only if β1 > (1 −
c1,n)/(c1,n−1 + β2) with β1 ∈ (0, 1). There exists such
a β1 ∈ (0, 1) only if β2 >

∑n−2
i=2 c1,i.

(iii) There holds x∗n−1 > x∗1 if and only if β2 > (1 −
c1,n−1)/(c1,n + β1) with β2 ∈ (0, 1). There exists such
a β2 ∈ (0, 1) only if β1 >

∑n−2
i=2 c1,i.

(iv) There holds x∗n < x∗n−1 if and only if β2 > β1c1,n +
c1,n−1(c1,n − 1) or equivalently β1 < (β2 + cn−1(1−
c1,n))

Note that the inequality in statement (ii) can be rewritten
as β2 > (1− c1,n − β1c1,n−1)/β1 with β2 ∈ (0, 1) which is
satisfiable only if β1 > (1 − c1,n)/(1 + c1,n−1). Similarly,
the inequality in statement (iii) is equivalent to β1 > (1 −
c1,n−1 − β2c1,n)/β2 with β1 ∈ (0, 1) which is satisfiable
only if β2 > (1− c1,n−1)/(1 + c1,n).

We now interpret Statement (ii), which we view, along
with Statement (iii), as the key result of the theorem. A
similar conclusion can be drawn for Statement (iii) but we
do not include it due to space limitations. In order to make
centre node v1 lose social dominance, the dissent subject
nodes vn−1 and vn must adopt a cooperative strategy. From
their definitions, we can interpret β1 as the trust given by
vn−1 to vn while β2 is the trust given by vn to vn−1. A
necessary condition for individual vn to have social power
greater than centre node v1 is that β2 >

∑n−2
i=2 c1,i. This

means that not only must vn−1 trust vn sufficiently (as
given by the inequality β1 > (1− c1,n)/(c1,n−1 + β2)), but
individual vn must reciprocate by ensuring that it trusts vn−1
sufficiently (β1 >

∑n−2
i=2 c1,i). Unless the two dissenting

nodes build a cooperative and sufficiently strong bilateral
relationship, centre node v1 will remain socially dominant.

Remark 4. It should be noted that we have analysed the
strategies and discussed results and implications from the
perspective of attacker and subject nodes. It would be of

great interest in future work to analyse from the leader’s
perspective and consider how to ensure robustness and
protection against external influence. This also opens up
future work using a game theoretic approach.

IV. CONCLUSIONS

Social networks with the star topology converge to an au-
tocratic configuration, with the centre individual holding all
the social power. This paper proposed a number of different
strategies, involving introduction of new individuals and/or
new interpersonal relationships into the social network, in
order to move social dominance from the centre individual to
a subject individual. Necessary and sufficient conditions have
been developed, and based on these conditions it has been
argued that the strategies are sociologically intuitive. Nu-
merous future directions exist. Firstly, we wish to generalise
the results on uncoordinated attack and coordinated attack
to arbitrary numbers of attacker nodes. Different leadership
groups, and dissent topologies will also be explored. We also
wish to investigate whether such straightforward strategies
exist for more general topologies, and lastly, study strategies
concerning social power for a subgroup of individuals.
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