
Numerical Methods for Learning Physical
Constraints and their Applications

Zhongrui Chen
Department of Computer Science

University of North Carolina at Chapel Hill

February 2022

Abstract
This thesis treats the theory and practice of learning physical con-

straints, and their use in interpolating and extrapolating motions.
With the help of the evolving machine learning techniques, programs
are capable of learning the physical properties and simulate future
motions. To understand complex physical motions or make computa-
tionally expensive simulations much faster, there’s a pressing need to
develop a model that can simplify this task.

The contributions of this thesis begin with a theory that fits gen-
eral physical motions into mass-spring models, followed by a neural
particle simulator that leverages numerical methods that is end-to-end
differentiable and trainable. Using this simulator, we can fit coordi-
nates into this model to infer latent representation of collision radius,
mass, spring constants in order to interpolate or extrapolate the mo-
tion. In the experiment section, we show that our method improves
mean square error in chaotic motions by 100x compared to bilateral in-
terpolation and the state-of-the-art and achieves similar performance
in general physics motions.

Approved By:
Thesis Advisor: Praneeth Chakravarthula
Second Reader: Henry Fuchs

1

Contents
1 Introduction 3

1.1 Motivations . 3
1.2 Applications . 3

1.2.1 Objectives . 5
1.3 Related Works . 6

2 Methods 7
2.1 Overview . 7
2.2 Mass-spring-damper model . 9
2.3 Learning Time Integration Function 9

2.3.1 Euler method . 11
2.3.2 Runge-Kutta method 11
2.3.3 Neural Physics Network 12

3 Experiments 14
3.1 Scene I: Double Pendulum . 14

3.1.1 Dataset . 14
3.1.2 Training the Neural Physics Simulator 16
3.1.3 Results . 16

3.2 Scene II: Collision of Boxes 17
3.2.1 Dataset . 17
3.2.2 Results . 19

4 Conclusions 19
4.1 Future Works . 19

5 Acknowledgement 20

References 21

2

1 Introduction
1.1 Motivations
To help machines learn physical motions of objects, we first need to un-
derstand how human beings process visual information to ration physical
motions of objects. For example, how can you tell that a moving object is
a cloth, a ball, or a feather? How can you tell that you see a pendulum, a
spring or a falling leaf merely from observing its movement?

We know that a cloth is not tangentially extensible and can not resist
bending force in the normal direction. In this case, it’s similar to a spring
with a large spring constant. It’s hard to either compress or pull the string,
but it’s easy to pull it in the normal direction.

We can do force analysis on the objects and find that most structural
features can be represented by springs and therefore can be approximated by
a deep neural network that embeds all the information about spring constants
and resting lengths. All we need is to input our current state, and the
deep learning black box will compute the required physical constants (i.e.
acceleration and/or velocity) we need for estimating the next step.

On the other hand, if we know all physical priors, it’s easy to simulate
the future movements using a physical simulator – we can just step through
it given all the constraints and properties of the objects.

However, physics priors are not always available. If we have a time series
that sparsely samples 30 sets of coordinates per second of a physical motion,
we can try to guess physics priors with some reasonable assumptions so that
we can simulate the motion in any given granularity.

We can first start with some assumptions. For example, we can assume
that there is a known number of particles in the system and the particles are
either released from a steady state (see figure 1) or excited by an impulse (see
figure 2). Then, we use a deep neural network to help with time integration
and estimate physics parameters throughout the process (see figure 4).

1.2 Applications
With the mass-spring model theory and deep learning for time integration,
we can apply them on sports analysis and beyond. In this work, we focus
primarily on interpolating and extrapolating the coordinates of particles in
simulations and videos.

3

Figure 1: Three balls connected by strings released from a steady state.

Figure 2: Three balls connected by strings excited by an impulse.

Imagine in pool games, the judge wants to see if one ball hits the other
and it’s a close call so eyes can’t tell. Or, in modern badminton games and
we want to know if the shuttlecock flew out of bounds. Even with the help
of the recordings, we may not be able to tell scores and fouls apart at all
times. With the help of our model, we can analyze whether two balls collide,
reconstruct slow-motion trajectories and even predict several seconds into
the future.

While a modern smartphone can easily record 240-fps videos, professional
DSLRs are still required for capturing higher frame rates or better image
qualities. What’s more, recording higher frame rate videos poses a trade-
off, sacrificing image qualities because of the higher shutter speeds. There
are existing method that can interpolate intermediate frame, but they are
mostly not physically-unaware. Existing methods estimate flows [15] or depth
information [2] to get rid of artifacts in interpolated frames, but we can show
that they fail in simple physical motions. In real world applications, physical
correctness matters the most in sports videos, where inaccurate interpolation
or prediction may result in unfair judging or visually unsatisfactory videos.

Therefore, it is of our great interest to generate physically-accurate high-
quality slow-motion trajectories, which, combined with existing frame inter-
polation methods, can generate or notate high-quality slow-motion videos

4

from existing ones with lower frame rate. Then, without the help of pro-
fessional devices, we can show our audience accurate trajectories and help
sports analysis. Combined with the existing interpolation methods, it’s pos-
sible to reconstruct intermediate frames that preserves physical property of
the objects.

There has been a vast literature devoted into examining machine percep-
tions on general physics. For example, a human being can tell the motion
of rigid bodies and springs because the latter is extensible. Can a machine
learn and generalize such motions? With the development of Deep Neural
Networks (DNN) and Generative Adversarial Networks (GAN), we can em-
bed physics simulator into the network, so that the machine can capture
the essential parts of the motion with least amount of data and labels. In-
teraction Networks[18, 4, 10, 21] model pairwise object interactions while
energy-based methods[22, 8] approximate energy terms and use optimization
methods to pick the best coordinates minimizing the constraint energy.

Most of the aforementioned network cannot train on some scene and test
on others – motions from different scenes can be vastly different, for one can
have collision and friction but the other doesn’t. Therefore, it is reasonable
to train our network on the given scene to learn enough physical priors of the
motion, and then use the trained network to predict the intermediate time
steps for this scene only.

1.2.1 Objectives

Learning to predict physical phenomena poses many challenges and is com-
putationally demanding, since sparse observations from real-world can be
stochastic and chaotic. There have been several early attempts [22, 8, 14]
to build DNNs that can learn physics properties (i.e. joints, lengths, angles,
etc.) from limited sparse observations. There are also discussions on learning
physical properties from videos and reconstructing the videos from graphical
simulations. Our method focuses on interpolation and extrapolation of the
trajectory in videos and is easily pluggable into the existing frameworks.

Our goal is to approximate the governing equations and the underlying
constraints by perceptrons with the knowledge of numerical methods. Then,
with the help of object detection framework and image translation network,
we can integrate into the existing frame interpolation methods and make
them physics-aware.

Through experiments, we demonstrate that our framework is physics-

5

aware by observing simulations and videos. In section 3, we show that how
our model compares to vanilla (simply averaging two coordinates) and exist-
ing frame interpolation methods in terms of object coordinates.

Our main contribution is a method of making physical predictions with
variable time steps in simulations and real-world videos by predicting object
motion from sparse observations. To test our ideas, we experiment on double
pendulum simulation, collision simulation and billiard tables. We use object
detection networks to extract object coordinates from real world videos. We
carefully pick the bird’s eye view videos of the games so that we don’t have
to deal with 3D modeling of our perspectives.

1.3 Related Works
In this section, we focus our discussions on recent learning-based methods
to predict physical motions as well as extract information from temporally
coherent frames to reconstruct intermediate frames. We also discuss neural
physics simulators that takes in coordinate observations and predicts trajec-
tories and motions. In addition, we discuss the existing method that combine
both fields, learning physics from videos.

Recently, various attempts have been made to learn physical motions
given coordinate information. Yang et al.[22] leverages MLP to estimate
constraint energy and uses gradient descent to find the best coordinates to
describe the next step of motion. Hamilton Neural Networks[8] makes an
assumption that the given physical motion can be described by a set of
governing equations and thus can be refactored into hamiltonian equations.

Frame interpolation. Depth Aware Interpolation[2] uses CNNs to esti-
mate depth information to improve occlusion. It can gather contextual infor-
mation from neighboring pixels and combine hierarchical features from depth
maps to improve the image quality of intermediate frames. There are clas-
sical video frame interpolation methods estimating flow maps using optical
flow algorithms[6, 11] and input frame warping[1, 3]. Asymetrical Bilateral
Motion Estimation[15] is a state-of-the-art frame interpolation model that
performs consistently better than previous methods in terms of motion. It
predicts symmetrical bilateral motion fields to interpolate an anchor frame
and use the fields to warp the input frames to create the interpolation. How-
ever, physically correct motions still pose a great challenge.

6

Learning physics from coordinates. Simulating constraint physical sys-
tems with the help of deep learning has been attempted in computational
physics and computer graphics over the past years. With limited and sparse
observance, state-of-the-art models can enforce shape, contact, collision, and
boundary conditions

Yang et al. [22] introduces a novel model that takes a set of coordinates
to learn underlying constraints of the physical system. It approximate the
constraint energy it defines and use gradient descent to fix interpolated co-
ordinates to follow the constraints. However, it doesn’t consider temporal
information. In our double pendulum experiment, if it’s only exposed to the
current bilinear interpolation and apply the constraint network to fix the po-
sition according to the constraint, it may result in a wrong coordinate even
if it preserves the constraint properties.

There are also networks that uncover and enforce the Hamiltonian energy
to predict the trajectory of a given set of governing equations, e.g. [8, 5, 16,
17, 12]. Most of these algorithms assume separability, which is rare in real
world cases.

Learning physics model from videos. Yuan et al. [23] uses nearest
neighbor approach to reconstruct predictions but it can only generate videos
similar to those in the dataset. Finn et al. [7] proposes a method that
can learn pixel motion from unlabeled video data. It predicts the change in
Lagragian view and takes in sequence data and feed into a language model
to make future predictions.

Wu et al. [19] proposes a generative model that reconstruct using a
graphics engine from observed physics representation. There are also other
promising works [13] that combine adversarial network with feedforward ar-
chitecture to interpolate or extrapolate frames.

2 Methods
2.1 Overview
Assuming that we have n particles in the system, where xi,vi denote the
coordinate and velocity of the i-th particle for 1 ≤ i ≤ n. All other notations
follow Table 1.

7

Notation
xi The coordinate of the i-th particle.
vi The velocity of the i-th particle.
ks
ij The spring constant of the spring connecting particle i and j.

kd
ij The damping constant of the spring connecting particle i and j.
fij Total force exerted from the spring ij to particle j.
f sij Spring force exerted from the spring ij to particle j.
fdij Damping force exerted from the spring ij to particle j.
nij The unit vector from particle i to j.
lij The active length of spring ij.
sij The resting length of spring ij.
mi The mass of particle i.
g Gravitational acceleration.

Table 1: Notations

In this section, we first assume that all pairs of the particles are either
connected by a spring or not. If a pair of particles is connected by spring,
then damping forces and spring forces will be exerted to both of the particles
involved.

In the case of collision or explosion, our model will assume that there is
a string with very large spring constant at the point of impact so that the
objects will not run into each other. The result should be a approximation
to collision and will be discussed in the later section.

Following the assumption that our system can be represented by the mass-
spring-damper model, we show that according to Universal Approximation
Theorem[9], we can approximate the function that estimates the acceleration
and velocity for this step by a multilayer perceptron (MLP).

Therefore, we start this section with a theory that generalize particle
motions using the mass-spring-damper model in section 2.2. Then, we show
that we can use time integration to simulation the motions of all particles in
the system in section 2.3. In section 2.3.1, we’ll also note that parts of the
numerical method is dependent on the physical priors that we don’t know,
so we can wrap the unknown variables in a deep learning black box. Lastly,
in section 2.3.3, we’ll show that we can use this model to interpolate and
extrapolate coordinates given the time series.

8

2.2 Mass-spring-damper model
For springs between particle i and particle j, we have spring constant kij =
kji, damping constant kd

ij = kd
ji and force exerted from the spring to particle

i, fij, where
fij = f sij + fdij (1)

where f sij is the spring force and fdij being the damping force. Then,

f sij = kij(lij − sij)nij (2)

where lij is the Euclidean distance between particle i and j, nij is the unit
vector from particle i to j, and sij being the resting length of the spring ij.
Since lij = |xj − xi| and nij =

xj−xi

|xj−xi| ,

f sij = kij(|xj − xi| − sij)
xj − xi

|xj − xi|
. (3)

The damping force is determined by both the coordinates and the velocities:

fdij = kd
ij(vij · nij)nij (4)

where vij is the relative velocity of particle i with respect to particle j. Plug
in vij = vi − vj and nij, we have

fdij = kd
ij

(
(vj − vi) ·

xj − xi

|xj − xi|

)
xj − xi

|xj − xi|
(5)

Now that we have all the spring forces, we can do force analysis on every
particle.

fi = mig +
∑
j

(
fdij + f sij

)
(6)

where mi is the mass of particle i and g being the gravitational acceleration.

2.3 Learning Time Integration Function
Now that we know the formula about forces with respect to coordinates and
velocities, we can use numerical method to estimate coordinates at future
discretized time step following section 2.3.1 and section 2.3.2. This is done
under the assumption of knowing everything about the system (note that

9

Figure 3: Force analysis on particle i, particle j, and spring ij

particle masses mi and spring constants kij and sij are unknown to us) so
that we know the exact formula. In our application where we only have
sparse observation on the system, we can try to approximate acceleration
with respect to coordinates and velocities using gradient descent.

According to Universal Approximation theorem[9], we can approximate
any set of function using a multilayer feedforward network. Therefore, we
can assume that we know how the function work, predict the interpolated
coordinate using one half of a time step, and start from there and iterate once
again. This should give us the coordinates of the next time step. Then, we
can take the minimum square loss of the two sets of coordinates and use gra-
dient descent to approximate the desired function with unknown constants.
One other advantage of using a multilayer feedforward network to estimate
the function is that physics models are not perfect and there are errors in
numerical methods in integrations as well. This way, we can embed the fudge
factor in the deep learning black box to make predictions more accurate and
fit better with the sparse observations.

10

2.3.1 Euler method

Given the force analysis on each particle in figure 3, we can do time integra-
tion on all particles to estimate the state of the system after a small time
step. First, we can get the acceleration of particle i from fi,

ai =
fi
mi

(7)

Following the acceleration, we can update the velocity of particle i

(vi)t+1 = (vi)t +∆t(ai)t. (8)

where (vi)t and (vi)t+1 defines the velocity of particle at discretized time step
t and t+ 1, (ai)t defines the acceleration of particle i at time t.

Then we can predict the coordinates at next time step following

(xi)t+1 = (xi)t +∆t(vi)t. (9)

Note that here, vi is a variable dependent on xi and vi, therefore we can
rewrite the equation as

(xi)t+1 = (xi)t +∆t · net(x(t),v(t))i (10)

where net(x(t),v(t)) is a deep feedforward network that approximates the
function (v)t. Note that dx

dt
= v, then we can rewrite the expression as

net(x(t), t).
Thus, we can approximate coordinates coordinates at any time step fol-

lowing
(xi)t+1 = (xi)t +∆t · net(x(t), t)i (11)

However, if we are interpolating the intermediate motion, using explicit
Euler method would be equivlent to taking the average of two coordinates.
Therefore, we combine learning scheme with numerical methods with higher
convergence rate and with higher order terms estimation to predict the state
at intermediate or prospective time steps.

2.3.2 Runge-Kutta method

Runge-Kutta method is a widely used numerical method for solving Ordinary
Differential Equations (ODEs) and Partial Differential Equations (PDEs).

11

By embedding explicit Runge-Kutta method into the network, we can esti-
mate the coordinates at various time step with higher order of convergence.
The Runge-Kutta method estimates four slopes k1, k2, k3, k4 and put greater
weight for the slopes at the midpoint.

k1 = net(x(t), t) (12)

k2 = net(x(t) +
∆t

2
k1, t+ 0.5) (13)

k3 = net(x(t) +
∆t

2
k2, t+ 0.5) (14)

k4 = net(x(t) + ∆tk3, t+ 1) (15)

x(t+ 1) = x(t) +
∆t

6
(k1 + 2k2 + 2k3 + k4) (16)

2.3.3 Neural Physics Network

Figure 4: Network structure for neural physics simulator

For the physically-aware network, We approximate net function by neural
network optimizers by training on the given coordinates to learn temporal
and physical information from the observations. Then, we apply the learned
network to predict interpolation or extrapolation. Figure 4 shows a full layout
of the neural physics simulator network we are using.

12

Network Architecture We use a standard architecture to implement our
Runge-Kutta net. For the interpolation network, we use a fully-connected
network with 512× 512× 512 elements. The output of net is the estimated
velocity of the given coordinates x(t) at time step t. The numerical method
then use the Runge-Kutta method to estimate the average velocity between
time step t and time step t+∆t and approximate the desired coordinates.

Interpolation Network For each interpolation task, we first train the
network over a set of input coordinates, and then we’ll be able to do the
interpolation according to the approximated function. Here, we first estimate
net(x(t), t) and predict the coordinates at time step t+0.5, x̃(t+0.5) following

x̃(t+ 0.5) = x(t) +
∆t

6
(k1 + 2k2 + 2k3 + k4) (17)

where k1, k2, k3, k4 is described in section 2.3.2. Then we start from time
step t+ 0.5 and predict coordinates at time step t+ 1 following

k1 = net(x̃(t+ 0.5), t+ 0.5) (18)

x̃(t+ 1) = x̃(t+ 0.5) +
∆t

6
(k1 + 2k2 + 2k3 + k4). (19)

where k2, k3, k4 is derived following section 2.3.2.
Then, the minimum squared loss is given by

L =
1

2
(x̃(t+ 1)− x(t+ 1))2 (20)

Extrapolation Network For the extrapolation task, we test on the ca-
pability of generating future trajectories. Here, we use the same coordinate
extraction method as above and feed the coordinates into the network to
approximate net(x(t), t). For future coordinates approximation at time step
t+ n+ k, suppose that we already extrapolated or have the ground truth of
the coordinates at time step t+ n

x(t+ n+ k) = x(t+ n) + k · net(x(t), t). (21)

13

3 Experiments
In this section, we try to validate our model in three scenes – double pen-
dulum, collision of boxes and pool game. Then, we’ll compare our model
with Yang et. al[22]’s model ConstraintNet. We aim to show that learning
physical constraints with temporal information is strictly better than without
it.

In the double pendulum experiment, we connect three balls with two
springs, pull them up so that three balls are horizontal and release them
from this steady state (see figure 1 for the setup). We expect our model to
be able to “learn” that there exist two strings between two pairs of balls. As
a result, the model should be able to estimate the accelerations and velocity
of all particles in this step so we can use numerical methods to integrate the
coordinates to do the interpolations and extrapolations.

In the collision experiment, we set up the boundary and put 5× 10 boxes
and a ball moving horizontally towards the boxes. We sample all four corners
of the boxes as well as the center of the ball to track the coordinates. As a
result, the model should be able to learn the edges of the boxes as well as
collision constraints between boxes and between boxes and boundaries.

In the pool game experiment, we use real-world video from YouTube to
show that our model is capable of interpolating, extrapolating, and notating
motions. We first use Detectron[20] to extract the coordinates of the balls in
the game and then use our model to learn from the time series, eventually
generate an interpolated and upsampled time series for notations in finer
granularity.

3.1 Scene I: Double Pendulum
3.1.1 Dataset

14

Figure 5: Time series data used for experiment 1

For the double pendulum scene, we first set up three balls connected
by strings horizontally in 2D-space at (200, 190), (280, 190) and (360, 190).
Then, we release the balls from the steady state and they should form a
double pendulum. We create this scene to validate our model because a
single pendulum can be easily described by a linear equation thus does not
pose significant challenge to the neural physics simulator. The motion of
the double pendulum is chaotic. If we can interpolate the motion with a
small error, we can say that our model is capable of physical-aware learning.
Figure 5 visualizes the time series.

15

3.1.2 Training the Neural Physics Simulator

As stated in section 2.3.3, we are combining numerical methods with deep
neural network to approximate the coordinates of the intermediate states.

To show that our model is capable of predicting physical motions, we
first train our neural physics simulator with the double pendulum data set.
We feed the model with coordinates of all particles at every other time step.
Assuming that the model is capable of predicting the intermediate time step,
we input the step at time t to get coordinates at time t+ 1 and then pass it
back to the model again to get the predicted coordinates at time t+2. With
the appropriate numerical methods, we hope that computing and the loss
between the predicted coordinates and our labels and performing gradient
descent to the network will give us a simulator that interpolates accurately.

3.1.3 Results

We test two models side-by-side with our model to show that our model can
generalize chaotic physical motions better than traditional methods.

The first method we are comparing with is the vanilla interpolation, also
called bilateral interpolation Given the coordinates at time t and t+ 1, x(t)
and x(t + 1), respectively, the bilateral interpolation calculate the interme-
diate state following:

x(t+ 0.5) =
1

2
(x(t) + x(t+ 1)). (22)

Bilateral interpolation is used by intermediate frame synthesis models like
ABME[15], so comparing our model with it shows how that performs as a
plugin in use cases like video interpolation.

The second method we are comparing with is the neural projection net-
work by Yang et al.[22]. The neural projection network estimates the poten-
tial energy of an object, therefore we know that how far off is the current
state is from the object we are observing. For example, if we are observing a
box and the four points we are sampling are not forming a box anymore, the
potential energy will be large. Then it uses gradient descent to find the more
accurate location for the four given points to form a box. After a set number
of iterations, it should fix the shape of the object. For interpolation job,
it first uses bilateral interpolation to get a relatively inaccurate result, and
optimize potential energy from there, hoping to get a more accurate result.

16

By comparing to the two methods, we will show that our model is superior
to them in several orders of magnitudes in terms of mean square error, and
therefore generalizes chaotic motion like double pendulum better than the
other two.

Figure 6: Mean Square Error of 3 models in the double pendulum scene.

Figure 6 shows us the MLP, together with Runge-Kutta numerical method
achieve orders of magnitudes better in interpolation accuracy compared to
the other two methods.

3.2 Scene II: Collision of Boxes
3.2.1 Dataset

Now that we have already proven our model is superior in predicting chaotic
motions, we also want to show that it has comparable performance with
other two methods in general cases. Therefore, we do a collision experiment,
resembling the general scenario.

We set up a ball at (0, 165), and 50 rectangular boxes to the right in a
grid layout. Then, we set an impulse on the ball throwing it towards all the
boxes. See figure 7 for a visualization of the physical motion.

17

Figure 7: Time series data used for experiment 2

18

3.2.2 Results

From figure 8, we can see that our method has a comparable performance
as the bilateral (vanilla) interpolation here. We don’t have the results for
neural projection network because their model need to have connectivity
information and object information, which is unavailable to our model.

Figure 8: Mean Square Error for scene II

Now that we show that our method performs consistently better in chaotic
motions and as good in general cases, we concluded that our model is physics-
aware and can approximate coordinate interpolation.

4 Conclusions
We propose a novel physics-aware interpolation and extrapolation network
that improves mean square error in chaotic motions by 100x and achieve
similar performance in general cases. Our method consists of a MLP-based
ODE solver and the numerical method to determine the intermediate or
future coordinates.

4.1 Future Works
We theorize a physics model and leverage deep learning methods and numer-
ical methods to help estimate intermediate motions, but there are several
challenges we haven’t addressed for it to work in video interpolations. Here,
we assume that for video interpolations to work, we are using a object detec-
tion network to get the coordinate information, which is already known to

19

our method in this work, then calculate the intermediate coordinates. After
we have the intermediate coordinates, we can feed the coordinates into a
GAN to synthesize the intermediate frame. This is challenging because:

• Motion blurs make it hard to get an accurate estimate of coordinates.

• Label switching happens when similar objects collide.

In addition, we can also make our model more physically-aware by:

• Embed collision detection in the model and make collision radius learn-
able.

• Use more sophisticated numerical methods to further reduce the loss.

• Replace the bilateral interpolation in existing video interpolation mod-
els with our model to help improve physical-awareness in the model.

5 Acknowledgement
Many thanks towards Dr. Praneeth Chakravarthula, who was a caring and
knowledgeable advisor to me during this project. I am also grateful to Dr.
Henry Fuchs, who connected Praneeth with me in the first place and for
being a second reader for the project.

20

References
[1] Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M. J.,

and Szeliski, R. A database and evaluation methodology for optical
flow. International journal of computer vision 92, 1 (2011), 1–31.

[2] Bao, W., Lai, W.-S., Ma, C., Zhang, X., Gao, Z., and Yang,
M.-H. Depth-aware video frame interpolation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2019), pp. 3703–3712.

[3] Barron, J. L., Fleet, D. J., and Beauchemin, S. S. Performance
of optical flow techniques. International journal of computer vision 12,
1 (1994), 43–77.

[4] Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D., and
Kavukcuoglu, K. Interaction networks for learning about objects,
relations and physics, 2016.

[5] Chen, Z., Zhang, J., Arjovsky, M., and Bottou, L. Symplectic
recurrent neural networks. arXiv preprint arXiv:1909.13334 (2019).

[6] Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas,
C., Golkov, V., Van Der Smagt, P., Cremers, D., and Brox,
T. Flownet: Learning optical flow with convolutional networks. In
Proceedings of the IEEE international conference on computer vision
(2015), pp. 2758–2766.

[7] Finn, C., Goodfellow, I., and Levine, S. Unsupervised learn-
ing for physical interaction through video prediction. In Advances in
Neural Information Processing Systems (2016), D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29, Curran Associates,
Inc.

[8] Greydanus, S., Dzamba, M., and Yosinski, J. Hamiltonian neural
networks, 2019.

[9] Hornik, K., Stinchcombe, M., and White, H. Multilayer feed-
forward networks are universal approximators. Neural networks 2, 5
(1989), 359–366.

21

[10] Hoshen, Y. Vain: Attentional multi-agent predictive modeling. arXiv
preprint arXiv:1706.06122 (2017).

[11] Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A.,
and Brox, T. Flownet 2.0: Evolution of optical flow estimation with
deep networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2017), pp. 2462–2470.

[12] Jin, P., Zhu, A., Karniadakis, G. E., and Tang, Y. Symplectic
networks: intrinsic structure-preserving networks for identifying hamil-
tonian systems. arXiv preprint arXiv:2001.03750 (2020).

[13] Lerer, A., Gross, S., and Fergus, R. Learning physical intuition
of block towers by example. In International conference on machine
learning (2016), PMLR, pp. 430–438.

[14] Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carl-
son, M. Physically based deformable models in computer graphics,
2005.

[15] Park, J., Lee, C., and Kim, C.-S. Asymmetric bilateral motion esti-
mation for video frame interpolation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (2021), pp. 14539–14548.

[16] Rezende, D. J., Racanière, S., Higgins, I., and Toth, P. Equiv-
ariant hamiltonian flows. arXiv preprint arXiv:1909.13739 (2019).

[17] Toth, P., Rezende, D. J., Jaegle, A., Racanière, S., Botev,
A., and Higgins, I. Hamiltonian generative networks. arXiv preprint
arXiv:1909.13789 (2019).

[18] Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu,
R., and Tacchetti, A. Visual interaction networks: Learning a
physics simulator from video. Advances in neural information process-
ing systems 30 (2017), 4539–4547.

[19] Wu, J., Lu, E., Kohli, P., Freeman, B., and Tenenbaum, J.
Learning to see physics via visual de-animation. Advances in Neural
Information Processing Systems 30 (2017), 153–164.

22

[20] Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R.
Detectron2. https://github.com/facebookresearch/detectron2, 2019.

[21] Xu, Z., Liu, Z., Sun, C., Murphy, K., Freeman, W. T., Tenen-
baum, J. B., and Wu, J. Unsupervised discovery of parts, structure,
and dynamics. arXiv preprint arXiv:1903.05136 (2019).

[22] Yang, S., He, X., and Zhu, B. Learning physical constraints with
neural projections, 2020.

[23] Yuen, J., and Torralba, A. A data-driven approach for event pre-
diction. In European Conference on Computer Vision (2010), Springer,
pp. 707–720.

23

