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Understanding the Electronic Structure and Electron Transfer 

Kinetics of Titanium Dioxide Photoanodes for Applications in 

Photoelectrosynthesis Cells 

 
1.1   Introduction 

As global energy consumption continues to grow and the threats of climate change urge 

the transition towards renewable energy sources, solar energy has emerged as a promising energy 

source. Every day, our Earth receives enough sunlight to power human activities for an entire 

year.1 However, our current energy systems necessitate a way to store solar energy for it to displace 

current methods of power generation. Dye-sensitized photoelectrosynthesis cells (DSPECs) offer 

a way of converting sunlight into chemical energy through the synthesis of solar fuels, which act 

as a medium for storing solar energy. DSPECs are designed to mimic the natural process of 

photosynthesis by oxidizing water at a photoanode to produce O2 and reducing either protons or 

carbon dioxide at a photocathode to produce fuels like H2 or methanol.2  The photoanode is often 

composed of a metal oxide semiconductor deposited onto a transparent conducting oxide (TCO). 

The metal oxide is functionalized with a 

chromophore-catalyst assembly, in which the 

chromophore absorbs light to drive subsequent 

electron injection into the metal oxide and the 

catalyst interacts with the oxidized chromophore 

to drive water oxidation.2 Despite the vast 

amount of research done on the topic thus far, 

many aspects of DSPECs need to be optimized 

before they can be implemented on a significant 

scale. 

A promising metal oxide semiconductor for DSPECs is rutile titanium dioxide (TiO2).3 

TiO2 exists primarily in either the rutile or anatase crystal phases, though the anatase phase has 

been more extensively studied than rutile. In metal oxide photoanodes like those made of TiO2, 

one efficiency-limiting process is back-electron transfer (BET). BET is the process in which 

Example schematic for a DSPEC using a 
photoanode for hydrogen evolution. 
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electrons injected into the metal oxide semiconductor from the dye are not collected by the TCO 

but rather return to the oxidized dye, catalyst, or other oxidized species in solution, preventing the 

buildup of redox equivalents needed to drive water oxidation. One recent development shown to 

increase DSPEC efficiency and minimize BET is the use of core-shell nanomaterials, where the 

metal oxide materials are coated with a thin layer of another metal oxide for use as a photoanode.2,4 

Interestingly, even a thin TiO2 shell deposited onto a TiO2 core through a chemical bath treatment 

with TiCl4 results in improved device efficiency and slower BET.5 Despite the increased popularity 

of this technique, the mechanisms by which the rate of BET is decreased and the efficiency is 

increased are still debated.6,7  

Through the analysis of rutile TiO2 nanorods by electrochemical, photoelectrochemical, 

and spectroscopic methods, we shed light on the electronic structure of rutile TiO2 and factors that 

impact charge recombination and its potential use in DSPECs. Anatase is similarly studied as a 

point of comparison for rutile TiO2 nanomaterials. Through multiple electrochemical techniques, 

we demonstrate that nanoparticulate films of rutile TiO2 possess a population of monoenergetic 

deep trap states, a collection of electronic states that fall between the conduction and valence bands 

of the semiconductor that are independent from the exponential distribution of shallow trap states 

tailing from the conduction band. Furthermore, core-shell materials with rutile TiO2 cores were 

synthesized and studied to probe the effects of metal oxide shells on the electronic structure of 

rutile TiO2 and its deep trap states. Finally, photoelectrochemical impedance spectroscopy was 

performed to gain an understanding of the BET rate constants of rutile TiO2 and how these rates 

are affected by metal oxide shells and by the presence of deep trap states. 

 

1.2   Methods 

1.2.1. Synthesis of Rutile TiO2 Nanorods 

Rutile TiO2 nanorods were synthesized by an aqueous reaction with titanium(IV) 

tetrachloride (TiCl4). TiCl4 (Sigma Aldrich, 99.9%) was added dropwise to an Erlenmeyer flask 

containing H2O cooled by an ice bath while under constant stirring, creating a 2M TiCl4 solution. 

The solution was then diluted to 0.5M TiCl4 in H2O and stirred at room temperature in the dark 

for 7 days. The solution was left to settle for 3 hours and the supernatant was decanted. The white 

solid precipitate was dispersed in H2O, centrifuged, and then the supernatant was removed. The 
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precipitate was then dispersed in ethanol, sonicated in an ice bath, and dried with a rotary 

evaporator. This process was repeated once more with ethanol. The powder was then dispersed in 

MilliQ H2O to achieve a 10 wt% TiO2 solution. While rapidly stirring, hydroxypropylcellulose 

(Sigma-Aldrich, MW ~ 80,000 Da, Mn ~ 10,000, powder, 20 mesh particle size) was added to 

achieve 10 wt% polymer and form the rutile TiO2 paste. Analysis by transmission electron 

microscopy (TEM) showed the nanoparticles had an average length of 60 ± 23 nm averaged over 

352 measurements. To prepare the photoanodes, the rutile TiO2 paste was doctor-bladed onto 

fluorine-doped tin oxide (FTO) coated glass plates using Scotch tape as a spacer. The samples 

were sintered in a box oven at 100˚C for 10 minutes (150˚C/hr ramp up) followed by 500˚C for 1 

hour (225˚C/hr ramp up). The film thickness for rutile TiO2 slides was 5.0 ± 0.5 µm. The rutile 

crystalline phase was confirmed using Raman spectroscopy and powder X-ray diffraction. 

1.2.2. Atomic Layer Deposition 

Atomic layer deposition (ALD) was used to coat rutile TiO2 nanocrystals with either 

titanium oxide, zinc oxide, aluminum oxide, or zirconium oxide shells using an 

Ultratech/Cambridge NanoTech Savannah S200 system. Gas flows and timings were controlled 

with a LabVIEW sequencer, and molecular precursors were housed in stainless steel cylinders 

attached to the ALD. Ultrahigh purity N2 (Airgas, 99.999%) was used as the carrier gas, ultrapure 

DI H2O was used as the oxygen precursor, and tetrakis(dimethylamido)titanium TDMA-Ti was 

used as the titanium precursor. The TDMA-Ti was heated at 75˚C for one hour prior to running 

ALD experiments, and the reactor chamber was held at 150˚C. For titanium oxide growth, the 

following ALD recipe was used: 10 min purge at 20 sccm N2, [0.5 s pulse TDMAT, 30 s exposure, 

60 s purge of N2 at 20 sccm, 0.02 s pulse H2O, 30 s exposure, 60 s purge of N2 at 20 sccm] x n 

cycles. Following ALD, samples were sintered in a box oven at 500˚C for 1 hour (225˚C/hr ramp 

up). Samples will be named herein as rTiO2/nTiOx where n denotes the number of ALD cycles for 

that sample. Using a similar procedure, other shell materials were also deposited onto rutile TiO2. 

Zirconium dioxide (ZrO2) shells were deposited using TDMA-Zr precursor preheated at 75˚C for 

one hour. Zinc oxide (ZnO) shells were deposited using diethyl zinc Zn(Et)2 precursor and required 

no preheating. Aluminum oxide (Al2O3) shells were deposited using trimethyl aluminum Al(Me)3 

precursor and required no preheating. 
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1.2.3. Electrochemical Experiment Setup 

Cyclic voltammetry, chronoamperometry, and spectroelectrochemistry were performed 

using a Pine Instruments WaveDriver 10 Potentiostat. Electrochemical impedance spectroscopy 

(EIS) was performed using a Gamry Instruments Reference 600 Potentiostat/Galvanostat/ZRA. 

The working electrode consisted of the prepared rutile TiO2 on FTO-glass with an exposed sample 

area of 0.12 cm2. The reference was a Ag/AgCl (3M NaCl, CH Instruments) electrode and the 

counter electrode was a platinum wire. The supporting electrolyte was a 0.1M HClO4 aqueous 

solution. The solution was sparged with Ar (Airgas, industrial grade) prior to performing 

measurements. Cyclic voltammetry, chronoamperometry, and EIS were performed in the dark. For 

spectroelectrochemical experiments, an Agilent Cary 60 UV-vis spectrophotometer was used to 

measure absorbance in a 1-cm path length quartz cuvette and the exposed sample area was 1 cm2.  

1.2.4. Photoelectrochemical Experiment Setup 

Photoelectrochemical impedance spectroscopy (PEIS) was performed using a Gamry 

Instruments Reference 600 Potentiostat/Galvanostat/ZRA. The light source was a 514 nm LED 

(Lumencor SPECTRA X light engine). Prior to PEIS experiments, the rutile TiO2 on FTO slides 

were soaked in methanol containing [Ru(2-2’-bipyridine)2(4,4’-(PO3H2)2-2,2’-bipyridine)]2+ 

(RuP) to dye-load the sample. The working electrode consisted of the prepared slide with an 

exposed sample area of 0.8 cm2 and copper tape connecting the FTO to the electrical lead. The 

reference was a Ag/AgCl (3M NaCl, CH Instruments) electrode and the counter electrode was a 

platinum wire. For galvanostatic experiments, the solution was a pH 4.7 acetate buffer with 0.1M 

NaClO4 supporting electrolyte and 3mM hydroquinone added as a quencher. For potentiostatic 

experiments, the solution was a 0.1M HClO4 aqueous electrolyte. The solution was sparged with 

Ar (Airgas, industrial grade) prior to performing measurements.  

1.2.5. Diffuse Reflectance Spectroscopy 

Diffuse reflectance spectra of the metal oxide films were acquired on an Agilent Cary 5000 

UV-Vis-NIR spectrophotometer with the external diffuse reflectance accessory (DRA). Slides 

were placed in the center position of the external DRA and positioned at a 10˚ angle to incident 

light. Spectra were recorded from 350-650 nm, and background scans of FTO-glass were 

subtracted out from sample scans. 
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1.3   Results and Discussion 

1.3.1. Synthesis and Characterization of Rutile TiO2 

Rutile TiO2 was synthesized by hydrolyzing TiCl4 in an excess of water and letting the 

solution to stir for 7 days, allowing for rutile TiO2 nanostructures to form. The resulting particles 

were isolated and then mixed with water and hydroxypropylcellulose to form a paste. This paste 

was doctor-bladed onto FTO-glass sheets and heat treated to create the rutile TiO2 nanoparticle 

thin films. The morphology of synthesized rutile TiO2 nanoparticles was studied using TEM. TEM 

images are shown in Figure 1 and depict the TiO2 as having a nanorod structure. The distribution 

of nanorod lengths is shown in Figure 1 as well, and the average nanorod length was 60 ± 23 nm. 

 

         
Figure 1. TEM images of the synthesized rutile TiO2 nanorods, and a histogram showing the distribution 
of nanoparticle lengths with an average length of 60 ± 23 nm averaged over 352 measurements. 
 

   
Figure 2. (a) Raman spectrum of the rutile TiO2 nanorods with the rutile vibrational modes assigned, and 
(b) a powder XRD spectrum of the rutile TiO2 nanorods with the powder diffraction file values shown with 
the blue lines. 
 

a) b) 
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To confirm the crystalline phases of the samples, both Raman spectroscopy and powder X-

ray diffraction (XRD) were used. The Raman spectrum in Figure 2a has distinct peaks for the 

major vibrational modes of rutile TiO2 and show no signs of other phases like anatase. Similarly, 

the XRD spectrum in Figure 2b has clear peaks matching closely with the powder diffraction file 

(PDF) of rutile TiO2. 

1.3.2. Quantification of Deep Trap States in Rutile TiO2 

Cyclic voltammetry was performed on rutile TiO2 nanorod films (Figure 3a). The main 

feature of the cathodic trace is the increasing current corresponding to the reduction of an 

exponential distribution of trap states extending from the conduction band edge. This feature is 

consistent with previous observations for both anatase and rutile TiO2 nanomaterials.8 The 

presence of an increase in the density of states is indicated by the bump in the cathodic sweep of 

the cyclic voltammogram occurring around –50 mV vs Ag/AgCl. This corresponds to deep trap 

states, a collection of electronic states that fall between the conduction and valence bands of the 

semiconductor that are independent from the exponential distribution of shallow trap states tailing 

from the conduction band. The deep trap state potential is consistent between multiple repetitions 

of cyclic voltammograms and across multiple samples. Chronoamperometry was also performed 

on rutile TiO2 nanorod films. The current–time curves produced from the chronoamperometry 

experiment were integrated and used to calculate the capacitance of the film at different potentials. 

The resulting capacitance data is shown in figure 3b and shows the electronic states for rutile TiO2. 

This distribution of states was fit to two functions, an exponential representative of the exponential 

distribution of shallow trap states tailing below the conduction band of TiO2, and a Gaussian 

distribution which models the monoenergetic collection of deep trap states in rutile TiO2. As seen 

in Figure 3b, the sum of these two distributions fit the data well. In addition, the Gaussian is 

centered at –70 mV vs Ag/AgCl, in close agreement with the location of the deep trap states in the 

cyclic voltammogram. For comparison, the cyclic voltammogram and capacitance from 

chronoamperometry for anatase TiO2 nanoparticles are shown in Figure 4. There are no apparent 

deep trap states from the cyclic voltammogram in Figure 4a, and the capacitance data in Figure 4b 

fits well to an exponential curve. From this, it is apparent that the deep trap states are unique to the 

rutile form of TiO2. 
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Figure 3. (a) Cyclic voltammogram of rutile TiO2 nanorods performed in 0.1M HClO4 at a scan rate of 20 
mV/s with an exposed surface area of 0.12 cm2, and (b) capacitance of rutile TiO2 collected from a 
chronoamperometry experiment performed in 0.1M HClO4 with the data fit to the sum of an exponential 
and a Gaussian curve. 
 

   
Figure 4. (a) Cyclic voltammogram of anatase TiO2 nanoparticles performed in 0.1M HClO4 at a scan rate 
of 20 mV/s with an exposed surface area of 0.12 cm2, and (b) capacitance of anatase TiO2 collected from a 
chronoamperometry experiment performed in 0.1M HClO4 with the data fit to an exponential curve. 
 

Electrochemical impedance spectroscopy (EIS) was also used to study rutile TiO2 nanorod 

films. EIS is an AC technique, where the applied current (in galvanostatic mode) or applied voltage 

(in potentiostatic mode) is modulated at a set frequency and the impedance response is measured. 

This technique is further explained in section 1.3.3. EIS data was collected under potentiostatic 

mode at multiple potentials, and the resulting data was fit to the model circuit shown in Figure 5a. 

The circuit consists of a solution resistance component and two RC circuits, representing the 

electrolyte-TiO2 interface and the TiO2-FTO interface. Constant phase elements (CPEs) are being 

used in place of capacitors to better account for non-ideal capacitance caused by inhomogeneities 

on the surface of metal oxide electrodes.9 From the circuit fitting, the capacitance was calculated 

a) b) 

*  ß  deep trap states 

*  ß  deep trap states 

a) b) 
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at each potential that a measurement was made and is plotted in figure 5b. From the EIS data, the 

deep trap states appear at a potential of –100 mV vs Ag/AgCl. 

 

 
Figure 5. (a) A double Randles circuit in which Rsol is the solution resistance, R1 and R2 are the charge 
transfer resistances at the electrolyte-TiO2 and TiO2-FTO interfaces, respectively, CPE1 and CPE2 are the 
non-ideal capacitances at the electrolyte-TiO2 and TiO2-FTO interfaces, respectively, R.E. is the reference 
electrode, and W.E. is the working electrode, (b) capacitance of rutile TiO2 collected from an EIS 
experiment performed in 0.1M HClO4 and a potential perturbation of 10 mV over a frequency range from 
100 kHz to 0.1 Hz. 
 

Collectively, these potentiostatic (chronoamperometry), potentiodynamic (cyclic voltammetry), 

and alternating potential (EIS) techniques all confirm the presence of deep trap states in rutile TiO2 

nanorod thin films. Moreover, the energetics of these deep trap states are consistently quantified 

as lying between –50 and –100 mV vs Ag/AgCl. 

Spectroelectrochemical experiments were performed to help elucidate the electronic state 

distribution in rutile TiO2 samples. In a spectroelectrochemical experiment, the rutile TiO2 

electrode was held at a certain potential and the change in absorbance relative to the baseline 

absorbance (an unbiased rutile TiO2 electrode) was recorded. The absorbance data for this 

experiment is shown in Figure 6a. The broad absorption increase seen across the visible region 

could correspond to electrons populating the trap states, which can be excited into the conduction 

band with lower energy light. The absorption bleach below 450 nm is likely due to the decreased 

fundamental absorption as conduction band states are being filled at more negative potentials. As 

shown in figure 6b, the absorbance curves are normalizable, suggesting that only one type of 

reduction is at play during the experiment (e.g. a Ti4+ to Ti3+ reduction). The absorption curves can 

be modeled to a single exponential function6: 

a) b) 

*  ß  deep trap states 
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𝐴(𝜆, 𝐸) = 𝑎(𝜆)𝑒*+,					(𝑒𝑞	1) 

where E is the applied potential, l is the wavelength, and b is a solvent-dependent constant. The 

fits are shown in Figure 6a with black dashed lines.  

 

 
Figure 6. (a) Spectroelectrochemical data on the change in absorbance of rutile TiO2 nanorod films as the 
applied potential increases negatively, experiment performed in 0.1M HClO4 with an exposed surface area 
of 1 cm2, slide held at each potential to equilibrate for 3 minutes before absorbance measurements were 
taken, curve fits shown in black dashed lines, (b) data from figure a normalized at 900 nm. 
 

Being able to fit the absorbance change to a single exponential suggests a single reduction 

event, despite two distinct states being identified through the cyclic voltammetry, 

chronoamperometry, and EIS experiments described above. There are several possible ways to 

reconcile these conflicting findings. It could be possible that electrons in the deep trap states are 

in rapid thermal equilibrium with the electronic states in the exponential conduction band tail, so 

the two states show up as one absorption change in the spectroelectrochemistry experiment. It is 

also possible that the reduction of the deep trap states is spectroscopically silent. Another 

explanation is that absorption changes brought on by reduction of conduction band tail states are 

much larger than absorption changes from reducing deep trap states, so only one change is noticed 

in the data. There is no clear and definitive answer as to which of these, if any, explain the reason 

why only one electronic distribution appears to be present from the spectroelectrochemical data. 

To help explain what physical features of the rutile TiO2 nanorods might be causing the 

trap state observed above, TiO2, ZrO2, Al2O3, and ZnO shell materials were used to coat the rutile 

nanorods using ALD. For metal oxides, trap states are often the result of disruptions in the extended 

lattice of the material which could be related to vacancies in the lattice or inhomogeneities where 

a) b) 
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the lattice terminates at the surface. The application of the ALD shells provides relevant 

information about whether these deep trap states are related to defects on the surface of the nanorod 

or to some other factor, such as bulk/core defects or grain boundaries. Figure 7 shows the cyclic 

voltammograms and capacitance data from chronoamperometry for three different core-shell 

materials: rTiO2/3Al2O3, rTiO2/5ZnO, and rTiO2/3ZrO2, where the number preceding the shell 

material represents the number of ALD cycles used to deposit the metal oxide shell onto the rutile 

TiO2 nanorods.  

 

 
Figure 7. Cyclic voltammograms (a, b, c) of different core-shell materials taken at scan rate of 20 mV/s 
and with an exposed sample surface area of 0.12 cm2, and capacitance data (d, e, f) from 
chronoamperometry experiments; rTiO2/3Al2O3 (a, d) and rTiO2/3ZrO2 (c, f) data collected in 0.1M HClO4, 
while rTiO2/5ZnO (b, e) data collected in pH 7 phosphate buffer with 0.1M NaClO4 supporting electrolyte. 
 

From the data in Figure 7, the deep trap states are still present in each of the samples, with visible 

bumps in the cathodic scans of each cyclic voltammogram. The capacitance data also shows a 

feature representative of the trap states with the exception of rTiO2/5ZnO in Figure 7e. It is likely 

that such a feature would be visible had the data been extended to more negative potentials, since 

the potential at which the deep trap states appear is generally seen more negative in the capacitance 

data from chronoamperometry compared to that of cyclic voltammetry. It is important to note that, 

due to the instability of ZnO in acidic conditions, electrochemical experiments for rTiO2/5ZnO 

were performed in pH 7 solutions, so electrochemical features show up at more negative potentials 

compared to experiments in pH 1 solutions.  

a) b) c) 

d) e) f) 

*  ß  deep trap states 
*  ß  deep trap  states 

*  ß  deep trap states *  ß  deep trap states 

*  ß  deep trap states 
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Collectively, these core-shell experiments indicate that surface treatment of the rutile TiO2 

nanorods does not passivate the deep trap states, as would be expected if the trap states were 

associated with defects or inhomogeneities on the surface of the particles. Rather, it is more likely 

that the deep trap states are located at the grain boundaries10 between rutile TiO2 nanorods in 

contact with each other in the film, as these could not be passivated by an ALD coating.  

1.3.3. rTiO2/nTiOx Core-Shell Material Impacts on Electronic Structure 

While the core-shell materials above did not passivate the trap states, the data in Figure 7 

shows that they did impact the electronic structure of the TiO2 nanorods. To more thoroughly study 

the effects of shell deposition on core material electronic structures, titanium oxide was deposited 

onto rutile TiO2 nanorods using ALD to create samples herein referred to as rTiO2/nTiOx, where 

n refers to the number of ALD cycles. The rTiO2/nTiOx samples serve as parallels to TiCl4-treated 

TiO2 previously used to improve device performance and decrease the rate of BET. By using ALD 

to create rTiO2/nTiOx samples, the thickness of the shells can be modulated. Diffuse reflectance 

spectroscopy was performed on the core shell materials, and Tauc analysis was performed on the 

absorption spectra. For Tauc analysis, (aE)n is plotted versus E to create a Tauc plot, where 𝛼 =
1.343∗6+789+:;<=
>?@A	BC?<D;=77

, E is the energy of the absorbance wavelength in eV, and n is 2 and ½ for direct 

and indirect band gap materials, respectively. Tauc plots are shown in Figure 8a.  

 

           
Figure 8. (a) Tauc plots from absorbance of rTiO2/nTiOx films collected with diffuse reflectance 
spectroscopy, and the fits of the linear regions overlaid, (b) the calculated indirect band gaps for 
rTiO2/nTiOx materials as a function of shell thickness. 
 

Extrapolating the linear region of the Tauc plot to the x-intercept provides the band gap of the 

material. Figure 8b shows the indirect band gaps of the rTiO2/nTiOx materials as a function of the 

a) b) 

Increasing Shell 
Thickness 
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number of ALD cycles, corresponding to the thickness of the TiOx shells. It is evident from the 

graph that there is a linear decrease in the band gap of the rutile TiO2 nanoparticles as the shell 

thickness of the core-shell material increases. This suggests a change in the position of the 

conduction band edge and/or valence band edge. Cyclic voltammetry was also performed on the 

rTiO2/nTiOx samples. From the overlaid cyclic voltammograms shown in Figure 9a, it is evident 

that the deep trap state population is shifting from more negative to more positive potentials as the 

shell thickness increases.  

 

    
Figure 9. (a) Cyclic voltammograms of rTiO2/nTiOx core-shell materials in 0.1M HClO4 at a scan rate of 
20 mV/s and with an exposed surface area of 0.12 cm2, (b) capacitance data from chronoamperometry was 
fitted to a single exponential and a Gaussian, as done in Figure 3b, where the midpoint of the Gaussian 
gives the potential of the deep trap states shown above as blue triangles, and the area under the Gaussian 
gives the quantity of deep trap states shown above as red circles. 
 

Chronoamperometry was also performed on the rTiO2/nTiOx samples, from which the 

capacitance can be determined. The capacitance data showed an exponential increase with 

decreasing potential, as well as a characteristic bump for the deep trap states, like that seen for bare 

rutile TiO2 in Figure 3b. The capacitance data was therefore also fit to the sum of a single 

exponential and a Gaussian distribution. The Gaussian distribution represents the distribution of 

deep trap states, so from the Gaussian fitting parameters, the potential at which the deep trap states 

reside was determined for each rTiO2/nTiOx sample. In addition, the quantity of these deep trap 

states was calculated by determining the area under the Gaussian curve for each sample. The 

quantity and potential of the deep trap states from fitting the capacitance is shown in Figure 9b. 

The quantity of deep trap states seems to be consistent across multiple shell thicknesses, whereas 

the potential at which the deep trap states lie shifts positively as the shell thickness increases. These 

a) b) 

Increasing Shell 
Thickness 
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data indicate that the addition of a titanium oxide shell onto the rutile TiO2 nanorods shifts the 

potential at which the deep trap states are found but does not change the trap state quantity. 

1.3.4. Using PEIS to Study the Electron Transfer Kinetics of Rutile TiO2  

Photoelectrochemical impedance spectroscopy (PEIS) was used to study rutile TiO2 

nanorod films and core-shell materials, with anatase TiO2 also studied for comparison. PEIS is a 

technique in which either an alternating current (galvanostatic mode) or an alternating potential 

(potentiostatic mode) is applied and the resulting impedance is measured while the system is 

exposed to a light source.  

 

   
Figure 10. Averaged absorption spectra for RuP loaded onto (a) anatase (6 spectra averaged) and (b) rutile 
(8 spectra averaged) TiO2 photoanodes, with the absorbance of the TiO2 and FTO background-corrected. 
 

Samples studied with PEIS were dye-loaded with RuP. Figure 10 shows the absorbance 

profiles for RuP dye-loaded onto anatase and rutile TiO2 photoanodes. The surface coverages for 

RuP were 7.85 ∗ 10*I and 4.02 ∗ 10*I	𝑚𝑜𝑙/𝑐𝑚1 for anatase and rutile TiO2, respectively. 

Anatase TiO2 has better dye-loading capacity because the nanoparticles are smaller than those of 

rutile, so there is a larger surface area in the mesoporous films for the dye to adhere. A 514 nm 

LED light source was used for the experiments. The 514 nm light is sufficiently energetic to excite 

the metal-to-ligand charge transfer in RuP, leading to electron injection into the TiO2 conduction 

band, but not energetic enough to excite electrons from the TiO2 valence band into the conduction 

band. Figure 11 shows an example of data resulting from a galvanostatic PEIS experiment under 

open circuit potential. Figure 11a shows the Nyquist plot, which plots the imaginary component 

a) b) 
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of the impedance versus the real component. Figure 11b shows the Bode plot, which plots the 

impedance (in red) and the phase angle (in blue) as a function of the perturbation frequency. 

 

   
Figure 11. Nyquist plot (a) and Bode plot (b) from a PEIS experiment on rutile TiO2 nanorods with a RuP 
dye in pH 4.7 acetate buffer with 0.1M NaClO4 supporting electrolyte and 3mM hydroquinone, with varying 
light intensity from a 514 nm LED. 
 

 
Figure 12. (a) A double Randles circuit in which Rsol is the solution resistance, R1 and R2 are the charge 
transfer resistances at the electrolyte-TiO2 and TiO2-FTO interfaces, respectively, CPE1 and CPE2 are the 
non-ideal capacitances at the electrolyte-TiO2 and TiO2-FTO interfaces, respectively, R.E. is the reference 
electrode, and W.E. is the working electrode, and a representative Nyquist (b) and Bode (c) plot at 50% 
light with double Randles circuit fit shown with dashed black line. 
 

The Nyquist and Bode plots can be simultaneously fit to a circuit model in order to extract 

electrical parameters involved in the system. The circuit used to fit the data is shown in Figure 

12a, and examples of the fitting are shown in Figures 12b and 12c. The rate constant for BET is 

calculated using the values from the circuit fitting. The rate constant is expressed by equation 2:11 

𝑘R,S =
1

𝑅U𝐶U
						𝐶U =

(𝑌8 ∗ 𝑅)U/X

𝑅 								(𝑒𝑞	2) 

a) b) 

a) b) c) 
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where R1 and C1 are the resistance and capacitance across the rutile TiO2-electrolyte interface, and 

the capacitance is calculated using the fitting parameters for CPEs, Y0 and a. Using galvanostatic 

PEIS, the BET rate constants for rutile and anatase TiO2 were calculated under different light 

intensity conditions. Increasing the incident light intensity shifts the open circuit potential of the 

slides negatively due to more electrons being injected into the TiO2 from the photoexcited RuP. 

The BET rate constants plotted versus open-circuit potential and versus injected electron 

concentration are shown in Figure 13. Anatase TiO2 likely achieves higher injected electron 

concentrations and more negative open circuit potentials for the same light intensities due to higher 

dye surface coverage as calculated before. The rate constants for the rutile TiO2 nanorods at a 

given open-circuit potential or injected electron concentration are higher than those for anatase 

TiO2 nanoparticles, suggesting that rutile TiO2 would be less efficient as a photoanode. It is 

difficult to tell from this data alone if this difference in rate constants is related to the fact that the 

deep trap states are present in rutile TiO2 nanorods but not anatase TiO2 nanoparticles. 

 

    
Figure 13. The BET rate constants for anatase (blue) and rutile (red) TiO2 plotted versus the open-circuit 
potential (a) and injected electron concentration (b), with the associated error from averaging parameters 
calculated from repeated PEIS experiments. 
 

The BET rate constants were also calculated for rTiO2/nTiOx samples to determine the effects of 

shell materials on BET. The BET rate constants for rutile TiO2 and rTiO2/30TiOx are shown in 

Figure 14 plotted against the open circuit potential (14a) and the injected electron concentration 

(14b). This data shows that back-electron transfer proceeds more slowly when a titanium oxide 

shell is applied to the rutile TiO2 nanorods. This concurs with previous studies showing improved 

efficiency for core-shell materials, since BET is a process that hinders device efficiency.  

a) b) 
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Figure 14. The BET rate constants for anatase (blue) and rutile (red) TiO2 plotted versus the open-circuit 
potential (a) and injected electron concentration (b), with the associated error from averaging parameters 
calculated from repeated PEIS experiments. 
 

1.4   Conclusion 
In this project we have demonstrated the presence of a monoenergetic collection of deep 

trap states in rutile TiO2 nanorods through a variety of electrochemical techniques and have 

determined their location to be between –50 and –100 mV vs Ag/AgCl. The deep trap states cannot 

be passivated by the addition of metal oxide shells, suggesting that the trap states are likely related 

to electronic states at the grain boundaries in nanorod films. The electronic position of the deep 

trap states shifted positively with titanium oxide shell deposition, and the band gap decreased as 

the shell thickness increased, indicating that shell materials alter the electronic structures of metal 

oxide nanomaterials. The addition of titanium oxide shells also reduced the rate of BET in rutile 

TiO2 photoanodes, concurring with data showing improved efficiency for core-shell materials.  
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Meta-Analysis of Flatband Potentials for TiO2, SnO2, and ZnO in 

Aqueous Solution: Determining Factors Causing Variation in 

Reported Flatband Potentials 
 

2.1   Introduction 
Metal oxide semiconductors have a wide variety of current and potential future uses, 

including applications in catalysis and energy conversion systems. As discussed in Chapter 1, 

metal oxide semiconductors can be used in devices like dye-sensitized photoelectrosynthesis cells 

(DSPECs) as photoanodes and supports for chromophore-catalyst assemblies for solar fuel 

generation. One key parameter used to assess metal oxides for their potential application as 

photoelectrodes is the flatband potential.1  Flatband potentials are used in a variety of ways in 

analyzing semiconductors, including analyzing the efficiency of photo-driven processes, 

calculating kinetic parameters, demarcating the accumulation and depletion zones, and estimating 

the band edges of new materials.1,2 For these reasons, it is important to be able to accurately 

determine the flatband potential for a semiconductor. 

From an electrochemical perspective, the flatband potential is the potential one would have 

to apply to a semiconductor-conductor or semiconductor-electrolyte interface such that there is no 

potential drop between the surface and bulk of the semiconductor.3 In the absence of a potential 

bias, when a metal oxide semiconductor is put into contact with a conducting metal or electrolyte, 

charges flow across the interface due to a difference between the Fermi level of the metal oxide 

and the reduction potential of the electrolyte solution.4 For an n-type metal oxide, electrons flow 

from the material with a higher electronic energy level to the material with a lower energy level 

until the two materials are in equilibrium. If electrons have transferred out of the n-type metal 

oxide, a depletion region is formed near the surface of the metal oxide, and the conduction and 

valence bands at the surface bend upwards in electrochemical potential relative to the bulk 

material. Conversely, if electrons flow into the metal oxide, an accumulation region is formed, and 

the conduction and valence bands bend downwards in response.3,4,5 The degree of band-bending 

depends on the electrolyte in contact with the metal oxide. If the system were biased to the flatband 

potential, the band bending induced by interactions with the electrolyte redox couple would reduce 

to zero and the potentials of the bands at the surface would be equal to the bulk material.  
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Flatband potentials for metal oxides are typically determined from experiments rather than 

from theory.2 There are many ways to experimentally determine the flatband potential; the Mott-

Schottky method is most common. The analysis is based off the Mott-Schottky equation, which 

for an n-type semiconductor, is written as: 
1
𝐶YZ1

=
2

𝜀𝜀4𝑒𝑁]
^𝑈 − 𝑈aR −

𝑘R𝑇
𝑒 c 

where Csc is the capacitance of the space charge layer per unit area, e is the dielectric constant for 

the semiconductor, e0 is the permittivity of free space, e is the fundamental charge of an electron, 

ND is the donor density, kB is Boltzmann’s constant, T is temperature, U is the applied potential, 

and UFB is the flat-band potential.1,3,6 From the equation, graphing CSC-2 versus the applied 

potential should produce a line in the depletion region with an x-intercept equal to UFB – kBT/e, 

although the latter term is often disregarded as it is usually smaller than the error in the 

measurement, so the x-intercept can be approximated as the flat-band potential.3 The donor 

density, or concentration of donors in the semiconductor, can also be extracted from these graphs 

from the slope of the line. Capacitance data is often collected through electrochemical impedance 

spectroscopy (EIS). EIS is a process in which a small perturbation with a set frequency is added 

Schematic demonstrating the processes causing metal oxide bands to bend downward (top) and upward 
(bottom) for an n-type metal oxide in contact with an electrolyte solution in the absence of an external bias. 



 23 

to an applied potential and the resulting current is measured.7 EIS allows for resistive and 

capacitive charge transfers to be measured individually from one another when the data is set to a 

representative circuit diagram modeling the system, so the capacitance of a semiconductor-

electrolyte junction can be determined.7 The Mott-Schottky equation relies on the assumption that 

the Helmholtz layer capacitance is much larger than the space charge layer capacitance, which is 

often true.3 Other issues that could arise include non-linearity and frequency dispersion. The Mott-

Schottky plots may be non-linear or capacitance could be hard to measure if there are many defects 

on the surface of the semiconductor, whether intrinsic to the semiconductor or created by the 

experimenter.3 This makes it difficult to find a linear region of the plot, which is needed to extract 

a flat-band potential. Frequency dispersion occurs when the Mott-Schottky plots taken at different 

perturbation frequencies in EIS are not equal. If the linear regions of these plots converge to the 

same x-intercept, then the flat-band potential can be extracted from the data, but if they converge 

to different x-intercepts, the flat-band potential is unclear from the data. Other methods for 

determining flatband potential include photocurrent onset potential3, Gärtner-Butler analysis1, 

chopped illumination1, open-circuit potential at high illumination1,3, the slurry method8,9,10,11, 

cyclic voltammetry3, and differential stress measurements3,12. 

Despite being a vital metric for semiconductors in photoelectrode applications, flatband 

potential values for common metal oxides show wide variability in the literature.2 In this analysis, 

we compare flatband potential values in the literature from various publications for three common 

n-type metal oxide semiconductors: titanium dioxide (TiO2), tin (IV) oxide (SnO2), and zinc oxide 

(ZnO). The purpose of conducting this meta-analysis is to demonstrate the variation of values for 

flatband potential measurements and to assess the extent at which different variables in both metal 

oxide structure and measurement conditions could be contributing to such variation. 

 

2.2   Methods 
Flatband potentials for different metal oxides were collected from 502 articles from 156 

different academic journals published in years from 1960 to 2020. In total, 505 values were 

collected for TiO2, 97 values for SnO2, and 223 values for ZnO. For each collected value, related 

experimental information was recorded including synthetic method, nanostructure morphology, 

substrate, pH of solution, electrolyte species and concentration, reference electrode, counter 

electrode, nanostructure dimensions, and the technique used to determine the flatband potential. 
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Statistical analyses were performed to determine what factors influenced the flatband potential of 

a metal oxide sample. All flatband potential values used in statistical analysis herein were 

measured in aqueous solutions. When comparing flatband potential versus pH, potential values 

were referenced to NHE. For all other analyses, potential values were referenced to RHE where 

𝐸aR(𝑣𝑠	𝑅𝐻𝐸) = 𝐸aR(𝑣𝑠	𝑁𝐻𝐸) + 0.059(𝑝𝐻). To determine whether there was a statistically 

significant difference between flatband potentials between categorical data sets, t-tests (for two 

categories) and ANOVA tests (for more than two categories) were used. If either test calculated p 

< 0.05, the variable was considered to significantly effect flatband potential. To determine whether 

flatband potentials trended with continuous variables (like particle length) in a statistically 

significant way, least-squares linear regressions were calculated and the 95% confidence intervals 

for the slopes of the regressions were used. If the confidence interval for the slope excluded zero, 

the trend was considered significant. For data displayed in histograms, all histograms have a bin-

width of 0.1V with bins centered at (0 ± 0.1k) V for any integer k. 

 

2.3   Results and Discussion 

2.3.1. General Characteristics 

Figure 1 shows histograms for the flatband potentials collected for the three different metal 

oxides. The mean flatband potential values are 0.088V vs RHE for TiO2, 0.342V vs RHE for SnO2, 

and 0.203V vs RHE for ZnO. The distributions for each metal oxide spread over a range of almost 

2V, indicating an unusually large variation of flatband potential values for metal oxides in the 

literature. This could be in-part attributed to misuse of the Mott-Schottky method for flatband 

potential determination, as many of the assumptions made in the derivation of the Mott-Schottky 

equation are violated by nanomaterial metal oxides currently being synthesized and studied.1 The 

Gaussian fits on the histograms show that the flatband potential values are normally distributed. 
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Figure 1. Histograms showing the flatband potential distribution for TiO2 (a), SnO2 (b), and ZnO (c), where 
flatband potentials are vs RHE, and figures are superimposed with Gaussian distributions. 
 

 

It is expected that the flatband potential of metal oxides would change with the pH of the 

solution if potentials were referenced to NHE. This is because oxygens on the surface of the metal 

oxide form hydroxyl groups whose charges are dependent on the pH of the solution. The effects 

of pH are illustrated in Figure 2, which shows the flatband potentials vs NHE plotted versus the 

pH of the solution in which the flatband potential was measured for the three metal oxides. The 

slope of the linear regression for TiO2 is –0.060 ± 0.006 V/pH, matching the expected Nernstian 

dependence of –0.059 V/pH. The data for SnO2 also matches this with a slope of –0.050 ± 0.027 

V/pH. Surprisingly, the slope for the ZnO data has a confidence interval that narrowly misses the 

expected value, with a slope of –0.043 ± 0.015 V/pH.  

 

a) b) 

c) 

EFB vs 
RHE: 

Mean Median Standard 
Deviation 

Sample 
Size 

TiO2 0.008 0.053 0.268 449 
SnO2 0.342 0.373 0.378 85 
ZnO 0.203 0.223 0.304 189 
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Figure 2. Flatband potentials vs NHE plotted against pH for TiO2 (a), SnO2 (b), and ZnO (c), with linear 
fits and 95% confidence intervals superimposed. 
 

To investigate the reason why flatband potential did not change with pH as expected for ZnO, the 

data points in Figure 2c were separated by many categories to see what could be causing the 

deviation from the expected trend. Upon separating the data into the common morphologies for 

ZnO nanomaterials—nanowires, nanoparticles, single crystals, and thin films—a potential 

explanation arose. Figure 3a shows the flatband potential vs NHE versus pH for ZnO thin films. 

The figure shows that the flatband potentials for ZnO thin films seem to have no dependence on 

the pH of the solution. If we remove the thin film data points from the ZnO data set, the resulting 

data is shown in Figure 3b. With the thin film data points removed, the slope for the remaining 

data set is –0.067 ± 0.021 V/pH, containing the expected Nernstian dependence of –0.059V/pH. 

One potential reason that ZnO thin films may lack a pH dependence is related to the main 

crystalline form of ZnO, wurtzite.13 The crystal structure of wurtzite lacks an inversion center, so 

when a wurtzite crystal is cut perpendicular to the main axis, two polar surfaces are formed. One 

is the (0001) crystal facet, which is capped with all Zn atoms, and the other is the (0001j) facet, 

capped with all O atoms. ZnO thin film growth favors the polar (0001) and (0001j) facets on the 

a) b) 

c) 
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surface over other non-polar crystal facets.13 A dependence of flatband potential on pH to -30 

mV/pH has been observed for the (0001j) facet before, which is significantly less than the expected 

-59 mV/pH.14 This difference was attributed to the change in Helmholtz capacitance brought on 

by the polarity of the surface.14 The polarity of the surface for ZnO thin films could explain the 

reduced dependence of flatband potential on pH for ZnO thin films observed in Figure 3a. 

 

         
Figure 3. Flatband potential (vs NHE) plotted against pH for ZnO thin films (a) and all other morphologies 
for ZnO (b), with linear fits and 95% confidence intervals superimposed. 
 

2.3.2. Crystalline Phase Effects 

Metal oxides can often take on multiple crystalline structures, and the crystallinity of the 

metal oxide can influence its physical and chemical properties. TiO2 has three common crystalline 

phases: the tetragonal rutile and anatase phases and the orthorhombic brookite phase. Rutile is the 

most thermodynamically stable phase, while anatase and brookite are considered to be metastable. 

Rutile and anatase are far more common that brookite in the literature. Figure 4a shows the overlaid 

histograms of the flatband potential values for different crystalline phases of TiO2. The overlaid 

Gaussian fits show that the data is mostly normally distributed. The exception is anatase TiO2 

which has a bimodal distribution for reasons discussed in the next section. The mean flatband 

potential values are 0.050V vs RHE for rutile TiO2, 0.163V vs RHE for anatase TiO2, and –0.048V 

vs RHE for brookite TiO2. The difference between these mean flatband potentials is statistically 

significant (ANOVA test, p=1.43x10-6). Many TiO2 samples have a mix of crystalline phases. 

Flatband potentials for mixed anatase-rutile TiO2 samples are shown in Figure 4b. The data 

suggests that the flatband potential increases as the percent rutile increases and the percent anatase 

decreases, though this analysis is hindered by a small sample size. The data also suggests that the 

a) b) 
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flatband potentials for mixed samples is not a simple weighted average of the flatband potentials 

of that for rutile and anatase, since the y-intercepts (100% rutile and 100% anatase) do not 

correspond to the flatband potentials expected for pure rutile or pure anatase TiO2. 

 

   

Figure 4. (a) Overlaid distributions of flatband potentials vs RHE for different crystalline phases of TiO2 
with Gaussian distributions superimposed, and (b) flatband potentials vs RHE for anatase-rutile mixed 
phase TiO2 samples. 
 

SnO2 has one main crystalline form, the tetragonal phase rutile. Rutile SnO2 is also referred 

to as cassiterite in the literature. Because there is only one major form of crystalline SnO2, the 

effects of crystallinity on SnO2 flatband potentials were not explored. ZnO has two main crystalline 

phases: the hexagonal form wurtzite and the cubic form zincblende. Wurtzite is the more 

thermodynamically stable form and thus more common. No flatband potentials for pure zincblende 

ZnO were found in this analysis, so the effects of crystalline structure on ZnO flatband potentials 

were not explored. 

2.3.3. Morphology Effects 

Metal oxide nanomaterials come in a variety of different morphologies, and this section 

investigates the impact of morphology on the flatband potential for different metal oxides. 

Morphology does not cause a statistically significant difference in flatband potential values for 

a) b) 

EFB vs RHE: Mean Median Standard Deviation Sample Size 
Rutile TiO2 0.050 0.041 0.191 140 

Anatase TiO2 0.163 0.137 0.170 186 
Brookite TiO2 –0.048 –0.012 0.170 18 
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rutile TiO2 (ANOVA test, p=0.378), SnO2 (ANOVA test, p=0.929), and ZnO (ANOVA test, 

p=0.406).  

For anatase TiO2, the most common morphologies were nanotubes, nanoparticles, thin 

films, and single crystals. Figure 5a shows the flatband potentials vs RHE for different anatase 

TiO2 morphologies, with Gaussian fits overlaid demonstrating that the data is normally distributed. 

It is clear that morphology is playing a significant role in the flatband potential for anatase TiO2 

(ANOVA test, p=2.02x10-18). As evident in Figure 5b, flatband potentials for nanotubes are quite 

distinct from those of all other morphologies (t-test, p=5.26x10-22), with the mean flatband 

potential as 0.408V vs RHE for nanotubes and 0.017V vs RHE for all other morphologies. If we 

look only at the nanoparticles, thin films, and single crystals, the differences in flatband potential 

values are not significant (ANOVA test, p=0.259). The distinct separation between nanotube 

flatband potential values and values for other morphologies explains the bimodal distribution noted 

for anatase TiO2 seen in Figure 4a. 

 

 

Figure 5. (a) Overlaid histograms of flatband potentials vs RHE for different anatase TiO2 morphologies 
with Gaussian fits superimposed, and (b) histograms showing nanotubes in red and all non-nanotube 
morphologies in blue with Gaussian fits superimposed. 
 

The reason why anatase nanotubes experience a large (~0.4V) positive shift in flatband 

potential relative to other anatase samples is not clear, though it is likely related to the unique 

a) b) 

EFB vs RHE: Mean Median Standard Deviation Sample Size 
Nanotubes 0.408 0.415 0.245 69 

Nanoparticles 0.018 0.018 0.155 24 
Thin Films 0.036 0.017 0.257 67 

Single Crystal –0.133 –0.122 0.044 7 
 



 30 

geometry of nanotubes. Unlike the other geometries, nanotubes possess long and narrow pores 

which could be constricting robust electrolyte diffusion between the bulk electrolyte and the 

surface of the nanotubes. The disruption of proper and evenly distributed current flow between 

electrodes in solution and the TiO2 nanotubes might hinder the measurement of the true flatband 

potential. Another potential consequence of the nanotube morphology is that the width of the 

depletion layer could become large relative to the wall thickness of the nanotubes, which would 

impact the measurement of the flatband potential if the depletion layer width exceeds the width of 

the nanotube walls. The nanotube flatband potential values for anatase TiO2 could be skewing data 

if these values are not real but rather an artifact of the measurement. To assess this, the flatband 

potential values for different crystallinities of TiO2 are explored once again.  

 

   
Figure 6. Overlaid histograms for the flatband potentials vs RHE of the different crystalline phases of TiO2 
with (a) and without (b) anatase nanotube data points, with Gaussian fits superimposed. 
 

Figure 6 shows the comparison between anatase, rutile, and brookite TiO2 both with (a) and 

without (b) anatase nanotube data points. From the figures, it is apparent that the anatase TiO2 

flatband potential values are very similar to the other crystalline phases when the nanotubes are 

removed. The mean values for flatband potentials are now 0.049V vs RHE for rutile, 0.018V vs 

RHE for anatase, and –0.048V vs RHE for brookite, and these means are not significantly different 

from each other (ANOVA test, p=0.1719). This is in stark contrast to the commonly-made 

statement that the flatband potentials, and similarly the conduction band edges, for rutile and 

anatase TiO2 are offset by approximately 0.2 eV. The broad range of potential values also cautions 

against making sweeping generalizations about the relative band placements for rutile and anatase 

TiO2 as they seem to be highly variable between samples. 

a) b) 
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For metal oxide single crystals, there are multiple studies suggesting that the crystal facet 

being used affects the flatband potential.15,16,17 For measurements taken in aqueous solutions, the 

interactions of water on the surface could be the driving force for changes in flatband potential. 

For anatase TiO2, it was proposed that the (001) surface dissociatively adsorbed water, making the 

surface more acidic and attracting less protons, shifting the flatband potential more negative 

relative to the (101) surface which molecularly adsorbed water.18 In this analysis, there were only 

sufficient data points to study the effects of crystal facets for rutile TiO2 and no other metal oxide. 

 

 
Figure 7. Overlaid histograms for the flatband potential values vs RHE for the (001), (100), and (110) 
crystal facets of single crystal rutile TiO2 materials, with overlaid Gaussian fits. 
 

Figure 7 shows the flatband potential values for different crystal facets of rutile TiO2 with overlaid 

Gaussian fits demonstrating that the values are mostly normally distributed. The mean flatband 

potentials are 0.060V vs RHE, –0.051V vs RHE, and –0.009V vs RHE for the (001), (100), and 

(110) facets, respectively. Though the crystal facet does appear to affect the flatband potential for 

rutile TiO2 single crystals, the results are not statistically significant (ANOVA test, p=0.1268). A 

larger sample size would be needed to determine the effects of crystal facet on flatband potential. 

2.3.4. Synthetic Technique Effects 

Metal oxides can be synthesized by many different techniques. Rutile TiO2 was commonly 

synthesized by the hydrothermal method, sputtering, anodic oxidation, and many other techniques, 

but the technique used to synthesize the rutile TiO2 nanomaterials did not have a statistically 

significant impact on the flatband potential of the material (ANOVA test, p=0.0618). SnO2 was 

commonly synthesized using techniques like spray pyrolysis, the hydrothermal method, anodic 

EFB vs 
RHE: 

Mean Median Standard 
Deviation 

Sample 
Size 

(001) 0.060 0.037 0.170 24 
(100) –0.051 –0.086 0.150 12 
(110) –0.009 –0.027 0.125 10 
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oxidation, and the sol-gel method, though the method for synthesis did not impact the flatband 

potential (ANOVA test, p=0.940). ZnO was often synthesized by electrodeposition, the 

hydrothermal method, the sol-gel method, thermal decomposition, chemical vapor deposition, and 

several other methods. The ZnO flatband potential was also not significantly impacted by the 

synthetic method (ANOVA test, p=0.338). 

Anatase TiO2 was commonly synthesized by anodic oxidation, the hydrothermal method, 

the sol-gel method, and sputtering. It was found that the method of synthesis did significantly 

impact the flatband potential (ANOVA test, p=1.20x10-18). Figure 8 shows the distribution of 

flatband potentials for different synthesis techniques for anatase TiO2. 

 

 
Figure 8. Overlaid histograms of the flatband potentials vs RHE for anatase TiO2 synthesized by different 
methods, with overlaid Gaussian fits. 
 

The distinction between anodic oxidation and other synthetic techniques likely lies in the fact that 

anatase TiO2 nanotubes are almost exclusively made via anodic oxidation. Of the 70 flatband 

potential values for anatase TiO2 synthesized by anodic oxidation, 67 were nanotubes. As seen in 

Figure 6 and discussed above, anatase TiO2 nanotubes have a distinct flatband potential. If we 

remove the nanotube data points from the sample, synthetic technique no longer impacts the 

flatband potential for anatase TiO2 (ANOVA test, p=0.406). 

2.3.5. Substrate Effects 

Nanomaterial metal oxides are often synthesized on or deposited onto conductive 

substrates for electrochemical studies or uses in potential applications. Common substrates are 

transparent conducting oxides (TCOs), which are conductive materials that are optically clear in 

EFB vs RHE: Mean Median 
Standard 
Deviation 

Sample 
Size 

Anodic 
Oxidation 

0.404 0.415 0.236 70 

Hydrothermal 0.021 0.018 0.241 30 
Sol Gel 0.055 0.069 0.243 22 

Sputtering 0.055 0.027 0.192 12 
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the visible regions. The more widely used TCOs are fluorine-doped tin oxide (FTO) and indium 

tin oxide (ITO), often used as a thin layer on top of a glass sheet. Sometimes, metals are used as 

conductive substrates as well. The substrate used did not have a significant impact on the flatband 

potential for rutile TiO2 (ANOVA test, p=0.346), SnO2 (ANOVA test, p=0.186), and ZnO 

(ANOVA test, p=0.292). For anatase TiO2, there was a significant impact on the flatband potential 

base on the substrate used (ANOVA test, p=1.308x10-16). 

 

   

Figure 9. Flatband potential values vs RHE for anatase TiO2 on different substrates with (a) and without 
(b) nanotube data points, with overlaid Gaussian fits. 
 

As shown in Figure 9a, anatase TiO2 nanomaterials on Ti substrates appear to have a much more 

positive flatband potential. Anatase TiO2 nanotubes are almost exclusively grown on Ti substrates, 

so the more positive flatband potential for anatase TiO2 nanotubes is likely contributing to the 

positively shifted values for anatase on Ti substrates. Figure 9b shows the histograms with the 

nanotube data points removed. The difference in mean values for flatband potentials of anatase 

TiO2 on different substrates is still significant (ANOVA test, p=0.0367), with the significant 

difference being between the mean value for anatase TiO2 on FTO, –0.008V vs RHE, and on Ti, 

0.163V vs RHE (t-test, p=0.0215). Interestingly, no significant difference was seen for rutile TiO2 

on Ti, SnO2 on Sn, and ZnO on Zn. It is therefore unclear whether the significant difference in 

flatband potential for anatase TiO2 nanoparticles is an artifact of anatase TiO2 nanotubes being 

a) b) 

EFB vs RHE: Mean Median Standard Deviation Sample Size 
FTO 0.005 0.000 0.259 50 
ITO 0.046 –0.020 0.239 22 
Ti 0.374 0.375 0.243 81 

Ti (no nanotubes) 0.163 0.176 0.171 13 
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almost exclusively studied on Ti substrates or if the change is related to the structure of the 

nanotubes compared to other morphologies. Because the shift in flatband potential is much larger 

for anatase TiO2 nanotubes compared to the shift caused by using a Ti substrate for non-nanotube 

morphologies, that structure of nanotubes is likely a major contributing factor. 

2.3.6. Nanomaterial Dimension Effects 

The effects of the dimensions of metal oxide nanomaterials on the flatband potentials of 

those materials was studied for multiple different morphologies. For rutile TiO2, anatase TiO2, 

SnO2, and ZnO, there was no statistically significant trends between flatband potentials and thin 

film thickness, nanoparticle diameter, nanorod/nanowire length and width, and nanotube length. 

The trend between nanorod/nanowire/nanotube length and flatband potential is shown in Figure 

10, clearly demonstrating how the length of these nanomaterials does not impact flatband potential. 

For some of these analyses however, the sample size was small and confidence intervals were 

large, so factors that might actually impact flatband potential may not be producing statistically 

significant results. 

 

          

 
Figure 10. Flatband potential values vs RHE plotted against the length of the nanostructures for rutile TiO2 
(a), anatase TiO2 (b), and ZnO (c), with linear fits and 95% confidence bands overlaid. 

a) b) 

c) 
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For anatase TiO2 nanotubes, there is a significant increase in the flatband potential as the 

width of the nanotubes increased, as shown in Figure 11a. The wall thickness for the anatase TiO2 

nanotubes does not appear to impact the flatband potential (Figure 11c). However, an increase in 

the flatband potential is correlated to an increase in the nanotube pore diameter (Figure 11b), 

though not statistically significant. 

 

          

                         . 

Figure 11. Flatband potential vs RHE for anatase TiO2 nanotubes compared to the nanotube width (a), pore 
diameter (b), and wall thickness (c), with linear fits and 95% confidence bands overlaid, and the 
dimensional parameters described in (d) showing a cross section of a nanotube. 
 

The independence of flatband potential on the nanotube wall thickness suggests that the 

exceedingly positive flatband potential values for anatase TiO2 nanotubes are not the result of the 

depletion layer exceeding the nanotube wall thickness, as previously proposed. Increasing the 

nanotube width would also increase the pore diameter for any given wall thickness, so it is 

unsurprising that Figures 11a and 11b show similar positive trends. However, it is unclear why 

increasing the diameter of the nanotube would shift the flatband potential positively. 

a) b) 

c) d) 
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2.3.7. Electrolyte Cation Effects 

Flatband potential measurements are often made with the metal oxide in contact with a 

conducting electrolyte solution. Common cations used in electrolytes were K+, Na+, and Li+. The 

cation used did not have a significant impact on the flatband potential values for rutile TiO2 (t-test, 

p=0.0727), anatase TiO2 (ANOVA test, p=0.1868), and SnO2 (t-test, p=0.4575), but did 

significantly impact ZnO flatband potentials (t-test, p=0.0414), as seen in Figure 12c. The mean 

flatband potential value for ZnO in solutions containing K+ was 0.088V vs RHE, while the mean 

for solutions with Na+ was 0.210V vs RHE. Similarly, the concentration of cations did not correlate 

to changes in flatband potential for anatase TiO2, rutile TiO2, and SnO2, but did impact the flatband 

potential of ZnO. A negative correlation was found between Na+ concentration and flatband 

potential for ZnO (Figure 12b). There is also a negative correlation between K+ concentration and 

the flatband potential for ZnO, though it is not statistically significant (Figure 12a). 

 

          

 
Figure 12. Flatband potential vs RHE for anatase TiO2 nanotubes versus the concentration of sodium 
cations in the electrolyte, with linear fit and 95% confidence bands overlaid. 
 

a) b) 

c) 

EFB vs 
RHE: 

Mean Median Standard 
Deviation 

Sample 
Size 

Na+ 0.210 0.221 0.301 107 
K+ 0.088 0.036 0.337 37 
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Changes in flatband potential due to changes in both the type and concentration of non-proton 

cations in the electrolyte have been seen for TiO2 before.19,20 However, this change has only been 

observed in non-aqueous solvents. For non-aqueous solvents, an increase in cation concentration 

has shown positive shifts in the flatband potential due to adsorption and intercalation of the cation 

with the metal oxide.19,20 This is analogous to how increased proton concentration (lower pH) in 

aqueous solvents shifts the flatband potential positively as well. In aqueous solvents, the proton 

concentration dominates the change in flatband potential, so the electrolyte cation has no effect.3,20 

This agrees with the lack of a significant trend between cation type and concentration and flatband 

potential for rutile TiO2, anatase TiO2, and SnO2, as these data were collected in aqueous solvents. 

The ZnO data in Figure 12, collected in aqueous solvents, contradicts these trends, with the 

flatband potential shifting negatively as cation concentration increases. While the reason for this 

is trend is unknown, one possible explanation is that a larger concentration of cations in the double 

layer could shield protons in the bulk from electrostatic attraction to the surface, effectively 

decreasing the amount of proton adsorption and therefore shifting the flatband potential negatively. 

Since ZnO is unstable in acidic conditions, most flatband potential measurements were made in 

basic solutions, where proton concentrations are much smaller than cation concentrations, 

supporting this theory. However, this does not fully explain why similar trends are not seen for 

SnO2 and TiO2.  

 

2.4   Conclusion 
Flatband potential values for TiO2, SnO2, and ZnO in the literature showed average values 

of 0.088V, 0.342V, and 0.203V vs RHE, respectively, with wide ranges of up to 2V. Due to the 

large spread of values for these metal oxides, assigning a single flatband potential value to a metal 

oxide would be a problematic generalization. Flatband potential values for the metal oxides shifted 

–59 mV/pH with the exception of ZnO thin film flatband potentials, which showed an apparent 

lack of dependence on solution pH. The flatband potentials for anatase TiO2 nanotubes were 

shifted ~ 0.4V positive of other anatase TiO2 morphologies, though it remains unclear whether this 

shift reflects a true difference in flatband potentials or is an artifact of inappropriate measurements. 

Without the nanotube data points, anatase TiO2 and rutile TiO2 did not have a significant difference 

in mean flatband potential values, in contrast to what is often assumed for these two crystalline 

phases. Flatband potentials for ZnO appeared to shift negatively with increasing cation 
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concentration, though previous literature precedence with other metal oxides suggests that flatband 

potential should not be affected by non-proton cations in aqueous solutions. The findings of these 

analyses demonstrate the need to recognize the sensitivity of flatband potentials to multiple factors 

and the spread of flatband potential values that exist even between similar nanomaterials. 
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