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Abstract
Temperature drives biological responses that scale from the cellular to ecosystem levels and thermal sensitivity will shape 
organismal functions and population dynamics as the world warms. Reef-building corals are sensitive to temperature due 
to their endosymbiotic relationship with single-celled dinoflagellates, with mass mortality events increasing in frequency 
and magnitude. The purpose of this study was to quantify the thermal sensitivity of important physiological functions of 
a Caribbean reef-building coral, Orbicella franksi, through the measurement of thermal performance curves (TPCs). We 
compared TPC metrics (thermal optimum, critical maximum, activation energy, deactivation energy, and rate at a stand-
ardized temperature) between two populations at the northern and southern extents of the geographic range of O. franksi. 
We further compared essential coral organismal processes (gross photosynthesis, respiration, and calcification) within a 
site to determine which function is most sensitive to thermal stress using a hierarchical Bayesian-modeling approach. We 
found evidence for differences in thermal performance, which could be due to thermal adaptation or acclimatization, with 
higher TPC metrics (thermal optimum and critical maximum) in warmer Panama, compared to cooler Bermuda. We also 
documented the hierarchy in thermal sensitivity of essential organismal functions within a population: respiration was less 
sensitive than photosynthesis, which was less sensitive than calcification. Understanding thermal performance of corals is 
essential for projecting coral reef futures, given that key biological functions necessary to sustain coral reef ecosystems are 
thermally mediated.

Introduction

Evidence that anthropogenic climate change is impacting the 
natural world continues to accumulate (Parmesan and Yohe 
2003; Hoegh-Guldberg and Bruno 2010; Poloczanska et al. 
2013; Hansen and Stone 2015). This warming is causing 
widespread impacts on marine populations and communi-
ties, as well as direct and indirect effects on humans (Hoegh-
Guldberg and Bruno 2010; Doney et al. 2012; Poloczanska 
et al. 2013; Hughes et al. 2017a). Warming and numerous 
other environmental changes caused by  CO2 emissions (e.g., 
acidification, altered upwelling and current patterns, greater 
stratification, etc.) are also clearly altering ecosystem func-
tioning (Nagelkerken and Connell 2015). For example, the 
temperature-dependence of individual-level processes (e.g., 
respiration, photosynthesis, predation, growth rate, and cal-
cification) can cumulatively (across populations and species) 
lead to striking changes in ecosystem function (e.g., nutri-
ent recycling, net production, and net calcification). This is 
especially true when foundation species are affected, altering 
functions such as habitat provisioning (Dove and Sammut 
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2007; Hettinger et  al. 2012; Lemasson et  al. 2017). To 
improve predictions of organismal to ecosystem responses 
to environmental change, it is necessary to quantify both 
individual/genotype and population response to warming 
and also functional sensitivities.

An effective way to empirically characterize the sensitiv-
ity of ectotherms across populations and individual-level 
processes is using a Thermal Performance Curve (TPC), 
which quantifies the shape of the relationship between bio-
logical rates of “performance” (e.g., respiration or growth) 
and environmental temperature (Fig.  1; Table  1). TPC 
parameters such as critical minimum  (CTmin), critical maxi-
mum  (CTmax), and thermal optimum (Topt) describe the lim-
its and optima of a chosen process with changing tempera-
ture (Huey and Stevenson 1979; Huey and Kingsolver 1989; 
Angilletta 2009). The positive and negative slopes on either 
side of Topt are the rates of activation (E) and deactivation 

(Eh) energy, respectively, and indicate the sensitivity of the 
process. Species with high E and Eh (i.e., steeper slopes on 
either end of the curve) will be most sensitive, because they 
will quickly move from optimal to suboptimal conditions 
with only small changes in temperature. The rate at a stand-
ardized temperature, b(Tc), is often used to compare rates 
between organisms or functions at a reference temperature 
(Padfield et al. 2017). Each of these TPC parameters can be 
compared among populations and species, locations with 
different thermal histories (e.g., across latitudes), and over 
time to predict future community composition and the func-
tional consequences of environmental change.

In the context of climate change, applying a TPC 
approach to quantify thermal adaptation is essentially a 
space-for-time substitution (Pickett 1989; Blois et al. 2013; 
Faber et al. 2018)—a widely used approach when the prac-
tical temporal extent of a study cannot match the process 
of interest. There is extensive evidence of “adaptation” 
to spatial temperature gradients in a wide range of organ-
isms, from local (e.g., tens of meters) to regional (100 s of 
km) scales (e.g., Berkelmans and Willis 1999; Berkelmans 
2002; Sanford and Kelly 2011; Oliver and Palumbi 2011; 
Baumann and Conover 2011; Castillo et al. 2012; Thomas 
et al. 2012). Such phenotypic gradients presumably reflect 
an underlying selection gradient and can provide clues about 
numerous aspects of thermal adaptation, such as fitness costs 
and other trade-offs and the plausible range of survivable 
temperatures.

Coral reefs are being severely affected by global climate 
change. Like many other foundation species, the corals that 
build tropical reefs are being lost in response to anthropo-
genic warming (Hughes et al. 2017b, 2018a). Coral cover 
has declined dramatically on reefs worldwide over the last 
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Fig. 1  Thermal performance curve characteristics, with comparative 
temperature metrics identified by the red symbols. See Table 1 for an 
explanation of each parameter

Table 1  Equations and parameters used in constructing thermal performance curves and calculating derived quantities
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Parameters Description

b
(

Tc
)

Log rate at a constant temperature (µmol cm−2 h−1)
E Activation energy (electron volts, eV)
Eh Temperature-induced inactivation of enzyme kinetics past  Th for each population (electron volts, eV)
K Boltzmann constant (8.62 ×  10−5 eV K−1)
Tc Tc is the reference temperature at which no low or high-temperature inactivation is experienced 

(defined here as 300.15 K or 27 °C)
Th Temperature (K) at which half the enzymes are inactivated
Ti Temperature i in Kelvin (K)



30 years (from ~ 60 to < 20% on some reefs), in large part 
due to ocean warming (Gardner et al. 2003; Bruno and Selig 
2007; De’ath et al. 2012; Hughes et al. 2018b) causing mass 
bleaching (i.e., the loss of the corals’ symbiotic dinoflagel-
lates and their nutritional benefits to the host, e.g., Oakley 
and Davy 2018). While there are numerous local causes 
of coral loss (e.g., pollution, destructive fishing practices, 
tourism, etc.), the single most detrimental stressor to date 
is thermal stress from anomalous heating events (i.e., heat-
waves) and its associated complications (i.e., bleaching, dis-
ease, reduced calcification, etc.; Harvell et al. 2002; DeCarlo 
et al. 2017; Hughes et al. 2017b). Reef-building corals and 
their dinoflagellate symbionts live close to their physiologi-
cal thermal maximum, and as a result, warming of 1 °C or 
more above local mean monthly maxima can reduce fitness 
and cause tissue loss or whole-colony mortality (Hoegh-
Guldberg 1999; Baker et al. 2008), with significant nega-
tive implications for reef structure and function (Couch et al. 
2017; Hughes et al. 2018a; Stuart-Smith et al. 2018). In the 
case of corals, there are numerous mechanisms that could 
enable local thermal adaptation, including genetic adapta-
tion and physiological acclimatization of the host, changes 
in endosymbiont composition, and the bacterial microbiome 
(Putnam et al. 2017).

Hermatypic corals have several key physiological traits 
that scale up to influence ecosystem function. These traits 
include photosynthesis, respiration, and calcification, 
which generate much of the carbon on a coral dominated 
reef, power coral metabolic processes, and build the three-
dimensional structure of the reef, respectively. Importantly, 
these traits are likely to have different responses to temper-
ature, because they are controlled by different enzymatic 
machineries. For example, coral holobiont photosynthesis 
is dependent on single-celled dinoflagellates (in the family 
Symbiodiniaceae, LaJeunesse et al. 2018). These endosym-
bionts act as light and temperature sensors for the coral host 
and typically initiate the cascade of dysbiosis and bleaching 
through the generation of reactive oxygen species produc-
tion, due to excess excitation energy in the photosystems 
under increasing temperatures (Oakley and Davy 2018). 
Because hermatypic corals are able to survive, at least tem-
porarily, post-bleaching (Tchernov et al. 2011), holobiont 
respiration is likely to be less sensitive to temperature than 
photosynthesis, especially if food is available (Hughes and 
Grottoli 2013). Furthermore, because light-enhanced calci-
fication is hypothesized to be dependent on energy supplied 
by Symbiodiniaceae (Allemand et al. 2011), corals may sub-
stantially reduce calcification when production is low (e.g., 
during bleaching events; Castillo et al. 2014; Barkley et al. 
2018). Finally, the ratios between these different processes 
can change with temperature and have implications for sur-
vival and the long-term persistence of certain coral functions 

(Coles and Jokiel 1977; Castillo and Helmuth 2005; Bahr 
et al. 2018).

The purpose of this study was to quantify the thermal 
sensitivity of important physiological functions of a reef-
building coral with the goals of (1) comparing responses 
among colonies (putative clones) of the Caribbean coral 
Orbicella franksi between two populations at the northern 
(cool, Bermuda) and near the southern (warm, Panama) 
extent of the geographic range of this species and (2) 
comparing essential coral physiological processes (gross 
photosynthesis, respiration, and calcification) within a 
site (Bermuda) to determine which function is most sen-
sitive to thermal stress. We hypothesized that corals in 
Panama would have higher thermal optima than Bermuda 
based on thermal history and that respiration rates would 
be more thermally tolerant than photosynthesis and cal-
cification based on symbiont sensitivity to light and tem-
perature and evidence for their contributions to dysbiosis 
(Venn et al. 2008; Lesser 2011; Oakley and Davy 2018). 
To test these hypotheses, we quantified thermal perfor-
mance curves using a set of hierarchical Bayesian models.

Materials and methods

Study sites (Panama and Bermuda)

The Bocas del Toro Archipelago is located on the Caribbean 
coast of Panama at 9°N, 82°W, on the border of Costa Rica 
(Fig. 2b). It is composed of a complex network of islands 
and mainland peninsulas fringed by mangroves with well-
developed seagrass beds and coral reefs (Collin 2005). The 
region hosts a high diversity of scleractinian corals, with 
61 species documented, and mean coral coverage of 26.9% 
(Guzman et al. 2005). Long-term temperature records from 
shallow fringing reef systems within the Bocas del Toro 
Archipelago monitored from 1999 to 2004 document an 
annual mean seawater temperature of 28.5 °C, ranging from 
a mean of 25.9 °C in Jan–Feb to 29.7 °C in Sept–Oct (Kauf-
mann and Thompson 2005).

Located at approximately 32°N, 64°W, 1049 km south-
east of Cape Hatteras (US central east coast), Bermuda’s 
sub-tropical coral reefs represent the northernmost shallow-
water reef system in the Atlantic Ocean (Fig. 2c). Annual 
reefal temperatures across the shallow reef platform (3–18 m 
depth) range from 15 to 30 °C (Coates et al. 2013; Locke 
et al. 2013a), which allows a variety of tropical marine 
organisms to live in this region, including 38 hermatypic 
and ahermatypic scleractinian coral species (Locke et al. 
2013b). Bermuda is markedly cooler, however, than typi-
cal Caribbean reefs. For example, during the wintertime, 
on average, inshore SST is 8 °C cooler in Bermuda than 
Panama (Fig. 2d). Maximum temperature in the summer is 



also > 1 °C lower in Bermuda than in Panama. Importantly, 
this has led to minimal impacts of coral bleaching in Ber-
muda (Cook et al. 1990; Smith et al. 2013).

Study species

The Orbicella spp. complex, containing the sibling species 
O. annularis, O. faveolata, and O. franksi, has been a domi-
nant group of reef-building corals in the Caribbean, since at
least the late Pleistocene (for ~ 1.2 million years) (Aronson

Fig. 2  a–c Map of study sites, d thermal histories, and e image of 
Orbicella franski. Yellow stars in b Panama (orange) and c Bermuda 
(blue) maps indicate collection sites. Inset in the top right d shows the 
thermal histories for each location (data sets provided by the Physical 

Monitoring Program of the Smithsonian Tropical Research Institute; 
NOAA National Data Buoy Center) and inset on the bottom left e is 
an image of O. franksi from the collection site in Bermuda (PC: N. 
Silbiger)



and Precht 2001) has the broadest geographic distribution 
across the western Atlantic, ranging from Brazil in the south 
to Bermuda in the north (Budd et al. 2012), and is a vital 
component of Caribbean reefs. The Caribbean has warmed 
at a rate of 0.27 °C per decade between 1985 and 2009 
(Chollett et al. 2012), causing mass mortality of Orbicella 
via bleaching and infectious disease outbreaks (e.g., Weil 
2004; Bruckner and Hill 2009). O. franksi is, therefore, an 
ideal coral for our study given its abundance in both Panama 
and Bermuda, its reef-building role, and its recent listing as 
threatened under the U.S. Endangered Species Act.

Sample collection

In Bermuda, specimens of O. franksi (N = 4 colonies) were 
collected from the reefs at Hog Breaker, which is located 
on the rim reef of the northern lagoon (32° 27′26.38″N, 64° 
50″5.1″W; Fig. 2c), at a depth of 8–12 m on Sept. 30, 2017. 
Bottom seawater temperature at the time of collection was 
recorded on a Shearwater Petrel dive computer as 26.1 °C. In 
Panama, specimens of O. franksi (N = 4 colonies) were col-
lected from the reefs at Crawl Cay on Nov. 25, 2017, which 
sits on the ocean facing side of the archipelago between Isla 
Bastimentos and Isla Popa (9° 14′37.8″N; 82° 08′25″W; 
Fig. 2b), at a depth of 5-10 m. This site was selected based 
on its distance from the mainland and the town of Bocas 
del Toro, to minimize the impacts of terrestrial runoff and 
nearshore anthropogenic impacts and to more closely reflect 
the conditions of the rim reef collection site in Bermuda. 
Bottom seawater temperature at the time of collection was 
recorded on a Shearwater Petrel dive computer as 27.8 °C. 
All samples were collected with a hammer and chisel. Sam-
pled colonies in both locations were separated by a mini-
mum of 5 m to reduce the probability of selecting clones.

Samples were brought back to the respective marine 
laboratory [Bermuda Institute of Ocean Sciences (BIOS) or 
Smithsonian Tropical Research Institute (STRI)] submerged 
in seawater in insulated coolers. Once at the lab, the colonies 
were immediately fragmented with a hammer and chisel into 
11 replicate ramets and maintained in seawater flow through 
systems outside under ambient light and ambient tempera-
ture conditions (~ 27 °C and ~ 28 °C in Bermuda and Pan-
ama, respectively), where they were allowed to recover for 
24–72 h before experimentation. The relatively short recov-
ery time, due to logistical constraints, could lead to poten-
tial sampling effects. Therefore, our results should be inter-
preted with this caveat in mind. In Bermuda, samples were 
moved after the recovery period to a holding tank inside the 
laboratory in ambient seawater temperature (~ 27 °C) under 
greenhouse lights (Sun Blaze T5 High Output Fluorescent 
Light Fixtures) at 130 ± 6 (mean ± SE, n = 9) µmol m−2 s−1 
(which was above saturating light conditions; Fig. S1) prior 
to TPC measurements, while in Panama, the samples were 

continuously maintained in the outdoor ambient conditions 
(~ 28 °C) until TPC measurements.

Photosynthesis–irradiance curves

Prior to experimental exposures, coral fragments from two 
genotypes (N = 2) were used to generate photosynthesis–irra-
diance (PI) curves for each location to determine saturating 
irradiance for assessing rates of photosynthesis. Fragments 
were placed in individual acrylic respiration chambers 
(620 mL) with a magnetic stir bar and 5 µm filtered seawater 
in Bermuda and 50 µm filtered in Panama, with individual 
temperature (Pt1000) and fiber-optic oxygen probes [Presens 
dipping probes (DP-PSt7-10-L2.5-ST10-YOP)]. PI curves 
were run at ambient temperatures in each location (27 °C 
in Bermuda and 28 °C in Panama). Oxygen was measured 
every second in the coral chambers (N = 2) and blank cham-
bers (N = 2). Fragments were exposed to nine light levels 
generated by LED lights hung above the chambers (Arctic-
T247 Aquarium LED, OceanRevive): 0, 31, 63, 104, 164, 
288, 453, 610, and 747 µmol m−2  s−1 in Bermuda and 0, 22, 
65, 99, 210, 313, 476, 613, and 754 µmol m−2  s−1 in Panama. 
Light levels were determined by an underwater cosine cor-
rected sensor (MQ-510 quantum meter Apogee Instruments, 
spectral range of 389–692 nm ± 5 nm).

Rates of oxygen flux were extracted using repeated local 
linear regressions with the package LoLinR (Olito et al. 
2017) in R (R Core Team 2013), corrected for chamber vol-
ume, blank rates, and normalized to coral surface area calcu-
lated by tracing of planar area of the flat O. franksi samples 
using ImageJ (Schneider et al. 2012). LoLinR was run with 
the parameters of Lpc for linearity metric (Lpc = the sum of 
the percentile ranks of the Zmin scores for each component 
metric) and alpha = 0.2 (minimum window size for fitting 
the local regressions, which is the proportion of the total 
observations in the data set) for observations, and thinning 
of the data from every second to every 20 s for both loca-
tions. A non-linear least squares fit (NLLS; Marshall and 
Biscoe 1980) for a non-rectangular hyperbola was used to 
identify PI curve characteristics of each species. This model 
is as follows:

where the parameters are Pnet and Pmax (area-based net and 
maximum gross photosynthetic rates, respectively), Rd (dark 
respiration, started at min rate in the dark), AQY (φ, appar-
ent quantum yield), PAR (photosynthetically active radia-
tion), and Theta (Θ, curvature parameter, dimensionless).

These PI curves identified saturating irradiance (Ik) 
of 110 µmol m−2  s−1 for Bermuda and 184 µmol m−2  s−1 
for Panama, with no indication of photoinhibition (Fig. 
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S1). Subsequent measurements of photosynthetic rates 
were completed at 553 ± 22 µmol m−2  s−1 in Bermuda and 
623 ± 21 µmol m−2  s−1 in Panama to ensure that the corals 
were at saturating light conditions.

Characterizing metabolic thermal response

For TPC measurements, fragments were placed in individual 
respiration chambers to measure photosynthesis and dark 
respiration rate, as light-enhanced dark respiration rates 
(Edmunds and Davies 1988) (hereafter, respiration or Rd), 
after ~ 60 min of light exposure. The respirometry setup 
consisted of six 620 ml chambers with magnetic stir bars. 
Samples were measured in a series of runs that consisted 
of replicate fragments (N = 4) and blank chambers (N = 2), 
and included 60 min under saturating irradiance, followed 
by 60 min of dark. New fragments from the same colonies 
(N = 4 colonies/genotypes) were used for each temperature 
run, resulting in acute TPC curves. Each colony/genotype 
was divided into N = 8 (Bermuda) or N = 11 (Panama) frag-
ments, such that there was one fragment from each genotype 
per temperature (a total of N = 32 in Bermuda and N = 44 in 
Panama). Importantly, while these acute and non-ramping 
TPCs provide good comparative (relative) metrics of ther-
mal responsiveness, they overestimate the metrics relative 
to samples acclimatized to each temperature, or ramped 
through all the temperatures (Schulte et al. 2011; Sinclair 
et al. 2016). We measured net photosynthesis and dark res-
piration at 8 temperatures in Bermuda (24, 26, 27, 29, 31, 
32, 34, 36 °C) and 11 temperatures in Panama (26, 27, 28, 
29, 30, 31, 32, 33, 34, 35, 37 °C). Temperature was con-
trolled to ± 0.1 °C by a thermostat system (Apex Aquacon-
troller, Neptune Systems) using a chiller (AquaEuroUSA 
Max Chill-1/13 HP Chiller) and heaters (AccuTherm Heater 
300 W). Respirometry chambers containing both corals and 
blanks were placed into the pre-heated/chilled coolers once 
the temperature was stable and measurements started imme-
diately. Rates of oxygen flux were extracted following the 
methods described above and gross photosynthesis (GP) was 
calculated as the absolute values of net photosynthesis plus 
dark respiration.

In Bermuda only, we also measured light and dark cal-
cification across the seven temperatures. Calcification rates 
were calculated using the total alkalinity (AT) anomaly 
technique (Chisholm and Gattuso 1991). Water samples 
(N = 3 replicates) for AT were collected in thrice rinsed, 
acid washed 250 mL Nalgene bottles from the temperature-
controlled seawater prior to incubation and then again from 
each chamber (both corals and blanks) after the 60 min incu-
bation. AT samples were immediately preserved with 100 µL 
of 50% saturated  HgCl2. AT was analyzed using open cell 
potentiometric titrations (Dickson et al. 2007) on a Met-
tler T5 autotitrator. A certified reference material (CRM, 

Reference Material for Oceanic  CO2 Measurements, A. 
Dickson, Scripps Institution of Oceanography) was run at 
the beginning of each sample set. The accuracy of the titra-
tor was always less than 0.8% off from the standard and the 
precision was < 5 µmol kg−1 between sample replicates.

Because calcification from the alkalinity anomaly is the 
sum of all calcification and dissolution processes in the 
coral, all exposed skeleton on the corals was covered with 
parafilm immediately prior to measurements to minimize 
dissolution of the carbonate framework. Light and dark 
calcification rates (µmol  CaCO3  cm−2  h−1) were calculated 
using the following equation:

where ΔAT (µmol kg−1) is the difference in AT between the 
initial and post-incubation samples (note: ΔAT in the blanks 
was subtracted from the ΔAT in the coral samples to account 
for any calcification due to other calcifiers in the seawater), 
V  (cm3) is the volume of water in the chamber accounting 
for the volume of the coral, ⍴ is the density of seawater 
(average density = 1.023 g cm−3), t (h) is the incubation 
time (~ 1 h), and SA  (cm2) is the surface area of the corals 
determined by tracing of planar area of the flat O. franksi 
samples using ImageJ (Schneider et al. 2012). ΔAT was 
divided by 2, because 1 mol of  CaCO3 is produced for every 
2 mols of AT. Values were divided by 1000 to yield µmol 
 CaCO3 cm−2 h−1. Changes in dissolved inorganic nutrients 
were assumed to be minor in an hour incubation, making it 
unnecessary to account for nutrient concentrations in the 
alkalinity anomaly. Salinity was also measured in the pre- 
and post-incubation water samples (~ 37), but no evaporation 
was noted, as the chambers were airtight. We present our 
results as net calcification (NC = light calcification + dark 
calcification).

Model construction

We used Bayesian hierarchical models with Markov Chain 
Monte Carlo (MCMC) simulations to estimate coral thermal 
tolerance metrics for GP, Rd, and NC. One outlier in the NC 
data (temperature = 26 °C) was removed due to contamination 
of an alkalinity sample. Log(x + 1) GP, Rd, and NC rates were 
fit to modified Sharpe–Schoolfield models for high-tempera-
ture inactivation (Sharpe and DeMichele 1977; Schoolfield 
et al. 1981) (Table 1; Fig. 1). We ran three separate models 
to explicitly test the hypotheses that TPC parameters for GP 
(model 1) and Rd (model 2) differ between the Bermuda and 
Panama populations and that TPC parameters differ among 
the three organismal functions in Bermuda only (model 3). 
To get reliable estimates of all TPC parameters, the maximum 
experimental temperature needs to be high enough to bring the 
measured rate to near zero. We did not achieve near-zero Rd 

(2)Calcification =
ΔAT ⋅ V ⋅ �

2 ⋅ t ⋅ SA
,



rates in Panama (highest temperature measured was 37 °C), 
thus making the Panama versus Bermuda comparison for Rd 
unreliable. Therefore, for comparisons between populations 
(Panama versus Bermuda), we only present the GP model 
in the main text and we included the Rd model results in the 
Supplement (see Figs. S2–4). Topt and  CTmax were both esti-
mated within the MCMC chain.  CTmax was calculated as the 
temperature at which there was a 90% loss of maximum rate 
(i.e., rate at Topt). For detailed model description, please see 
Supplemental Materials.

Model fitting and analysis

We ran our model using MCMC algorithms in JAGS (just 
another Gibbs sampler) (Plummer 2003) called from R (R 
Core Team 2013) using the R packages, rjags (Plummer 2011) 
and dclone (Sólymos 2010). We ran three parallel chains of 
length 2.5 M, with a burn-in of 2 M, and a thinning parameter 
of 1/2000 to account for high autocorrelation in the chains, 
leaving a total of 13,500 samples for inference.

We assessed convergence by checking all trace plots, 
ensuring that all chains were well-mixed, and calculating Gel-
man–Rubin statistics (Gelman and Rubin 1992) for all param-
eters (all of which were < 1.05). To assess model fit, we used 
posterior predictive checks by adding a step in each MCMC 
iteration to simulate data based on our model’s posterior pre-
dictive distribution and then comparing it to our observed 
dataset. Goodness of fit was evaluated using Bayesian p val-
ues, which are based on comparing the discrepancies between 
observed and simulated data. Bayesian p values for the mean, 
standard deviation, and coefficient of variance for all models 
were between 0.49 and 0.53 (close to 0.5), indicating that dif-
ferences between observed and simulated data are likely due 
to chance. Finally, we plotted our observed versus predicted 
data from the model simulations and they were in close agree-
ment (Figs. S5–6).

For our numerically generated posterior samples, we report 
median values with two-tailed 95% Bayesian credible intervals 
(BCI) for each parameter (essentially, Bayesian confidence 
intervals). We used the compare_levels function in the Tidy-
Bayes package (Kay 2018) to make pairwise comparisons of 
each parameter among populations and organismal functions. 
Pairwise comparisons with credible intervals that do not over-
lap zero are considered to be statistically different from each 
other. All R and JAGS code are available on github (https ://
githu b.com/njsil biger /Compa rativ e_therm al_toler ance_of_
Ofran ski) and citable at Zenodo (https ://doi.org/10.5281/zenod 
o.33330 02) (Silbiger 2019).

Results

Differences in TPC parameters between populations

The Panama and Bermuda coral populations had markedly 
different functional responses to temperature (Fig. 3). Spe-
cifically, for GP, the corals from Panama were more ther-
mally tolerant than those from Bermuda, with a 2.17 °C 
higher Topt (0.95–3.65 °C [95% BCI]) and a 1.59 °C higher 
 CTmax (0.93–2.61 °C [95% BCI]; Figs. 4, S7). The Pan-
ama population also had higher GP rates overall. At the 
reference temperature (27 °C), the log(x + 1) GP rate was 
0.24 µmol cm−2 h−1 higher (0.13–0.32 µmol cm−2 h−1 [95% 
BCI]) in Panama than Bermuda (Figs. 4, S7). Panama corals 
also had a marginally steeper deactivation energy (Eh) than 
Bermuda corals, meaning that GP drops out more quickly in 
Panama once it reaches its thermal optimum, but the activa-
tion energy (E) was the same between the two populations 
(Fig. 4). For dark respiration comparisons between Panama 
and Bermuda, see Supplemental Material (Figs. S2–4).

Differences in TPC parameters among organismal 
functions within a population

The TPCs among the three organismal functions tested 
(GP, Rd, and NC) were also substantially different from one 
another (Fig. 5a). In Bermuda, the general pattern in thermal 
tolerance was Rd > GP > NC (Figs. 6, S8). Specifically, Rd 
had the highest Topt (Fig. S8) and was 0.67 °C (− 0.4–1.72 °C 
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[95% BCI]) higher than GP and 1.69 °C (0.72–3.02 °C [95% 
BCI]) higher than NC (Fig. 6). While none of the  CTmax val-
ues were statistically different from one another, on average, 
Rd still had the highest  CTmax (Fig. S8). GP had the steep-
est deactivation energy (Eh) and was 3.15 (1.36–5.27 [95% 
BCI]) and 2.92 (0.89–5.07 [95% BCI]) higher than NC and 
Rd, respectively (Fig. 6). None of the activation energies (E) 
were significantly different from one another.

The hourly GP:Rd and NC:GP ratios also varied by tem-
perature (Fig. 5b). GP:Rd generally declined with tempera-
ture, although it leveled off between approximately 27 and 
30 °C. The GP:Rd ratio reached 1, where gross photosynthe-
sis and respiration were equal, at 34.9 °C. NC:GP followed a 
unimodal curve, where the highest ratio (i.e., the most effi-
cient calcification per unit production rate) was at 27.9 °C.

Variance components in thermal performance 
metrics

Clone-level variation in TPC metrics was generally low 
(Fig. S9). Variance in b(Tc) due to differences between pop-
ulations was 3.6 × higher than variance due to differences 

among clones within a site. Similarly, variance in b(Tc) 
among the three organismal functions was 2.7 × higher than 
variance among clones.

Discussion

Our results indicate that two populations with different ther-
mal histories respond differently to acute warming. Specifi-
cally, corals in Bermuda were less heat tolerant than those 
in Panama. Both Topt and  CTmax were greater for photosyn-
thesis and Topt was also greater for respiration (note the sta-
tistical significance of this difference was marginal). These 
differences in TPC metrics between populations, despite 
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minimal recovery and acclimation time, highlight that O. 
franski can adapt to local thermal regimes. Aichelman et al. 
(2019) found comparable adaptive capacity to thermal his-
tory across a latitudinal gradient (Rhode Island and Virginia, 
USA) in the temperate coral Astrangia poculata using simi-
lar methodology. Notably, the observed differences in ther-
mal tolerance in the current experiment roughly match the 
difference in the average maximum summertime high at the 
two experimental locations (Panama average yearly maxi-
mum temperature between 2016 and 2018 is ~ 1.2 °C higher 
than Bermuda; Fig. 2d). Importantly, there are several differ-
ences in the thermal regimes between Panama and Bermuda, 
and both the mean and variance in environmental tempera-
ture can affect coral metabolism (e.g., Putnam and Edmunds 
2011) and thermal sensitivity (e.g., Safaie et al. 2018). While 
there are several other environmental differences between 
Bermuda and Panama, a likely explanation for the observed 
thermal sensitivities is the fairly large (for a tropical and 
sub-tropical system) differences in maximum temperature 
(Fig. 2d). However, the comparison of phenotypic traits 

between populations in this, or any other latitudinal study, 
should be interpreted with caution, as the results cannot be 
clearly attributed to temperature alone.

Assuming that the local temperature regime is a dominant 
cause of the observed among-population differences, numer-
ous evolutionary and ecological processes could underlie 
this environmental matching. First, natural selection for 
thermally tolerant host genotypes in Panama could lead to 
adaptation to the local thermal regime and genetic popu-
lation differentiation (Torda et al. 2017). Genetic analyses 
indicate that populations of the sibling species O. faveolata 
are generally well-mixed across the Caribbean basin (Rippe 
et al. 2017), with the confamilial species Montastraea cav-
ernosa exhibiting high rates of genetic connectivity between 
Bermuda and the Bocas del Toro region of Panama (Good-
body-Gringley et al. 2012). O. franski is, therefore, expected 
to also have well-mixed populations with genetic exchange 
occurring between the two sample locations. Second, both 
the coral host and endosymbiont could be physiologically 
acclimatized to local temperatures (Brown and Cossins 
2011). For example, epigenetic mechanisms could enable 
the Panama corals to be more tolerant of extreme high tem-
peratures (Eirin-Lopez and Putnam 2019). Third, the domi-
nant symbionts could be genetically differentiated (Baker 
et al. 2004), resulting in differential thermal tolerance. This 
appears to be possible, as historically Bermuda is dominated 
by Brevolium (clade or phylotype B) (Savage et al. 2002a, b; 
Venn et al. 2006), whereas Panama appears to be dominated 
by Symbiodinium (clade or phylotype A), and also hosts Cla-
docopium and Durusdinium (Toller et al. 2001; Garren et al. 
2006), previously clades C and D, respectively (LaJeunesse 
et al. 2018). Numerous studies have found substitutions of 
thermally sensitive endosymbionts by more tolerant ones in 
both space and time (e.g., Baker et al. 2004; Boulotte et al. 
2016), but genetic analyses of Symbiodiniaceae were not 
completed in our study. Fourth, it is also possible that dif-
ferences in the coral-associated microbial community affect 
responses of host and symbiont to the temperature treat-
ments (Webster and Reusch 2017). While our study was not 
designed to tease apart the relative contributions of these or 
other potential mechanisms leading to less thermally sensi-
tive genotypes at the warmer site, several studies have found 
evidence supportive of thermal acclimation across spatial 
gradients (Sunday et al. 2011; Howells et al. 2012; Aichel-
man et al. 2019).

In addition to differing thermal sensitivity among popu-
lations, we also found that there are differences in thermal 
sensitivity among metabolic processes within populations. 
Specifically, GP, Rd, and NC all had different thermal optima 
(Topt), rates of deactivation (Eh), and rates at a reference 
temperature [b(Tc)] (Fig. 6). Different enzymatic machinery 
is utilized for each of these traits (e.g., citrate synthase in 
respiration, RuBISCo in photosynthesis, and Ca-ATPase in 
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calcification), with some being specific to host or symbiont 
function. Therefore, in comparison, we hypothesized a priori 
that holobiont respiration was likely to be less sensitive to 
temperature than photosynthesis, which was supported by 
our data. Calcification was the least tolerant trait with the 
lowest thermal optimum. Other coral studies have also dem-
onstrated that calcification is more sensitive to temperature 
than photosynthesis and respiration (though not using an 
explicit TPC approach; e.g., Reynaud et al. 2003; Al-Horani 
2005). For example, at high temperatures, Galaxea fascicu-
laris in the Red Sea produced less  O2 than it consumed (i.e., 
higher respiration than photosynthesis rate) and began to 
decalcify (Al-Horani 2005). Together, these results indi-
cate that corals may be able to survive slight increases in 
warming (e.g., ~ 1–2 °C). However, they would still experi-
ence declines or even ecological loss of important functions 
related to fitness, or that are necessary for coral reef ecosys-
tem functioning, such as net ecosystem production and net 
ecosystem calcification.

Notably, there is extensive literature that show differ-
ences in coral metabolic rates in response to temperature, 
especially using an ANOVA-style design, i.e., with two or 
three temperature treatment levels. In these types of experi-
ments, patterns in metabolic responses are highly dependent 
on the temperatures chosen in blocked designs. For exam-
ple, GP, Rd, and NC will all increase if the high-tempera-
ture treatment is below Topt or decrease if the treatment is 
past its thermal optimum—under normal seawater condi-
tions—leading to highly variable responses across studies 
(e.g., Edmunds et al. 2001; Reynaud et al. 2003; Edmunds 
2008; Comeau et al. 2014; Hoadley et al. 2015; Krueger 
et al. 2017; Bahr et al. 2018). Coral metabolic responses to 
temperature are also species-specific (e.g., Edmunds 2008; 
Hoadley et al. 2015; Camp et al. 2016; Bahr et al. 2018), 
size-dependent (Edmunds and Burgess 2016), and dependent 
on other background environmental conditions, such as pH 
(e.g., Camp et al. 2016; Bahr et al. 2018), nutrient condi-
tions (Nordemar et al. 2003), and food availability (Borell 
et al. 2008; Ferrier-Pagès et al. 2010). The variability in 
these responses further highlights the utility of using a TPC 
approach for comparative analyses.

The ratios of hourly GP:Rd and NC:GP both varied with 
temperature (Fig. 5). These ratios and how they change 
with temperature have implications for survival and the 
long-term persistence of certain functions. For example, 
corals need a GP:Rd ratio of greater than 2 to maintain 
long-term autotrophy (Coles and Jokiel 1977). Here, we 
saw GP:Rd generally declined with temperature, a pat-
tern that has been shown in other coral studies (Coles and 
Jokiel 1977; Castillo and Helmuth 2005; Bahr et al. 2018), 
and that the GP:Rd dropped below 2 at 32.7 °C. Therefore, 
as ocean temperatures continue to warm, O. franski may 
need to shift to more heterotrophic food sources to survive 

(Hughes and Grottoli 2013). The NC:GP ratio had a uni-
modal response to temperature, with the optimal calcifica-
tion per unit production rate at 27.9 °C. Calcification and 
photosynthesis are highly coupled in corals and calcifying 
macroalgae (Goreau 1959; Barnes and Chalker 1990; Gat-
tuso et al. 1999; Schneider and Erez 2006), although the 
mechanisms linking them continue to be debated (Gattuso 
et al. 1999, 2000; Cohen et al. 2016). Assessing NC:GP 
ratios can uncover the amount of  CO2 that can potentially 
be supplied from calcification to photosynthesis (Gattuso 
et al. 1999) and how this relationship may change with 
temperature.

We measured acute TPCs, which can be thought of as an 
instantaneous thermal “stress test”. While short acclimation 
times such as ours would underestimate absolute acclimation 
potential of the tested organisms, as they do not have time 
to fully acclimate, acute TPCs are used widely for compara-
tive analyses (Schulte et al. 2011). For example, a relatively 
recent database compilation of studies examining thermal 
performance contains thousands of entries for > 200 traits 
across taxa ranging from microbes to animals, spanning ~ 16 
orders of magnitude in body size extracted from ~ 300 
studies (Dell et al. 2013). These TPC studies have helped 
uncover constraints on thermal acclimation (Rohr et al. 
2018) and develop critical advancements in theory (e.g., 
Metabolic Theory of Ecology; Brown et al. 2004). Such 
TPC approaches, when conscious of important assumptions 
and applying appropriate experimental frameworks (Schulte 
et al. 2011; Sinclair et al. 2016), can provide useful metrics 
of comparison between organisms, populations, and species.

While there is a massive body of the literature on ther-
mal tolerance of terrestrial and marine organisms (Dell et al. 
2011), there is surprisingly less on the thermal performance 
characteristics of coral reef organisms in an explicit TPC 
context (but see, Jokiel and Coles 1977, 1990; Rodolfo-
Metalpa et al. 2014; Aichelman et al. 2019; Jurriaans and 
Hoogenboom 2019). Understanding thermal performance 
of corals is essential for projecting coral reef futures, given 
that key biological functions necessary to sustain coral reef 
ecosystems (e.g., photosynthesis, respiration, and calcifica-
tion) are thermally mediated. Here, we advance this area 
of research by applying the TPC approach to a variety of 
fitness related parameters in a reef-building coral across its 
geographic range, in a robust statistical framework. We sug-
gest that future studies should incorporate multiple species 
and representatives from other functional groups to better 
predict ecosystem-level responses to temperature. Under-
standing how patterns of response differ among genotypes 
will improve our understanding of the inherent variability 
in thermal tolerance that exists within and among species 
and, therefore, potential cascading effects of biodiversity and 
genetic diversity loss. Taken together, these approaches will 
provide information critical to informing evidence-based 



management and conservation of these threatened ecosys-
tems in the face of a warming ocean.
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