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ABSTRACT

Gary Moon: Analysis of Water Waves in the Presence of Geometry and Damping
(Under the direction of Jeremy Marzuola)

The evolution of waves on the surface of a body of water (or another approximately inviscid liquid) is

governed by the free-surface Euler equations; that is, the incompressible Euler equations coupled with a

kinematic and a dynamic boundary condition on the free surface. We assume that the flow has zero vorticity

in the bulk of the fluid domain and so consider the irrotational free-surface Euler equations (the water waves

system). Two major themes are present in our study of the water waves system. The first is the consideration

of flows in the presence of substantial geometric features. The second theme is the consideration of the

effects of damping, which is an essential tool in the numerical study of water waves. In both contexts, our

objective is to consider the local-in-time well-posedness of the water waves system and to study the lifespan

of solutions (i.e., the timescales on which solutions to the water waves system persist).
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CHAPTER 1

Laying the Foundation

1.1 Introduction

The (irrotational) water waves problem concerns the evolution of the interface St separating an inviscid,

incompressible, irrotational fluid from a vacuum region. One may consider the effects of gravity (gravity

water waves), surface tension (capillary water waves) or gravity and surface tension (gravity-capillary water

waves). The water waves problem can be considered in arbitrary d-dimensional spaces (e.g., Rd or Td) with

the physically relevant dimensions being d “ 2 or d “ 3. We shall restrict ourselves to consideration of the

2d problem.

We shall take the fluid domain Ωt to be a subset of Tˆ R, where T B R{2πZ. The dynamics of the flow

are governed by the incompressible, irrotational Euler equations, coupled with two boundary conditions

(BCs) on the interface (the so-called kinematic and dynamic boundary conditions):
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Dtv B Btv` pv ¨ ∇qv “ ´∇
p
ρ0
´ g in Ωt

div v “ 0 in Ωt

curl v “ 0 in Ωt

Dt is tangent to
ď

t

pSt ˆ ttuq Ă Tx ˆ R
2
y,t

p “ ´τHSt ` pext on St

. (1.1.1)

The system (1.1.1) is known as the free-surface Euler equations or the water waves system. The first

equation in (1.1.1) is the momentum equation; this is just F “ ma. The second equation is the continuity

equation representing the conservation of mass. In the context of incompressible flows considered here, this

equation reduces to insisting that the velocity field be divergence-free. The third equation imposes the

assumption of irrotationality via requiring that the velocity field be curl-free. Moving on, the fourth line is

the kinematic BC, which requires that the free surface move with the fluid. The kinematic BC implies that

fluid particles may not cross the free boundary and that any fluid particle on the free surface at the initial time
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will remain on the free surface for all time. Finally, the last equation is the dynamic BC. The dynamic BC is

a stress balance which governs the pressure jump across the interface. When surface tension is considered,

the dynamic BC insists that the pressure jump is proportional to the mean curvature of the free surface (we

will explain the additional “external pressure” term pext momentarily). On the other hand, if surface tension

is neglected, we require that the pressure at the interface be equal to the atmospheric pressure patm, the

pressure in the region above the fluid. In either case, we assume that patm is constant and, without loss of

generality, we assume that this constant is zero. As stated in (1.1.1), the dynamic BC accounts for surface

tension. However, by taking τ “ 0, we recover the dynamic BC for gravity waves.

In (1.1.1), v is the flow velocity, Dt is the hydrodynamic derivative, ρ0 is the (constant) density, p

denotes the pressure, g B p0, gq with g being acceleration due to gravity, τ is the coefficient of surface

tension and HSt is the mean curvature of the free surface. The term pext is an external pressure which serves

to effect the damping and, in the standard (undamped) free-surface Euler equations, we just have pext ” 0.

Given that we assume constant density ρ0, we may, without loss of generality, assume unit density ρ0 “ 1.

We shall hereafter make this assumption. We will impose free-slip boundary conditions on any remaining

portions of BΩt:

v ¨ n̂ “ 0 on BΩtzSt, (1.1.2)

where n̂ is the outward unit normal vector field on St. The boundary condition (1.1.2) is also called a

no-penetration or solid-wall boundary condition.

It is often desirable to not work directly with equation (1.1.1), but instead to reformulate the problem

(e.g., by reducing it to a system on the interface). Beginning from (1.1.1), there are many ways to

reformulate the water waves problem. We have the vortex sheet formulation (e.g.,

[AmMa1, BMO2, CCG1, Düll2, AmbEtAl]), the Zakharov-Craig-Sulem formulation (e.g.,

[Zak, CrSu, ABZ1, Lan1, GMS3]), holomorphic coordinates and the conformal method (e.g.,

[Nal, Wu1, DKSZ, HIT, H-GIT]), other Lagrangian formulations (e.g., [Yos2, Cra, ChLi, Lin, CoSh1]), a

coordinate-free geometric formulation (e.g., [Arn, EbMa, BeGu2, deP, ShZe1]), other variational

formulations (e.g., [Pet, Luke, Balk, ClDu, KBEW]), and more (e.g., [AFM, AbHa, FoNa, AsFo, VaDe]).

See Chapter 1 of [Lan2] for an overview of many of the aforementioned formulations of the water waves

problem. We are primarily concerned with vortex sheet formulations, however the Zakharov-Craig-Sulem

formulation will also make an appearance. Vortex sheet formulations are a popular choice for numerical
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modeling of water waves [BMO2, HLS1, HLS2, BHL2, Bea3]. For example, the explicit representation of

the Dirichlet-Neumann map via layer potentials is well adapted to the needs of numerical computation

[WiVa].

Though we present analytical results here, this thesis is substantially motivated by numerical work. The

formulation which we utilize in Chapter 2 is a vortex sheet model for water waves in the presence of

geometry proposed by Ambrose, Camassa, Marzuola, McLaughlin, Robinson and Wilkening in [AmbEtAl].

The objective of the authors in [AmbEtAl] was to obtain accurate and efficient algorithms for numerically

solving the two-dimensional, free-surface Euler equations in a geometric setting. The model allows for

variable topography, smooth obstacles in the fluid flow and a (constant) background current.

Another important concept in the numerical simulation of water waves is that of damping. It is often of

interest to model water waves on an (effectively) unbounded domain, such as on the open ocean. However,

when carrying out numerical experiments one is forced to work on a bounded domain and, depending on the

boundary conditions imposed, this can create problems. In particular, waves can reflect off of the boundary

and propagate back into the domain, which creates interference. One way to counteract this problem is to add

a damping term to the equation. The damping term is designed to dissipate the energy causing outgoing

waves to decay.

The form of damping we shall consider, which we call Clamond damping, was first introduced in the

remarkable work of Clamond, et. al. in the setting of 3d water waves [CFGK2]. Clamond damping is a type

of modified sponge-layer, which is effected via the application of an external pressure at a portion of the

interface:

pext B B
´1
x pχωBxϕq pmodulo a Bernoulli constantq. (1.1.3)

In the above, ω Ă r0, 2πq is the connected interval on which we damp the fluid, χω is a smooth, non-negative

cut-off function, which is positive on ω, and ϕ is the velocity potential. Equation (1.1.3) is simply the 2d

analogue of the 3d damper given in [CFGK2]:

pext,3d B ∇
´1 ¨ pχω∇ϕq pmodulo a Bernoulli constantq. (1.1.4)

We do not explicitly deal with the Bernoulli constant as it is a function of time alone and so will not have any

impact on the energy estimates with which we are concerned. On the other hand, the Bernoulli constant can

3



be quite important computationally. Though in some contexts it can be incorporated into the velocity

potential (particularly, when χω is constant) and thus taken to vanish (in fact, this gives a sort of gauge

condition enforcing uniqueness of the velocity potential), it cannot generically be set to zero. Generally, the

treatment of the Bernoulli constant will depend upon the method one uses to resolve the equations. See

[CFGK2] for further details.

Numerical experiments have shown Clamond damping to be extraordinarily effective [CFGK2].

However, Clamond damping is a linear phenomenon and the question of why it performs so well for the full

(nonlinear) water waves system is still open. For example, there is no proof that Clamond damping dissipates

energy. Given that Clamond damping is so highly effective numerically, it is our belief that a more thorough

understanding of this damping mechanism is important and we hope to initiate this process of better

understanding Clamond damping from an analytical viewpoint.

Our objective is to study the local well-posedness of the water waves system. As we shall discuss

shortly, the water waves system is known to be well-posed in a variety of settings. What is new in this work

is that we study the water waves system in a more geometric setting and/or subject to Clamond damping. By

“geometric setting”, we mean variable topography, smooth obstacles in the flow and a (constant) background

current. In addition to well-posedness, we are concerned with determining the timescales on which solutions

persist.

1.2 A Brief History of the Water Waves Problem, Vortex Sheets and Damped Water Waves

This thesis sits at the intersection of a number of fascinating topics in fluid dynamics. First and foremost,

there is, of course, the study of the water waves system. Additionally, there is the theory of vortex sheets and

vortex methods for modeling fluids. Finally, we have the issue of damping water waves, which is closely

related to the control theory. Before proceeding further, we give an overview of these three areas of research.

Given the breadth and depth of the literature on these highly active research questions, any overview is bound

to contain but a proper subset of the existing results. This will certainly be true of ours.

1.2.1 A Brief History of the Water Waves Problem

The water waves problem belongs to the class of problems known as free boundary problems, which are

notoriously challenging to analyze. The earliest well-posedness results made strong assumptions on the data

and the geometry of the domain. Namely, they considered data/geometry that was either analytic or

perturbative. For example, Kano-Nishida proved well-posedness of the gravity water waves problem with

analytic Cauchy data and a flat bottom in [KanNis]. Shinbrot and Sinbrot-Reeder also studied gravity water

4



waves with analytic data and flat geometry [Shi, ReSh]. Another collection of early results studied the

well-posedness of the water waves system in Sobolev spaces under the assumption that the initial

configuration of the interface be a small perturbation of still water and the bottom, if present, be a small

perturbation of flat. Included in this group is the earliest local well-posedness result for the (full) water waves

system of which the author is aware due to Nalimov, who introduced the Lagrangian approach of

holomorphic coordinates [Nal]. Other works in this regime include those of Craig [Cra] and Yosihara

[Yos1, Yos2]. One important motivation for the smallness assumption in the case of gravity waves is that it

has long been known that such an assumption implies that the Taylor sign condition holds:

´Bn̂ p ě c ą 0 on St. (1.2.1)

The condition (1.2.1) is critical for the well-posedness of the gravity water-waves problem. In fact, it is

known that the gravity water waves problem may be ill-posed if (1.2.1) fails [Ebin1].

The need for a smallness assumption was first overcome for 2d infinite-depth water waves. In her

seminal work, Wu utilized Lagrangian coordinates and the conformal method to show that the gravity water

waves problem is well-posed by proving that (1.2.1) always holds for gravity waves over infinite depth as

long as the free surface is non-self-intersecting [Wu1] (see [Wu2] for a similar treatment of the

corresponding 3d problem using Clifford analysis in place of complex analysis). An alternative proof,

utilizing a vortex sheet framework, is given by Ambrose-Masmoudi in [AmMa1, AmMa3]. On the other

hand, Beyer-Günther showed well-posedness of the Cauchy problem for a capillary drop noting that their

methods extend to the well-posedness of capillary waves over an infinite-depth fluid [BeGu1]. Iguchi and

Ambrose independently provided proofs, via distinct approaches, of the well-posedness of the

two-dimensional gravity-capillary water waves problem [Amb1, Igu]. Ambrose-Masmoudi prove a similar

result in the case d “ 3 [AmMa2]. These results have been extended to allow for vorticity, rough Cauchy

data and to provide simpler proofs [Lin, CoSh1, CoSh2, HIT, AIT1, ZhZh, ShZe1, ShZe2, ShZe3]. The

well-posedness of the free-surface Euler equations was considered via the inviscid limit of the free-surface

Navier-Stokes equations by Schweizer [Schw] and Masmoudi-Rousset [MaRo], who considered

gravity-capillary and gravity waves, respectively.

The aforementioned work of Iguchi actually proved that the two-dimensional gravity-capillary water

waves problem is well-posed in the presence of bathymetric variations [Igu]. Also, Ogawa-Tani prove the
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local well-posedness of the 2d gravity-capillary water waves problem over variable topography and,

additionally, they show that, as surface tension tends to zero, solutions converge to solutions of the gravity

system [OgTa]. Well-posedness of the gravity water waves problem in the presence of topography was

shown by Lannes in [Lan1], utilizing Eulerian coordinates. The work of Lannes was extended by

Ming-Zhang to account for the effects of surface tension [MiZh]. The work of Alazard-Burq-Zuily extended

this work by allowing for rough initial data and virtually arbitrary topography (the only restriction on the

geometry is a non-cavitation assumption) [ABZ1, ABZ3]. For further extensions of the aforementioned

results on water waves in the finite-depth setting, including non-zero vorticity, emerging bottom, rougher

Cauchy Data, non-localized Cauchy data and Coriolis forcing, the interested reader can consult

[ABZ4, CaLa, H-GIT, Mel, MiWa1, MiWa2, MiWa3, Schw, WZZZ].

For roughly the past ten years, a particularly active area of research has been low regularity

well-posedness of the water waves problem. This work was initiated by Alazard-Burq-Zuily in their beautiful

works [ABZ1, ABZ3], where they showed local well-posedness of the water waves system as soon as the

initial velocity field is Lipschitz regular. A key component of their study is detailed paradifferential analysis,

following earlier work of Alazard-Métivier [AlMe]. The good unknown of Alinhac [Ali1, Ali2] plays a

crucial role in the paradifferential analysis of the water waves system. The Lipschitz regularity of the initial

velocity field is a natural well-posedness threshold for differential equations and is the limit of the energy

methods employed by Alazard-Burq-Zuily. However, by exploiting certain features of the equation and

utilizing various analytical tools, one can prove well-posedness below this threshold for some quasilinear

equations.

One rather powerful approach to low-regularity well-posedness is the low-regularity Strichartz paradigm,

which originated in the work of Bahouri-Chemin and Tataru (e.g., see [BaCh1, BaCh2, Tat]; also see

[SmTa]). For an expository presentation of this strategy applied to quasilinear wave equations, the interested

reader may consult Chapter 9 of [BCD]. Christianson-Hur-Staffilani were the first to prove Strichartz

estimates for the water waves system, however they were not working in the low regularity setting [CHS] and

so did not achieve a gain in the regularity threshold. They proved Strichartz estimates, in a semiclassical

regime, for the gravity-capillary (infinite depth) water wave system and were able to deduce a local

smoothing effect. The low regularity Strichartz paradigm was first successfully applied to the water waves

system by Alazard-Burq-Zuily [ABZ2, ABZ5], who coupled it with their paradifferential approach. Some

further example of low-regularity Strichartz estimates applied to the water waves system include
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[Ai1, Ai2, dePNg2, dePNg1, Ngu1, Ngu2].

To our knowledge, the most substantial reduction of the well-posedness threshold comes from the work

of Ai-Ifrim-Tataru [AIT1], in the case of gravity waves, and Nguyen [Ngu1], in the case of gravity-capillary

waves. Both of these results regard the two-dimensional system. The approach of Ai-Ifrim-Tataru in [AIT1]

is the application of “balanced cubic energy estimates” utilizing holomorphic coordinates and Nguyen

utilizes the low-regularity Strichartz paradigm [Ngu1]. This comparison is, however, a bit biased as

Ai-Ifrim-Tataru essentially just utilize energy estimates and so Strichartz estimates can still be applied in their

framework to obtain further gains. Some other relavent work is that of Kinsey-Wu [KiWu] and Wu [Wu6] on

a priori estimates for and local well-posedness of the water waves system where the interface fails to be C1.

An important related question regards the lifespan of solutions to the water waves problem, usually in

the small-data setting. Here some interesting results are provided by Hunter-Ifrim-Tataru and their

collaborators, who have applied their “modified energy method” to the water waves system. The modified

energy method was introduced in [HITW] to study the lifespan of a Bürgers-Hilbert equation. The main idea

of the modified energy method, as applied to a quadratically nonlinear equation, is to use a normal form

transformation to construct a modified energy functional which satisfies cubically nonlinear estimates. As

such, when considering a quadratically nonlinear, quasilinear equation, the modified energy estimates can be

used to prove local well-posedness with a cubic lifespan. The modified energy method has been applied to

gravity waves over infinite depth [HIT, IfTa4], gravity waves over finite depth [H-GIT] and capillary waves

over infinite depth [IfTa3]. Of course, normal form methods can also be applied more directly to obtain

long-time existence of solutions to the water waves system. For example, in [BFF], Berti-Feola-Franzoi

consider periodic, two-dimensional gravity-capillary water waves over a flat bottom, reduce the system to

Birkhoff normal form up to degree three and thereby obtain a cubic lifespan. On the other hand,

Berti-Feola-Pusateri consider periodic, two-dimensional gravity water waves over infinite depth and prove a

quartic lifespan, again via Birkhoff normal form methods [BFP].

Alazard-Burq-Zuily studied the gravity water waves system in certain analytic function spaces in

[ABZ6]. There the authors showed that the system is locally-in-time well-posed in these analytic function

spaces and that, for Cauchy data of size ε, solutions persist on a Op 1
εq timescale. The primary tools used to

obtain this result were energy estimates and a careful study of the Dirichlet-Neumann map in the analytic

function spaces under consideration, which followed in the tradition of [Lan1, AlMe, ABZ1, ABZ3].

Ionescu-Pusateri proved a lifespan between quadratic and cubic (specifically, Opε´
5
3`q) for 3d
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gravity-capillary water waves, which is valid for almost all values of the gravitation and surface tension

coefficients [IoPu4]. To prove this lifespan, Ionescu-Pusateri use, among other tools, a combination of

paradifferential analysis, partial normal form transformations and sharp estimates for small divisors.

While we are primarily concerned with lifespan as a function of the size of the initial data, in the small

data regime, there is another collection of interesting long-time existence results. These results measure the

lifespan in terms of various dimensionless parameters used to characterize the flow. Some commonly used

dimensionless constants include

ε B
a
H
, µ B

H2

L2 , β B
b
H
, Bo B

ρgL2

τ
(1.2.2)

where a is the order of amplitude of the free surface waves, H is the characteristic water depth, L is the

characteristic wavelength in the longitudinal direction and b is the order of amplitude of the bathymetric

variations. It is common to call ε the nonlinearity parameter, µ the shallowness parameter and β the

topography parameter. Of course, Bo is the Bond number. The general objective of characterizing the

lifespan in terms of such dimensionless constants is to rigorously justify various simplified models (e.g.,

KdV, Green-Naghdi, NLS and so forth) in asymptotic regimes (e.g., the shallow water regime corresponds to

µ ! 1).

In [AlLa], it was shown that solutions to the water waves system persist on timescales of order Op 1
β_ε q.

The main tools included a detailed study of the Dirichlet-Neumann map and a Nash-Moser iteration scheme.

Given that this lifespan is uniform in µ, this large-time well-posedness result can be used to help justify

asymptotic models in the shallow water regime. This was improved by Mésognon-Gireau, who proved in

[Més] that solutions have a lifespan of order Op 1
ε q. The analysis of [Més] is of particular interest to us due to

the use of commuting vector fields.

The next group of large-time well-posedness results concern the question of global or almost-global

existence of solutions, under the assumption of small, localized, smooth initial data. Additionally, to the best

of the author’s knowledge, all almost-global and global well-posedness results obtained so far require the

assumption of vanishing vorticity in the bulk of the fluid domain. Most of these results are in the setting of

infinite depth, however global regularity in the finite-depth setting has been considered very recently

(assuming flat geometry). Further, such results tend to be easier to obtain in 3d as opposed to 2d due to better

rates of decay in higher dimension. It also tends to be easier in this setting to work with gravity waves due to
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differences in the dispersion relation and resonant interactions. Intimately related to the question of global

regularity, there is the question of whether solutions scatter to a linear solution as t Ñ `8 and, more

generally, the long-time asymptotic behavior of solutions. For a good survey on the global regularity problem

for water waves, see [IoPu2].

The earliest global well-posedness results were proved in dimension d “ 3 in the infinite-depth setting.

In [GMS2], Germain-Masmouid-Shatah used their celebrated “method of space-time resonances”,

introduced in [GMS1] to study the quadratic NLS, to prove the existence of global solutions to the gravity

water waves system, also showing that these solutions scatter. Wu provided an alternative proof, but did not

consider scattering [Wu5]. The existence of global solutions to the three-dimensional capillary water waves

problem was proved via the method of space-time resonances by Germain-Masmoudi-Shatah in [GMS3],

where they again show that solutions scatter. The global regularity and scattering of solutions to the 3d

gravity-capillary water waves system was shown by Deng-Ionescu-Pausader-Pusateri in [DIPP]. Global

existence and scattering results were extended to the finite-depth setting, in the case of a flat bottom, by

Wang for gravity waves [Wang2] and capillary waves [Wang3].

The first result of this sort for the 2d water waves system was obtained by Wu, who showed the

existence of almost-global solutions to the gravity water waves system [Wu4]. An alternative proof of Wu’s

almost-global existence result was obtained by Hunter-Ifrim-Tataru in [HIT]. Wu’s result was upgraded to

global well-posedness by Alazard-Delort in [AlDe1, AlDe2] and Ionescu-Pusateri [IoPu1] independently,

where a modified scattering is proved in both. Ifrim-Tataru simplified the proof of this result in [IfTa2] by

using their method of “testing by wave packets” which was introduced in [IfTa1] for studying the cubic NLS.

The global regularity problem for the 2d capillary water waves system was independently solved by

Ionescu-Pusateri [IoPu3] and Ifrim-Tataru [IfTa3], where modified scattering is demonstrated in both cases.

The question of the existence of global solutions to the 2d gravity-capillary water waves system is still open.

The best result to date, to the author’s knowledge, is that of Berti-Delort, who proved that almost-global

periodic solutions exist for almost all choices of g and τ [BeDe]. Finally, we note that Wang extended the

global existence and modified scattering results of Alazard-Delort and Ionescu-Pusateri to the case of a flat

bottom in [Wang4], where moreover solutions were allowed to have infinite energy.

We noted above that all global well-posedness results for the water waves system require a smallness

assumption on the Cauchy data. In fact, we know that this restriction on the size of the data is necessary. This

is because a solution to the water waves system with smooth, but large, data can form a singularity in finite
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time. Two types of singularities which are known to form for solutions to the 2d or 3d water waves system

with or without surface tension are splash and splat singularities

[CasEtAl3, CasEtAl2, CasEtAl1, CasEtAl4, CoSh3]. A splash singularity occurs when the free boundary

self-intersects at a point, while a splat singularity occurs when the free boundary self-intersects along an arc.

There are other possible singularities studied in the context of water waves (e.g., squirt singularities in which

a smaller volume of fluid is ejected from a larger volume [CFdlL]), however, to the author’s knowledge, these

are not definitively known to occur. An interesting notion related to singularity formation is that of

breakdown criteria. That is, to determine necessary and sufficient conditions for singularity formation. To the

author’s knowledge, the first breakdown criterion proved for equations in fluid dynamics is the celebrated

result of Beale-Kato-Majda [BKM], which says that a smooth solution u to the 3d Euler equations on r0,T s

can be continued to some time T˚ ą T if and only if

ˆ T˚

0
}curl u}L8pR3q dt ă `8. (1.2.3)

Beale-Kato-Majda-type breakdown criteria for the irrotational and rotational gravity water waves system

were obtained in [WaZh] and [WZZZ], respectively.

The water waves problem is a highly active area of research and the above outlined questions are far

from the only questions which one can ask about the problem. We will give just a small handful of examples

of other results obtained for the water waves system to try to demonstrate just how many fascinating

questions one can pose about this problem. In [Zhu2], Zhu proved a propagation of singularities result for the

gravity-capillary water waves system, which, to our knowledge, represented the first propagation result for a

quasilinear dispersive equation. To prove this result, the author had to define a new notion of wavefront set,

the quasi-homogeneous wavefront set, that is well-adapted to studying singularities of the gravity-capillary

water waves system. This built off of the earlier work of Nakamura [Nak], who defined the homogeneous

wavefront set to study propagation for the Schrödinger equation, and others. Alazard-Ifrim-Tataru initiated

the study of Morawetz estimates for water waves. The authors proved local energy decay (or a Morawetz

estimate) for gravity waves in [AlIT1] and for gravity-capillary waves for large Bond number in [AlIT2]

(note that their convention for defining the Bond number is the opposite of the one we use, so they refer to

low Bond number). Symmetries and conservation laws for gravity water waves are studied in [BeOl]. On the

other hand, in [Olv], Olver proved that the 2d gravity water waves problem has exactly eight nontrivial
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conservation laws.

As alluded to above, there is the question of providing rigorous mathematical justifications for the

various models used to describe the dynamics of water waves in different asymptotic regimes (e.g., see

Duchêne’s memoir [Duc] or the book of Lannes [Lan2]). There is also the question of special solutions of

the water waves system. For example, we have the issue of the existence of solitary waves [Bea1, FrHy] and

the conjecture of Stokes regarding the angle formed by the crest of a steady wave of maximal amplitude

which was proved in [AFT]. An interesting result on the regularity, or lack thereof, of the flow map for the

gravity-capillary water waves system in 3d was obtained in [CMSW]. As just these few examples show,

there are seemingly countless questions one can ask about the water waves system.

1.2.2 Previous Results on Vortex Sheets and the Vortex Sheet Formulation of the Water Waves Prob-
lem

As discussed above, there are numerous ways to formulate the water waves problem (various coordinate

systems, parameterizations of the interface and so on). The model with which we are primarily concerned

utilizes the vortex sheet formulation. The classical vortex sheet problem (also called the Kelvin-Helmholtz

problem) considers the interface between two incompressible, inviscid, irrotational, density-matched fluids

moving past each other in two dimensions, neglecting the effects of surface tension. In such a scenario the

vorticity is concentrated entirely along the interface due to the jump in tangential velocity (while the normal

velocity is continuous).

It has long been known that the Kelvin-Helmholtz problem is ill-posed in the usual sense due to the

well-known Kelvin-Helmholtz instability (see, e.g., [CaOr2, Moo]). Recall that the Kelvin-Helmholtz

instability is a linear phenomenon: linearizing the vortex sheet equations about the equilibrium solution,

high-frequency Fourier modes become unbounded causing small disturbances to grow exponentially.

Nevertheless, the Kelvin-Helmholtz problem is well-posed in analytic function spaces [CaOr1, SSBF].

Importantly, these ill-posedness results neglect the effects of surface tension, which exhibits a

smoothing/restoring effect. When surface tension is incorporated, high-frequency Fourier modes remain

bounded in the linearization. This led Birkhoff to conjecture that the vortex sheet problem with surface

tension is well-posed [Bir]. Building off of this, Beale-Hou-Lowengrub showed that the linearized

two-dimensional vortex sheet problem with surface tension is well-posed, even far from equilibrium [BHL1]

(see [HTZ] for the corresponding result in three dimensions). It was proven by Iguchi-Tanaka-Tani in [ITT]

that the (nonlinear) vortex sheet problem with surface tension is well-posed when the initial configuration of
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the free surface is a small perturbation of a flat interface. This smallness assumption was removed by

Ambrose who showed that the vortex sheet problem with surface tension is well-posed, at least in the

infinite-depth setting [Amb1]. This local well-posedness result also holds in dimension d “ 3 [AmMa2].

In spite of the classical vortex sheet problem assuming that the upper and lower fluids are

density-matched, this assumption is not necessary and vortex sheet formulations have been widely used to

study water waves and other phenomena in fluid dynamics. This approach (i.e., using the vortex sheet

formulation to model phenomena in fluid dynamics) belongs to the broader class of tools known as vortex

methods. The seminal work on vortex sheet formulations is that of Baker-Meiron-Orszag, which considered

two-dimensional water waves [BMO2]. Vortex sheet formulations have also been applied to study other

phenomena in fluid dynamics (e.g., gas bubbles in liquids [BaMo, Hua, Yang]).

A particularly useful framework for studying vortex sheets (and vortex sheet formulations more broadly),

particularly in the presence of surface tension, was developed by Hou-Lowengrub-Shelley (HLS) in their

beautiful paper [HLS1] (see also [HLS2]). This framework was developed from a numerical perspective to

create a non-stiff algorithm for modeling 2d interfacial flow under the influence of surface tension. The HLS

framework rests on three key ideas. The first, influenced by earlier work of Mullins on “curve shortening” in

the context of grain boundaries [Mul], is to select a special frame of reference by choosing particular

geometric coordinates (as opposed to Cartesian coordinates). The second is to pick a favorable, renormalized

arclength parameterization of the interface. The third, primarily relevant for numerical work, is the use of a

small-scale decomposition (SSD); that is, terms which are unstable at small spatial scales are identified so

that they can be computed implicitly, whereas the remaining terms are computed explicitly. It is worth noting

that the terms showing up in the SSD also tend to require care when studying the equations analytically,

however there are additional terms that require similar care that do not appear in the HLS SSD (see [Amb1]

for further discussion). We shall discuss the HLS framework further in the sequel, but one particular benefit,

following from the first key idea, is that one obtains a highly simplified expression for the curvature of the

interface HSt , which is relevant when considering surface tension due to the Laplace-Young condition at the

interface.

The HLS framework is powerful and, in addition to classical vortex sheets, has been used to study water

waves [AmMa1, CHS, CCG1, Düll1, Düll2], Darcy flows [Amb2, Amb4, CCG2], hydroelastic waves

[AmSi, LiAm] and flame fronts [AkAm]. Moreover, although the HLS framework is necessarily

two-dimensional, the main insights have been extended to study 3d flows. In the case of three-dimensional
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flows, isothermal coordinates take the place of the arclength parameterization. Examples of numerical and

analytical work using this framework can be found in [Amb3, AmMa2, AmMa3, CCG3, HouZh].

The well-posedness theory of the vortex sheet formulation of the water waves problem has been

developed by several authors. All of the results of which we are aware deal with the infinite-depth setting.

Ambrose proved in [Amb1] that the vortex sheet formulation of the two-dimensional gravity-capillary water

waves problem is well-posed and this model was shown to be well-posed in the zero surface tension limit by

Ambrose-Masmoudi in [AmMa1]. Ambrose-Masmoudi prove analogous results in three dimensions in

[AmMa2, AmMa3]. Cheng-Coutand-Shkoller extended the work of Ambrose and Ambrose-Masmoudi to

allow for vorticity in the bulk of the fluid [CCS1] and then further considered the limit as the density ratio

goes to zero to obtain solutions to the water waves system with vorticity [CCS2]. Christianson-Hur-Staffilani

utilized a vortex sheet formulation to prove semiclassical Strichartz estimates and local smoothing for the

two-dimensional water waves system with surface tension over infinite depth [CHS].

There are many more important results on vortex sheets. We must mention the celebrated work of Delort

[Del] in which the global existence of a weak solution to the Euler equations with vortex sheet Cauchy data

is demonstrated, under the assumption that the vortex sheet strength is the sum of a Radon measure with

distinguished sign and an (arbitrary) Lp function with p ą 1. The work of DiPerna and Majda on the Euler

equations and “concentration-cancellation” provided critical tools for Delort’s result [DiMa1, DiMa2]. The

proof of Delort was simplified by Majda in [Maj1] where it was also shown that solutions to the

Navier-Stokes equations with vortex sheet initial data with distinguished sign converge to weak solutions of

the 2d Euler equations in the high-Reynolds-number limit. Another simplified proof was given by Schochet

who also obtained Majda’s convergence result and extended to p “ 1 [Sch]. Delort’s result was further

extended to remove the distinguished sign assumption in the presence of particular symmetries [LNX1] and

then further to exterior domains [LNX2]. The impossibility of splash singularities for vortex sheets was

shown in [CoSh4, FIL]. For some further interesting results on vortex sheets and vortex methods, see

[ADL, Cou, LNS, Wu3]. Good introductions to vortex sheets and vortex dynamics include [Saf, SaBa]. The

survey article [BaLa] by Bardos-Lannes is well worth reading and covers the Kelvin-Helmholtz problem, the

Rayleigh-Taylor problem and the vortex sheet formulation of the water waves problem. A good overview of

vortex methods can be found in [Set].
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1.2.3 Previous Results on Damped Water Waves

When we refer to damping water waves, we are referring to the application of a sponge layer or

numerical beach; that is, an artificial, dissipative term supported near the boundary that removes energy from

the system. However, in the literature, there are other systems which are known as damped water waves,

(free-surface) damped Euler equations and so on. For the sake of completeness, we will briefly discuss some

results obtained for these systems and ultimately explain how they differ from the damping which we

consider.

First, there are several interesting results on the so-called damped Euler equations, including the

free-surface damped Euler equations. In this context, the damped Euler equations are given by

$

’

’

&

’

’

%

Btv` pv ¨ ∇qv` av “ ´
1
ρ
∇p` f in Ωt

div v “ 0 in Ωt

, (1.2.4)

where a ą 0 is the damping coefficient and f represents any body forces to be considered. If one is

considering the free-surface equations, the dynamic and kinematic boundary conditions are the same. The

free boundary problem for (1.2.4) is globally-in-time well-posed for gravity waves (i.e., f “ ´g) [Lian2],

gravity-capillary waves [Lian3] and in the case of two fluids [Lian4]. Further, as the surface tension

coefficient tends to zero, solutions to the gravity-capillary system converge to solutions of the gravity system

[Lian1]. In the free boundary case, the damper av indeed dissipates energy and solutions converge to the

equilibrium almost exponentially (resp. exponentially) without (resp. with) surface tension [Lian2] (resp.

[Lian3]). In [ChSa], infinite-energy solutions to (1.2.4), with no free boundary and f ” 0, are studied.

Finally, we note that Saut studies the Charney-Stommel model of the Gulf-Stream which reduces to a

damped version of the stationary Euler equations in 2d [Saut].

Comparing the Euler and Navier-Stokes equations, one sees that the presence of viscosity has a

dissipative effect which makes the analysis of these systems substantially different (e.g., the Navier-Stokes

equations have a parabolic character, whereas the Euler equations have a hyperbolic character). Thus, it is

reasonable to think that incorporating viscosity into the water waves system would yield a form of damping.

Of course, one could simply study the free-surface Navier-Stokes equations directly (e.g.,

[Bea2, CasEtAl5, GuoTi1, GuoTi2, Tani]), however in doing so one loses some important benefits of

studying the water waves system: generally speaking, viscosity is not compatible with potential flow and the
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existence of a velocity potential is critical for many of the formulations of the water waves system (this is

also the reason why the study of water waves with vorticity has a rather different character). Nevertheless,

there has been a good deal of work considering various ways to add “artificial viscosity” to potential flows. A

particularly popular model of this form is the Dias-Dyachenko-Zakharov (DDZ) model, which, for

two-dimensional gravity water waves, is given by

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

∆ϕ “ 0 in Ωt

Btη “ Byϕ` 2νB2
xϕ´ BxηBxϕ on St

Btϕ “ ´
1
2
|∇ϕ|2 ´ 2νB2

yϕ´ gη on St

ByϕÑ 0 as y Ñ ´8

, (1.2.5)

where η is a function describing the location of the free surface and ν is the coefficient of viscosity. Surface

tension can be incorporated into the DDZ model in the usual way (i.e., by modifying the dynamic boundary

condition via the Laplace-Young jump condition). Dias-Dyachenko-Zakharov obtained (1.2.5) by adding

dissipative (viscous) terms to the dynamic and the kinematic boundary condition (causing the free surface to

experience dissipative effects) based upon an analysis of the linearized Navier-Stokes equations and further

showed that the NLS derived from this model is the classical damped NLS [DDZ]. This model was extended

to water waves over finite depth by Dutykh-Dias [DuDi]. Ambrose-Bona-Nicholls study a truncated-series

DDZ model, which they show to be well-posed locally in time [ABN]. Note that by truncated series, we

mean that they expanded the given operators (via the method of operator expansions) and then truncated the

resulting series at a given order (in this case second order). The full DDZ model is considered in [NgNi],

where Ngom-Nicholls show that the model is locally well-posed (with a substantially simplified

well-posedness theory) and gives a substantially more stable numerical scheme for studying water waves.

Asymptotic models for damped water waves were derived from the DDZ model in [GrSc]. Again, it makes

sense to refer to these as models for damped water waves as solutions persist globally in time and decay to

equilibrium exponentially in time [NgNi]. The DDZ model was investigated from a computational

perspective in [KaNi], where the exponential decay of solutions was observed numerically. As we noted

above, the DDZ model is not the only model incorporating “artificial viscosity” into the water waves system.

Many of the references discussed above contain references to other such models and the interested reader can

consult them for more information on this interesting perspective on damped water waves (e.g., [GrSc] has a
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good discussion of some other models as do [DuDi, DDZ]).

Though the above systems are indeed models for damped water waves, they are different from the

damping with which we are concerned in at least one critical way. Namely, in the above models, the damping

is effected on the entirety of the domain. As noted above, we are concerned with damping as it can be applied

to the numerical simulation of water waves. More particularly, we want the waves to propagate freely in the

majority of the domain and only be damped in a localized neighborhood of the boundary to avoid spurious

reflections. In that respect, above forms of damping are not appropriate. Now, that is not to say that these

models could not be adapted to that purpose (e.g., by localizing the effect of the viscosity to a small

neighborhood of the boundary), however investigating that possibility, while a fascinating question for future

research, is beyond the scope of this work.

Having briefly detoured to discuss some different perspectives on damped water waves, we return to

considering damping in the sense in which we wish to study it. That is in the form of an artificial dissipative

term localized near the boundary (e.g., a sponge layer). There is a vast literature regarding numerical aspects

of the damped water waves problem (e.g., numerically evaluating the performance of various dampers). For

further information on numerical aspects of damping water waves, the interested reader may consult

[BMO3, Bonn, CBS, CFGK2, Clem1, Clem2, Ducr, GrHo, IsOr, JKR, JenEtAl, Rom, Wes] as well as the

references therein. Closely related to damping are tools such as absorbing boundary conditions, radiation

boundary conditions, artificial boundary conditions, perfectly matched layers and so on; just a few references

on these methods include [BaTu, Ber, Col, EnMa, Gil1, Gil2, Giv1, Giv2, Hu, Tsy, TuYe]. In spite of the

vast numerical literature on the subject, the analytical study of damped (in our sense of the word) nonlinear

water waves is rather more sparse.

An important exception would be Alazard’s wonderful papers on the stabilization of the water waves

system [Ala3, Ala4]. In [Ala3], utilizing the Zakharov-Craig-Sulem formulation, the popular damper

pext,1 B χ1Gpηqψ (1.2.6)

is considered, χ1 is a non-negative cut-off function which serves to localize the damping, η is a function

giving the displacement of the free surface, Gpηq is the normalized Dirichlet-Neumann map and ψ is the trace

of the velocity potential along the free surface. Here, pext,1 represents an external pressure applied at the free

surface via modifying the dynamic boundary condition. The damper (1.2.6) is a natural choice from the
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Hamiltonian perspective. If St is the graph of a function η, then the water waves system can be written as a

Hamiltonian system with Hamiltonian energy

H “
g
2

ˆ 2π

0
η2 dx` τ

ˆ 2π

0

b

1` η2
x ´ 1 dx`

1
2

ˆ 2π

0

ˆ ηpx,tq

´h
|∇ϕ|2 dydx, (1.2.7)

where ty “ ´hu is the (flat) bottom of the fluid domain. Then, one has the Hamiltonian equations

Bη

Bt
“
δH

δψ
,
Bψ

Bt
“ ´

δH

δη
´ pext,1 (1.2.8)

and, using (1.2.8) and noticing that pext,1 “ χ1Btη, one can deduce that

dH

dt
“

ˆ 2π

0

δH

δη
Btη`

δH

δψ
Btψ dx “ ´

ˆ 2π

0
Btηpext,1 dx “ ´

ˆ 2π

0
χ1pBtηq

2 dx ď 0. (1.2.9)

Thus, it is easily seen that pext,1 induces dissipation of the energy. The real achievement of [Ala3] is to show

that pext,1 stabilizes the water waves system with the rate of convergence being exponential in time.

An analogous result is obtained in [Ala4] for the 2d gravity water waves system. In the gravity case, the

pneumatic damper is taken to satisfy

pext,2px, tq “ B´1
x

˜

χ2pxq
ˆ ηpx,tq

´h
ϕxpx, y, tq dy

¸

. (1.2.10)

The reason that the Hamiltonian damper (1.2.6) is not considered is due to difficulties in showing that the

Cauchy problem is well-posed. A similar, though slightly more involved, argument shows that (1.2.10)

causes the Hamiltonian energy to decay. The main result of [Ala4] is that pext,2, which satisfies (1.2.10),

stabilizes the water waves system with the energy decaying to zero exponentially in time.

The question of stabilizability of the water waves system belongs to the broader field of control theory

for water waves. Within control theory, the problems of stabilizability, controllability and observability are

closely related. These questions are likewise important for the numerical simulation of water waves. For

example, the question of controllability relates to the generation of waves via a wave maker. As was the case

for the problem of stabilizability, the literature on the analytic study of control of the (full) water waves

system is rather sparse. The earliest results on the control of the water waves system applied to the linearized

system and were obtained by Reid-Russell [ReRu], as well as Reid [Reid1, Reid2]. Control theory for linear
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water waves is still an active area of research (e.g., see [Mot, CGS]).

The first results on the controllability of the full (nonlinear) water waves system were obtained in the

beautiful paper [ABH] by Alazard, Baldi and Han-Kwan, which considered control via an external pressure

(i.e., a pneumatic wave maker). In this paper, the authors prove that the 2d gravity-capillary water waves

system is locally exactly controllable in arbitrarily short time: given a control domain ω and a control time

T˚ ą 0, the water waves system is controllable in time T˚ for sufficiently small initial data. There is also a

smallness assumption on the desired final configuration. In other words, one can, in arbitrarily small time,

generate arbitrary (sufficiently small amplitude) periodic (gravity-capillary) surface waves by applying an

external pressure to a localized portion of the free surface of a fluid. The smallness assumptions of [ABH]

are rather restrictive, but the stabilization result of [Ala3], which imposed a milder smallness assumption, can

be combined with the small-data control result of [ABH] to yield a larger-data control result via a strategy of

Dehman-Lebeau-Zuazua [DLZ] which exploits the time-reversibility of the water waves system. The

controllability result of [ABH] was extended to higher dimensions in [Zhu1] subject to the requirement that

the control domain ω (a subset of Td) satisfies a geometric control condition (GCC). Given a Riemannian

manifold pM, gq, compact and without boundary for simplicity, and a damping region ω Ă M, the GCC is as

follows:

Every geodesic of M must eventually enter the damping region ω. (1.2.11)

In the case of control problems, the GCC is the same with control domain replacing damping region. We note

that our formulation of the GCC in (1.2.11) is not unique; namely, the proper way to formulate a GCC will

depend on the geometry of the problem (e.g., compact vs. non-compact or with boundary vs. without

boundary). For more on the GCC, see the seminal works [RaTa, BLR]. The GCC is a rather natural

requirement for control/stabilization/observation problems (at least when dealing with hyperbolic or other

non-dissipative equations) and appears frequently in the control theory literature (e.g.,

[BoRo, BuGe, DGL, JoLa, Leb, LLTT]). One might ask why the GCC was absent from the control result of

[ABH]. However, that would be a bit misleading as the GCC was not absent, but rather implicit: the GCC is

always satisfied on T!

Thus far, we have discussed control and stabilization results for the water waves system. This leaves the

final piece of the control theory triad: observability. We know from the work of Lions that observability is

intimately connected to stabilizability and controllability (in fact, observability is dual to null controlability)
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[Lio]. So, given that we have control and stabilization results for the water waves system, we might expect to

have observation results. This is indeed the case as there are observability results in [ABH, Zhu1]. Moreover,

Alazard proves boundary observability of the gravity water waves system in 2d and 3d, where the fluid

domain is taken to be a rectangular tank bounded by a flat bottom, vertical walls and a free surface [Ala5].

Boundary observability implies that one can control the energy of the system via measurements at the

boundary (i.e., where the free surface meets the vertical walls).

Finally, there are a number of results in the control theory literature regarding equations arising in fluid

dynamics, many of which are closely related to the water waves system. Namely, control theory results exist

for the Euler equations, various asymptotic models for water waves (e.g., KdV and Saint-Venant), the

Benjamin-Ono equation (used to model internal waves in deep water) and the Navier-Stokes equations.

Though related, these results are nevertheless substantially different and, generally, tend to be easier to obtain.

A crucial difference is that the water waves problem is a free boundary problem, often formulated nonlocally,

whereas the results on the aforementioned equations are generally posed on a fixed domain. The interested

reader may consult [Cor1, Cor2, Gla] for some control theory results on the Euler equations and [LiRo] for a

controllability and stabilizability result for the Benjamin-Ono equation. For an expository presentation on

control of nonlinear equations, including the equations from fluid dynamics given above (i.e., Euler,

Navier-Stokes, KdV and Saint-Venant), one may consult [Cor3].

1.3 Preliminary Results

In this section, we will discuss some preliminary results which will be utilized frequently throughout

this thesis. Many of these results will be stated without proof, however, for the sake of completeness, we

provide references where proofs can be found.

1.3.1 Fourier and Microlocal Analysis on T

We begin by discussing some basic Fourier analysis, and a hint of microlocal analysis, on the circle T.

We will first define the Fourier transform and Fourier series on T. Then, we will state some of the most

important properties of the Fourier transform which will be important for our analysis. Next, we will discuss

the definition of pseudodifferential operators (ΨDO) on T. We end by investigating how differentiation

interacts with band-limited functions.

A good reference for Fourier analysis on T is Chapter 3 of [Tay1] and we will partly follow this
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presentation of the material. If f P L1 “ L1pTq, we define its Fourier transform by

F puqpkq “ ûpkq B
1

2π

ˆ
T

e´ikxupxq dx. (1.3.1)

Here we have introduced a notational convention we will use throughout this thesis to reduce notational

clutter. When the underlying domain of a function space is suppressed, it should be assumed to be T. Thus,

we denote Hr “ HrpTq, Lp “ LppTq and so on. We have the corresponding mapping property:

F : L1 Ñ `8pZq is a continuous linear map. (1.3.2)

Let spZq denote the space of rapidly decreasing functions on Z, where, by rapidly decreasing, we mean that

sup
kPZ
xkyN
∣∣∣upkq∣∣∣ ă `8 @N. (1.3.3)

In the above equation, we have introduced the Japanese bracket x¨y which is defined by xξy B
b

1` |ξ|2.

LettingD denote the space of test functions (i.e.,D “ C8), we then have the further mapping property

F : DÑ spZq. (1.3.4)

Moreover, for u P D and v P spZq, we have

pF u, vq`2 “ pu,F ˚ vqL2 , (1.3.5)

where

F
˚
puqpxq “

ÿ

kPZ

upkqeikx. (1.3.6)

The following mapping properties for F ˚ holds:

F
˚ : spZq Ñ D, (1.3.7)

F
˚ : `1pZq Ñ L8. (1.3.8)
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We make note of the Fourier inversion formula onD:

upxq “
ÿ

kPZ

ûpkqeikx pu P Dq. (1.3.9)

We have

F
˚
F “ id onD, (1.3.10)

F F
˚
“ id on spZq. (1.3.11)

For u, v P D, we have the Parseval identity and the Plancherel identity:

pu, vqL2 “ pû, v̂q`2 , (1.3.12)

}u}2L2 “ }û}2`2 . (1.3.13)

By continuity, F extends fromD to a unitary map

F : L2 Ñ `2. (1.3.14)

In addition, F ˚ has a unique continuous extension to `2pZq with

F
˚ : `2pZq Ñ L2 unitarily. (1.3.15)

We can extend the definition of the Fourier transform to the class of Schwartz distributions by duality.

Given u P D1, we set

F upkq “ ûpkq B
1

2π
xu, e´ikxy. (1.3.16)

We then have

F : D1 Ñ s1pZq, (1.3.17)

where s1pZq denotes those functions a : ZÑ C with at-most-polynomial growth:

a P s1pZq ðñ
∣∣∣apkq∣∣∣ À xkyN for some N. (1.3.18)
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It further holds that

F
˚ : s1pZq Ñ D1, (1.3.19)

where

F
˚
paqpxq “

ÿ

kPZ

apkqeikx. (1.3.20)

The Fourier inversion formulae extend by duality:

F
˚
F “ id onD1, (1.3.21)

F F
˚
“ id on s1pZq. (1.3.22)

Remark 1.3.1. Here is a good place to introduce some notational conventions which we shall utilize.

1. We use A À B to denote A ď cB for some constant c ą 0.

2. We take A Àa1,...,ak B to mean A ď cpa1, . . . , akqB.

3. By A „ B we mean B À A À B.

4. Finally, for r P R, r` denotes r ` h for an arbitrary small, positive parameter h. For example, Lemma

1.3.9 implies that

}uv}L2 À }u}L2}v}H1{2` .

We can then use the Fourier transform to define Sobolev spaces. Namely, for r P R, we have

Hr B
 

u P D1 : xDyru P L2(, (1.3.23)

where D B 1
i B. In addition, for r P R, we also have the homogeneous Sobolev space

9Hr B
!

u P D1 : |D|
r
2 u P L2

)

. (1.3.24)

We have the following elementary Sobolev embedding result:

Lemma 1.3.2. If r ą 1
2 , then Hr ãÑ L8 with the estimate

} f }L8 À } f }Hr . (1.3.25)
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Further, if r ą 3
2 , then Hr ãÑ Lip with

} f }Lip À } f }Hr . (1.3.26)

Proof. See Proposition 3.3 in Chapter 4 of [Tay1]. The proof is based on the proof of the corresponding

embeddings for HrpRq which are the content of Proposition 1.3 and Corollary 1.4 (also in Chapter 4). �

We will need to be able to work with Fourier multipliers and ΨDO on T. For example, we just made use

of Fourier multipliers on T when we defined Sobolev spaces above. Thus, we will need to be able to define

such operators on the circle. It turns out that we have some choice in how to go about doing this. Suppose we

consider T as a locally compact abelian group (the circle group) with Pontryagin dual pT “ Z. From this

perspective, it would be natural to consider symbols apx, ξq which are functions on Tˆ pT “ Tˆ Z. On the

other hand, suppose we think T as a one-dimensional compact manifold (without boundary). In this case, it

would make the most sense to consider symbols apx, ξq which are functions on the cotangent bundle T˚T.

We know that the circle has trivial tangent bundle and therefore the cotangent bundle is trivial. That is to say

that T˚T is isomorphic (diffeomorphic) to Tˆ R: T˚T – Tˆ R. We think of the former perspective as

giving rise to a global description and the latter to a local description. Fortunately, we know that these

perspectives are entirely equivalent (see [McL]). We shall choose to utilize the local perspective, thinking of

T as a manifold and working (implicitly) with local coordinates and partitions of unity.

So, when dealing with ΨDO, we will be working with symbols defined on X ˆ R for an open set X,

where we think of X as being a component of an atlas of charts covering T. We will not fully explore the

details of defining ΨDO on a manifold, ensuring that the operators are invariant under coordinate

transformations (i.e., diffeomorphisms RÑ R) and so on. However, rest assured that everything indeed

works as it should. For all of the details, see [Hör] or [Tay2]. Given m P R and 0 ď ρ, δ ď 1, we further

define the Hörmander symbol class S m
ρ,δpXq for an open set X Ă R to consist of those p P C8pX ˆ Rq such

that, for any k, ` P N0 B NY t0u and every compact K Ă X, we have

∣∣∣∣B`xBk
ξ ppx, ξq

∣∣∣∣ À p1` |ξ|qm´ρk`δ` px P K, ξ P Rq. (1.3.27)

The most important symbol class for us will be S m
1,0pXq, however the more exotic symbol class S m

1,1pXq will

also make an appearance, at least implicitly.

We conclude this subsection with a Bernstein-type inequality regarding the effect of differentiating
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band-limited functions:

Lemma 1.3.3. Define A B
 1

2 ď |ξ| ď 2
(

and B “ t|ξ| ď 1u. Take k, p P N0 and u P L2. Then, it holds that

supp û Ă 2pB ùñ
›

›Bk
xu
›

›

L2 À 2pk}u}L2 , (1.3.28)

supp û Ă 2pA ùñ
›

›Bk
xu
›

›

L2 „ 2pk}u}L2 . (1.3.29)

Proof. See Lemma 2.1 in [BCD]. Also, see Lemma 1.1.2 in [AlGe]. �

1.3.2 Multilinear and Nonlinear Estimates

Given that we are going to be dealing with nonlinear equations, we will frequently need to confront

multilinear and nonlinear estimates. More specifically, we will want to be able to estimate the product of

functions and the composition of functions. Bony’s paradifferential calculus provides an incredibly powerful

tool for achieving such estimates via the paraproduct and the paralinearization formula.

In order to construct the paraproduct, we will need to first build up frequency filtering operators of

Littlewood-Paley theory. To that end, let φ P C8c pRq, 0 ď φ ď 1, be a radial function such that

φpξq “ 1 for |ξ| ď
1
2

and φpξq “ 0 for |ξ| ě 1. (1.3.30)

Now, set Φpξq “ φp2´1ξq ´ φpξq and observe that Φ is supported in a dyadic shell:

supp Φ Ă
 

2´1 ď |ξ| ď 2
(

. (1.3.31)

It further holds that

1 “ φpξq `
ÿ

pě0

Φp2´pξq p@ξq. (1.3.32)

Notice that there are never more than two non-zero terms in the sum (1.3.32).

For p P N0, we define the frequency filtering operator S p acting onD1 by

S pu B φppDqu, where φppξq B φp2´pξq. (1.3.33)

24



For p P Z, we further define the dyadic blocks ∆p, again acting onD1, by

∆pu B S p`1u´ S pu for p P N0, ∆´1u B S 0u, ∆pu B 0 for p ď ´2. (1.3.34)

If p P N0, the dyadic blocks satisfy

∆pu “ ΦppDqu, where Φppξq B Φp2´pξq. (1.3.35)

In fact, equation (1.3.35) can be, and frequently is, used as the definition of the dyadic blocks. Observe that

the above definitions imply that

S pu “
ÿ

qďp´1

∆qu, (1.3.36)

which explains why the operators S p are also called partial sum operators.

We now state the important properties of the frequency filtering operators and the dyadic blocks. First,

the spectrum of the frequency filtering operators is contained in a dyadic ball:

suppF pS puq Ă
 

|ξ| ď 2p´1(. (1.3.37)

Similarly, the spectrum of dyadic blocks is contained in a dyadic shell:

suppF p∆puq Ă
 

2p´1 ď |ξ| ď 2p`1(. (1.3.38)

We additionally have the following dyadic partition of unity:

id “ S 0 `
ÿ

pě0

∆p “
ÿ

pě´1

∆p. (1.3.39)

In particular, for u P D1, we have
P
ÿ

p“´1

∆pu D1

ÝÑ u as P Ñ `8. (1.3.40)

We are now prepared to define the paraproduct, at least formally. Given u, v P D1, we define

Tuv B
ÿ

pě2

S p´2u∆pv. (1.3.41)
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The regularity of the paraproduct Tuv is controlled by v and, in particular, Tuv cannot be more regular than v.

We then have Bony’s paraproduct decomposition:

uv “ Tuv` Tvu` Rpu, vq, (1.3.42)

where the remainder Rp¨, ¨q is given by

Rpu, vq B
ÿ

|p´q|ď2

∆pu∆qv. (1.3.43)

The term remainder is justified as Rpu, vq is smoother than both u and v as soon as it is defined.

We now want to make things a bit more precise and not just rely on formal computations. We begin with

the following result.

Lemma 1.3.4. Let a P L8 and u P Hr for some r P R. Then, the paraproduct Tau is well-defined and we

further have

}Tau}Hr À }a}L8}u}Hr . (1.3.44)

Proof. This is a well-known result and can be found in many references. For example, see Proposition C.8 in

[B-GS]. Also, see [Mét] where this result is the content of Proposition 5.2.1. �

The above result is by no means sharp and we can define Tau for much less regular a. However, we will

not need to use any more specialized results and so do not bother stating them. Now, we need to deal with the

remainder. We want to determine a sufficient condition for the remainder to be well-defined, quantify in what

sense the remainder is smoother and estimate Rpu, vq in terms of u and v. The following result will take care

of all of this:

Lemma 1.3.5. Let r, t P R be such that s` t ą 0. Then, for u P Hr and v P Ht, the remainder Rpu, vq is

well-defined (by (1.3.43)) and satisfies

}Rpu, vq}Hs`t´1{2 À }u}Hr}v}Ht . (1.3.45)

Proof. See Theorem C.9 in [B-GS]. �

Finally, we want to record the paralinearization formula:
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Lemma 1.3.6. Let r ą 1
2 . Then, for any u P Hr and any function F P C8pRq, we have

Fpuq “ TF1puqu` Rpuq, (1.3.46)

where Rpuq P H2r´ 1
2 .

Proof. This result goes back to Bony’s seminal work [Bony]. A good proof of this result can be found in

Theorem 2 of Section 16.3 in [CoMe]. A wonderful discussion of a variant formulation can be found in

Chapter 3 of [Tay4]. Some other good resources include [Mét, BCD, AlGe]. �

Littlewood-Paley theory and paraproducts (and paradifferential operators more broadly) have wide

applicability throughout analysis. Of course, the primary benefit of Littlewood-Paley analysis is that it allows

for a detailed study of frequency interactions. For some interesting examples applied to the quasilinear

Schrödinger and Camassa-Choi equations, respectively, see [MMT, HaMa]. The paradifferential calculus

was originally introduced to study the propagation of singularities for nonlinear equations [Bony]. Since its

introduction, paradifferential analysis has been fruitfully applied to many problems. For some examples of its

application to the system under study in this thesis, the water waves system, see

[AlMe, ABZ1, ABZ3, ABH]. Some other interesting applications include the Euler-Maxwell system of

plasma dynamics [GeMa], the MHD system [LXZ] and the hydrodynamic flow of liquid crystals [XuZh].

For further discussion of applications, see [Mét, Tay4, Tay5].

Now, we arrive at the main results of this subsection. First, we have a Moser-type estimate for the

composition F ˝ u of a smooth function F and a Sobolev function u:

Lemma 1.3.7. If F : RÑ C is C8 and u P Hr X L8 with r ě 0, then

}Fpuq}Hr À 1` }u}Hr ; (1.3.47)

the implied constant is of the form C}F1}CK p1` }u}K
L8q for 0 ă r ă K.

Proof. A particularly efficient approach to proving this result is via the paralinearization formula of Lemma

1.3.6. See Section 3.1 in [Tay4]. �

Remark 1.3.8. Lemma 1.3.2 implies that Lemma 1.3.7 shall apply to any u P Hr whenever r ą 1
2 .
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With the Moser-type estimate in hand, we next want to obtain a good product estimate. There is, of

course, the well-known Sobolev algebra property, which says that, for r ą 1
2 , Hr is a Banach algebra and

}uv}Hr À }u}Hr}v}Hr . However, we will need a more powerful result as we want to be able to deal with

multiplication by rougher functions (or even distributions). To that end, we have the following:

Lemma 1.3.9. Suppose that u P Hr and v P Ht with r ` t ą 0. Then, for all ρ satisfying ρ ď minpr, tq and

ρ ă r ` t ´ 1
2 , we have uv P Hρ with the following estimate:

}uv}Hρ À }u}Hr}v}Ht . (1.3.48)

Proof. As noted above, this is yet another result that follows readily from Bony’s paradifferential theory.

Namely, we can apply Bony’s paraproduct decomposition (1.3.42). See Theorem C.10 of [B-GS]. �

1.3.3 The Hilbert Transform

The Hilbert transformH will play a prominent role in our analysis, particularly in Chapter 2. As such, it

shall be helpful to establish some of its mapping properties. We begin by examining the action ofH on L2:

Lemma 1.3.10. The Hilbert transformH is an L2-isometry.

Proof. This is a consequence of Plancherel’s theorem, combined with the fact thatH B ´i sgnpDq.

More specifically, we have the following. Begin with the Hilbert transformH : DÑ D, defined by

H u B ´i sgnpDqu. By Plancherel’s theorem,H : DÑ D is an isometry. SinceD is dense in L2,H has a

unique, densely-defined extension to L2 and, abusing notation mildly, we also denote this extension byH .

Using Plancherel to justify taking the necessary limits,H is then an isometry on L2. �

Lemma 1.3.11. For r P R, the Hilbert transformH is a continuous (bounded) linear operator on Hr; in

fact,H is an isometry of Hr:

}H u}Hr “ }u}Hr .

Proof. Since Fourier multipliers commute, Lemma 1.3.10 implies

}H u}Hr “ }xDyrH u}L2 “ }HxDyru}L2 “ }xDyru}L2 “ }u}Hr .

�
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We have the following useful commutator estimates for commutators involving the Hilbert transform:

Lemma 1.3.12. Let f P Hr for r P R. Then, the operator rH , f s is bounded L2 Ñ Hr´1 and H´1 Ñ Hr´2.

Further, for j “ ´1, 0, we have

}rH , f spuq}Hr´1` j À } f }Hr}u}H j . (1.3.49)

Proof. See Lemma 3.7 in [Amb1]. �

Lemma 1.3.13. If f P Hr for r ě 3, then rH , f s is a bounded operator Hr´2 Ñ Hr. If f P Hr´1{2 for r ě 4,

then rH , f s is a bounded operator mapping Hr´2 Ñ Hr´1{2. In addition, for j P
 

0,´ 1
2

(

, we have the

estimate

}rH , f spuq}Hr` j À } f }Hr` j}u}Hr´2 .

Proof. See Lemma 3.8 in [Amb1]. �

1.4 Overview of the Thesis

In Chapter 2, we consider a vortex sheet formulation for 2d gravity-capillary water waves in a geometric

setting proposed by Ambrose, et. al. in [AmbEtAl]. This model allows for bathymetric variations, (smooth)

obstacles in the flow and a background flow. We start by introducing the model and writing down the

evolution equations. Then, by proving energy estimates, we show that this model is locally well-posed. We

then turn to study the lifespan of solutions with the main result being that, for small Cauchy data of size

ε ! 1 and zero background current, the lifespan satisfies

T pεq Á log
1
ε
. (1.4.1)

We also obtain lifespans for large data and for non-zero background current. We next seek to incorporate

Clamond damping into this model. We begin by deriving new evolution equations for the damped system.

Then, again by proving energy estimates, we show that the model remains well-posed and that all of the

lifespan results, obtained for the undamped problem, apply to the damped problem.

The lifespan given in (1.4.1) is by no means optimal, rather this lifespan is what is attainable by using

basic energy estimates. In particular, given that the vortex sheet equations are quadratically nonlinear, the

classical local well-posedness theory for quasilinear hyperbolic equations suggests a quadratic (i.e., Op 1
εq)

lifespan [Kato2, Kato1, Maj2]. However, actually obtaining this lifespan will require some rather technical
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analysis. Our next objective is then to begin working towards obtaining this quadratic lifespan. To this end,

in Chapter 3, we will introduce a toy model for water waves subject to Clamond damping. Our toy model has

a parameter and we primarily focus on two values of this parameter, which correspond to capillary waves and

gravity waves. For technical reasons, these two cases require quite distinct analysis, however, in both cases,

we are able to prove that solutions exhibit a quadratic lifespan. We include some discussion of how this toy

model relates to the vortex sheet equations and why we believe that the methods employed to study the toy

model will extend to the vortex sheet formulation of the gravity-capillary water waves system. As such, this

chapter is somewhere between a trial run and a proof of concept.
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CHAPTER 2

Local Well-Posedness of the Gravity-Capillary Water Waves System in the Presence of Geometry
and Damping

2.1 Plan of the Chapter

We consider a vortex sheet model for two-dimensional gravity-capillary water waves with a (constant)

background current over obstacles and topography proposed by Ambrose, et. al. in [AmbEtAl]. For

simplicity of presentation, we limit ourselves to the case of a single obstacle, however our techniques apply

to the case of any finite number of obstacles. The velocity is given by the gradient of a scalar potential ϕ,

which is represented via layer potentials on the different components of the boundary. The variables which

we evolve are θ, the tangent angle formed by the interface with the horizontal; γ, the vortex sheet strength; ω,

the density of the layer potential on the bottom and β, the density of the layer potential on the obstacle. We

note that γ B µα, where µ is the density of the layer potential on the free surface.

The system of equations which we consider is nonlocal and, in particular, is of the form

$

’

’

&

’

’

%

pid`K rΘsqBtΘ “ FpΘq

Θpt “ 0q “ Θ0

, (2.1.1)

where Θ B pθ, γ, ω, βqt and K r¨s is a compact operator. We introduce the parameter B to denote the size of

the initial data:

B B }Θ0}X , (2.1.2)

where X is the energy space. We will obtain our main lifespan results in the context of small data and, in this

setting, we take

B “ ε ! 1. (2.1.3)

Our first main objective will be to show that the model proposed in [AmbEtAl] is well-posed and that

solutions persist on a timescale of order Oplog 1
εq (resp. Op1q) in the presence of zero (resp. non-zero)
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background current. Our approach will be to first consider the model problem

$

’

’

&

’

’

%

BtΘ “ FpΘq

Θpt “ 0q “ Θ0

, (2.1.4)

beginning by proving the desired results for this model problem via energy estimates. Then, we will deduce

mapping properties of pid`K q´1 that imply that the results proved for the model problem (2.1.4) are also

true of the water waves system (2.1.1).

Our next primary objective will be to modify the system (2.1.1) to incorporate the Clamond damper and

show that the same results hold for the damped system. We do so by following the same approach as for the

non-damped system (i.e., first consider the model problem for damped water waves and then use mapping

properties of pid`K q´1 to obtain the desired result). As noted above, we primarily utilize energy estimates

and, in particular, we largely follow the approach of [Amb1].

The Oplog 1
εq existence time obtained here is certainly not sharp, particularly being less than the Op 1

εq

existence time suggested by the nonlinearity (this follows from the classical local well-posedness theory for

quasilinear hyperbolic equations; e.g., see [Kato2, Kato1, Maj2]). However, obtaining the sharper existence

time requires a more detailed study of the system and, as such, we have decided to leave this to future work

and here simply focus on results obtainable by energy methods.

The plan of this chapter is as follows. In Section 2, we give an overview of the main results. We then

proceed to give a brief overview of the model which we utilize in Section 3. Next, in Section 4, we begin the

process of proving our first main result and prove a bound on the growth of the energy of solutions to the

model problem (2.1.4), then, in Section 5, we prove the existence of solutions to the system (2.1.4). In

Sections 6 and 7, we complete the proof of the local-in-time well-posedness of the (undamped) model

system. Section 8 contains a study of the lifespan of solutions to the model system. Section 9 considers the

damped model system and here we show that the results of Sections 4-8 all extend to the damped model

problem. Section 10 is concerned with the needed mapping properties of pid`K q´1 and extending the

results of Sections 4-9 to the full water waves system (2.1.1). In the final section, Section 11, we prove the

solvability of the integral equations arising in the system, which gives an alternative approach to the one

given in [AmbEtAl]. One of the reasons we include this proof is that it can be more readily extended to 3d

than the proof given in [AmbEtAl].
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2.2 Main Results

Here we will state the main results of this chapter. As outlined above, our first main result is to show that

that this system is well-posed locally in time and to obtain a lower bound on the lifespan of solutions. Next,

we consider a damped version of the system and show that all of the results obtained for the non-damped

system apply to the damped system.

Let V0 B pV0, 0q denote the background current and introduce the scale of spaces

Xr B Hr ˆ Hr´1{2 ˆ H1 ˆ H1 pr P Rq. (2.2.1)

Notice that we clearly have Xt Ă Xr for t ą r. Utilizing this notation, our first main result is then the

following:

Theorem 2.2.1. Let s be sufficiently large. The system (2.1.1) is locally well-posed (in the sense of

Hadamard). Namely, there exists a unique solution Θ P Cpr0,T pB, |V0|qs; Xsq to the system (2.1.1) and the

flow map is Lipschitz continuous from X1 into Cpr0,T s; X1q. In the case of small Cauchy data and zero

background current (i.e., V0 “ 0), we have

T pεq Á log
1
ε
. (2.2.2)

On the other hand, for large Cauchy data, we have

T pB, |V0|q Á

$

’

’

&

’

’

%

B1´N V0 “ 0

min
`

p1` |V0|q
´2, B1´N

˘

V0 ‰ 0
, (2.2.3)

where N is a parameter given in equation (2.5.58).

Remark 2.2.2. We note that the solution is not guaranteed to remain of size Opεq on the given lifespans.

Rather, all that is assured is that the energy remains bounded, and thus the solutions persist, on the stated

timescales. The Oplog 1
εq lifespan when V0 “ 0 is certainly not sharp. In fact, as noted above, the quadratic

nonlinearity exhibited by the system (2.1.1) suggests an Op 1
εq lifespan. However, actually proving that

solutions exist on an Op 1
εq timescale is not a trivial matter and will require more delicate analysis

[AlLa, Més]. On the other hand, proving that solutions persist on an Oplog 1
εq timescale can be done using
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only energy estimates and a Grönwall argument. As such, in this paper, which is largely based on energy

methods, we simply prove the Oplog 1
εq lifespan. We are presently working on a follow-up result with Thomas

Alazard and Jeremy Marzuola in which we prove the Op 1
εq lifespan.

Remark 2.2.3. The existence time of Opp1` |V0|q
´2 ^ B1´Nq when V0 ‰ 0 may not be sharp, however

substantial improvements are not possible. In fact, when V0 ‰ 0, numerical simulations have shown splash

singularities to occur in Op1q time, even starting from a flat interface [AmbEtAl].

We next consider a damped version of the system. As noted above, we implement a modified sponge

layer damper, which we call Clamond damping, first introduced in [CFGK2]. Recall that Clamond damping

utilizes a pneumatic damper with the external pressure given by (1.1.3) (i.e., pext B B
´1
x pχωBxϕq). Though

we use the same notation ω for the damping region and the density of the single layer potential on the bottom,

this will cause no confusion as context will always make clear what ω represents.

We derive evolution equations which account for the Clamond damping and we denote the new

right-hand side by FD. We then arrive at the damped water waves system:

$

’

’

&

’

’

%

pid`K rΘsqBtΘ “ FDpΘq

Θ|t“0 “ Θ0

. (2.2.4)

Our second main result is as follows:

Theorem 2.2.4. All of the results of Theorem 2.2.1 apply to the damped system. In particular, take s to be

sufficiently large. Then, (2.2.4) is locally-in-time well-posed with the flow map being Lipschitz regular from

X1 into Cpr0,T s; X1q and the solution Θ belonging to Cpr0,T pB, |V0|qs; Xsq. For small Cauchy data and zero

background flow, the lifespan T pεq satisfies (2.2.2) and, in the case of large Cauchy data, we again have

(2.2.3).

Remark 2.2.5. In [AmbEtAl], Ambrose, et. al. actually present two formulations of the water waves

problem. Namely, in addition to the vortex sheet formulation we consider here, they propose a dual

formulation via Cauchy integrals. The energy methods employed here would yield results analogous to those

of Theorem 2.2.1 for the Cauchy integral formulation. Further, Clamond damping can be implemented in the

Cauchy integral formulation and the results of Theorem 2.2.4 can similarly be obtained for the Cauchy

integral formulation via the energy arguments utilized here.
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2.3 A Brief Overview of the Model

Our objective here is to give a brief overview of the model which we utilize. We will discuss the domain

as well the relevant variables and parameters with which we work. Finally, we will write down the evolution

equations which govern the system. For full details on the model, the reader should consult [AmbEtAl].

2.3.1 The Domain

At time t, the fluid is contained in a domain Ωt Ă Tˆ R of finite vertical extent. The fluid domain is

bounded above by a free surface St and below by a fixed, solid boundary B. We assume Ωt is multiconnected

and BΩtzpSt Y Bq is composed of smooth Jordan curves. We describe the location of the free boundary via a

parameterized curve, St : pξpα, tq, ηpα, tqq, where t denotes time and α is the parameter along St. Here,

ξpαq ´ α and η are both periodic with period 2π.

The bottom is fixed (i.e., time-independent) and also described by a parameterized curve

B : pξ1pαq, η1pαqq with the same periodicity. Additionally, the multiconnectedness of Ωt corresponds to one

or more obstacles in the flow. For simplicity of notation and presentation we utilize a single obstacle O (i.e.,

AΩt “ OYUt, whereUt is unbounded). However, we note that the extension to an arbitrary, finite number

of obstacles is immediate and all of our results apply to this case. Of course, due to periodicity this one

obstacle will recur periodically and so, in fact, corresponds to a periodic array of obstacles. We denote

C B BO “ BΩtzpSt Y Bq. We assume that the obstacle is fixed and that its boundary is given by a closed

parameterized curve C : pξ2pαq, η2pαqq with ξ2 and η2 being 2π-periodic.

It will frequently be beneficial to utilize a complexified description of the domain and to this end define

ζ B ξ ` iη and ζ j B ξ j ` iη j. (2.3.1)

Regarding orientation, we parameterize the boundary of the fluid domain so that the normal on St points into

the vacuum region, the normal on B points into the fluid region and the normal on C points into the fluid

region. We denote the length of one period of the free surface by L “ Lptq, the length of one period of B by

L1 and the length of C by L2.

For technical reasons, we shall want the interface to be free of self-intersections. In order to ensure that

this is so, we impose the chord-arc condition on ζ:

Dc ą 0 :

∣∣∣∣∣∣ζpαq ´ ζpα1q

α´ α1

∣∣∣∣∣∣ ą c p@α ‰ α1q. (2.3.2)
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This condition will rule out self-intersections (e.g., splash and splat singularities) as well as cusps.

We shall also assume that the depth of the water is bounded away from zero, as is the distance from the

free surface to the boundary of the obstacle. Namely, there exist positive constants h and h̃ so that

η´ η1 ě h, (2.3.3)

η´ η2 ě h̃. (2.3.4)

These are non-cavitation assumptions and mean that neither the bottom nor the obstacle go dry. These

non-cavitation assumptions are critical for our analysis. The question of removing these assumptions is quite

fascinating and much work is yet to be done. Some progress has been made in considering the water waves

system in a simply connected domain in the absence of assumption (2.3.3). For more on this fascinating

problem, the interested reader can consult [deP, MiWa1, MiWa2, MiWa3]. Asymptotic models for water

waves are studied in this context in, for example, [CamEtAl, LanMét].

Finally, we introduce the notation ζd, which we define by

ζdpα, tq B ζpα, tq ´ ζp0, tq. (2.3.5)

The value of ζp0, tq is, in general, unimportant. It is worth noting that Bαζd “ Bαζ.

2.3.2 The Dynamics of the Free Surface

We will now briefly discuss how the evolution of the free surface is described in this model. At each

point on St, there is a unit tangent vector t̂ “
∣∣∣pξα, ηαq∣∣∣´1

pξα, ηαq and a unit normal vector

n̂ “
∣∣∣pξα, ηαq∣∣∣´1

p´ηα, ξαq, where the subscript α denotes differentiation with respect to the parameter α. We

let U denote the normal velocity and V the tangential velocity:

Btpξ, ηq “ Un̂` V t̂. (2.3.6)

A key observation underlying the HLS framework is that the shape of the free surface St is solely determined

by the normal velocity U, while changes in the tangential velocity V serve only to reparameterize the

interface [HLS1]. The tangential velocity V will be chosen so as to enforce a renormalized arclength

parameterization of St.

The HLS framework utilizes a geometric frame of reference to describe the location of the free surface,
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as opposed to the usual Cartesian coordinates pξ, ηq [HLS1]. The first of the geometric coordinates is

θ “ θpα, tq, which denotes the tangent angle formed by St with the horizontal:

θ B arctan
ηα
ξα
. (2.3.7)

Using this new variable, we can write t̂ “ pcos θ, sin θq and n̂ “ p´ sin θ, cos θq. In addition, we have

ξpαq “ α` B´1
α psα cos θpαq ´ 1q, (2.3.8)

where, in this case, B´1
α denotes the mean-zero antiderivative (for more details, see section 2.2 of

[AmbEtAl]).

The other geometric coordinate is the arclength element sα “ sαpα, tq given by sα B
a

ξ2
α ` η2

α. It is

straightforward to see that

Bt sα “ Vα ´ θαU. (2.3.9)

We further note that L is given by Lptq “
´ 2π

0 sαpα, tq dα, where the integral is over one period. We may

again differentiate with respect to time and use equation (2.3.6) to infer the evolution equation for L:

BtL “ ´
ˆ 2π

0
θαU dα. (2.3.10)

In fact, one can either take sα or L to be the other independent variable describing St. Here, one sees one of

the major strengths of the HLS framework. Recall that the dynamic boundary condition in (1.1.1) requires

that the pressure jump across the free boundary be proportional to the curvature of the free boundary. In this

setting, where the free boundary is given by a parameterized curve, the curvature is given in terms of the

Cartesian coordinates pξ, ηq by

HSt “ κpζq “
ξαηαα ´ ηαξαα

pξ2
α ` η2

αq
3
2

. (2.3.11)

However, we can express the curvature in the geometric coordinates pθ, sαq as

κpζq “
θα
sα
. (2.3.12)

The tangential velocity V is selected to enforce that sα be independent of the spatial variable, which
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yields a renormalized arclength parameterization of St. Considering the equations for Bt sα and BtL leads to

the choice

V B B´1
α

ˆ

θαU ´
1

2π

ˆ 2π

0
θαU dα

˙

. (2.3.13)

Implicit in (2.3.13) is a constant of integration, which we are free to choose. Reasonable choices include

taking the constant of integration so as to force (i) V to have mean zero, (ii) Vp0, tq “ 0 or (iii) ξp0, tq “ 0.

This constant of integration will not be terribly important for us, but we generally take Vp0, tq “ 0 as it will

simplify a later computation. It is straightforward to check that such a choice of V leads to L “ 2πsα for all

time (also see [AmbEtAl]).

Our next objective is to give a definition of the normal velocity U along the free surface. We recall that

the fluid velocity satisfies the (irrotational) free-surface Euler equations (1.1.1). Notice that the assumptions

of irrotationality and incompressibility imply that the velocity field is given by the gradient of a harmonic

scalar potential ϕ. With this in mind, we shall write v “ ∇ϕ with ϕ “ ϕ0 ` ϕ1 ` ϕ2 ` χpa0∇ϕcyl ` V0q,

noting that each of the ϕ j’s corresponds to a different part of the boundary of the fluid region – the interface

St, the bottom B and the boundary of the obstacle C. The constant a0 is a circulation parameter and ϕcyl is

given by

ϕcylpzq B Re
"

1
2

z´ i log sin
1
2
pz´ zcq

*

, (2.3.14)

where zc P O. We note that it is only necessary to introduce ϕcyl in the case of a nonzero background flow,

which is why we have introduced the coefficient

χ B

$

’

’

&

’

’

%

1 V0 ‰ 0

0 V0 “ 0
. (2.3.15)

As previously noted, U must be determined by the physics and we have

U B Bn̂ϕ. (2.3.16)

We take the ϕ j’s to be given by layer potentials (a double layer potential on the free surface and single layer

potentials on the bottom as well as on the boundary of the obstacle).

38



We utilize a double layer potential at the free boundary. At a point px, yq in the fluid region, we have

ϕ0px, yq “
1

2π

ˆ `8
´8

µpα1q
px´ ξpα1q, y´ ηpα1qq∣∣∣px´ ξpα1q, y´ ηpα1qq

∣∣∣2 ¨ n̂pα1q dσpα1q.

It is of benefit for us to rewrite the above integral as an integral over a single period as opposed to an integral

over the real line. We achieve this by summing over periodic images and applying a formula of Mittag-Lefler

[AbFo] to obtain a complex cotangent kernel:

ϕ0px, yq “ Re
"

1
4πi

ˆ 2π

0
µpα1qζαpα

1q cot
1
2
ppx` iyq ´ ζpα1qq dα1

*

, (2.3.17)

where px, yq is in the fluid region. It is the gradient of (2.3.17) which interests us and so we apply pBx ´ iByq,

integrate by parts to retain the cotangent kernel and set γ B µα. We obtain

pBx ´ iByqϕ0px, yq “
1

4πi

ˆ 2π

0
γpα1q cot

1
2
ppx` iyq ´ ζpα1qq dα1.

Of course, this gradient will be singular on St, however we can take the limit as we approach the free

boundary by using the Plemelj formulae. This process yields

lim
px,yqÑpξpαq,ηpαqq

pBx ´ iByqϕ0px, yq “
1

4πi
pv
ˆ 2π

0
γpα1q cot

1
2
pζpαq ´ ζpα1qq dα1 `

γpαqζ˚αpαq

2s2
α

, (2.3.18)

where the pv denotes a principal value integral, γ B µα is the (non-normalized) vortex sheet strength and p¨q˚

denotes complex conjugation. Note that the integral in (2.3.18) is the (complex conjugate of the)

complexified Birkhoff-Rott integral. We denote the real Birkhoff-Rott integral as BR “ pBR1, BR2q and so

CpBRq˚pαq “
1

4πi
pv
ˆ 2π

0
γpα1q cot

1
2
pζpαq ´ ζpα1qq dα1, (2.3.19)

where C : pa, bq ÞÑ a` ib. Following (2.3.18), we can write

lim
px,yqÑpξ,ηq

∇ϕ0px, yq “ BR`
γ

2sα
t̂. (2.3.20)

The quantity γ
2sα

is known as the true vortex sheet strength as it gives the jump in the tangential component of
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the velocity across the free boundary:

rvs|St ¨ t̂ “
γ

2sα
. (2.3.21)

A key aspect of our methods that restricts us to considering the 2d case involves the simplification of the

Birkhoff-Rott integral in (2.3.19), namely summing over periodic images to obtain a complex cotangent

kernel. It is also worthwhile to reinforce that the integral defining BR is a singular integral as this fact shall

be important in the analysis to come.

We shall use a single layer potential on B, where we impose Neumann boundary conditions. That is, for

ϕ1, we have

ϕ1px, yq “
1

2π

ˆ `8
´8

ωpα1qs1,αpα
1q log

∣∣∣px´ ξ1pα
1q, y´ η1pα

1qq
∣∣∣ dα1,

where px, yq is a point in the fluid region and s1,α is the arclength parameter on the bottom. Notice that in this

case the arclength parameter s1,α depends upon α. We again take the gradient and express it as a complex

quantity:

pBx ´ iByqϕ1px, yq “
1

2π

ˆ `8
´8

ωpα1qs1,αpα
1q
px´ ξ1pα

1qq ´ ipy´ η1pα
1qq∣∣∣px´ ξ1pα1qq ` ipy´ η1pα1qq
∣∣∣2 dα1.

As we did with the double layer potential, we can sum over periodic images and obtain a cotangent kernel.

This process results in

pBx ´ iByqϕ1px, yq “
1

4π

ˆ 2π

0
ωpα1qs1,αpα

1q cot
1
2
ppx` iyq ´ ζ1pα

1qq dα1.

This integral is not singular on St and so we can evaluate it along the free boundary in a straightforward way.

We define Y B ∇ϕ1pζq and so have

CpYq˚pαq “
1

4π

ˆ 2π

0
ωpα1qs1,αpα

1q cot
1
2
pζpαq ´ ζ1pα

1qq dα1. (2.3.22)

We again use a single layer potential on the boundary of the obstacle O:

ϕ2px, yq “
1

2π

ˆ 2π

0
βpα1qs2,αpα

1q log
∣∣∣px´ ξ2pα

1q, y´ η2pα
1qq
∣∣∣ dα1,

where, once more, px, yq is a point in the fluid region and s2,α is the arclength parameter on C. Again, s2,α is
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dependent upon α. We can write the gradient as an integral over a single period like in the previous cases.

Given that the computations are basically identical to the ones we just did for the bottom, we shall omit them.

Ultimately, we set Z B ∇ϕ2pζq and have

CpZq˚pαq “
1

4π

ˆ 2π

0
βpα1qs2,αpα

1q cot
1
2
pζpαq ´ ζ2pα

1qq dα1. (2.3.23)

Once more, we notice that the integral defining Z is not singular.

It shall be convenient to introduce the notation W B BR` Y` Z` χ
`

∇ϕcylpζq ` V0
˘

. With this

notation in place, utilizing (2.3.16), we can write U along the interface as

Upαq “ Wpαq ¨ n̂pαq. (2.3.24)

We shall write U “ U0 ` U1 ` U2 ` χU3, where

U0 B BR ¨ n̂, U1 B Y ¨ n̂, U2 B Z ¨ n̂, U3 B ∇ϕcylpζq ¨ n̂V0 ¨ n̂.

Given the singular nature of BR, it will be useful to decompose it, as well as BRα, into a singular term

and a smooth remainder. To this end, we shall utilize the following decompositions, proofs of which can be

found in [Amb1]:

CpBRq˚ “
1
2i
H

ˆ

γ

ζα

˙

` Krζsγ, (2.3.25)

BRα “
1

2sα
Hpγαqn̂´

1
2sα
Hpγθαqt̂`m, (2.3.26)

where Kr¨s is a smoothing operator (see Lemma 3.5 in [Amb1] or Lemma 2.4.5 below) given by

Krζs f pαq B
1

4πi

ˆ b`π

b´π
f pα1q

„

cot
1
2
pζdpαq ´ ζdpα

1qq ´
1

ζαpα1q
cot

1
2
pα´ α1q



dα1, (2.3.27)

where b can be any real number. On the other hand, m is given by

Cpmq˚ B
ζα
2i

“

H , ζ´2
α

‰

ˆ

γα ´
γζαα
ζα

˙

` ζαKrζs
ˆ

γα
ζα
´
γζαα

ζ2
α

˙

. (2.3.28)

So, the singular parts of BR and BRα are given by Hilbert transforms, while the smooth part of CpBRq˚ is
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given by Krζsγ and the smooth part of BRα is given by m. We shall occasionally write m “ B`R, where B

is the commutator term and R is the term involving the operator Krζs.

The terms in m arise upon approximating ζpαq ´ ζpα1q to first order via Taylor expansion and then

rewriting the remainder. The reader may turn to [Amb1] for all of the details. The singular nature of BR, as

opposed to the other terms in W, means that it will, at times, be useful to distinguish it from the remaining

terms. To do so, we write W “ BR`ĂW.

A quantity which shall appear frequently in the work to come is BαpV ´W ¨ t̂q, which results from the

choice of V ‰ W ¨ t̂. Using the geometric identity t̂α “ θαn̂, we can formulate a convenient expression for

BαpV ´W ¨ t̂q:

BαpV ´W ¨ t̂q “ θαU ` sαt ´Wα ¨ t̂´W ¨ pθαn̂q “ sαt ´Wα ¨ t̂. (2.3.29)

We can obtain a useful representation of BRα ¨ t̂ via equation (2.3.26). The remaining terms in Wα are

regular and so are quite a bit simpler to grasp. We can simply compute them as follows, integrating by parts

to retain the cotangent kernel:

BαCpYq˚pαq “
1

4π

ˆ 2π

0
Bα1

ˆ

ωpα1qs1,αpα
1qζαpαq

ζ1,αpα1q

˙

cot
1
2
pζpαq ´ ζ1pα

1qq dα1, (2.3.30)

BαCpZq˚pαq “
1

4π

ˆ 2π

0
Bα1

ˆ

βpα1qs2,αpα
1qζαpαq

ζ2,αpα1q

˙

cot
1
2
pζpαq ´ ζ2pα

1qq dα1, (2.3.31)

Bαp∇ϕcylpζpαqqq “ ∇
2ϕcylpζpαqqζαpαq, (2.3.32)

where ∇2ϕcyl denotes the Hessian of ϕcyl.

2.3.3 Evolution Equations

Recall that, following the approach in [AmbEtAl], the variables which we shall evolve are θ, γ, ω and β.

Notice that we do not explicitly evolve sα or L. This will cause no trouble as after solving for the given

variables, we can obtain U and then easily solve for sα and/or L. Here we wish to write out the system of

evolution equations for θ, γ, ω and β. Derivations of the evolution equations can be found in [AmbEtAl].

Utilizing the definition of θ, we can easily see that

θt “
Uα ` θαV

sα
. (2.3.33)
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Using (2.3.26), we can rewrite (2.3.33) as

θt “
1

2s2
α

Hpγαq `
θα
sα

`

V ´W ¨ t̂
˘

`
1
sα
ĂWα ¨ n̂`

m ¨ n̂
sα

. (2.3.34)

Recall that γ is the vortex sheet strength and related to the velocity potential at the free surface by

γ B µα, where µ, on the other hand, is the density of the double layer potential at the free surface. Hence, via

standard layer potential theory (e.g., see [Fol]), we know that µ represents the jump in ϕ0 across the free

boundary. The derivation of the evolution equation for γ is substantially more involved than that for θ.

Roughly, one begins from (2.3.20) and rearranges to obtain an expression for γ, which is then differentiated

with respect to time. One rewrites the resulting expression using the Bernoulli equation and then uses the

Laplace-Young condition on the pressure at the interface. This is where we can exploit the highly simplified

expression for the curvature of the free surface in (2.3.12). This process yields the following evolution

equation for γ:

γt “ Bα

ˆ

2τ
sα
θα `

1
sα
pV ´W ¨ t̂qγ ´

γ2

4s2
α

´ 2gη
˙

´ 2sαWt ¨ t̂` 2pV ´W ¨ t̂qpWα ¨ t̂q. (2.3.35)

We can rewrite equation (2.3.35) by expanding the derivative and applying (2.3.29). We then have

γt “
2τ
sα
θαα `

γ

2s2
α

Hpγθαq `
γα
sα

`

V ´W ¨ t̂
˘

`
γ

sα

´

sαt ´ĂWα ¨ t̂´m ¨ t̂
¯

´ 2sαWt ¨ t̂´
γγα

2s2
α

´ 2gηα ` 2
`

V ´W ¨ t̂
˘

Wα ¨ t̂. (2.3.36)

Observe that the γt equation is nonlocal; in particular, it is an integro-differential equation due to the presence

of Wt ¨ t̂.

Finally, we turn our attention to the evolution equations for ω and β. Recall that ω is the density of the

layer potential on the bottom and β is the density of the layer potential on the obstacle. In order to write the

evolution equations (and later equations) more compactly, we introduce some notation for the integral

kernels. These integral kernels, as well as the evolution equations for ω and β, arise from enforcing the
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homogeneous Neumann boundary conditions on the solid boundaries. On the free surface, we have

k1
S
pα, α1q “ Re

"

1
2s1,αpαq

ζ1,αpαq cot
1
2
pζ1pαq ´ ζpα1qq

*

,

k2
S
pα, α1q “ Re

"

1
2s2,αpαq

ζ2,αpαq cot
1
2
pζ2pαq ´ ζpα1qq

*

. (2.3.37)

Notice that the integral kernels in (2.3.37) are time-dependent. The kernels on the bottom are

k1
B
pα, α1q “ Re

"

is1,αpα
1q

2s1,αpαq
ζ1,αpαq cot

1
2
pζ1pαq ´ ζ1pα

1qq

*

,

k2
B
pα, α1q “ Re

"

is1,αpα
1q

2s2,αpαq
ζ2,αpαq cot

1
2
pζ2pαq ´ ζ1pα

1qq

*

. (2.3.38)

Finally, the kernels on the boundary of the obstacle are given by

k1
Cpα, α

1q “ Re

"

is2,αpα
1q

2s1,αpαq
ζ1,αpαq cot

1
2
pζ1pαq ´ ζ2pα

1qq

*

,

k2
Cpα, α

1q “ Re

"

is2,αpα
1q

2s2,αpαq
ζ2,αpαq cot

1
2
pζ2pαq ´ ζ2pα

1qq

*

. (2.3.39)

Notice that, at first appearance, it seems that the kernels k1
B

and k2
C

are also singular. However, they are in fact

not singular (see [AmbEtAl] for details). We also note that the kernels in (2.3.38) and (2.3.39) are

independent of time.

Utilizing this notation, the evolution equations for ω and β are given by

ˆ

1
2
ωtpαq `

1
2π

ˆ 2π

0
ωtpα

1qk1
B
pα, α1q dα1

˙

“ ´
1

2π

ˆ 2π

0
γpα1qk1

S,tpα, α
1q dα1 ´

1
2π

ˆ 2π

0
γtpα

1qk1
S
pα, α1q dα1

´
1

2π

ˆ 2π

0
βtpα

1qk1
Cpα, α

1q dα1 (2.3.40)

and

ˆ

1
2
βtpαq `

1
2π

ˆ 2π

0
βtpα

1qk2
Cpα, α

1q dα1
˙

“ ´
1

2π

ˆ 2π

0
γpα1qk2

S,tpα, α
1q dα1 ´

1
2π

ˆ 2π

0
γtpα

1qk2
S
pα, α1q dα1

´
1

2π

ˆ 2π

0
ωtpα

1qk2
B
pα, α1q dα1. (2.3.41)

The equations for ωt and βt are integral equations and so, like the evolution equation for γ, are nonlocal.

44



Combining (2.3.34), (2.3.36), (2.3.40) and (2.3.41), we have the full water waves system which we shall

study:
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θt “
1

2s2
α

Hpγαq `
θα
sα

`

V ´W ¨ t̂
˘

`
1
sα
ĂWα ¨ n̂`

m ¨ n̂
sα

γt “
2τ
sα
θαα `

γ

2s2
α

Hpγθαq `
γα
sα

`

V ´W ¨ t̂
˘

`
γ

sα

´

sαt ´ĂWα ¨ t̂´m ¨ t̂
¯

´2sαWt ¨ t̂´
γγα

2s2
α

´ 2gηα ` 2
`

V ´W ¨ t̂
˘

Wα ¨ t̂

ωt “ ´
1
π

ˆ 2π

0
ωtpα

1qk1
B
p¨, α1q dα1 ´

1
π

ˆ 2π

0
γpα1qk1

S,tp¨, α
1q dα1

´
1
π

ˆ 2π

0
γtpα

1qk1
S
p¨, α1q dα1 ´

1
π

ˆ 2π

0
βtpα

1qk1
Cp¨, α

1q dα1

βt “ ´
1
π

ˆ 2π

0
βtpα

1qk2
Cp¨, α

1q dα1 ´
1
π

ˆ 2π

0
γpα1qk2

S,tp¨, α
1q dα1

´
1
π

ˆ 2π

0
γtpα

1qk2
S
p¨, α1q dα1 ´

1
π

ˆ 2π

0
ωtpα

1qk2
B
p¨, α1q dα1

θpt “ 0q “ θ0, γpt “ 0q “ γ0, ωpt “ 0q “ ω0, βpt “ 0q “ β0

. (2.3.42)

Remark 2.3.1. 1. Compare the integral kernels given above in equations (2.3.37)-(2.3.39) with the Kk j

and Gk j in Table 1 in [AmbEtAl]. Note that there are superficial differences between the kernels we

use and the kernels in [AmbEtAl] due to a minor difference of how the arclength terms sk,α are

handled, but they are otherwise the same.

2. The equations in (2.3.42) correspond to the the first equation in (2.10), equation (4.14) and the system

(4.17) with N “ 2 in [AmbEtAl]. The equation we utilize for γt in (2.3.42) more closely corresponds to

the evolution equation obtained in Appendix D of [AmbEtAl].

Remark 2.3.2. As noted above, the evolution equations for γ, ω and β are nonlocal. In fact, we can now

clearly see that the system (2.3.42) is of the form (2.1.1). We shall refer to FpΘq as the right-hand side of the

system and write F “ pF1,F2,F3,F4q
t. Since pid`K q is invertible (see [AmbEtAl] or Section 10 below),

we have

BtΘ “ pid`K rΘsq´1
FpΘq.

This motivates the plan of attack outlined earlier:

1. Obtain energy estimates for the model problem (2.1.4).
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2. Use mapping properties of pid`K r¨sq´1 to conclude that the estimates still hold for the full system

(2.3.42).

2.4 The Right-Hand Side F

In order to carry out the strategy outlined in Remark 2.3.2, we will need to determine the correct model

problem, which necessitates determining which terms belong to the right-hand side FpΘq, and write down

the model problem (2.1.4) in a way that is amenable to carrying out the needed energy estimates. This will

involve exploiting some subtle cancellation. We begin by decomposing the system (2.3.42) into terms that

belong to K rΘsΘt (i.e., those that involve a nonlocal operator acting on γt, ωt or βt; no equation involves

nonlocal operators acting on θt) and those that belong in the right-hand side FpΘq (all other terms). Noting

that the evolution equation for θ contains no nonlocal terms, we write

γt “ Fγ ` Nγ,

ωt “ Fω ` Nω,

βt “ Fβ ` Nβ,

where the F terms belong to the right-hand side and the N terms arise from K rΘs being applied to Θt. This

can be done immediately in the case of the ωt equation and the βt equation. In particular, we have

Fω “ ´
1
π

ˆ 2π

0
γpα1qk1

S,tpα, α
1q dα1, (2.4.1)

Fβ “ ´
1
π

ˆ 2π

0
γpα1qk2

S,tpα, α
1q dα1. (2.4.2)

Then, Nω contains the remaining integrals in (2.3.40), multiplied by 2 to clear the factor of 1
2 in front of ωt,

with Nβ defined analogously from equation (2.3.41).

For the γt equation, we begin by noticing that the only terms in Nγ will arise from Wt; in particular, only

BRt, Yt and Zt will contribute terms to Nγ. As such, we will write BRt “ FBR ` NBR, Yt “ FY ` NY and

Zt “ FZ ` NZ. We now compute the relevant pieces of Wt, integrating by parts to retain the cotangent
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kernel:

BtCpBRq˚pαq “
1

4πi
pv
ˆ 2π

0
γtpα

1q cot
1
2
pζpαq ´ ζpα1qq dα1

`
1

4πi
pv
ˆ 2π

0
Bα1

ˆ

γpα1qpζtpαq ´ ζtpα
1qq

ζαpα1q

˙

cot
1
2
pζpαq ´ ζpα1qq dα1, (2.4.3)

BtCpYq˚pαq “
1

4π

ˆ 2π

0
ωtpα

1qs1,αpα
1q cot

1
2
pζpαq ´ ζ1pα

1qq dα1

`
1

4π

ˆ 2π

0
Bα1

ˆ

ωpα1qs1,αpα
1qζtpαq

ζ1,αpα1q

˙

cot
1
2
pζpαq ´ ζ1pα

1qq dα1, (2.4.4)

BtCpZq˚pαq “
1

4π

ˆ 2π

0
βtpα

1qs2,αpα
1q cot

1
2
pζpαq ´ ζ2pα

1qq dα1

`
1

4π

ˆ 2π

0
Bα1

ˆ

βpα1qs2,αpα
1qζtpαq

ζ2,αpα1q

˙

cot
1
2
pζpαq ´ ζ2pα

1qq dα1. (2.4.5)

Now, we can clearly see that CpFBRq
˚ is the second integral in equation (2.4.3) and CpNBRq

˚ is the first

integral. It is the same for FY, FZ, NY and NZ.

2.4.1 Rewriting FBR

Given that FBR is given by a singular integral, it will be beneficial to decompose it into smaller pieces.

This decomposition will additionally give rise to the previously mentioned cancellation. We begin by using

the Leibniz rule to rewrite FBR:

CpFBRq
˚ “

1
4πi

pv
ˆ 2π

0
Bα1

ˆ

γpα1q

ζαpα1q

˙

pζtpαq ´ ζtpα
1qq cot

1
2
pζpαq ´ ζpα1qq dα1

´
1

4πi
pv
ˆ 2π

0

γpα1q

ζαpα1q
ζtαpα

1q cot
1
2
pζpαq ´ ζpα1qq dα1.

We want to rewrite ζtα. Utilizing the identity ζα “ sαeiθ gives

Btζα “ Btpsαeiθq “ sαteiθ ` sαpiθteiθq “
sαt

sα
ζα ` iθtζα.

We now substitute equation (2.3.34) for θt to obtain

ζtα “
sαt

sα
ζα ` iζα

ˆ

1
2s2

α

Hpγαq `
θα
sα

`

V ´W ¨ t̂
˘

`
1
sα
ĂWα ¨ n̂`

m ¨ n̂
sα

˙

. (2.4.6)

We can now decompose FBR into a singular term involving the Hilbert transform and a remainder term

involving a smoothing operator K. To carry this out, we make use of a similar decomposition of the
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Birkhoff-Rott integral given above in (2.3.25). Decomposing FBR similarly yields

CpFBRq
˚ “ rζt,Hs

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙

` rζt,Krζss
ˆ

Bα

ˆ

γ

ζα

˙˙

´
1
2i
H

ˆ

ζtα

ζα

ˆ

γ

ζα

˙˙

´ Krζs
ˆ

ζtα

ˆ

γ

ζα

˙˙

. (2.4.7)

We will then substitute in equation (2.4.6). After substituting, we will factor some of the terms out of the

Hilbert transform, thus picking up some commutators, exploit the identityH2
“ ´ id and do a bit of

rearranging. The result of these operations is

CpFBRq
˚ “ rζt,Hs

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙

` rζt,Krζss
ˆ

Bα

ˆ

γ

ζα

˙˙

´
sαt

2isα
H

ˆ

γ

ζα

˙

´
sαt

sα
Krζsγ `

γγα

4s2
αζα

´
1

4s2
α

„

H ,
γ

ζα



pHpγαqq ´
i

2s2
α

KrζspγHpγαqq

´
1

2sα
H

ˆ

γm ¨ n̂
ζα

˙

´
i

sα
Krζspγm ¨ n̂q ´

V ´W ¨ t̂
2sαζα

Hpγθαq

´
1

2sα

„

H ,
V ´W ¨ t̂

ζα



pγθαq ´
i

sα
KrζspγθαpV ´W ¨ t̂qq ´

1
2sα
H

˜

γĂWα ¨ n̂
ζα

¸

´
i

sα
KrζspγĂWα ¨ n̂q. (2.4.8)

This is the decomposed version of FBR which we shall use. We can now see the cancellation that will occur

between FBR and pV ´W ¨ t̂qWα ¨ t̂.

2.4.2 Obtaining the Cancellation

To obtain the desired cancellation, we begin by considering

pV ´W ¨ t̂qWα ¨ t̂ “ pV ´W ¨ t̂qpBRα ¨ t̂`ĂWα ¨ t̂q

“ pV ´W ¨ t̂q
ˆ

´
1

2sα
Hpγθαq `m ¨ t̂`ĂWα ¨ t̂

˙

.

We therefore have

2pV ´W ¨ t̂qWα ¨ t̂´ 2sαFBR ¨ t̂ “ ´
V ´W ¨ t̂

sα
Hpγθαq `

V ´W ¨ t̂
sα

Hpγθαq

` 2pV ´W ¨ t̂qpm ¨ t̂`ĂWα ¨ t̂q ´ 2sαbr0 ¨ t̂

“ 2pV ´W ¨ t̂qpm ¨ t̂`ĂWα ¨ t̂q ´ 2sαbr0 ¨ t̂,
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where

Cpbr0q
˚ B CpFBRq

˚ `
V ´W ¨ t̂

2sαζα
Hpγθαq.

Most of the terms in br0 shall be routine to estimate, however we do have one transport term which we wish

to isolate. As such, we write

Cpbr0q
˚ “

γγα

4s2
αζα

` Cpbr1q
˚,

which implies that

2sαbr0 ¨ t̂ “
γγα

2s2
α

` 2Re
!

Cpbr1q
˚ζα

)

.

This prepares us to write down the right-hand side of the γt equation (those terms belonging to F2):

F2pΘq “
2τ
sα
θαα `

γ

2s2
α

Hpγθαq `
γα
sα

`

V ´W ¨ t̂
˘

´
γγα

s2
α

`
γ

sα

´

sαt ´ĂWα ¨ t̂´m ¨ t̂
¯

´ 2gηα ` 2
`

V ´W ¨ t̂
˘

pm ¨ t̂`ĂWα ¨ t̂q

´ 2sα
“

br1 ` FY ` FZ ` χBtp∇ϕcylpζqq
‰

¨ t̂. (2.4.9)

2.4.3 Writing Down the System Θt “ FpΘq

As previously noted, we will first consider the model problem (2.1.4). In (2.1.4), the right-hand side

FpΘq is given by

F1pΘq “
1

2s2
α

Hpγαq `
θα
sα

`

V ´W ¨ t̂
˘

`
1
sα
ĂWα ¨ n̂`

m ¨ n̂
sα

F2pΘq “
2τ
sα
θαα `

γ

2s2
α

Hpγθαq `
γα
sα

`

V ´W ¨ t̂
˘

´
γγα

s2
α

`
γ

sα

´

sαt ´ĂWα ¨ t̂´m ¨ t̂
¯

´ 2gηα ` 2
`

V ´W ¨ t̂
˘

pm ¨ t̂`ĂWα ¨ t̂q

´ 2sα
“

br1 ` FY ` FZ ` χBtp∇ϕcylpζqq
‰

¨ t̂

F3pΘq “ ´
1
π

ˆ 2π

0
γpα1qk1

S,tpα, α
1q dα1

F4pΘq “ ´
1
π

ˆ 2π

0
γpα1qk2

S,tpα, α
1q dα1. (2.4.10)

Remark 2.4.1. Though simpler than (2.3.42), the system (2.1.4) is still a rather complicated, quasilinear

system. In order to handle this, we will utilize an approach which is quite common in the study of quasilinear
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hyperbolic equations. Namely, we will first work with a regularized version of our system and then pass to

the limit as the regularization parameter δÑ 0` to solve the non-regularized system. The regularization

scheme that we shall use is much like the one used in [Amb1] and the interested reader can consult this

paper for further details. Also, Section 16.1 of [Tay3] has a good presentation of this approach to

quasilinear hyperbolic equations, including a detailed example of its application to a quasilinear, symmetric

hyperbolic system. (see also [MaBe] for applications to equations arising in fluid dynamics).

2.4.4 The Regularized Evolution Equations for the System (2.1.4)

Now, we want to obtain an appropriately regularized version of the system (2.1.4). We begin by simply

writing down the regularized evolution equations, and then we will go back to briefly discuss how the

regularized terms are constructed. Beginning with θ, we have

θδt “
1

2psδαq2
HpJδ γ

δ
αq `

1
sδα
Jδ

``

Vδ ´Wδ ¨ t̂δ
˘

Jδ θ
δ
α

˘

`
1
sδα
ĂWδ

α ¨ n̂
δ `

mδ ¨ n̂δ

sδα
` µδ. (2.4.11)

Notice that there is no term corresponding to µδ in the non-regularized equation. Its purpose is to enforce the

condition that ζδpαq ´ α be 2π-periodic and it is given by

µδptq B ´

ˆ 2π

0
sδαtζ

δ
α ` iUδ

αζ
δ
α ` Vδζδαα dα

isδα

ˆ 2π

0
ζδα dα

. (2.4.12)

See [Amb1] for the derivation of µδ and the proof that it enforces the aforementioned periodicity condition.

The same calculations and arguments work in the present setting with the only difference being the terms

contained in U.

We now turn to the γt equation:

γδt “
2τ
sδα
Jδ θ

δ
αα`

1
2psδαq2

Hppγδq2Jδ θ
δ
αq`

1
sδα
Jδ

``

Vδ ´Wδ ¨ t̂δ
˘

Jδ γ
δ
α

˘

´
Jδpγ

δJδ γ
δ
αq

psδαq2
`mδ

γ. (2.4.13)

The term mδ
γ is primarily a remainder term, but it does contain one term not appearing in the non-regularized

system. Notice that in the regularized evolution equation for γ we have pulled a factor of γδ through the
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Hilbert transform. The cost of doing so is a (smooth) commutator which we also include in mδ
γ. We thus have

mδ
γ “

γδ

sδα

´

sδαt ´
ĂWδ

α ¨ t̂
δ ´mδ ¨ t̂δ

¯

´ 2gηδα ` 2Jδ
´

`

Vδ ´Wδ ¨ t̂δ
˘

Jδpmδ ¨ t̂δ `ĂWδ
α ¨ t̂

δq

¯

´ 2sδαJδ
`“

brδ1 ` Fδ
Y ` Fδ

Z ` χBtp∇ϕcylpζ
δqq

‰

¨ t̂δ
˘

´
“

H , γδ
‰

ˆ

γδJδ θ
δ
α

2psδαq2

˙

. (2.4.14)

For ω and β, we have

ωδt “ ´
1
π

ˆ 2π

0
γδpα1qk1,δ

S,tpα, α
1q dα1 (2.4.15)

and

βδt “ ´
1
π

ˆ 2π

0
γδpα1qk2,δ

S,tpα, α
1q dα1. (2.4.16)

The regularized system we consider is then

$
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θδt “
1

2psδαq2
HpJδ γ

δ
αq `

1
sδα
Jδ

``

Vδ ´Wδ ¨ t̂δ
˘

Jδ θ
δ
α

˘

`
1
sδα
ĂWδ

α ¨ n̂
δ `

mδ ¨ n̂δ

sδα
` µδ

γδt “
2τ
sδα
Jδ θ

δ
αα `

1
2psδαq2

Hppγδq2Jδ θ
δ
αq `

1
sδα
Jδ

``

Vδ ´Wδ ¨ t̂δ
˘

Jδ γ
δ
α

˘

´
Jδpγ

δJδ γ
δ
αq

psδαq2
` mδ

γ

ωδt “ ´
1
π

ˆ 2π

0
γδpα1qk1,δ

S,tpα, α
1q dα1

βδt “ ´
1
π

ˆ 2π

0
γδpα1qk2,δ

S,tpα, α
1q dα1

θδpt “ 0q “ θ0, γ
δpt “ 0q “ γ0, ω

δpt “ 0q “ ω0, β
δpt “ 0q “ β0

.

(2.4.17)

We shall now succinctly describe the various terms appearing in the regularized equations, beginning

with the family of mollifiers Jδ. For each δ P p0, 1s, we have a corresponding operator Jδ, which is an

approximation of the identity. We conceptualize the operator Jδ as truncating the Fourier series via zeroing

out modes with wavenumber greater than δ´1. There are other ways to conceptualize these mollifiers, for

example one might also conceptualize Jδ as convolution with an approximation of the Dirac mass depending

on the parameter δ. Notice that, given our conceptualization of Jδ, each Jδ will be a Fourier multiplier and

so will commute with other Fourier multipliers. In addition, Jδ will be self-adjoint. We shall now state two

results regarding the action of Jδ on Sobolev spaces Hr. The first is
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Lemma 2.4.2. Let δ P p0, 1s and u P Hr for some r P R. Then, for any k P N0, we have Jδ u P Hr`k with

}Jδ u}Hr`k À δ´k}u}Hr .

Proof. This is part of the content of Lemma 3.5 in [MaBe], which is proved in the appendix for Chapter 3 in

the same. �

Lemma 2.4.2 tells us a couple of interesting properties of the mollifiers Jδ. First, by taking k “ 0, we

see that Jδ is a bounded (and hence continuous) linear operator on Hr for any r P R. The second property is

that we can exchange derivatives of Jδ u for powers of δ´1. This is, in fact, a Bernstein-type result in

disguise. Indeed, recall that we are conceptualizing the action of Jδ as truncating the Fourier series by

zeroing out modes with frequencies greater than δ´1. Put another way, we have

suppF pJδ uq Ă
 

|ξ| ď δ´1(.

A Bernstein-type lemma (similar to Lemma 1.3.3, but not focused on dyadic frequencies) will then give

›

›Bk
αJδ u

›

›

L2 À δ´k}Jδ u}L2 À δ´k}u}L2 ,

where the last inequality follows from the first property we noted (specifically, Jδ is a bounded operator on

L2 which we identify with H0).

The plan of attack outlined in Remark 2.4.1 necessitates taking the limit as δÑ 0` of the sequence of

regularized solutions. Thus, we will need to ensure that the sequence of solutions converges and proving this

will require estimating terms of the form Jδ u´Jδ̃ u in norm. The next result allows us to do this:

Lemma 2.4.3. For u P H1 and δ, δ̃ P p0, 1s,

}Jδ u´Jδ̃ u}L2 ď maxpδ, δ̃q}u}H1 .

Proof. This is Lemma 2.2 of [Amb1]. See Lemma 3.5 (and its proof in the appendix) in [MaBe]. �

Consider a sequence δk Ñ 0`. Notice that Lemma 2.4.3 implies that tJδk uu
`8

k“1 is a Cauchy sequence

(in L2) as soon as u P H1.
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Most of the nuance in defining the regularized terms lies in constructing ζδ and BRδ. We shall define ζδ

and BRδ exactly as in [Amb1] and the interested reader can find all of the details in that paper. The

remaining regularized terms are defined in the same way as the non-regularized ones with ζ, BR, γ, etc.

replaced with ζδ, BRδ, γδ, etc. For example, Cpn̂δq B iζδα
sδα

, where sδα B
∣∣∣ζδα∣∣∣, Θδ solves (2.4.17) and

CpYδq˚pαq B
1

4π

ˆ 2π

0
ωδpα1qs1,αpα

1q cot
1
2
pζδpαq ´ ζ1pα

1qq dα1.

We now state some useful results regarding the term ζd and the operator K used in the decomposition

(2.3.25).

Lemma 2.4.4. Let r ě 0. If θ P Hr, then ζd P Hr`1 with the estimate

}ζd}Hr`1 À 1` }θ}Hr . (2.4.18)

Proof. We define ζ exactly the same as z in [Amb1]. Ergo, the desired estimate follows directly from

Lemma 3.2 in [Amb1] . �

We include the following two results regarding mapping properties of K which will be of use to us.

Lemma 2.4.5. If ζd P Hr`1, r P Z with r ě 3, then Krζs : H j Ñ Hr` j´1, for j P t1, 0,´1u, with the

estimate

}Krζs f }Hr` j´1 À } f }H jp1` }θ}Hrq
3. (2.4.19)

Proof. We shall show that Krζs : H´1 Ñ Hr´2 with the corresponding estimate; the proofs of the other

claims are contained in Lemma 3.5 of [Amb1]. In proving this mapping property, we follow the proof given

in [Amb1]. We begin by writing K “ K1 ` K2, where

K1rζs f pαq “
1

2πi

ˆ 2π

0
f pα1q

„

1
ζdpαq ´ ζdpα1q

´
1

ζαpα1qpα´ α1q



dα1, (2.4.20)

K2rζs f pαq “
1

4πi

ˆ α`π

α´π
f pα1q

„

g
ˆ

1
2
pζdpαq ´ ζdpα

1qq

˙

´
1

ζαpα1q
g
ˆ

1
2
pα´ α1q

˙

dα1. (2.4.21)

In the above definition, g is a function, holomorphic at the origin, such that

cot z “
1
z
` gpzq.
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Notice that the choice of limits of integration in the definition of K2 allows us to integrate over one period

while avoiding the poles of g, which by definition must be the non-zero integer multiples of 2π – this choice

of limits of integration will force
∣∣∣α´ α1

∣∣∣ ď π.

First, consider

Br´2
α K1rζs f pαq “

1
2πi

ˆ 2π

0
f pα1qBr´2

α

„

1
ζdpαq ´ ζdpα1q

´
1

ζαpα1qpα´ α1q



dα1.

We then apply one of the r ´ 2 derivatives to the quantity inside the brackets:

Br´2
α K1rζs f pαq “

1
2πi

ˆ 2π

0
f pα1qBr´3

α

„

´
ζαpαq

pζdpαq ´ ζdpα1qq2
`

1
ζαpα1qpα´ α1q2



dα1.

By rearranging the factors of ζα, we can write the quantity in brackets as a derivative with respect to α1:

Br´2
α K1rζs f pαq “

1
2πi

ˆ 2π

0

f pα1q
ζαpα1q

Br´3
α Bα1

„

1
α´ α1

´
ζαpαq

ζdpαq ´ ζdpα1q



dα1.

Then, by integrating by parts and recognizing the quantity in brackets as a ratio of divided differences, we

can rewrite this expression to obtain

Br´2
α K1rζs f pαq “

1
2πi

ˆ 2π

0
B
´1
α1

ˆ

f pα1q
ζαpα1q

˙

Br´3
α B2

α1

„

q2pα, α
1q

q1pα, α1q



dα1.

We introduced above some notation used in [Amb1]:

q1pα, α
1q B

ζdpαq ´ ζdpα
1q

α´ α1
, q2pα, α

1q B
ζdpαq ´ ζdpα

1q ´ ζαpαqpα´ α1q

pα´ α1q2
. (2.4.22)

From here, we deduce the immediate bound

∣∣∣Br´2
α K1rζs f pαq

∣∣∣ À ›

›

›

›

f
ζα

›

›

›

›

H´1

›

›

›

›

q2

q1

›

›

›

›

Hr´1
.

In particular, notice that since q2
q1

is in Hr´1, in both variables (see Lemma 3.4 in [Amb1]), we know that q2
q1

will be in Wr´3,8
α and H2

α1
. Lemma 1.3.9 and the Sobolev algebra property then imply that

∣∣∣Br´2
α K1rζs f pαq

∣∣∣ À } f }H´1

›

›

›

›

1
ζα

›

›

›

›

H1`
}q2}Hr´1

›

›

›

›

1
q1

›

›

›

›

Hr´1
.
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Finally, we can apply Lemma 1.3.7 in conjunction with Lemma 3.4 from [Amb1] (an estimate on the Hr

norms of the divided differences q1 and q2) to deduce that

}K1rζs f }Hr´2 À } f }H´1p1` }θ}Hrq
3. (2.4.23)

A similar modification of the argument in [Amb1] implies that

}K2rζs f }Hr´2 À } f }H´1p1` }θ}Hrq
2. (2.4.24)

Combining (2.4.23) and (2.4.24) gives the desired result. �

Lemma 2.4.6. If θ, θ̃ P H1, and the associated ζ, ζ̃ satisfy equations (2.3.2), (2.5.6) and (2.5.7), then we

have the following Lipschitz estimate for K:

›

›Krζs f ´ Krζ̃s f
›

›

H1 À } f }H1

›

›θ ´ θ̃
›

›

H1 . (2.4.25)

Proof. See Lemma 3.6 in [Amb1]. �

As noted earlier, the above regularization scheme is common in studying quasilinear PDE. The usual

plan of attack in using such a scheme is to prove that solutions to the regularized equations exist and that

those solutions satisfy an appropriate uniform (in δ) energy estimate. The energy estimate allows one to

deduce a common existence time (independent of δ) for the regularized solutions. Then, one can show that

the limit as δÑ 0` of the regularized solutions exists and satisfies the non-regularized system. Carrying out

the above plan will be the focus of the next two sections. We will begin by defining a suitable energy and

then establishing the uniform energy estimate.

2.5 The Energy Estimate

Now that we have the appropriate evolution equations, as well as the above preliminary remarks and

results under our belts, we shall begin the process of proving the first main result. The results in the next two

sections are, unless otherwise noted, all concerning the regularized equations. For the sake of the reader, we

shall, for the most part, drop the δ notation in the regularized equations. The reader should presume all

quantities are regularized in the manner discussed above unless and until otherwise stated.

A quantity which shall be of fundamental importance to the analysis in the sequel is the energy for a
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solution pθ, γ, ω, βq.

Definition 2.5.1. Inspired by [Amb1], we define the energy of a solution to the regularized system as follows

Eptq “
s`1
ÿ

j“0

E jptq, (2.5.1)

where

E0 “
1
2

´

}θ}2L2 ` }γ}
2
L2 ` }ω}

2
L2 ` }β}

2
L2

¯

, (2.5.2)

E1 “
1
2

´

}Bαω}
2
L2 ` }Bαβ}

2
L2

¯

, (2.5.3)

E j “
1
2

ˆ 2π

0
pB

j´1
α θq2 `

1
4τsα

pB
j´2
α γqΛpB

j´2
α γq `

γ2

16τ2s2
α

pB
j´2
α γq2 dα p2 ď j ď s` 1q. (2.5.4)

We define Λ B H Bα and note that Λ is a Fourier multiplier: Λ “ |D|. We will write E j “ E
j
1 ` E

j
2 ` E

j
3.

We note that in [Amb1], the coefficient of surface tension appeared in the energy implicitly via the

Weber number:

We “
ρ1 ` ρ2

2τ
.

In our case (i.e., the case of water waves where we have normalized to have unit density in the fluid), we have

We “ 1
2τ .

Definition 2.5.2. For E as above, we have

Eptq „ }θptq}2Hs ` }γptq}2Hs´1{2 ` }ωptq}
2
H1 ` }βptq}2H1 “ }Θptq}2HsˆHs´1{2ˆH1ˆH1 . (2.5.5)

We therefore define the energy space to be X B Hs ˆ Hs´1{2 ˆ H1 ˆ H1. We shall let X denote the subset of

X where five conditions are satisfied:

• the chord-arc condition (2.3.2) holds:

Dc ą 0 :

∣∣∣∣∣∣ζpαq ´ ζpα1q

α´ α1

∣∣∣∣∣∣ ą c p@α ‰ α1q;
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• the non-cavitation assumptions (2.3.3) and (2.3.4) hold:

η´ η1 ě h and η´ η2 ě h̃;

• we have

sα ě 1, (2.5.6)

with equality holding in the case θ “ 0;

• and we have the following uniform-in-time bound on the energy:

D0 ă e ă `8 : E ă e. (2.5.7)

Notice that X will depend upon the constants c, h, h̃ and e chosen.

Henceforth, we shall for the most part restrict our attention to X as this is where we shall seek solutions.

Remark 2.5.3. We shall assume throughout that s is sufficiently large for all computations to make sense;

we are not seeking sharp regularity results. Here we simply remark that we shall at least require that s ą 3
2 .

Notice then that, by Lemma 1.3.2, Hs´1{2 ãÑ L8, and therefore Θ P pL8q4. Lemma 2.4.4 implies that

ζd P Hs`1. We will further have ψ B ϕ|St P Hs`1{2, therefore ϕ P Hs`1 and v “ ∇ϕ P Hs. It follows, again

from Lemma 1.3.2, that ζ, v P Lip. This is in line with the standard regularity requirements for proving local

well-posedness by energy methods (see, e.g., [ABZ1]). Further, the definition of sα, the definition of the

energy and the bound on the energy in (2.5.7) imply that sα P L8. Of course, this implies that L P L8 as

well.

Definition 2.5.2 implies that, for Θ P X, we have }Θ}X À 1. Further, by Remark 2.5.3, we also have

}sα}L8 , }L}L8 À 1. Before proceeding to the main energy estimate, we begin by obtaining some a priori

estimates for some important quantities appearing in our evolution equations. These estimates will be used

repeatedly in the sequel when proving the main energy estimate.
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Lemma 2.5.4. The following estimates hold for s sufficiently large:

}BR}L2 À
?
E` E2, (2.5.8)

}Y}L2 À
?
E, (2.5.9)

}Z}L2 À
?
E, (2.5.10)

}Y}Hs`1 À
?
E` E, (2.5.11)

}Z}Hs`1 À
?
E` E, (2.5.12)

›

›∇ϕcylpζq
›

›

Hs`1 À 1`
?
E. (2.5.13)

These estimates hold for both the regularized and non-regularized terms.

Proof. We use the representation (2.3.25) and Lemma 2.4.5 to estimate

}BR}L2 À }γ}L2

›

›

›

›

1
ζα

›

›

›

›

L8
` }γ}1p1` }θ}Hsq

3.

It then follows that

}BR}L2 À }γ}Hs´1{2p1` }θ}Hsq
3. (2.5.14)

To estimate the norm of Y, consider

∣∣∣CpYq˚pαq∣∣∣ À ˆ 2π

0

∣∣∣ωpα1q∣∣∣∣∣∣∣∣s1,αpα
1q cot

1
2
pζpαq ´ ζ1pα

1qq

∣∣∣∣∣ dα1 À }ω}L2 .

This implies the estimate (2.5.9). Next, we consider

∣∣∣Bs`1
α CpYq˚pαq

∣∣∣ ď 1
4π

ˆ 2π

0

∣∣∣ωpα1qs1,αpα
1q
∣∣∣∣∣∣∣∣Bs`1

α cot
1
2
pζpαq ´ ζ1pα

1qq

∣∣∣∣∣ dα1
À }ω}L2}ζd}Hs`1 .

It then follows from Lemma 2.4.4 that

}Y}Hs`1 À }ω}L2 ` }ω}L2}ζd}Hs`1 À }ω}H1p1` }θ}Hsq.

The proofs of (2.5.10) and (2.5.12) are nearly identical to that of (2.5.9) and (2.5.11). Next, recalling
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the definition of ϕcyl in (2.3.14), it is easy to see that ∇ϕcyl is a smooth function and so we can apply Lemma

1.3.7 to obtain
›

›∇ϕcylpζq
›

›

Hs`1 À 1` }ζd}Hs`1 À 1` }θ}Hs . (2.5.15)

�

Lemma 2.5.5. For s sufficiently large, we can control the Hs norms of the unit vectors n̂ and t̂ (both

regularized and non-regularized) in X where we have the following estimates:

}n̂}Hs À 1`
?
E. (2.5.16)

›

›t̂
›

›

Hs À 1`
?
E, (2.5.17)

Proof. We shall only prove the estimate for n̂ as the argument for t̂ is totally analogous. Upon writing

Cpn̂q “ iζα
sα

, Lemma 2.4.4 gives

}n̂}Hs À }ζα}Hs ď }ζd}Hs`1 À 1` }θ}Hs .

�

Lemma 2.5.6. Let s P R be sufficiently large. Then, on X, we can bound sα above and below by

1 ď sα À 1`
?
e. (2.5.18)

This estimate holds for the non-regularized sα and the regularized sδα.

Proof. The lower bound is simply equation (2.5.6) in the definition of X. To obtain the upper bound, we can

apply the definition of sα, Lemma 2.4.4 and Lemma 1.3.2. In particular, these results together imply that

sα ď }ζα}L8 À }ζα}H1{2` ď }ζd}Hs`1 À 1` }θ}Hs À 1`
?
E ă 1`

?
e.

�
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Lemma 2.5.7. For s sufficiently large and pθ, γ, ω, βq P X, the following estimates hold:

|sαt| À E` E
3 ` χp1` |V0|qp

?
E` E

3
2 q, (2.5.19)

›

›m ¨ t̂
›

›

Hs À
?
E` E

9
2 , (2.5.20)

}V}L2 À E` E
3 ` χp1` |V0|qp

?
E` E

3
2 q, (2.5.21)

›

›BαpV ´W ¨ t̂q
›

›

Hs´1 À
?
E` E

9
2 ` χp1` |V0|qp1` E

3
2 q, (2.5.22)

|µ| À
?
E` E

9
2 ` χp1` |V0|qp1` E2q. (2.5.23)

The estimate for }m ¨ n̂}Hs is the same as the estimate given above for
›

›m ¨ t̂
›

›

Hs . Finally, we remark that all

of these estimates hold for the regularized and non-regularized terms.

Proof. We have |Lt| ď }θ}H1}U}L2 . An application of Lemma 2.5.4 yields the desired result.

We recall that m is composed of two types of terms, a commutator and an integral remainder (see

(2.3.28)). Beginning with the commutator, we use Lemma 1.3.13 to control the Hs norm:

›

›B ¨ t̂
›

›

Hs À }ζα}
2
Hs

›

›ζ´2
α

›

›

Hs

›

›

›

›

γα ´
γζαα
ζα

›

›

›

›

Hs´2

Observing that, ζαα “ Bαpsαeiθq “ θαζα, we use the Sobolev algebra property and Lemma 1.3.7 to deduce

that
›

›B ¨ t̂
›

›

Hs À }γ}Hs´1{2p1` }θ}Hsq
6. (2.5.24)

On the other hand, we can use Lemma 2.4.5 to estimate the Hs norm of R ¨ t̂:

›

›R ¨ t̂
›

›

Hs À }ζα}
2
Hs

ˆ
›

›

›

›

γα
ζα

›

›

›

›

H1
`

›

›

›

›

γζαα

ζ2
α

›

›

›

›

H1

˙

p1` }θ}Hsq
3.

The Sobolev algebra property and the identity ζαα “ θαζα imply that

›

›R ¨ t̂
›

›

Hs À }γ}Hs´1{2p1` }θ}Hsq
8. (2.5.25)

Adding (2.5.24) and (2.5.25) gives the desired estimate for
›

›m ¨ t̂
›

›

Hs .
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Moving on, we immediately see that

}V}L2 “
›

›B´1
α pθαU ` sαtq

›

›

L2 „ }θαU ` sαt} 9H´1 ď }θαU}L2 ` |sαt|.

Recalling that |sαt| ď }θ}H1}U}L2 , we deduce from Lemma 1.3.9 that

}V}L2 À }θ}H3{2`}U}L2 .

From here, Lemma 2.5.4 gives the stated estimate for }V}L2 . Next, recalling equations (2.3.29) and (2.3.26),

we have

›

›BαpV ´W ¨ t̂q
›

›

Hs´1 À |sαt|` }Hpγθαq}Hs´1 `
›

›m ¨ t̂
›

›

Hs´1 `

›

›

›

ĂWα ¨ t̂
›

›

›

Hs´1
.

Lemma 2.5.4 allows us to estimate the final term. We can dispose of the Hilbert transform term by applying

Lemma 1.3.11 and the Sobolev algebra property. Controlling |sαt| and
›

›m ¨ t̂
›

›

Hs´1 as in equations (2.5.19)

and (2.5.20) then gives (2.5.22).

Now, all that is left is to control |µ|. Just as in [Amb1], we can use the chord-arc condition (2.3.2) to

bound the denominator from below:

∣∣∣∣∣∣isα
ˆ 2π

0
ζα dα

∣∣∣∣∣∣ ě |sα|c ě c. (2.5.26)

The estimate on the first term in the numerator is likewise straightforward:

∣∣∣∣∣∣
ˆ 2π

0
sαtζα dα

∣∣∣∣∣∣ ď 2π|sα||sαt|. (2.5.27)

The second term in the numerator will be a bit different. We have

∣∣∣∣∣∣
ˆ 2π

0
iUαζα dα

∣∣∣∣∣∣ ď 2π|sα|}Uα}L2 . (2.5.28)
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We begin by computing Uα:

Uα “ BRα ¨ n̂´ θαBR ¨ t̂` Yα ¨ n̂´ θαY ¨ t̂` Zα ¨ n̂´ θαZ ¨ t̂

` χp´θαV0 ¨ t̂` Bαp∇ϕcylpζqq ¨ n̂´ θα∇ϕcylpζq ¨ t̂q. (2.5.29)

Therefore, applying Lemma 1.3.9, we estimate

}Uα}L2 ď }BRα ¨ n̂}L2 ` }θ}Hs

›

›BR ¨ t̂
›

›

L2 ` }Yα ¨ n̂}L2 ` }θ}Hs

›

›Y ¨ t̂
›

›

L2 ` }Zα ¨ n̂}L2 ` }θ}Hs

›

›Z ¨ t̂
›

›

L2

` χp|V0|}θ}Hs

›

›t̂
›

›

L2 `
›

›Bαp∇ϕcylpζqq ¨ n̂
›

›

L2 ` }θ}Hs

›

›∇ϕcylpζq ¨ t̂
›

›

L2q.

We can control the L2 norm of t̂ using Lemma 2.5.5. Then, we can apply 2.5.4 and equation (2.3.26) yielding

}Uα}L2 À }Hpγαq}L2 ` }m ¨ n̂}L2 ` }θ}Hs}γ}Hs´1{2p1` }θ}Hsq
4 ` }ω}H1p1` }θ}Hsq

2

` }θ}Hs}ω}H1p1` }θ}Hsq ` }β}H1p1` }θ}Hsq
2 ` }θ}Hs}β}H1p1` }θ}Hsq

` χp|V0|}θ}Hsp1` }θ}Hsq ` p1` }θ}Hsq
2 ` }θ}Hsp1` }θ}Hsq

2q.

Using Lemma 1.3.10 as well as the bound on the Hs norm of m ¨ n̂ and rearranging a bit gives

}Uα}L2 À p1` }θ}Hsq
2“}γ}Hs´1{2p1` }θ}Hsq

6 ` }ω}H1 ` }β}H1 ` χp1` |V0|qp1` }θ}Hsq
‰

. (2.5.30)

At this point, we need only control the final part of the numerator. By writing

ζα “ sαeiθ, (2.5.31)

we can rewrite this term and proceed estimating:

∣∣∣∣∣∣
ˆ 2π

0
Vθαζα dα

∣∣∣∣∣∣ ď |sα|}V}L2}θα}L2 . (2.5.32)

Noting our estimate for the L2 norm of V above completes the proof. �

62



Lemma 2.5.8. The Hs´1{2 norm of br1 is controlled by the energy. In particular, we have

}br1}Hs´1{2 À Ep1`
?
Eq13 ` χp1` |V0|q

?
Ep1`

?
Eq8. (2.5.33)

Proof. We begin by recalling that

Cpbr1q
˚ “ rζt,Hs

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙

` rζt,Krζss
ˆ

Bα

ˆ

γ

ζα

˙˙

´
sαt

2isα
H

ˆ

γ

ζα

˙

´
sαt

sα
Krζsγ ´

1
4s2

α

„

H ,
γ

ζα



pHpγαqq ´
i

2s2
α

KrζspγHpγαqq

´
1

2sα
H

ˆ

γm ¨ n̂
ζα

˙

´
i

sα
Krζspγm ¨ n̂q ´

1
2sα

„

H ,
V ´W ¨ t̂

ζα



pγθαq

´
i

sα
KrζspγθαpV ´W ¨ t̂qq ´

1
2sα
H

˜

γĂWα ¨ n̂
ζα

¸

´
i

sα
KrζspγĂWα ¨ n̂q.

We will proceed term by term and as such write br1 “
ř12

j“1 br1, j. We begin by using Lemma 1.3.13 to

obtain
›

›

›

›

rH , ζts

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙›

›

›

›

Hs´1{2

À }ζt}Hs´1{2

›

›

›

›

1
ζα
Bα

ˆ

γ

ζα

˙›

›

›

›

Hs´2
.

We observe that

Bαζt “ Btpsαeiθq “ sαteiθ ` isαθteiθ “
sαt

sα
ζα ` iθtζα. (2.5.34)

Hence, we estimate

}ζt}Hs´1{2 „ }ζt}L2 ` }Bαζt}Hs´3{2

À }ζt}L2 ` |sαt|}ζα}Hs´3{2 ` }θt}Hs´3{2}ζα}Hs´3{2 .

Then, it follows that

}ζt}Hs´1{2 À }U}L2 ` }V}L2 ` |sαt|}ζα}Hs´3{2

` p1` }θ}Hsq

´

}Hpγαq}Hs´3{2 ` }m ¨ n̂}Hs´3{2 ` }θα}Hs´3{2

›

›V ´W ¨ t̂
›

›

Hs´3{2 `

›

›

›

ĂWα ¨ n̂
›

›

›

Hs´3{2

¯

.

We can now invoke Lemma 2.5.4 and Lemma 2.5.7 to conclude that

}ζt}Hs´1{2 À
?
Ep1`

?
Eq9 ` χp1` |V0|qp1`

?
Eq4. (2.5.35)
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Then for br1,1, we have

}br1,1}Hs´1{2 À }ζt}Hs´1{2

›

›

›

›

1
ζα

›

›

›

›

Hs´2

›

›

›

›

1
ζα

›

›

›

›

Hs´1
}γ}Hs´1 À }γ}Hs´1{2p1` }θ}Hsq

2}ζt}Hs´1{2 ,

which implies that

}br1,1}Hs´1{2 À Ep1`
?
Eq11 ` χp1` |V0|q

?
Ep1`

?
Eq6. (2.5.36)

For br1,2, we begin by writing

}br1,2}Hs´1{2 À

›

›

›

›

Krζs
ˆ

ζtBα

ˆ

γ

ζα

˙˙›

›

›

›

Hs´1{2

` }ζt}Hs´1{2

›

›

›

›

Krζs
ˆ

Bα

ˆ

γ

ζα

˙˙›

›

›

›

Hs´1{2

.

We can then apply Lemmas 2.4.5 and 1.3.7 along with the Sobolev algebra property to obtain

}br1,2}Hs´1{2 À }γ}Hs´1{2p1` }θ}Hsq
4}ζt}Hs´1{2 ` }γ}Hs´1{2p1` }θ}Hsq

4}ζt}Hs´1{2 .

It then follows that

}br1,2}Hs´1{2 À Ep1`
?
Eq13 ` χp1` |V0|q

?
Ep1`

?
Eq8. (2.5.37)

The Sobolev algebra property in conjunction with Lemmas 2.5.4, 2.5.7, 2.4.5, 1.3.7 imply that

}br1,3}Hs´1{2 À |sαt|

›

›

›

›

H

ˆ

γ

ζα

˙›

›

›

›

Hs´1{2

À E
3
2 p1`

?
Eq5 ` χp1` |V0|qEp1`

?
Eq3, (2.5.38)

}br1,4}Hs´1{2 À |sαt|}γ}H1p1` }θ}Hsq
3 À E

3
2 p1`

?
Eq7 ` χp1` |V0|qEp1`

?
Eq5, (2.5.39)

}br1,6}Hs´1{2 À }γHpγαq}H1p1` }θ}Hsq
3 À Ep1`

?
Eq3, (2.5.40)

}br1,8}Hs´1{2 À }γm ¨ n̂}H1p1` }θ}Hsq
3 À }γ}2Hs´1{2p1` }θ}Hsq À Ep1`

?
Eq11, (2.5.41)

}br1,10}Hs´1{2 À }γ}H1}θα}H1

›

›pV ´W ¨ t̂q
›

›

H1p1` }θ}Hsq
3 À E

3
2 p1`

?
Eq11 ` χp1` |V0|qEp1`

?
Eq6,

(2.5.42)

}br1,12}Hs´1{2 À }γ}H1

›

›

›

ĂWα ¨ n̂
›

›

›

H1
p1` }θ}Hsq

3 À Ep1`
?
Eq5 ` χ

?
Ep1`

?
Eq5. (2.5.43)
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On the other hand, we can use Lemma 1.3.13 with Lemmas 1.3.7, 2.5.4 and 2.5.7 to obtain

}br1,5}Hs´1{2 À

›

›

›

›

γ

ζα

›

›

›

›

Hs´1{2

}Hpγαq}Hs´2 À }γ}
2
Hs´1{2p1` }θ}Hsq À E` E

3
2 , (2.5.44)

}br1,9}Hs´1{2 À p1` }θ}Hsq}θ}Hs}γ}Hs´1{2

›

›V ´W ¨ t̂
›

›

Hs´1{2 À E
3
2 p1`

?
Eq9 ` χp1` |V0|qEp1`

?
Eq4.

(2.5.45)

The final two estimates are rather routine. By Lemmas 2.5.4 and 2.5.7, we have

}br1,7}Hs´1{2 À }γ}Hs´1{2p1` }θ}Hsq}m ¨ n̂}Hs´1{2 À Ep1`
?
Eq9, (2.5.46)

}br1,11}Hs´1{2 À }γ}Hs´1{2p1` }θ}Hsq

›

›

›

ĂWα ¨ n̂
›

›

›

Hs´1{2
À Ep1`

?
Eq3 ` χ

?
Ep1`

?
Eq3. (2.5.47)

Putting together the estimates (2.5.36)-(2.5.47), we deduce that (2.5.33) holds.

�

Lemma 2.5.9. We have the estimate

›

›mγ

›

›

Hs´1{2 À
?
Ep1`

?
Eq17 ` χp1` |V0|qp1`

?
Eq12. (2.5.48)

Proof. We begin by breaking mγ into smaller parts:

mγ “ m1
γ ` m2

γ ` m3
γ ` m4

γ, (2.5.49)

where

m1
γ B

γ

sα

´

sαt ´ĂWα ¨ t̂´m ¨ t̂
¯

, m2
γ B ´2gηα ` 2JδppV ´W ¨ t̂qJδpm ¨ t̂`ĂWα ¨ t̂qq, (2.5.50)

m3
γ B ´2sαJδprbr1 ` FY ` FZ ` χBtp∇ϕcylpζqqs ¨ t̂q, m4

γ B ´rH , γs

ˆ

γJδ θα

2s2
α

˙

. (2.5.51)

(2.5.52)

Beginning with m1
γ, we have, by Lemma 1.3.9,

›

›m1
γ

›

›

Hs´1{2 À |sαt|}γ}Hs´1{2 `

›

›

›

ĂWα ¨ t̂
›

›

›

Hs´1{2
}γ}Hs´1{2 `

›

›m ¨ t̂
›

›

Hs´1{2}γ}Hs´1{2 .
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We can apply Lemma 2.5.4 and Lemma 2.5.7:

›

›m1
γ

›

›

Hs´1{2 À Ep1`
?
Eq8 ` χp1` |V0|q

?
Ep1`

?
Eq3. (2.5.53)

Next, we consider

›

›m2
γ

›

›

Hs´1{2 À }ηα}Hs´1{2 `

›

›

›
JδppV ´W ¨ t̂qJδpm ¨ t̂`ĂWα ¨ t̂qq

›

›

›

Hs´1{2

Using the fact that ηα “ sα sin θ and the Sobolev algebra property, we obtain

›

›m2
γ

›

›

Hs´1{2 À }θ}Hs `
›

›V ´W ¨ t̂
›

›

Hsp
›

›m ¨ t̂
›

›

Hs´1{2 `

›

›

›

ĂWα ¨ t̂
›

›

›

Hs´1{2
q.

It then follows from Lemma 2.5.4 and Lemma 2.5.7 that

›

›m2
γ

›

›

Hs´1{2 À
?
Ep1`

?
Eq17 ` χp1` |V0|qp1`

?
Eq12. (2.5.54)

Moving on, we next consider m3
γ:

›

›m3
γ

›

›

Hs´1{2 À }br1}Hs´1{2 `
›

›FY ¨ t̂
›

›

Hs´1{2 `
›

›FZ ¨ t̂
›

›

Hs´1{2 ` χ
›

›Btp∇ϕcylpζqq ¨ t̂
›

›

Hs´1{2 .

Lemma 2.5.8 gives control of the first term on the right-hand side. We recall that

pFY ¨ t̂qpαq “ Re
"

ζαpαq

4πsα

ˆ 2π

0
Bα1

ˆ

ωpα1qs1,αpα
1qζtpαq

ζ1,αpα1q

˙

cot
1
2
pζpαq ´ ζ1pα

1qq dα1
*

.

We therefore have ∣∣∣pFY ¨ t̂qpαq
∣∣∣ À ∣∣∣ζαpαq∣∣∣∣∣∣ζtpαq

∣∣∣}ω}H1

›

›

›

›

cot
1
2
pζpαq ´ ζ1p¨qq

›

›

›

›

L2
.

Hence,

›

›FY ¨ t̂
›

›

Hs´1{2 À }ζα}Hs´1{2}ζt}Hs´1{2}ω}H1p1` }ζ}Hs´1{2q À }ω}H1p1` }θ}Hsq
2}ζt}Hs´1{2 .
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We can use (2.5.35) to obtain

›

›FY ¨ t̂
›

›

Hs´1{2 À Ep1`
?
Eq11 ` χp1` |V0|q

?
Ep1`

?
Eq6.

We can similarly estimate

›

›FZ ¨ t̂
›

›

Hs´1{2 À Ep1`
?
Eq11 ` χp1` |V0|q

?
Ep1`

?
Eq6.

Finally, we estimate

›

›Btp∇ϕcylpζqq
›

›

Hs´1{2 À }ζt}Hs´1{2p1` }ζ0}Hs´1{2q À
?
Ep1`

?
Eq10 ` χp1` |V0|qp1`

?
Eq5.

We thus conclude that

›

›m3
γ

›

›

Hs´1{2 À
?
Ep1`

?
Eq14 ` χp1` |V0|qp1`

?
Eq9. (2.5.55)

For m4
γ, we use Lemma 1.3.13 and the Sobolev algebra property to estimate

›

›m4
γ

›

›

Hs´1{2 À }γ}Hs´1{2}γJδ θα}Hs´2 À }θ}Hs}γ}
2
Hs´1{2 À E

3
2 . (2.5.56)

Upon combining estimates (2.5.53)-(2.5.56), it follows that

›

›mγ

›

›

Hs´1{2 À
?
Ep1`

?
Eq17 ` χp1` |V0|qp1`

?
Eq12. (2.5.57)

�

We now arrive at the main energy estimate. Our objective shall be to show that the time derivative of E is

controlled by a suitable polynomial in
?
E. What will be most important is the lowest order term as this term

will control the small-data lifespan. We define

PpEq B E` EN ` χp1` |V0|qp
?
E` EMq, (2.5.58)

where N,M P 2´1Z, N ą M, are taken to be sufficiently large (M,N ě 11 will work).
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Theorem 2.5.10. For s sufficiently large and for PpEq given as above, it holds that

dE
dt
À PpEq.

Proof. We begin with the E j’s. We first compute

dE j
1

dt
“

ˆ 2π

0
pB

j´1
α θqpB

j´1
α θtq dα.

Substituting the RHS of equation (2.4.11) for θt above, we write

dE j
1

dt
“

1
2s2

α

ˆ 2π

0
pB

j´1
α θqpB

j´1
α HpJδ γαqq dα`

1
sα

ˆ 2π

0
pB

j´1
α θqpB

j´1
α pm ¨ n̂qq dα

`
1
sα

ˆ 2π

0
pB

j´1
α θq

´

B
j´1
α Jδ

``

V ´W ¨ t̂
˘

Jδ θα
˘

¯

dα`
1
sα

ˆ 2π

0
pB

j´1
α θqpB

j´1
α pĂWα ¨ n̂qq dα

“ A j
1 ` I ` II ` III,

where we have used the fact that Bαµ “ 0.

In II, we want to separate out the term where all of the derivatives land on θα as it will require more care

in analysis. To do this, we rewrite II using the Leibniz rule as follows:

II “
1
sα

ˆ 2π

0
pB

j´1
α θqJδ

´

`

V ´W ¨ t̂
˘

Jδ B
j
αθ
¯

dα`
1
sα

ˆ 2π

0
pB

j´1
α θq

˜

j´1
ÿ

`“1

ˆ

j´ 1
`

˙

Jδ

´

B`α

`

V ´W ¨ t̂
˘

Jδ B
j´`
α θ

¯

¸

dα

“ Z j
1 ` R j

1.

We have singled out two terms, namely A j
1 and Z j

1. Consideration of A j
1 will be temporarily deferred to

exploit some cancellation with terms arising in the sequel, while Z j
1 is a transport term which we will

consider in short order. Before examining the transport term, we will estimate terms I, III and R j
1.

We begin by considering an arbitrary individual summand from R j
1, which by Hölder’s inequality is

bounded above by
›

›

›
B

j´1
α θ

›

›

›

L2

›

›

›
Jδ

´

B`α

`

V ´W ¨ t̂
˘

Jδ B
j´`
α θ

¯›

›

›

L2
.

Clearly,
›

›

›
B

j´1
α θ

›

›

›

L2
is bounded by the Hs norm of θ as j ď s` 1 and so we focus on bounding the other term.

We can use Lemma 2.4.2 to dispense with the outermost instance of Jδ, and then the Sobolev lemma in
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conjunction with the Sobolev algebra property imply that

›

›

›
B`α

`

V ´W ¨ t̂
˘

Jδ B
j´`
α θ

›

›

›

L2
À

›

›Bα
`

V ´W ¨ t̂
˘›

›

s´1}Jδ θ}s

as ` ď j´ 1 ď s. Then, another application of Lemmas 2.4.2 and 2.5.7 imply that

R j
1 À Ep1`

?
Eq8 ` χp1` |V0|q

?
Ep1`

?
Eq3 À PpEq. (2.5.59)

Moving on, we can utilize Hölder’s inequality and Lemma 2.5.7 to estimate I, while III can be

controlled using Lemma 2.5.4:

I ` III À PpEq. (2.5.60)

We now proceed to consider the transport term Z j
1. If we rewrite Z j

1 exploiting the self-adjointness of Jδ,

we can recognize a perfect derivative in the factors of θ and integrate by parts to obtain

Z j
1 “ ´

1
2sα

ˆ 2π

0
pJδ B

j´1
α θq2Bα

`

V ´W ¨ t̂
˘

dα.

Then, application of Lemmas 1.3.9, 2.4.2 and 2.5.7 readily give us control of Z j
1:

Z j
1 À E

3
2 p1`

?
Eq8 ` χp1` |V0|qEp1`

?
Eq3 À PpEq. (2.5.61)

As noted earlier, we delay estimating A j
1 and so now move on to E j

2. We begin by computing

dE j
2

dt
“

1
4τsα

ˆ 2π

0
pB

j´2
α γtqΛpB

j´2
α γq dα´

sαt

4τs2
α

ˆ 2π

0
pB

j´2
α γqΛpB

j´2
α γq dα.
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As with the estimate for
dE j

1
dt , we substitute the regularized evolution equation (2.4.13) for γt, which yields

dE j
2

dt
“

1
2s2

α

ˆ 2π

0
pJδ B

j
αθqΛpB

j´2
α γq dα`

1
8τs3

α

ˆ 2π

0
pHpγ2Jδ B

j´1
α θqΛpB

j´2
α γq dα

`
1

8τs3
α

ˆ 2π

0

j´2
ÿ

`“1

ˆ

j´ 2
`

˙

HpB`αpγ
2qJδ B

j´`´1
α θqΛpB

j´2
α γq dα

`
1

4τs2
α

ˆ 2π

0
Jδ

´

`

V ´W ¨ t̂
˘

Jδ B
j´1
α γ

¯

ΛpB
j´2
α γq dα

`
1

4τs2
α

ˆ 2π

0

j´2
ÿ

`“1

ˆ

j´ 2
`

˙

Jδ

´

B`α

`

V ´W ¨ t̂
˘

Jδ B
j´`´1
α γ

¯

ΛpB
j´2
α γq dα

´
1

4τs3
α

ˆ 2π

0
pB

j´2
α JδpγJδ γαqqΛpB

j´2
α γq dα`

1
4τsα

ˆ 2π

0
pB

j´2
α mγqΛpB

j´2
α γq dα

´
sαt

4τs2
α

ˆ 2π

0
pB

j´2
α γqΛpB

j´2
α γq dα

“ A j
2 ` S j

1 ` I ` Z j
2 ` II ` III ` IV ` V.

First, we shall exploit the primary cancellation which we mentioned earlier. In particular, recalling that

Λ B HBα, we consider

A j
1 ` A j

2 “
1

2s2
α

ˆ 2π

0
pB

j´1
α θqHpJδ B

j
αγq dα`

1
2s2

α

ˆ 2π

0
pJδ B

j
αθqHpB

j´1
α γq dα.

Noting that Jδ is a self-adjoint operator which commutes with spatial differentiation and integrating by parts

in the second integral, we obtain

A j
1 ` A j

2 “
1

2s2
α

ˆ 2π

0
pB

j´1
α θqHpJδ B

j
αγq dα´

1
2s2

α

ˆ 2π

0
pB

j´1
α θqHpJδ B

j
αγq dα “ 0. (2.5.62)

Much like the A’s, consideration of S j
1 will be delayed to exploit some secondary cancellation. We will

first estimate I ´ V and then consider the second transport term Z j
2. In estimating these terms, we shall

repeatedly encounter terms of the form
´
pB

j
α f qΛpB`αgq dα. As such, it will be of use to obtain a preliminary

estimate for such terms. By applying Plancherel’s theorem and recalling that Λ is a Fourier multiplier, we

can write ˆ 2π

0
pB

j
α f qΛpB`αgq dα “

ÿ

kPZ

F pB
j
α f q|k| F pB`αgq “

ÿ

kPZ

|k|
1
2 F pB

j
α f q ¨ |k|

1
2 F pB`αgq.
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This immediately implies the estimate

ˆ 2π

0
pBk
α f qΛpB`αgq dα À

›

›

›
B

j
α f
›

›

›

H1{2

›

›B`αg
›

›

H1{2 ď } f }H j`1{2}g}H``1{2 . (2.5.63)

Utilizing the estimate (2.5.63), it is straightforward to estimate

I ` II ` IV ` V À PpEq. (2.5.64)

For III, we want to first use the Leibniz rule to isolate the term where all of the derivatives land on γα:

III “ ´
1

4τs3
α

ˆ 2π

0
JδpγpB

j´2
α Jδ γαqqΛpB

j´2
α γq dα

´
1

4τs3
α

j´2
ÿ

`“1

ˆ

j´ 2
`

˙ ˆ 2π

0
JδppB

`
αγqJδpB

j´2´`
α γαqqΛpB

j´2
α γq dα

“ Z j
3 ` R j

2. (2.5.65)

Z j
3 is a transport term and we shall consider it alongside the other transport term Z j

2 as we treat them in very

similar ways. For R j
2, we begin by applying (2.5.63) and Lemma 2.4.2, to eliminate the outermost instance of

Jδ, to an arbitrary summand:

ˆ 2π

0
JδppB

`
αγqJδpB

j´1´`
α γqqΛpB

j´2
α γq dα À

›

›

›
pB`αγqJδpB

j´1´`
α γq

›

›

›

H1{2

›

›

›
B

j´2
α γ

›

›

›

H1{2
.

We want to apply Lemma 1.3.9, but we will need to be careful about which factor we place in the higher

regularity space. First, recall that 1 ď ` ď j´ 2 ď s´ 1. If ` “ j´ 2, then j´ 1´ ` “ 1 and, upon

applying Lemma 2.4.2 again, we have the estimate

›

›

›
pB`αγqJδpB

j´1´`
α γq

›

›

›

H1{2

›

›

›
B

j´2
α γ

›

›

›

H1{2
À

›

›

›
B

j´2
α γ

›

›

›

H1{2
}Bαγ}H1{2`}γ}Hs´1{2 À }γ}

3
Hs´1{2 .

On the other hand, if ` ď j´ 3, we can put B`αγ in the higher regularity space (again we apply Lemma 2.4.2

twice):
›

›

›
pB`αγqJδpB

j´1´`
α γq

›

›

›

H1{2

›

›

›
B

j´2
α γ

›

›

›

H1{2
À

›

›B`αγ
›

›

H1{2`

›

›

›
B

j´1´`
α γ

›

›

›

H1{2
}γ}Hs´1{2 À }γ}

3
Hs´1{2 ,
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where we used the fact that j´ 1´ ` ď j´ 2 ď s´ 1. In either case, we have the estimate

R j
2 À }γ}

3
Hs´1{2 À PpEq. (2.5.66)

We now arrive at the Z j transport terms. We begin by considering a general integral of the form
´ 2π

0 g fαΛp f q dα. Recalling that Λ “ H Bα and that the Hilbert transform is anti-self-adjoint, we can write

ˆ 2π

0
g fαΛp f q dα “ ´

ˆ 2π

0
fαHpg fαq dα.

Now, we will pull g out of the Hilbert transform and pick up a commutator:

ˆ 2π

0
g fαΛp f q dα “ ´

ˆ 2π

0
g fαHp fαq dα´

ˆ 2π

0
fαrH , gsp fαq.

Of course,Hp fαq “ Λp f q, so we can move the first integral over to the left-hand side and we are left with

2
ˆ 2π

0
g fαΛp f q dα “ ´

ˆ 2π

0
fαrH , gsp fαq dα.

Finally, upon integrating the right-hand side by parts and dividing through by the factor of 2, we obtain

ˆ 2π

0
g fαΛp f q dα “

1
2

ˆ 2π

0
BαprH , gsp fαqq f dα. (2.5.67)

Then, Hölder’s inequality and Lemma 1.3.12 imply that

ˆ 2π

0
g fαΛp f q dα ď }rH , gsp fαq}H1} f }L2 À } fα}H´1}g}H3} f }L2 À } f }2L2}g}H3 . (2.5.68)

After exploiting the symmetry of Jδ, Z j
2 is of this form and so we have:

ˆ 2π

0
pV ´W ¨ t̂qpJδ B

j´2
α γqαΛpJδ B

j´2
α γq dα À

›

›

›
B

j´2
α γ

›

›

›

2

L2

›

›V ´W ¨ t̂
›

›

H3 .

Then, Lemmas 2.5.4 and 2.5.7 give

Z j
2 À E

3
2 p1`

?
Eq8 ` χp1` |V0|qEp1`

?
Eq3 À PpEq. (2.5.69)
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Next, we consider Z j
3, after rewriting by again exploiting the symmetry of Jδ. We again apply the estimate of

equation (2.5.68) in conjunction with the fact that Jδ commutes with Bα, as well asH , and Lemma 2.4.2 to

obtain

Z j
3 “

ˆ 2π

0
γpJδ B

j´2
α γqαΛpJδ B

j´2
α γq dα À

›

›

›
B

j´2
α γ

›

›

›

2

L2
}γ}H3 À }γ}

3
Hs´1{2 À PpEq. (2.5.70)

.

We continue and now compute

dE j
3

dt
“ ´

sαt

8τ2s3
α

ˆ 2π

0
γ2pB

j´2
α γq2 dα`

1
16τ2s2

α

ˆ 2π

0
γγtpB

j´2
α γq2 dα`

1
16τ2s2

α

ˆ 2π

0
γ2pB

j´2
α γqpB

j´2
α γtq dα

“ I ` II ` III.

It is obvious that

I ` II À PpEq. (2.5.71)

To estimate III, we substitute in the RHS of the evolution equation for γ:

III “
1

8τs3
α

ˆ 2π

0
γ2pB

j´2
α γqpB

j´2
α Jδ θααq dα`

1
32τ2s4

α

ˆ 2π

0
γ2pB

j´2
α γqpB

j´2
α pHpγ2Jδ θαqq dα

`
1

16τ2s3
α

ˆ 2π

0
γ2pB

j´2
α γqpB

j´2
α JδppV ´W ¨ t̂qJδ γαqq dα

´
1

16τ2s4
α

ˆ 2π

0
γ2pB

j´2
α γqB

j´2
α JδpγJδ γαq dα`

1
16τ2s2

α

ˆ 2π

0
γ2pB

j´2
α γqpB

j´2
α mγq dα

“ S j
2 `C j

1 `C j
2 `C j

3 `C j
4.

We first examine the sum of S j
1 and S j

2:

S j
1 ` S j

2 “
1

8τs3
α

ˆ 2π

0
Hpγ2Jδ B

j´1
α θqΛpB

j´2
α γq dα`

1
8τs3

α

ˆ 2π

0
γ2pB

j´2
α γqpB

j´2
α Jδ θααq dα.

We exploit the fact that Λ is self-adjoint and that ΛH “ ´Bα to rewrite this as

1
8τs3

α

ˆ 2π

0
´Bαpγ

2Jδ B
j´1
α θqpB

j´2
α γq dα`

1
8τs3

α

ˆ 2π

0
γ2pB

j´2
α γqpJδ B

j
αθq dα.
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When we expand the derivative in the first integral, we obtain the cancellation (when the derivative lands on

Jδ B
j´1θ) and are left with

S j
1 ` S j

2 “ ´
1

4τs3
α

ˆ 2π

0
γγαpJδ B

j´1
α θqpB

j´2
α γq dα. (2.5.72)

We can then use Hölder’s inequality and Lemma 1.3.9 to obtain

S j
1 ` S j

2 À

›

›

›
γγαpB

j´1
α θq

›

›

›

L2

›

›

›
B

j´2
α γ

›

›

›

L2
À }θ}Hs}γ}

3
Hs´1{2 À E

2 À PpEq. (2.5.73)

There are no surprises in the C j’s; we have

C j
1 `C j

2 `C j
3 `C j

4 À PpEq. (2.5.74)

Collecting these estimates, we now deduce that

dE j

dt
À PpEq. (2.5.75)

We now proceed to examine E1 and begin by computing

dE1

dt
“

d
dt

#

1
2

ˆ 2π

0
pBαωq

2 dα`
1
2

ˆ 2π

0
pBαβq

2 dα

+

“

ˆ 2π

0
pBαωqpBαωtq dα`

ˆ 2π

0
pBαβqpBαβtq dα

“ I ` II. (2.5.76)

Via Hölder’s inequality, we have I ď }ω}H1}Bαωt}L2 . Given that

Bαωtpαq “ ´
1
π

ˆ 2π

0
γpα1qBαk1

S,tpα, α
1q dα1,
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we compute

Bαk1
S,tpα, α

1q “ Re

#

s1,ααpαqζtpα
1q

2s2
1,αpαq

Bα cot
1
2
pζ1pαq ´ ζpα1qq

+

´ Re

#

ζtpα
1q

2s1,αpαq
B2
α cot

1
2
pζ1pαq ´ ζpα1qq

+

.

Notice that s1,αα “ Bα
∣∣∣ζ1,α
∣∣∣ “ 1

2s1,α
pζ1,ααζ

˚
1,α ` ζ1,αζ

˚
1,ααq and so

∣∣∣s1,αα
∣∣∣ À 1. Again applying Hölder’s

inequality, we deduce that ∣∣∣Bαωtpαq
∣∣∣ À }γ}L2

›

›

›
Bαk1
S,tpα, ¨q

›

›

›

L2
,

so the only task at hand is to control the L2 norm of the derivative of k1
S,t. From the above computation, we

use Lemma 1.3.9 to estimate

›

›

›
Bαk1
S,tpα, ¨q

›

›

›

L2
À }ζt}L2

ˆ›

›

›

›

cot
1
2
pζ1pαq ´ ζp¨qq

›

›

›

›

H3{2`

`

›

›

›

›

cot
1
2
pζ1pαq ´ ζp¨qq

›

›

›

›

H5{2`

˙

.

Lemma 1.3.7 and (2.5.35) then imply that

}Bαωt}L2 À Ep1`
?
Eq12 ` χp1` |V0|q

?
Ep1`

?
Eq7.

This implies that we have the following estimate for I:

I À E
3
2 p1`

?
Eq12 ` χp1` |V0|qEp1`

?
Eq7 À PpEq. (2.5.77)

For the second term, we may once more apply Hölder’s inequality to obtain II ď }β}H1}Bαβt}L2 . The

estimate for }Bαβt}L2 is very similar to the estimate for }Bαωt}L2 . We omit the calculations, but note that we

have

II À E
3
2 p1`

?
Eq12 ` χp1` |V0|qEp1`

?
Eq7 À PpEq. (2.5.78)

Putting together equations (2.5.77) and (2.5.78), we have the following estimate in terms of the energy

for the time derivative of E1:

dE1

dt
À E

3
2 p1`

?
Eq12 ` χp1` |V0|qEp1`

?
Eq7 À PpEq. (2.5.79)
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We can similarly estimate
dE0

dt
À PpEq. (2.5.80)

At last, upon combining (2.5.80), (2.5.79) and (2.5.75), we have now shown that

dE
dt
À PpEq. (2.5.81)

�

2.6 Existence of Solutions

We continue in this section to carry out the plan sketched earlier for obtaining solutions to the

non-regularized system. Having established the uniform energy estimate in the previous section, our next

goal will be to show that solutions to the regularized system exist, at least for a short time.

Theorem 2.6.1. Given initial data Θ0 P X, there exists, for any δ P p0, 1s, a unique solution Θδ P X which

solves the regularized system (2.4.17). Further, there exists a time T δ ą 0 such that Θδ P C1pr0,T δs;Xq. A

priori, T δ may depend upon the regularization parameter δ. In addition, T δ may depend on ε, |V0|, s and X.

Notice that the solution belonging to X implies that the chord-arc condition (2.3.2), the non-cavitation

assumptions (2.3.3) and (2.3.4), the lower bound on the arclength metric (2.5.6) and the uniform energy

bound (2.5.7) are all satisfied on r0,T δs.

Remark 2.6.2. Though the existence time T δ obtained from Theorem 2.6.1 is allowed to depend upon δ, we

will prove a result in the sequel showing that there is a uniform (in δ) time interval r0,T s on which solutions

to the regularized system exist for any δ P p0, 1s. This existence time T will, of course, still depend on ε, |V0|,

s and X.

Proof of Theorem 2.6.1. We define Fδ : R4 Ñ R4, Fδ “ pFδ1,F
δ
2,F

δ
3,F

δ
4q, by letting Fδ1 denote the

right-hand side of (2.4.11), Fδ2 the RHS of (2.4.13), Fδ3 the RHS of (2.4.15) and Fδ4 the RHS of (2.4.16). We

shall use the Picard theorem to establish the existence of solutions to the regularized equations. As such, we

wish to show that F satisfies a particular Lipschitz bound on X. In particular, given Θ,Θ1 P X, we claim that

›

›F
δpΘq ´ FδpΘ1q

›

›

X Àδ

›

›Θ´ Θ1
›

›

X . (2.6.1)

Notice that in (2.6.1) the implied constant can depend on the regularization parameter δ. This dependence
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will generally be in the form of negative powers of δ (see Lemma 2.4.2). We use the triangle inequality to

break the left-hand side of (2.6.1) up into smaller, more manageable, pieces. We observe that many of the

terms will be the same as those in [Amb1] and so satisfy the desired estimate. In these cases, we will not

reprove the estimates, but refer the reader to that work for details.

We begin with Fδ1 “ F
δ
1,1 ` F

δ
1,2 ` F

δ
1,3 ` F

δ
1,4 ` F

δ
1,5. From Theorem 5.1 of [Amb1], we have

›

›

›
F
δ
1,1pΘq ´ F

δ
1,1pΘ

1q

›

›

›

Hs
Àδ

›

›Θ´ Θ1
›

›

X . (2.6.2)

By applying Lemma 2.4.2, adding and subtracting, and utilizing the Sobolev algebra property, we can bound

the Fδ1,2 difference by

C
`
›

›pV ´W ¨ t̂q ´ pV 1 ´W1 ¨ t̂1q
›

›

Hs}Jδ θα}Hs `
›

›V 1 ´W1 ¨ t̂1
›

›

Hs

›

›Jδpθα ´ θ1αq
›

›

Hs

˘

.

The second term is straightforward; in particular, we apply Lemma 2.4.2 and the uniform energy estimates:

›

›V 1 ´W1 ¨ t̂1
›

›

Hs

›

›Jδpθα ´ θ1αq
›

›

Hs À δ´1
›

›θ ´ θ1
›

›

Hs Àδ

›

›Θ´ Θ1
›

›

X . (2.6.3)

We can use the energy estimates to easily bound the first term by a constant multiple of

›

›pV ´W ¨ t̂q ´ pV 1 ´W1 ¨ t̂1q
›

›

L2 `
›

›BαpV ´W ¨ t̂q ´ BαpV 1 ´W1 ¨ t̂1q
›

›

Hs´1 .

For the first piece, we must estimate }V ´ V 1}L2 and
›

›W ¨ t̂´W1 ¨ t̂1
›

›

L2 . First, it is straightforward to see that

›

›V ´ V 1
›

›

L2 À }U}L2

›

›θα ´ θ1α
›

›

H1{2` `
›

›θ1α
›

›

H1{2`

›

›U ´ U 1
›

›

L2 .

It is clear that the first term is controlled by C}θ ´ θ1}Hs À }Θ´ Θ1}X . Hence, we need only control

}U ´ U 1}L2 by a constant multiple of }Θ´ Θ1}X .

By definition, we have

›

›U ´ U 1
›

›

L2 ď
›

›BR ¨ n̂´ BR1 ¨ n̂1
›

›

L2 `
›

›Y ¨ n̂´ Y1 ¨ n̂1
›

›

L2 `
›

›Z ¨ n̂´ Z1 ¨ n̂1
›

›

L2

` χp|V0|
›

›n1 ´ n11
›

›

L2 `
›

›∇ϕcylpζq ¨ n̂´ ∇ϕcylpζ
1q ¨ n̂1

›

›

L2q.
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That }BR ¨ n̂´ BR1 ¨ n̂1}L2 Àδ }Θ´ Θ1}X follows from Theorem 5.1 of [Amb1]. Observe that, by adding

and subtracting, we have for the second term

›

›Y ¨ n̂´ Y1 ¨ n̂1
›

›

L2 ď
›

›pY´ Y1q ¨ n̂
›

›

L2 `
›

›Y1 ¨ pn̂´ n̂1q
›

›

L2 .

The second term is easily bounded:

›

›Y 1 ¨ pn̂´ n̂1q
›

›

L2 À
›

›ζ ´ ζ1
›

›

L2 À
›

›θ ´ θ1
›

›

L2 ď
›

›Θ´ Θ1
›

›

X . (2.6.4)

For the first term, we begin by considering

∣∣∣pCpYq˚pαq ´ CpY1q˚pαqqCpn̂qpαq∣∣∣
“

∣∣∣iζαpαq∣∣∣
4πsα

∣∣∣∣∣∣
ˆ 2π

0
ωpα1qs1,αpα

1q cot
1
2
pζpαq ´ ζ1pα

1qq dα1 ´
ˆ 2π

0
ω1pα1qs1,αpα

1q cot
1
2
pζ1pαq ´ ζ1pα

1qq dα1
∣∣∣∣∣∣.

(2.6.5)

This is bounded above by a constant multiple of

ˆ 2π

0

∣∣∣ωpα1q ´ ω1pα1q
∣∣∣ dα1 ` ˆ 2π

0

∣∣∣∣∣cot
1
2
pζpαq ´ ζ1pα

1qq ´ cot
1
2
pζ1pαq ´ ζ1pα

1qq

∣∣∣∣∣ dα1. (2.6.6)

By Hölder’s inequality, ˆ 2π

0

∣∣∣ωpα1q ´ ω1pα1q
∣∣∣ dα1 À ›

›ω´ ω1
›

›

L2 . (2.6.7)

On the other hand,

ˆ 2π

0

∣∣∣∣∣cot
1
2
pζpαq ´ ζ1pα

1qq ´ cot
1
2
pζ1pαq ´ ζ1pα

1qq

∣∣∣∣∣ dα1 À ∣∣∣ζpαq ´ ζ1pαq
∣∣∣, (2.6.8)

given that |ζ ´ ζ1| is bounded away from zero - in fact, recall that we require η´ η1 ě h ą 0 - and thus the

map ζ ÞÑ cot 1
2pζ ´ ζ1q is Lipschitz continuous with the Lipschitz constant depending upon the water depth h.

It then follows that

›

›pY´ Y1q ¨ n̂
›

›

L2 À
›

›ω´ ω1
›

›

L2 `
›

›ζ ´ ζ1
›

›

L2 À
›

›θ ´ θ1
›

›

L2 `
›

›ω´ ω1
›

›

L2 ď
›

›Θ´ Θ1
›

›

X . (2.6.9)
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Therefore, from (2.6.4) and (2.6.9), we conclude that

›

›Y ¨ n̂´ Y1 ¨ n̂1
›

›

L2 À
›

›Θ´ Θ1
›

›

X . (2.6.10)

The estimate for the third terms is entirely analogous:

›

›Z ¨ n̂´ Z1 ¨ n̂1
›

›

L2 À
›

›Θ´ Θ1
›

›

X . (2.6.11)

The remaining terms contain no surprises and upon carrying out these computations we obtain

›

›U ´ U 1
›

›

L2 Àδ

›

›Θ´ Θ1
›

›

X . (2.6.12)

From here, we deduce that

›

›V ´ V 1
›

›

L2 Àδ

›

›Θ´ Θ1
›

›

X and
∣∣∣sαt ´ s1αt

∣∣∣ Àδ

›

›Θ´ Θ1
›

›

X .

Next, we have

›

›W ¨ t̂´W1 ¨ t̂1
›

›

L2 ď
›

›BR ¨ t̂´ BR1 ¨ t̂1
›

›

L2 `
›

›Y ¨ t̂´ Y1 ¨ t̂1
›

›

L2 `
›

›Z ¨ t̂´ Z1 ¨ t̂1
›

›

L2

` χp|V0|
›

›t1 ´ t11
›

›

L2 `
›

›∇ϕcylpζq ¨ t̂´ ∇ϕcylpζ
1q ¨ t̂1

›

›

L2q.

It is easily observable that this will satisfy the same estimate as }U ´ U 1}L2 and thus

›

›W ¨ t̂´W1 ¨ t̂1
›

›

L2 Àδ

›

›Θ´ Θ1
›

›

X . (2.6.13)

It therefore follows that
›

›pV ´W ¨ t̂q ´ pV 1 ´W1 ¨ t̂1q
›

›

L2 Àδ

›

›Θ´ Θ1
›

›

X .

Continuing to estimate term-by-term as we have been leads us to conclude that

›

›

›
F
δ
1,2pΘq ´ F

δ
1,2pΘ

1q

›

›

›

Hs
Àδ

›

›Θ´ Θ1
›

›

X . (2.6.14)
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Proceeding in this fashion, we arrive at the estimate

›

›F
δ
1pΘq ´ F

δ
1pΘ

1q
›

›

Hs À
›

›Θ´ Θ1
›

›

X . (2.6.15)

Moving on to Fδ2, Theorem 5.1 of [Amb1] implies that

›

›

›
F
δ
2,1pΘq ´ F

δ
2,1pΘ

1q

›

›

›

Hs´1{2
Àδ

›

›Θ´ Θ1
›

›

X , (2.6.16)
›

›

›
F
δ
2,2pΘq ´ F

δ
2,2pΘ

1q

›

›

›

Hs´1{2
Àδ

›

›Θ´ Θ1
›

›

X . (2.6.17)

Further, using the above estimates derived in estimating Fδ1, it is easy to obtain the bounds

›

›

›
F
δ
2,3pΘq ´ F

δ
2,3pΘ

1q

›

›

›

Hs´1{2
Àδ

›

›Θ´ Θ1
›

›

X , (2.6.18)
›

›

›
F
δ
2,4pΘq ´ F

δ
2,4pΘ

1q

›

›

›

Hs´1{2
Àδ

›

›Θ´ Θ1
›

›

X . (2.6.19)

For Fδ2,5, we shall utilize the decomposition of mγ “ m1
γ ` m2

γ ` m3
γ ` m4

γ from Lemma 2.5.9. The

following estimates are rather simple:

›

›m1
γ ´ pm

1
γq
1
›

›

Hs´1{2 Àδ

›

›Θ´ Θ1
›

›

X , (2.6.20)
›

›m2
γ ´ pm

2
γq
1
›

›

Hs´1{2 Àδ

›

›Θ´ Θ1
›

›

X . (2.6.21)

For m3
γ, we have

›

›m3
γ ´ pm

3
γq
1
›

›

Hs´1{2 À
›

›Jδpbr1 ¨ t̂´ br11 ¨ t̂
1q
›

›

Hs´1{2 `
›

›JδpFY ¨ t̂´ F1Y ¨ t̂
1q
›

›

Hs´1{2

`
›

›JδpFZ ¨ t̂´ F1Z ¨ t̂
1q
›

›

Hs´1{2

`
›

›χJδpBtp∇ϕcylpζqq ¨ t̂´ Btp∇ϕcylpζ
1qq ¨ t̂1q

›

›

Hs´1{2 .

For the first term, we add and subtract, and use Lemma 2.4.2, to obtain the bound

›

›Jδpbr1 ¨ t̂´ br11 ¨ t̂
1q
›

›

Hs´1{2 Àδ

›

›pbr1 ´ br11q ¨ t̂
›

›

L2 `
›

›br11 ¨ pt̂´ t̂1q
›

›

L2 .

Given that br1 is bounded in L2, the second term is easily bounded by C}Θ´ Θ1}X , as we have seen many
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times before. For the first term, we shall begin by writing br1 “
ř

br1, j. Beginning with br1,1, we have

›

›pbr1,1 ´ br11,1q ¨ t̂
›

›

L2 À

›

›

›

›

rH , ζts

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙

´
“

H , ζ1t
‰

ˆ

1
ζ1α
Bα

ˆ

γ1

ζ1α

˙˙
›

›

›

›

L2
.

We now add and subtract:

›

›pbr1,1 ´ br11,1q ¨ t̂
›

›

L2 À

›

›

›

›

rH , ζts

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙

´
“

H , ζ1t
‰

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙
›

›

›

›

L2

`

›

›

›

›

“

H , ζ1t
‰

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙

´
1
ζ1α
Bα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2
.

We begin by considering the first term:

›

›

›

›

rH , ζts

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙

´
“

H , ζ1t
‰

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙›

›

›

›

L2

ď

›

›

›

›

H

ˆ

pζt ´ ζ1tq

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙˙›

›

›

›

L2
`

›

›

›

›

H

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙

pζt ´ ζ1tq

›

›

›

›

L2

À
›

›ζt ´ ζ1t
›

›

L2 .

Recalling that ζt “ Un1 ` Vt1 ` ipUn2 ` Vt2q, it follows that

›

›

›

›

rH , ζts

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙

´
“

H , ζ1t
‰

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙˙›

›

›

›

L2

À
›

›U ´ U 1
›

›

L2 `
›

›V ´ V 1
›

›

L2

À
›

›Θ´ Θ1
›

›

X .

We use Lemma 1.3.12, and the fact that ζ1t is bounded in H1, for the second term:

›

›

›

›

“

H , ζ1t
‰

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙

´
1
ζ1α
Bα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2
À

›

›

›

›

1
ζα
Bα

ˆ

γ

ζα

˙

´
1
ζ1α
Bα

ˆ

γ1

ζ1α

˙›

›

›

›

L2
.

We next add and subtract to obtain

›

›

›

›

“

H , ζ1t
‰

ˆ

1
ζα
Bα

ˆ

γ

ζα

˙

´
1
ζ1α
Bα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2
À

›

›

›

›

Bα

ˆ

γ

ζα

˙ˆ

1
ζα
´

1
ζ1α

˙›

›

›

›

L2

`

›

›

›

›

1
ζ1α

ˆ

Bα

ˆ

γ

ζα

˙

´ Bα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2
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We have the following bound for the first term:

›

›

›

›

Bα

ˆ

γ

ζα

˙ˆ

1
ζα
´

1
ζ1α

˙
›

›

›

›

L2
À

›

›ζα ´ ζ1α
›

›

L2 À
›

›θ ´ θ1
›

›

L2 ď
›

›Θ´ Θ1
›

›

X .

On the other hand, for the second term, we add and subtract:

›

›

›

›

1
ζ1α

ˆ

Bα

ˆ

γ

ζα

˙

´ Bα

ˆ

γ1

ζ1α

˙˙
›

›

›

›

L2
À

›

›

›

›

γ

ζα
´
γ1

ζ1α

›

›

›

›

H1
À

›

›θ ´ θ1
›

›

H1 `
›

›γ ´ γ1
›

›

Hď
›

›Θ´ Θ1
›

›

X .

We have shown that
›

›pbr1,1 ´ br11,1q ¨ t̂
›

›

L2 À
›

›Θ´ Θ1
›

›

X . (2.6.22)

We again add and subtract in br1,2:

›

›

›

›

rKrζs, ζts

ˆ

Bα

ˆ

γ

ζα

˙˙

´
“

Krζ1s, ζ1t
‰

ˆ

Bα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2

ď

›

›

›

›

Krζs
ˆ

ζtBα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

ζ1tBα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2

`

›

›

›

›

ζtKrζs
ˆ

Bα

ˆ

γ

ζα

˙˙

´ ζ1t Krζ
1s

ˆ

Bα

ˆ

γ1

ζ1α

˙˙
›

›

›

›

L2
.

We begin by adding and subtracting in the first term:

›

›

›

›

Krζs
ˆ

ζtBα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

ζ1tBα

ˆ

γ1

ζ1α

˙˙
›

›

›

›

L2

ď

›

›

›

›

Krζs
ˆ

ζtBα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

ζtBα

ˆ

γ

ζα

˙˙›

›

›

›

L2

`

›

›

›

›

Krζ1s
ˆ

ζtBα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

ζ1tBα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2
.

We use Lemma 2.4.6 to estimate the first term

›

›

›

›

Krζs
ˆ

ζtBα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

ζtBα

ˆ

γ

ζα

˙˙›

›

›

›

L2
À

›

›θ ´ θ1
›

›

H1 ď
›

›Θ´ Θ1
›

›

X .

To estimate the second term, we apply Lemma 2.4.5:

›

›

›

›

Krζ1s
ˆ

ζtBα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

ζ1tBα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2
À

›

›

›

›

ζtBα

ˆ

γ

ζα

˙

´ ζ1tBα

ˆ

γ1

ζ1α

˙›

›

›

›

L2
.
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By adding and subtracting, we obtain

›

›

›

›

Krζ1s
ˆ

ζtBα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

ζ1tBα

ˆ

γ1

ζ1α

˙˙
›

›

›

›

L2
À

›

›ζt ´ ζ1t
›

›

L2 `

›

›

›

›

γ

ζα
´
γ1

ζ1α

›

›

›

›

H1
.

The right-hand side is then easily bounded by C}Θ´ Θ1}X . We therefore have

›

›

›

›

Krζs
ˆ

ζtBα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

ζ1tBα

ˆ

γ1

ζ1α

˙˙
›

›

›

›

L2
À

›

›Θ´ Θ1
›

›

X .

As usual, we can add and subtract to obtain the bound

›

›

›

›

ζtKrζs
ˆ

Bα

ˆ

γ

ζα

˙˙

´ ζ1t Krζ
1s

ˆ

Bα

ˆ

γ1

ζ1α

˙˙
›

›

›

›

L2

À
›

›ζt ´ ζ1t
›

›

L2 `

›

›

›

›

Krζs
ˆ

Bα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

Bα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2
.

We know that the first term is bounded by C}Θ´ Θ1}X . For the second term, we add and subtract again:

›

›

›

›

Krζs
ˆ

Bα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

Bα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2

À

›

›

›

›

Krζs
ˆ

Bα

ˆ

γ

ζα

˙˙

´ Krζ1s
ˆ

Bα

ˆ

γ

ζα

˙˙›

›

›

›

L2
`

›

›

›

›

Krζ1s
ˆ

Bα

ˆ

γ

ζα

˙

´ Bα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2
.

Lemma 2.4.6 implies that the first term is bounded by C}Θ´ Θ1}X . On the other hand, we can control the

second term via Lemma 2.4.5

›

›

›

›

Krζ1s
ˆ

Bα

ˆ

γ

ζα

˙

´ Bα

ˆ

γ1

ζ1α

˙˙›

›

›

›

L2
À

›

›

›

›

γ

ζα
´
γ1

ζ1α

›

›

›

›

H1
.

By adding and subtracting again, we can control the right-hand side by C}Θ´ Θ1}X . We have now shown

that
›

›pbr1,2 ´ br11,2q ¨ t̂
›

›

L2 À
›

›Θ´ Θ1
›

›

X . (2.6.23)

The estimates for the remaining br1, j terms follow in a similar fashion. We have now shown that

›

›pbr1 ´ br11q ¨ t̂
›

›

L2 Àδ

›

›Θ´ Θ1
›

›

X (2.6.24)
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and therefore
›

›br1 ¨ t̂´ br11 ¨ t̂
1
›

›

L2 Àδ

›

›Θ´ Θ1
›

›

X . (2.6.25)

The remaining terms are estimated much like those we have already seen. Ultimately, we obtain

›

›F
δ
2pΘq ´ F

δ
2pΘ

1q
›

›

Hs´1{2 Àδ

›

›Θ´ Θ1
›

›

X . (2.6.26)

We now consider Fδ3:

∣∣∣Fδ3pΘpαqq ´ Fδ3pΘ1pαqq∣∣∣ “ 1
π

∣∣∣∣∣∣
ˆ 2π

0
γpα1qk1

S,tpα, α
1q dα1 ´

ˆ 2π

0
γ1pα1qpk1

S,tq
1pα, α1q dα1

∣∣∣∣∣∣,
where k1

S
is given in (2.3.37). It thus follows that

k1
S,tpα, α

1q “ ´Re

"

ζtpα
1q

2s1,αpαq
Bα cot

1
2
pζ1pαq ´ ζpα1qq

*

.

Upon adding and subtracting, we have

∣∣∣Fδ3pΘpαqq ´ Fδ3pΘ1pαqq∣∣∣
À

ˆ 2π

0

∣∣∣k1
S,tpα, α

1q
∣∣∣∣∣∣γpα1q ´ γ1pα1q

∣∣∣ dα1 ` ˆ 2π

0

∣∣∣γ1pα1q∣∣∣∣∣∣k1
S,tpα, α

1q ´ pk1
S,tq

1pα, α1q
∣∣∣ dα1.

Hölder’s inequality then implies

∣∣∣Fδ3pΘpαqq ´ Fδ3pΘ1pαqq∣∣∣ À ›

›γ ´ γ1
›

›

L2 `

›

›

›
k1
S,tpα, ¨q ´ pk

1
S,tq

1pα, ¨q
›

›

›

L2
.

We are thus left to estimate the second term and we begin by adding and subtracting:

›

›

›
k1
S,tpα, ¨q ´ pk

1
S,tq

1pα, ¨q
›

›

›

L2
À

›

›

›

›

Bα cot
1
2
pζ1pαq ´ ζp¨qq ´ Bα cot

1
2
pζ1pαq ´ ζ1p¨qq

›

›

›

›

L2
`
›

›ζt ´ ζ1t
›

›

L2 .

Via Lipschitz continuity, we can estimate

›

›

›

›

Bα cot
1
2
pζ1pαq ´ ζp¨qq ´ Bα cot

1
2
pζ1pαq ´ ζ1p¨qq

›

›

›

›

L2
À

›

›ζ ´ ζ1
›

›

L2 À
›

›Θ´ Θ1
›

›

X .
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Further, as we have seen already,

›

›ζt ´ ζ1t
›

›

L2 À
›

›U ´ U 1
›

›

L2 `
›

›V ´ V 1
›

›

L2 Àδ

›

›Θ´ Θ1
›

›

X .

We have thus shown that
›

›F
δ
3pΘq ´ F

δ
3pΘ

1q
›

›

L2 Àδ

›

›Θ´ Θ1
›

›

X .

Similarly, we have

∣∣∣BαFδ3pΘpαqq ´ BαFδ3pΘ1pαqq∣∣∣ À ˆ 2π

0

∣∣∣Bαk1
S,tpα, α

1q
∣∣∣∣∣∣γpα1q ´ γ1pα1q

∣∣∣ dα1
`

ˆ 2π

0

∣∣∣γ1pα1q∣∣∣∣∣∣Bαk1
S,tpα, α

1q ´ Bαpk1
S,tq

1pα, α1q
∣∣∣ dα1.

Recall that

Bαk1
S,tpα, α

1q “ Re

"

s1,ααpαqζtpα
1q

2s2
1,αpαq

Bα cot
1
2
pζ1pαq ´ ζpα1qq

*

´ Re

"

ζtpα
1q

2s1,αpαq
B2
α cot

1
2
pζ1pαq ´ ζpα1qq

*

.

Then, applying Hölder’s inequality, we estimate

∣∣∣BαFδ3pΘpαqq ´ BαFδ3pΘ1pαqq∣∣∣ À ›

›γ ´ γ1
›

›

L2 `

›

›

›
Bαk1
S,tpα, ¨q ´ Bαpk

1
S,tq

1pα, ¨q
›

›

›

L2
.

By adding and subtracting, then using Lipschitz estimates, we obtain

›

›

›
Bαk1
S,tpα, ¨q ´ Bαpk

1
S,tq

1pα, ¨q
›

›

›

L2
À

›

›ζ ´ ζ1
›

›

L2 `
›

›ζt ´ ζ1t
›

›

L2 .

As we have seen, the right-hand side is controlled by Cpδq}Θ´ Θ1}X . It then follows that

›

›BαF
δ
3pΘq ´ BαF

δ
3pΘ

1q
›

›

L2 Àδ

›

›Θ´ Θ1
›

›

X .

We therefore conclude that
›

›F
δ
3pΘq ´ F

δ
3pΘ

1q
›

›

H1 Àδ

›

›Θ´ Θ1
›

›

X . (2.6.27)
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Finally, we move on to Fδ4, where we begin by recalling that

∣∣∣Fδ4pΘq ´ Fδ4pΘ1q∣∣∣ “ 1
π

∣∣∣∣∣∣
ˆ 2π

0
γpα1qk2

S,tpα, α
1q dα1 ´

ˆ 2π

0
γ1pα1qpk2

S,tq
1pα, α1q dα1

∣∣∣∣∣∣;
note that k2

S
is given in (2.3.37). Virtually the same arguments used to derive the Lipschitz estimate for Fδ3

then imply that
›

›F
δ
4pΘq ´ F

δ
4pΘ

1q
›

›

H1 Àδ

›

›Θ´ Θ1
›

›

X . (2.6.28)

Combining the estimates (2.6.15), (2.6.26), (2.6.27) and (2.6.28) leads us to deduce the Lipschitz

continuity of F:
›

›F
δpΘq ´ FδpΘ1q

›

›

X Àδ

›

›Θ´ Θ1
›

›

X . (2.6.29)

Therefore, the Picard theorem for ODE on Banach spaces implies that solutions to the regularized system

exist, at least for a short time, and have the desired regularity. �

Now that we have proven the existence of solutions to the regularized system, we want to take a limit of

the solutions
 

Θδ
(

δPp0,1s as δÑ 0`. In order to do that, we will, as previously mentioned, need to prove that

the solutions exist on a common time interval and show that
 

Θδ
(

δPp0,1s converges. We begin by obtaining an

existence time independent of δ. To that end, we have the following corollary of the uniform energy estimate

Theorem 2.5.10 (and the existence result of Theorem 2.6.1):

Corollary 2.6.3. If the regularity index s of the energy space X is sufficiently large, then there exists a

positive T “ T pε, |V0|, s,Xq such that, for any δ P p0, 1s, the solution Θδ of the regularized initial value

problem is in C1pr0,T s;Xq. In particular, notice that T is independent of the regularization parameter δ.

Proof. We will follow the proof in [Amb1]. The main difference between our proof and the proof of [Amb1]

is that we have the non-cavitation assumptions in our definition of X given the added geometry in our setting.

We want to apply the continuation theorem for ODE on a Banach space. Given a solution Θδ to the

regularized system obtained from Theorem 2.6.1, we will be able to continue this solution so long as it

remains in X. Ergo, we want to show that Θδ cannot leave X until some time which is independent of δ.

We will treat each of the five conditions defining X individually and begin with the uniform energy

bound E ă e, which we have imposed on the initial data. Then, the uniform energy estimate of Theorem

2.5.10 gives a time T1 ą 0, independent of δ, such that we will have E ă e for 0 ď t ď T1. The periodicity
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implies that the lower bound on the arclength element sα ě 1 will automatically be verified.

We next want to consider our (regularized) non-cavitation assumptions:

ηδ ´ η1 ě h and ηδ ´ η2 ě h̃.

These assumptions are imposed on our Cauchy data and we seek to prove that we can propagate them

forward in time, for at least some small time, independent of δ. Notice that, as our bottom and obstacle are

independent of time,

Btη
δ “ Btpη

δ ´ η1q “ Btpη
δ ´ η2q.

Then, if we can control
›

›Btη
δ
›

›

L8 independent of δ, we can then ensure that both non-cavitation conditions

will be satisfied on a uniform-in-δ time interval. For this, we can use

ηδpα, tq B ηδp0, tq `
ˆ α

0
sαptq sin θδpα1, tq dα1.

So, propagating the non-cavitation conditions forward in time comes down to our ability to control }Bt sα}L8

and }Btθ}L8 À }Btθ}H1{2` uniformly in δ. We can do this by Lemma 2.5.7 and Theorem 2.5.10. There is also

technically the issue of Btη
δp0, tq. By choosing the constant of integration implicit in the definition of V , we

can set Vp0, tq “ 0. We then have Btpξ
δ, ηδqp0, tq “ pWδ ¨ n̂δqp0, tqn̂δp0, tq. We can control this term in L8

via Lemmas 2.5.4 and 2.5.5, if we can control BRδ ¨ n̂δ in, say, H1{2`. We can do so by writing

CpBRδq˚ “ 1
2i Hp

γδ

ζδα
q ` Krζδsγδ and applying Lemma 2.4.5. We thereby obtain times T2,T3 ą 0, both

independent of δ, such that the first non-cavitation assumption (2.3.3) holds on r0,T2s and the second

non-cavitation assumption (2.3.4) holds on r0,T3s.

Finally, we need to consider the chord-arc condition. Recall the divided difference q1, which we

introduced in (2.4.22). We can write the chord-arc condition in terms of q1:

∣∣∣q1pα, α
1q
∣∣∣ ą c. (2.6.30)

We can handle the chord-arc condition much like we handled the uniform energy bound: since the chord-arc

condition is imposed on the Cauchy data, bounding |Btq1| uniformly in δ will ensure the existence of some

(perhaps small, but independent of δ) T4 ą 0 such that the chord-arc condition is satisfied on r0,T4s. Recall
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from Lemma 3.4 in [Amb1] that the following estimate holds:

}q1}Hr´1 À }ζd}Hr . (2.6.31)

If we first apply Sobolev embedding (Lemma 1.3.2) and then apply (2.6.31), we obtain

}Btq1}L8 À }Btq1}H1{2` À
›

›Btζ
δ
d

›

›

H3{2` . (2.6.32)

From here, we can utilize the definition of ζδdpα, tq B
´ α

0 sαptqeiθδpα1,tq dα1. Specifically, we use this

definition to compute the time derivative. We know from Lemma 2.5.7 and Theorem 2.5.10 that we can

control |Bt sα| and }Btθ}Hr uniformly in δ, at least for small enough r (r “ 3
2` is certainly small enough to

make this work). Taking T “ mintT1,T2,T3,T4u will give the desired uniform time. �

Having obtained a common time interval on which regularized solutions exist, we now move on to

establish that we can take a limit as δÑ 0`. That is, we want to show that the sequence
 

Θδ
(

δPp0,1s

converges. To achieve this, we will demonstrate that
 

Θδ
(

δPp0,1s is a Cauchy sequence in Cpr0,T s; Yq, where

Y Ą X. Here it will be helpful to recall some notation we introduced earlier in equation (2.2.1):

Xr B Hr ˆ Hr´1{2 ˆ H1 ˆ H1. Our choice will thus be to take Y “ X1. We have the following:

Theorem 2.6.4. If s is sufficiently large, then the sequence of solutions
 

Θδ
(

δPp0,1s of the regularized IVP

(2.4.17), indexed by the regularization parameter δ, is a Cauchy sequence in Cpr0,T s; X1q.

Proof. Here we will want to estimate the difference of regularized solutions with different regularization

parameters. In particular, what we would like to obtain is some estimate of the form

sup
tPr0,T s

›

›

›
pθδ ´ θδ̃, γδ ´ γδ̃, ωδ ´ ωδ̃, βδ ´ βδ̃q

›

›

›

X1
À f pδ, δ̃q, (2.6.33)

where f pδ, δ̃q Ñ 0 as pδ, δ̃q Ñ p0, 0q.

Following [Amb1], we introduce an energy for the difference of two regularized solutions with different

values of the regularization parameter, which will control
›

›

›
pθδ ´ θδ̃, γδ ´ γδ̃, ωδ ´ ωδ̃, βδ ´ βδ̃q

›

›

›

2

X1
. Define

Ed to be given by

Ed B E
1
d ` E

0
d `

1
2

›

›

›
ωδ ´ ωδ̃

›

›

›

2

H1
`

1
2

›

›

›
βδ ´ βδ̃

›

›

›

2

H1
, (2.6.34)
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where

E1
d B

1
2

ˆ 2π

0
pBαpθ

δ ´ θδ̃qq2 `
1

4τsδα
pγδ ´ γδ̃qΛpγδ ´ γδ̃q `

pγδq2

16τ2psδαq2
pγδ ´ γδ̃q2 dα, (2.6.35)

E0
d B

1
2

ˆ 2π

0
pθδ ´ θδ̃qΛpθδ ´ θδ̃q `

1
4τsδα

pγδ ´ γδ̃q2 ` pθδ ´ θδ̃q2 dα. (2.6.36)

Noting that the regularized solutions all satisfy the same initial condition, regardless of the value of the

regularization parameter δ, so we have Edp0q “ 0. Our goal will then be to come up with a suitable bound on

the growth of Ed over time. We begin by computing

dE1
d

dt
“

ˆ 2π

0
Bαpθ

δ
t ´ θδ̃t qBαpθ

δ ´ θδ̃q dα`
ˆ 2π

0

1
4τsδα

pγδt ´ γδ̃t qΛpγ
δ ´ γδ̃q dα

`

ˆ 2π

0

pγδq2

16τ2psδαq2
pγδt ´ γδ̃t qpγ

δ ´ γδ̃q dα

`

ˆ 2π

0
Bt

ˆ

1
4τsδα

˙

pγδ ´ γδ̃qΛpγδ ´ γδ̃q ` Bt

ˆ

pγδq2

16τ2psδαq2

˙

pγδ ´ γδ̃q2 dα.

“ d1 ` d2 ` d3 ` d4.

We begin with d1 and plug in for θδt and θδ̃t from (2.4.11):

d1 “

ˆ 2π

0

˜

1
2psδαq2

HpJδ γ
δ
ααq ´

1

2psδ̃αq2
HpJδ̃ γ

δ̃
ααq

¸

pθδα ´ θδ̃αq dα` e1, (2.6.37)

where e1 is the remainder. We now examine d2, again plugging in for γδt and γδ̃t from (2.4.13). These

substitutions yield

d2 “

ˆ 2π

0

1
4τsδα

˜

2τ
sδα
Jδ θ

δ
αα ´

2τ

sδ̃α
Jδ̃ θ

δ̃
αα

¸

Λpγδ ´ γδ̃q dα

`

ˆ 2π

0

1
4τsδα

˜

1
2psδαq2

Hppγδq2Jδ θ
δ
αq ´

1

2psδ̃αq2
Hppγδ̃q2Jδ̃ θ

δ̃
αq

¸

Λpγδ ´ γδ̃q dα` e2, (2.6.38)

with e2 again being the remainder. By adding together d1 and d2, we will obtain a cancellation.

Recall that sδα is bounded above and away from zero below, independent of δ, by Lemma 2.5.6. Let w1

denote the sum of the integral in (2.6.37) and the first integral in (2.6.38). Upon an integration by parts and
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noting the bounds on sδα, we have

w1 “ ´

ˆ 2π

0

˜

1
2psδαq2

ΛpJδ γ
δq ´

1

2psδ̃αq2
ΛpJδ̃ γ

δ̃q

¸

pθδαα ´ θδ̃ααq dα

`

ˆ 2π

0

˜

1
2psδαq2

Jδ θ
δ
αα ´

1

2psδ̃αq2
Jδ̃ θ

δ̃
αα

¸

Λpγδ ´ γδ̃q dα

„ ´

ˆ 2π

0

´

ΛpJδ γ
δq ´ ΛpJδ̃ γ

δ̃q

¯

pθδαα ´ θδ̃ααq dα

`

ˆ 2π

0

´

Jδ θ
δ
αα ´Jδ̃ θ

δ̃
αα

¯

Λpγδ ´ γδ̃q dα. (2.6.39)

Recall from Remark 1.3.1 that we use A „ B to denote B À A À B. We now add and subtract in each of the

two integrals in (2.6.39) to obtain

w1 „ ´

ˆ 2π

0
ΛpJδ γ

δ ´Jδ̃ γ
δqpθδαα ´ θδ̃ααq dα

´

ˆ 2π

0
ΛpJδ̃pγ

δ ´ γδ̃qqpθδαα ´ θδ̃ααq dα

`

ˆ 2π

0

`

Jδ θ
δ
αα ´Jδ̃ θ

δ
αα

˘

Λpγδ ´ γδ̃q dα

`

ˆ 2π

0

´

Jδ̃pθ
δ
αα ´ θδ̃ααq

¯

Λpγδ ´ γδ̃q dα.

The second and fourth integrals above will cancel. In order to obtain this cancellation, we will need to use the

fact that Jδ is self-adjoint, and commutes with differentiation and the Hilbert transform. The commutation

properties follow from the fact that we are conceptualizing Jδ as a Fourier multiplier and so will commute

with other Fourier multipliers such as differentiation and the Hilbert transform (Lemma 3.5 in [MaBe] has an

alternative proof that Jδ commutes with Bα). Turning now to the first integral, we integrate by parts and

apply Hölder’s inequality:

´

ˆ 2π

0
ΛpJδ γ

δ ´Jδ̃ γ
δqpθδαα ´ θδ̃ααq dα ď

›

›HpJδ γ
δ
αα ´Jδ̃ γ

δ
ααq

›

›

L2

›

›

›
θδα ´ θδ̃α

›

›

›

L2
.

Using Lemma 1.3.10 and Lemma 2.4.3 as well as the uniform energy estimate of Theorem 2.5.10, we can

control the first norm by

›

›HpJδ γ
δ
αα ´Jδ̃ γ

δ
ααq

›

›

L2 ď maxpδ, δ̃q
›

›γδαα
›

›

H1 À maxpδ, δ̃q.
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The second norm above is clearly controlled by
?
Ed. Finally, turning to the third integral, we use the fact

that Λ is self-adjoint to rewrite it as

ˆ 2π

0
HpJδ θ

δ
ααα ´Jδ̃ θ

δ
αααqpγ

δ ´ γδ̃q dα ď
›

›HpJδ θ
δ
ααα ´Jδ̃ θ

δ
αααq

›

›

L2

›

›

›
γδ ´ γδ̃

›

›

›

L2
.

The second norm is again easily controlled by
?
Ed, while for the first norm we apply Lemmas 1.3.10 and

2.4.3 as well as Theorem 2.5.10:

›

›HpJδ θ
δ
ααα ´Jδ̃ θ

δ
αααq

›

›

L2 ď maxpδ, δ̃q
›

›θδααα
›

›

H1 À maxpδ, δ̃q.

We have now shown that

w1 À maxpδ, δ̃q
a

Ed. (2.6.40)

The cancellation we saw in the sum of d1 and d2 corresponds to the primary cancellation from Theorem

2.5.10. So, we should expect some further cancellation which corresponds to the secondary cancellation of

Theorem 2.5.10. Consider d3 and plug in from (2.4.13):

d3 “

ˆ 2π

0

pγδq2

16τ2psδαq2

˜

2τ
sδα
Jδ θ

δ
αα ´

2τ

sδ̃α
Jδ̃ θ

δ̃
αα

¸

pγδ ´ γδ̃q dα` e3, (2.6.41)

where e3 once again denotes the remaining terms. To obtain the analogue of the secondary cancellation of

Theorem 2.5.10, we let w2 denote the sum of the second integral in (2.6.38) and the integral in (2.6.41).

Utilizing the self-adjointness of Λ as well as the identityH2
“ ´ id, which implies that ΛH “ ´Bα, we get

w2 “ ´

ˆ 2π

0

1
4τsδα

˜

1
2psδαq2

Bαppγ
δq2Jδ θ

δ
αq ´

1

2psδ̃αq2
Bαppγ

δ̃q2Jδ̃ θ
δ̃
αq

¸

pγδ ´ γδ̃q dα

`

ˆ 2π

0

pγδq2

16τ2psδαq2

˜

2τ
sδα
Jδ θ

δ
αα ´

2τ

sδ̃α
Jδ̃ θ

δ̃
αα

¸

pγδ ´ γδ̃q dα. (2.6.42)

We now use the Leibniz rule to expand the derivative in the first integral above then add and subtract in the
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appropriate integral. This process yields

w2 “ ´

ˆ 2π

0

1
4τsδα

˜

1
psδαq2

γδγδαJδ θ
δ
α ´

1

psδ̃αq2
γδ̃γδ̃αJδ̃ θ

δ̃
α

¸

pγδ ´ γδ̃q dα

´

ˆ 2π

0

1
8τsδα

˜

1
psδαq2

pγδq2Jδ θ
δ
αα ´

1

sδαsδ̃α
pγδq2Jδ̃ θ

δ̃
αα

¸

pγδ ´ γδ̃q dα

´

ˆ 2π

0

1
8τsδα

˜

1

sδαsδ̃α
pγδq2Jδ̃ θ

δ̃
αα ´

1

psδ̃αq2
pγδ̃q2Jδ̃ θ

δ̃
αα

¸

pγδ ´ γδ̃q dα

`

ˆ 2π

0

pγδq2

8τpsδαq2

˜

1
sδα
Jδ θ

δ
αα ´

1

sδ̃α
Jδ̃ θ

δ̃
αα

¸

pγδ ´ γδ̃q dα.

Observe that the second and fourth integrals above cancel.

We turn now to controlling the remaining integrals which do not cancel. Let w2,1 and w2,3 denote the

first integral above and the third integral above, respectively; these are the remaining integrals which need to

be controlled. We will again make use of Lemma 2.5.6 to bound sδα below (away from zero) and above for

any δ P p0, 1s. We begin with w2,1, where, after adding and subtracting, we have

w2,1 „ ´

ˆ 2π

0
pγδγδαJδ θ

δ
α ´ γδ̃γδαJδ θ

δ
αqpγ

δ ´ γδ̃q dα

´

ˆ 2π

0
pγδ̃γδαJδ θ

δ
α ´ γδ̃γδ̃αJδ θ

δ
αqpγ

δ ´ γδ̃q dα

´

ˆ 2π

0
pγδ̃γδ̃αJδ θ

δ
α ´ γδ̃γδ̃αJδ̃ θ

δ
αqpγ

δ ´ γδ̃q dα

´

ˆ 2π

0
pγδ̃γδ̃αJδ̃ θ

δ
α ´ γδ̃γδ̃αJδ̃ θ

δ̃
αqpγ

δ ´ γδ̃q dα.

Utilizing Hölder’s inequality, Lemma 1.3.9 and the uniform energy estimate of Theorem 2.5.10, we estimate

the first integral in w2,1:

´

ˆ 2π

0
pγδγδαJδ θ

δ
α ´ γδ̃γδαJδ θ

δ
αqpγ

δ ´ γδ̃q dα À
›

›

›
γδ ´ γδ̃

›

›

›

2

L2
À Ed.

We recognize a perfect derivative and integrate by parts to rewrite the second integral of w2,1:

´

ˆ 2π

0
γδ̃Jδ θ

δ
αpγ

δ
α ´ γδ̃αqpγ

δ ´ γδ̃q dα “
1
2

ˆ
Bαpγ

δ̃Jδ θ
δ
αqpγ

δ ´ γδ̃q2 dα.
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Then, Hölder’s inequality, Lemma 1.3.9 and the uniform energy estimate imply that

1
2

ˆ 2π

0
Bαpγ

δ̃Jδ θ
δ
αqpγ

δ ´ γδ̃q2 dα ď
›

›

›
Bαpγ

δ̃Jδ θ
δ
αqpγ

δ ´ γδ̃q
›

›

›

L2

›

›

›
γδ ´ γδ̃

›

›

›

L2
À

›

›

›
γδ ´ γδ̃

›

›

›

2

L2
À Ed.

For the third integral of w2,1, we use Hölder’s inequality to obtain the bound:

´

ˆ 2π

0
pγδ̃γδ̃αJδ θ

δ
α ´ γδ̃γδ̃αJδ̃ θ

δ
αqpγ

δ ´ γδ̃q dα ď
›

›

›
γδ̃γδ̃αpJδ θ

δ
α ´Jδ̃ θ

δ
αq

›

›

›

L2

›

›

›
γδ ´ γδ̃

›

›

›

L2
.

Then, by Lemma 1.3.9, Lemma 2.4.3 and Theorem 2.5.10, we get

›

›

›
γδ̃γδ̃αpJδ θ

δ
α ´Jδ̃ θ

δ
αq

›

›

›

L2

›

›

›
γδ ´ γδ̃

›

›

›

L2
À maxpδ, δ̃q

›

›

›
γδ ´ γδ̃

›

›

›

L2
À maxpδ, δ̃q

a

Ed.

Considering the final integral in w2,1, Hölder’s inequality, Lemma 1.3.9, the uniform energy estimate of

Theorem 2.5.10 and 2.4.2 yield

´

ˆ 2π

0
pγδ̃γδ̃αJδ̃ θ

δ
α ´ γδ̃γδ̃αJδ̃ θ

δ̃
αqpγ

δ ´ γδ̃q dα À
›

›

›
θδ ´ θδ̃

›

›

›

H1

›

›

›
γδ ´ γδ̃

›

›

›

L2
À Ed.

It then follows that

w2,1 À Ed `maxpδ, δ̃q
a

Ed. (2.6.43)

We now proceed to examine w2,3, which we can rewrite as

w2,3 „ ´

ˆ 2π

0
Jδ̃ θ

δ̃
ααpγ

δ ` γδ̃qpγδ ´ γδ̃q2 dα.

Then, by Hölder’s inequality, we have

w2,3 À

›

›

›
Jδ̃ θ

δ̃
ααpγ

δ ` γδ̃qpγδ ´ γδ̃q
›

›

›

L2

›

›

›
γδ ´ γδ̃

›

›

›

L2
.

We conclude by applying Lemma 1.3.9, Lemma 2.4.2 and Theorem 2.5.10 to control the right-hand side

above:

w2,3 À

›

›

›
γδ ´ γδ̃

›

›

›

2

L2
À Ed. (2.6.44)
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Combining (2.6.43) with (2.6.44) and recalling the secondary cancellation, it therefore holds that

w2 À Ed `maxpδ, δ̃q
a

Ed. (2.6.45)

We are now left to estimate d4 as well as the remainder terms: e1, e2 and e3. These terms are all rather

straightforward. We have

d4 À Ed, (2.6.46)

e1 À Ed `maxpδ, δ̃q
a

Ed, (2.6.47)

e2 À Ed `maxpδ, δ̃q
a

Ed, (2.6.48)

e3 À Ed `maxpδ, δ̃q
a

Ed. (2.6.49)

We have found that
dE1

d

dt
À Ed `maxpδ, δ̃q

a

Ed. (2.6.50)

We can estimate the remaining terms in a similar way. Doing so gives

dEd

dt
À Ed `maxpδ, δ̃q

a

Ed, (2.6.51)

which we can rewrite as
d
?
Ed

dt
À

a

Ed `maxpδ, δ̃q. (2.6.52)

Upon solving the differential inequality in (2.6.52), recalling that Edp0q “ 0, we find that

b

Edptq ď maxpδ, δ̃qpect ´ 1q, (2.6.53)

where c is the implied constant in (2.6.52). Now, we recall that, by the definition of Ed, we have

›

›

›
pθδ ´ θδ̃, γδ ´ γδ̃, ωδ ´ ωδ̃, βδ ´ βδ̃q

›

›

›

X1
À

a

Ed. (2.6.54)
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Finally, we take the supremum and utilize (2.6.53):

sup
tPr0,T s

›

›

›
pθδ ´ θδ̃, γδ ´ γδ̃, ωδ ´ ωδ̃, βδ ´ βδ̃q

›

›

›

X1
À sup

tPr0,T s

b

Edptq À maxpδ, δ̃qpecT ´ 1q. (2.6.55)

This is of the desired form (2.6.33) and so we see that
 

pθδ, γδ, ωδ, βδq
(

δPp0,1s is indeed a Cauchy sequence in

Cpr0,T s; X1q.

�

We are now able to take a limit of the regularized solutions as δÑ 0`. The next step is, of course, to

show that this limit solves the non-regularized system. However, in order to do this we will need to ensure

that the limit has enough regularity to make sense of it as a solution. We will thus reserve this proof for the

next section, where we consider the regularity.

2.7 Regularity of Solutions

At this point we know that the sequence of solutions
 

Θδ
(

δPp0,1s to the regularized system converges to a

limit as δÑ 0`. In this section, we will show that this limit solves the non-regularized system ((2.1.4) with

right-hand side given by (2.4.10)), that this solution is unique and that it lies in Cpr0,T s;Xq. We shall begin

by first showing that the limit solves the non-regularized system and is continuous, with respect to time, in

the weak topology.

Theorem 2.7.1. Let pθ, γ, ω, βq denote the limit as δÑ 0` of the sequence of solutions
 

pθδ, γδ, ωδ, βδq
(

δPp0,1s to the regularized system (2.4.17). Then, pθ, γ, ω, βq solves the non-regularized

system (2.1.4) with right-hand side given by (2.4.10). Additionally, pθ, γ, ω, βq P CWpr0,T s;Xq, where

CWpr0,T s;Xq denotes the space of weakly continuous function from r0,T s into X. Finally, pθ, γ, ω, βq is

additionally in Cpr0,T s; Xrq for 1 ď r ă s, where Xr is as defined in (2.2.1).

Proof. We follow the proof of Theorem 5.4 in [Amb1] as it is nearly identical.

We have Θ P Cpr0,T s; X1q, which is the limit of the sequence of solutions of the regularized system,
 

Θδ
(

δPp0,1s. We know from the uniform energy estimate of Theorem 2.5.10 that, for any δ P p0, 1s,
›

›Θδ
›

›

X À 1 and, noting that the unit ball B1 Ă X is compact in the weak topology (indeed, X is a Hilbert

space), it follows that Θδ converges weakly in X. Given that X Ă X1, we must have Θδ á Θ with Θ P X.

Further, given that Θ is defined as the limit of Θδ as δÑ 0`, where Θδ satisfies the chord-arc condition

(2.3.2), the non-cavitation assumptions (2.3.3) and (2.3.4), as well as the bounds (2.5.6) and (2.5.7) for each
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δ P p0, 1s, it follows that Θ also satisfies (2.3.2), (2.5.6) and (2.5.7). In other words, Θ P X. Now, by

interpolating between Sobolev spaces, we get

›

›θ ´ θδ
›

›

Hr À
›

›θ ´ θδ
›

›

1´ϑr

L2

›

›θ ´ θδ
›

›

ϑr

Hs ,

›

›γ ´ γδ
›

›

Ht À
›

›γ ´ γδ
›

›

1´ϑt

L2

›

›γ ´ γδ
›

›

ϑt

Hs´1{2 ,

where ϑr B
r
s and ϑt B

t
s´ 1

2
. Observing that the quantities on the RHS all go to zero, as δÑ 0`, uniformly

on r0,T s implies that pθ, γq P Cpr0,T s; Hr ˆ Htq for all 1 ď r ă s, 1
2 ď t ă s´ 1

2 . We did not address ω or

β above as we have already obtained the top-level regularity result for these terms (i.e., ω, β P Cpr0,T s; H1q)

and so these lesser regularity results follow trivially.

We now turn our attention to demonstrating that Θ P CWpr0,T s; Xq. Let h ą 0 be given and take

u P H´s to be arbitrary. In addition, for arbitrary 1 ď r ă s, let v P H´r be such that

}u´ v}H´s ď
h
3
. (2.7.1)

Such a v exists by the density of Hr in Ht whenever r ą t. We now want to show that the pairing xu, θ ´ θδy

can be made arbitrarily small uniformly in time. Indeed,

xu, θ ´ θδy “ xu, θy ´ xu, θδy “ xu´ v, θy ` xv, θ ´ θδy ` xv´ u, θδy. (2.7.2)

Recall that the dual pairing is given by the L2 inner product p¨, ¨qL2 . The first and third terms can be bounded

above by h
3 using (2.7.1) in addition to the uniform bounds on θ and θδ in Hs. For the second term, we

choose δ P p0, 1s sufficiently small so that
›

›θ ´ θδ
›

›

Hr ă
h
3 . It follows that, for δ P p0, 1s small enough,

∣∣∣xu, θ ´ θδy
∣∣∣ ď h. (2.7.3)

Given that h ą 0 was arbitrary, the above bounds were uniform in time and that θδ P Cpr0,T s; Hsq, we

necessarily have θ P CWpr0,T s; Hsq. A virtually identical argument gives γ P CWpr0,T s; Hs´1{2q. Regarding

ω and β, the weaker regularity result, ω, β P CWpr0,T s; H1q, again follows from the stronger regularity result

we have already obtained: ω, β P Cpr0,T s; H1q.

We are now at a point to show that pθ, γ, ω, βq solves the initial value problem for the non-regularized
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system. Notice that, as we take s to be large enough, the preliminary regularity Θ P Cpr0,T s; Xrq for any

r ă s suffices for Θ to be a solution to the system. To begin, observe that we have

Θδpα, tq “ Θ0pαq `

ˆ t

0
F
δpΘδpα, sqq ds.

We now pass to the limit in the above equation:

Θpα, tq “ Θ0pαq `

ˆ t

0
FpΘpα, sqq ds,

where F is given by (2.4.10). We can differentiate with respect to time, which yields BtΘ “ FpΘq, and so Θ

indeed solves (2.1.4). �

Before proceeding to the top-level regularity result for solutions to the non-regularized system, we want

to prove that the initial value problem for the non-regularized system is stable under small perturbations of

the Cauchy data. This stability result will immediately imply the uniqueness of solutions to the

non-regularized initial value problem. We have the following theorem on the dependence of the solutions on

the initial data:

Theorem 2.7.2. If the regularity index s of X is sufficiently large and Θ,Θ1 P X are solutions of the initial

value problem for the non-regularized system (again, this is the system (2.1.4) with right-hand side given by

(2.4.10)) on the time interval r0,T s, with corresponding initial data Θ0,Θ
1
0 P X, then it holds that

sup
tPr0,T s

›

›Θptq ´ Θ1ptq
›

›

X1
ÀT

›

›Θ0 ´ Θ10

›

›

X1
. (2.7.4)

Proof. As in the proof of Theorem 2.6.4, we begin by defining an appropriate energy. In this case, it is the

energy Eflow of the difference of two solutions with different Cauchy data:

Eflow B E
1
flow ` E

0
flow `

1
2

›

›ω´ ω1
›

›

2
H1 `

1
2

›

›β´ β1
›

›

2
H1 , (2.7.5)

97



where

E1
flow B

1
2

ˆ 2π

0
pBαpθ ´ θ1qq2 `

1
4τsα

pγ ´ γ1qΛpγ ´ γ1q `
γ2

16τ2s2
α

pγ ´ γ1q2 dα, (2.7.6)

E0
flow B

1
2

ˆ 2π

0
pθ ´ θ1qΛpθ ´ θ1q `

1
4τsα

pγ ´ γ1q2 ` pθ ´ θ1q2 dα. (2.7.7)

We denote this energy Eflow as it controls the continuity of the flow map. We note that, since Θ and Θ1 satisfy

different initial conditions, Eflowp0q will not vanish as was the case in Theorem 2.6.4, however

Eflowp0q „
›

›Θ0 ´ Θ10

›

›

X1
.

We want to estimate dEflow
dt . The calculations are very similar to those in the proofs of Theorem 2.6.4 and

Theorem 2.5.10, so we omit them. In summary, we obtain

dEflow

dt
À Eflow. (2.7.8)

We then have

Eflowptq ď Eflowp0qect, (2.7.9)

where c is the implied constant in (2.7.8). Therefore, it follows that

sup
tPr0,T s

›

›Θptq ´ Θ1ptq
›

›

2
X1
À sup

tPr0,T s
Eflowptq ď Eflowp0qecT À ecT

›

›Θ0 ´ Θ10

›

›

2
X1
. (2.7.10)

This is what we wanted to show.

�

Theorem 2.7.3. Solutions of the non-regularized initial value problem (2.1.4) (where the right-hand side is

given by (2.4.10)) are in Cpr0,T s; Xq.

Proof. Recall that we have already obtained this desired regularity result for ω and β. Indeed, we have

ω, β P Cpr0,T s; H1q. So, all that remains to do is show that pθ, γq P Cpr0,T s; HsˆHs´1{2q. The proof of this

result is virtually the same as the proof of Theorem 5.6 in [Amb1]. For the sake of completeness, we shall

sketch the argument, which follows [Amb1] closely.
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Observe that Fatou’s lemma gives the following estimates:

}θ0}
2
Hs ď lim inf

tÑ0`
}θptq}2Hs and }γ0}

2
Hs´1{2 ď lim inf

tÑ0`
}γptq}2Hs´1{2 . (2.7.11)

Using (2.7.11) and properties of limits inferior, we are able to conclude that lim inftÑ0` Eptq ě Ep0q. On the

other hand, the uniform energy estimate of Theorem 2.5.10 can be used to obtain lim suptÑ0` Eptq ď Ep0q

(indeed, apply Grönwall as in Section 2.8). Ergo, the energy is right-continuous at t “ 0. Additionally, we

can determine that a number of components of the energy are continuous more or less by inspection. For

example, considering E0, we know that θ P Cpr0,T s; L2q by our preliminary regularity result. We can then

consider the difference of the energy and the parts we know to be continuous. This difference will then be

right-continuous at t “ 0. Then, a bit of work will give us that }θ}Hs and }γ}Hs´1{2 are right-continuous at

t “ 0.

Now, we want to consider an arbitrary time t0 P r0,T s. The idea is that we can interpret t “ t0 as a new

initial time. We could then run the same existence argument as in Theorem 2.6.1 to obtain the existence of a

regularized solution on some time interval about t0. Then, upon invoking Theorem 2.7.2, we see that this

solution starting at time t “ t0 must coincide with the solution we already found starting from time t “ 0. We

can then run the above argument which showed that solutions are right-continuous at t “ 0 to obtain the

right-continuity of solutions at t “ t0. We also want our solutions to be left-continuous at t “ t0 ‰ 0.

However, this is actually simple now. In fact, all of the arguments given to obtain right-continuity work with

time reversed, so this immediately gives us the left-continuity of solutions at t “ t0. Finally, as t0 P r0,T s

was an arbitrary time, we are able to conclude the desired regularity result: Θ P Cpr0,T s; Xq. �

2.8 Proof of Theorem 2.2.1

In this section, we will prove the first main theorem, Theorem 2.2.1. In the previous sections, we have

shown that the model problem (2.1.4) is well-posed locally in time and that solutions are continuous from

r0,T s into X. What remains is to show that these results can be extended to the full water waves system

(2.3.42) and then to prove the lifespan results. We shall begin by discussing how to extend the previous local

well-posedness and regularity results on the model problem to the full water waves system. Then, we will

prove the desired lifespan results as a corollary of the main energy estimate Theorem 2.5.10.
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2.8.1 Extending the Results on the Model Problem to the Full Water Waves System

In order to extend the well-posedness and regularity results for the model problem to the full water

waves system (2.3.42), we will, following the plan outlined in Remark 2.3.2, utilize mapping properties of

the operator pid`K rΘsq´1. The operator id`K rΘs is a Fredholm operator on X (indeed, it is a compact

perturbation of the identity). In Section 5 of [AmbEtAl], it is moreover shown that the operator id`K is

invertible (see Section 2.10 below for an alternative presentation on the solvability of the integral equations).

We then have the following result:

Lemma 2.8.1. The inverse operator pid`K rΘsq´1 : X Ñ X is continuous.

Proof. Given what we already know about id`K rΘs (i.e., that it is an invertible Fredholm operator), the

desired result follows from standard Fredholm theory. In particular, Theorem 1.4.15 of [Mur] should suffice.

Alternatively, we can utilize the Fredholm alternative. More specifically, it is shown in [AmbEtAl] that

id`K rΘs is a Fredholm operator with trivial kernel and so, by the Fredholm alternative, id`K rΘs is also

a surjection. Hence, we know id`K rΘs to be a bounded (by virtue of being Fredholm), bijective linear

operator on a Hilbert space and so has a bounded inverse by the bounded inverse theorem. �

Lemma 2.8.1 is the desired mapping property and it gives us the following local-in-time well-posedness

theorem, recalling that B is defined in (2.1.2):

Theorem 2.8.2. Let s be sufficiently large. The system (2.1.1) is locally well-posed. Namely, there exists a

unique solution Θ P Cpr0,T pB, |V0|qs;Xq to the system (2.1.1) and the flow map Θ0 ÞÑ Θ is Lipschitz regular

X1 Ñ Cpr0,T s; X1q.

Proof. The solvability result of [AmbEtAl] (or, alternatively, Section 2.10) and Lemma 2.8.1 imply that

Theorem 2.5.10, Theorem 2.6.1, Corollary 2.6.3, Theorem 2.6.4, Theorem 2.7.1, Theorem 2.7.2, Theorem

2.7.3 apply to the system (2.3.42). This then gives the desired result. �

2.8.2 Lifespan of Solutions

We have now established that the full water waves system (2.3.42) is locally well-posed. We now turn to

address the question of how long these solutions persist. The theory of quasilinear hyperbolic equations

suggests an Op 1
εq lifespan in the small-data setting, given that our system is quadratically nonlinear

[Kato2, Kato1, Maj2]. However, obtaining this existence time requires careful, delicate analysis. Our goal

here is to prove that when V0 “ 0, we get an existence time of order Oplog 1
εq as this can be done using the
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energy estimates we have already obtained. On the other hand, when V0 ‰ 0, we simply show that the

existence time is Op 1
p1`|V0 |q2

q. In a forthcoming paper, we will prove the quadratic Op 1
εq lifespan for

small-data solutions when V0 “ 0. We first consider the case V0 “ 0 and then proceed to consider V0 ‰ 0.

Zero Background Current In considering the existence time of solutions, the background current V0

plays a significant role. For example, even in the case of a flat initial free surface, the interaction of the

background current with the obstacle may lead to large deviations in the free surface and the formation of

splash singularities (see [AmbEtAl] for numerical simulations). Here we shall consider the lifespan of

solutions in the special case where V0 “ 0. In that case, by Theorem 2.5.10, we have the following energy

estimate:
dE
dt
À PpEq “ E` EN , (2.8.1)

where N ą 1; recall that χ “ 0 when V0 “ 0. Further, the energy estimate (2.8.1) applies to the full water

waves system as we discussed in the previous subsection.

As noted earlier, our goal here is to prove a “short” existence time using just the uniform energy estimate

of Theorem 2.5.10 and some basic analysis tools. Specifically, we have the following result on the lifespan of

solutions:

Lemma 2.8.3. For s sufficiently large, the energy E “ Eptq of a solution to the full water waves system

(2.3.42) with V0 “ 0 satisfies equation (2.8.1). Further assume that the Cauchy data augmenting the system

is small: B “ ε ! 1. Then, E remains bounded on r0,T pεqs, where

T pεq Á log
1
ε
, (2.8.2)

which implies that solutions to the water waves system (2.3.42) persist on a timescale of at least Oplog 1
εq.

Proof. We begin by writing T pεq “ 1
2C log ε´1, where C ą 0 is such that 9E ď CpE` ENq. We shall proceed

by utilizing the bootstrapping principle. Namely, we assume that, for some 0 ă r ă 1, we have Eptq P r0, rs

for all 0 ď t ď T pεq. We will then show that, for ε sufficiently small, Eptq is bounded above by r
2 for all

0 ď t ď T pεq. Via Grönwall’s inequality, coupled with the fact that ε ! 1 and r P p0, 1q, one can obtain

Eptq ď Kε2´ 1
2 p1`rN´1q ă Kε @t P r0,T pεqs, (2.8.3)
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where K ą 0 is such that Ep0q ď Kε2. Then, we can take ε sufficiently small so that

Eptq ă Kε ă
r
2
@t P r0,T pεqs. (2.8.4)

The bootstrapping principle then gives the desired result. �

Remark 2.8.4. There is nothing special about 1
2 and r

2 in the proof of Lemma 2.8.3. In fact, we can write

T pεq “ h
C log ε´1 and, as long as h P p0, 1q, we can take ε sufficiently small so that

Eptq ă Kε2´2h ă % ă r.

However, given that the lifespan we obtain in Lemma 2.8.3 is already far from sharp, we are not overly

concerned with optimizing these constants.

Remark 2.8.5. The proof of Lemma 2.8.3 clarifies the obstruction to obtaining the sharper Op1
εq lifespan,

videlicet the linear term E on the right-hand side of the energy estimate. If we could prove a slightly sharper

energy estimate that eliminated this linear term, and so had an energy estimate of the form

9E À E
3
2 ` higher-order terms, then a couple simple modifications to the above Grönwall argument would

give us the desired quadratic lifespan.

In addition to the small-data result of Theorem 2.8.3, we also want to deduce a simple Op1q lifespan in

the case of large data when V0 “ 0. We do so presently.

Lemma 2.8.6. Consider the energy of a solution to (2.3.42), where we still take V0 “ 0. The energy of such

a solution satisfies (2.8.1) as we have noted several times already. Then, E remains bounded on r0,T pBqs,

where

T pBq Á
1

BN´1 . (2.8.5)

In other words, solutions to (2.3.42) with large Cauchy data have at least an Op 1
BN´1 q lifespan. Recall again

that B is defined in (2.1.2).

Proof. Observe that, if E „ 1, we can rewrite (2.8.1) to obtain

dE
dt
À EN . (2.8.6)
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Now, write T pBq “ h
C

1
BN´1 , where C ą 0 is such that 9E ď CE and h ą 0 shall be chosen shortly. Recall

that, for some K ą 0, we have Ep0q ď KB2. Assume that we have Eptq P r0, 3KB2s for all 0 ď t ď T . Using

Grönwall’s inequality, we are able to obtain

Eptq ď KB2ep3KqN´1h. (2.8.7)

Then, as it is straightforward to see, we can take h sufficiently small so that 0 ď Eptq ă 2KB2 for all

t P r0,T pBqs. �

Non-Zero Background Current Here we shall suppose that V0 ‰ 0. In that case, our energy estimate is

of the form
dE
dt
À PpEq “ E` EN ` p1` |V0|qp

?
E` EMq À p1` |V0|q

?
E` EN . (2.8.8)

Again, we know from numerical experiments (see [AmbEtAl]) that, in this setting, splash singularities can

occur in Op1q time and so an Op1q lifespan is the best we can hope to do. As such, we will just consider large

data.

Lemma 2.8.7. When V0 ‰ 0, the energy E “ Eptq of a solution to (2.3.42) satisfies equation (2.8.8). Then,

E remains bounded on r0,T pB, |V0|qs with

T pB, |V0|q Á
1

p1` |V0|q2
^

1
BN´1 . (2.8.9)

So, solutions in this setting have at least an Op1q lifespan.

Proof. We begin by observing that we can use Young’s inequality to rewrite the energy estimate (2.8.8) as

follows:
dE
dt
À p1` |V0|q

2 ` E` EN À p1` |V0|q
2 ` EN .

We shall again proceed by utilizing the bootstrapping principle, supposing that Eptq P r0, 4KB2s for all

t P r0,T pB, |V0|qs, where K ą 0 is such that Ep0q ď KB2. Write

T “
h
C

ˆ

1
p1` |V0|q2

^
1

BN´1

˙

with C ą 0 such that 9E ď Cpp1` |V0|q
2 ` ENq and h ą 0 to be chosen soon. Then, Grönwall’s inequality
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gives

Eptq ď
`

KB2 ` hC´1˘ep3KqN´1h. (2.8.10)

Upon taking h to be sufficiently small (i.e., such that h
C ă KB2 and ep3KqN´1h ă 3

2 ), we have

0 ď Eptq ă 3KB2 for all 0 ď t ď T pB, |V0|q. The bootstrapping principle then gives the desired result. �

2.9 The Damped System

2.9.1 Introduction

We have now proved all of the desired results for the undamped system and we are now ready to

introduce the damper. Recall that the damping shall be effected via the application of an external pressure to

a small portion of the free surface. We shall let ω Ă r0, 2πq be a connected interval on which we will damp

the fluid and let χω be a smooth, non-negative cut-off function, which is positive on ω. Here, we consider a

single type of damping, where the external pressure is given by:

pext B B
´1
x pχωBxϕq, (2.9.1)

which we refer to as Clamond damping or linear H1{2 damping. Recall that ϕ is the velocity potential. We

also remind the reader that there is a Bernoulli constant bptq in (2.9.1) which we have chosen to ignore. That

we have chosen to ignore it should not be taken to imply that it is unimportant in general, just that it is

unimportant for our analysis.

Clamond damping, a type of modified sponge layer, was introduced by Clamond, et. al. in [CFGK2] in

the context of 3d water waves, where the damping term was given by

pext,3d “ ∇
´1 ¨ pχω∇φ̃q ´ bptq. (2.9.2)

In this formulation, ∇ is the horizontal gradient, χω is essentially the same as above (a smooth function

which is non-zero in the damping region and zero in the wave propagation region), φ̃ is the velocity potential

evaluated at the free surface, b is a Bernoulli constant and ∇´1 B ∆´1∇; in other words,

∇´1 ¨ pχω∇φ̃q B ´
iD

|D|2
¨ pχω∇φ̃q. (2.9.3)

Note that D “ pD1,D2q in (2.9.3). Equation (2.9.1) is just the analogue of (2.9.3) in 1d.

104



Recall that ξpαq “ α` B´1
α psα cos θpαq ´ 1q. Given that x “ ξ on St, it follows that we have the

following relation at the interface:

Bx “
1

sα cos θpαq
Bα. (2.9.4)

We can then invert Bx as follows:

B´1
x upαq “ B´1

α

“

sα cos θpαqupαq
‰

(2.9.5)

This allows us to rewrite pext:

pext “ B
´1
α

“

psα cos θqχωpsα cos θq´1Bαϕ
‰

“ B´1
α pχωϕαq. (2.9.6)

Note that the cut-off function χω acts on ξpαq, not α, as we want to localize the effects of damping to a region

of space. Further, we define ϕpαq B ϕpξpαq, ηpαqq.

2.9.2 New Evolution Equations

Given that we will effect the damping via the application of an external pressure, the damping will enter

into the evolution equations via a modified pressure at the free boundary. Recall from the earlier discussion

of the derivation of the evolution equations that the pressure only entered into the γt equation. We have, from

[AmbEtAl], that

γt “ ´2pα `
BαppV ´W ¨ t̂qγq

sα
´ 2sαWt ¨ t̂´

γγα

2s2
α

´ 2gηα ` 2pV ´W ¨ t̂qpWα ¨ t̂q.

The damped dynamic boundary condition is given by

p
∣∣∣
S
“ ´τκpζq ` pext “ ´

τ

sα
θα ` B

´1
α pχωϕαq, (2.9.7)

from which it follows that the damped γt equation is

γt “
2τ
sα
θαα ´ 2χωϕα `

BαppV ´W ¨ t̂qγq
sα

´ 2sαWt ¨ t̂´
γγα

2s2
α

´ 2gηα ` 2pV ´W ¨ t̂qpWα ¨ t̂q. (2.9.8)

So, the only difference is that we have picked up a term proportional to χωϕα.
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The damped water waves system is then likewise of the form

$

’

’

&

’

’

%

pid`K rΘsqBtΘ “ FDpΘq

Θpt “ 0q “ Θ0

, (2.9.9)

where FD denote the right-hand side F with the γt equation modified to effect Clamond damping; that is

FD,1 “ F1, FD,2 “ F2 ´ 2χωϕα, FD,3 “ F3 and FD,4 “ F4. Notice that the compact operator K rΘs is

exactly the same as in the undamped water waves system (2.1.1). As before, we will simply prove energy

estimates for a model problem and deduce the desired estimates for the full system from the mapping

properties of pid`K rΘsq´1 (i.e., Lemma 2.8.1). Specifically, we consider the following damped model

problem:
$

’

’

&

’

’

%

BtΘ “ FDpΘq

Θpt “ 0q “ Θ0

. (2.9.10)

2.9.3 Energy Estimates and Analysis

In this section, we will show that the results obtained for the undamped model problem (2.1.4) also hold

for the damped model problem (2.9.10). Given that, as noted above, the only difference in the evolution

equations is a term proportional to χωϕα in the γt equation, we only need to ensure that this term does not

derail the estimates. We begin by showing that Theorem 2.5.10 still holds in the presence of Clamond

damping. Namely, we have the following theorem:

Theorem 2.9.1. We define the energy Edamped of a solution to (2.9.10) in the same way (i.e., via Definition

2.5.1). Then, for s sufficiently large, we claim that Edamped satisfies

dEdamped

dt
À PpEdampedq. (2.9.11)
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Proof. Notice that 9Edamped contains the following terms that were not present in the undamped system:

´ 2
ˆ 2π

0
γpχωϕαq dα, (2.9.12)

´
1

2τsα

ˆ 2π

0
pB

j´2
α χωϕαqΛpB

j´2
α γq dα, (2.9.13)

´
1

8τ2s2
α

ˆ 2π

0
γpχωϕαqpB

j´2
α γq2 dα, (2.9.14)

´
1

8τ2s2
α

ˆ 2π

0
γ2pB

j´2
α γqpB

j´2
α χωϕαq dα, (2.9.15)

where 2 ď j ď s` 1. As we noted above, the only term contributed by the damper is proportional to ϕα. The

term ϕα may appear unfamiliar, but, in fact, it is a rather routine term. Indeed, we have

ϕα “ sα∇ϕ ¨ t̂ “ sαW ¨ t̂`
γ

2
. (2.9.16)

So, considering (2.9.12), we see that Lemma 2.5.4 in conjunction with the identity (2.9.16) immediately

gives

´2
ˆ 2π

0
γpχωϕαq dα À }γ}L2}ϕα}L2 À }γ}L2

›

›W ¨ t̂
›

›

L2 ` }γ}
2
L2 À PpEdampedq. (2.9.17)

For (2.9.13), we can apply the estimate (2.5.63) and Lemma 1.3.9 to obtain

1
2τsα

ˆ 2π

0
pB

j´2
α χωϕαqΛpB

j´2
α γq dα À }χωϕα}Hs´1{2}γ}Hs´1{2 À }ϕα}Hs´1{2}γ}Hs´1{2

À }γ}Hs´1{2p
›

›W ¨ t̂
›

›

Hs´1{2 ` }γ}Hs´1{2q

Notice that Lemma 2.5.4 allows us to control all of the terms in
›

›W ¨ t̂
›

›

Hs´1{2 except for
›

›BR ¨ t̂
›

›

Hs´1{2 . In

order to control this term, we represent the Birkhoff-Rott integral using (2.3.25) and then apply Lemmas

1.3.10, 1.3.7 and 2.4.5. Doing so gives

›

›BR ¨ t̂
›

›

Hs´1{2 À

›

›

›

›

ζαH

ˆ

γ

ζα

˙
›

›

›

›

Hs´1{2

` }ζαKrζsγ}Hs´1{2

À }ζa}Hs´1{2}γ}Hs´1{2p1` }ζd}Hs´1{2q ` }ζα}Hs´1{2}Krzsγ}Hs

À }γ}Hs´1{2p1` }θ}Hsq
2 ` }γ}Hs´1{2p1` }θ}Hsq

4. (2.9.18)
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We can then apply this estimate to finish estimating (2.9.13):

1
2τsα

ˆ 2π

0
pB

j´2
α χωϕαqΛpB

j´2
α γq dα À }γ}Hs´1{2p

›

›W ¨ t̂
›

›

Hs´1{2 ` }γ}Hs´1{2q À PpEdampedq. (2.9.19)

We now apply the estimate (2.9.18) to (2.9.14):

1
8τ2s2

α

ˆ 2π

0
γpχωϕαqpB

j´2
α γq2 dα À

›

›

›
γpχωϕαqpB

j´2
α γq

›

›

›

L2

›

›

›
B

j´2
α γ

›

›

›

L2

À }γ}3Hs´1{2}ϕα}Hs´1{2

À }γ}3Hs´1{2p
›

›W ¨ t̂
›

›

Hs´1{2 ` }γ}Hs´1{2q

À PpEdampedq. (2.9.20)

Finally, we consider (2.9.15) and here we can just use (2.9.20). We have

1
8τ2s2

α

ˆ 2π

0
γ2pB

j´2
α γqpB

j´2
α χωϕαq dα À

›

›

›
γpB

j´2
α γq

›

›

›

L2

›

›

›
γpB

j´2
α χωϕαq

›

›

›

L2

À }γ}3Hs´1{2}ϕα}Hs´1{2

À PpEdampedq. (2.9.21)

�

Remark 2.9.2. The proofs of Corollary 2.6.3, Theorem 2.7.1 and Theorem 2.7.3 will either go through in the

damped setting exactly as written or require at most minor modifications. Proving damped versions of

Theorem 2.6.1, Theorem 2.6.4 and Theorem 2.7.2 require considering energy estimates for the differences.

However, as in the above case, the added damping term will cause no problems in these estimates,

particularly given that the term contributed by the damper can be expressed in a way that only contains

terms we have already estimated. As such, we omit these calculations. Finally, given that Theorem 2.5.10

applies to the damped system, all of our results on the lifespan of solutions (Lemma 2.8.3, Lemma 2.8.6 and

Lemma 2.8.7) also apply to the damped system.

Following Remark 2.9.2, we have the following theorem:

Theorem 2.9.3. Let s be sufficiently large. The damped model problem (2.9.9) is locally-in-time well-posed

(in the sense of Hadamard) and the unique solution Θ is in Cpr0,T pB, |V0|qs;Xq, where B is defined in (2.1.2).
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The flow map is Lipschitz continuous from X1 into Cpr0,T s; X1q. In the context of small Cauchy data

B “ ε ! 1, we have

T pεq Á log
1
ε

for V0 “ 0. (2.9.22)

For large Cauchy data, we have

T pB, |V0|q Á

$

’

’

&

’

’

%

B1´N V0 “ 0

p1` |V0|q
´2 ^ B1´N V0 ‰ 0

, (2.9.23)

where N is a parameter given in equation (2.5.58).

Remark 2.9.4. From Theorem 2.9.3, we see that the stated claims hold for the damped model problem

(2.9.10). By the solvability result of [AmbEtAl] (or of Section 2.10) and Lemma 2.8.1, we can, exactly as in

the undamped case, extend the desired results to the full damped water waves system (2.9.9). This proves

Theorem 2.2.4.

2.10 Invertibility of id`K

Our objective in this section is to provide a proof of the solvability of the pγt, ωt, βtq system of integral

equations in a multiconnected, horizontally-periodic domain with a bottom. Solvability was proved in

[AmbEtAl], but we include this result as it is achieved via alternative means and our approach can be more

readily extended to higher dimensions. In proving that this system is solvable, we follow the work of Schiffer

in [Sch]. However, in order to apply these results, we will need to ensure that the periodic Green function

defined via the cotangent kernel shares some basic properties with the non-periodic free space Green

function. We now turn our attention to this issue.

2.10.1 Properties of the Periodic Green Function

For x, y P R2, we denote by N “ Npx, yq the fundamental solution to Laplace’s equation; that is,

Npx, yq B ´ 1
2π log|x´ y|. For z,w P C, we extend the definition of N in the natural way. Then, we have

Bny Npx, yq “
1

2π
px´ yq ¨ ny

|x´ y|2
(2.10.1)

and subsequently set

kpx, yq B Bny Npx, yq, kpz,wq B
1

2π
pz´ wq˚nCw
|z´ w|2

, (2.10.2)
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where z “ Cpxq, w “ Cpyq and nC satisfies

pa, bq ¨ ny “ Retpa` ibq˚nCwu.

In this case we have kpx, yq “ Re kpz,wq. Using an identity of Mittag-Leffler, we can transform the integral

kernel:

pv
ÿ

j

kpz` 2π j,wq “ pv
ÿ

j

nCw
2π

1
z` 2π j´ w

“
1

4π
nCw cot

1
2
pz´ wq; (2.10.3)

see [AbFo] or [AmbEtAl] for details.

For the sake of compactness, we introduce some new notation. Let Σ denote the boundary of Ω; that is,

Σ B BΩ “ SY BY C. As before, Ω denotes the fluid domain. Lastly, we make a note regarding the

convention we follow with regard to the unit normal since it differs slightly from the convention used until

now. In this section, we let nP denote the inward-pointing normal at P P Σ. Hence, for P P S, we have

nP “ ´n̂pα̃q, where ζpα̃q “ P.

Lemma 2.10.1. It holds that

ˆ
Σ

kpz, Pq dσpPq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 z P Ω

1
2 z P Σ

0 z P AΩ

, (2.10.4)

with σ denoting surface measure on Σ.

Proof. We follow the proof in [Fol] for the non-periodic free space Green function, extending it to the

periodic case.

pz P AΩq Fix z P AΩ and observe that the map P ÞÑ Npz, Pq is C8 in Ω, and harmonic on Ω. We can

therefore apply Green’s formula to get

0 “
ˆ

Σ

BnP Npz, Pq dσpPq “
ˆ

Σ

kpz, Pq dσpPq,

as desired.

pz P Ωq Fix z P Ω, pick ε ą 0 such that Bε “ Bεpzq Ť Ω, set Ωε “ Ω´ Bε and S ε “ S εpzq “ BBεpzq.

Observe that the map P ÞÑ Npz, Pq satisfies the same conditions as above on Ωε as opposed to Ω. Therefore,
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following an application of Green’s formula, we have

0 “
ˆ

Σ

kpz, Pq dσpPq `
ˆ

S ε

kpz, Pq dσεpPq,

with σε being the surface measure on S ε. So, we will need to evaluate
´

S ε
kpz, ¨q dσε. First, let us rewrite

kpz, ¨q on S ε. Notice that nCP “ ε´1pP´ zq. Write z´ P “ εeiϑ for ϑ P r0, 2πq and observe that

kpz, z´ εeiϑq “ ´
eiϑ

4π
cot

ε

2
eiϑ “ ´

1
2πε

` Opεq,

since cot z “ 1
z ` Op|z|q. It then follows that

0 “
ˆ

Σ

kpz, Pq dσpPq ´
σpS εq

2πε
` O

ˆˆ
S ε

ε dσ
˙

“

ˆ
Σ

kpz, Pq dσpPq ´ 1` Opε2q.

Sending εÑ 0` yields the desired equality.

pz P Σq Lastly, fix z P Σ and let ε ą 0. Set Bε “ Bεpzq and, recalling that S ε “ BBε, denote

Σε “ Σ´ pΣX Bεq, S 1ε “ S ε XΩ and S 2ε “ ty P S ε : nz ¨ y ă 0u. Again, we observe that the mapping

P ÞÑ Npz, Pq is harmonic in Ω´ Bε and C8 up to the boundary Σε Y S 1ε. So,

0 “
ˆ

Σε
kpz, Pq dσpPq `

ˆ
S 1ε

kpz, Pq dσεpPq.

We infer that

ˆ
Σ

kpz, Pq dσpPq “ lim
εÑ0`

ˆ
Σε

kpz, Pq dσpPq “ ´ lim
εÑ0`

ˆ
S 1ε

kpz, Pq dσεpPq “ lim
εÑ0`

#

σεpS 1εq
2πε

` O

ˆˆ
S 1ε
ε dσε

˙

+

“ lim
εÑ0`

σεpS 1εq
2πε

.

So, we need only compute σεpS 1εq. To this end, we observe that, due to the regularity of the boundary,

the symmetric difference of S 1ε and S 2ε is contained in an “equatorial strip" with measure Opε2q. Whence it

follows that σεpS 1εq “ σεpS 2εq ` Opε
2q “ πε` Opε2q. Putting this all together, we get

ˆ
Σ

kpz, Pq dσpPq “ lim
εÑ0`

"

πε` Opε2q

2πε

*

“
1
2
.
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This completes the proof. �

For φ P CpΣq we may define

upxq B
ˆ

Σ

kpx, PqφpPq dσpPq.

Then, for h P R small and nonzero, we define uhpPq B upP` hnPq for P P Σ and note that we have

P` hnP P Ω for h ą 0 and P` hnP P AΩ for h ă 0.

Lemma 2.10.2. For P P Σ, set

u`pPq B lim
hÑ0`

uhpPq, u´pPq B lim
hÑ0´

uhpPq.

Then, we claim that

u`pPq “ ´
1
2
φpPq `

ˆ
Σ

kpP,QqφpQq dσpQq, u´pPq “
1
2
φpPq `

ˆ
Σ

kpP,QqφpQq dσpQq.

Proof. We again follow the proof given in [Fol] to extend to the periodic case. Fix P P Σ and h ą 0

sufficiently small. Then, as noted above, P` hnP P Ω and thus

uhpPq “ φpPq
ˆ

Σ

kpP` hnP,Qq dσpQq `
ˆ

Σ

kpP` hnP,QqpφpQq ´ φpPqq dσpQq

“

ˆ
Σ

kpP` hnP,QqpφpQq ´ φpPqq dσpQq.

Continuity then implies that

lim
hÑ0`

uhpPq “ ´φpPq
ˆ

Σ

kpP,Qq dσpQq `
ˆ

Σ

kpP,QqφpQq dσpQq “ ´
1
2
φpPq `

ˆ
Σ

kpP,QqφpQq dσpQq.

On the other hand, for h ă 0, we have

uhpPq “ φpPq
ˆ

Σ

kpP` hnP,Qq dσpQq `
ˆ

Σ

kpP` hnP,QqpφpQq ´ φpPqq dσpQq

“ φpPq `
ˆ

Σ

kpP` hnP,QqpφpQq ´ φpPqq dσpQq.
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It then follows, again from continuity, that

lim
hÑ0´

uhpPq “ φpPq´φpPq
ˆ

Σ

kpP,Qq dσpQq`
ˆ

Σ

kpP,QqφpQq dσpQq “
1
2
φpPq`

ˆ
Σ

kpP,QqφpQq dσpQq.

�

2.10.2 Solvability of the System

With this machinery in place, we now want to consider the Fredholm eigenvalues of the operator

specialized to the water waves problem. We begin by observing that Lemma 2.10.2 holds in the case of the

complexified kernel. That is, if we define u`p℘q and u´p℘q for complex ℘ P Σ in the natural way, then the

same jump relations at the boundary given in Lemma 2.10.2 will hold. We now define the relevant operator

Tkr¨s by Tkr¨s : φ ÞÑ 2
´

Σ
kp¨, ℘qφp℘q dσp℘q. We shall let φν denote the eigenfunctions of Tkr¨s on S . In

other words, we take the φν to solve

φνp¨q “ 2λν

ˆ
Σ

kp¨, ℘qφνp℘q dσp℘q pon Σq. (2.10.5)

Observe that the λν’s aren’t exactly the eigenvalues corresponding to the φν’s, rather the eigenvalues are of

the form µν “ λ´1
ν . Additionally, we define

2λν

ˆ
Σ

kpz, ℘qφp℘q dσp℘q “

$

’

’

&

’

’

%

hνpzq z P Ω

h̃νpzq z P AΩ
. (2.10.6)

It shall also be worthwhile to consider the complex derivatives of hν and h̃ν, which give rise to the dual

formulation of the Fredholm eigenvalue problem. Thus, we introduce the holomorphic functions

vνpzq “ Bzhνpzq, ṽνpzq “ Bzh̃νpzq. (2.10.7)

Then, we can apply Lemma 2.10.2 to evaluate the limit of the various h’s as z tends to the boundary. In
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particular,

lim
zÑκPΣ

hνpzq “ ´λνφνpκq ` λν

ˆ
Σ

kpκ, ℘qφνp℘q dσp℘q

“ p1´ λνqφνpκq.

lim
zÑκPΣ

h̃νpzq “ λνφνpκq ` λν

ˆ
Σ

kpκ, ℘qφνp℘q dσp℘q

“ p1` λνqφνpκq (2.10.8)

Further, it clearly holds that

Bnh j
ν

∣∣∣
Σ
“ Bnh̃ν

∣∣∣
Σ
. (2.10.9)

If we let z “ zpsq parameterize Σ by arclength, then we can combine (2.10.8) and (2.10.9) into a single

equation relating vν and ṽν:

ṽνpzq
dz
ds
“

1
1´ λν

vνpzq
dz
ds
`

λν
1´ λν

vνpzq
dz
ds

pz “ zpsqq. (2.10.10)

Utilizing (2.10.10), we can formulate a set of integral equations solved by the v’s:

´2λν

ˆ
Ω

vνpwq
pw´ zq2

dm2pwq “

$

’

’

&

’

’

%

vνpzq z P Ω

p1´ λνqṽνpzq z P AΩ
, (2.10.11)

2λν

ˆ
AΩ

ṽνpwq
pw´ zq2

dm2pwq “

$

’

’

&

’

’

%

p1` λνqvνpzq z P Ω

ṽνpzq z P AΩ
(2.10.12)

where m2 denotes two-dimensional Lebesgue measure. See [Sch] for further details.

We now see that the periodic h and v functions defined via the cotangent kernel satisfy the same

boundary jump relations as those defined via the non-periodic free space Green function. We can utilize the

boundary jump relations of (2.10.8) to prove that

ˆ
Ω

|vν|2 dm2 “
λν ` 1
λν ´ 1

ˆ
AΩ

|ṽν|2 dm2; (2.10.13)

see [Sch] for details. As in [Sch], we deduce from (2.10.13) that |λν| ě 1. What remains then is to show that
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λν ‰ 1. Following [Sch] or [Fol], we see that, in the non-simply-connected setting, there is a nontrivial

kernel corresponding to the integral equations for the h functions. In fact, the kernel is spanned by χC, the

characteristic function of the boundary of the obstacle. However, a key point is that in the vortex sheet (or

layer potential) formulation of the water waves problem, we are generally more interested in the gradient of

the potentials as opposed to the potentials themselves. That is to say, the vortex sheet formulation of the

water waves problem is a “v-problem” – what we are really interested in is the kernel corresponding to the

v’s. Given that the kernel of the h functions is spanned by a constant function, it is clear that the

corresponding kernel for the v functions will be trivial. This is exactly as desired for we may now apply the

Fredholm alternative to deduce that the inhomogeneous system of integral equations under consideration is

solvable (via Neumann series). That is, we have now proved the following theorem.

Theorem 2.10.3. The system of Fredholm integral equations of the second kind for pγt, ωt, βtq is solvable.

Remark 2.10.4. The above analysis also shows that the system arising from the Cauchy integral formulation

in [AmbEtAl] is solvable, subject to a minor modification. The Cauchy integral formulation is dual to the

vortex sheet formulation and corresponds to an “h-problem”, which is dual to the “v-problem”. This implies,

as noted above, that the integral equations have a non-trivial, but finite-dimensional, kernel, which is

spanned by χC. Thus, the system has a Fredholm pseudoinverse. In particular, the system is invertible upon

applying a rank-one correction, which projects away from the kernel. This is exactly the process used to

invert the system in [AmbEtAl].
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CHAPTER 3

A Toy Model for Damped Water Waves

3.1 An Introduction to the Toy Model

Up until now, we have been focused on the vortex sheet formulation of the water waves system. We are

going to switch gears a bit and consider the water waves problem from the point of view of the

Zakharov-Craig-Sulem formulation [Zak, CrSu], however, as we shall discuss shortly, the vortex sheet

formulation is still very much part of our considerations. We shall also change a few assumptions made in

Chapter 2, viz. assuming that we no longer have obstacles in the flow (i.e., the domain is simply connected),

that the domain is of infinite depth and that the location of the free boundary is given by the graph of a

function η. To summarize these changes, we have

Ωt B tpx, yq P Tˆ R : ´8 ă y ă ηpx, tqu, (3.1.1)

St B BΩt “ tpx, yq P Tˆ R : y “ ηpx, tqu. (3.1.2)

Of course, we shall still have a scalar potential ϕ such that v “ ∇ϕ, where v is the fluid velocity field in

(1.1.1). Let ψ denote the trace of the velocity potential ϕ along the free boundary St. Then, pη, ψq solves

$

’

’

&

’

’

%

Btη´Gpηqψ “ 0

Btψ` gη´ τHpηq `
1
2
pBxψq

2 ´
1
2
pGpηqψ` BxηBxψq

2

1` pBxηq2
“ ´pext

, (3.1.3)

where pext is the external pressure which effects the damping and is given by (1.1.3), Gpηq is the

(normalized) Dirichlet-Neumann map given by

Gpηqψpx, tq B
b

1` pBxηpx, tqq2Bn̂ϕpx, ηpx, tq, tq

“ Byϕpx, ηpx, tq, tq ´ Bxηpx, tqBxϕpx, ηpx, tq, tq (3.1.4)

and we let n̂ denote the outward unit normal vector field on St. We take Hpηq to denote the mean curvature
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of the free surface:

Hpηq B Bx

˜

Bxη
a

1` pBxηq2

¸

. (3.1.5)

The system (3.1.3) is known as the Zakharov-Craig-Sulem formulation of the water waves system.

Our toy model will be built from the paradifferential equation for the water waves system. This

paradifferential equation originates in the beautiful work of Alazard-Burq-Zuily [ABZ1], which considers

(3.1.3) with pext ” 0. The paradifferential approach to the study of water waves began with the work of

Alazard-Métivier on the regularity of three-dimensional diamond waves [AlMe]. We briefly recall that

construction in the context of the 2d gravity-capillary water waves system, referring to [ABZ1] for the

details. Let pV, Bq be the trace of ∇ϕ along the free surface. The paralinearized system is

$

’

&

’

%

Btη` TVBxη´ Tλu “ f1

Btu` TVBxu` Tµη “ f2
. (3.1.6)

In (3.1.6), u B ψ´ TBη is the good unknown of Alinhac. For more on the good unknown, see [Ali1, Ali2].

For an exposition of paracomposition, the setting in which the good unknown arises, see [Tay5]. For an

interesting application of the good unknown to the relativistic or nonrelativistic compressible Euler equations,

see [Tra]. Further, µ “ µpx, ξq is a symbol of order 2 such that

Hpηq “ ´Tµη` fH . (3.1.7)

We use fH and f j to denote the smooth(er) remainder terms, which obey nice estimates. Finally, λ “ λpx, ξq

is (related to) the symbol of the Dirichlet-Neumann map, which we discuss further presently.

It has been known since the work of Calderón that, at least when η P C8, Gpηq is a classical, elliptic

ΨDO of order one [Cal]. As such, its symbol admits an asymptotic expansion:

λpx, ξq „
ÿ

jě0

λ1´ jpx, ξq, (3.1.8)

where λ1´ jpx, ξq is homogeneous of degree 1´ j in ξ. In d dimensions, the principal symbol is given by

λ1px, ξq “
b

p1`
∣∣∣∇ηpxq∣∣∣2q|ξ|2 ´ p∇ηpxq ¨ ξq2. (3.1.9)
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The remaining symbols can be computed by induction and, as j increases, the symbols involve higher

derivatives of η with λ1´ j depending on derivatives of η up to order |1´ j|` 2 [ABB]. Direct computation

verifies that in dimension two we have λ1px, ξq “ |ξ| and λ0px, ξq “ 0, so that λpx, ξq “ |ξ|` remainder. So,

in dimensions three and higher, Gpηq is a ΨDO, however, in 2d, Gpηq is a Fourier multiplier which is

independent of the domain (at least at the principal level)! This dramatic simplification really points up the

phenomenological distinction between 2d and 3d water waves.

Given the above, we can see that the situation becomes quite a bit more complex when η R C8. In

particular, Gpηq is then a ΨDO with symbol of limited smoothness. To work with symbols of limited

regularity, one must use some form of symbol smoothing (e.g., paradifferential analysis). See [Tay4, Tay5]

for more on symbol smoothing. Further, the full asymptotic expansion in (3.1.8) fails to be meaningful when

η is not C8. Nevertheless, we can extend the definition of λ to the case where η R C8 by truncating the

asymptotic expansion and only keeping the terms which are meaningful. For example, if η is Ck, but not

Ck`1, we could set λ “ λ1 ` . . .` λ´k`2. In the low-regularity setting of Alazard-Burq-Zuily, η was only at

least C2 and this led to

λ “ λ1 ` λ0. (3.1.10)

Of course, in this setting, it is no longer the case that Gpηq “ Oppλq. Indeed, for λ as in (3.1.10), we have

Gpηqψ “ Tλu´ TVBxη` fG, (3.1.11)

where fG, once again, contains much smoother remainder terms.

With (3.1.6) established, one can then find a symmetrizer of the form

S “

¨

˚

˝

Tp 0

0 Tq

˛

‹

‚
, (3.1.12)

where p is of order 1
2 and q is of order 0, such that

S

¨

˚

˝

0 ´Tλ

Tµ 0

˛

‹

‚
»

¨

˚

˝

0 ´Tγ

T˚γ 0

˛

‹

‚
S (3.1.13)
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up to acceptable remainder terms. One can then show that

BtS

¨

˚

˝

η

u

˛

‹

‚
` TVBxS

¨

˚

˝

η

u

˛

‹

‚
` J

¨

˚

˝

T˚γ 0

0 Tγ

˛

‹

‚
S

¨

˚

˝

η

u

˛

‹

‚
“ F, (3.1.14)

where

J “

¨

˚

˝

0 ´1

1 0

˛

‹

‚
.

Identifying R2 with C and J with i “
?
´1, we can restate (3.1.14) as a single equation for a

complex-valued unknown. Defining U B Tpη` iTqu, we have the following paradifferential equation for the

water waves system:

BtU ` TVBxU ` iTγU “ f , (3.1.15)

where γ “ γpx, ξ, tq is an elliptic symbol of order 3
2 . Of course, the right-hand side f consists of smooth(er)

remainder terms. A similar result can be obtained for the gravity water waves system, however in that case γ

is of order 1
2 [ABZ3].

We want to consider a damped form of (3.1.15). This leads us to consider the following toy model for

the (two-dimensional) water waves system subject to Clamond damping:

$

’

’

&

’

’

%

BtU `WpUqBxU ` iLU ` χωU “ 0

Upt “ 0q “ U0 P Hσ

. (3.1.16)

In the above, the unknown U : TÑ C and L is defined by

L B |D|α for α P p0, 2s, (3.1.17)

Notice that WpUq is the toy model counterpart to the paraproduct operator TV in (3.1.15). For some integer

N " 0, W is continuous from Hs´N Ñ Hs:

}WpUq}Hs À
›

›xDy´NU
›

›

Hs . (3.1.18)

Further, Wp¨q is real-valued, satisfies WpUq “ WpU˚q and scales linearly in U (i.e., Wp¨q is homogeneous of
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degree one: WpλUq “ λWpUq for λ P R). Finally, χω corresponds to the cut-off function in (1.1.3). Notice

that α “ 3
2 in (3.1.17) corresponds to capillary waves and α “ 1

2 corresponds to gravity waves. For

discussion of the Cauchy problem for a similar toy model see [Ala4].

We shall be working in the small-data setting and so assume that

}U0}Hσ “ ε ! 1. (3.1.19)

Our aim will be to show that solutions to (3.1.16) exist on timescale Op 1
εq. We will achieve this by rescaling

U: Upx, tq “ εvpx, εtq. Then, our objective will be to simply obtain uniform in ε estimates on the solution v

to the equation
$

’

’

&

’

’

%

Btv`WεpvqBxv` i
εLv` 1

εχωv “ 0

vpt “ 0q “ v0 P Hσ

, (3.1.20)

where Wεpvq B ε´1Wpεvq.

Notice that, due to the scaling linearity and (3.1.18), Wεpvq satisfies

›

›Bk
xWεpvq

›

›

L8 À 1 for k “ 0, 1, (3.1.21)

where the estimate is uniform in ε. We shall further assume that W commutes with differentiation with

respect to time:

BtWpUq “ WpBtUq. (3.1.22)

We justify this assumption by recourse to the properties of the paraproduct operator TV . Observe that

BtpTVUq “ TVBtU ` TBtVU, which can be seen by differentiating equation (1.3.41). Then, Lemma 1.3.4

gives the estimate

}BtpTVUq}Hs À }V}L8}BtU}Hs ` }BtV}L8}U}Hs ,

provided that V and BtV are L8. Finally, since BtU « |D|αU (at least when α ą 1), we see that TBtVU can be

considered a lower-order remainder term. If α ď 1, we have BtU « WpUqBxU ` i|D|αU and this will still

represent the highest-order term. This justifies our assumption (3.1.22) as long as we take V and BtV to be

L8.

Regarding whether V and BtV are L8, we first note that we are not considering rough solutions/data and
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so we can simply assume that V has enough regularity that the desired inclusion holds via Sobolev

embedding. Nevertheless, in the low-regularity context of [ABZ1], this assumption is verified. In particular,

V is Hs´1 for s ą 2` d
2 . Additionally,

BtV ` pV ¨ ∇qV ` aζ “ 0,

where ζ “ ∇η and a is the Taylor coefficient (a “ ´By p
∣∣∣
y“η with y being the vertical coordinate). We have

pV ¨ ∇qV P Hs´2 and ζ P Hs´1{2. Finally, a is Hs´3{2. Hence, BtV is Hs´2, which is just enough to have

BtV P L8. All of the above details and more can be found in [ABZ1, ABZ3].

3.1.1 Connections with the Vortex Sheet Formulation

Though our toy model (3.1.16) is most clearly related to the Zakharov-Craig-Sulem formulation, the toy

model, and indeed this entire chapter, still has the vortex sheet formulation in mind. Ultimately, the objective

is the Op 1
εq lifespan for the vortex sheet water waves system which was the object of discussion in the

previous chapter. We would like to take a few moments to discuss how the contents of this chapter relate to

achieving that objective.

To do so in the simplest setting possible, we consider the infinite-depth vortex sheet equations (with no

obstacles):
$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

θt “
1

2s2
α

Hpγαq `
1
sα
pV ´ BR ¨ t̂qθα `

1
sα

m ¨ n̂

γt “
2τ
sα
θαα `

γ

2s2
α

Hpγθαq `
γα
sα
pV ´ BR ¨ t̂q `

γ

sα
psαt ´m ¨ t̂q

´2sαBRt ¨ t̂´
γγα

2s2
α

` 2pV ´ BR ¨ t̂qBRα ¨ t̂´ 2gηα

. (3.1.23)

If we similarly rescale the vortex sheet system by taking θ “ εθ, γ “ εγ and t “ ε´1t, and then immediately

dropping the “bars”, we obtain

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

θt “
1
ε

ˆ

1
2s2

α

Hpγαq `
1
sα

m ¨ n̂
˙

`
1
sα
pεV ´ BR ¨ t̂qθα

γt “
2
ε

ˆ

τ

sα
θαα ´ gηα

˙

`
1
sα
pεV ´ BR ¨ t̂qγα `

γ

sα
psαt ´m ¨ t̂q

´2sαBRt ¨ t̂´
γγα

2s2
α

` 2pεV ´ BR ¨ t̂qBRα ¨ t̂` ε
γ

2s2
α

Hpγθαq

. (3.1.24)

Of course, the above systems do not include the effects of Clamond damping. Recall that the effect of adding
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the damper is to contribute the term ´2χωϕα to the evolution equation for γ and further that

ϕα “ sα∇ϕ ¨ t̂ “ sαBR ¨ t̂`
γ

2
.

Ergo, the rescaled damped vortex sheet equations are given by

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

θt “
1
ε

ˆ

1
2s2

α

Hpγαq `
1
sα

m ¨ n̂
˙

`
1
sα
pεV ´ BR ¨ t̂qθα

γt “
2
ε

ˆ

τ

sα
θαα ´ gηα ´ sαχωBR ¨ t̂´ χω

γ

2

˙

`
1
sα
pεV ´ BR ¨ t̂qγα `

γ

sα
psαt ´m ¨ t̂q

´2sαBRt ¨ t̂´
γγα

2s2
α

` 2pεV ´ BR ¨ t̂qBRα ¨ t̂` ε
γ

2s2
α

Hpγθαq

. (3.1.25)

The rescaled damped vortex sheet system (3.1.25) is undoubtedly more complicated than the rescaled

toy model (3.1.20). Nevertheless, there are some similarities. To clarify these similarities, we will rewrite the

system by taking u “ pu1, u2q
t “ pθ, γqt:

Btu “ Ngpu, Btuq `
1
ε
Lpuqu`

1
ε
Xωu`

1
ε

Nbpuq. (3.1.26)

In (3.1.26), Lpuq is a linear operator with coefficients depending nonlinearly and nonlocally on u, Ng and Nb

are nonlinear, nonlocal operators and Xω is a multiplication operator. We can, with varying degrees of effort,

write down all of the operators in (3.1.26) explicitly. For example, the linear operator Lpuq is given by

Lpuq B

¨

˚

˝

0 1
2s2

α
H Bα

2τ
sα
B2
α 0

˛

‹

‚
. (3.1.27)

Thus, it is seen that Lpuq depends on u via the arclength parameter sα. On the other hand, the multiplication

operator Xω, which arises due to the damping, is given by

Xω “ p0,´χωq; that is Xωu “

¨

˚

˝

0

´χω

˛

‹

‚
¨

¨

˚

˝

u1

u2

˛

‹

‚
“ ´χωu2. (3.1.28)

Writing down the nonlinearities is rather more involved and, given that we will not carry out any analysis of

this system, we omit this step.

The connection between the toy model and the vortex sheet system is hopefully becoming clearer.
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Indeed, equations (3.1.20) and (3.1.26) look a lot alike. Of course, there are differences (e.g., there is the

“bad” nonlinearity Nbpuq which has no counterpart in the toy model), but it is sensible to conjecture that tools

that can successfully be applied to (3.1.20) might also yield results for the vortex sheet formulation of the

water waves system. To preview a bit, we build an energy for solutions to (3.1.20) using the commuting

vector field εBt and prove the necessary energy estimate to obtain the desired Op1q lifespan for solutions to

(3.1.20) (and therefore the desired Op 1
εq lifespan for solutions to (3.1.16)). We view this chapter as a sort of

proof of concept, showing that commuting vector fields can be used to obtain a quadratic lifespan for

solutions to a water-waves-like equation. In order to extend this approach to the gravity-capillary water

waves system, we will need to overcome some difficulties. For example, due to the structure of the toy model,

we clearly have εBt « |D|α when α ą 1. The structure of the vortex sheet equations are not so simple and

such arguments will be a bit more delicate. Nevertheless, we should still have εBt « Lpuq and it is our hope

that this approach will extend to the vortex sheet formulation of the 2d gravity-capillary water waves

problem. As is the case for the toy model, the presence of surface tension is crucial for the applicability of

this vector field. For an example of the application of rescaling in conjunction with the commuting vector

field εBt to obtain a large-time existence result for the water waves system, see [Més]. This paper also has

some further discussion on the necessity of surface tension for the applicability of the εBt vector field in the

context of the Zakharov-Craig-Sulem formulation. This strategy, somewhat broadly speaking, has also been

applied to other problems in fluid dynamics, primarily those involving singular limits (e.g., anelastic limits

for Euler-type systems [BrMé], the incompressible limit of the Euler equations [MéSc, Ala1] and the

low-mach-number limit of the full Navier-Stokes equations [Ala2]).

Before moving on to our analysis, we want to discuss one (potential) more connection between the toy

model and the vortex sheet formulation of the water waves problem. This connection arises via the

paralinearization of the water waves system. To be a bit more clear, we believe that the paralinearization of

the vortex sheet formulation of the 2d water waves system will be of the same form (3.1.15) as that of the

Zakharov-Craig-Sulem formulation. This connection is only a potential connection as, to our knowledge, the

vortex sheet system has never been paralinearized. In future work, we plan to perform this paralinearization

and hopefully confirm our belief that it is of the form (3.1.15). If this is indeed the case, it will provide

another, very clear, connection between the toy model and the vortex sheet system as, indeed, the toy model

was built from (3.1.15).
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3.2 Main Results and Plan of the Chapter

As noted in the introduction, our objective is to show that solutions to (3.1.16) have an Op 1
εq lifespan.

Our approach will be to consider the rescaled equation (3.1.20) and to show that solutions have an Op1q

lifespan. Our first task will be to define an energy E for solutions of (3.1.20). This will be done using

carefully chosen vector fields. However, the value of α in (3.1.17) plays a key role in defining a suitable

energy. In particular, the order of L, compared to the order 1 nonlinearity WεpvqBxv, will determine whether

L is principal or sub-principal, and this fact plays an important role in determining the analysis necessary to

attack the problem. So, the marked difference in analysis is between the cases α ą 1 and α ď 1. However,

rather than focusing on these more general cases, we will largely focus in on the cases α “ 3
2 and α “ 1

2 . In

either case, we have the following result:

Theorem 3.2.1. Let v be a solution of (3.1.20), where α “ 3
2 or α “ 1

2 , and suppose that σ is sufficiently

large. If E is the appropriate energy of a solution to (3.1.20), then we have

dE
dt
À E. (3.2.1)

Detailed statements of this result can be found in Theorem 3.4.5 for the case α “ 3
2 and in Theorem

3.4.7 for the case α “ 1
2 .

Remark 3.2.2. It is crucial that the energy estimate (3.2.1) is uniform in ε. With such an estimate in hand, a

routine Grönwall argument will yield the desired Op1q lifespan. Of course, we can then deduce that solutions

to (3.1.16) persist on an Op 1
εq timescale.

Remark 3.2.3. Our definition of L clearly omits the gravity-capillary case, corresponding to

L B
a

|D|` |D|3. Nevertheless, we are quite confident that the same results would obtain. The only place

where our arguments would not apply directly to the gravity-capillary case is in the proof of Lemma 3.3.4.

However, it should not be too difficult to extend Lemma 3.3.4 to handle L “
a

|D|` |D|3 or something more

general like L “
a

|D|α ` |D|β.

In Section 3, we prove some preliminary commutator estimates which will be needed to prove the main

energy estimates. The main energy estimates are proved in Section 4. Finally, Section 5 contains an

alternative proof of one of the main results.

124



3.3 ΨDO Commutator Estimates

In proving the energy estimates which are the primary focus of this chapter, we shall encounter a number

of commutators involving ΨDO. Specifically, we will need to handle commutators involving positive integer

powers of PL “ OpppLq, which is given by

PL B iL` χω. (3.3.1)

Recall that L is defined in (3.1.17). In the sequel, we will primarily be concerned with two types of

commutators involving PL. They will be of the form
“

Pk
L, f

‰

and
“

Pk
L, Bx

‰

for k P N. Note that we lightly

abuse notation by not distinguishing the notation for a function f and the operator M f : u ÞÑ f u. To avoid

confusion, note that, when P is an operator and f a function, we define the commutator rP, f s B
“

P,M f
‰

;

that is,

rP, f spuq “ Pp f uq ´ f Pu.

The challenge posed by working with PL is that its symbol pL is not smooth at ξ “ 0, otherwise we

could use standard ΨDO commutator estimates. However, as a Fourier multiplier, iL commutes with Bx and

so the commutators of the form
“

Pk
L, Bx

‰

will be rather straightforward to understand. In this case, we have

the following result:

Lemma 3.3.1. Let k P N. Then, for all s ě 0, we have

›

›

“

Pk
L, Bx

‰

puq
›

›

Hs À }u}Hs`kα´α . (3.3.2)

Proof. We shall proceed by induction on k. For k “ 1, it is straightforward to verify (3.3.2). Namely, by

Lemma 1.3.9, we have

}rPL, Bxspuq}Hs “ }pBxχωqu}Hs À }u}Hs @s ě 0. (3.3.3)

Now, assume that, for some fixed k P N, we have

›

›

“

Pk
L, Bx

‰

puq
›

›

Hs À }u}Hs`kα´α @s ě 0. (3.3.4)
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Observe that we can write

“

Pk`1
L ,Q

‰

puq “ PL
“

Pk
L,Q

‰

puq ` rPL,QspPk
Luq, (3.3.5)

where Q is an arbitrary operator (e.g., we could have Q “ Bx or Q “ M f ). Fixing s ě 0, we can now

estimate each term on the right-hand side of (3.3.5) in the Hs norm. We apply the triangle inequality, Lemma

1.3.9 and the induction hypothesis (3.3.4) to the first term:

›

›PL
“

Pk
L, Bx

‰

puq
›

›

Hs ď
›

›L
“

Pk
L, Bx

‰

puq
›

›

Hs `
›

›χω
“

Pk
L, Bx

‰

puq
›

›

Hs

À
›

›

“

Pk
L, Bx

‰

puq
›

›

Hs`α `
›

›

“

Pk
L, Bx

‰

puq
›

›

Hs

À }u}Hs`kα . (3.3.6)

The second term on the right-hand side of (3.3.5) is straightforward to estimate in Hs via Lemma 1.3.9:

›

›rPL, BxspPk
Luq

›

›

Hs “
›

›pBxχωqPk
Lu
›

›

Hs À
›

›Pk
Lu
›

›

Hs À }u}Hs`kα . (3.3.7)

Using equation (3.3.5) and the triangle inequality, we can deduce from (3.3.6) and (3.3.7) that

›

›

“

Pk`1
L , Bx

‰

puq
›

›

Hs À }u}Hs`kα . (3.3.8)

This completes the proof. �

The commutators of the form
“

Pk
L, f

‰

will require a bit more work. Our objective is to prove the

following:

Lemma 3.3.2. Let k P N. Then, we have

›

›

“

Pk
L, f

‰

puq
›

›

Hs À } f }Hr}u}Hs`kα´1 , (3.3.9)

provided r ą 3
2 , s ě 0 and s` kα ď r.

Notice that if we could prove (3.3.9) for k “ 1, then proceeding by induction on k and exploiting (3.3.5)

would give the result much like in the proof of Lemma 3.3.1. However, L will not commute with
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multiplication by a function as it did with differentiation. In fact, we have

rPL, f spuq “ irL, f spuq.

Therefore, in order to get such an argument off the ground, we will need to understand how to estimate such a

commutator.

As noted above, a key detail here is that ` (the symbol of L) is not smooth at ξ “ 0 and so classical ΨDO

(or Fourier multiplier) commutator estimates will not apply directly. However, notice that if

φ “ φpξq P C8c pT
˚Tq with φ ” 0 in some neighborhood of ξ “ 0, then φ` P S α

1,0 (recall the symbol class

S m
ρ,δ is defined in (1.3.27)). Thus, classical ΨDO commutator estimates “almost” apply to L and in fact do

apply to L as long as we filter out the low frequencies. Given that we should be able to handle the low

frequencies with Bernstein-type inequalities for band-limited functions, this indicates that we should be able

to adapt classical ΨDO commutator estimates to handle L and this is, in fact, our next objective.

There are a great many results on estimating commutators of the form rOpppq, f spuq in Sobolev spaces,

where p P S m
ρ,δ or some other appropriate symbol class. The book [Tay4] is an excellent resource for such

estimates. The result which we will use as a basis for building the needed commutator estimate is the

following:

Lemma 3.3.3. Let m ě 0. Further, take r, s P R such that r ą 3
2 , s ě 0 and s` m ď r. Then, for

p “ ppx, ξq P BS m
1,1, we have

}rOpppq, f spuq}Hs À } f }Hr}u}Hs`m´1 . (3.3.10)

In other words, rOpppq, f s is an operator of order m´ 1.

Proof. See Proposition 4.2 in [Tay6]. �

The symbol class BS m
1,1 contains those ppx, ξq P S m

1,1 such that

Dγ P p0, 1q : supp p̂pθ, ξq Ă tpθ, ξq : |θ| ď γ|ξ|u. (3.3.11)

This class is related to the symbol class Bm
r introduced by Meyer in [Mey]. What is important for us about

this symbol class is that

S m
1,0 Ă BS m

1,1 ` S´81,0 ; (3.3.12)
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in fact, we have, for any δ ą 0, S m
1,δ Ă BS m

1,1 ` S´81,0 . In addition, OpBS m
1,1 contains the paradifferential

operators of [Bony]. A similar estimate that would have suited our purposes is Lemma 3.4 in [Ala2]. We

could have also used the estimate (3.6.1) from [Tay4], which for p P S m
1,0 would give the same estimate as

(3.3.10) after applying Sobolev embedding.

We are now going to use Lemma 3.3.3 to prove the needed estimate for commutators involving L.

Lemma 3.3.4. Let L be as in (3.1.17), r ą 3
2 , s ě 0 and s` α ď r. Then, the result of Lemma 3.3.3 holds

with p “ `. Namely, it holds that

}rL, f spuq}Hs À } f }Hr}u}Hs`α´1 . (3.3.13)

Proof. As we noted previously, the challenge we must overcome is that ` is not smooth at ξ “ 0. To deal

with this fact, we decompose L into a component with smooth symbol and a low-frequency component. We

will be able to control the (non-smooth) low-frequency factor via Bernstein-type inequalities, while Lemma

3.3.3 will give us control of the high-frequency, but smooth, factor.

We begin by defining a low-frequency filtering operator S 0 as in (1.3.33). The aforementioned

decomposition is then L “ L1 ` Lą1, where L1 B S 0L and Lą1 B pid´S 0qL. Observe that in defining L1

we have filtered out the high frequencies, only retaining frequencies ξ with |ξ| ď 1. Likewise, for Lą1, we

have filtered out the low frequencies and only retain frequencies |ξ| ą 1.

From here, simply applying the triangle inequality gives

}rL, f spuq}Hs ď }rL1, f spuq}Hs ` }rLą1, f spuq}Hs . (3.3.14)

We now just have to estimate each term on the right-hand side of (3.3.14). We will begin with the

low-frequency component. As Fourier multipliers, S 0 and L commute, so we can use Lemma 1.3.9 and a

Bernstein-type inequality (e.g., Lemma 1.3.3) to obtain

}L1p f uq}Hs “ }LS 0p f uq}Hs À 2α} f }Hr}u}Hs , (3.3.15)

} f L1u}Hs À } f }Hr}LS 0u}Hs À 2α} f }Hr}u}Hs . (3.3.16)
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Of course, (3.3.15) and (3.3.16) imply that

}rL1, f spuq}Hs Àα } f }Hr}u}Hs . (3.3.17)

Now we proceed to the high-frequency component. We know from (3.3.12) that we can write

Lą1 “ BLą1 ` R, where BLą1 P OpBS m
1,1 and R P Op S´81,0 . We can apply Lemma 3.3.3 to deduce that

}rBLą1, f spuq}Hs À } f }Hr}u}Hs`α´1 . (3.3.18)

On the other hand, since R is a smoothing operator, we have

}rR, f spuq}Hs ď }Rp f uq}Hs ` } f Ru}Hs À } f u}Hs ` } f }Hr}Ru}Hs À } f }Hr}u}Hs . (3.3.19)

Of course, we could, for any m P R, put }u}Hs`m on the right-hand side of (3.3.18). However, doing so would

not gain us anything, so we do not bother. Combining the estimates (3.3.14), (3.3.17), (3.3.18) and (3.3.19)

yields (3.3.13).

�

We now have all of the tools needed to prove the second main commutator estimate:

Proof of Lemma 3.3.2. To begin, observe that, by Lemma 3.3.4, we have

}rPL, f spuq}Hs “ }rL, f spuq}Hs À } f }Hr}u}Hs`α´1 @s ě 0. (3.3.20)

Now, assume that, for some fixed k P N, we have

›

›

“

Pk
L, f

‰

puq
›

›

Hs À } f }Hr}u}Hs`kα´1 @s ě 0. (3.3.21)

Fixing s ě 0, we can again make use of equation (3.3.5), which gives

›

›

“

Pk`1
L , f

‰

puq
›

›

Hs ď
›

›PL
“

Pk
L, f

‰

puq
›

›

Hs `
›

›rPL, f spPk
Luq

›

›

Hs . (3.3.22)
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Then, Lemma 1.3.9, (3.3.20) and (3.3.21) yield

›

›PL
“

Pk
L, f

‰

puq
›

›

Hs À
›

›

“

Pk
L, f

‰

puq
›

›

Hs`α `
›

›

“

Pk
L, f

‰

puq
›

›

Hs À } f }Hr}u}Hs`kα`α´1 , (3.3.23)
›

›rPL, f spPk
Luq

›

›

Hs À } f }Hr

›

›Pk
Lu
›

›

Hs`α´1 À } f }Hr}u}Hs`kα`α´1 .. (3.3.24)

The desired claim then follows by induction. �

Having the above commutator estimates in hand, we are now prepared to prove the desired energy

estimates pursuant to the approach outlined in Section 2.

3.4 The Main Energy Estimates

Here our objective is to prove the energy estimates of Theorem 3.2.1. This will, of course, require first

defining an appropriate energy for solutions to (3.1.20). However, as we noted previously, the value of α

plays an important role in defining a suitable energy. Nevertheless, there are some relevant results which we

can prove for L with any value of α P p0, 2s. In the linear case (W ” 0), one can show that the solution v

actually decays (in norm). On the other hand, in the nonlinear case (W ı 0), we show that v satisfies

d
dt
}vptq}2L2 À }vptq}2L2 .

After proving the above results, we break our analysis into two cases: α “ 3
2 and α “ 1

2 . We first

consider α “ 3
2 , defining an appropriate energy Ecap and then proving the desired estimate. Finally, we do the

same for α “ 1
2 .

3.4.1 Linear Damping

Here we show that, when W ” 0, the external pressure pext damps the energy. In particular, we show

that, for any k P N0 and σ ě kα, the Hkα norm of v is decreasing in time and thus is bounded above by

}v0}Hkα . Recall that v0 P Hσ by hypothesis. We begin with the following result:

Lemma 3.4.1. If v solves (3.1.20) with W ” 0, then }vptq}L2 is decreasing in time and, in particular,

}v}L8t L2
x
ď }v0}L2 . (3.4.1)

This claim is valid for any α P p0, 2s.
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Proof. Differentiating }vptq}2L2 with respect to t and passing the derivative through the integral gives

d
dt
}vptq}2L2 “

ˆ 2π

0
v˚Btv` vBtv˚ dx. (3.4.2)

Noting that v˚ also solves (3.1.20), substituting from (3.1.20) into (3.4.2) and doing some simple

computations yields

d
dt
}vptq}2L2 “ ´

ˆ 2π

0
v˚
ˆ

i
ε

Lv`
1
ε
χωv

˙

dx´
ˆ 2π

0
v
ˆ

i
ε

Lv˚ `
1
ε
χωv˚

˙

dx

“ ´
1
ε

ˆ 2π

0
v˚χωv` vχωv˚ dx´

i
ε

ˆ 2π

0
v˚Lv` vLv˚ dx

We can then slightly rewrite the second term on the right-hand side above to see that it is purely imaginary:

d
dt
}vptq}2L2 “ ´

2
ε

ˆˆ 2π

0
χω|v|2 dx` i

ˆ 2π

0

∣∣∣∣?Lv
∣∣∣∣2 dx

˙

. (3.4.3)

But, the left-hand side of (3.4.3) is real-valued, so the imaginary part of the right-hand side must vanish. We

therefore have
d
dt
}vptq}2L2 “ ´

2
ε

ˆ 2π

0
χω|v|2 dx ď 0. (3.4.4)

Hence, }vptq}L2 is decreasing in t, from which (3.4.1) immediately follows. �

Lemma 3.4.2. Let k P N0 be arbitrary. If v solves (3.1.20), where W ” 0 and σ ě kα, then }v}Hkαptq is

decreasing and is thus controlled by }v0}Hkα:

}v}L8t Hkα
x
À }v0}Hkα . (3.4.5)

Again, we note that this result holds for any α P p0, 2s.

Proof. Let Z denote the vector field εBt and consider Zv. Observing that Zv “ ´iLv´ χωv, we will have

Zv P L2 as long as Lv P L2 (i.e., σ ě α in equation (3.1.20)). In addition, since Z commutes with Bt, L and

χω, we have

BtZv`
i
ε

LZv`
1
ε
χωZv “ 0.
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Hence, by Proposition 3.4.1, }Zvptq}L2 is decreasing; that is, }piL` χωqvptq}L2 is decreasing and in particular

}piL` χωqv}L2 À }v0}Hα . (3.4.6)

It then follows that v P Hα with

}v}L8t Hα
x
À }v0}Hα . (3.4.7)

Consider now Z2v. We will have Z2v P L2 whenever σ ě 2α. As before, Z2v solves (3.1.20) with

W ” 0 and, again,
›

›Z2vptq
›

›

L2 is decreasing in t. But,

Z2v “ piL` χωq
2v “ p´L2 ` iLχω ` iχωL` χ2

ωqv.

In other words,
›

›pL2 ´ ipLχω ` χωLq ´ χ2
ωqvptq

›

›

L2 is decreasing and we thus have

›

›pL2 ´ ipLχω ` χωLq ´ χ2
ωqv

›

›

L2 À }v0}H2α . (3.4.8)

Therefore, we deduce from (3.4.8) that v P H2α with the estimate

}v}L8t H2α
x
À }v0}H2α . (3.4.9)

We continue to iterate this argument and see that, for any k P N0,
›

›Zkvptq
›

›

L2 is decreasing, which implies that
›

›piL` χωq
kvptq

›

›

L2 is decreasing. We therefore conclude that, as long as the initial data is sufficiently regular

(σ ě kα), v P Hkα and

}v}L8t Hkα
x
À }v0}Hkα . (3.4.10)

�

3.4.2 A Nonlinear L2 Estimate

At this point, we are ready to turn on W and so we shall henceforth remove the assumption that W ” 0.

We shall first obtain an a priori L2 bound and then focus on the higher Sobolev estimates.

Lemma 3.4.3. If v is a solution of the Clamond toy model (3.1.20), then

d
dt
}vptq}2L2 À }vptq}2L2 .
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Once more, the above is valid for any α P p0, 2s.

Proof. We begin by differentiating }vptq}L2 , passing the derivative through the integral, substituting from

(3.1.20) and using the fact that Wεpvq “ Wεpv˚q to obtain

d
dt
}vptq}2L2 “ ´

ˆ 2π

0
WεpvqBx|v|2 dx´

2i
ε

ˆ 2π

0

∣∣∣∣?Lv
∣∣∣∣2 dx´

2
ε

ˆ 2π

0
χω|v|2 dx. (3.4.11)

Since the left-hand side of (3.4.11) is real-valued, the imaginary part of the right-hand side must vanish and

so we will have
d
dt
}vptq}2L2 “ ´Re

"ˆ 2π

0
WεpvqBx|v|2 dx

*

´
2
ε

ˆ 2π

0
χω|v|2 dx. (3.4.12)

We can then integrate by parts in the first term in (3.4.12) to obtain

d
dt
}vptq}2L2 “

ˆ 2π

0
BxWεpvq|v|2 dx´

2
ε

ˆ 2π

0
χω|v|2 dx ď

ˆ 2π

0
BxWεpvq|v|2 dx,

where the final inequality follows from the fact that ´2
ε

´ 2π
0 χω|v|2 dx ď 0. Via Sobolev embedding (Lemma

1.3.2), we know that BxWεpvq P L8 and, due to (3.1.21), we have a uniform-in-ε estimate. It then follows that

d
dt
}vptq}2L2 À }vptq}2L2 . (3.4.13)

�

Having obtained the needed L2 estimate, we are now going to define an energy for solutions of (3.1.20)

in order to obtain the desired Sobolev estimates. At this point, the analysis becomes more sensitive to the

value of α, hence we shall stop considering general α P p0, 2s and break our consideration up into two cases,

α ą 1 and α ď 1. In particular, as previously noted, we will focus in on α “ 3
2 , corresponding to capillary

waves, and α “ 1
2 , corresponding to gravity waves.

3.4.3 The Energy Estimate for Capillary Waves (α “ 3
2 )

Definition 3.4.4. Let α “ 3
2 and define the energy for a solution of the Clamond toy model (3.1.20) by

Ecapptq B
2
ÿ

k“0

›

›Zkvptq
›

›

2
L2 , (3.4.14)

where Z is a given vector field.
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The vector field we will primarily consider in Definition 3.4.4 will be Z “ εBt. Since the simpler choice

of Z “ εBt works in the capillary case, we present this argument first. However, this vector field will not

work in the gravity case and there we utilize Z “ PL, where PL is defined in (3.3.1). In Section 4, we include

an argument showing that this choice of Z also works in the capillary case, which gives a unified approach to

both problems. Either choice of Z will yield

Ecap „ }v}
2
H3 . (3.4.15)

Now that we have a suitable energy in hand, we can proceed to prove the main energy estimate in the

case α “ 3
2 .

Theorem 3.4.5. If α “ 3
2 , v is a solution of (3.1.20) with σ ě 3 and Ecap “ Ecapptq is given by (3.4.14) with

Z “ εBt, then one has
dEcap

dt
À Ecap. (3.4.16)

Proof. Write Ecapptq “ Ecap,0ptq ` Ecap,1ptq ` Ecap,2ptq and notice that, by Lemma 3.4.3, we have

dEcap,0

dt
À Ecap. (3.4.17)

Upon taking the derivative of Ecap,1 and substituting from (3.1.20) for vt and v˚t , one sees that

dEcap,1

dt
“ ´

ˆ 2π

0
ZpWεpvqBxvqZv˚ ` ZvZpWεpv˚qBxv˚q dx´

2i
ε

ˆ 2π

0

∣∣∣∣?LZv
∣∣∣∣2 dx´

2
ε

ˆ 2π

0
χω|Zv|2 dx.

(3.4.18)

Since the left-hand side of (3.4.18) is real-valued, the imaginary part will vanish and, after noting that the

third term in (3.4.18) has a good sign, we will have

dEcap,1

dt
ď ´Re

"ˆ 2π

0
ZpWεpvqBxvqZv˚ ` ZvZpWεpv˚qBxv˚q dx

*

.

Expanding in the remaining integral using the Leibniz rule, recalling that Wεpvq “ Wεpv˚q and integrating by

parts yields

dEcap,1

dt
ď

ˆ 2π

0
BxWεpvq|Zv|2 dx´ Re

"ˆ 2π

0
WεpZvqBxv ¨ Zv˚ `WεpZv˚qBxv˚ ¨ Zv dx

*

. (3.4.19)
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The first integral in (3.4.19) is easily estimated:

ˆ 2π

0
BxWεpvq|Zv|2 dx ď }BxWεpvq}L8}Zv}2L2 À }Zv}2L2 . (3.4.20)

One can then bound the second integral in (3.4.19) as follows:

´Re

"ˆ 2π

0
WεpZvqBxv ¨ Zv˚ `WεpZv˚qBxv˚ ¨ Zv dx

*

À }WεpZvq}L8}v} 9H1}Zv}L2 . (3.4.21)

It then follows from (3.4.20) and (3.4.21) that

dEcap,1

dt
À }Zv}2L2 ` }v} 9H1}Zv}L2 À Ecap. (3.4.22)

Finally, consider the derivative of Ecap,2 with respect to t. We compute the derivative, substitute from

(3.1.20) and, much as before, we will obtain

dEcap,2

dt
ď ´Re

"ˆ 2π

0
Z2pWεpvqBxvqZ2v˚ ` Z2vZ2pWεpv˚qBxv˚q dx

*

. (3.4.23)

Expanding via the Leibniz rule, one obtains

dEcap,2

dt
ď ´Re

"ˆ 2π

0
WεpZ2vqBxv ¨ Z2v˚ `WεpZ2v˚qBxv˚ ¨ Z2v dx

*

´ 2Re
"ˆ 2π

0
WεpZvqBxZv ¨ Z2v˚ `WεpZv˚qBxZv˚ ¨ Z2v dx

*

´ Re

"ˆ 2π

0
WεpvqBxZ2v ¨ Z2v˚ `Wεpv˚qBxZ2v˚ ¨ Z2v dx

*

“ I ` II ` III. (3.4.24)

We first consider III in (3.4.24) and observe that, since Wεpvq “ Wεpv˚q, we may integrate by parts to see

that

III “
ˆ 2π

0
BxWεpvq

∣∣∣Z2v
∣∣∣2 dx ď }BxWεpvq}L8

›

›Z2v
›

›

2
L2 . (3.4.25)

On the other hand, an appropriate bound on I is immediate:

I À
›

›WεpZ2vq
›

›

L8}Bxv}L2

›

›Z2v
›

›

L2 . (3.4.26)
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Finally, we have

II À }WεpZvq}L8}BxZv}L2

›

›Z2v
›

›

L2 . (3.4.27)

Recall that we can control the Hr norm of v with Ecap for r ď 3. Then, since }Zv} 9H1 À }v}H5{2 , it follows

from (3.4.24), (3.4.25), (3.4.26) and (3.4.27) that

dEcap,2

dt
À

›

›Z2v
›

›

2
L2 ` }v} 9H1

›

›Z2v
›

›

L2 ` }Zv} 9H1

›

›Z2v
›

›

L2 À Ecap. (3.4.28)

Upon combining (3.4.17), (3.4.22) and (3.4.28), we conclude that

dEcap

dt
À Ecap. (3.4.29)

�

3.4.4 The Energy Estimate for Gravity Waves (α “ 1
2 )

Here we seek to obtain a result analogous to Theorem 3.4.5 when α “ 1
2 . Again, we shall first need to

define a suitable energy, but the situation is complicated by the fact that L is now sub-principal. In particular,

the simpler vector field Z “ εBt will no longer suffice and we will need a more carefully chosen Z.

Definition 3.4.6. Let α “ 1
2 and define the energy for a solution v of the Clamond toy model (3.1.20) by

Egravptq B
4
ÿ

k“0

›

›Zkvptq
›

›

2
L2ptq, (3.4.30)

where Z “ PL. Recall that PL is defined in (3.3.1).

Notice that the definition of the energy in this case requires more copies of the vector field Z. This arises

from the fact that L is now only of order 1
2 , instead of order 3

2 in the previous case and so we will need more

copies in order to close the estimates. Notice that

Egrav „ }v}
2
H2 . (3.4.31)

The vector field εBt, which we used to define Ecap, had the benefit of commuting with Bx, Wε and

functions of x. However, the vector field Z “ PL in Definition 3.4.6 does not have these nice commutation

properties and so obtaining the desired energy estimates will require understanding the effects of commuting
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powers of Z with Bx and functions of x (and t), such as Wεpvq. This is precisely the motivation for the results

obtained earlier in Section 3.

Defining the energy as in Definition 3.4.6, we can prove the following energy estimate.

Theorem 3.4.7. If α “ 1
2 , v is a solution of (3.1.20) with σ ě 2 and Egrav “ Egravptq is given by (3.4.30),

then one has
dEgrav

dt
À Egrav.

Proof. Again, we begin by writing Egrav “ Egrav,0 ` Egrav,1 ` Egrav,2 ` Egrav,3 ` Egrav,4 and noting that the

desired result for Egrav,0 holds by Lemma 3.4.3:

dEgrav,0

dt
À Egrav. (3.4.32)

Now, fix 1 ď k ď 4 and consider Egrav,k. Upon differentiating with respect to t, substituting from

(3.1.20) and rewriting a bit, we obtain

dEgrav,k

dt
“ ´

ˆ 2π

0
ZkpWεpvqBxvqZkv˚`ZkvZkpWεpv˚qBxv˚q dx´

2i
ε

ˆ 2π

0

∣∣∣∣?LZkv
∣∣∣∣2 dx´

2
ε

ˆ 2π

0
χω
∣∣∣Zkv
∣∣∣2 dx.

(3.4.33)

We know that the left-hand side of (3.4.33) is real-valued, so the second term, which is purely imaginary,

must vanish. Moreover, the third term has a good sign. We therefore deduce that

dEgrav,k

dt
ď ´Re

"ˆ 2π

0
ZkpWεpvqBxvqZkv˚ ` ZkvZkpWεpv˚qBxv˚q dx

*

. (3.4.34)

By adding and subtracting, we can rewrite (3.4.34) as

dEgrav,k

dt
ď ´Re

"ˆ 2π

0
rZkpWεpvqBxvq ´WεpvqZkBxvsZkv˚ ` rZkpWεpv˚qBxv˚q ´Wεpv˚qZkBxv˚sZkv dx

*

´ Re

"ˆ 2π

0
WεpvqZkBxvZkv˚ `Wεpv˚qZkBxv˚Zkv dx

*

“ Ck ` Dk. (3.4.35)

We see that Ck is a commutator term and applying the Cauchy-Schwartz inequality yields

Ck À
›

›

“

Zk,Wεpvq
‰

pBxvq
›

›

L2

›

›Zkv
›

›

L2 .
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We can now invoke Lemma 3.3.2 to finish off the estimate. We then get

Ck À }Wεpvq}Hr}Bxv}Hk{2´1

›

›Zkv
›

›

L2 À }Bxv}Hk{2´1

›

›Zkv
›

›

L2 , (3.4.36)

where r ą 3
2 and r ě k

2 . More specifically, for 1 ď k ď 3, we can use r “ 3
2` and, for k “ 4, we can use

r “ 2. At worst, since k ď 4, the right-hand side of (3.4.36) involves }Bxv}H1 ď }v}H2 . We thus obtain

Ck À }Bxv}Hk{2´1

›

›Zkv
›

›

L2 À Egrav. (3.4.37)

We now move on to consider Dk. Here, we make use of the fact that Wεpvq “ Wεpv˚q and commute Zk

with Bx, which will cause us to pick up a derivative commutator:

Dk “ ´

ˆ 2π

0
WεpvqBx

∣∣∣Zkv
∣∣∣2 ´ Re"ˆ 2π

0
Wεpvq

“

Zk, Bx
‰

pvqZkv˚ `Wεpv˚q
“

Zk, Bx
‰

pv˚qZkv dx
*

. (3.4.38)

We now integrate by parts in the first term and apply the Cauchy-Schwartz inequality to both terms:

Dk À }BxWεpvq}L8
›

›Zkv
›

›

2
L2 ` }Wεpvq}L8

›

›

“

Zk, Bx
‰

pvq
›

›

L2

›

›Zkv
›

›

L2 . (3.4.39)

We now see that we can apply Lemma 3.3.1, which gives us

Dk À
›

›Zkv
›

›

2
L2 ` }v}Hk{2´1{2

›

›Zkv
›

›

L2 . (3.4.40)

Notice that the Sobolev norm is of order at most 3
2 since k ď 4. As such, we do not have any trouble closing

the estimate:

Dk À
›

›Zkv
›

›

2
L2 ` }v}Hk{2´1{2

›

›Zkv
›

›

L2 À Egrav. (3.4.41)

Upon combining (3.4.35), (3.4.37) and (3.4.41), we have

dEgrav,k

dt
À Egrav. (3.4.42)

Finally, the estimates (3.4.32) and (3.4.42) give us the desired control of the time derivative of the
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energy:
dEgrav

dt
À Egrav. (3.4.43)

�

3.5 An Alternative Proof of Theorem 3.4.5

Theorem 3.4.5 is sufficient for the purpose of obtaining Op1q existence time for solutions of (3.1.20).

However, in the α “ 1
2 case, we were no longer able to use the vector field εBt, instead we utilized iL` χω.

Here, our goal is to show that one can obtain the result of Theorem 3.4.5 using the vector field iL` χω and

so show that both results can be obtained using a unified approach.

Theorem 3.5.1. If α “ 3
2 , v is a solution of (3.1.20) with σ ě 3 and Ecap “ Ecapptq is given by Definition

3.4.4 with Z “ iL` χω, then one has
dEcap

dt
À Ecap.

Proof. As in the proof of Theorem 3.4.5, write Ecap “ Ecap,0 ` Ecap,1 ` Ecap,2 and notice that, by Lemma

3.4.3, we have
dEcap,0

dt
À Ecap. (3.5.1)

We thus begin in earnest by considering the time derivative of Ecap,k for k “ 1, 2:

dEcap,k

dt
“ ´

ˆ 2π

0
ZkpWεpvqBxvqZkv˚`ZkvZkpWεpv˚qBxv˚q dx´

2i
ε

ˆ 2π

0

∣∣∣∣?LZkv
∣∣∣∣2 dx´

2
ε

ˆ 2π

0
χω
∣∣∣Zkv
∣∣∣2 dx.

As we’ve seen many times already, we can reduce this to

dEcap,k

dt
ď ´Re

"ˆ 2π

0
ZkpWεpvqBxvqZkv˚ ` ZkvZkpWεpv˚qBxv˚q dx

*

. (3.5.2)

We now rewrite the integral on the right-hand side of (3.5.2) by adding/subtracting and making note of
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the fact that Wεpvq “ Wεpv˚q:

dEcap,k

dt
ď ´Re

"ˆ 2π

0
rZkpWεpvqBxvq ´WεpvqZkBxvsZkv˚ ` rZkpWεpv˚qBxv˚q ´Wεpv˚qZkBxv˚sZkv dx

*

´ Re

"ˆ 2π

0
WεpvqpZkBxvZkv˚ ` ZkBxv˚Zkvq dx

*

“ Ck ` Dk. (3.5.3)

We begin by considering the commutator term Ck for which we plainly have

Ck À
›

›

“

Zk,Wεpvq
‰

pBxvq
›

›

L2

›

›Zkv
›

›

L2 . (3.5.4)

We can apply Lemma 3.3.2 to estimate the right-hand side of (3.5.4):

Ck À }Wεpvq}Hr}Bxv}H3k{2´1

›

›Zkv
›

›

L2 . (3.5.5)

We will either take r “ 3
2` for k “ 1 or r “ 3 for k “ 2. In addition, 3k

2 ´ 1 ď 2 and so the highest Sobolev

norm of v appearing is }Bxv}H2 ď }v}H3 . Thus, the energy estimate closes and we have

Ck À }Bxv}H3k{2´1

›

›Zkv
›

›

L2 À Ecap. (3.5.6)

We rewrite Dk by commuting Z with Bx and integrating by parts, which yields

Dk “

ˆ 2π

0
BxWεpvq ¨

∣∣∣Zkv
∣∣∣2 dx´ Re

"ˆ 2π

0
Wεpvq

“

Zk, Bx
‰

pvqZkv˚ `Wεpv˚q
“

Zk, Bx
‰

pv˚qZkv dx
*

. (3.5.7)

Hence, we have the estimate

Dk À }BxWεpvq}L8
›

›Zkv
›

›

2
L2 ` }Wεpvq}L8

›

›

“

Zk, Bx
‰

pvq
›

›

L2

›

›Zkv
›

›

L2 . (3.5.8)

We apply the derivative commutator estimate of Lemma 3.3.1 with α “ 3
2 to bound the commutator term.

This gives control via the energy:

Dk À
›

›Zkv
›

›

2
L2 ` }v}H3k{2´3{2

›

›Zkv
›

›

L2 À Ecap. (3.5.9)
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We are able to close the above estimate as 3k
2 ´

3
2 ď

3
2 ă 2 given that k “ 2 is the worst-case scenario. Ergo,

upon combining (3.5.5) and (3.5.9), we obtain control of dEcap,k
dt :

dEcap,k

dt
À Ecap. (3.5.10)

This gives us the desired estimate:
dEcap

dt
À Ecap. (3.5.11)

�
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