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ABSTRACT

Bryce Rowland: Statistical Methods Improving the Clinical Utility of Omics Data
(Under the direction of Yun Li)

Variants identified via genome-wide association studies (GWAS) have ushered in an era of

deep interest in omics data. Early adopters have used GWAS discoveries to inform drug targets

and establish causal relationships using genetic instruments, yet more research must be done

to bring the initial boons of GWAS to clinical practice. My dissertation presents three novel

statistical methods which could bridge this gap by correcting biases when analyzing omics data and

addressing methodological disparities affecting non-European populations. In my first project, I

present THUNDER, a novel deconvolution method tailored to the unique challenges of chromatin

conformation capture. Prior to our research, differential analysis of chromatin organization was

confounded by underlying cell type proportions. Therefore, analyzing across individuals for

differential chromatin activity has been of limited utility. THUNDER accurately estimates cell

type proportions, allowing for their inclusion as a confounder in future association studies of Hi-C

phenotypes. In my second project, I present GAUDI, a fused lasso approach to estimate polygenic

risk scores (PRS) in admixed individuals. Our method addresses the decreases in performance of

PRS methods in non-European populations, in part due to previously unaccounted for patterns of

genetic admixture. Finally, in my third project, I extend polygenic risk score estimation techniques

to the variable copy number setting to identify carriers for Spinal Muscular Atrophy (SMA) for

which no standard test to identify these carriers exists.
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CHAPTER 1: LITERATURE REVIEW

1.1 THUNDER Literature Review

1.1.1 Introduction

Hi-C is an experimental technique to study chromatin organization. Chromatin organization

regulates gene expression and facilitates DNA folding. Patterns of chromatin organization vary

between different cell types (such as lymphocytes compared to monocytes), much like patterns of

gene expression and DNA methylation. As a result, differential analysis of Hi-C phenotypes are

biased by underlying cell type proportions. This bias can be addressed by including estimates of

cell type proportions in regression analysis as a confounder. Thus, the accurate estimation of cell

type proportions underlying the mixture of cell types in Hi-C data is a pressing statistical challenge.

Deconvolution is a statistical task where cell type proportions and cell type informative features are

inferred from a mixture of distinct cell types. Many deconvolution methods have been developed

to analyze RNA-seq and DNA methylation data.[57, 24, 102, 101, 46, 91, 82, 47, 127, 83, 112,

64, 26] However, a relatively small number of methods have been developed to deconvolve Hi-C

data. Current deconvolution approaches for omics data, including those previously developed to

deconvolve Hi-C data, are of limited utility to estimate cell type proportions or generate cell-type

specific features in the multi-sample bulk Hi-C datasets generated today. We present our new

statistical method, THUNDER, which addresses this problem by accurately estimating cell type

proportions in multi-sample bulk Hi-C datasets.
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1.1.2 Hi-C Data Experimental Overview

The chromatin conformation capture (3C) method and the related technologies (broadly known

as C-technologies) are experiments that have generated considerable understanding about the spatial

organization of chromosomes within a cell.[23, 66, 93] The 3C method was originally developed to

detect the contact frequency between two pre-specified genomic loci.[23] However, the proliferation

of sequencing technologies combined with experimental techniques from 3C enabled the success of

the genome-wide assay of chromatin conformation, Hi-C.[66] The result of the Hi-C experiment is a

genome-wide catalog of chromatin fragments that were in close spatial proximity aggregated across

all cell types within a tissue sample.[66] Hi-C experiments discovered several levels of chromatin

organization in human cells including: A/B compartments[66], topologically associating domains

(TADs)[25], frequently interacting regions (FIREs)[98, 22], chromatin loops[93], interchromosomal

contacts, and/or intrachromosomal contacts.[122, 121] Structures discovered from Hi-C experiments

support the theory that spatial chromatin organization plays a significant role in gene regulation

since enhancers and the promoters of a target gene should be in close physical proximity to affect

gene regulation.[63, 40] Disruption of chromatin organizational structures, especially TADs, are

hypothesized to disrupt gene expression, and this disruption can lead to failure of downstream

cell function.[71, 1] Insights from Hi-C data remain of considerable interest to study the spatial

organization of chromatin in humans.

1.1.3 scHi-C Data Reveals cell-to-cell variability

Recent experimental advances known as single-cell Hi-C (scHi-C) have revealed that the spatial

organization of chromosomes vary across different cell types. scHi-C refers to several different

experimental procedures that maintain the chromatin conformation for each cell within a tissue

sample.[92, 103, 104, 61] In contrast, bulk Hi-C data summarize the chromatin activity for all cell

types in a tissue simultaneously. Initial scHi-C experiments in haploid cell lines detected previously

known translocations specific to HAP1 cells that distinguished HAP1 and HeLa cell lines in PCA-

based clustering.[92, 29] Further experiments in haploid cells revealed the cell-to-cell variability of
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TADs and chromatin loops, but A/B compartments were conserved across cells.[103] scHi-C in

diploid cells demonstrated that A/B compartments, TADs, and CCCTC-binding factor (CTCF) loop

domains can be identified in single cells and are highly heterogeneous between cells.[104] Thus,

scHi-C technologies revealed that cell type variability is a defining feature of spatial chromatin

organization.

1.1.4 Defining the Hi-C deconvolution problem.

Cell-to-cell variability in spatial chromatin organization will confound differential analyses

of Hi-C phenotypes, and further methodological development is needed to provide a way forward.

Despite the interest in single-cell features, scHi-C experiments are expensive and have low yield,

and thus Hi-C methods are still quite popular. As researchers continue to conduct Hi-C experiments,

there will soon be sufficient individual-level data to conduct studies testing the association between

genetic variation and spatial chromatin organization.[40] These future 3D-chromatin-interactome

wide association studies (3WAS) and chromatin interactome QTL (iQTL) studies for Hi-C pheno-

types will be confounded by underlying cell type proportions because of the evidence of cell-to-cell

variability of spatial chromatin organization.[52, 39] Cell type proportion confounding in differential

analyses is a well-defined problem in the analysis of RNA-seq and DNA methylation data. Within

these fields, the standard approach to account for cell type proportion confounding is to estimate

cell type proportions from the mixture data and to include the inferred proportions as a confounding

variable in downstream association analyses.[52, 39, 102] To the best of our knowledge, there is no

statistical method to infer cell type proportions across multiple bulk Hi-C samples simultaneously,

which is capable of leveraging both intrachromosomal and interchromosomal contacts. Thus, the

accurate estimation of cell type proportions from bulk Hi-C data is a pressing statistical challenge.

The statistical task of estimating underlying cell type proportions from omics data is known

as deconvolution. Many methods to perform deconvolution have been developed to estimate cell

type proportions in RNA-seq and DNA methylation mixture data.[57, 24, 102, 101, 46, 91, 82, 47,

127, 83, 112, 64, 26] We define mixture data as omics data aggregated at the sample level that is
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composed of several distinct cell types or cell states (hereafter, we refer to both as cell types for

brevity). In addition to the accurate estimation of cell type proportions, deconvolution methods can

estimate activity at the cell-type-specific level from mixture data. Since mixture data are aggregated

at the sample level, cell-type specific features are obscured at the initial data resolution. However,

these cell-type specific features are of great biological interest, promoting fields of study to design

cell-type specific experimental protocols. These cell-type specific or single-cell datasets are not

available in large sample sizes for many cell types. Thus, deconvolution methods provide a valuable

tool to estimate both cell type proportions and cell-type specific features when experimental data

are rare.

1.1.5 Statistical Deconvolution Methods for Omics Data

Statistical methods to deconvolve omics data can be divided into two categories based on their

required input data: reference-free and reference-based methods. As a generality, the input data

common to both categories is a matrix of n subjects and p features. Reference-based deconvolution

methods additionally require a set of cell-type specific profiles as input. These cell-type specific

profiles prime reference-dependent methods to identify distinguishing features across cell types in

order to more effectively deconvolve the mixture samples. Alternatively, reference-free methods do

not require additional data sources to perform deconvolution, only the nxp matrix of aggregated

data. Reference-based methods have outperformed reference-free methods in comparative studies,

but reference-free methods are more robust to the practical challenges of deconvolving omics data.

The following reference-based methods demonstrate the diversity of statistical methods to

deconvolve omics data, with particular attention to methods applied in Chapter 2. Shen-Orr et al.

developed csSAM, a standard least-squares based method to deconvolve microarray gene expression

data.[102] Newman et al. developed the popular method CIBERSORT in 2015 and extended the

method to CIBERSORTx in 2019.[82, 83] Both CIBERSORT and CIBERSORTx are reference-

based approaches leveraging singular-value decomposition to estimate cell type proportions, and

are tailored to unique characteristics of gene expression data, especially sample contamination
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for tumor data. MuSiC is another reference-based deconvolution method which uses weighted

non-negative least squares regression to estimate cell type proportions from bulk RNAseq data

based on multi-subject single cell RNAseq data.[112] MuSiC leverages features which demonstrate

cross-cell and cross-sample consistency to apply cell-type-specific feature information in estimating

cell type proportions. MuSiC additionally applies a tree-based procedure to address collinearity in

closely related cell types within a bulk tissue. The profiled reference-based methods all estimate

cell type proportions with high accuracy when all cell types in the mixture data are contained in

the reference.[82, 126] However, small perturbations in the reference panel can result in biased

estimates.[112, 64] Thus, reference-based methods are preferred to reference-free methods when

high quality reference panels are available.

When high quality reference panels are unavailable for all cell types in RNA-seq and DNA

methylation mixture data, reference-free deconvolution methods are used to estimate cell type

proportions. Reference-free methods infer latent variables which summarize the variability across

the mixture data samples, assuming the number of cell types in the sample are known. The

inferred cluster specific features can correspond to features from either cell types. Non-negative

Matrix Factorization (NMF) and its extensions are commonly used for reference-free deconvolution,

particularly in deconvolution of RNA-seq data.[59, 60, 12, 57, 32, 64] Due to the centrality of

NMF to our work, we profile NMF extensively in the following section. In the DNA-methylation

literature, there are methods that either explicitly infer cell type proportions or adjust for the

underlying differences when performing EWAS. TOAST is a recently proposed unsupervised

deconvolution and feature selection algorithm which iteratively searches for cell type-specific

features and estimates composition.[64] TOAST was developed for the flexible application to both

gene expression and DNA methylation data. BayesCCM is another reference-free deconvolution

method that uses prior knowledge about the distribution of cell counts within a tissue to infer

cell counts from DNA methylation data.[91] Houseman et al. 2014 does not explicitly apply a

deconvolution method, but rather adjusts the estimates of an EWAS using an SVD model to correct

the unadjusted effect sizes in confounded EWAS analysis.[46] These methods all estimate cell type
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proportions accurately in their designed context, however little consensus remains as to the best

approach for reference-free deconvolution across omics data.

For our method to deconvolve Hi-C data, we adopted a reference-free approach due to the lack

of cell-type specific reference panels for Hi-C data and a lack of understanding of the differences

between the spatial interactome between healthy and diseased individuals, which may bias reference-

based methods. As stated above, scHi-C or cell-type specific are rare for cells in understudied

tissues and even for some cells in well-studied tissues. Additionally, cell-type specific Hi-C

datasets are usually collected in a small number of healthy individuals. Samples from healthy

individuals may not be applicable to deconvolve samples from patients of different age, sex, or

other relevant phenotypes. For example, reference-based methods performed poorly to deconvolve

DNA methylation data when reference samples are from adults and the mixture samples are from

newborns.[124] Assuming this principle holds for Hi-C data, reference-free methods are more

relevant to the problem at hand of deconvolving Hi-C data, where such reference panels are still

rare.

1.1.6 Non-Negative Matrix Factorization (NMF)

Non-negative matrix factorization is the statistical foundation behind our proposed method

to deconvolve Hi-C data, THUNDER. Following Lee and Seung, 1999, we discuss the properties

of Non-negative Matrix Factorization (NMF) as a matrix decomposition method well-suited to

learning about a data object as the sum of distinct parts.[59] The problem of deconvolving complex

statistical data is analogous to decomposing a matrix into a product of two matrices. We will show

that deconvolving complex statistical data with NMF leads to a natural interpretation of the basis

matrix as a matrix of cell-type specific features and of the coefficient matrix as estimates of cell

type proportions.

Consider the problem of deconvolving data represented in a pˆ n matrix, V , with p features

and n mixture samples. We let k ą 0 be an integer specified for the number of distinct cell types in

the mixture sample and is chosen a priori. A matrix decomposition approach to the deconvolution
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problem seeks to find an approximation for V such that V « WH . W , a pˆ k (or feature by cell

type) matrix, is often referred to as a basis matrix, and H , a k ˆ n (or cell type by sample) matrix,

is known as the coefficient matrix.

NMF applies a non-negativity constraint to the elements of a basis matrix, which makes it a

factorization method well suited to deconvolution. Factorization methods can be characterized by

mathematical constraints on the elements of the basis and coefficient matrices. Some factorization

methods, such as PCA, allow elements of the basis matrix or coefficient matrix to be negative.

However, negative matrix elements are not biologically interpretable. In the NMF decomposition,

only additive combinations of basis vectors can be used to reconstitute the original matrix V.

Therefore, the NMF non-negativity constraints correspond to the intuition that the sum of the

parts make a whole. This non-negativity constraint makes NMF estimates particularly useful for

deconvolving genetic data. The elements of the coefficient matrix can be scaled to estimate cell

type proportions and the elements of the basis matrix may correspond to cell-type specific features.

NMF is a useful tool for reference-free deconvolution, and it provides the mathematical foundation

for THUNDER.

1.1.7 Review of Hi-C Deconvolution Methods

There exist two particular challenges of applying existing methods developed in other omics

data to deconvolve Hi-C data: the lack of cell-type-specific Hi-C reference profiles and the lack of

an ubiquitous aggregating unit for summarizing Hi-C data. First, existing reference-based methods,

such as CIBERSORT or MuSiC, can not be directly applied to Hi-C data. For most cell types,

there is a paucity of single-cell or cell-type specific Hi-C datasets to serve as reference panels

for reference-based methods. While several cell types have been profiled with scHi-C technology

as described above, these resources are not widely available for all cell types, or even all major

cell types in a given tissue. Second, Hi-C data can be summarized at several different structural

levels, as discussed above, and it is unclear which level(s) of measurement are most scientifically

relevant or effective for deconvolution purposes. In contrast, when deconvolving gene expression
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data, it is clear that the aggregating unit of interest is the gene. As a result, the feature space for

Hi-C deconvolution is theoretically unbounded, or at least several orders of magnitude larger than

applications to deconvolve gene expression data. Without a feature selection strategy tuned to

the context of Hi-C data, deconvolution methods will not perform well in Hi-C data. These two

challenges make previously developed deconvolution methods unsuitable to deconvolve Hi-C data

in practice.

Several methods have attempted to infer cell-type proportions from bulk Hi-C data as either

a primary or secondary aim of the method. 3CDE is a matrix-based deconvolution approach for

bulk Hi-C data, which infers non-overlapping domains of chromatin activity in each cell type and

uses a linear combination of binary interaction information at these domains to deconvolve the

contact frequency matrix.[99] Junier et al. put forth a method to infer overlapping domains of

chromatin activity as well as their mixture proportions.[53] To the best of our knowledge, no software

accompanies the work by Junier et al.[53] Carstens et al. infer chromatin structure ensembles from

bulk Hi-C contact information using a Bayesian approach but does not infer cell type proportions

directly.[15] None of these methods analyze both interchromosomal and intrachromosomal contacts

simultaneously, which we demonstrate in Chapter 2 are sometimes essential and always helpful

to deconvolve Hi-C data. Additionally, 3CDE does not analyze multiple samples of Hi-C data

simultaneously, limiting practical utility to match latent clusters across multiple samples (see Figure

A.1). Due to these limitations, the problem of Hi-C deconvolution is an open question.

1.1.8 Conclusion

In Chapter Two, we present the details of our method, THUNDER, a reference-free deconvolu-

tion method to estimate cell type proportions from bulk Hi-C data. THUNDER extends NMF to

estimate cell type proportions in multiple samples simultaneously and incorporate data from inter-

chromosomal contacts. Our method also generates biologically informative estimates of cell-type

specific chromatin interaction. We hope that THUNDER will become a useful tool to estimate cell

type proportions as a confounding factor underlying future differential organization studies.

8



1.2 GAUDI Literature Review

1.2.1 Introduction

Polygenic risk scores (PRS) have been successfully incorporated into clinical risk models to

perform therapeutic interventions and disease screening. [78, 81, 56, 48, 105] However, the benefits

of PRS in personalized medicine are disproportionately concentrated in European populations.[76]

European ancestry populations are over-represented in genetic studies used to create PRSs.[43] But,

PRS trained in European populations are not transferable to non-European populations, and they

transfer particularly poorly to African ancestry populations.[75, 76] Additionally, genomes from

recently admixed populations, including African Americans and Hispanic/Latino individuals, often

have non-negligible and varying levels of genetic admixture. Genetic admixture further complicates

PRS transferability, even if more data was available in non-European populations. Several recent

methods have been proposed to estimate PRS in admixed populations, but they do not adequately

account for differential allele frequencies across populations or utilize ancestry information in

admixed genomes in modeling.[73, 10] Our method, GAUDI, addresses methodological disparities

in estimating PRSs in admixed individuals by modeling local ancestry and borrowing information

across ancestral segments to estimate ancestry-shared effects. GAUDI is a penalized regression

based PRS method which combines fusion and sparsity parameters to estimate population-shared

and population-specific effects. We anticipate that GAUDI will help increase equity in the benefits

of PRS research.

1.2.2 Polygenic Risk Score Overview

In its simplest form, a PRS is the sum of the number of risk alleles carried by an individual

weighted by their effect sizes from GWASs. PRSs are an attempt to summarize the proportion of
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variability of a trait explained by an individuals genetics. Mathematically, for an individual i, a PRS

built using p SNPs is defined as,

PRSi “
p
ÿ

j“1

xijβ̂j (1.1)

where xij is the number of risk alleles carried by individual i at SNP j, and βj is the GWAS

effect size for SNP j on the phenotype of interest. The problem of estimating an individuals PRS

consists of two primary tasks: selecting relevant genetic variants for inclusion and weighting these

variants appropriately. The power and predictive accuracy of PRSs is a function of the sample sizes

in training and testing samples, explained genetic variance, and method for selecting and weighting

variants for the score.[27]

Initially, a proposed solution to the variable selection problem was to include only genome-wide

significant variants from a large GWAS, but the constructed PRSs were found to be sub-optimal.[51]

The pruning and thresholding method, commonly referred to as the P+T method, was proposed

to identify the optimal p-value cutoff using cross-validation and allowed for sub-genome-wide

significant variants to be included in the PRS.[51] Sub-genome-wide significant variants may

be useful for prediction if they have small but non-zero true effect sizes on the phenotype.[51]

Further, variants included in the P+T PRS are commonly subject to LD pruning, such that variants

in high-LD are considered to duplicate information contained in a more significant variant.[30]

Another PRS method, LDPred, was the first PRS method to utilize external LD reference panels

to re-estimate variant effect sizes rather than lift them directly from large GWASs.[111] By not

excluding variants via LD pruning but re-estimating their effect sizes, LDPred often outperforms the

P+T method.[111, 68] Subsequently, the use of external LD reference panels in PRS estimation has

become quite common.[68, 123] One such method relying on LD reference panels, Deterministic

Bayesian Sparse Linear Mixed Model (DBSLMM), utilizes a Bayesian framework to estimate a PRS

under a range of possible genetic architectures. DBSLMM demonstrates advantages over traditional

PRS methods by assuming a proportion of SNPs have large effect sizes, and all other SNPs have

infinitesimal effect sizes. Their model innovates on previous methods by incorporating a range
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of possible genetic architectures a priori and allows the data to drive assumptions about genetic

architecture.[123] However, despite the increasing methodological complexity in PRS-research,

including the recent attempts to incorporate deep-learning methods[120] it is still most common to

estimate PRS using the P+T method.

1.2.3 Clinical Utility of Polygenic Risk Scores

Increased access to genotype data for large numbers of individuals via biobank studies have

led to a renewed interest in PRSs. PRSs have improved clinical risk prediction models in sev-

eral heritable phenotypes. Risk prediction models are clinically useful when the population can

be stratified into risk groups that substantially affect the risk-benefit balance of a public health

intervention.[16] Generally, the higher the risk of a public health intervention, the higher the per-

ceived clinical benefit must be to recommend the intervention. The clinical utility of PRSs have been

demonstrated primarily in PRS-informed therapeutic interventions[78, 81, 56]and PRS-informed

disease screening.[48, 109, 105] For example, several studies have demonstrated that a PRS for

coronary artery disease, along with other environmental predictors, stratified individuals into clin-

ically meaningful risk categories. Two studies have demonstrated that the use of statins to treat

coronary heart disease in individuals with the highest PRS resulted in a 45% relative risk reduction

of the 10 year risk of a heart attack or coronary artery disease related death.[56, 78] PRS have

also demonstrated success when applied to PRS-informed disease screening for prostate cancer.

Prostate-specific antigen (PSA) screening is not recommended by the US Preventive Services Task

force since benefits are outweighed by false positives which result in overtreatment.[8] A prostate

cancer PRS helped identify men at significantly elevated risk of disease, and the score may be used

to counsel actions following a positive PSA test.[85, 100] With biobank study resources, future

applications or PRS are well on their way to clinical applications.
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Figure 1.1: Disparities in GWAS Research. I modified Figure 1 from Gurdasani et al. 2019 and
Figure 1 from Martin et al. 2019 because I found both figures powerful individually, but more
powerful when synchronized with one another. Europeans are over-represented in genetic studies
compared to their proportion of the global population.

1.2.4 PRS have limited utility in global populations

However, the benefits of PRS research have not been equitably distributed across populations.[76]

In the majority of studies to date, PRSs predict individual risk more accurately in European popula-

tions than in non-European populations.[75, 76, 73, 10] This unfortunate reality is not surprising,

since there has been a global underinvestment in genetic association studies in non-European

populations (Figure 1.1).[43, 76] Additionally, several theories in population genetics suggest

that prediction accuracy will decrease between populations as genetic divergence increases. This

decrease in prediction accuracy is due in part to differences in the site frequency spectrum, linkage

disequilibrium, and environmental factors across populations.[76, 110, 10, 113]. These challenges

have resulted in calls to action to increase genetic diversity in GWASs, as well as the need for

methodological innovation to increase the transferability of PRSs across populations.[76, 20, 43]

Despite their methodological shortcomings, PRS are proposed for inclusion in clinical risk predic-

tion as described above, which may exacerbate health disparities.[76] Statistical methods to increase
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the transferability of PRS across populations can be categorized into two strategies: identifying

causal variants with epigenetic annotations and leveraging results from multi-population association

studies. The first strategy consists of methods which identify variants more likely to be causal across

global populations using external epigenetic datasets.[3, 65, 115] These methods hypothesize that

PRS containing the true causal variants will be more transferable across populations. This further

assumes that the causal variants are the same across populations, and their effects are identical.

Examples of variants demonstrating ancestry-specific effects due to being nearly fixed in Europeans

include rs2814778, the Duffy null variant residing in Atypical Chemokine Receptor 1 (ACKR1)

explaining 7% variation in white blood cell counts among African Americans[95, 94], and the

trypanolytic APOL1 G1/G2 alleles conferring an estimated 20% lifetime risk of developing chronic

kidney disease.[67, 36]. Several recent examples of differential effect sizes across populations have

been reported and are potentially caused by gene-gene or gene-environment interactions which

current GWAS are under-powered to study in depth.[11, 86] The second strategy is to utilize multi-

population studies to better estimate GWAS weights or account for the lack of transferability across

populations.[17, 14] However, European populations are often still the largest populations included

in multi-population meta-analyses, so the merits of these methods can not fully be assessed until

GWAS studies are more representative of global populations. Until the disparity in PRS prediction

applicability is addressed, a disparity in health outcomes between European and non-European

populations is inevitable.

1.2.5 PRS in Admixed Individuals

The problem of PRS transferability is further complicated when applying PRSs to individu-

als with recent genetic admixture due to the unique mosaic structure of individuals of admixed

ancestry.[75, 73, 10] A useful theoretical model to understand the genomes of admixed individuals

is that of a mosaic of genomic regions from ancestral populations. Due to crossover events, recently

admixed genomes are composed of large chunks inherited from distinct ancestral populations. In

part due to these alternating ancestral mosaics, PRSs trained in ancestral populations are not directly
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applicable to individuals of recent admixture.[73, 10] However, a robust assessment of this question

is challenging because of small sample sizes in non-European populations.[75, 73] Furthermore,

the definition of an LD-reference panel in admixed individuals is an open question, and the utility

of an in-sample LD calculation for admixed individuals has shortcomings when allele frequencies

are highly differentiated across populations.[87] As a result, the above-mentioned PRS methods

relying on external LD reference panels for PRS estimation will have limited usability in admixed

individuals. Due to the unique structure of admixed genomes as well as methodological limitations,

the transferability of PRS trained in ancestral populations to admixed populations remains an open

question.

Recently, several methods have been proposed to estimate PRSs in admixed individuals by

accounting for the mosaic structure of admixed genomes. Accounting for this structure in modeling

assumes the accurate estimation of either global or local ancestry. Global ancestry is the total

proportion of each ancestral population within an individual genome. Local ancestry is a finer

measurement where ancestry information is available for each base-pair in the human genome.

Since genotyping technology is agnostic to ancestry, the task of estimating local and global ancestry

from genotype data is known as local ancestry inference. Ancestry inference methods always require

genotype reference panels from the ancestral populations.[119] Ancestry inference, therefore, is the

first step in applying these innovative PRS methods for admixed individuals.

Modern statistical and machine learning tools perform highly accurate estimation of local

ancestry in admixed samples, even when reference panels in ancestral populations have small

sample size or are unphased. Early methods to infer local ancestry relied on large reference panels

of phased genotypes from ancestral populations. However, methods such as RFMix and ELAI have

relaxed those assumptions, allowing local ancestry inference in understudied populations where

such reference panels may not exist.[72, 42] Local ancestry inference methods primarily perform

estimation via hidden Markov models (HMMs).[37, 119] These methods can be broadly classified

into two groups: those which account for background LD and admixture explicitly (e.g. ELAI), and

those which remove variants in LD (e.g. RFMix).[37] Both ELAI and RFMix have demonstrated
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accurate estimation of local ancestry in simulations and real-data analysis. To summarize, given the

right reference panels, ancestry inference methods have been highly successful at recovering global

and local ancestry from genotype data.

Assuming that local ancestry inference can be performed with high accuracy in admixed

individuals, we will now profile several recent attempts to incorporate estimates of genetic ancestry

in PRSs. The approach taken by Marnetto et al. 2020 infers local ancestry for all individuals in the

PRS training data, and it applies effect sizes from ancestry specific GWASs piecewise across the

genome, an approach they name the combined ancestry-specific polygenic risk score (casPRS).[73]

Consider the problem of fitting a PRS for a recently admixed individual with genomic segments

from populations A and B. Marnetto et al. defines a partial PRS for some subset of variants across

the genome such that k ă p,

pPRSi “
k
ÿ

j“1

xijβj

An ancestry specific partial PRS (aspPRS) is defined as a proxy for the total PRS that uses

only the genomic portion pertaining to ancestry A, which in practice is inferred using local ancestry

inference methods (specifically ELAI in their work[42]). Applying the same aspPRS methodology

for regions assigned to population B via local ancestry inference, one can construct the casPRS by

adding the aspPRS weighted by the global ancestry proportions for each individual in the training

sample. Using real-data based simulations in several admixed populations, they demonstrate that

total PRS without local ancestry information is the weighted average of aspPRS. Additionally, in an

analysis of UK Biobank and Biobank Japan individuals, aspPRS never outperform the total PRS,

and casPRS has equivalent performance to the total PRS in most settings.[73]

Bitarello and Mathieson provide three alternatives to the approach taken by Marnetto et al.[10]

In their simplest approach, they weight two population specific PRSs for populations A and B by a

constant, α, ranging between 0-1. For an individual i,

PRS1
C,i “ αPRSA,i ` p1´ αqPRSB,i (1.2)
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This approach was also first proposed in a separate study by Marquez-Luna et al.[74] Second,

in addition to weighting by α, they weight by the global ancestry proportion for each individual for

population B.

PRS2
C,i “ αp1´ pB,iqPRSA,i ` p1´ α ´ αpB,iqPRSB,i (1.3)

Finally, utilizing local ancestry inferred regions, they construct a PRS where weighted averages

of GWAS effect sizes from populationsA and B are utilized for regions corresponding to population

A, and effect sizes from population B are used for SNPs in population B inferred regions,

PRS3
C,i “ αr

ÿ

jPA

βi,Axijs ` p1´ αqr
ÿ

jPB

βi,Bxijs `
ÿ

jPB

βi,Bxij

Conceptually, this is nearly identical to the model proposed by Marnetto et al. but using a

weighted average of GWAS effects for one population rather than the aspPRS.

The proposed PRS methods for admixed individuals have several limitations. Each of the

three methods here rely on utilizing summary statistics from previously conducted GWAS in the

ancestral populations for the admixed individual. Largely, use of GWAS results from ancestral

populations assumes independent genetic architectures between population groups, despite evidence

that the majority of variants have concordant effect sizes across populations.[110] Additionally, as

mentioned above, GWAS studies are biased toward discovering variants that are common in the

population of the studied cohort.[76] Therefore, even after incorporating local ancestry estimates

into PRS estimation, the above methods are biased toward SNPs which are common in the ancestral

populations. Additionally, if rare variants tend to have larger GWAS effect sizes, and these effect

sizes are correlated across populations, these scores will underestimate the effect size of variants

which are common in one population but are rare in another population. Thus, a PRS method which

jointly models ancestry shared and ancestry specific effects using individual admixed genomes may

improve PRS estimation in admixed individuals.
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1.2.6 Brief Overview of Penalized Regression

Our approach to estimate PRS in admixed individuals models both shared and specific genetic

effects across ancestry groups via a novel application of penalized regression. Penalized regression

methods are a popular set of statistical approaches where optimizing a regression likelihood is

modified to include some penalty to influence the estimation of the model parameters. These

techniques are often presented as data-driven methods, which replace performing challenging

statistical tasks, such as variable selection, with a slightly less challenging task of estimating

tuning parameters. Ubiquitous methods categorized as penalized regression methods include lasso

regression[106], ridge regression[45], and elastic net[49]. In this work, I will detail two relevant

penalized regression methods to our PRS application: the fused lasso[107] and the generalized

lasso[108] (where the fused lasso is a special but illustrative case of the generalized lasso).

In the original paper proposing the fused lasso, Tibsherani presents the method with both

sparsity and fusion penalties as fused lasso, but for the purposes of our exposition, we will separate

the two penalties to build clarity within the generalized lasso framework. Consider the prediction

problem with N observations with outcome y1, ..., yn and features xij , i “ 1, ..., N , j “ 1, .., p. We

assume that the xij are realizations of features Xj and the features can be ordered as X1, ..., Xp in

some meaningful way. We are then interested in predicting Y using X1, ..., Xp, and especially in

the case that p ąą N .

First, consider the regression model,

yi “
ÿ

j

xijβj ` εi

with the errors having mean zero and constant variance. The fused lasso solution is defined as,

β̂ “ argmint
ÿ

i

pyi ´ xijβjq
2
u subject to

p
ÿ

j“2

|βj ´ βj´1| ď s
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In order to account for the ordering in the features, the fused lasso penalty encourages coeffi-

cients which are ordered adjacent to one another to be similar. The Lagrangian formulation of this

problem is,

n
ÿ

i“1

pyi ´ x
1
iβq

2
` λ

p
ÿ

j“2

|βj ´ βj´1|

The fused lasso is a special case of the generalized lasso, which formulates the penalized

regression problem as,

minimizeβPRp

1

2
||y ´Xβ||22 ` λ||Dβ||1

Where D is chosen by the statistician to the sparsity of Dβ corresponds to some desired

behavior of β. The fused lasso is recovered by specifying D to be,

D “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 ´1 0 ¨ ¨ ¨ 0 0

0 1 ´1 ¨ ¨ ¨ 0 0

...
...

... ¨ ¨ ¨
...

...

0 0 0 ¨ ¨ ¨ 1 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

And sparsity can be introduced to any penalty by appending the rows of D with the identity

matrix as such,
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D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 ´1 0 ¨ ¨ ¨ 0 0

0 1 ´1 ¨ ¨ ¨ 0 0

...
...

... ¨ ¨ ¨
...

...

0 0 0 ¨ ¨ ¨ 1 ´1

1 0 0 ¨ ¨ ¨ 0 0

0 1 0 ¨ ¨ ¨ 0 0

...
...

... ¨ ¨ ¨
...

...

0 0 0 ¨ ¨ ¨ 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

1.2.7 Conclusion

In Chapter Three, I present GAUDI, a PRS estimation method for admixed individuals that

models local ancestry and estimates ancestry-shared effects by borrowing information across

ancestral segments in admixed genomes using penalized regression. Unlike previous methods,

GAUDI does not rely on the use of external GWAS results from ancestral populations. By doing so,

we bring our PRS modeling in line with the belief that genetic architectures are not independent

across ancestry groups. Additionally, GWAS results in ancestral populations could be quite rare

depending on the populations comprising an admixed population. GAUDI can also model the PRS

with high accuracy in the presence of ancestry-specific effects by balancing fusion and sparsity

penalties. Additionally, by estimating a PRS from individual admixed genomes, GAUDI more

efficiently utilizes information across ancestral mosaic segments to accurately estimate effect sizes

of rare variants.

1.3 SMA Silent Carrier Screening Literature Review

Spinal muscular atrophy is an autosomal recessive neuromuscular disorder characterized by

loss of alpha motor neurons and causes muscle atrophy shortly after birth.[69, 79] After cystic

fibrosis, it is the leading genetic cause of infant death.[88] The disease causing gene, SMN1, and its
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paralog, SMN2, reside in a 2Mb region on chromosome 5 characterized by a complex pattern of gene

duplication and inversions, which make characterizing the region through traditional whole-genome

sequencing techniques (WGS) challenging. Additionally, the SMN1/2 region is characterized by

variable copy number, with differential copy-number frequencies across global populations.[44].

Finally, SMN1 and SMN2 share ą99.9 sequence similarity.[19] One of the base-pair differences

is NM 000344.3:c.840CąT (c.840T), the biallelic absence of which causes 95% of SMA cases.

Population-wide carrier screening is recommended by the American College of Medical Genetics

and Genomics.[89] Previous screening approaches determine the copy number of SMN1 based

on the differences between SMN1 and SMN2 at c.840CąT. Recently, a WGS-based approach to

diagnose SMA and identify carriers demonstrated comparable precision and recall to previous

PCR-based screening methods.[19] However, one current limitation n of this approach is that

individuals with a SMN1 copy number (CN) genotype of 2+0 are currently not correctly identified as

carriers. Due to the differential copy number frequencies across global populations, any screening

tool must demonstrate accurate performance across diverse samples. For example, 0.4% of African

Americans are SMA silent carriers (2+0 genotype) compared to 0.1% of Europeans and 0.07% of

Hispanic individuals. Using novel bioinformatics and biostatistical tools, we propose extending

existing PRS-like prediction methods in this variable copy number setting. We will show that using

multi-population analyses result in better population-screening results than population-specific

methods, addressing the concerns of variable SMN1 allele frequency across populations.
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CHAPTER 2: THUNDER: A REFERENCE-FREE DECONVOLUTION METHOD TO IN-
FER CELL TYPE PROPORTIONS FROM BULK HI-C DATA

2.1 Methods

2.1.1 THUNDER Overview

In order to estimate the underlying cell type proportions found in bulk Hi-C datasets, we propose

a Two Step Hi-C UNsupervised DEconvolution appRoach (THUNDER).[96] THUNDER consists

of a feature selection step and a deconvolution step, both of which rely on non-negative matrix

factorization, or NMF (Figure 2.1). For Hi-C data, V denotes the pˆ n mixture matrix of bulk Hi-C

samples with p bin-pairs and n columns of mixture samples. We let k ą 0 be an integer specified

for the number of distinct cell types in the mixture sample and is chosen a priori. NMF seeks to find

an approximation V « WH , where W and H are pˆ k and k ˆ n non-negative matrices. We refer

to W and H as the cell type profile and proportion matrices, respectively. The NMF problem can

be solved by finding a local minimum for the Euclidean norm between V and WH , ||V ´WH||2,

under the constraint that W and H are non-negative. We use the NMF R package[35] with the

updates provided by Lee and Seung [60] with random initialization of the W and H matrices.

In step one of THUNDER, we perform an initial NMF deconvolution estimate on the p ˆ n

matrix V to obtain the deconvolution estimate V « W1H1 where W1 is a p ˆ k matrix and

H1 is a k ˆ n matrix. We then perform feature selection using the decomposition to identify

informative bin-pairs across cell types. THUNDER performs feature selection on intrachromosomal

and interchromosomal contacts separately. Let W1pi, jq denote the element in the ith row and

jth column of the cell-type specific profile matrix W1. Let Sintra and Sinter denote the set of

intrachromosomal and interchromosomal bin-pairs respectively.
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Figure 2.1: Overview of THUNDER Procedure. (a) Overview of nonnegative matrix
factorization (NMF) in the context of bulk Hi-C data. Three underlying cell types each contribute to
the observed contact frequencies in two bulk Hi-C samples. The first step of the THUNDER
algorithm is to deconvolve the input bulk Hi-C data into two estimated matrices: the cell type
profile matrix and the proportion matrix. (b) In order to select informative bin-pairs for
deconvolution, THUNDER utilizes a feature selection algorithm specifically tailored to Hi-C data
to analyze the contact frequency distribution of the bin-pairs in the cell type profile matrix. (c) In
the final step of THUNDER, we subset the bin-pairs contained in the input bulk Hi-C samples to
only informative bin-pairs and perform NMF a second time. The proportion matrix is scaled to be
estimates of the underlying cell type proportions in the bulk Hi-C samples. The cell type profile
matrix estimates cell-type specific contact distributions.

Standard deviation across cell types for bin-pair i is defined as,

SDi “
1

k ´ 1

k
ÿ

j“1

pW1pi, jq ´
1

k
W1pi, ¨qq

2

Feature score across cell types for bin pair i is defined as follows,

FSi “ 1`
1

log2pkq

k
ÿ

j“1

ppi, jqlog2pppi, jqq
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where ppi,Ωq is the probability that the ith pairwise bin contributes to cell type Ω, i.e.,

ppi,Ωq “
W1pi,Ωq

řk
j“1W1pi, jq

Feature scores range from r0, 1s with higher scores representing bin-pairs with higher cell-type

specificity. We further define,

µ̂SD,inter “
1

|Sinter|

ÿ

i:iPSinter

SDi

σ̂SD,inter “
1

|Sinter| ´ 1

ÿ

i:iPSinter

pSDi ´ µ̂SD,interq
2

m̂FS,intra “ mediantiPSintraupFSiq

ŝFS,intra “ mediantiPSintraupm̂FS,intra ´ FSiq

THUNDER’s feature selection algorithm is as follows. Intrachromosomal bin-pair i is defined

to be an informative bin-pair if FSi ą m̂FS,intra ` 3ŝFS,intra, and interchromosomal bin pair j is

defined to be an informative bin pair if SDj ą µ̂SD,inter ` 3σ̂SD,inter

Let p˚ be the number of informative bin-pairs identified via feature selection. We subset V on

all informative bin-pairs to form the reduced p˚ ˆ n mixture matrix V ˚. We then perform NMF

on V ˚ to arrive at our final estimates, W ˚ (of dimension p˚ ˆ k) and H˚ (of dimension k ˆ n).

Finally, we adjust the columns of H˚ to sum to one to represent cell type proportions. The scaled

elements of H˚ are cell type proportion estimates in the p mixture samples. The columns of W ˚

are parsimonious cell-type specific contact profiles. These parsimonious contact profiles estimate

Hi-C contact frequencies at the bin-pairs which most differentiate the inferred cell types in the Hi-C

samples.

23



2.1.2 Simulating Bulk Hi-C Data

2.1.2.1 Ramani et al. Data

Cellular indices were downloaded from GSE84920 which included 6 libraries: ML1, ML2,

ML3, ML4, PL1 and PL2.[92] For our simulations, we used data from all libraries except ML4.

These libraries are composed of scHi-C data from five distinct human and mouse cell lines. Within

each cell, we followed the same preprocessing procedure as outlined in Ramani et al. Specifically,

cellular indices with fewer than 1000 unique reads, a cis:trans ratio less than 1, and cells with

less than 95% of reads aligning uniquely to either the mouse or human genomes were filtered

out before analysis. Additionally, we removed reads whose genomic distance was ă15Kb due to

self-ligation, and only considered unique reads. For the four libraries containing HAP1 and HeLa

cells (ML1, ML2, PL1 and PL2), we discarded cellular indices where the proportion of sites where

the non-reference allele was found was between 57% and 99%.

To account for varying levels of single-cell sequencing depth across libraries, we considered

only cells with filtered reads greater than the 20th quantile and less than the 90th quantile of

reads and across all libraries and cell types considered in the simulated mixture sample. We then

downsampled each cell via multinomial sampling to the number of contacts in the cell with the

fewest number of contacts across all cell types considered in the sample. We constructed contact

matrices on the filtered and downsampled scHi-C data at three levels of data representation at 10Mb

bin-pair resolution: interchromosomal contacts only, intrachromosomal contacts only, and both

interchromosomal contacts and intrachromosomal contacts together. The total number of cells

in each mixture sample is equal to the smallest number of cells present in a cell line after the

filtering step across cells in the mixture sample. We normalized the mixture samples by dividing the

observed contacts by the total number of contacts to generate normalized contact frequencies for

each sample.

To test proposed feature selection methods for THUNDER, we generated three cell type

mixtures of GM12878, HAP1, and HeLa cells. We generated 5 replications of 12 bulk samples (3
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pure samples and 9 mixture samples) which are mixtures of the three cell lines at the proportions

given in Table A.2. These proportions are a subset of those used by Shen-Orr and Tibsherani in

their simulated mixture data.[102]

2.1.2.2 Lee et al. Dataset.

4,238 scHi-C profiles from the prefrontal cortex region of two postmortem adult human

brains were downloaded from GSE130711. Non-neuronal cell types were previously identified via

clustering based on CG methylation signature, followed by fine clustering of neuronal subtypes

using non-CG methylation. For each cell, we removed reads with genomic distance ă15kb and

only considered unique reads.

We generated 5 replications of 18 mixtures of scHi-C data at 10Mb resolution that consisted of

6 cell groups: oligodendrocyte (ODC), oligodendrocyte progenitor cell (OPC), astrocyte (Astro),

microglia (MG), endothelial (Endo), and the 8 neuronal subtypes as one group (Neuron). We

generated mixtures at the same three resolutions of Hi-C data as the mixtures from Ramani et al.

(see Table A.3).

In order to assess the robustness of the reference-based deconvolution method, MuSiC, com-

pared to reference-free deconvolution approaches we estimated cell type proportions under three

scenarios.[112] First, we estimated cell type proportions where all cell types in the mixture were

present in the reference panel. Second, we randomly removed one or two cells, respectively, from

the reference panel and estimated the cell type proportions of the remaining cells.

2.1.2.3 Window Size

In large part, the 10Mb window choice was limited by the library size of current scHi-C datasets

and sparsity of contacts from which to generate synthetic bulk Hi-C datasets such that the true cell

type proportions are known. Additionally, we reported our computation test on 10Kb resolution

Hi-C data that THUNDER scales up to the much larger feature space of finer resolution Hi-C data.
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As single-cell technologies improve and with more data accumulating, we will be able to test Hi-C

deconvolution methods at finer data resolutions where truth is known.

2.1.2.4 Feature Selection

The eleven feature selection methods either performed feature selection on the bulk Hi-C

contact frequencies or on the derived cell-type specific profiles after an initial NMF fit. Strategies in

the former group identify bin-pairs with high Fano Factor estimates across all samples. Strategies in

the latter group identify informative bin-pairs with high cell-type specificity and/or high variation

across inferred cell types. Cell type specificity was measured by feature score within a bin-pair and

across estimated cell types. Across-cell-type variation was measured by standard deviation within a

bin-pair and across estimated cell types. For both metrics, we used empirical thresholds based on

the distribution of these estimates across all bin-pairs for feature selection.

2.1.2.5 Choosing Hi-C Readout for Deconvolution

Using the 12 simulated mixtures of HAP1, HeLa, and GM12878 cell lines from Ramani et al,

we summarized the Hi-C contacts into varying readouts: 10Mb intrachromosomal contacts, 10Mb

interchromosomal contacts, 1Mb intrachromosomal contacts, 1Mb interchromosomal contacts, 1Mb

A/B compartment PC scores, and 100Kb insulation score. We computed normalized insulation

score for 100Kb contacts with a sliding window size of 1.2Mb [? ]. For insulation scores and

compartment PCs, we apply the absolute value transformation to ensure that the input mixture

matrices are non-negative. For each sample, we applied THUNDER to estimate cell type proportions

using k=3. We compared the deconvolution performance at each readout of Hi-C data using MAD

and correlation between estimated cell type proportions and true cell type proportions. Additionally,

we computed the proportion of explained variance of the mixture matrix by the NMF fit. Specifically,

given mixture matrix V and THUNDER estimated matrix, H˚ ˆW ˚ “ V̂ ,

RSS “
ÿ

ij

pVij ´ V̂ijq
2
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and

Proportion of Variance Explained “ 1´
RSS
ř

ij V̂
2

Similar measures of performance have been used previously to determine goodness of fit for

NMF deconvolution estimates ([50, 33]).

2.1.2.6 Competing Methods

MuSiC and TOAST are each profiled in Chapter 1, but details of their application to our

simulated Hi-C data are given below. To run MuSiC, we used the MuSiC R package (version

0.1.1) with default parameters. We constructed a scHi-C reference dataset using cells from Lee

et al. which match cells considered in the simulated mixtures. Using multinomial sampling, we

selected n cells from each cell type in the mixture where n is 75% of the minimum number of cells

available in a given cell type within the Lee el al. dataset. We used the TOAST Bioconductor

package version 1.0.0 using the default 1,000 features for deconvolution. Additionally, we used

NMF with KL divergence function as the deconvolution engine of TOAST.

2.1.3 Real Data Analysis

2.1.3.1 Giusti-Rodrı́guez et al. eHi-C data

Anterior temporal cortex was dissected from postmortem samples from three adults of European

ancestry with no known psychiatric or neurological disorder. Protocol for generating Hi-C data on

these samples has been described previously[38]. We applied THUNDER to the three adult samples

at 1Mb, 100Kb, and 40Kb resolutions. We ran THUNDER on intrachromosomal contacts only, and

performed feature selection on each chromosome separately. To obtain the final estimated cell type

proportions, we concatenated selected features across all chromosomes before running step 2 of

the THUNDER algorithm. We assumed a range of possible values for the number of cells in the

mixture pk “ 3, ..., 7q, and ran THUNDER for 100 iterations for both feature selection and cell

27



type proportion estimation. For downstream analysis, we chose the Hi-C bin size resolution and k

value which maximized the proportion of variance explained in the subset mixture matrix by the

final THUNDER deconvolution estimate.

After running THUNDER, we identified bin-pairs that demonstrated specificity to each inferred

cell-type-profile. Informative bin-pairs were selected as specific to each inferred cell-type-profile if

the row-normalized element of the basis matrix was greater than or equal to 0.3. This threshold was

chosen to select a sufficient number of bin-pairs for each feature. We then compared the unique bins

in these bin-pairs with cell-type specific epigenomic annotations (described below). We assigned

cell types to the THUNDER inferred cluster-specific contact profiles based on the enrichment of

epigenetic features within the THUNDER bins based on the results of a chi-squared test. Finally,

we compared the THUNDER estimated cell-type proportions for each labeled cluster with the

distribution of cell types within cortex tissue.

We tested if THUNDER bin pairs identify biologically relevant bin pairs by examining the

gene expression distributions for cell-type-specifically expressed genes in each THUNDER cluster.

Specifically, for each THUNDER feature of the final deconvolution estimate, we identified all

cell-type-specifically expressed genes for neurons, oligodendrocytes, microglia, and astrocytes.

After assigning the THUNDER features as described above, we tested the hypothesis that the gene

expression distribution for genes in a THUNDER feature would be higher in the assigned cell type

compared to other cell types using pairwise two-sample Wilcoxon rank sum tests.

2.1.3.2 Enhancer Annotations

We obtained cell-type specific enhancer annotations for neurons, microglia, oligodendrocytes,

and astrocytes generated from Nott et al. They performed ATAC-seq as well as H3K27ac and

H3K4me3 chromatin immunoprecipitation sequencing on cell-type specific nuclei. We did not

consider cell-type specific enrichments for promoters due to previous evidence supporting that

promoters are mostly conserved across cell types.[84]
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2.1.3.3 Cell Type Specifically Expressed Genes.

We used cell-type specific RNA-seq data in neurons, microglia, oligodendrocytes, and astrocytes

generated by Zhang et al. to identify cell type specific genes.[125] We defined a cell type specific

gene as a gene where the difference between the cell type specific expression and the mean

expression level of all other genes was greater than one. To examine overlap with Hi-C bins, we

check the region within 2kb of the gene transcription start site.

2.1.3.4 High-confidence regulatory chromatin interactions

High confidence regulatory chromatin interactions (HCRCIs) are genomic regions physically

proximal in the nuclear 3D space. HCRCIs were identified for the three adult cortex tissue samples

as described above in a previous study.[38] HCRCIs are interacts that demonstrated significant

evidence of increased interaction frequency pp ă 2.31 ˚10´11q and overlapped with open chromatin,

active histone marks, or transcription start sites of brain-expressed genes. Data were generated with

two 10 Kb anchors that are ě20 Kb and ď 2Mb apart.

2.1.3.5 Computation Test

In order to assess the computational costs of THUNDER on genome-wide Hi-C data, we

applied THUNDER to intrachromosomal Hi-C data at 10Kb resolution in YRI samples.[40] We

randomly selected 5 samples to be included in the analyses. First, we performed feature selection

for each chromosome through simple parallelization. Then, we concatenated the selected features

across all chromosomes for the final deconvolution estimate. We used computing time and memory

usage to assess the computational efficiency for both feature selection and estimation of cell type

proportions across the three datasets.
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Figure 2.2: Performance of Feature Selection Strategies for Unsupervised Hi-C
Deconvolution in HAP1, HeLa, and GM12878 Mixtures. We test 11 feature selection strategies
including no feature selection (NMF), Fano 100, Fano 1,000, and 8 feature selection strategies
combining bin-pairs with high cell-type specificity (CTS) and high across-cell-type variation
(ACV). Colors are grouped such that the reds are strategies analyzing the estimated cell-type
specific profiles using the mean across bin-pairs for thresholding, blues are feature score strategies
analyzing the estimated cell-type specific profiles using the median across bin-pairs for
thresholding, and greens are NMF with no feature selection or a pre-specified number of features
based on Fano factor. Distributions are presented across simulation replicates.

2.2 Results

2.2.1 THUNDER Feature Selection

In order to determine the feature selection method for THUNDER, using scHi-C data generated

from Ramani et al. [92], we simulated 12 mixtures of Hi-C data at 10Mb resolution consisting

of three cell lines, HAP1, HeLa, and GM12878, where underlying composition proportions were

known (details in Methods). We evaluated the performance of 11 published and novel NMF feature

selection strategies for intrachromosomal only and interchromosomal only bin-pairs (see Table

A.1).
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Our simulation results suggest that the optimal feature selection method differs for deconvolving

interchromosomal and intrachromosomal contacts (Figure 2.2). For intrachromosomal contacts, the

best feature selection method is High CTS (median) which prioritizes features with high cell-type

specificity using median-based empirical thresholds and selects an average of 353 informative

bin-pairs out of an average of 2,590 input intrachromosomal contact features. The best performing

interchromosomal feature selection method is High ACV. High ACV prioritizes features with high

across-cell-type variation (ACV) using mean-based empirical thresholds and selects an average of

287 informative bin-pairs out of an average of 42,871 input interchromosomal contact features. We

refer to these two methods hereforeward as THUNDER-intra and THUNDER-inter, respectively.

Compared to NMF with no feature selection, THUNDER-intra reduced average MAD (mean

absolute deviation, smaller indicates better performance) by 42% and increased average Pearson

correlation by 0.4%. Similarly, THUNDER-inter reduced average MAD by 69% and increased

average Pearson correlation by 3.3%. Feature selection methods that require specifying the number

of informative bin-pairs a priori such as Fano-100 and Fano-1000, which selects the top 100 and

1000 features with highest Fano factor respectively, exhibit the most variable performance across

simulations, and perform poorly relative to other methods despite specifying a similar number of

bins.

Using simulated Hi-C mixtures from Ramani et al, we assessed THUNDERs performance across

a variety of Hi-C data readouts including 10Mb intrachromosomal contacts, 10Mb interchromosomal

contacts, 1Mb intrachromosomal contacts, 1Mb interchromosomal contacts, 1Mb A/B compartment

PCs, and 100Kb insulation scores. We measured performance using proportion of explained

variance by the THUNDER fit, MAD with true cell type proportions, and correlation with true cell

type proportions. In all three measures, THUNDER deconvolution estimates were most accurate

on 10Mb interchromosomal contacts and by 10Mb intrachromosomal contacts (Figure A.2 a-c).

Notably, the next best performing inputs were 100Kb-resolution TAD insulation score and 1Mb-

resolution A/B compartment PCs. This suggests that deconvolution of Hi-C data may be enhanced

by summarizing Hi-C data to biologically relevant features before analysis. Across all simulation
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results, MAD was negatively correlated with the proportion of variance explained by the THUNDER

fit (Figure A.2 d). Additionally, the proportion of variance explained does not require knowledge of

the true underlying cell type proportions to compute the goodness of fit. We therefore propose to

use the proportion of variance explained as a practical solution to choose Hi-C data readout and the

number of underlying cell types, k.

2.2.2 Simulations based on scHi-C from brain (Lee et al.)

Figure 2.3: Performance of Deconvolution Methods on Mixtures with 6 Human Brain Cell
Types. (a,b) The average mean absolute deviation (MAD) and average Pearson correlation
comparing the true underlying cell type proportions to the simulated true proportions across
simulations across 5 simulation replicates. Lower MAD and higher Pearson correlation indicates
better performance. Error bars are equal to the standard deviation across simulation replications. (c)
Number of bin-pairs selected by deconvolution methods which perform feature selection.

We tested the accuracy of THUNDER cell type proportion estimates using scHi-C data from

Lee et al.[61] to simulate 18 Hi-C mixtures at 10Mb resolution of 6 brain cell types: microglia,

astrocytes, oligodendrocytes, oligodendrocyte progenitor cells, endothelial cells, and neuronal

cells. THUNDER cell type proportion estimates were most accurate when deconvolving intra-

chromosomal and interchromosomal contacts together, reducing MAD by 9.7% and 7.6% and

increasing Pearson correlation by 3.7% and 1.4% compared to intrachromosomal contacts and

interchromosomal contacts respectively. We compared THUNDERs performance to NMF with

no feature selection, MuSiC, and TOAST on mixtures with both intrachromosomal and interchro-

mosomal contacts, intrachromosomal contacts only, and interchromosomal contacts only (Figure
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2.3). THUNDER outperformed all alternative reference-free deconvolution approaches in each

simulation. When deconvolving both intrachromosomal and interchromosomal contacts together,

THUNDER decreased average MAD by 23% and 36% and increased Pearson correlation by 6% and

31% relative to NMF and TOAST, respectively. MuSiC, a reference-based deconvolution approach,

outperformed THUNDER in all simulation scenarios when all cell types in the mixtures are present

in the reference panel. However, due to the current paucity of cell-type specific Hi-C reference

panels, we tested the performance of MuSiC with one and two cell types randomly removed from

the reference panel (Methods). In all three simulation settings, MuSiCs performance decreased with

the number of cell types randomly removed from the reference (MuSiC, MuSiC - One Missing, and

Music - Two Missing in Figure 2.3a,b). The performance of MuSiC one-missing was comparable to

THUNDER in all simulation settings, and MuSiC - Two Missing was either worst or close to the

worst performing methods. From our simulations, THUNDER performed best among reference

free methods, and was more robust compared to MuSiC which performed poorly when cell types

are missing from the reference panel. We anticipate reference based methods such as MuSiC will

become more advantageous as we accumulate resources to build a comprehensive reference panel.

Currently, with limited resources to construct a reference dataset, reference free methods are more

valuable.

2.2.3 THUNDER estimates cell-type specific features from real brain Hi-C data (Giusti-
Rodriguez et al.)

We applied THUNDER to bulk Hi-C data generated on cortex tissue from three postmortem

adults samples (Methods). In downstream analysis, we proceeded with the deconvolution results

when k=6 due to the greatest consistency across samples (see Figure A.3).

In order to assign plausible cell type labels to the 6 THUNDER inferred clusters, we compared

the cluster-specific bins to cell-type specific enhancers and genes from four cell types commonly

found in cortex tissue. 5 out of 6 THUNDER features (all except THUNDER cluster 4) demonstrated

enrichment for neuronal enhancers pp ă 0.05{48 “ 1.04 ˚ 10´3q, so we assigned each cluster to a
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Figure 2.4: THUNDER Estimated Cell Type Proportions in 3 Samples of Human Cortex
Tissue. We use THUNDER to estimate cell type proportions for 3 Hi-C samples from cortex tissue
and perform enrichment analyses to assign brain cell types to THUNDER clusters. Our results
match the expected ratio of neuronal to non-neuronal cells in cortex tissue.

cortical cell type based on other significant enrichments if possible. THUNDER cluster 1 showed

evidence of enrichment for neuronal specifically expressed genes (p = 3.2e-3) and was thus assigned

as neurons. THUNDER cluster 6 demonstrated enrichment for neuronal enhancers (p = 3.79e-9) and

a trend (although not statistically significant) for enrichment of neuron specific genes (p = 0.104).

We assigned THUNDER cluster 6 to neurons. THUNDER cluster 4 demonstrated enrichment

with neuronal enhancers (p = 1.89e-3), and was thus assigned to neurons as well. Bins distinct to

THUNDER clusters 2 and 3 demonstrated consistent evidence of enrichment of oligodendrocytes

(ODC) features, in terms of enhancers (p = 3.3e-4 and p = 7.5e-9) and ODC-specifically expressed

genes (p = 7.5e-3 and p = 4.78e-3). Therefore, both were assigned as ODC cells. THUNDER

cluster 5 was not assigned to a cell type due to a lack of specific enrichments.

With these assigned cell type labels to the clusters, THUNDER estimated 62.7-65.2% neurons,

2.3-34.5% ODCs, and 0.3-35% unassigned for the three samples, largely matching the expected

ratio of neuronal to non-neuronal cells in cortex tissue (see Figure 2.4).
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To examine the biological relevance of the THUNDER inferred features, we compared the

distribution of cell-type-specific gene expression across the four cell types in genes identified in

feature-specific bin-pairs. Genes in bin-pairs specific to the THUNDER feature were enriched for

cell-type-specifically expressed genes of the assigned cell type compared to the other three possible

cell types (Fig A.4).

Additionally, THUNDER informative bin-pairs identified biologically relevant cell-type spe-

cific interactions. For example, the bin-pair defined by genomic regions chr5:130Mb-131Mb

and chr5:131Mb-132Mb was an informative bin pair for THUNDER cluster 6, which was as-

signed to neurons via enrichment analysis. This bin-pair contained 14 high-confidence regulatory

chromatin interactions (HCRCI) identified in the three adult cortical samples in a previous study

with genomic coordinates within chr5:130600000-130970000 and chr5:131100000-131730000,

respectively.[38] Further, two neuron-specific genes identified in our analysis of data from Zhang et

al. were contained in chr5:131,100,000-131,730,000, ACSL6 and P4HA2. Together, these results

suggest that this THUNDER informative bin pair may correspond to a group of neuron-specific

chromatin interactions. Another such example is the THUNDER informative bin-pair defined by

the genomic regions chr12:121Mb-122Mb and chr12:122Mb-123Mb for THUNDER cluster 3,

which enrichment analysis suggested as ODCs. The two regions defining this bin pair contained 64

HCRCIs, and two ODC specifically expressed genes, P2RX7 and ANAPC5. Our results suggest

that THUNDER estimated cell-type specific profiles can identify biologically meaningful cell-type

specific interactions from bulk Hi-C data.

2.2.4 Computations on 10Kb Hi-C data

THUNDER scales linearly with both the number of samples under inference and the number of

input features (see Tables A.4 - A.6). We assessed THUNDERs computing performance on Hi-C

data of lymphoblastoid cell lines (LCLs) derived from five YRI (Yoruba in Ibadan, Nigeria) individ-

uals.7 Specifically, we analyzed intrachromosomal contacts at 10Kb resolution, with 38,343,298

unique intrachromosomal bin-pairs ranging from 380,000 to 3.5 million bin-pairs per chromosome.

To obtain cell type proportion estimates genome-wide using THUNDER, we first perform feature
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selection by chromosome, then concatenate the selected features across chromosomes as input for

the final deconvolution estimate. THUNDERs average computing time is 3.4 hours (range 0.6-7.2

hours) with an average of 57GB memory (range 18GB - 103GB) per chromosome using a single

core on a 2.50 GHz Intel processor with 256GB of RAM. The final genome-wide estimation step to

obtain cell type proportions, with 693,771 ( 2%) bin-pairs selected as informative, took 2.5 hours

and 18GB of memory (see Table A.5 ). Similar summaries are presented for analyzing 3 and 10 YRI

samples respectively (see Tables A.4 and A.6). One advantage of THUNDERs feature selection

method when analyzing genome-wide Hi-C data is the ease with which it can be parallelized by

subsetting the original input matrix in smaller regions than by chromosome, then concatenating

Hi-C data for the final cell type proportion estimation step. This run time and memory usage serves

as an upper limit on the computational costs of running THUNDER, as 10Kb is one of the finest

resolutions of Hi-C data currently analyzed in practice.

2.3 Discussion

THUNDER is the first unsupervised deconvolution method for Hi-C data that integrates both

intrachromosomal and interchromosomal contact information to estimate cell type proportions in

multiple bulk Hi-C samples. Across all simulations, THUNDERs accuracy in estimating cell type

proportions exceeded all reference-free alternative approaches tested. Importantly, THUNDERs

feature selection strategy for identifying informative bin-pairs before deconvolution improves per-

formance relative to NMF with no feature selection. We found THUNDER to be a robust alternative

to reference-dependent methods which may not estimate cell type proportions accurately when cells

are missing from the reference panel, a realistic scenario in practice with Hi-C data deconvolution.

Further, we found that even in non-cancerous cell lines, the inclusion of sparse interchromosomal

contact information (in addition to intrachromosomal contacts) improves deconvolution perfor-

mance. This, however, comes at the cost of increased computational cost. THUNDER also provides

an approach to infer cell-type-specific contact frequency from bulk Hi-C data.
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We demonstrated that THUNDER successfully integrates interchromosomal contacts to im-

prove deconvolution estimates for Hi-C data. In most cell types, we have more reliable Hi-C data

at a much larger number of intrachromosomal bin-pairs compared to interchromosomal bin-pairs.

For this reason, previous methods to deconvolve Hi-C data restricted their estimation to these

intrachromosomal contacts. However, even in simulations with no strong interchromosomal signa-

tures (for example, in the Lee et al. human brain data), THUNDERs performance improves when

integrating interchromosomal and intrachromosomal data for deconvolution relative to only using

intrachromosomal contacts. Our results suggest some value in including interchromosomal contacts

bulk Hi-C deconvolution, though at the trade-off of computational efficiency. Since we analyze

Hi-C data by grouping contacts into bin-pairs, the feature space increases rapidly with increasing

bins. As demonstrated in our computation test, THUNDERs computation costs increase linearly as

the number of features increases. Despite this trade-off, our results suggest that interchromosomal

bin-pairs contain useful information that warrant consideration before excluding these bin-pairs in

Hi-C deconvolution. Additionally, we demonstrate that THUNDER estimated cell-type-specific

profiles are enriched for relevant cell-type-specific enhancers and specifically expressed genes

through our analysis of 3 adult human cortex samples. We demonstrate how existing cell-type

specific annotations can be used to label THUNDER inferred clusters, and thus provide cell type

proportion estimates in real Hi-C data. Thus, the estimated cell type profile matrix serves a dual

purpose: identifying informative bin-pairs from the large input feature space (dimension reduction)

and accurately estimating relative cell-type-specific contact frequency at informative bin-pairs.

An additional application of these cell-type-specific contact profiles could be in fine mapping

of GWAS variants in non-coding regions of the genome. Genome-wide association studies (GWAS)

have identified over 300,000 unique associations between single-nucleotide polymorphisms (SNPs)

and common diseases or traits of interest.[13] However, the majority of these SNPs reside in

non-coding regions where little is understood about their underlying functional mechanisms, which

has limited the adoption of variant-trait associations into revealing molecular mechanisms and

further into transforming clinical practice. Functional annotation of GWAS results are often most
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relevant in a cell-type-specific fashion due to important variability across cell types[63]. By further

understanding the cell-type-specific interactome via THUNDERs estimated profiles, we anticipate

more informative linking putatively causal variants identified by GWAS to the target genes on which

they act.

We provide a statistical approach for selecting Hi-C bin size and k for the THUNDER de-

convolution estimates that was correlated with accurately estimated cell type proportions in our

real data-based simulations. Selecting these parameters are essential to an effective deconvolution

approach for Hi-C data. We demonstrated the practical utility of our approach through our real Hi-C

data analysis on data from Giusti et al. In addition to our goodness of fit metric proposed here, we

recommend that analysts consider relevant information from histological experiments regarding the

number of major cell types present in a tissue sample and the expected range of cell type proportions

when evaluating the estimates provided by THUNDER. Additionally, analysts must consider the

read depth of the Hi-C data when selecting the optimal resolution for deconvolution.

While we have presented results for Hi-C data here, the THUNDER algorithm could easily be

modified to other variations of Hi-C data such as HiChIP/PLAC-seq data (HP data), which couple

standard Hi-C with chromatin immunoprecipitation to profile chromatin interactions anchored at

genomic regions bound by specific proteins or histone modifications, with reduced cost and enhanced

resolution.[80, 31] Used in concert with methods to identify long-range chromatin interactions from

HP data[54], our method is anticipated to efficiently leverage interchromosomal contacts jointly

with high quality intrachromosomal contacts to estimate underlying cell type proportions. The

robustness of our feature selection strategy and subsequent deconvolution performance warrant

future interrogation in the setting of HP data.

There are two primary limitations of our study. First, due to the number of cells present in

current scHi-C datasets and the library size, our simulation analysis may be biased toward coarser

Hi-C resolutions due to increasing sparsity at lower bin sizes. However, we find that THUNDER

still performs exceedingly well in estimating true cell type proportions in our real data analysis

even at a coarser 1Mb resolution. Second, the number of cell types and the overall coverage of the
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genome with our synthetic bulk Hi-C data are both much lower than one would expect in a realistic

sample of bulk Hi-C data. As more scHi-C data becomes available, we hope to continue to test

THUNDER in different real-data based scenarios which may be more realistic in terms of Hi-C

datas read-depth.

To summarize, we present THUNDER, an unsupervised deconvolution approach tailored to the

unique challenges of deconvolving Hi-C data. THUNDER accurately estimates cell type proportions

in bulk Hi-C data. THUNDERs biologically motivated feature selection approach performs well

in all of our real data or real-data based simulations, including human cell lines, human cortex

tissue, and human brain cells. We have demonstrated the practical utility of the method through our

analysis of Hi-C data from Giusti et al. and the computational efficiency of the method through

our analysis of 10Kb resolution Hi-C data. Finally, the estimated cell-type-specific chromatin

interactome profiles are valuable for identifying bin-pairs which interact differentially across cell

types.

Accurately estimating underlying cell type proportions via THUNDER should be the first step

in any individual-level differential analysis of bulk Hi-C data to control for the almost inevitable

confounding factor of underlying cell type proportions. Additionally, THUNDER provides a

unique tool to identify differentially interacting bin-pairs at the cell-type-specific level which can

be associated with disease or phenotypes of interest. An R package for running THUNDER can

be downloaded from https://github.com/brycerowland/thundeR.git. We anticipate THUNDER to

become a convenient and essential tool in future multi-sample Hi-C data analysis.
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CHAPTER 3: ESTIMATING POLYGENIC RISK SCORES IN ADMIXED INDIVIDUALS
WITH MODIFIED FUSION PENALTIES

3.1 Methods

3.1.1 GAUDI Framework

Consider a sample of i “ 1, ..., n admixed individuals from two ancestral populations, A and

B, and the problem of estimating the PRS in all individuals. In further work, this phenotype model

can be extended to an arbitrary number of ancestral populations, but for simplicity our model is

presented with two ancestral populations. Let xij1 and xij2 denote the haplotype of individual i

for SNP j on the paternal and maternal chromosome, respectively. Let lij1 and lij2 denote the

local ancestry for individual i at the position of SNP j on the paternal and maternal chromosomes,

respectively, taking values of A or B for the corresponding ancestral population.

Let Y “ py1, ..., ynq be an n x 1 phenotype vector, where

yi “
p
ÿ

j“1

βA,jpxij1Iplij1 “ Aq ` xij2Iplij2 “ Aqq

` βB,jpxij1Iplij1 “ Bq ` xij2Iplij2 “ Bqq ` εiq

where p is the total number of SNPs, and Ip¨q is the indicator function. Some subset of the

SNPs, p˚, are causal, meaning that the effect of the SNP on the phenotype is non-zero. Under this

model βA,j is the population A specific effect of SNP j on the phenotype. With no local ancestry

information, or regards to haplotype information, this collapses to the usual phenotype model

yi “
p
ÿ

j“1

xijβj ` εi

40



Our model can be expressed in matrix form where we define xijP “ xij1Iplij1 “ P q `

xij2Iplij2 “ P q such that

Gnˆ2p “

¨

˚

˚

˚

˚

˚

˚

˚

˝

x11A x11B x12A x12B ¨ ¨ ¨ x1pA x1pB

x21A x21B x22A x22B ¨ ¨ ¨ x2pA x2pB
...
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... . . . ...
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‹
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βA,1
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βB,n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

2pˆ1

Thus, our phenotype model can be expressed as

Y “ Gβ ` εnˆ1

The problem of PRS estimation under this model is equivalent to the problem of the accurate

estimation of the population specific effects for ancestral populations A and B given the correct

design matrix.

3.1.2 GAUDI Overview

Our PRS estimation method for admixed individuals is a modified fused lasso approach.

Specifically, given genotype information for n admixed individuals at p SNPs, some subset of

which are causal variants, p˚. We assume that for each individual we have also obtained local

ancestry inference estimates via RFMix, which also involves haplotype inference such that we have
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haplotypes for each of the n samples. As noted in Chapter 1, large reference panels in ancestral

populations are not necesssary for accurate local ancestry inference with RFMix.

First, we use the P+T strategy described in Chapter 1 in the admixed samples to identify

variants that are marginally associated with the trait of interest at k pre-specified p-value thresholds,

pt1, ..., tkq. We then perform LD clumping in PLINK using options –indep-pairwise 500 5 0.5.[90]

For each SNP achieving the p-value threshold, t, and passing LD clumping, pt total SNPs, we use

five-fold cross validation to estimate the tuning parameters using the following fused lasso objective

function.

argmin
β2pt

1

2
||Ynˆ1 ´Gnˆ2ptβ2ptˆ1||

2
2 ` λ||D3ptˆ2ptβ2ptˆ1||1

where

Dp3ptqˆ2pt “

¨
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˚

˚
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˚
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˚

˚

˝

1 ´1 0 0 ¨ ¨ ¨ 0 0

0 0 1 ´1 ¨ ¨ ¨ 0 0

...
...

...
... ¨ ¨ ¨

...
...

0 0 0 0 ¨ ¨ ¨ 1 ´1

γ 0 0 0 ¨ ¨ ¨ 0 0

0 γ 0 0 ¨ ¨ ¨ 0 0

...
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... ¨ ¨ ¨
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0 0 0 0 ¨ ¨ ¨ 0 γ
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In this model, λ controls the overall strength of the penalty matrix, and γ controls the ratio of

penalty between sparsity and fusion. In a similar way to elastic net trading off between the lasso and

ridge penalty via a tuning parameter, γ trades off between sparsity and fusion penalties to model

ancestry specific effects. One notable difference between our PRS estimation approach for admixed

individuals, GAUDI, and traditional fused lasso is that only ancestry-specific effects for a given

SNP are penalized with fusion, rather than all adjacent parameters. This penalization can easily be

extended to consider more than two ancestral populations, but is not considered here.
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The fitted PRS is thus,

Y “ Gβ̂ti,λ,γ

Cross-validated model performance for tuning parameters (the p-value threshold, λ, and γ) is

optimized on the squared Pearson correlation coefficient between the phenotype and the fitted PRS.

In using the cross validation procedure to tune our model parameters, several practical model

fitting considerations must be addressed. Since we include variants with low minor allele counts, it

is possible that alleles become fixed in one of the training folds. Since our model fitting procedure

drops fixed variants, we drop the population-specific term for the fixed variant, but may keep in

the population-specific term for the other ancestral population given that there are greater than two

variant calls. Additionally, we remove highly correlated population-specific variant columns that

may not have been filtered out via LD pruning. Since LD pruning is agnostic to local ancestry, it is

possible that the aggregate test for linkage equilibrium between all variants in the sample is satisfied,

but underlying LD occurs due to patterns of genetic admixture. In this case, we remove any variants

in with LD r2 ą .95 in model fitting, maximizing the total number of variants remaining in the

model in linkage-equilibrium.

3.1.3 COSI Simulations

In order to simulate haplotypes of recent admixture, we used COSI to generate 500kb regions

for 3,500 African American individuals.[97] We made two primary assumptions in generating

our simulated haplotypes. First, we assumed that the global ancestry proportions of our African

Americans were 80% African and 20% European ancestries, respectively. Second, using empirical

estimates o f ancestral switch-points based on an analysis of TOPMed individuals, we assumed 4% of

500Kb regions would contain ancestry switchpoint events.[114] Thus, for 3,500 diploid individuals,

280 chromosomes will contain switch points (7,000 * 0.04 = 280). For each chromosome carrying

an ancestry switch point, we generated one European and one African chromosome to simulate

the admixture event at a random base-pair in the region. For the remaining 6,720 chromosomes
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with no admixture events, we generated 80% African chromosomes (n = 5,376) and 20% European

chromosomes (n = 1,344). Additionally, we simulated 5,000 European chromosomes and 5,000

African chromosomes to be used as reference for relevant methods.

3.1.4 Phenotype Simulations

We simulate phenotypes using 500kb regions generated from COSI for the 3,500 admixed

individuals and the 2,500 reference AFR and EUR individuals. We considered three distinct sets

of causal SNPs for inclusion in the simulated phenotypes in order to represent differing genetic

architectures. First, we created the ”Globally Common SNPs” genetic architecture; at a locus,

we considered all SNPs that had AFR and EUR specific MAF ě 0.05. Second, we created the

”EUR Common SNPs” genetic architecture; we considered all SNPs that had AFR MAF ă0.05

and EUR MAF ě 0.05. Notably for estimating PRS in admixed populations, many discovered

GWAS significant variants fall into this genetic architecture due to European-centric biases in GWAS

results.[75, 76] However, the most common category of discovered GWAS variant is common across

all ancestries. Third, we created the ”AFR Common SNPs” genetic architecture; we considered all

SNPs that had AFR MAF ě 0.05 and EUR MAF ă 0.05.

Across simulations we vary 5 values. First, we vary pcausal or the proportion of causal SNPs

which takes on three possible values (1, 0.5, 0.05). Second, we vary pshared, or the proportion of

SNPs that have the same effect size across ancestry groups which took three possible values (1, 0.8,

0.5). Third, we varied heritability (h2), or the proportion of variation explained by genetic effects,

which took possible values of 0.2 or 0.6. Finally, we varied r2, the maximum allowed correlation

between SNPs in the phenotype, which took values of 0.2, 0.5, and 1. All results presented here

have r2 “ 0.5. For varying the LD between SNPs in the phenotype, we performed LD pruning

on the set of included SNPs within each genetic architecture using PLINK (–indep-pairwise 500

5 r2).[90] We repeat each combination of the above four values via 10 replicates for each genetic

architecture.
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Thus, for a SNP j, we simulated effect sizes from the following distribution.

$

’
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%

βA,j “ βB,j „ Np0, 1q w.p. pcausalpshared

βA,j „ Np0, 1q, βB,j „ Np0, 1q w.p. pcausalp1´ psharedq

0 w.p. p1´ pcausalq

We then estimated the variance explained by the causal SNPs, and simulated error terms using

normally distributed errors such that the total heritability was equal to h2.

3.1.5 Prediction Accuracy Measurements

We assessed the performance of all PRS estimation methods by computing the squared Pearson

correlation coefficient between the simulated phenotype and the estimated PRS in the held-out

testing samples.

3.1.6 Real Data Analysis

For our real data analysis, we considered subjects from two studies: African American indi-

viduals from the WHI study genotyped on the MEGA array (n = 6,734), and European ancestry

individuals from the WHI WHIMS sub-study (n = 5,681) downloaded from the dbGaP web site

under phs000675.v4.p3.[117] For all models, we partitioned the WHI AA individuals into five non-

overlapping testing folds consisting of 20% of the data, and the remaining 80% were used for model

training. Thus, each training procedure was repeated five times across each of the training partitions.

All WHI WHIMS European individuals were included for training in all models. Individuals were

included in modeling if they had non-missing phenotype data as described below.

3.1.6.1 WHI Cohort Description

The Womens Health Initiative (WHI) is one of the largest (n=161,808) studies of womens

health ever undertaken in the U.S. There are two major components of WHI: (1) a clinical trial
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(CT) that enrolled and randomized 68,132 women ages 50´79 into at least one of three placebo

control clinical trials (hormone therapy, dietary modification, and supplementation with calcium

and vitamin D); and (2) an observational study (OS) that enrolled 93,676 women of the same age

range into a parallel prospective cohort study.[4] A diverse population including 26,045 (17%)

women from minority groups was recruited from 1993 to 1998 at 40 clinical centers across the U.S.

Details on the study design, eligibility, recruitment, and the reliability of the baseline measures

of demographic and health characteristics have been published elsewhere.[4, 58] Among the U.S.

minority participants enrolled in WHI, 12,468 women (including 6,829 self-identified African

American and 4,626 self-identified Hispanic subjects) consenting to genetic research were included

in PAGE II for genotyping with the Multi-Ethnic Genotyping Array (MEGA).[9] Fasting blood

samples were obtained from all participants at baseline and were analyzed for white blood cell

count and platelet count by certified laboratories at each of the 40 clinical centers as part of a

complete blood count.[58] Results were entered into the WHI database at each clinical center and

were reviewed by clinical center staff .[28] In addition to the main WHI CT and OS, the WHIMS

ancillary study contributed existing GWAS data on the HumanOmniExpressExome-8v1 B array

and CBC measurements to this study.

3.1.6.2 Phenotype QC

We considered four blood cell phenotypes with low levels of missing data across the two

cohorts: white blood cell count, platelet count, hematocrit, and hemoglobin. All phenotypes were

adjusted by cohort for age, age2, top 10 genotype PCs, center, genotyping array, and sex using

linear regression models. White blood cell count values were log10(x + 1) transformed before

regression. Residuals from the regression models were inverse normal transformed and serve as

adjusted phenotypes.
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3.1.6.3 Variant QC

For the GWAS association tests, we consider common variants (MAF ą 0.01) with Rsq ą 0.3,

and we consider rare variants (0.001 ă MAF ă 0.01) with Rsq ą 0.6. Note that for our training

samples, MAF = 0.001 corresponds to a MAC of approximately 10.

3.1.6.4 GWAS with REGENIE

We performed a GWAS on the four blood cell phenotypes and the quality controlled set of

variants for each of the five training folds using REGENIE.[77] To fit the REGENIE null model

accounting for cryptic relatedness, we used extremely-well imputed variants from REGENIE (MAF

ą 0.2, Rsq ą 0.9999). We fit the four phenotypes simultaneously using the grouping options

available in REGENIE, and set the number of blocks to be 1,000.

3.1.6.5 Local Ancestry Inference with RFMix

For the African American samples, we inferred local ancestry using RFMix using 1kGP phase 3

as a reference panel. We consider only two-way admixture between European and African ancestral

populations, since in our downstream models we assume admixture between two continental ancestry

groups. Before local ancestry inference, we filtered imputed SNPs by minor allele frequency ą

0.05 and constructed a reference panel. We included both 92 samples from European and African

ancestry to make the reference panel balanced.

3.1.6.6 Variant Selection Experiments

We used two approaches to select variants for inclusion in the PRSs across the methodologies

considered. First, we considered an unrestricted set of variants that passed the GWAS variant-

filtering criteria. For each method, a different variable selection procedure is needed, and we

compared PRS predictions using the best set of variants according to each method.

Second, we considered PRS fit on a common set of variants generated from one round of

sequential conditional analysis. In brief, we grouped the REGENIE GWAS results into +/- 1Mb
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windows surrounding the top GWAS SNP starting from the most significant GWAS locus and

continuing until there are no more variants not in a locus with p-value ă 5e-6. Then, we used

REGENIE to compute an association test for each variant at the locus conditioned on the sentinel

variant at the locus. We then selected the most significant variant at each locus with p ă 5e-4 if

one exists. This set of sentinel variants and conditional significant variants formed the basis of our

PRS variant set. We then performed LD clumping by population group (50kb, r2 = 0.8), then took

the union of the variants across ancestry groups and ran LD clumping (250kb, r2 = 0.5) using the

initial GWAS p-values in African Americans. The output list of this procedure was our high quality

variant set.

For both experiments, we summarized the performance of each method with the mean r2

between the adjusted phenotype values and the PRS prediction across the 5 training partitions, and

a range of the test r2 values.

3.1.6.7 GAUDI

When analyzing real data, we included variants that had a minor allele count ą“ 10 on at least

once ancestral haplotype. If the variant was fixed in one ancestral population, we included only one

ancestry-specific effect in the model. If the variant was observed in both populations, we included

both ancestry specific effects in the model.

3.1.6.8 PRSice

PRSice is a popular software implementation of the P+T thresholding method.[30] We applied

PRSice to the REGENIE summary statistics in both African American individuals and European

individuals without using local ancestry information. We ran PRSice with default parameters.

3.1.6.9 Partial PRS

As discussed in Chapter 1, partial PRS (pPRS) is a method to incorporate local ancestry

information in PRS estimation in admixed individuals.[73] Using our RFMix inferred local ancestry,
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we applied the PRSice trained PRS in the training samples of African Americans and Europeans

using the PRSice determined p-value thresholds.

3.2 Results

3.2.1 COSI Simulation Results

3.2.1.1 Simulated Phenotypes with no Ancestry Specific Effects

We first assessed the performance of GAUDI under the assumption that there are no ancestry

specific effects for causal SNPs with LD between causal SNPs having a maximum value of r2 “ 0.5.

While the shared ancestry effects assumption is an oversimplification, recent work has shown

that there is almost always a positive correlation between effect sizes across global populations

for most SNPs associated with complex traits.[110] We compared GAUDI to the P+T method as

implemented in the PRSice software and the partial PRS detailed in Chapter 1.[73]

Figure 3.1: GAUDI Simulation Results - Shared Traits, Phenotype 3. Evaluation of PRS
methods on COSI simulated admixed genotypes and phenotypes where causal effects are assumed
to be shared across ancestral populations. All causal SNPs have MAF ě 0.05 in the AFR reference
data and MAF ă 0.05 in the EUR reference data.
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Under the ”AFR Common SNPs” genetic architecture, GAUDI outperformed PRSice and partial

PRS across all simulated traits in the held-out testing data. GAUDI demonstrated better performance

in settings with higher heritability and sparser phenotypes (Figure 3.1). However, GAUDI’s out

of sample performance was nearly equal to heritability in almost all simulated phenotypes. In this

setting, we expected GAUDI to outperform alternative methods by borrowing information from

the AFR segments of haplotypes to estimate the EUR effect. We also expected the partial PRS

to outperform the PRSice PRS by accounting for local ancestry when applying the PRS, but we

observed this only in near-omnigenic phenotypes.

Figure 3.2: GAUDI Simulation Results - Shared Traits, Phenotype 2. Evaluation of PRS
methods on COSI simulated admixed genotypes and phenotypes where causal effects are assumed
to be shared across ancestral populations. All causal SNPs have MAF ě 0.05 in the EUR reference
data and MAF ă 0.05 in the AFR reference data.

We simulated additional traits under the ”EUR Common SNPs” genetic architecture. These

phenotypes are comprised of variants reflecting the current bias toward common EUR variants in

published GWAS results. Applying PRSice naively to admixed individuals in this setting resulted

in predictions far below heritability (see Figure 3.2). Additionally, pPRS and PRSice performed

equivalently in simulations with more causal variants, suggesting that pPRS peformance changes
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based on the global ancestry proportions of admixed individuals and this interaction with the genetic

architecture of a phenotype. Despite EUR segments comprising only 20% of the COSI admixed

haplotypes on average, GAUDI demonstrated substantial gains by borrowing information across

ancestral populations to estimate the PRS. The increase in predictive performance between PRSice

and GAUDI suggests an immediate impact of applying GAUDI to estimate PRS in previously

published PRS composed of variants discovered in large European cohorts.

Figure 3.3: GAUDI Simulation Results - Shared Traits, Phenotype 1. Evaluation of PRS
methods on COSI simulated admixed genotypes and phenotypes where causal effects are assumed
to be shared across ancestral populations. All causal SNPs have MAF ě 0.05 in the EUR reference
data and MAF ě 0.05 in the AFR reference data.

Finally, we simulated traits assuming the ”Globally Common SNPs” genetic architecture.

GAUDI still performed the best under this simulation framework, however in situations of highly

polygenic traits with low heritability the improvement due to penalized regression was less pro-

nounced. These results demonstrate GAUDI's utility across a range of genetic architectures in

admixed populations.
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3.2.1.2 Simulated Phenotypes with Ancestry Specific Effects

We then simulated phenotypes where 50% of causal SNPs had ancestry specific effects and the

remaining 50% had shared effect sizes across ancestral populations. Our results largely matched the

above simulations. Surprisingly, in some scenarios the difference between GAUDI and competing

methods was even higher with the introduction of ancestry specific effects.

Figure 3.4: GAUDI Simulation Results - Specific Traits, Phenotype 1. Evaluation of PRS
methods on COSI simulated admixed genotypes and phenotypes where 50% of causal effects are
shared across ancestral populations and 50% are specific to the ancestral populations. All causal
SNPs have MAF ă 0.05 in the EUR reference data and MAF ě 0.05 in the AFR reference data.

Under the genetic architecture ”AFR Common SNPs”, GAUDI estimated PRS captured almost

all the heritability in testing samples in most phenotypes. Variability across simulations was

reduced compared to GAUDI’s performance in simulations with all ancestry shared effects. GAUDI

PRS estimates capture the highest proportion of heritability in the ”AFR Common SNPs” genetic

architecture (Figure 3.4), and considerable gains are made relative to other competing methods in

the EUR Common SNPs and ”Globally Common SNPs” genetic architecture (Figures B.1, B.2).

Under the Globally Common SNPs simulation framework, the difference between GAUDI and
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PRSice is much larger when ancestry specific effects are introduced compared to the simulated

phenotypes with no ancestry-specific effects (Figure B.2). These results demonstrate that GAUDI

can accurately estimate both ancestry shared and ancestry specific effects to estimate polygenic risk

in admixed individuals.

3.2.2 Real Data Analysis - All GWAS Variants

We applied GAUDI on a dataset of 6,734 African American individuals from the WHI study.

Due to phenotype availability in WHI, we focused our study on white blood cell count (WBC#),

platelet count (PLT#), hematocrit (HCT), and hemoglobin (HGB). We partitioned individuals into

five equal folds, and estimated a PRS for the four phenotypes within each fold. Performance was

assessed by the mean r2 value across folds between the predicted PRS and the phenotype values

in the held out samples. Additionally, we compared GAUDIs performance to PRSice and partial

PRS (pPRS) incorporating local ancestry on the same training and testing data. For pPRS, we used

a sample of 5,681 European ancestry individuals from the WHI WHIMS substudy as additional

training data.

Across the four available phenotypes, only PLT# and WBC# have meaningfully non-zero

test r2 values. Given recent applications of PRS to blood cell traits in African American samples

and our sample size comparatively, this relative order and magnitude of prediction accuracy was

expected.[17] Incorporating local ancestry estimates for AA samples with GAUDI (r2 “ 0.081)

improved mean cross-validated test r2 by 48% compared to PRSice (r2 “ 0.055; Figure 3.5). This

improvement is despite the fact that we restricted the variants considered by GAUDI to those with

GWAS p-value less than 5 ˚ 10´5 due to the sample size and PRSice considered all GWAS variants.

GAUDI estimated WBC# PRSs contained an average of 2596 variants across all folds, while the

PRSice score had an average of 497,200 variants. PRSice more accurately estimates the PLT#

phenotype in test samples, likely due to limited power in the GAUDI model due to a doubled number

of parameters. Additionally, GAUDI improved performance compared to pPRS (r2 “ 0.039) for

WBC#, another method that also incorporates local ancestry when estimating a PRS. In fact, PRSice

53



Figure 3.5: Method Comparison on WHI AAs - All GWAS Variants. GAUDI improves
inference compared to alternative methods in WBC# phenotype prediction despite using fewer
variants.

on only African American training samples outperformed pPRS. One consideration is that pPRS

does not have a procedure to recalibrate the p-value thresholds derived from the ancestral samples

on which pPRS is trained. The ideal p-value thresholds when training two PRS individually may

not be the ideal p-value thresholds in joint modeling.

3.2.3 Real Data Analysis - Variants Derived from Conditional Analysis

Since the number of parameters to estimate in the GAUDI model is double that of traditional

PRS methods, we estimated a PRS on a common set of variants determined from one round of

sequential conditional analysis. We hypothesize that this set of variants will capture the majority

of the heritability to be explained at the GWAS significant loci given the smaller sample size.

One advantage of this approach is that the only difference between the PRSice and GAUDI

estimates is the modleing of local ancestry in the PRS estimation, not differences in variant selection.

Similar approaches to PRS construction using significant variants from GWAS conditional analysis
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have recently demonstrated better performance to P+T or models that assume omnigenic genetic

architectures.[21]

Figure 3.6: Method Comparison on WHI AAs - CA Variants. Using a common set of variants,
GAUDI performs best on WBC# phenotype in out of sample prediction.

As with the experiment using all GWAS variants to estimate PRS, we observed meaningful

non-zero predictions only in WBC# and PLT#. After conditional analysis and LD clumping within

and across ancestral populations by cross-validation fold, we established a set of variants of average

size 361 and 139 variants for the WBC# and PLT# PRSs, respectively. Incorporating local ancestry

information with GAUDI pr2 “ 0.071q on the same set of variants improved prediction accuracy in

test samples compared to PRSice pr2 “ 0.029q by 145% (Figure 3.6). This performance gain was

driven in large part by modeling the effect of the Duffy null variant, which has highly differentiated

allele frequencies across populations (Figure B.3). pPRS again performs the worst out of the three

methods considered here. Performance in PLT# was comparable across all methods.
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3.3 Discussion

We present GAUDI, a PRS estimation method incorporating local ancestry to improve PRS

estimation in admixed individuals. In simulations of various genetic architectures, GAUDI outper-

formed P+T PRS and pPRS methods. Further, we demonstrated the practical utility of GAUDI

in data from the WHI study by estimating blood cell PRSs in admixed individuals. We captured

differential effect sizes at variants with known differential allele frequencies across populations

related to white blood cell traits (the Duffy null variant).[95, 94]

Since both GAUDI and PRSice outperformed pPRS for WBC# PRS, our results suggest that the

inclusion of local ancestry to estimate a PRS must not be done without care. In addition to potential

problems with the calibration of the p-value thresholds in the pPRS approach, variants which are

rare in one population are only included in the PRS derived in that ancestral population. GAUDI

uses fusion penalties to jointly model the SNP effects, even if one is rare on an ancestral haplotype.

How to best incorporate each individual’s unique mosaic of local ancestry in PRS training is an

essential area of further study.

GAUDI currently has several limitations which could be addressed as future directions. Pri-

marily, we believe that by adding an extra regression parameter per variant, GAUDIs prediction

utility will be limited by a lack of power, especially while data is still limited in individuals with

genetic admixture. First, we will explore using meta-analyses during variable selection to increase

the sample size of our real data analysis. One possible alternative would be to extend GAUDI to a

summary statistics based approach, but this path forward has several challenges as discussed below.

Second, we do not consider three-way admixture in this work, but conceptually the GAUDI model

is easily extended to three-way admixture with the construction of a new penalty matrix. Third,

our current variant selection procedure for GAUDI does not incorporate local ancestry to identify

plausible variants. One alternative would be to use methods such as TRACTOR to identify variants

while accounting for the population structure induced by local ancestry mosaics.[5] However,

our aim with this work has not been to identify the optimal set of causal variants to include in a
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local-ancestry informed PRS, but how to use local ancestry to account for population structure in

PRS estimation given a plausible set of variants. A final future direction of this work would be to

extend our approach to a cross-population meta-analysis for variant selection (potentially using

methods like TRACTOR to account for local ancestry).[17, 14] This approach would allow us to

assess if using an independent set of European participants could improve European effect size

estimation at inferred regions of European ancestry in African Americans.

As mentioned above, much work is necessary to extend summary statistics based methods for

PRS estimation to admixed populations. Summary statistic-based methods are the most popular

approach to estimating PRSs since GWAS summary statistics can be shared without prior data

sharing agreements. Our simulation work demonstrates the shortcomings of the pPRS approach to

train PRS for admixed individuals using summary statistics in the ancestral population.[73] Thus, I

believe some level of incorporation of individual-level patterns of local ancestry, as with the GAUDI

model, will be necessary for accurate PRS estimation in admixed individuals.

A second approach would be to apply or modify existing summary statistic based methods to

train on admixed individuals. However, these summary statistic based methods rely on external LD

reference panels to re-estimate variant effect sizes from GWAS summary statistics (see Chapter

1).[111, 123] This reliance on LD reference panels presents a host of challenges for admixed

individuals. One challenge is defining a singular population of admixed individuals from a set

of ancestral populations for which to generate an LD reference panel since global ancestry can

vary continuously between 0 and 1 for each ancestral population within a sample of admixed

individuals. Even if an appropriate sample could be defined using global ancestry thresholds (as

with our simulation design), the relationship between admixture events and linkage between two

alleles remains challenging to assess at the population level since LD is highly dependent on

admixture dynamics.[87] Furthermore, population level summaries such as r2 between two variants

obscure the unique individual-level patterns of ancestral mosaics which may alter the effect of a

variant given differing allele frequencies or a population-specific genetic effect. I believe this is a

crucial road-block to advancing individualized genetic predictions from summary statistics data.
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More methodological thought is needed to solve this problem. The most proactive solution is to

normalize the release of an LD reference panel with all published summary statistics, as has been

suggested elsewhere.[70] However, for admixed individuals, this may not be enough to disentangle

the relationship between individual patterns of local ancestry and LD as mentioned above. Thus, the

research community could continue development of appropriate summary statistics based methods

for admixed individuals while promoting greater access to LD reference panels in which summary

statistics were developed.

Polygenic risk score estimation methods could be further improved through the incorporation of

functional information to better identify variants relevant to the prediction task at hand.[3, 65, 115,

18] The problem of variant selection for PRS estimation is the problem of identifying causal variants

or their proxies, which we discuss more in depth in Chapter 5 in the context of non-European

populations. Additionally, as clinical decision makers begin to incorporate PRS in practice, studies

which collect both treatment information and genetic information could serve as valuable datasets for

retrospective analyses to evaluate if the current methods of PRS are achieving the risk stratification

they claim. Due to the ethical consequences of miscalibration, a PRS should not be treated like other

variables to be stratified upon in a study design such as age or sex, but rather like a treatment that

must demonstrate clinical benefit before widespread use.[76] These sorts of re-analyses of previous

datasets are common in the clinical trials literature, and should be adopted to better understand the

relationship between PRS estimation and clinical decision making.

As studies continue to enroll more participants with significant continental admixture, GAUDI

will prove a valuable tool for PRS estimation. We have provided code to perform data analysis tasks

related to PRS estimation with local ancestry as well as estimate parameters in the GAUDI model at

GAUDI GitHub.
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CHAPTER 4: SMA SILENT CARRIER SCREENING WITH MODIFIED PRS
APPROACHES IN DIVERSE POPULATIONS

4.1 Introduction

In Chapter 4, we extend multi-variant prediction methods for polygenic scores to the challenging

setting of predicting SMA Carrier status for silent carriers. This prediction problem is a pressing

clinical and methodological challenge as no test exists that can reliably detect individuals with the

SMA silent carrier haplotype. Currently, a SNP has been proposed to identify silent carriers for

SMA, but has PPV ă2% in AFR populations, the population in which the SMN1 duplication allele

is most prevalent.[19]

This application presents several methodological challenges currently unaddressed in PRS

literature. First, the SMN1/2 region is characterized by a complex pattern of gene duplications and

inversions, which make applying traditional genetic prediction models based on genotypes and

linkage disequilibrium challenging. Second, the SMA silent carrier haplotype is a relatively rare

phenotype. In this setting, traditional approaches of variable selection in polygenic risk scores may

not apply due to increased false positive rates if variants are selected based on p-values alone. Third,

the SMA silent carrier allele has highly differential population frequencies, so questions regarding

prediction transferability introduced in Chapter 3 are a concern here.

We used a multi-population meta-analysis approach to identify variants that were specific to

SMA duplication events across 5 populations using WGS data from the 1kGP. We hypothesize that

an appropriate multi-variant prediction model will perform better to identify SMA silent carriers

than any single-variant predictors alone. Our method could enable population-wide silent carrier

screening for WGS data, solving both methodological and pressing clinical challenges.
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4.2 Methods

In this study, we estimated the sensitivity and specificity of single variants in the SMN1/2

region to predict individuals with the SMN1 duplication allele using cross-validation results from a

multi-population meta-analysis. Further, we trained a multi-variant prediction model for the SMN1

duplication allele by extending polygenic risk score techniques to the copy number variable setting.

4.2.1 1kGP Data Preprocessing

We will train and evaluate our model using WGS data from 1kGP samples from 5 population

groups (AFR, AMR, EAS, EUR, and SAS) for (n = 2,504) individuals. Inclusion criteria for

samples in the 1kGP dataset have been described previously.[19] For a subset of individuals, we

had genotype information for parent-child trios (see below).

4.2.2 Cohort B

We also included samples from an internal Illumina dataset, referred to throughout as Cohort B.

The majority of samples in the cohort were of European ancestry.

4.2.3 SMNCopyNumberCaller

We applied the SMNCopyNumberCaller tool on all samples in order to infer SMN1 Copy

Number for each individual.[19] Individuals with SMN1 Copy Numberą 2 (n = 532) were identified

as having the SMN1 duplication allele and were included as cases. For individuals in trios, we

included parents in trios in which all three members have SMN1 CN=2 (n = 1,747). Here, we

assume that since the silent carrier (2+0) genotype frequency is rare in the population, most of

the individuals with SMN1 CN=2 will have the 1+1 genotype. For Cohort B in which no trio

information was available, we included individuals with SMN1 CN=2 as controls. Thus, our total

analysis sample size was (n = 2,279).
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4.2.4 Variant Calling

We extracted reads from the DRAGEN processed .bam files for the two regions corresponding

to SMN1 and SMN2 in the hg38 reference genome separately for each population group and study.

The two regions genomic coordinates in the hg38 reference genome are chr5:70864000-70970000

(SMN1) and chr5:69988913-70094555 (SMN2). We then aligned the SMN1 and SMN2 hg38-aligned

reads to the SMN1 region using bwa.[62] We called variants in the re-aligned file using Mutect2 in

tumor-only mode.[7] While not analyzing tumor genomes, Mutect2 relaxes traditional germline

variant calling assumptions, such as a ploidy of two and non-variable copy number, which are

directly relevant to analyzing reads from the SMN1/2 region. Preprocessing of the read data was

based on the Mutect2 documentation.[34]

After calling variants, we include variants with vcf FLAGS PASS, germline, clustered events,

haplotype. Each of the germline , haplotype, and clustered events flags are useful in the traditional

somatic variant calling setting, but do not have much utility in our extension to the complexities

of calling variants in the SMN1/2 region. After filtering variants for each individual, we merged

the variant calls by subject for each ancestry group. We removed variants with calls in fewer than

5% of samples within each ancestry group. Since our variant calling is agnostic to the total SMN1

and SMN2 copy number for each subject, we can not use the allele fraction or genotypes provided

by Mutect2 to compute allele frequencies. Since we are using SMN1 and SMN2 copy number

information in association testing, we chose to not use this information during variant calling.

4.2.5 Assessing Predictive Utility of SMN1 associated variants

We used 5-fold cross validation to assess the predictive utility of the single variants identified

by the multi-population meta-analysis and the multi-variant prediction model. For each cross-

validated fold, we performed a multi-population meta-analysis for the SMN1 duplication allele

using binary variant calls (call/no call). We first conducted population specific association testing

using ordinary least squares separately for each study. We then used the METAL meta-analysis

formulas to transform the marginal variant effect sizes into multi-population effect sizes and the
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associated standard errors and p-values.[116] We used the Bonferroni adjusted threshold based

on the number of variants to identify variants significantly associated with the SMN1 duplication

allele within each fold. For single variants, we predicted SMN1 duplication alleles based on the

direction of the METAL multi-population effect size estimate. Predictive performance is assessed

on cross-validated sensitivity, specificity, and positive predictive value using the population specific

silent carrier frequency.[44] Additionally, we only considered variants that were significant in

each of the five cross-validated folds. We compared our results to the standard of care variant,

NM 000344.3:c.*3+80TąG (also referred to as g.27134TąG), which has been identified previously

in the literature as correlated with the SMN1 duplication allele.

4.2.6 Multi-variant prediction model using P+T Scoring.

Using the summary statistics from the meta-analysis, we fit a multi-variant prediction model

similar to P+T scoring commonly used in the polygenic risk score literature.[118] Rather than

selecting variants based on their meta-analysis p-values, we include variants in the multi-variant

model based on a specificity threshold. Two different variant-level specificity measures were

considered: cross-validated population specificity and the cross-validated minimum population-

specific specificity. For the inner-loop cross validation, we trained our multi-variant models over

a grid of correlation values (0.5, 0.7, 0.9) and variant-level specificity values (0.97, 0.98, 0.99,

0.995). To establish a cutoff to binarize the predictions of our multi-variant score, for each set of

tuning parameters, we specified a false-positive rate for the score prediction of 0.5% and selected

the score cutoff that maximized sensitivity. Commonly, ROC curves are used for this end in PRS

research, and the area under the ROC curve is used as an optimizing value. In the case of silent

carrier detection, we may value a low false positive rate over a high true positive rate, so we fixed

our false positive rate when designing our model fitting procedure. This sort of argument is much

more common when designing statistical tests for null-hypothesis significance testing. Finally, we

applied the score threshold on the inner loop testing data, and computed the population sensitivity

and specificity. The tuning parameters and associated thresholds chosen in the final model are those
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which achieve the specificity threshold of 0.5% and maximize sensitivity. One final consideration:

when applying our model on population WGS data, we may not have ancestry information for each

sample. Therefore, we can use ancestry specific sensitivity and specificity when training the model,

but choose to not use it when evaluating the model.

4.3 Results

4.3.1 Population Allele Frequencies Inform Modeling Choices

Below, we simulate ideal tests to illustrate our hypothesis that selecting variants agnostic to

their predictive utility will fail at the task of SMA silent carrier prediction. We used population

allele frequencies for silent carriers of SMA in order to estimate the positive predictive value of

silent carrier detection tests as a function of sensitivity and specificity. Assuming a test with 80%

specificity, tests with perfect sensitivity fail to achieve a positive predictive value above 2% for

silent carriers in AFR individuals in which silent carriers are most prevalent (Figure 4.1). The

remaining populations do achieve a positive predictive value above 0.5% even with a perfectly

sensitive test. However, for tests with sensitivity of 80%, positive predictive values ą50% were

achieved when specificity was extremely close to 1 (Figure 4.2). For AFR individuals, a test with

80% sensitivity requires a specificity of 99.6% to achieve a PPV of 50%, and for EUR individuals a

similar test requires 99.9% specificity. These calculations informed our future modeling choices to

fix specificity at 99.5% when fitting our multi-variant model and then maximize sensitivity.

4.3.2 Single Variant Association Study Identifies SMN1 Duplication Allele Specific Variants

We estimated the sensitivity and specificity of single variants in the SMN1/2 region to predict

individuals with the SMN1 duplication allele using cross-validation results from a multi-population

meta-analysis. For each fold, we estimated the marginal effect of each variant on the SMN1

duplication allele. We used the fold-specific marginal effect sizes from the multi-population meta-

analysis to predict SMN1 duplication allele carrier status. We identified variants that were significant

63



Figure 4.1: PPV as a Function of Sensitivity for SMA Silent Carrier Tests. Even with a
perfectly sensitive test, PPV of tests are still ă2% to detect SMA silent carriers in AFR population
where prevalence of silent carriers is the highest. Different colors represent different assumptions of
population frequencies of silent carriers. Dotted and dashed lines represent tests with different
specificity values.

at the Bonferroni adjusted threshold in all five cross-validation folds, including the previously

reported standard-of-care variant, g.27134TąG. Using the held out data for each fold, we estimated

the single-variant sensitivity and specificity for each variant significant in all 5 folds using a binary

prediction rule. Our 5-fold sensitivity and specificity estimates largely match the previously reported

frequency estimates for g.27134TąG in carriers and non-carriers, confirming the utility of our

variant calling and prediction procedure (Figures C.1 and C.2).[19] The cross-validated population

sensitivity and specificity are misleading performance estimates, as they are heavily influenced

by population sample size, as seen by the disparate estimates when stratified by population below.

Further, the PPV of this variant is extremely low in all populations, most notably in African ancestry

individuals (Figure C.3). Given a positive variant call for g.27134TąG, the cross-validated PPV

estimate implies that there is less than a 2% chance of having the SMN1 duplication allele, limiting

clinical utility of the test.
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Figure 4.2: PPV as a Function of Specificity for SMA Silent Carrier Tests. PPV is an
exponential function of specificity. A test to detect silent carriers much have extremely low false
positive rate to yield clinically actionable test results. Different colors represent different
assumptions of population frequencies of silent carriers. Dotted and dashed lines represent tests
with different sensitivity values.

We identified 9 variants with cross-validated PPV greater than 25% in AFR individuals, 23

variants in AMR individuals, and 9 in SAS individuals. The majority of these variants are only

found in carriers of a single population, and are thus only predictive in that population (see two

examples in Figure C.4 and Figure C.5). Despite sample size, our results suggest that due to the

rare nature of the silent carrier phenotype, the population specific allele frequency is an upper limit

to the clinical utility of using single variants to identify individuals with the SMN1 duplication

allele using PCR based methods. These results motivate the use of a multi-variant prediction model,

combining predictive single variants to increase predictive accuracy in population screening.

4.3.3 Multi-population PRS

We fit a multi-population multi-variant risk score for the SMN1 duplication allele and assessed

the procedure using 5-fold cross validation of our training data. The mean cross-validated false-
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positive rate was ă0.01%, and the mean cross-validated sensitivity was 49.6%. As a result of no

false positives in our cross-validation results, the PPV for the SMN1 duplication allele in AFR

and AMR individuals was estimated to be 1. Notably, our multi-variant risk score achieves ą30%

sensitivity in three populations while single-variant predictions usually were only meaningfully

sensitive in one population if they controlled the false positive rate.

Figure 4.3: Cross-validated Sensitivity of Multi-variant Prediction Score for SMN1
Duplication. We use a PRS-like approach to select variants with high specificity to predict the
SMN1 duplication allele. In 5-fold cross-validation experiments, our score out-performs the
standard of care variant, g.27134TąG, in both mean population sensitivity while achieving no false
positives in the cross-validation.

After assessing the performance of the multi-variant risk score via cross validation, we fit the

same procedure on the full set of training data from 1kGP and the Internal Illumina dataset. Our

final model consists of 27 variants. In the training dataset, we identified three individuals with SMN1

CN=2 but who were predicted to have the SMN1 duplication allele implying that these individuals

may be silent carriers. In particular, one SAS subject has variant calls for 9 of the total 27 variants

comprising the SMN1 duplication allele risk score, 6 of which are nearly specific to SAS individuals
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with the SMN1 duplication allele. Additionally, the standard of care variant g.27134TąG was not

called, likely due to its low frequency in South Asian individuals generally.[19, 44]

Figure 4.4: Estimated Distribution of SMN1 Duplication Allele Risk. We applied our
estimation procedure to the full training sample to assess the risk distribution for an SMN1
duplication. In particular, we discover 3 individuals who have SMN1 CN=2 and a positive
prediction for an SMN1 duplication allele, making them prime candidates for follow up as SMA
silent carriers. In particular, one subject with SMN1 CN=2 has one of the highest scores in the
training sample for a duplication event.

4.4 Discussion

In this chapter, I presented our approach to identifying SMA silent carriers using multi-variant

prediction models extended to the variable copy-number setting. We applied somatic variant

calling approaches and multi-population meta-analyses to construct a predictor that controls the

false positive rate while remaining sensitive to SMN1 duplication. Importantly, this multi-variant

approach is able to predict duplication rates across global populations. Since population allele

frequencies of the SMN1 copy number differ across population, it is essential that whole-genome

sequencing-based methods that perform disease screening are effective across all populations that

may be screened with the method.
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One important innovation of our approach was the importance of considering measures other

than variant p-values for inclusion in the score. We developed a variant selection procedure based

primarily on population-specific specificity based on a binary prediction rule. We hypothesize that

this approach works better than traditional p-value variable selection from the P+T PRS literature

summarized in Chapter 1 because of the rare nature of the event. A future direction of this work

would be to formally compare this variant selection procedure to others via simulation of other

rare event phenotypes. This methodology could be useful for more polygenic and non-Mendelian

diseases that are still rare binary events.

We hope to further this work through the application of the score derived in 1kGP data to other

diverse cohorts with whole-genome sequencing data.
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CHAPTER 5: CONCLUSION

In this dissertation, we present statistical research that attempts to address challenging biological

problems unified by the theme of improving the clinical utility of omics data: inferring cell type

proportions from bulk Hi-C data, incorporating mosaics of local ancestry in admixed individuals,

and detection of silent carriers of a Mendelian disease. An important motif in this theme is the

need to increase the ancestral diversity of participants in genetic studies. As participants in genetic

studies become increasingly diverse, biostatisticians must adapt our tools to make sure that our

inferences are still accurate and that we are answering useful questions. At the same time, we

must be advocates for increasing diversity in genetic studies, which means working with other

public health professionals to address the many barriers to individuals of non-European ancestry

to participating in genetic research. With these charges in mind, we here discuss conclusions and

future directions for the work presented in the previous chapters.

In chapter 2, we presented THUNDER, which solves a practical problem in the analysis of Hi-C

data, namely, confounding due to variation in underlying cell type proportions. With inferred cell

type proportion estimates from THUNDER, a genome-wide scan for variants associated with the

3D-interactome is now possible without confounding as Hi-C data on more individuals is generated.

Additionally, THUNDER estimated cell type specific profiles can be used as cell-type-specific

functional annotations to increase the interpretability of GWAS loci while single-cell data on

many cell types are unavailable. However, datasets where genotype and Hi-C data are paired for

individuals are extremely rare. Such paired datasets for other forms of omics data exist, but mostly

in European ancestry individuals.[6, 41, 55] As we have noted in other chapters, research disparities

in genetics have public health consequences. Since these pitfalls have been reported widely by
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other disciplines in genetics, it is imperative that future studies of chromatin interactions include

individuals of diverse ancestry.[76, 55] There is a ripe opportunity to establish a shared data resource

to examine the impact of genetic variation on spatial chromatin interaction and gene regulation

across ancestral populations.[63] Additionally, the functional annotations derived from the data

gathered by such a data resource would be a boon to moving from associations to causal variants

and genes in ancestrally diverse populations.

In chapter 3, we presented GAUDI, a polygenic risk score estimation method which incorporates

local ancestry to improve prediction in admixed individuals. We must take seriously the health

disparities in the field of statistical genetics before we are swept away by promises of precision

medicine; with current analyses and methods, the promises will only be actualized for some, not

for all. As representation of admixed individuals increases in population genetics research, better

statistical tools must be developed to account for the mosaic-like genomes of these individuals.

One consequence of the increase in admixed individuals in genetic research is the potential need to

re-think assumptions regarding the use of LD reference panels in the use of PRS methods relying

on GWAS summary statistics. While it is a common assumption that it is essential to match an

LD reference panel as closely as possible to the ancestry of the individuals in your study, there is

still no consensus as to the impact of individual-level admixture on LD (see Discussion Chapter

4). If current approaches are left inadequate, it may be most appropriate to pivot to analyses

using individual-level data until an equitable solution can be achieved. Several challenges must

be overcome if this direction were to be chosen: data privacy agreements must be established and

respected for research participants, computationally efficient methods must be developed, and data

storage must not be cost-prohibitive for a global community of researchers. Through each iteration

of PRS methods research, collaboration with public health practitioners to ensure the accurate

interpretation and application of PRS in ancestrally diverse populations is paramount.[2]

In Chapter 4, we presented a polygenic risk score-like approach to a non-polygenic genetic

disorder, spinal muscular atrophy. We saw the boon of using multiple alleles to predict the SMN1

duplication allele in the presence of copy number variation in a highly complex genomic region.

70



Through close collaboration with genetic counselors, statistical geneticists, and physicians, there

is much fruitful work to be done in undiagnosed genetic disorders, early disease detection, and

population screening. In line with the motif introduced earlier this chapter, our research must

be done equitably across populations especially if the screening tool is to be deployed publicly

with no access to self-reported race-ethnicity data or inferred ancestry. Even if that information

were available, many individuals with recent population admixture enrolling in genetic studies

require that WGS screening tools be effective across populations. For an effective population

screening method for SMA silent carrier status, it was imperative that we trained and tested our

method on ancestrally diverse samples since SMN1 and SMN2 copy number distributions vary by

global ancestry. Additionally, the choice of metrics to evaluate the performance of our method in a

population-specific manner was essential to ensuring biases were addressed in the development of

our approach. We hope that our method development continues to improve identification of SMA

silent carriers, as well as inspiring future application in WGS-based population screening.
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APPENDIX A: ADDITIONAL RESULTS FOR CHAPTER 2

A.1 Feature Selection Details

Let W1pi, jq denote the element in the ith row and jth column of the cell-type specific profile

matrix W1. Let Sintra denote the set of intrachromosomal bin-pairs. The derivation below is for

intrachromosomal bin-pairs, but the feature selection algorithm is the same for interchromosomal

bin-pairs.

Standard deviation across cell types for bin-pair i is defined as,

SDi “
1

k ´ 1

k
ÿ

j“1

pW1pi, jq ´
1

k
W1pi, ¨qq

2

Feature score across cell types for bin pair i is defined as follows,

FSi “ 1`
1

log2pkq

k
ÿ

j“1

ppi, jqlog2pppi, jqq

where ppi,Ωq is the probability that the ith pairwise bin contributes to cell type Ω, i.e.,

ppi,Ωq “
W1pi,Ωq

řk
j“1W1pi, jq

Feature scores range from r0, 1s with higher scores representing bin-pairs with higher cell-type

specificity. We further define,

µ̂SD,intra “
1

|Sintra|

ÿ

i:iPSintra

SDi

µ̂FS,intra “
1

|Sintra|

ÿ

i:iPSintra

FSi

σ̂SD,intra “
1

|Sintra| ´ 1

ÿ

i:iPSintra

pSDi ´ µ̂SD,intraq
2
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σ̂FS,intra “
1

|Sintra| ´ 1

ÿ

i:iPSintra

pFSi ´ µ̂FS,intraq
2

m̂SD,intra “ mediantiPSintraupSDiq

m̂FS,intra “ mediantiPSintraupFSiq

ŝSD,intra “ mediantiPSintraupm̂SD,intra ´ SDiq

ŝFS,intra “ mediantiPSintraupm̂FS,intra ´ FSiq

Let FFi “ µi
σi

be the Fano Factor for the ith row of the mixture matrix. Let ei denote the

row-wise matximum for the ith row of the cell type profile matrix. Let m̂CTP denote the median

value for all elements of the cell-type profile matrix, W1.

Table A.1 describes all methods tested in the THUNDER feature selection simulations. The

intra subscript is dropped for clarity.
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A.2 Supplemental Tables

Feature Selection Method Mathematical Definition

CTS or ACV FSi ą µ̂FS ` 3σ̂FS OR SDi ą µ̂SD ` 3σ̂SD
CTS and ACV FSi ą µ̂FS ` 3σ̂FS AND SDi ą µ̂SD ` 3σ̂SD

CTS or ACV - Median FSi ą m̂FS ` 3ŝFS OR SDi ą m̂SD ` 3ŝSD
CTS and ACV - Median FSi ą m̂FS ` 3ŝFS AND SDi ą m̂SD ` 3ŝSD

CTS FSi ą µ̂FS ` 3σ̂FS
ACV SDi ą µ̂SD ` 3σ̂SD

CTS - Median FSi ą m̂FS ` 3ŝFS
ACV - Median SDi ą m̂SD ` 3ŝSD
Top 1000 FF Select top 1000 rows based on FFi
Top 100 FF Select top 100 rows based on FFi
Kim-Park FSi ą µ̂FS ` 3σ̂FS AND ei ą m̂CTP

Table A.1: Defining Feature Selection Methods for THUNDER simulations

Table A.2: Mixing proportions for GM12878, HAP1, and HeLa mixtures.

Sample Number GM12878 HAP1 HeLa

1 1.00 0.00 0.00
2 0.00 1.00 0.00
3 0.00 0.00 1.00
4 0.70 0.25 0.05
5 0.70 0.05 0.25

6 0.05 0.70 0.25
7 0.05 0.25 0.70
8 0.25 0.05 0.70
9 0.25 0.70 0.05

10 0.45 0.45 0.10

11 0.45 0.10 0.45
12 0.10 0.45 0.45
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Table A.3: Mixing proportions for Lee et al. Mixtures.

Sample Number ODC Astro MG Endo OPC NeuronMix

1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

7 0.1 0.1 0.1 0.1 0.1 0.1
8 0.1 0.49 0.1 0.1 0.1 0.1
9 0.1 0.1 0.49 0.1 0.1 0.1

10 0.1 0.1 0.1 0.49 0.1 0.1
11 0.1 0.1 0.1 0.1 0.491 0.1
12 0.1 0.1 0.1 0.1 0.1 0.49

13 0 0.2 0.2 0.2 0.2 0.2
14 0. 0 0.2 0.2 0.2 0.2
15 0.2 0.2 0 0.2 0.2 0.2
16 0.2 0.2 0.2 0 0.2 0.2
17 0.2 0.2 0.2 0.2 0 0.2
18 0.2 0.2 0.2 0.2 0.2 0
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Table A.4: Computational Performance on 3 YRI Samples of 10Kb Resolution Hi-C Data.

Chr Duration (h) Memory (GB) Bin-Pairs Selected Bin-Pairs

THUNDER Step 1
chr1 4.7 85.1 2,898,116 57,611
chr2 3.7 96.7 3,211,342 63,152
chr3 4.5 70.3 2,742,971 54,380
chr4 4.4 73.1 2,653,508 52,331
chr5 4.0 73.1 2,457,251 48,239
chr6 3.8 54.6 2,334,790 46,153
chr7 2.5 52.1 1,972,510 39,288
chr8 2.3 51.9 1,926,609 38,021
chr9 1.5 44.0 1,443,866 28,720
chr10 3.2 48.5 1,681,822 33,231
chr11 3.7 51.5 1,727,598 34,530
chr12 3.6 51.7 1,752,414 35,044
chr13 2.5 37.6 1,364,537 26,453
chr14 1.3 41.2 1,170,924 23,367
chr15 1.0 31.0 996,396 20,132
chr16 1.5 29.3 832,338 16,141
chr17 1.8 29.6 841,985 17,422
chr18 0.9 32.2 1,025,512 20,399
chr19 0.9 22.1 468,526 9,114
chr20 0.9 26.4 730,999 14,688
chr21 0.7 22.8 441,879 8,468
chr22 0.3 19.5 339,585 6,887

THUNDER Step 2
Genome-Wide 0.7 16.2 693,771 NA
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Table A.5: Computational Performance on 5 YRI Samples of 10Kb Resolution Hi-C Data.

Chr Duration (h) Memory (GB) Bin-Pairs Selected Bin-Pairs

THUNDER Step 1
chr1 5.4 97.3 3,174,333 65,265
chr2 7.2 103.2 3,507,051 68,506
chr3 6.3 92.4 2,988,427 61,700
chr4 5.1 89.1 2,893,327 59,152
chr5 4.0 85.7 2,677,352 53,739
chr6 6.9 81.2 2,545,972 50,167
chr7 6.1 69.6 2,163,857 44,196
chr8 3.3 59.1 2,105,779 41,971
chr9 2.5 49.0 1,580,008 32,001
chr10 3.2 59.4 1,848,124 36,801
chr11 3.1 57.5 1,896,637 37,615
chr12 2.9 62.2 1,931,846 38,602
chr13 2.3 49.2 1,483,383 29,353
chr14 1.9 45.3 1,278,870 25,480
chr15 2.1 35.7 1,094,740 22,468
chr16 2.4 34.5 924,458 17,667
chr17 3.8 37.3 935,763 19,203
chr18 1.5 42.7 1,120,797 21,741
chr19 1.5 23.5 524,543 9,540
chr20 1.3 30.0 802,176 15,743
chr21 1.1 25.2 485,244 9,076
chr22 0.6 21.1 380,611 7,713

THUNDER Step 2
Genome-Wide 2.5 18.2 767,700 NA
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Table A.6: Computational Performance on 10 YRI Samples of 10Kb Resolution Hi-C Data.

Chr Duration (h) Memory (GB) Bin-Pairs Selected Bin-Pairs

THUNDER Step 1
chr1 12.6 110.5 3,538,635 68,709
chr2 15.4 160.2 3,903,593 78,890
chr3 20.3 103.8 3,306,003 68,256
chr4 17.4 106.6 3,201,164 65,000
chr5 11.0 114.4 2,967,778 58,602
chr6 9.8 86.9 2,818,330 56,838
chr7 12.9 93.5 2,426,518 50,105
chr8 11.8 89.6 2,343,805 46,794
chr9 6.6 73.7 1,761,728 34,939
chr10 11.4 80.4 2,070,850 41,651
chr11 9.5 85.1 2,117,742 42,870
chr12 7.6 84.6 2,129,312 41,521
chr13 12.1 63.5 1,638,718 31,997
chr14 5.2 62.1 1,431,155 28,821
chr15 6.3 53.3 1,234,104 24,959
chr16 5.1 47.6 1,060,098 20,798
chr17 3.7 43.9 1,075,081 21,785
chr18 4.8 54.0 1,245,372 25,415
chr19 3.6 27.9 616,312 10,771
chr20 4.7 39.9 900,160 18,390
chr21 3.8 28.1 545,011 10,082
chr22 1.5 27.1 440,207 8,700

THUNDER Step 2
Genome-Wide 4.1 28.6 855,893 NA
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A.3 Supplemental Figures

Figure A.1: Performance of THUNDER and 3CDE on HAP1 and HeLa Simulated Mixtures.
We see that in several simulations, 3CDE achieves near the maximum mean absolute deviation from
true cell type proportions (0.5).We do not test 3CDE in further simulations because of its inability
to handle multiple Hi-C samples simultaneously.
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Figure A.2: Simulation Results Supporting the THUNDER Procedure of Choosing k. (a-c)
We see that the relative rankings of the different Hi-C data resolutions are nearly the same for all
three measurements. Since explained variance is independent of knowing the true cell type
proportions, we propose it as a method of evaluating goodness of fit for THUNDER. (d) Explained
variance is negatively correlated with MAD across all simulations. Blue dotted line is the linear
regression line through the points.
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Figure A.3: Explained Variance Estimates for a range of k and Hi-C data resolutions for
deconvolution of Giusti-Rodriguez et al. Hi-C data. (a-b )Proportion of variance explained for
all combinations of k and Hi-C data resolution tested for deconvolution of the Giusti et al. dataset.
(b) is zoomed in on the y-axis. Since many features equal 1, we choose the resolution with the
largest bin-pair resolution to match our simulation results.
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Figure A.4: Gene Expression Enrichment Tests in THUNDER bins. We tested for gene
expression enrichment in bins identified by THUNDER to be specific to cell types after
deconvolution. For each THUNDER feature, we compared the distributions of gene expression of
cell type specifically expressed genes contained in the THUNDER bins.
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APPENDIX B: ADDITIONAL RESULTS FOR CHAPTER 3

Figure B.1: GAUDI Simulation Results - Specific Traits, Phenotype 2. Evaluation of PRS
methods on COSI simulated admixed genotypes and phenotypes where 50% of causal effects are
shared across ancestral populations and 50% are specific to the ancestral populations. All causal
SNPs have MAF ě 0.05 in the EUR reference data and MAF ă 0.05 in the AFR reference data.
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Figure B.2: GAUDI Simulation Results - Specific Traits, Phenotype 1. Evaluation of PRS
methods on COSI simulated admixed genotypes and phenotypes where 50% of causal effects are
shared across ancestral populations and 50% are specific to the ancestral populations. All causal
SNPs have MAF ě 0.05 in the EUR reference data and MAF ě 0.05 in the AFR reference data.
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Figure B.3: Differential Effect Size at LD Proxy for Duffy Null Variant. (a) For GAUDI effect
sizes on CA variants, we observe that many effect sizes are jointly estimated to be similar for AFR
and EUR effect sizes. However, one variant, chr1:159125785:T:G, has a large EUR effect size
estimate βEUR “ 0.193 and a small AFR effect size estimate βAFR “ 4.71 ˚ 10´4. Red dotted line
is the 45 degree line. (b-c) When comparing GAUDI and PRSice effects on the same variants, the
primary difference between the two scores is at chr1:159125785:T:G. There are not many sign
disagreements between the two scores, suggesting that incorporating local ancestry estimates does
not necessarily change the direction of interpreted effect, but more accurately refines the estimated
effect size for a variant.
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APPENDIX C: ADDITIONAL RESULTS FOR CHAPTER 4

Figure C.1: Standard of Care Variant - CV Sensitivity. Population-specific sensitivity
cross-validated estimates for the standard of care variant to identify silent carriers, g.27134TąG.
This measure corresponds to the cross-validated estimate of allele frequency in SMN1 duplication
allele carriers.
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Figure C.2: Standard of Care Variant - CV Specificity. Population-specific false positive rate
cross-validated estimates for the standard of care variant to identify silent carriers, g.27134TąG.
The standard of care variant is present in many individuals with no SMN1 duplication allele,
especially in AFR individuals.
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Figure C.3: Standard of Care Variant - CV PPV. Population-specific positive predictive value
(PPV) cross-validated estimates for the standard of care variant to identify silent carriers,
g.27134TąG. As a result of the rare prevalence of the SMN1 duplication allele, as well as the high
false positive rates in AFR, the positive predictive value of the associated test to detect SMN1
duplication is extremely low. See Figures 4.1 and 4.2 for this calculation.

Figure C.4: High PPV AFR Variant Discovered - Variant A. Population-specific sensitivity
cross-validated estimate for Variant A, which has a controlled false positive rate in all populations.
This variant is present in 25% of AFR individuals with the SMN1 duplication allele.
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Figure C.5: High PPV SAS Variant Discovered - Variant B. Population-specific sensitivity
cross-validated estimate for Variant A, which has a controlled false positive rate in all populations.
This variant is present in 25% of AFR individuals with the SMN1 duplication allele. Together with
Figure C.4, these variants suggest a multi-variant prediction model would be a helpful solution to
the prediction task.
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Fleshner, A. Finelli, M.-É. Parent, J. L. Stanford, E. A. Ostrander, M. S. Geybels, S. Koutros,
L. E. B. Freeman, M. Stampfer, A. Wolk, N. Håkansson, G. L. Andriole, R. N. Hoover, M. J.
Machiela, K. D. Sørensen, M. Borre, W. J. Blot, W. Zheng, E. D. Yeboah, J. E. Mensah,
Y.-J. Lu, H.-W. Zhang, N. Feng, X. Mao, Y. Wu, S.-C. Zhao, Z. Sun, S. N. Thibodeau,
S. K. McDonnell, D. J. Schaid, C. M. L. West, N. Burnet, G. Barnett, C. Maier, T. Sch-
noeller, M. Luedeke, A. S. Kibel, B. F. Drake, O. Cussenot, G. Cancel-Tassin, F. Menegaux,
T. Truong, Y. A. Koudou, E. M. John, E. M. Grindedal, L. Maehle, K.-T. Khaw, S. A. Ingles,
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