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ABSTRACT

Andrew Lamont Hinton: Supervised learning methods for association detection, biomarker discovery, and
pattern recognition in compositional omics data

(Under the direction of Peter Mucha, Wesley Burks, and Mike Kulis)

Rapid advances and reduced cost in high throughput sequencing (HTS) technologies have enabled

widespread profiling of microbial metagenomes and microbiomes in humans to better understand

associations between microbial communities and disease. Data generated using these technologies are vast,

high-dimensional, and nuanced, including limitations in instrument sequencing capacities and measurements

that are inherently relative rather than absolute. Unlike absolute measurements, these relative counts —

referred to as compositional data — require special methods for analysis and interpretation. Unfortunately,

compositional data methodology are esoteric and generally not well adapted to high throughput sequencing

data. Because of this, HTS data are often analyzed with traditional statistical methods that do not properly

account for the underlying compositional sample space. This practice may result in spurious associations

being reported which may limit study-to-study generalizations and reproducibility. In this thesis, building

on existing literature in compositional data analysis and feature selection methodology, we develop a novel

statistical association test and a powerful machine learning framework using robust pairwise logratios.

Additionally, for each method, we developed freely available (GitHub) R packages (SelEnergyPermR &

DiCoVarML) with functions to perform the core analysis of each method. In the first chapter we provide a

basic overview of compositional data and its connection to HTS data. In the second chapter, we present the

SelEnergyPerm method for detecting sparse associations in high dimensional metagenomic data. In the

third chapter, building on the concept of differential compositional variation proposed in SelEnergyPerm,

we present the DiCoVarML framework for supervised classification and biomarker discovery. In the final

chapter, we apply the SelEnergyPerm method to test for an association between toxicant exposures and the

composition of microbial communities in the nasal passage. Using a parsimonious logratio signature

detected by SelEnergyPerm, we then perform integrative analysis, where we explore the connection

between nasal microbiome dsybiosis and immune mediator expression in nasal lavage fluid.
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3.1 The differential compositional variation machine learning (DiCoVarML)
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3.2 Generalizability limitations from training machine learning models
with relative abundance or centered logratio data. Ternary diagrams
visualize compositional data from three component parts in barycentric
coordinates. For each scenario (row), data were simulated from two classes
(C1, C2) with distinct data distributions for training (circles) and test (+
symbols) partitions in the first column on the left. The corresponding global
decision boundaries are shown as solid lines for each scenario. Training
set and test set AUC are shown for models trained from relative abundance
(second column), centered logratios (third column), and all pairwise logra-
tios (right column). Prediction probabilities for class C1 for each model
fit to the training partition are indicated by shaded coloring throughout
the simplices. (a) Random forest models fit to normally-distributed data
on the 2-simplex with an isoproportional decision boundary. (b) LASSO
regularized logistic model fit to data separated by an α ⊙ {0.6, 0.3, 0.1}
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3.4 Classification performance comparison using real 16S and WGS datasets.
Paired 15 repeats of 2-fold cross validation for each approach when applied
to publicly-available case (shown) vs. control datasets. (a) AUC results for
each method using WGS (top row) or 16S (bottom row) datasets. Grey
points represent seed specific results. Grey lines connect paired seed spe-
cific AUC scores. Heavyweight points in color indicate overall mean AUC
for each approach. Red point indicates approach with highest mean AUC.
(b) Comparison of mean AUC differences between existing compositional
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3.5 Predicting NEC onset (> 7 days) in premature infants using gut mi-
crobiome composition in the first few months of life using untargeted
DiCoVarML with ridge regression applied to metagenomic profiled
fecal samples (n=1,100) from the NICU NEC study. (a) AUC (paired by
seed) from stratified (by sample and class) cross-validation (20 repeats x
5-fold) with empirical and permuted labels with p-value from a Wilcoxon
signed-rank test and overall mean AUC shown. (b) Predictive microbial
logratio network after applying DiCoVarML to the full data. Nodes (v
= 8) represent selected genera with sizes indicating the sum of absolute
coefficients (βi) associated with each node. Each directed edge (e = 14)
indicates a ratio (outgoing part over receiving part) with thickness propor-
tional to the absolute coefficient βi (larger absolute coefficient = thicker
edges). Blue/Red node colors indicate increased abundance (relative to
network) is associated with nonNEC/NEC samples. (c) Distribution of
logistic regression scores (Score = Σe

i=1βi · Logratioi) from model fit to
full data. (d) Black line represents overall mean score by day. Dashed line
indicates the non-NEC (lower) vs. NEC (above) decision threshold. Red
points indicate misclassification (nonNEC vs. NEC). (e) Logistic regression
scores of NEC positive samples only stratified by survival, with p-value
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position using targeted (T=50) DiCoVarML with ensemble model using
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seed) with stratified (by dataset) cross-validation (252 splits x 2-fold) with
empirical and permuted labels with p-value from a Wilcoxon signed-rank
test and overall mean AUC shown. (b) Predictive microbial log ratio net-
work after applying DiCoVarML to the full data. Nodes (v = 50) represent
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4.2 Shannon and Simpson indices of alpha diversity are significantly differ-
ent between sexes, and this difference is most pronounced in e-cigarette
users. The Shannon and Simpson indices for alpha diversity were calcu-
lated and plotted by exposure group (A, B), sex (C, D), and sex within
exposure groups (E, F). NS = nonsmoker, EC = e-cigarette user, SM =
smoker. Data are presented as mean ± standard error. * p < 0.05, ** p
< 0.01 by t-test (C), Kruskal-Wallis test (D), or two-way ANOVA with
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4.3 Nasal microbiome differences between sexes (Males: n=35; Females:
n=27). (A) Network representation of SelEnergyPerm (p=0.0123) derived
genus aggregated taxa logratio signature of nasal microbiome differences
between sexes (Node = genera; edge = logratio between taxa, Edge-weight
= Kruskal Wallis H-statistic between sexes, Size/Color = node strength). (B)
Principal coordinate analysis plot of nasal microbiome logratio signature be-
tween sex explaining 82.37% of the total variation. (C) Univariate analysis
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characteristics (ROC) curve displaying the area under the curve (AUC)
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tial least squares discriminant analysis (PLS-DA) models trained on nasal
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Network representation of SelEnergyPerm (p=0.032) derived genus ag-
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4.5 Integrating data uncovers association between NLF mediators and
nasal microbiome along with identifying distinct correlation patterns
between exposure groups (Ecig-users: n=23; Nonsmokers: n=19; and
Smokers: n=19). (A) PLS-DA biplot of integrated NLF mediators and
nasal microbiome (B) Box and whisker’s plot comparing area under the re-
ceiver operating characteristic curve performance of 2-component PLS-DA
model (50x10-fold cross-validation) using each data type alone or integrated.
(C) Scatter plot showing correlations between logratios formed between
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CHAPTER 1: INTRODUCTION TO COMPOSITIONAL AND OMICS DATA

In this chapter we overview basic compositional data concepts important to methods developed in this

work. Notably, this section is not meant to be an exhaustive review of compositional data literature. In the

next section, we explain how high throughput sequencing derived omics data are a special case of

compositional data. Finally, we briefly overview computational and statistical challenges associated with the

application of standard compositional analysis techniques to omics data.

1.1 Compositional Data

1.1.1 Introduction

Relative data can take many forms including proportions (%, ppm, etc.), concentrations(µg/mL, mol/L,

etc.), or data where the total sum (mass, number of reads, etc.) between samples are uninformative. For

example, in geosciences, the chemical composition of rocks oxides can be measured using X-Ray

Fluorescence, where variation in instrument sensitivity, specimen physical properties, and elemental

compositions create uninformative scale difference between samples [Nakayama and Nakamura, 2014]. To

account for this, the chemical composition of rock oxides are reported relative rather than independent of

one another (i.e proportions). More formally, relative data are known as compositional data and can be

defined as a vector (composition) x whose D-elements (parts) are strictly positive with a unit-sum constraint

x1 + . . .+ xD = 1. (1.1)

While seemingly innocuous, the unit-sum constraint imposes significant limitations on the statistical

modeling of compositonal data. The dangers of spurious correlations when analyzing correlations between

parts of a composition were first noted by Karl Pearson in 1897 [Pearson, 1897]. While these difficulties

were generally known, robust statistical methodology to analyze compositonal data were formally

introduced in the 1982 paper titled The Statistical Analysis of Compositional Data by John Aitchinson

[Aitchison, 1982]. Importantly, the analysis of compositional data are limited to relative rather than absolute

interpretations. That is, single part interpretations are not justified in this context. For example, given a set

of D-part compositions measured between two groups, one may be interested in making the following
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statement: “xD is more abundant in group 1 than in group 2”. Unfortunately, in this setting, even after

applying traditional statistical techniques (e.g. two sample t-test) “absolute” statements of this type can be

spurious given the underlying compositional data are “relative”. While compositional data are rooted in

rigorous statistical and geometric principles, the approaches presented in [Aitchison, 1986] have been

subject, throughout history, to fierce resistance. While it’s beyond the scope of this section to extensively

detail the historical dialogue, we refer the reader to here [Aitchison] for a general overview of types of

opposition and confusion. Further, we refer the reader to [Scealy and Welsh, 2014] for a critical review of

compositional data analysis methods. Notwithstanding, compositional data analysis methodology have been

successfully used in many fields [Pawlowsky-Glahn and Buccianti, 2011], widely recognized to be

important for the analysis of microbiome datasets [Gloor et al., 2017], and recently shown to be valuable

when used to analyze various omics datasets [Greenacre et al., 2021].

1.1.2 Simplex Sample Space

Here we introduce the simplex sample space for modeling compositional data introduced in [Aitchison,

1982]. Importantly, the unit-sum constraint defined in Eq. 1.3 restricts the sample space to a simplex within

real space. For example, using samples (n=23) from the 3-part chemical composition of aphyric Skye

lavas[Aitchison, 1986], the unit-sum constraints can be visualized by plotting relative data in 3-dimensional

coordinates (Figure 1.1). As mentioned above, the parts of x must be positive

Figure 1.1: Visualization of a 2-Simplex (3-part Composition) embedded in 3-D real space. Here
we show how the chemical compositions (n=23) from aphyric skye lavas (red points) are restricted to a
simplex subspace (bordered by blue lines) in real space. The (x,y,z) axes (real space) represent the unit-sum
normalized (A,F,M)-parts. Arrows show the proportions of parts and point from 0 to 1.

x1 ≥ 0, . . . , xD ≥ 0. (1.2)
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Notably, only d = D − 1 parts are required to fully define a D part composition with a unit-sum constraint.

This is true such that the value of the Dth part can be calculated by xD = 1−
∑D−1

i=1 xi From this the

(d)-simplex space embedded in real space can be defined as

Ld = {x ∈ RD :

D∑
i=1

xi = 1, x1 ≥ 0, . . . , xD ≥ 0}. (1.3)

Given this, a 3-part composition which is a 2-simplex(triangle) can be easily visualized using barycentric

ternary diagrams (Figure 1.2).

Figure 1.2: Ternary diagram of the 2-Simplex showing barycentric coordinate system. The chemical
compositions (n=23) from aphyric skye lavas [Aitchison, 1986] (red points) are shown . Faces (triangle
edges) of the simplex measure the proportion of each part where the intersection represents the overall
composition.

1.1.3 Key Compositional Data Analysis Principles

A key admission when starting any compositional analysis is in stating the absolute sum of the

composition being measured is uninformative. When this prerequisite is met, the samples are restricted to

the simplex realm of the Euclidean real space where compositional data analysis is required. Based on

[Aitchison, 1982] and important for work developed in this thesis, fundamental requirements of

compositional data analysis must meet the scale invariance and subcompositional coherence principles.

1.1.3.1 Scale invariance

Scale invariance from a practical standpoint is such that the compositional data analysis methodology

must yield the same conclusion independent of scale. That is, from a compositional standpoint, two

compositions j and k are equivalent if there exist a constant p where k = pj where p > 0. Functionally, the
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principle of scale invariance can be written such that a function f is scale invariant if f(j) = f(k). For

compositional data this property is most conveniently met when j and k are expressed in terms of ratios

between components.

1.1.3.2 Subcompositional Coherence

A subcomposition can be defined as any C-part composition formed from a full D-part composition.

Notationally, we can define the subcomposition s from x (Eqn. 1.3) as

si =
xi∑C
j=1 xj

for i = 1, . . . , C (1.4)

While subcompositional analysis enables the independent study of a subset of parts from the full

composition, it does not come without the risk of spurious interpretations. The principle of subcomposition

requires, for subcompositons with shared parts, compositional data functions to yield the same conclusions

independent of parts included in the subcompositon that are not shared. This is most easily demonstrated

using a toy example where we use the 5-part (A,B,C,D,E) Hongite rock mineral composition dataset (n=25)

described in [Aitchison, 1986] and accessed using the compositions R package. To demonstrate the

importance of subcompositonal coherence, we examine correlation patterns among raw proportions for

three subcompositions that share two parts (D,E). As observed in Figure 1.3, researchers who analyze the

(A,D,E) subcomposition would infer a negative correlation between D-E while researchers who analyzed

the (B,D,E) and (C,D,E) subcompositions would infer different but overall positive correlations. Surely, D-E

cannot be both positively and negatively correlated simultaneously. To reconcile this incoherence, analysis

of ratios between parts can be carried out. Here we are interested in the behavior of the ratio formed by D/E.

As seen from the distribution of ratio values of D/E across subcompositions in Figure 1.4, ratios values are

preserved across subcomposition. While the correlation in this context is no longer useful for measuring

dependence between D-E the behavior of the D/E ratio can be studied (not discussed here). As can be seen

from the D/E ratio coherence across subcompositon, compositional data analysis with ratios are

subcompositional coherent.

1.1.4 The logratio transformation

In general, there are two popular geometric approaches to analyzing compostional data: (1)

within-simplex via untransformed proportions, (2) out-of-simplex via logratio transformation. In this thesis

we focus primarily on the out-of-simplex approach to compositional data analysis. Here we will describe
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Figure 1.3: Toy example demonstrating subcompositonal incoherence when computing the product-
moment correlations on raw compositions data Heatmap showing the product-moment correlation for
three 3-part subcompositions sharing two parts (D,E). Data (n=25) for the full 5-part composition are from
the mineral compositions of Hongite rock specimens [Aitchison, 1986].

Figure 1.4: Demonstration of the principle of subcompositional coherence of ratio analysis Histogram
of the ratio D/E across three 3-part subcompositions

the three important logratio transformations used in this thesis. Notably, the shift here from ratios to

logratios is rooted in the fact that logarithms of ratios are antisymmetric such that the log a/b = C and the

log b/a = −C leading to similar variance for logratios when a > b or a < b.
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1.1.4.1 Additive logratio transformation

One of the earliest logratio transformations proposed by John Aitchinson was the additive logratio

(ALR) transformation to map Ld → Rd. For the D-part compositional vector x (Eqn. 1.3) we define the

ALR transformation with reference part xD

z =

[
log

x1
xD

, . . . , log
xd
xD

]
. (1.5)

Importantly, the ALR satisfies both principles of compositonal data analysis and yield the same conclusion

independent of which part is selected as the reference. Benefits of the ALR are in its simple interpretation

and relative ease of computation given its D− 1 dimensionality. In contrast, the ALR is asymmetric in parts

(different set of logratio depending on which reference is selected) and has geometric limitations. In

[Egozcue et al., 2003], the ALR is described as non-isometric (inter-sample distance preserving) in the

mapping from the simplex to real space. While these limitations exist, recent work in [Greenacre et al.,

2021, Greenacre, 2019] suggested that with appropriate selection of a reference part the isometric limitation,

albeit theoretical, may not be as severe in practice.

1.1.4.2 Centered logratio transformation

To address the asymmetry in parts, the centered logratio (CLR) transformation was proposed. The CLR,

which maps compositonal data from the simplex to a D-dimensional hyper plane in real space can be

described as

y =

[
log

x1

(
∏

x)1/D
, . . . , log

xD

(
∏

x)1/D

]
. (1.6)

Unlike the ALR, the CLR is isometric but a major drawback arises from its singular covariance matrix. This

is a direct result of the denominator term in Eqn 1.8 which is the geometric mean of the full composition

and thus is dependent on information from all parts of the composition.

1.1.4.3 Pairwise logratio transformation

The final transformation described here is the pairwise logratio (PLR) transformation. The PLR maps

compositional data from the d-simplex to the D(D − 1)/2-dimensional real space. Letting
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p = D(D − 1)/2 we first define the PLR matrix for the compositional vector x as P ∈ RD×D described as

P = f(x) =


log x1

x1
· · · log x1

xD

...
. . .

...

log xD
x1

· · · log
xp

xD

 . (1.7)

Note, P is antisymmetric in the value of the logratio thus requiring only the lower or upper off-diagonals be

computed to define the full frame of PLRs. From this, the PLR vector of x becomes

PLR(x) = [pij , . . . , pij ] for all (i = 2, · · · , D); (j = 1, · · · , D) where i > j (1.8)

The PLR is isometric where the primary limitations are computational given the quadratic (D(D − 1)/2)

increase of PLR dimensions as the number of parts increase. Additionally, for high dimensional

compositonal data pre-transformation (D > 10, 000 common in genomics data) the PLR transformation

may be infeasible to compute without specialized computing clusters. Further high-dimensional PLR data

may be particularly problematic for datasets with limited samples such that p ≫ n.

1.2 Relative Nature of High Throughput Sequencing Data

In this work we focus on the analysis of high throughput sequencing (HTS) data with a specific focus

on microbiome and metagenomic data generated with this technology. HTS technologies, in general,

sequence a subset of extracted DNA fragments on an instrument yielding grouped read counts as parts.

Depending on the experimental design and sequencing method (e.g. Metagenomic, 16S rRNA gene

amplification analysis), parts, in this context, can be operational taxonomic units (16S) or microbes

(Metagenomic). Importantly, HTS data are count data where the total counts for all parts observed for each

sample is uninformative. This is due to finite upper bounds in the number of reads obtained by the

sequencing instrument [Gloor and Reid, 2016, Quinn et al., 2019, Fernandes et al., 2014, Mandal et al.,

2015a]. As described above, here the admission of uninformative total counts have profound consequences

on the analysis of these data. Unlike traditional compositional data analysis described in [Aitchison, 1982,

Greenacre, 2019, Pawlowsky-Glahn and Buccianti, 2011], HTS data are sampled count data (counts are

random samples from true population), high-dimensional (in number of parts identified), and highly sparse

(contain high proportions of zeroes). Indeed, one cannot compute logratios in the presence of zeros

presenting at first glance an insurmountable challenge to the staple logratio transformation. Fortunately,
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various zero replacement strategies have been studied [Martı́n-Fernández et al., 2015, Martın-Fernandez

et al., 2003] and can generally be implemented to overcome the problem of zeroes in compositional HTS

data. We note however, despite this progress, zero imputation is still an open area of research. As will be

detailed in the Chapters 2 and 3 of this work there has been significant progress made in adapting

compositional data analysis principles to the exceptional HTS compositional datasets.

1.3 Overview of Thesis

With the required compositional data and HTS data perspective presented in this chapter we now briefly

describe the content presented in this dissertation.

1.3.1 SelEnergyPerm

In Chapter 2 building on well-established compositional data analysis methods we develop a statistical

association test for HTS compositional data. In particular, we describe our non-parametric group association

test for metagenomic data that is designed to detect sparse association signals in settings where existing tests

have reduced power. This method for multivariate analysis of metagenomic data performs feature selection

on the set of all pairwise logratios, which are resistant to technical variation, to obtain signatures of

association between groups or phenotypes of interest that are then directly interpretable in terms of

relationships in the microbiome. The method as presented here has been implemented in a freely available R

package available on GitHub.

The work presented in Chapter 2 has been adapted from our manuscript published here: Hinton AL,

Mucha PJ. A Simultaneous Feature Selection and Compositional Association Test for Detecting Sparse

Associations in High-Dimensional Metagenomic Data. Front Microbiol. 2022 Mar 21;13:837396. doi:

10.3389/fmicb.2022.837396. PMID: 35387076; PMCID: PMC8978828.

1.3.2 DiCoVarML

In Chapter 3, we develop a powerful machine learning framework for using metagenomic data to

predict two or more phenotypes of interest. In particular, this framework enables researchers to target and

identify predictive combinations of microbial biomarkers for various study objectives and is demonstrated

through the two case studies. This is the first such method built directly in terms of pairwise logratios as the

features in a machine learning framework with feature selection. In particular, this approach selects a

predictive subset from the full frame of redundant pairwise logratios to be used for supervised classification

of phenotypes of interest. Because of this, the resulting predictive signatures are inherently independent of

overall signal magnitude, making them particularly appropriate for out-of-sample prediction between
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different studies, and the features selected tend to be more naturally interpretable compared to other

methodologies. The method and key functionality presented here has been implemented in a freely available

R package available on GitHub.

The work presented in this Chapter has been submitted for publication and is available as a preprint at:

Hinton, A. L. & Mucha, P. J. Differential Compositional Variation Feature Selection: A Machine Learning

Framework with logratios for Compositional Metagenomic Data. bioRxiv 2021.12.08.471758 (2021)

doi:10.1101/2021.12.08.471758.

1.3.3 SelEnergyPerm Nasal Microbiome Analysis

In Chapter 4, the final chapter, we apply the SelEneryPerm method to detect and discover logratio

signatures capable of explaining compositional differences in the nasal microbiome between healthy,

e-cigarette, or cigarettes exposure groups. Using SelEnergyPerm we detected compositional difference in

the nasal microbiomes of males and females. After controlling for differences in sex, we identify a sparse

pairwise logratio signature capable of discriminating between exposure groups and integrate it with immune

mediator data. This integrative analysis revealed an association between nasal microbiome dysbisos and

immune mediator expression changes.

The work presented in this Chapter has been submitted for publication and is available as a preprint at:

Elise Hickman*, Andrew Hinton*, Bryan Zorn et al. E-Cigarette Use, Cigarette Use, and Sex Modify the

Nasal Microbiome and Nasal Host-Microbiota Interactions, 03 August 2021, PREPRINT (Version 2)

available at Research Square [https://doi.org/10.21203/rs.3.rs-725763/v2]. (*indicates that these authors

contributed equally to the work)
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CHAPTER 2: SELECTION-ENERGY-PERMUTATION1

2.4 Introduction

Metagenomic studies have enabled unprecedented insight into connections between microbes, their

functions, and human disease [Martı́n et al., 2014]. These insights are a direct result of rapid advances in

next-generation sequencing technologies which are critical to metagenomic studies. Specifically, these

technologies are leveraged in two popular approaches: 16S ribosomal rRNA amplicon (16S) and

whole-genome shotgun (WGS) sequencing [Ranjan et al., 2016]. Application of these approaches are

widespread and have been used to study associations between the gut microbiome composition and

colorectal cancer [Gopalakrishnan et al., 2018], inflammatory bowel disease, obesity [Manichanh et al.,

2012], cirrhosis [Qin et al., 2014], and anxiety/depression [Foster and McVey Neufeld, 2013] in humans via

the gut-brain axis, to name a few. The skin [Kong et al., 2012], oral [Dewhirst et al., 2010], and nasal

microbiomes [Wilson and Hamilos, 2014] among other sites have also been studied in connection to disease

onset and progression. With an increasing number of putative associations between microbial communities

from various sites of the human body and disease being reported, microbial compositions are now being

explored as diagnostic and screening tools [Zackular et al., 2014, Schlaberg, 2020]. While exciting,

appropriate statistical methods are still needed to overcome methodological challenges in these exceptional

data, so that robust microbial biomarkers and true associations can be discovered among noisy

high-dimensional metagenomic data, especially when sample sizes in observational studies are smaller than

the number of features discovered.

Before metagenomic data can be used to test for associations, raw sequencing data must be

appropriately processed. Taxonomic count tables are created by processing raw 16S or WGS sequencing

data through bioinformatics pipelines such as Quantitative Insights Into Microbial Ecology (QIIME)

[Caporaso et al., 2010] or mothur [Schloss Patrick D. et al., 2009] for amplicon sequencing data and

Metagenomic Phylogenetic Analysis 2.0 (MetaPhlAn2) [Truong et al., 2015] or Kraken [Wood et al., 2019]

1This chapter was adapted from our published manuscript available here: Hinton AL, Mucha PJ. A Simultaneous
Feature Selection and Compositional Association Test for Detecting Sparse Associations in High-Dimensional
Metagenomic Data. Front Microbiol. 2022 Mar 21;13:837396. doi: 10.3389/fmicb.2022.837396. PMID: 35387076;
PMCID: PMC8978828.
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for WGS data. Sequencing reads are assigned to taxonomic units where the resulting count tables are then

used to profile and analyze the association between groups under study at various taxonomic levels (Phylum

- Species). These data are often sparse and summarize the total number of reads for each taxonomic

assignment within each sample. In current practice, total counts in these settings have been widely

recognized as being uninformative due to limitations within sequencing technology [Gloor et al., 2017,

Gloor and Reid, 2016, Weiss et al., 2017]. That is, these data carry only relative information, requiring

special statistical techniques and considerations. In particular, these relative data have a unit-sum simplex

sample space where traditional Euclidean-based statistical methods have limited applicability due to

geometrical differences between sample spaces. Ignoring these constraints has been shown to increase type

I error [Weiss et al., 2017] and the chance of reporting spurious associations [Pearson, 1897], thus limiting

the ability to generalize beyond studies.

A direct way to address simplex sample space constraints imposed by relative data is through a log-ratio

transformation. Such transformations, which emerged from the statistical analysis of compositional data

[Aitchison, 1982], function by mapping relative data from the unit-sum simplex to traditional Euclidean

space. Importantly, log-ratio transformations are sub-compositionally coherent [Aitchison, 1982, Greenacre

and Lewi, 2009], independent of the number of dimensions (Taxa, Operational Taxonomic Units (OTUs),

etc.) observed in a cohort whereby true associations in the log-ratio form are preserved. This is not true for

relative abundance where proportions change as new dimensions are considered, discovered, or removed.

Sub-compositional coherence is of practical importance in biomedical studies where biomarker discovery,

disease prediction, and beyond-study generalization are paramount. While log-ratio transformations are

well-known and routinely applied in some fields [Pawlowsky-Glahn and Buccianti, 2011], their use in

metagenomic datasets has been limited. Indeed, significant challenges exist when applying a log-ratio

transformation to metagenomic data, including properly handling zeroes [Martı́n-Fernández et al., 2015,

Martın-Fernandez et al., 2003], selecting and interpreting various log-ratio forms [Aitchison, 1982, Egozcue

et al., 2003, Greenacre, 2019], and scale differences in counts [Lovell et al., 2020].

While the importance of the compositional nature of metagenomic data has recently been recognized

[Gloor et al., 2017, Quinn et al., 2019], relatively few multivariate statistical methods have been developed

directly for such data. The current state of the art methods for detecting differential abundance in

compositional metagenomic data include ANOVA-like differential expression2 [Fernandes et al., 2014],

Analysis of Compositions of Microbiomes [Mandal et al., 2015b], and Analysis of Compositions of
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Microbiomes with Bias Correction [Lin and Peddada, 2020]. However, these univariate methods, while

powerful, are unable to detect multivariate structure within complex interconnected microbial communities

[Layeghifard et al., 2017]. In contrast, appropriate network and multivariate statistical methods — which are

appropriate when there exist relationships between a set of variables (i.e., microbial composition) and two or

more groups are to be analyzed — can be used to discover complicated microbial patterns, even in settings

where there are significantly more variables than samples, and have better control over type I error

[Obuchowski, 2005].

Currently, several multivariate statistical methods to detect between-group distributional differences or

associations in metagenomic data can be used. A subset of these methods require a suitable beta diversity or

between-sample distance (Euclidean, Manhattan, Mahalanobis, etc.) or dissimilarity (Bray-Curtis,

weighted/unweighted Unique Fraction, Jaccard, etc.) metric be specified before analysis. Nonparametric

tests such as permutational multivariate analysis of variance (PERMANOVA) [Anderson, 2017], Analysis of

Similarity (ANOSIM) [Clarke, 1993], and the energy distance [Rizzo and Székely, 2016] can then be

applied to test distributional differences between groups. Between-group association signals in

metagenomic data may be sparse, i.e., resulting from differences among only a few features (OTUs, taxa,

etc.), or they may be densely formed by differences between many features. Importantly, the

above-mentioned nonparametric tests lack embedded feature selection and thus may have limited statistical

power for detecting sparse signals in high-dimensional data.

Feature selection, which is essential to detecting sparse association signals in high-dimensional

metagenomic data, requires sophisticated methods and care to simultaneously select features and test

associations while maintaining reasonable type I error control [Baumann, 2003, Lindgren et al., 1996].

Indeed, for this reason, the adaptive microbiome-based sum of powered score (aMiSPU) [Wu et al., 2016]

and microbiome higher criticism analysis (MiHC) [Koh and Zhao, 2020] methods were developed to test

sparse associations in ultra-high-dimensional OTU-based 16S data (without taxonomic aggregation

requiring phylogenetic analysis of sequences). Inspired from concepts put forth in the

Direction-Projection-Permutation (DiProPerm) method for assessing statistical significances in

high-dimensional settings [Wei et al., 2016], we introduce here the Selection-Energy-Permutation

(SelEnergyPerm) method for testing and understanding sparse associations in both 16S and WGS data at the

taxonomic level. SelEnergyPerm is the first method to our knowledge to utilize robust pairwise logratios to

detect and understand parsimonious logratio signatures from all types of metagenomic data through
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simultaneous feature selection and association testing. We first show that our novel approach selects smaller

subsets of non-redundant logratios that better maximize between-group associations when compared to

other popular feature selection methods. Next, we show through an extensive simulation study using

synthetic and empirical 16S/WGS data distributions that SelEnergyPerm has, on average, better combined

power and false discovery control via the Matthews Correlation Coefficient (MCC) when compared to

existing beta-diversity-based approaches. Finally, to demonstrate the utility of SelEnergyPerm in detecting

and understanding differences between metagenomic distributions, we apply our method in four case studies

utilizing publicly available metagenomic datasets where we test associations between: (1) cerebrospinal

fluid microbiomes and post-infectious hydrocephalus in Ugandan infants, (2) delivery mode and the

composition of infant gut microbiomes over the first three months of life, (3) adult gut microbiomes and

abnormal fecal calprotectin levels, and (4) the gut microbiome composition of infants within the first 6

months of life and future food allergy to egg, milk, or peanuts.

2.5 Methods

2.5.1 Selection-Energy-Permutation (SelEnergyPerm)

In this section, we explain the SelEnergyPerm framework in detail. First, we describe our DCV scoring

measure applied to each element of the full set of pairwise logratios (PLR) and then detail the construction

of the weighted DCV network representations of these quantities. We next discuss the removal of redundant

ratios using a maximum spanning tree that simultaneously maximizes log-ratio variance. After this, we

introduce our network-based approach to feature selection and the two multivariate test statistics utilized to

measure the strength of the association. We then detail our between-group association maximization

algorithm with pseudocode. Finally, we describe the approach for assessing statistical significance via

permutation testing using Monte Carlo sampling.

2.5.1.1 Differential Compositional Variation Scoring

For a given metagenomic study, let M ∈ Rn×d be the taxa count table for n samples and d taxa. Before

working in the set of all p = (d2) = d(d− 1)/2 PLR of M, we must first address the problem of zero counts.

While there are numerous strategies with various drawbacks to model and impute zeros based on type/cause

[Martı́n-Fernández et al., 2015, Palarea-Albaladejo and Martı́n-Fernández, 2015], there is in general no

consensus on which strategy should be used in metagenomic data. Notwithstanding, here we treat zero taxa

counts as being below the detection level, and we adopt a corresponding multiplicative replacement strategy

for imputing zeros proposed in [Martı́n-Fernández et al., 2015] that preserves the essential logratio and
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covariance structure. Specifically, we apply the closure operator to M to map the count data onto the

unit-sum simplex, defining the matrix X with elements xij as

xij = (C[M])ij =
mij∑d
k=1mik

. (2.9)

Importantly, we set δ to be a constant equal to the smallest nonzero value across all X and then replace

zeros to obtain R with elements

rij =


δ , xij = 0

xij ,
(
1−

∑
k|xij=0 δ

)
xij > 0

for i = 1, . . . , n . (2.10)

In this way, the interpretation of zeroes is consistent across samples which may not be the case strictly

following the Bayesian approach. We then compute all PLRs from R to obtain Z ∈ Rn×p including all p

PLRs (up to a sign). Because feature selection is critical to maximizing power and identifying sparse signals

hidden within noisy high-dimensional data, we seek to reduce the dimensionality through feature selection.

Notably, this setting is distinct from traditional logratio analysis [Aitchison, 1982] where dimensionality

reduction using PCA is applied to all PLR transformed features to reduce dimensionality. Importantly, the

set of p different PLRs are not independent of one another and require careful treatment to select ratios that

are independent of each other. Here we propose Differential Compositional Variation (DCV), a scoring

measure that enables efficient screening and ranking of PLR features within compositional data. Like the

screening concept in [Fan and Lv, 2008] for ultra-high-dimensional feature spaces, DCV is motivated by

Aitchison’s compositional variation array [Aitchison, 1982] where patterns of compositional variability for a

group of data can be expressed in terms of the logratio means ξj = E[Z∗j ] and variances τj = var[Z∗j ]

where j = 1, . . . , p. Similarly, let ζj = median[Z∗j ].

The DCV score utilizes 5 different statistics to score the contained variation of each logratio; each

component of DCV provides unique insight, enabling efficient screening of uninformative logratios for

downstream multivariate analysis. Let y contain the labels for the binary classes/groups c1 and c2 under

consideration, with nc indicating the number of samples in class c. In terms of ξj and τj , the first

component of DCV, which measures differences in group means, is Welch’s t-statistic:
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∆1
j =

ξc1j − ξc2j√
1
n1
τ c1j + 1

n2
τ c2j

,

where superscripts on ξcj and τ cj indicate the mean and variance, respectively, are computed over samples in

class c, and we use superscripts on ∆ to indicate the different components of DCV (not powers).

Next, we decompose the compositional variability of each Z∗,j using the classical F-statistic to again

measure differences of means:

∆2
j =

n1

(
ξc1j − ξj

)2
+ n2

(
ξc2j − ξj

)2

τ c1j + τ c2j
.

The third component of DCV is the Brown-Forsythe F-Statistic, measuring heterogeneity of variances,

computed as follows. We collect the values for the jth logratio in the array aci, indexed as the ith sample in

class c. From this, let bci = |aci − ζc|, where ζc indicates the median of class c.

∆3
j =

∑
c nc(b̄c· − b̄··)

2∑
c

∑
i(bci − b̄c·)2/

∑
c(nc − 1)

,

where b̄c· indicates the group means and b̄·· is the overall mean of the bci values.

For the fourth component, we first define the empirical distribution function for each ordered logratio,

notated simply here for the j logratio as

F c
j (x) =

1

nc

∑
i

1c(yi)1(Zij < x)

where the 1c(y) indicator selects out samples in class c and the second indicator indicates whether the Zij

logratio value is less than x, with the sum thus counting the number of samples that satisfy both criteria. We

then set the fourth component of DCV to be equal to the Kolmogorov–Smirnov statistic between the

different empiricial distributions for the j logratio:

∆4
j = sup

x

∣∣F 1
j (x)− F 2

j (x)
∣∣

The fifth component of DCV measures the importance of the logratios as attributes in terms of an

entropy reduction when splitting by class, as implemented using the information gain function in the R
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FSelectorRcpp package with default settings on the logratio attributes and class response variable. The

scores output from this function are organized into ∆5
j .

We aggregate the different components into the DCV matrix (logratios by DCV components):

V =


∆1

1 · · · ∆5
1

...
. . .

...

∆1
p · · · ∆5

p

 .

To account for differences in scale between the DCV components, we z-score standardize each component

(column) to define the standardized DCV matrix V̂: v̂ij = (vij − v̄∗j)/SD(v∗j). The final set of DCV

scores, V̆ ∈ Rp×1, which contains a score for each logratio, is then defined as

v̆j =
5∑

k=1

v̂jk where j = 1, . . . , p .

2.5.1.2 DCV network and maximum spanning tree construction

Here we leverage the inherent network structure of logratios [Greenacre, 2019] to form our DCV

network, defined as a directed graph where edges point from numerator vertices to denominator vertices.

We then define G = (V,E,W ) to be the DCV network where V is the set of d taxa vertices, E is the edge

set formed by all p pairwise logratios between taxa, and edge weights W are the corresponding DCV scores

in V between classes. In the initial phase of feature selection on Z, we require the logratio subsets to meet

three important properties: 1) explain maximum logratio variance, 2) form a linearly independent set, and 3)

contain maximum DCV. Notably, by construction the column rank of Z is (d− 1) and thus any

single-component connected network containing all d taxa explains 100% of the logratio variance contained

in Z . The second property requires the undirected version of the logratio subset to be acyclic, as may be

achieved with a spanning tree. However, the number of spanning trees from G can be expressed by Cayley’s

formula: T|V | = |V ||V |−2. To circumvent considering this unmanageably large number of spanning trees,

we utilize the weights imposed from the DCV scoring to enable efficient selection of a suitable spanning

tree from G, as described next.

We sort the logratios of V̆ in descending order by DCV score to form V̆′ and retain the first set of q

logratios that contain all d taxa to form V̆′′. We then redefine the logratio network G = (V,E,W ) where V

is the set of d taxa vertices and E is the edge set corresponding to these q pairwise logratios, with edge
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weights W from the values in V̆′′. In practice, we have always found that the resulting network at this stage

is a single connected component — in the event that the network is not, additional logratios from V̆′ should

be added to make it connected. Finally, from G we compute the maximum spanning tree GMST using the R

igraph package and define Z′ ∈ Rn×(d−1) to be the subset of logratios corresponding to the edge set of

GMST .

2.5.1.3 Multivariate Test Statistics

SelEnergyPerm considers two multivariate test statistics to determine the statistical significance of

retained subsets of logratios. The first multivariate test statistic, the Distance Components F-ratio (discoF) is

utilized when between-group dispersion effects are not detected in Z′. The discoF statistic, proposed by

[Rizzo and Székely, 2010], is like the traditional Analysis of variance ‘F’ ratio (but does not follow an

F-distribution) where the total dispersion is partitioned into between- and within-group components derived

from an inter-sample Euclidean distance matrix computed from Z′. Computation of the discoF statistic is

done here using the energy R package. As described by [Rizzo and Székely, 2010], the discoF test statistic

for binary groups is of the form

Fn,α =
Sn,α

Wn,α/(n− 2)

where Sn,α is the between-sample energy statistic, Wn,α is the within-sample dispersion statistic and

0 < α ≤ 2 is the exponent on the pairwise between-sample norm. See [Rizzo and Székely, 2010, 2016] for

specific details on computing the between- and within-group components of the discoF statistic. Here we

use the energy R package to compute the discoF statistic.

The second statistic, used by SelEnergyPerm when dispersion effects between groups are detected in

Z′, is a scaled combined-F (cF ) statistic which is distribution-free and attempts to jointly account for

differences in both location and scale between distributions. The unscaled cF statistic is the sum of F-ratios

obtained from PERMDISP2 with spatial medians [Anderson, 2006] and PERMANOVA [Anderson, 2017],

computed using the R vegan package. We partition the variation of Z′ and define the unscaled combined-F

statistic as

c̃F = Flocation + Fdispersion =

(
SSα

SSw/(n− 2)

)
+

(
SST

SSE/(n− 2)

)
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where SSα and SST are the between-group sum of squares components, and SSw and SSE are the

within-group sum of square components of variation from the PERMANOVA (Flocation) and PERMDISP2

(Fdispersion) procedures, respectively. See [Anderson, 2017] and [Anderson, 2006] for specific details on

computing these between- and within-group components. Likewise, the scaled combined-F statistic that we

use is computed in the same way but with z-score standardization relative to the permutation distribution.

Let nFloc. and nFdisp. be m-dimensional vectors of null Floc. or Fdisp. statistics sampled from the

permutation distribution. We scale F̂loc. =
Floc.−E[nFloc.]
SD(nFloc.)

and F̂disp. =
Fdisp.−E[nFdisp.]

SD(nFdisp.)
and define the

scaled combined-F statistic as

cF = F̂loc. + F̂disp. , (2.11)

taking care to note that cF is approximate and thus the estimate has variability based on the number of

samples drawn from the permutation distribution. We consider m = 106 samples here as a balance between

computational cost and minimizing this variation.

2.5.1.4 Association Maximization and Greedy Forward Selection

In this step, we focus on the multivariate structure formed by a subset of logratios. Specifically, we are

interested in maximizing the between-group variation induced by a subset of logratios in a low-dimensional

multivariate space. To find a minimal, statistically-significant subset of logratios that maximizes Fn,α

(location effects only) or cF (dispersion and location effects) between classes, we utilize a greedy forward

stepwise feature selection procedure (see Appendix A: Algorithm 1). This procedure is notated here as

selectionEnergy().

2.5.1.5 Association Significance testing

To assess the statistical significance of the observed association F obs = selectionEnergy(Zobs,y) we

compute the null distribution by permutation testing via Monte Carlo sampling [Ernst, 2004]. Letting the

number of permutations be k and π be the set of random permutations of y, we obtain samples from the

null distribution by Fnull = selectionEnergy(Zobs,π). We then test if the F obs is more extreme than what

is expected at random given the data using the one-sided estimated p-value

p̂ =
1 +

∑k
i=1 1(F

null > F obs)

k + 1
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2.5.2 Simulation Strategy

We adapted several simulation settings to investigate and highlight key association detection

characteristics of SelEnergyPerm when compared to ANOSIM, PERMANOVA, and the energy test.

Additionally, to detect the presence of heterogeneity of multivariate dispersion between groups and

understand its impact on association detection, we utilized the PERMDISP2 method as an indicator. The

empirical association detection ability of each method was assessed within a binary classification

framework. To do this, we measured the rate of each statistical test to correctly reject (Power) or accept

(Type I Error) the null hypothesis (no difference between groups) at significance α = 0.05. Further, to truly

assess detection capabilities, we presented each method with binary instances drawn from either the same

(Null Case) or different (True Case) distributions for each scenario using Monte Carlo simulations. The

Matthews Correlation Coefficient (MCC), which effectively summarizes the binary confusion matrix, was

then used to measure the overall accuracy of each method’s ability to detect associations across various

simulation scenarios. MCC was computed as

MCC =
(TP)(TN)− (FP)(FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP = true positive (reject the null hypothesis for True Case), TN = true negative (accept null

hypothesis for Null Case), FP = false positive (reject the null hypothesis for Null Case), and FN = false

negative (accept null hypothesis for True Case). For each simulation scenario, we generated 100 simulated

datasets with 40 samples each in class 1 and class 2 for the balanced binary design and 20/60 (class 1/2)

samples for the unbalanced design. Given we rely on permutation testing for significance of all methods, we

generate a common set of 150 permutations per dataset to consistently compute significance for each

method across all scenarios and settings.

2.5.2.1 Simulation Scenarios (Synthetic Data)

For all synthetic data scenarios, we consider datasets with d = 50, 150, and 250 taxa, yielding a total of

p = 1225, 11175, and 31125 pairwise logratios, respectively. We note, based on our experience, that the

sizes d tested, while modest, are in general reflective of the actual number of taxa typically analyzed for 16S

or WGS datasets after sparse taxa are removed. Each of the following simulation scenarios is available in

our SelEnergyPermR R package available at https://github.com/andrew84830813/selEnergyPermR using the
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function scenarioN() where N = [1,5]. All synthetic scenarios are inspired by settings considered in [Wei

et al., 2016].

In Scenario 1, for the true case, we consider both multivariate location (in all dimensions) and

dispersion effects that grow with increased numbers of dimensions. The increase in dispersion with

dimension is similar to settings studied in [Wei et al., 2016]. Here, data from each sample are generated

from the Dirichlet distribution Dir(α), commonly used to model compositional data whereby data are

naturally constrained within the unit-sum simplex. Data from class 1 are simulated with α1 = 3. Data from

class 2 are generated with α2 =
3
5 log d where the log(d)/5 factor shifts the overall location and increases

dispersion as the dimensionality increases. For the null case, data from both classes are generated from

Dir(α1).

In Scenario 2, for the true case, we generate sparse count data from two Dirichlet distributions that

differ in the location of the first component only and overall dispersion. To generally mimic real library size

or total counts per sample, we use a negative binomial (NB) distribution to model the total counts for each

sample and simulated as Ci ∼ NB(s, s/(s+ µ)) where s = 1 and µ = 107. Notably, other discrete

distributions can be used to achieve user specified library size characteristics. Count data for class 1 were

generated by rounding Ci ·Dir(α1) where α1 elements are drawn from uniform distributions as

α1 = (x1 ∼ U[3000,5000], xi∈[2,10] ∼ U[500,1500], xi∈[11,d] ∼ U[1,5]) .

Count data for class 2 were generated after rounding Ci ·Dir(α2) where the α2 elements are drawn as

α2 = (x1 ∼ U[12500,17500], xi∈[2,10] ∼ U[500,1500], xi∈[11,d] ∼ U[1,5]) .

Notably, we use the xi∈[11,d] ∼ U[1,5] terms here to model random sparsity. For the null case, data from both

classes are generated from Ci ·Dir(α1).

In Scenario 3, for the true case, we generate compositional data with a large location effect that

increases while the dispersion effects decrease with dimensionality. These settings are similar to settings

considered for association benchmark comparisons in [Wei et al., 2016]. We simulate data from the additive

logistic normal distribution on the simplex [Aitchison, 1982]. To do this we first let S1 = N (µ1,Σ1) and

S2 = N (µ2,Σ2) be samples drawn from multivariate normal distributions. We set µ1 = (0, . . . , 0) and
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µ2 = (1/
√
d, . . . , 1/

√
d) in the first 25% of dimensions and 0 in the remaining dimensions. The covariance

structure was defined in the same way as in [Wei et al., 2016] where Σ was defined with 1’s along the main

diagonal and 0.2 along the two diagonals off the main. From this, Σ1 = Σ+ δId and Σ2 = Σ+U+ δId

where U ∈ Rd×d is a matrix with U[0,32/d2] entries and

δ = |min (eigenvalues(Σ), eigenvalues(Σ+U))|+ 0.05. Here row vectors from S represent additive

logratio (ALR) vectors and are subsequently projected onto the simplex using the inverse additive logratio

transformation defined in terms of the closure operator as ALR−1 = C[exp([s, 0])]. For the null case, data

for both classes were simulated from N (µ1,Σ1).

In Scenario 4, for the true case, we generate compositional data with sparse location effects in the first

dimension that grow stronger while dispersion effects grow weaker as the dimensionality increases. That is,

S1 = N (µ1,Σ1) and S2 = N (µ2,Σ2) are defined as in scenario 3 except we set µ2 to log d
3 in the first

dimensions and 0 in the remaining dimensions. The simplex projection and null case are done as described

in scenario 3.

Finally, in Scenario 5 for the true case, we generate compositional data from the additive logistic

normal distribution with a small location shift and large dispersion difference that increases with

dimensionality. Let S1 = N (µ1,Σ1) and S2 = N (µ2,Σ2) be defined in as in scenario 3 except for µ2 set

to 1√
n1+n2

in all dimensions and U ∈ Rd×d with entries drawn from U[0,32]. The simplex projection and

null case are done as described in scenario 3.

2.5.2.2 Simulation Scenarios (Experimental Data)

For all experimental data scenarios, we used publicly available taxa count tables where sequencing data

were already pre-processed. Each of the following simulation scenarios are available in our

SelEnergyPermR R package available at https://github.com/andrew84830813/selEnergyPermR using the

functions simFromExpData.covarianceShift() or simFromExpData.largeMeanShft(). Notably, the

simulation scenarios below first convert count data into compositonal data. To control simulation

parameters, the compositonal data are modeled using the additive logistic normal distribution [Aitchison,

1982]. After adjusting the mean/covariance structures in a controlled way, the compositional data are then

converted back to count data for analysis.

For general 16S data characteristics, we utilized the ob goodrich results.tar.gz dataset from the

microbiomeHD database [Goodrich et al., 2014, Duvallet et al., 2017]. We aggregated the taxa to the genus

level (distinct genera = 247) and extracted the 428 healthy samples from the goodrich16S dataset for our
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16S data simulations. For WGS data characteristics, we utilized the ZeeviD2015 [Zeevi et al., 2015] dataset

from the curatedmetagenome [Pasolli et al., 2017] database. We aggregated taxa counts by species (distinct

species = 1,776) and extracted the 900 control samples for our WGS data simulations. Here we model the

16S and WGS count data using zero-inflated negative binomial (ZINB) models which have been shown to

be a reasonable choice for modeling microbiome count data [Calgaro et al., 2020]. ZINB models were fit to

the 16S and WGS dataset described above using the ZINBWAVE R package with default settings. For all

experimental data scenarios, we used the fitted 16S/WGS ZINB models to simulate new samples for each

dataset. That is, we first simulated 428 samples from the ZINB model for the 16S datasets or 900 samples

for the WGS datasets. We then randomly select 40 samples per class for the balanced design and 20/60

(classes 1/2) samples for the unbalanced design. To reduce the presence of rare features we only retained

features present in at least 15% of all samples for all datasets.

For Scenario 1, for the true case in both 16S and WGS datasets, we consider settings where the percent

P = {5, 20, 35, 50} of dimensions with a location shift increases while the dispersion effect between

classes remains fixed. To do this, we first simulate count data M from the ZINB model, map it onto the

unit-sum simplex using Eq. 2.9 and impute zeros to obtain R as in Eq. 4.13. The ALR transformation is

then applied to R to obtain A with elements aij = log(rij/rid) for j = 1, . . . , (d− 1).

For each class we simulate data from N(µ,Σ) where

µ = E[A] = (E[a∗1], . . . ,E[a∗d−1])
T

and

Σij = cov[a∗i, a∗j ]

The variance (diag(Σ)) of each dimension is ranked in ascending order whereby µ and Σ are reordered

accordingly to form µr and Σr. Of note, this is done to ensure the location shift occurs in features with

minimal variance. We then simulate S1 from N(µr,Σr) with µ1 and Σ1 using as above. Letting µ2 = µ1

we then shift the first Pi% of dimensions of µ2 by a factor of 1.25. From this we simulate S2 from

N(µ2,Σ1). Finally, S1 and S2, which are in Euclidean ALR form, are mapped back to the simplex (relative

abundance) using the inverse ALR transformation. For the null case, data for both classes are simulated

from N(µr,Σr).
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Finally, for Scenario 2, we consider settings for the true case (in both 16S and WGS datasets) with

location shifts in the first 10% of dimensions that are confounded by increasing dispersion effects as the

number of dimensions increase. Here we compute S1 in Euclidean ALR form as described in Scenario 1

(Experimental Data) such that S1 ∼ N(µ1,Σ1). From this, Σs1 = Σ1 + δId and Σs2 = Σ1 +T+ δId

where T is a d× d matrix with entries drawn from U[0,βi] and

δ = |min (eigenvalues(Σ1), eigenvalues(Σ1 +T))|+ 0.05. For 16S data β = (0.10, 1.40, 2.70, 4.00) and

for WGS data β = (0.10, 4.07, 8.03, 12.00). Additionally, letting µ2 = µ1 we shift the first 10% of

dimensions of µ2 by a constant factor of 1.25 for WGS data and by a factor F = (1.20, 1.17, 1.13, 1.10)

for 16S data. In all, the final multivariate forms are S1 ∼ N(µ1,Σs1) and S2 ∼ N(µ2,Σs2). These

distributions, which are in ALR form, are mapped back onto the simplex using

ALR−1(si∗) = C[exp([si∗, 0])]. Lastly, for the null case, data for both classes are simulated from

N(µ1,Σs1).

For both scenarios, counts could alternatively be obtained via a negative binomial distribution (or other

suitable discrete distribution) using a similar process as described in Scenario 2 of the Synthetic Data

simulation section above.

2.5.3 Feature Selection Benchmarks

For the feature selection (FS) benchmark we used the Boruta R package with maxRun set to 100 and

importance set to Gini for the Boruta FS. The glmnet R package was used for LASSO FS where alpha was

set to 1 and lambda was optimized via cross-validation. The caret R package was used to implement RFE

FS where 5-fold cross-validation was used to evaluate AUC and feature importance of sets

s = {21, 22, . . . , 2n}, where n = floor (log2 p). The FSelectorRcpp R package with default settings was

used for the Information Gain Filter FS. For each Scenario (Synthetic Data), FS characteristics were

evaluated on 200 synthetic datasets across feature space sizes of p = {1225, 4950, 11175, 19900, 31125}

logratios. Performance characteristics considered were the number of logratios selected, log-ratio network

clustering coefficient, and the combined-F statistic. Here we use the number of logratios selected by each

method as a proxy for model complexity. Specifically, higher model complexity or the number of features

retained increases the risk of overfitting and unnecessarily reduces the biological interpretation

corresponding to the logratios. Log-ratio networks were formed using the final subset selected by each

method, defined as a graph where vertices represent taxa and edges connect taxa pairs to form a logratio.

Redundancy in a log-ratio network of this type can be inferred from cycles in the network. While it does not

23



detect all cycles, the clustering coefficient can be used here to detect cycles between three nodes (closed

triangles versus triplets). Computation of the global clustering coefficient was done using the R igraph

package. Finally, the cF statistic, measuring the strength of the overall association, was computed as in

Eq. 2.11 for each subset. All performance characteristics were evaluated in both balanced and unbalanced

sampling designs. Computational time was recorded in seconds for each simulation scenario, feature space,

and sample design. The recorded time represents the CPU time required by each FS method to select the

final logratio subset. All computations were run on UNC–Chapel Hill’s Linux-based Longleaf cluster in R

parallelized with 10 cores using the foreach R package with 5GB of RAM.

2.6 Results

To robustly uncover sparse microbial signatures while simultaneously testing multivariate group

associations, we based our SelEnergyPerm framework on a novel network-based feature selection approach

combined with permutation testing for sparse high-dimensional low-sample-size compositional

metagenomic data. Our framework (Figure 2.1A), which selects from all pairwise logratios between

features (Taxa, OTUs, etc.), first scores the between-group variation of individual logratios using our

Differential Compositional Variation (DCV) scoring measure (see Methods). From this, a weighted DCV

log-ratio network is formed and subsequently pruned to reduce redundancy and complexity via a maximum

spanning tree. Final subsets are then selected by maximizing the between-group association using a greedy

forward stepwise selection procedure. Multivariate test statistics, which measure the strength of the

association between groups, are then computed on the final retained subset. Statistical significance is

determined by repeating this process with permuted group labels to obtain the permutation distribution of

the test statistic of interest under feature selection. In this way, we determine whether the observed

association is larger than what would be expected by chance (Figure 2.1B). To this end, our framework tests

the overall null hypothesis of no association between the metagenomic composition and group labels.

2.6.1 Feature selection comparison to other methods

We first benchmarked the multivariate characteristics of subsets selected by our feature selection

approach against a set of other popular methods for feature selection: Boruta [Kursa et al., 2010], Least

Absolute Shrinkage and Selection Operator (LASSO) [Tibshirani, 1996], Information Gain Filtering [KENT,

1983], and Random Forest Recursive Feature Elimination (RFE) [Granitto et al., 2006]. The benchmarks

were carried out by varying the number of log-ratio dimensions in the full feature set using five simulation

scenarios, considering both balanced and unbalanced sampling designs (see Methods). Specifically, for
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Figure 2.1: Overview of the SelEnergyPerm framework for non-parametric group association testing
in metagenomic data A. Relative abundance/count data are transformed using all pairwise logratios. These
logratios are subsequently scored (DCV) and used to efficiently select a subset that: (1) is independent
via a maximum spanning tree and (2) maximizes the energy or association between groups via greedy
optimization. The entire process is repeated using permutation testing to control false discovery and assess
statistical significance. B. Detection/rejection of sparse associations hidden within high dimensional data
via simultaneous feature selection and permutation testing.

subsets returned by each method, we studied the number of logratios selected (as a proxy for model

complexity), the clustering coefficient of the log-ratio network (measuring log-ratio redundancy), and the

combined F-statistic (strength of association, see Methods), and the computational time required to return

the final subset (Appendix A: Figure A.1). In Figure 2, we present results from scenarios with a balanced

sampling design. Notably, the results for the unbalanced sampling design scenarios are similar and do not

change the overall comparative interpretation (Appendix A: Figure A.2). Examination of the clustering

coefficient across all simulation scenarios/dimensions demonstrates that SelEnergyPerm consistently selects

linearly independent subsets of logratios (Figure 2.2 and Appendix A: Figure A.2, clustering coefficient =

0), in contrast with the subsets observed in other methods tested. Of note, a clustering coefficient > 0

indicates a selected log-ratio subset contains at least one triple of linearly-dependent logratios (closing a

triangle in the log-ratio network), thereby unnecessarily increasing dimensionality and model complexity.

(We note that any cycle present in a log-ratio network indicates linear dependence, though we did not test
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for cycles larger than closed triangles. We emphasize that by construction the SelEnergyPerm-selected

subsets do not include any such cycles.) Additionally, the number of logratios retained by each method

across every scenario tested revealed subsets selected by SelEnergyPerm were, on average, 14 to 149 times

smaller than other methods (Figure 2.2 and Appendix A: Figure A.2).

Next, the strength of the association measured by the combined-F statistic (see Methods) indicates

SelEnergyPerm-selected subsets typically capture higher between-group variations than other methods

tested. In Scenarios 2–4, SelEnergyPerm subsets were observed to have on average, higher combined-F

values than all other methods across all dimensions tested (Figure 2.2 and Appendix A: Figure A.2).

Meanwhile, in Scenarios 1 and 5, SelEnergyPerm subsets generally performed similarly to the other

methods but better as the dimensionality increased. Notably, Scenarios 1 and 5 do not simulate sparse

association signals and have strong between-group dispersion effects present. These results indicate

SelEnergyPerm returned subsets better capturing sparse associations (Scenarios 2–4) than the other feature

selection methods tested. Computational time experiments show, across all scenarios tested, SelEnergyPerm

is on average faster than Boruta and RFE but slower than LASSO and Information Gain Filtering (Appendix

A: Figure A.1). Overall, SelEnergyPerm subsets were non-redundant, significantly more parsimonious, and

captured stronger associations than other methods tested, thereby enabling robust biological interpretation

using logratios in high-dimensional feature spaces.

2.6.2 Detection of sparse associations in synthetic data

Here, we use data simulated from theoretical distributions to compare the ability of SelEnergyPerm,

PERMANOVA, ANOSIM, and the energy test to detect associations in sparse high-dimensional data. That

is, we are interested in determining how well each method accepts or rejects the null hypothesis (no

difference between groups) when presented with two groups of data that, as ground truth, come from the

same (Null Case; Type I error assessment) or different (True Case; power assessment) distributions. From

this, we report the performance of each method in terms of the Matthews Correlation Coefficient (MCC) at

α = 0.05 for 4 simulation scenarios (see Methods) with balanced or unbalanced sampling designs (Figure

2.3). For brevity, we shall refer to the collection of PERMANOVA, ANOSIM, and energy tests as the

standard methods.

In Scenario 1, where data are simulated from a Dirichlet distribution with between-group location and

dispersion effects that grow as the number of dimensions increase (see Methods), we see for the balanced

design that both SelEnergyPerm and the energy test perform well over all dimensions (number of logratios)
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Figure 2.2: SelEnergyPerm-selected log-ratio subset characteristics compared with Boruta, Infor-
mation Gain Filtering, LASSO, and RFE across five simulation scenarios for the balanced sampling
design. Using 200 simulations for each scenario-dimension by method we assessed: (Top Row) the cluster-
ing coefficient of logratio networks formed by selected subsets returned from each method, (Middle Row)
the magnitude of the association as measured by the combined-F (cF ) statistic on selected subsets returned
from each method, and (Bottom Row) the number of logratios returned by each method. Points are the mean
for each experimental condition and error bars indicate 95% confidence interval.

tested. Notably, ANOSIM loses the ability to detect associations as the number of dimensions increases

while PERMANOVA performs poorly over all dimensions. The poor performance of ANOSIM and

PERMANOVA is directly attributable to the underlying heterogeneity of variance present in the data

generated in this scenario; these limitations of PERMANOVA and ANOSIM have been discussed previously

[Anderson and Walsh, 2013]. The presence of dispersion effects is confirmed with the Distance-Based Tests

for Homogeneity of Multivariate Dispersions (PERMDISP2) [Anderson, 2006] method and can be observed

to be steady (Figure 2.3 - Scenario 1) and increasing across dimensions. For the unbalanced design,

SelEnergyPerm and the energy test both retain strong performance and have comparable performance over
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most dimensions, whereas ANOSIM completely loses the ability to detect associations under the

unbalanced design and PERMANOVA continues to perform poorly across all dimensions.

For Scenario 2 (Figure 2.3), the data distributions for each group are simulated from two Dirichlet

distributions that differ in the location of the first component and overall variance. That is, this scenario

embeds a sparse signal (location shift) in the first dimension with random noise in the remaining dimensions.

The results for this scenario show that for the balanced case SelEnergyPerm performs significantly better

than all other methods tested. For the unbalanced case, SelEnergyPerm performs better than all other

methods for smaller numbers of dimensions, however, it performs similarly to ANOSIM as the number of

dimensions increases. Notably, the performance of ANOSIM improves as the number of dimensions

increases for both the balanced and unbalanced cases.

For Scenario 3 (Figure 2.3), the data distributions for the first class are simulated from the additive

logistic normal distribution. Data for the second class are also generated from an additive logistic normal

distribution with the same parameters (same covariance matrix) but with location shifts in the first 25% of

the dimensions. Under this scenario, we observed the performance of SelEnergyPerm to be comparable to

the standard methods for the balanced case and slightly worse than the standard methods for the unbalanced

case. The reduced performance in the unbalanced case is attributable to the dense signal (25% of features)

being in direct tension with the SelEnergyPerm objective of reduced feature selection.

Lastly, in Scenario 4 (Figure 2.3), a location shift only (same between-class covariance structure) was

embedded in the first component of two additive logistic normal distributions, with the shift increasing with

the number dimensions. Here, SelEnergyPerm outperformed the standard methods as the number of

dimensions increased for both the balanced and unbalanced cases. While performing better overall relative

to the standard methods, a notable decrease in performance from the balanced to the unbalanced case was

observed for SelEnergyPerm. This decrease in performance was exacerbated among the standard methods

where performance not only decreased between sampling designs but also generally declined as the number

of dimensions increased in the unbalanced design.

Overall sparse association detection performance as measured by MCC, sensitivity, specificity, positive

predictive value, negative predictive value, Youden index, and false-positive rate across all scenarios at an

α = 0.05 are shown in Appendix A: Figure A.3. These aggregate results demonstrate SelEnergyPerm

generally outperforms the standard methods for detecting sparse associations under the synthetic data

simulation scenarios considered here.
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Figure 2.3: Comparison of the Matthews Correlation Coefficient measuring the ability of each method
to properly detect/reject associations in data generated from synthetic distributions in both balanced
and unbalanced sampling designs. For each scenario and logratio feature space size, test datasets were
simulated to include data distributions that have either true between-group differences (n=100) or no
between-group difference (n=100). Results from the PERMDISP2 procedure are displayed to indicate
heterogeneity of variance between groups.

2.6.3 Detection of sparse associations in data simulated from empirical datasets

To further assess performance, we benchmarked our method against the standard methods on data

simulated from properties observed in real metagenomic datasets. In this way, unique metagenomic data

characteristics such as sparsity, over dispersion, and complex co-occurrence patterns are assessed

synthetically. As above, MCC is used to assess the ability of each method to detect associations across these

settings.

In the first setting, (Figure 2.4 – 16S/WGS: Increasing Covariance Diff.), an increasing covariance

effect with a decreasing location effect between classes was simulated using healthy subsets of 16S and

WGS samples. The increasing dispersion effect is confirmed with PERMDISP2 for both sampling designs

(Figure 2.4). For 16S and WGS data with a balanced sampling design, SelEnergyPerm outperforms the

standard methods across all effect sizes and has strong performance as the number of dimensions increases.
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Figure 2.4: Comparison of the Matthews Correlation Coefficient measuring the ability of each method
to properly detect/reject associations in data simulated from real 16S and WGS data distributions
in both balanced and unbalanced sampling designs. For each data type and scenario, datasets were
generated to include data distributions that have either true between-group differences (n=100) or no
between-group difference (n=100). Results from the PERMDISP2 (dashed line) procedure are displayed to
indicate heterogeneity of variance between groups.

For 16S data with an unbalanced design, all methods performed poorly as the location shift effect increases.

This trend is traceable to the strong embedded covariance effect between classes, which is a known

confounder in high-dimensional association settings [Anderson and Walsh, 2013]. Notably, only

SelEnergyPerm and ANOSIM maintain positive MCCs on average, indicating these methods better control

type I error (albeit with severely limited power) under this sampling design. For WGS data with an

unbalanced design, SelEnergyPerm outperformed the standard methods and had better association detection

across all effect levels.

For the second simulation setting, (Figure 2.4 – 16S/WGS: Increasing Location Effects), we simulated

large location shifts between classes by increasing the size of the association signal from 5% to 50% of all

features with fixed covariance structures. These shifts were computed using synthetic subsets of WGS and

16S samples from publicly available healthy gut microbiomes. Indeed, PERMDISP2 analysis confirmed the
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absence of covariance effects. For both 16S and WGS data with a balanced sampling design,

SelEnergyPerm outperformed all standard methods. As expected, in both WGS and 16S data, the

performance of the standard methods increased as the association signal became less sparse. Again, for the

unbalanced design in both WGS and 16S data, SelEnergyPerm outperformed all standard methods.

Importantly, the detection ability of the standard methods improved as the association signal became less

sparse.

Finally, overall sparse association detection performance metrics are shown in Appendix A: Figure A.4.

These aggregate results demonstrate SelEnergyPerm has better overall sparse association detection

performance when compared to standard methods using data simulated from real 16S and WGS datasets.

2.6.4 Cerebrospinal fluid microbiomes association with post-infectious hydrocephalus

The cerebral spinal fluid (CSF) of Ugandan infants was profiled by Paulson et al. using 16S sequencing

to characterize microbial agents associated with Post Infectious Hydrocephalus (PIH) following neonatal

sepsis [Paulson et al., 2020]. This processed gut microbiome dataset, retrieved from microbiomeDB

[Oliveira et al., 2018], consisted of 369 distinct taxa measured on 92 samples (58 PIH and 34 Non-Post

Infectious Hydrocephalus (NPIH) patients). Removing taxa not present in at least 10% of samples yielded

57 total distinct taxa (i.e., 1,596 logratios between taxa). We apply SelEnergyPerm to determine if there was

an association between the microbiome composition in the CSF and PIH/NPIH disease status. We then

utilize the reduced SelEnergyPerm log-ratio signature of PIH in CSF to gain insight into specific

microbiome compositional differences.

We confirm with SelEnergyPerm a significant association (combined-F = 33.59817, empirical p =

0.007) exists between the composition of microbes in the CSF and PIH/NPIH (Figure 2.5A) and identify a

reduced log-ratio signature of 12 ratios between 13 taxa as being significantly associated with PIH/NPIH

(Figure 2.5B). Random forest (RF) models were then used to understand the capability of this

SelEnergyPerm signature for discriminating between disease statuses. Using 50 repeats of 10-fold

cross-validation, we computed an Area Under the Receiver Operating Characteristic Curve (AUC) = 0.906

(0.879-0.935 95% CI) (Figure 2.5C). We emphasize, however, that the more complex RF models with all

1,596 pairwise logratios yielded a comparable AUC = 0.892 (0.860-0.923 95% CI) (Figure 2.5C). For

comparison, microbiome analysis carried out in Paulson et al. revealed Paenibacillus alone to be important

for predicting PIH; but here using only the relative abundance of Paenibacillus with RF we observed an

AUC = 0.830 (0.792-0.867 95% CI), significantly lower than that obtained using the logratios identified by
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SelEnergyPerm. Combined, these results suggest the parsimonious SelEnergyPerm-derived log-ratio

signature retains important disease interactions and better discriminates PIH vs. NPIH when compared to

Paenibacillus alone.

To understand how the logratios in our signature work together to explain differences between the CSF

microbiome of PIH vs. NPIH patients, we apply principal component analysis (PCA) (Figure 2.5D) and

analyzed the means of the logratios. Examination of the distribution of samples shows the greatest

separation between disease groups occurs along PC1 (Figure 2.5D), which explains 78.48% of the total

variation. This separation indicates positive (negative) scores along PC1 are associated with NPIH (PIH)

samples. Analyses of the logratio mean between groups for each logratio in the SelEnergyPerm signature

indicate the abundance of Paenibacillus is significantly increased (Figure 2.5E) relative to taxa it is

connected to (Figure 2.5B). Moreover, RF variable importance indicates the logratio between Paenibacillus

relative to Pseudomonas to be most important for distinguishing between disease statuses. Indeed, analysis

of Principal Component 1 loadings (Figure 2.5E) reveals increased abundance of Pseudomonas relative to

Paenibacillus results in positive loadings (NPIH associated) along Principal Component 1. Overall, our

results confirm, using pairwise logratios derived from SelEnergyPerm, the importance of Paenibacillus in

PIH. Additionally, we show the interaction between the abundance of Pseudomonas relative to

Paenibacillus is particularly important whereby more Pseudomonas is characteristic of NPIH and more

Paenibacillus is associated with PIH.

2.6.5 Association between delivery mode and infant gut microbiome composition

Bokulich et al. monthly profiled the gut microbiome of infants with either a vaginal or cesarean delivery

mode using 16S sequencing for the first two years of life [Bokulich et al., 2016]. The processed dataset was

retrieved from the Qiita repository using study ID 10249 [Gonzalez et al., 2018]. Specifically, we extracted

samples during the first 3 months of life, totaling 230 samples from 63 infants (Cesarean = 25, Vaginal =

38). We aggregated OTUs to the family-genus level which resulted in 140 distinct taxa (9,730 logratios)

present in at least 10% of all samples by month. Here we apply SelEnergyPerm to determine if the gut

microbiomes are different between the delivery modes of infants at any of the first 4 monthly time points

collected (0–3 months). Secondarily, we studied our reduced logratio signatures to understand gut

microbiome compositional differences between delivery modes at time points where significant differences

were detected.
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Figure 2.5: SelEnergyPerm case study examining the association between Ugandan infant’s cere-
brospinal fluid microbiomes and post-infectious hydrocephalus using 16S data. A. SelEnergyPerm
permutation test results displaying the null distribution of the cF statistic (Histogram, Density, and Points)
and the empirical cF statistic (dashed red vertical line). B. Random forest (RF) importance weighted
directed logratio network (edges point from numerator to denominator) of the SelEnergyPerm selected
signature (nodes = taxa, node size = weighted degree, edges = logratio, edge width/color = RF variable
importance). C. ROC (Receiver Operator Characteristic) comparisons of disease status discrimination using
RF. Models were trained with repeated (r = 50) 10-fold cross-validation using either the SelEnergyPerm
Signature, all logratios, or Paenibacillus alone. D. Principal component analysis using the SelEnergyPerm
signature. E. (Left) logratio means comparison (NPIH/PIH) of each logratio included in the SelEnergyPerm
signature. (Right) Loading weights of the first principal component. Significance codes (*, **, ***, ****)
indicate BH corrected p-value < (0.05, 0.01, 0.001, 1e-4, 0) for NPIH versus PIH Wilcoxon Rank Sum Test.
For the logratio means, positive values indicate numerator more abundant than the denominator and negative
values indicate the denominator is more abundant numerator. Error bars indicate the 95% CI of the mean.
Notably, error bars that do not span 0 indicate numerator/denominator is on average more abundant than the
opposite.
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Applying SelEnergyPerm to each time point with restricted permutation testing to account for repeated

host microbiomes within a collection month and correcting for multiple comparisons using the

Benjamini-Hochberg (BH) procedure, we found significant differences in the composition of the gut

microbiomes between delivery modes during the collection periods in months 0–2 (Figure 6A). Notably,

restricted permutation testing with PERMANOVA and ANOSIM using all taxa pairwise logratios (PLR)

failed to detect differences between the gut microbiomes at α = 0.05. Similarly, when using Partial Least

Squares Discriminate Analysis (PLS-DA) with repeated cross-validation stratified by both delivery mode

and host, we observed the AUC of the SelEnergyPerm-derived signatures to be higher across all time points

compared to models trained using all PLR (Figure 6B). We next used the reduced log-ratio signatures and

their PLS-DA variable importance scores to better understand which taxa are most important for

discriminating between delivery modes. Indeed, aggregating to the family level for ease of interpretation,

we found during months 0 and 1 that Bacteroidaceae were top contributors to compositional differences

(Figure 6C). This pattern changed during month 2 where Rikenellaceae taxa were most important for

discriminating between delivery modes (Figure 6C). Finally, to understand the direction of these differences

(i.e., for a given logratio, is the numerator more abundant than denominator or vice-versa between groups),

we analyze the directed log-ratio means network of the SelEnergyPerm signature relatively (i.e., taxa A

more/less abundant than taxa B) between delivery modes (Figure 6D). Specifically, given the hub-spoke

character of the observed network, with a single highly connected and central node in the directed maximum

spanning tree formed by the SelEnergyPerm signature, we can see month 0 is dominated by differences

between logratios that include Lachnospira and Bacteroides, which are more abundant relative to their

network of taxa connections for infants with a vaginal delivery mode whereas the opposite is true for infants

with a cesarean delivery mode. For month 1, Bacteroides are observed to be more abundant relative to its

network of taxa connections for infants with a vaginal delivery mode. The opposite is true for infants with a

Cesarean delivery mode where Bacteroides are less abundant within its network of taxa connections. Finally,

for month 2, Rikenellaceae taxa can be observed to be more (less) abundant relative to both Clostradiacea

and Proteus taxa for infants with a vaginal (Cesarean) delivery mode.

2.6.6 Association between abnormal fecal calprotectin levels and gut microbiome

Here we apply SelEnergyPerm to analyze WGS microbiome data from the integrative human

microbiome project [Proctor et al., 2019], a longitudinal study designed to uncover interactions between

disease and human-associated microbial communities. Specifically, using the inflammatory bowel disease
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Figure 2.6: SelEnergyPerm case study examining the association between delivery mode and the gut
microbiome composition of infants over the first three months of life using 16S data. A. SelEnergyPerm
permutation test (permutations = 1000) results displaying the null distribution of the test statistic (violin and
grey points) and the empirical test statistic (red if significant, black otherwise) with Benjamini-Hochberg
corrected p-values. Test statistics values were z-score scaled (by Collection Month) for ease of visualization.
B. AUC comparisons of delivery mode discrimination using PLS-DA. Models were trained with repeated (r
= 20) 5-fold stratified (delivery mode and host) cross-validation using either the SelEnergyPerm signature or
all logratios. Points represent the mean AUC and error bars indicate the 95% CI. C. Relative taxa strength
by family measuring the importance of each taxon for discriminating between delivery modes across each
collection time point. Relative strength was computed using the top 5 nodes derived from the PLS-DA
variable importance weighted logratio networks across each collection time. D. Directed (edges point from
numerator to denominator) network of the SelEnergyPerm-derived signature by month and delivery mode
weighted by the absolute logratio means (nodes = taxa, node size = mean strength, edge = logratio, edge
width = logratio mean, red edges = negative logratio mean (incoming node more abundant), blue edges =
positive logratio mean (outgoing node more abundant)).
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(IBD) part of the integrative human microbiome project study, we tested whether there exists an association

between the gut microbiome composition and abnormal levels of fecal calprotectin, a protein marker of

intestinal inflammation [Proctor et al., 2019]. Processed microbiome data were extracted from the

Inflammatory Bowel Disease Multiomics Database [Lloyd-Price et al., 2019] resulting in 399 samples (93

individuals) reporting fecal calprotectin levels that were above 120 (abnormal; n = 190) or below 50 (normal;

n = 209). There were 122 species identified (7,381 logratios) as being present in at least 10% of all samples.

Using restricted permutation testing, accounting for the order of visit and diagnosis of Ulcerative

Colitis, Crohn’s Disease, or non-IBD, SelEnergyPerm identified a significant association (combined-F =

92.507, p = 0.000999, 1000 permutations) between the composition of the gut microbiome and abnormal

levels of fecal calprotectin in corresponding stool samples (Figure 2.7A). Notably, both ANOSIM and

PERMANOVA with restricted permutation designs using all pairwise logratios (PLR) also detected this

association. To assess whether the associated SelEnergyPerm log-ratio signature (25 logratios between 31

species) retained enough information to adequately discriminate between levels of fecal calprotectin, we

estimated the discriminatory ability both using the reduced signature and using all PLR. Using repeated

cross-validation with PLS-DA we found the SelEnergyPerm signature (AUC = 0.829, 0.803 – 0.854 95%CI)

to have comparable performance to PLS-DA models trained using all logratios (AUC = 0.833, 0.803 – 0.862

95%CI) (Figure 2.7B). Examination of the latent space projection of a final PLS-DA model fit using the

SelEnergyPerm signature reveals strong separation between individuals with normal vs. abnormal fecal

calprotectin levels (Figure 2.7C). A directed log-ratio network of the SelEnergyPerm signature weighted by

PLS-DA variable importance shows logratios involving Dialister invisus, Streptococcus salivarius,

Bacteroides fragilis, Escherichia coli, and Blautia wexlerae to be most important for discriminating between

levels of fecal calprotectin (Figure 2.7D). Interestingly, stratifying the log-ratio signature by diagnosis

reveals both shared (significant between diagnosis differences across all groups) and distinct (significant

between diagnosis differences among a single group) gut microbiome differences (Figure 2.7E). Particularly

increased abundance of Dialister invisus relative to Bacteroides ovatus, Intestinimonas butyriciproducens,

and Anaerotignum lactatifermentans was observed to be associated with abnormal fecal calprotectin

independent of diagnosis.

2.6.7 Association between the infant gut microbiomes and allergen sensitization

In this case study, we apply SelEnergyPerm to WGS gut microbiome data from the DIABIMMUNE

study [Vatanen et al., 2016]. The focus of this longitudinal study was to characterize interactions between
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the immune system and the gut microbiome in the context of autoimmunity and allergy. Specifically, the gut

microbiomes of infants from Finland, Russia, and Estonia were profiled monthly during the first 3 years of

life. Here we apply SelEnergyPerm to test if associations exist between allergy status and the composition

of the gut microbiome at 6-month intervals during the first 2 years of life. Allergy status was defined as food

allergy (FA) if the host reported an allergy to egg, peanuts, and/or milk at year 2 (non-FA otherwise). We

extracted 646 samples from 192 infants (Russia = 53, Finland = 70, Estonia = 59) across 170 unique species

(14,365 logratios).

Using restricted permutation testing to account for repeated host microbiomes and host country we

applied SelEnergyPerm to each timeframe and corrected for multiple comparisons using the BH procedure.

We found significant differences in the composition of the gut microbiomes between allergy status during

both the first 6 months and the 6–12 month collection periods (Figure 2.8A). PERMANOVA and ANOSIM

using all taxa PLR detected differences between the gut microbiome during the first 6 months of life but did

not detect differences between the gut microbiomes during the remaining time frames at α = 0.05 after

correcting for multiple comparisons. This difference is further apparent when comparing the discriminatory

ability between the SelEnergyPerm signature and all logratios. Using Partial Least Squares Discriminate

Analysis (PLS-DA) with repeated cross-validation stratified by allergy status, host, and month, we observed

the AUC of the SelEnergyPerm-derived signatures to be significantly higher across all time points when

compared to models trained with all logratios (Figure 2.8B). Using the SelEnergyPerm log-ratio signatures

and the corresponding PLS-DA variable important scores we next examine which taxa are important for

discriminating between food allergy statuses later in life. Stratifying by month and selecting the top 5

species by strength (weighted degree) from our variable importance log-ratio network, we found

Clostridium ramosum, Streptococcus parasanguinis, and Bifidobacterium bifidum to be major contributors

to the DCV score between allergy status during the first 6 months of life (Figure 2.8C). However, for the

6–12 month period we found the abundance of Clostridium hathewayi, Bacteroides dorei, and Haemophilus

haemolyticus to be major contributors to DCV (Figure 2.8C). A review of the log-ratio mean networks

(Figure 2.8D) between allergy status during the first 6 months shows Clostridium ramosum is, in general,

more abundant relative to species (node strength indicated by size) it is connected to in infants with FA vs.

non-FA. Further, during the 6–12 month period we see more distinct differences in the log-ratio mean

networks whereby Bacteroides dorei can be observed to be more abundant relative to species it is connected
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to in FA infants. We also observe Clostridium hathewayi to be more (less) abundant than the species it is

connected to in infants with FA (without FA).

2.7 Discussion

We have here presented SelEnergyPerm, a group association testing framework for high-dimensional

metagenomic data with sparse microbiome associations between groups. Our framework directly accounts

for the compositional sample space imposed on these data as a result of technical variations in sample-wise

library size. This is done by using embedded feature selection on a set of robust all pairwise logratios to

improve the detection and interpretation of sparse signals hidden in these data. Each logratio is first ranked

using our novel DCV score followed by the application of network methods and feature selection techniques

to effectively select subsets of logratios. In tandem, these steps help to identify logratio signatures capable

of explaining microbiome-derived phenotypic differences. Further, false discovery is properly controlled for

by repeating the entire process with permuted labels using appropriate permutation test design (e.g.,

restricted design for longitudinal supervised data) for statistical significance [Ernst, 2004].

We assessed our method by conducting an extensive simulation study to rigorously benchmark

performance relative to popular alternatives for both feature selection and association testing. Our

simulation scenarios included data from both synthetic and empirical distributions where scenarios included

settings with small/large location shifts embedded in sparse/dense signals and small/large location shifts

with covariance differences embedded in sparse/dense association signals, carried out on both balanced and

unbalanced sample designs. When compared to popular alternatives, we show our SelEnergyPerm feature

selection approach is, overall, able to select fewer logratios, guarantee log-ratio subsets are independent, and

better maximize between-group associations with relatively modest computational time requirements.

Additionally, when compared to common association testing methods used in metagenomic studies, we

show SelEnergyPerm can consistently detect associations better than or comparable with the alternatives in

nearly all simulation settings tested. The better performance of SelEnergyPerm is most notable when sparse

association signals are present.

Our demonstration of how SelEnergyPerm can be used to gain robust and unique biological insight was

carried out in detail with data from 4 case studies. Particularly, we first apply SelEnergyPerm to test for

sparse associations. After using SelEnergyPerm to confirm the statistical significance of associations, we

extract SelEnergyPerm-derived log-ratio signatures and use traditional statistical techniques to better

interpret and visualize (e.g. PCA, PLS-DA) how the microbiome is associated with the phenotype of interest.
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Because multivariate effect sizes are not well studied, here we use AUC as a proxy of effect size between

groups (i.e., AUC= 1 indicates perfect separation, and AUC = 0.5 for no separation). Most importantly,

AUC used in this context indicates strength of association rather than out-of-sample predictive accuracy. In

the first case study, SelEnergyPerm successfully detected a confirmed association between the composition

of the microbiome in CSF and PIH/NPIH disease status in Ugandan infants using a reduced log-ratio

signature (13 of 1,596 possible logratios). Further, we show given these data that our log-ratio signature can

discriminate between disease statuses and explain differences between infants to a greater degree than with

a single feature or all pairwise logratios. In our second case study, SelEnergyPerm detected an association

between delivery mode and the gut microbiome composition in infants during the first 2 months of life and

at the time 0 collection time. Notably, PERMANOVA and ANOSIM applied over the same time course with

all logratios failed to detect this association. In the third case study, SelEnergyPerm detected an association

between the composition of the gut microbiome and abnormal fecal calprotectin levels. Here we found our

fecal calprotectin associated log-ratio signature (25 logratios) had a comparable discriminatory ability to the

uninterpretable-due-to-size set of all 7,381 pairwise logratios, thus enabling easier biological interpretation.

In the final case study, SelEnergyPerm detected and characterized associations between the microbiome

composition in early life and the development of food allergy later in life.

Overall, our results demonstrate that SelEnergyPerm is a powerful framework for detecting sparse

association under various scenarios. However, in the presence of heterogeneity of variance and/or

unbalanced group designs — both of which are common enemies of multivariate association testing

methods — the power of SelEnergyPerm was reduced, albeit to a lesser degree than the standard methods

tested. Therefore, caution should be used when applying SelEnergyPerm in these settings. Additionally, in

some scenarios with dense association signals, the performance of SelEnergyPerm was slightly reduced

when compared to standard methods. While the power reduction was small, the enhanced interpretation

from a smaller log-ratio signature may nevertheless outweigh the loss of power in some such settings.

Notwithstanding these limitations, SelEnergyPerm is the first method to our knowledge to fully utilize

the pairwise logratio compositional approach in a group association testing framework for metagenomic

data. Importantly, given the compositional sample space imposed on these data, where features are relative,

our approach enables the discovery of associations using pairwise logratios which, by design, robustly

interpret features relative to one another rather than alone. While the benefits of employing logratios are

well documented, implementing and carrying out these analyses can be challenging and time consuming in
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practice. To this end, we developed an R package, SelEnergyPermR, with functions to perform the method

presented in this paper. Additionally, our package enables rapid preprocessing of relative abundance data,

calculation of all pairwise logratios, and multiplicative zero imputation. Our package also includes

functions to simulate data from all scenarios presented in this work. Lastly, our approach adds to a small list

of compositional methods for testing associations [Fernandes et al., 2014, Mandal et al., 2015a, Lin and

Peddada, 2020] and is to our knowledge, the first compositional data method developed for sparse

multivariate group association testing in metagenomic data. We also add to a small list of compositional

approaches for feature selection [Susin et al., 2020]; however, unlike these other methods, our approach

directly uses pairwise logratios which enables simple interpretation and may better elucidate taxa-taxa

interactions through log-ratio network analysis. While not demonstrated explicitly here, SelEnergyPerm is

also compatible with multi-class (> 2 groups) group association testing (implemented in R package) .

Future directions to usefully expand this methodology could focus on incorporating covariate information

and extending the framework to longitudinal data.

In conclusion, we developed SelEnergyPerm to be a versatile group association testing method for

detecting and understanding sparse associations in high-dimensional metagenomic data. We showed

through rigorous simulation study with synthetic and real data distributions that SelEnergyPerm selects

parsimonious subsets of independent logratios that better maximize between-group associations when

compared to existing feature selection methods. Our simulation results also demonstrate SelEnergyPerm is

significantly better at detecting sparse associations when compared to existing multivariate group

association tests. Overall, SelEnergyPerm will enable researchers to robustly detect, characterize, and

understand sparse associations in metagenomic data using novel log-ratio signatures. The SelEnergyPerm

method is implemented in the R package SelEnergyPermR and is freely available on GitHub

(https://github.com/andrew84830813/selEnergyPermR.git).
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Figure 2.7: SelEnergyPerm case study examining the association between abnormal fecal calprotectin
levels and the gut microbiome composition in nonIBD and IBD individuals using WGS data. A.
SelEnergyPerm permutation test results displaying the null distribution of the cF statistic (Histogram,
Density, and Points) and the empirical cF statistic (dashed red vertical line). B. AUC comparisons of
fecal calprotectin level (Abnormal/Normal) discrimination using PLS-DA with 2 components. Models
were trained with repeated (r = 20) 10-fold cross-validation using either the SelEnergyPerm signature
or all logratios. Points represent the mean AUC and error bars indicate the 95% CI. C. PLS-DA latent
space projection plot extracted from final PLS-DA model fit using the full dataset with the SelEnergyPerm
signature. Points represent non-IBD or IBD samples. D. Directed network (edges point from numerator to
denominator) of the SelEnergyPerm-selected log-ratio signature (nodes = taxa, node size = DCV strength,
edges = logratio, edge width/color = PLS-DA Variable Importance). The top 5 taxa names by strength
(PLS-DA Variable Importance) are displayed. E. logratio means comparison (normal/abnormal fecal
calprotectin level) of each logratio included in the SelEnergyPerm signature stratified by Crohn’s Disease
(CD), Ulcerative Colitis (UC), and non-IBD individuals. Significance codes (ns, *, **, ***, ****) indicate
BH corrected (within diagnosis) p-value < (Not Significant, 0.05, 0.01, 0.001, 1e-4, 0) for normal versus
abnormal Wilcoxon Rank Sum Test. Error bars indicate the 95% CI of the mean. Notably, error bars that do
not span 0 indicate numerator/denominator is on average more abundant than the opposite.
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Figure 2.8: SelEnergyPerm case study examining the association between the gut microbiomes of
infants in early life and the development of food allergy later in life. A. SelEnergyPerm permutation test
(permutations = 1000) results displaying the null distribution of the test statistic (violin and grey points) and
the empirical test statistic (red if significant, black otherwise) with Benjamini–Hochberg-corrected p-values.
Test statistics values were z-score scaled by collection period to improve visualization. B. AUC comparisons
of future food allergy development discrimination using PLS-DA. Models were trained with repeated (r =
20) 10-fold stratified (host and food allergy development) cross-validation using either the SelEnergyPerm
signature or all logratios. Points represent the mean AUC and error bars indicate the 95% CI. C. Relative
taxa strength by family measuring the importance of each taxon for discriminating between food allergy
statuses later in life across each collection month. Relative strength was computed using the top 5 nodes
derived from the PLS-DA variable importance weighted logratio networks across each collection month. D.
Directed (edges point out from numerator to denominator) networks of the SelEnergyPerm-derived signature
by collection period and food allergy development weighted by the absolute logratio means (nodes = taxa,
node size = mean strength, edge = logratio, edge width = logratio mean, red edges = negative logratio mean
(incoming node more abundant), blue edges = positive logratio mean (outgoing node more abundant)).
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CHAPTER 3: DIFFERENTIAL COMPOSITIONAL VARIATION MACHINE LEARNING2

3.8 Introduction

Ubiquitous use of rapidly advancing metagenomic sequencing technologies are allowing researchers to

uncover profound insights into precisely how alterations of microbial communities that live in and on the

human body are associated with human disease. These promising technologies are being rapidly explored

for use as non-invasive diagnostic and screening tools [Zackular et al., 2014, Schlaberg, 2020]. The success

of such efforts relies on the identification of robust microbial biomarkers that are predictive of disease onset

and/or progression. To this end, researchers are exploring novel ways to apply the latest advances in

supervised machine learning methodology to unlock key biomarker signals across unique and costly

metagenomic data [Marcos-Zambrano et al., 2021]. Fortunately, numerous publicly-available curated

metagenomic datasets [Oliveira et al., 2018, Pasolli et al., 2017, Gonzalez et al., 2018] have helped

researchers develop and test new methodologies on complex metagenomic datasets across diverse disease

groups.

In order to discover generalizable metagenomic biomarkers, new prediction methods will need to

address important statistical challenges related to high-dimensional metagenomic data. In particular, whole

genome shotgun (WGS) and 16S ribosomal-RNA (16S) sequencing techniques utilized in metagenomic

studies produce count data that have arbitrary limits on the total number of reads obtained for each sample

by the instrument [Gloor et al., 2017]. Because of this, analysis of these data is limited to relative rather than

absolute comparisons. Data with such constraints, formally known as compositional data [Aitchison, 1982],

have a simplex sample space and, notably, important dangers arise when ignoring compositional constraints

during analysis, including non-linear distances between samples as subsets of parts (e.g. taxa, metabolites)

change, spurious correlations, and generalizability of models [Gloor et al., 2017]. Additionally, sparsity,

discreteness, and distribution of total library sizes can influence conclusions and further complicate analyses

[Lovell et al., 2020]. The importance of appropriately analyzing compositional metagenomic data has been

2This chapter was adapted from our manuscript(preprint) available on bioRxiv. The preprint citation is as follows:
Hinton, A. L. & Mucha, P. J. Differential Compositional Variation Feature Selection: A Machine Learning
Framework with logratios for Compositional Metagenomic Data. bioRxiv 2021.12.08.471758 (2021)
doi:10.1101/2021.12.08.471758.

43



discussed extensively in Refs. [Gloor et al., 2017, Quinn et al., 2019] and the need for suitable

normalization approaches to account for these challenges has been highlighted in Ref. [Weiss et al., 2017].

Supervised classification predictive modeling in metagenomics studies aims to classify disease based

on learned patterns in microbial compositions. These models can then be deployed in non-invasive

screening, diagnostic, or prognostic tests. It is not uncommon for researchers to train standard machine

learning algorithms such as random forests, support vector machines, or LASSO regularized logistic models

on untransformed relative abundance data and group labels (e.g. disease, phenotype) to identify microbial

compositional differences between groups of interest. Indeed, standard approaches such as those in MetaML

[Pasolli et al., 2016] ignore compositional data constraints intrinsic in relative abundance data; as a result,

model interpretability and beyond-study generalizability may be severely limited. Fortunately, various

log-ratio transformations have been proposed to overcome these challenges [Aitchison, 1982, Egozcue et al.,

2003]. In particular, given signals from p parts, one seeks to properly describe the corresponding point on

the (p− 1)-dimensional simplex. Only the (p− 1)-feature basis from the additive logratio (ALR)

transformation and the spanning frame of all (p2) = p(p− 1)/2 features from the pairwise logratio (PLR)

transformation provide both simple interpretation [Greenacre, 2019] and subcompositional coherence

[Aitchison, 1982]. We note in particular that the ALR transformation has been shown to be an effective way

to statistically analyze omics data [Greenacre et al., 2021] and that variable selection approaches that

address compositional constraints on metagenomic data were important to the recently proposed selbal

[Rivera-Pinto et al., 2018] and coda-lasso [Susin et al., 2020] methods.

We here introduce the differential compositional variation machine learning framework (DiCoVarML)

for guided feature selection to efficiently train, robustly test, and flexibly interpret supervised classification

models using robust additive logratio or pairwise logratio features. To more fully motivate the utility of this

framework, we first demonstrate important generalization limitations of machine learning models that are

trained directly with either relative abundance or centered logratio (CLR) transformed data: in a simple

low-dimensional setting, even with proper cross-validation performance estimation, AUC estimates obtained

for models trained with relative abundance or CLR transformed data may be unreliable. We then show

through detailed simulation study and analysis of publicly-available metagenomic datasets that DiCoVarML

provides significantly better classification performance than existing compositional feature selection

approaches. To demonstrate its clinical utility, we then apply DiCoVarML to predict the onset of necrotizing

enterocolitis in premature infants using fecal metagenomic data from the NICU NEC study [Olm et al.,
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2019], and we develop a novel meta-analysis covering 9 studies [Feng et al., 2015, Gupta et al., 2019,

Hannigan et al., 2018, Wirbel et al., 2019, Thomas et al., 2019, Vogtmann et al., 2016, Yachida et al., 2019,

Yu et al., 2017a, Zeller et al., 2014] to classify microbial differences between the gut microbiome and

colorectal cancer.

3.9 Results

3.9.1 The DiCoVarML framework

DiCoVarML attempts to obtain an optimal set of logratios between parts (e.g., taxa, metabolites) for use

as features in machine learning classification models. Broadly speaking, feature selection for compositional

metagenomic data analysis can be applied at either (a) the parts level (selbal, clr-lasso, coda-lasso) or (b) the

log-ratio level (ALR or PLR). In DiCoVarML, we utilize a novel multi-level feature selection approach to

simultaneously identify a robust subset of logratios between a targeted number of parts. Our versatile

approach importantly supports both targeted (number of target parts selected by expert) and untargeted

(number of selected parts optimized empirically) feature selection. A targeted approach is especially useful

when weighing trade-offs between predictive performance and cost for diagnostic test development, where

limiting the number of parts to include in the final assay may be of particular concern. Moreover, depending

on study priorities (high interpretability, high prediction), the DiCoVarML framework naturally allows for

either interpretable but generally less accurate ridge-regression models or complex but generally more

accurate average probability ensemble models for classification. Additionally, biomarker signatures

discovered by DiCoVarML can be found via ALR (lower computational cost but possibly lower insight) or

PLR (higher computational cost for possibly higher insight).

To robustly select features and estimate performance while minimizing overfitting, the DiCoVarML

framework uses a double-nested (inner and outer) k-fold cross-validation learning schema to discover

log-ratio signatures and estimate classification performance (Figure 3.1a & 1b). That is, the relative

metagenomic dataset is randomly split in the outer cross-validation loop into k discovery and test partitions

with appropriate stratification (by class, sample, study, etc.) given the study design (cross-sectional,

longitudinal, repeated measures, etc.) (Figure 3.1a) with each fold held out and used once as a test set and

the remaining folds used for discovery and training. On each partition, the targeted multi-level feature

selection (tarMFS) method (Figure 3.1b) is applied, yielding user-selected classification performance

measures (e.g., AUC, accuracy, AUPRC, etc.). To discover an appropriate number of parts (targeted or

untargeted) and classification model (from a set selected a priori by the user; ensemble and ridge regression
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are considered here), an inner cross-validation loop is used (Figure 3.1b): the discovery set of the outer loop

is further split into kinner folds (here kinner = 2) for training and validation. Each classification model (for

numbers of parts listed in the array T ) is evaluated on each partition using the targeted discovery mode

(Figure 3.1c, see “Targeted multi-level feature selection” in Methods). The best performing model and

number of parts (mmax and tmax in Figure 3.1b) is selected and used to train the discovery set model and

classification performance is then obtained on the corresponding test fold. Overall classification

performance is then estimated by averaging the performance across discovery-test folds (Figure 3.1a).

Depending on study objectives and computational resources, the entire process can be repeated under

different random splits to better estimate out-of-study classification performance.

3.9.2 Beyond-study generalization limitations of untransformed data

Using a simple three-part composition (p, q, r) toy dataset, we demonstrate here that machine learning

models trained with relative abundance or CLR-transformed count data can easily fail to generalize beyond

the available training samples, but that nevertheless the use of additive (ALR) or pairwise logratios (PLR)

succeeds in such settings. In particular, we demonstrate this in scenarios with and without feature selection.

We simulate two distinct classes of data across two partitions (train, test) with a common decision boundary

within the simplex. While the train and test data partitions share decision boundaries in our simulated data,

the deliberate geometric separations between the two simulated partitions are designed to represent

differences as might arise from variabilities in study design, sample preparations, different instruments,

noise from measurement error, or other cross-study differences. The three-part composition yields a

two-dimensional simplex sample space, with the relative proportions of the three parts visualized in the

ternary diagrams of Figure 3.2.

We first evaluated a scenario without feature selection where two classes of data are simulated from the

additive logistic normal distribution (see Methods) with a single noisy part (Figure 3.2a). In this scenario,

the decision boundary of the (p, q, r) components is an isoproportional p/r = 1 line in the simplex. Using a

random forest model trained directly on the three-part relative abundance (proportions) data, we observed a

mean cross-validated AUC = 0.976 in the train set; however, after applying this trained model to the test set,

the generalization performance on the test set drops to AUC = 0.505. As observed clearly in the Figure, the

random forest model trained on relative abundances failed to learn the correct decision boundary except in

the area immediately local to the training set. Similarly, the corresponding model trained on the CLR

transformation of the three-part composition yielded a train set AUC = 0.977 but test set AUC = 0.505. In
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Figure 3.1: The differential compositional variation machine learning (DiCoVarML) framework for
high dimensional compositional metagenomic data. (a) High level overview of the DiCoVarML framework
showing the outer cross-validation procedure for estimating out-of-sample performance including the data
partitioning, feature/model selection, and classification performance metric estimation. (b) Overview of the
partition-specific feature and model selection process showing how targeted multilevel-feature selection
(tarMFS) is used in the inner loop to select the number of parts and the model to then be used in the outer
loop to estimate classification performance. (c) Overview of the nested targeted-multilevel feature selection
method for identifying key parts, logratio signatures, and estimating classification performance.

contrast, training the random forest model with all pairwise logratios (PLR) leads to a train set AUC = 0.971

with test set AUC = 0.980, demonstrating accurate beyond-sample generalization from using pairwise

logratios. In contrast to these stark performance differences, we note that LASSO logistic regression using
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any of these considered data transformations performs well on this simple, low-dimensional isoproportional

boundary scenario.

We next examined a scenario with feature selection on data simulated on opposite sides of a

compositional line decision boundary specified by a [0.6, 0.3, 0.1] leading compositional vector through the

barycenter (see “Compositional line decision boundary” in Methods). In this scenario, we trained and tested

a regularized logistic model on each data transformation to evaluate its generalization properties (Figure

3.2b). For both relative abundances and CLR transformed counts we obtained train set AUC = 0.541 and

test set AUC = 0.501, indicating significant under fitting. That is, in each of these cases it appears that the

regularization eliminated the degrees of freedom needed to reconstruct the true logratios that combine to

form the simulated decision boundary. In contrast, when working with the full frame of all pairwise

logratios, the regularized regression achieves (empirical) train set AUC = 1 and test set AUC = 1. We

additionally note that all of the considered data transformations generalize poorly when random forest

models are trained without feature selection in this scenario, emphasizing the importance of feature

selection.

Whereas the use of either pairwise or additive logratios generalizes well beyond the training sample, we

note with these simple illustrative scenarios that there are important beyond-study generalization dangers

when using either relative abundances or CLR-transformed data to train machine learning models.

Importantly, these limitations are independent of the number of dimensions and can be present (or even

expected) in high-dimensional metagenomic data. Notably, the ability of a classification model to generalize

true patterns beyond the study immediately at hand is essential both to understanding how parts contribute

to a classification and to developing robust diagnostic assays.

3.9.3 Classification performance evaluation using synthetic data

To understand how untargeted DiCoVarML with PLR, ALR, or hybrid signatures compares to existing

compositional approaches with feature selection (selbal, clr-lasso, coda-lasso) we generated synthetic counts

mimicking WGS and 16S binary-class data (see Methods) and compared the classification performance of

each method (Figure 3.3). In particular, we studied three scenarios with increasing signal density (number

of associated parts) from 2% to 50% of all taxa (WGS = 270, 16S = 124). For each scenario, we increased

the percent mean difference (mean shift) between associated taxa from 18% to 30% (see Methods). As seen

in Figure 3.3, for the 16S data with 2% signal sparsity, clr-lasso and selbal performed better than

DiCoVarML at the 18% mean shift level, comparably at the 24% level, and slightly worse at the 30% level.
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Figure 3.2: Generalizability limitations from training machine learning models with relative abun-
dance or centered logratio data. Ternary diagrams visualize compositional data from three component
parts in barycentric coordinates. For each scenario (row), data were simulated from two classes (C1, C2)
with distinct data distributions for training (circles) and test (+ symbols) partitions in the first column on the
left. The corresponding global decision boundaries are shown as solid lines for each scenario. Training set
and test set AUC are shown for models trained from relative abundance (second column), centered logratios
(third column), and all pairwise logratios (right column). Prediction probabilities for class C1 for each
model fit to the training partition are indicated by shaded coloring throughout the simplices. (a) Random
forest models fit to normally-distributed data on the 2-simplex with an isoproportional decision boundary.
(b) LASSO regularized logistic model fit to data separated by an α ⊙ {0.6, 0.3, 0.1} compositional line
(through barycenter) decision boundary.

As signal density increased, DiCoVarML outperformed the other methods and maintained consistent

performance across all signal sparsity settings. Notably, for existing methods on the 16S data, we observed

decreasing performance as the signal density increased. These findings are also consistent with simulation

results reported in Ref. [Susin et al., 2020]. Notably, coda-lasso performed poorly across all 16S scenarios

tested. For the WGS data, similar trends were observed with existing methods (including coda-lasso)

performing better or similar to DiCoVarML at the lower signal sparsity levels but worse as the signal density

increased. For existing methods on WGS data, we again observed large reductions in performance as signal

density increased. Moreover, for DiCoVarML signatures on WGS data, we note a general but smaller

reduction performance as signal density increases. Notably, ALR-derived signatures performed worse than

PLR and Hybrid signatures in complex WGS data but similarly on less complex 16S data. From this, our
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simulation results demonstrate DiCoVarML maintains consistent performance over a range of scenarios

with 16S or WGS characteristics when compared to existing methods.

Figure 3.3: Classification performance comparison using synthetic data distributions. Mean binary
classification AUC (5 repeats x 2-fold cross validation) for each method applied to simulated two-class
data (n = 100 per class) corresponding to 16S (top row; 165 features) or WGS (bottom; 270 features)
characteristics. Signal density (x-axis) measures the percentage of total parts that are different between
classes. Columns represent effect size (percentage of between-class mean differences) of each signal feature.

3.9.4 Classification performance evaluation using real metagenomic data

We next compared the binary classification performance of untargeted DiCoVarML signatures to

existing approaches using real case-control 16S and WGS gut microbiome datasets. To better assess the

versatility of each approach, we tested classification performance in eight unique disease settings across

eight cohorts from four publicly-available data sources (see Methods). Using a paired design, we trained

and tested each approach on the same partitions using 15 repeats of 2-fold cross-validation. For ease of

interpretation here, we characterize paired mean AUC differences (∆ = AUCDiCoV arML −AUCexisting)

between approaches as: “modest” ∈ (0.00, 0.01], “moderate” ∈ (0.01, 0.05], and “large” > 0.05.

For 16S datasets, DiCoVarML signatures achieved the highest mean AUC in all four datasets tested

(Figure 3.4A) when compared to existing methods. Particularly, ALR signatures achieved the highest AUC

on three of four 16S datasets with the Hybrid signature doing best on the remaining dataset. To understand
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the magnitude and significance of differences in AUC between the existing approaches and DiCoVarML, we

used Wilcoxon signed rank tests with a significance level = 0.05 (Figure 3.4B). Large mean differences

with selbal were observed in all datasets tested across all DiCoVarML signature types. We observed

moderate differences with coda-lasso for the CDI, NAFLD, and the Crohn’s classification tasks. Notably,

for the HIV classification task, we only note significant moderate differences in AUC for the signature

obtained by DiCoVarML with the Hybrid approach. We observed modest to moderate differences compared

to clr-lasso on the CDI/Crohn’s classification task and large differences in AUC on the NAFLD and HIV

classification tasks for all DiCoVarML signatures.

For WGS datasets, DiCoVarML signatures again achieved the highest mean AUC in all four datasets

tested (Figure 3.4B), with PLR (2 of 4) and Hybrid (2 of 4) signatures achieving the highest mean AUC.

Examination of mean differences compared to selbal revealed significant large mean differences in AUC

across all datasets tested. For both coda-lasso and clr-lasso we observed significant yet modest to moderate

differences for the cirrhosis (Cirr) and soil-transmitted helminth (STH) classification tasks and large

significant differences for the Colorectal Cancer (CRC) and Schizophrenia (SCZ) tasks. Overall, our

findings from real datasets demonstrate DiCoVarML signatures significantly outperform existing

compositional methods for classifying disease using metagenomic data. In addition to achieving better

classification performance, DiCoVarML signatures are sparse and easily interpretable. Furthermore,

cross-validated performance estimates obtained from models trained with ALR or PLR are more robust and

better representative of out-of-sample performance.

3.9.5 DiCoVarML predicts onset of NEC in preterm-infants

In this case study, we apply untargeted DiCoVarML with PLR and ridge regression to predict the onset

(> 7days) of necrotizing enterocolitis (NEC) in pre-term infants, using publicly-available fecal microbiome

data from MicrobiomeDB [Oliveira et al., 2018] collected as part of the longitudinal NICU NEC study [Olm

et al., 2019] (Figure 3.5). After data preprocessing (see Methods), the dataset contained 136 genera (384

unique taxa) across 902 (non-NEC = 779, NEC = 123) samples from 144 pre-term infants (non-NEC = 120,

NEC = 24). First, we set out to understand if the microbiome compositions were predictive of future NEC.

In order to unbiasedly evaluate the performance of classifiers in this imbalanced setting, we focus on AUC to

assess performance across thresholds in a manner that is not biased to either the minority (NEC) or majority

(nonNEC) group [Fawcett, 2006]. We estimated the classification performance with 20 repeats of 5-fold

stratified (by NEC status and sample) cross-validation using DiCoVarML with ridge regression to obtain a
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Figure 3.4: Classification performance comparison using real 16S and WGS datasets. Paired 15
repeats of 2-fold cross validation for each approach when applied to publicly-available case (shown) vs.
control datasets. (a) AUC results for each method using WGS (top row) or 16S (bottom row) datasets. Grey
points represent seed specific results. Grey lines connect paired seed specific AUC scores. Heavyweight
points in color indicate overall mean AUC for each approach. Red point indicates approach with highest
mean AUC. (b) Comparison of mean AUC differences between existing compositional approaches (y-
axis) and DiCoVarML (bars). Results from Wilcoxon signed-rank test comparing AUC scores are shown.
Benjamini–Hochberg-corrected p-values rounded to the nearest 0.0001 indicate high levels of significance
in most cases (“N.S.” indicates not significant at the 0.05 level).

mean AUC = 0.676 (95% CI: 0.655 – 0.696) (Figure 3.5A). To ensure that patterns learned by the classifier

were non-random, we computed the AUC under permuted disease labels within the same folds, achieving a

mean AUC = 0.616 (95% CI: 0.595 - 0.636). Using the Wilcoxon signed rank test, we confirmed the true

classifier performed better than random (p = 2.465 · 10−5) indicating the classification model learned
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non-random disease specific association patterns (Figure 3.5B/5C). To further explore these patterns and

identify a candidate set of biomarkers, we trained the final DiCoVarML guided ridge regression on the full

dataset, uncovering a microbial network connecting 8 genera by 14 ratios that is predictive of future NEC

(Figure 3.5B), revealing increased abundance of Staphylococcus, Klebsiella, Cutibacterium, and Gemella

relative to this microbial network were associated with future NEC onset. Using the final trained model, we

next examined the regression scores for each sample relative to the number of days until NEC onset (Figure

3.5D), showing classification performance was strongest 11–17 days before onset with a notable decrease in

accuracy 18 or more days before onset. Finally, analysis of survival agnostic regression scores from the

NEC positive samples revealed a significant association (p = 4.566 · 10−5) between the regression score

and survival with higher scores associated with samples from infants that did not survive (Figure 3.5E).

3.9.6 DiCoVarML reveals association between CRC and gut microbiome composition

Lastly, we demonstrate the targeted DiCoVarML with ensemble modeling approach in a novel

11-cohort meta-analysis to classify fecal microbiome samples as colorectal cancer (CRC) vs. control.

Specifically, we demonstrate how targeted (T = 50) DiCoVarML can be used to identify a predictive PLR

signature (between species). Using the curatedMetagemic R package [Pasolli et al., 2017] we compiled and

processed case-control WGS data from 11 studies (see Methods): keeping only samples with at least 106

total reads, our final dataset included 1,305 samples (CRC = 653, control = 652). To estimate CRC vs.

control classification performance we used 252 repeats of stratified (by dataset) cross-validation where, for

each partition, both splits (5 and 6 of the 11 total datasets) were used once for training and testing. From

this, we observed a mean AUC = 0.795 (95% CI: 0.791 – 0.798) which was significantly (p < 2.22 · 10−16)

higher than the mean AUC = 0.498 (95% CI: 0.493 – 0.503) obtained with permuted labels (Figure 2.6A),

confirming non-random predictive patterns. We next used DiCoVarML to infer, from the full dataset, a

targeted 50 species PLR signature predictive of CRC. In doing this, we identified 259 logratios between the

targeted 50 species as being important for classification (Figure 2.6B). To understand the model predictions,

we computed ensemble model scores (see Methods), revealing higher scores among CRC samples with

control samples generally having lower scores (Figure 2.6C). After simplifying the log-ratio network, we

next examined the multivariate association of individual taxa to each group (CRC/control) (Figure 2.6D),

revealing Peptostreptococcus stomatis, Gemella morbillorum, and Fusobacterium nucleatum as the top

three taxa associated with CRC, with increased abundance of these species within the microbial network

(Figure 2.6B) associated with higher ensemble model scores (Figure 2.6C). Likewise, we found Alistepes
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Figure 3.5: Predicting NEC onset (> 7 days) in premature infants using gut microbiome composition in
the first few months of life using untargeted DiCoVarML with ridge regression applied to metagenomic
profiled fecal samples (n=1,100) from the NICU NEC study. (a) AUC (paired by seed) from stratified (by
sample and class) cross-validation (20 repeats x 5-fold) with empirical and permuted labels with p-value from
a Wilcoxon signed-rank test and overall mean AUC shown. (b) Predictive microbial logratio network after
applying DiCoVarML to the full data. Nodes (v = 8) represent selected genera with sizes indicating the sum of
absolute coefficients (βi) associated with each node. Each directed edge (e = 14) indicates a ratio (outgoing
part over receiving part) with thickness proportional to the absolute coefficient βi (larger absolute coefficient
= thicker edges). Blue/Red node colors indicate increased abundance (relative to network) is associated
with nonNEC/NEC samples. (c) Distribution of logistic regression scores (Score = Σe

i=1βi · Logratioi)
from model fit to full data. (d) Black line represents overall mean score by day. Dashed line indicates the
non-NEC (lower) vs. NEC (above) decision threshold. Red points indicate misclassification (nonNEC vs.
NEC). (e) Logistic regression scores of NEC positive samples only stratified by survival, with p-value from
Mann-Whitney U test.

inops, Solobacterium moorei and Eubacterium eligens to be the top three species associated with control

samples (Figure 2.6D) where increased abundances of these species within the microbial network are

associated with lower ensemble model scores. Finally, we tested if there was an association between the

ensemble scores and cancer stage via AJCC (n = 258) or TNM (n = 168) staging. Indeed, using the

stage-agnostic ensemble scores, we found strong associations between the ensemble score and stage for
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both AJCC (p < 3.696 · 10−5; Figure 2.6E) and TNM (p < 0.043; Figure 2.6F) labeled samples.

Combined, our results indicate higher ensemble model scores are associated with advanced cancer stages,

highlighting potential clinical utility of DiCoVarML.

Figure 3.6: Caption on next page

55



Figure 3.6: Meta-analysis classifying CRC vs. control from gut microbiome composition using targeted
(T=50) DiCoVarML with ensemble model using samples (n=1,305) from 11 publicly-available cohorts.
(a) AUC (paired by seed) with stratified (by dataset) cross-validation (252 splits x 2-fold) with empirical
and permuted labels with p-value from a Wilcoxon signed-rank test and overall mean AUC shown. (b)
Predictive microbial log ratio network after applying DiCoVarML to the full data. Nodes (v = 50) represent
selected genera with sizes indicating the sum of absolute coefficients (βi) associated with each node. Each
directed edge (e = 259) indicates a ratio (outgoing part over receiving part) with thickness proportional
to the absolute coefficient βi (larger absolute coefficient = thicker edges). Blue/Red node colors indicate
increased abundance (relative to network) is associated with nonCRC/CRC samples. (c) Distribution of
ensemble model scores from model fit to full data. (d) Species level contributions to ensemble model scores.
Coefficient size (x-axis) indicates overall contribution to score where absence of nonCRC (blue bars) species
are associated with CRC and the absence of CRC (red bars) genera are associated with nonCRC samples. (e)
Boxplot of ensemble model scores stratified by AJCC stage (n = 258). (f) Boxplot of the ensemble model
scores stratified by TNM stage (n = 168). F -statistics and p-values from Score ∼ Stage linear model.

3.10 Discussion

In this paper we introduced and benchmarked the DiCoVarML framework for robust feature selection

and classification of compositional datasets using log-ratio-transformed metagenomic features. Through our

simulated example data scenarios and real-world data case studies, we have demonstrated the

appropriateness and utility of this framework for supervised classification, as well as its particular relevance

for metagenomic data. Importantly, our framework flexibly supports both targeted and untargeted feature

selection in a multi-level manner to identify selected parts (e.g., taxa, metabolites) and a subset of logratios

between those parts. All of the code used to generate our results are included as part of the DiCoVarML R

package developed to implement this framework.

3.11 Methods

3.11.1 DiCoVarML framework

We here describe the details of the various components of the DiCoVarML framework.

3.11.1.1 Data processing: sparse features and treatment of zeroes

The DiCoVarML framework takes as input taxonomic count tables from 16S or WGS sequencing, with

or without zeroes. For taxonomic tables, reads should be assigned a taxonomy using a suitable database (e.g.

SILVA, Greengenes, RDP, NCBI) and aggregated to a taxonomic level of interest (e.g. Genus, Family).

DiCoVarML can handle any relative data where logratio based predictors are of interest. In building models

in terms of logratios, one must necessarily select a strategy for handling zeroes and sparsely-counted

taxonomic parts.
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Sparse features are removed with a default 10% threshold, retaining taxa (parts) if present (counts ≥ 1)

in at least 10% of samples. After sparse features have been removed, any samples with zero total reads on

the remaining parts are also removed. While flexible, by default the DiCoVarML framework handles zeroes

via the multiplicative replacement strategy described in Ref. [Martı́n-Fernández et al., 2015] as implemented

in Ref. [Hinton and Mucha, 2021] for metagenomic data. Importantly, because this strategy reinterprets a

zero to mean that taxa are present but below a detection limit (uniform across parts), the logratios between

non-zero parts remain preserved. Moreover, in this strategy the logratio between two zero-replaced parts

becomes zero and thus contributes a zero value to a regression formula. Notably, while we find this strategy

to be sufficient for robust predictions in our study here, zeroes can instead be imputed using others

techniques such as those found in the zCompositions R package if desired.

In the application of our framework here, we aim to most conservatively minimize the possibility of any

information leaking from test/validation sets leaking into discovery/train sets. To this end, we perform the

removal of sparse parts/samples and the multiplicative zero replacement on both the training and discovery

sets (described below).

3.11.1.2 Outer-loop cross-validation: classification performance

Because feature selection is an important step in the DiCoVarML framework, our cross-validation

schema must account for this to minimize over-fitting. DiCoVarML uses nested feature selection to

minimize the chance of reporting artificially high AUC estimates that might be obtained when feature

selection is performed on the full dataset before cross-validation. Specifically, in frameworks where feature

selection is not nested, inflation of AUC or other classification performance metrics can be directly

attributable to information leakage from the test set during model training. The nested schema used in the

DiCoVarML framework directly prevents such information leakage.

We estimate classification performance through r repeats of k-fold cross validation, stratified by group

labels. Importantly, selection of the model type and number of parts within the DiCoVarML framework is

nested and treated as a hyper-parameter that is tuned, with part and ratio feature selection performed as part

of the training. Each fold is left out once for testing with the remaining folds used for discovery in the inner

loop (described below). This process creates k unique discovery-test partitions for each repeat. For

concreteness here, we denote the ith testing fold of the jth repeat as Υij and the union of the remaining

folds in the jth repeat as the discovery set Ψij =
⋃

l ̸=iΥlj .
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Each discovery set is further partitioned in the inner loop (as described below) to perform model and

part selection. After fitting this model and selected parts to Ψij (and re-selecting a subset of logratios from

the available parts as part of the fitting procedure), we then assess performance on the corresponding test set,

Υij . The overall classification performance estimate is obtained by averaging over all ij test fold indices.

We focus here on AUC as the primary metric of interest, but other measures could also be used (e.g.,

AUPRC, accuracy, sensitivity, etc.).

We note that the computational costs involved in the DiCoVarML framework are highly dependent on

the number of parts analyzed; reasonable computational time and memory requirements can be expected for

< 500 parts after preprocessing.

3.11.1.3 Inner-loop cross-validation: model and part selection

Model selection, including selection of either a targeted or untargeted number of parts selection, occurs

within an inner cross-validation loop. In this inner loop, we further partition the (outer) discovery set Ψij

into 2 folds, Ψ1
ij and Ψ2

ij , to be used as training-validation pairs. While this process can be repeated, the

default DiCoVarML setting is to use a single repeat in this step to reduce computational time. Training on 1

of these 2 folds at a time, we identify a subset of T parts (e.g., taxa, metabolites, etc.) which then restrict the

set of available logratio features for model building. In our targeted feature selection mode, the parts subset

size T is user defined. In contrast, T is selected automatically in the untargeted mode.

3.11.1.4 Targeted multi-level feature selection

The targeted multi-level feature selection method takes as input raw count data from a training set Ψf
ij ,

discovery set Ψij , or the full data for final model development (after out-of-sample performance has been

estimated from the outer-loop cross-validation). Letting p be the number of parts after preprocessing, either

m = (p2) = p(p− 1)/2 pairwise logratios are computed for PLR signatures or the m = p− 1 additive

logratios are computed for ALR signatures forming the base log-ratio matrix R. For ALR/Hybrid signatures

the reference part is selected such that given this reference, the Procrustes correlation between the ALR and

the full PLR geometry is maximized [Fawcett, 2006]. Part-level feature selection starts by computing the

differential compositonal variation (DCV) scores [Hinton and Mucha, 2021] for each logratio in R. The

DCV scores are given by DCV (R) = V̌ . Specifically, DCV scores are computed using the dcvScores

function from the selEnergyPermR R package [Hinton and Mucha, 2021]. We then construct a weighted

DCV network defined as G = (V,E, V̌ ) where V is the set of p part vertices, E is the set of m edges or

pairwise logratios between parts, and V̌ ∈ Rm×1 are the weights given by logratio DCV scores. Let the

58



(unweighted) adjacency matrix A ∈ Rp×p and weight matrix W ∈ Rp×p be derived from G. We compute

the vertex strength for the uth vertex (representing the uth part) as su =
∑p

v=1 auvwuv. We select the top ti

parts from these strengths and compute all (ti2) pairwise logratios between them for PLR/Hybrid signatures

or all ti − 1 additive logratios (with a Procrustes correlation maximizing reference) for ALR signatures to

form the targeted logratio matrix L. Log-ratio-level feature selection is then carried out by first computing

the DCV scores for each logratio, retaining only those with positive DCV scores. With this, the subset of

logratios is selected by sequential addition from the list of logratios sorted by DCV score (high DCV scores

first) until the subset includes at least ti parts.

3.11.1.5 Model and target part selection

Using inner-loop cross-validation the best model and number of target parts can be selected by

averaging the AUC estimates across the {train,validate} sets. From these results we select the model

(mmax) and number of target parts (tmax) with the highest average AUC to to estimate classification

performance (across discovery sets Ψij) or build a final model (using full data).

3.11.1.6 Machine learning models

While the choices of which machine learning model paradigms to use within DiCoVarML is flexible

and can be determined by the user, we have here focused on the ridge regression and ensemble model

modeling paradigms as the defaults to be utilized in DiCoVarML. Ridge regularized logistic regression in

DiCOVarML uses the glmnet R package with alpha = 0 and type set to either binomial for binary

classification or multinomial for multi-classification. Cross-validated AUC values are computed and stored.

For final model development, regression scores and coefficients can be directly interpreted from the model

using either the predict() or coef() functions from the R STATS package.

For the average probability ensemble model that we use by default in DiCoVarML, we apply the

following machine learning algorithms: random forest (ranger R package), support vector machine with

radial basis function (kernlab R package), regularized regression (glmnet R package), random forest with

extra trees (ranger R package), and partial least squares discriminate analysis (pls R package). Each model

is fit (to the appropriate fold) and the predicted class probability ϕ̄i for the ith sample (e.g., in application to

the corresponding validation or test fold) is computed as the average probability across all models used.

Cross-validated AUC values are computed and stored. For all machine learning modeling the Caret R

package is used. All models are trained with default parameters except random forest models are trained

with 500 trees and mtry tuning grid using either 1 or the square-root of the number of logratio features.
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3.11.1.7 Final model scores and logratio coefficients

In DiCoVarML, final model scores are computed after cross-validation performance has been estimated.

For ridge-regression models, the final model score for each sample is obtained after fitting a ridge

regularized logistic model to all data (after processing to remove sparse features/samples and zeros) using

the cv.glmnet() from the glmnet R package with alpha = 0 and default settings otherwise. For ridge

regression models the model score after fitting becomes:

yi = β0 +

|Pfinal|∑
j=1

βjpij

The fitted β coefficients (j ≥ 1) correspond to logratio features selected for the final logratio signature.

Ensemble model scores for binary classification are obtained after fitting the ensemble model (see

above) to all data (after processing). While direct interpretations of ensemble models are difficult, in

DiCoVarML we transform each average prediction probability ϕ̄i to an unconstrained ensemble model score

εi = log(ϕ̄i/(1− ϕ̄i)), imputing non-zero values in the numerators or denominators of this transformation

by the same procedure described previously for zeros in the data. We then fit a secondary ridge penalized

linear regression model (adjusting for class/group) to understand how each logratio in the data contributes to

ε, using the glmnet R package with default λ grid. The resulting model coefficients may be used to interpret

how each logratio contributes to the final ensemble model score. Specifically, we solve the following

penalized linear model problem with adjusting for group/class (κ):

min
β0,β1,β

1

N

N∑
i=1

1

2

(
εi −

[
β0 + β1κ+ βT pi

])2
+ λ

||β||22
2

From this, for ensemble models, βi (for i ≥ 2) corresponds to the coefficients for each logratio in Pfinal and

can be used interpret how each logratio contributes to the final ensemble model score.

3.11.2 Synthetic compositional data generation

In this section we describe in detail how we generate synthetic data and decision boundaries for the

examples in Figure 2 and the synthetic data distribution benchmarks in Figure 3.3. Notably, decision

boundaries can be described as hypersurfaces that separate a space into different classes/groups. We

generate binary classification problems in our synthetic examples and benchmarks. We also describe the

machine learning analysis used to assess classification performance.
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3.11.2.1 Isoproportional decision boundary

Given a three part composition (p, q, r), an isoproportional line representing a fixed ratio between 2

parts is a straight line on the 2-dimensional simplex. That is, the isoproportional line between 2 parts (p, r)

is defined by the relationship p/r = C for constant C (independent of q). We simulate two-class

compositional data from a simple additive logistic normal distribution [Aitchison, 1982] with D = 3 parts

(p, q, r) as follows. Working in the d = D − 1 = 2 dimensional space of logratios (log p
r , log

q
r ), we define

the mean vectors (m1,m2) ∈ Rd and covariance structures (Σ1,Σ2) ∈ Rd×d for each class. The simulated

training data in the top row of Figure 2 was generated from multivariate Gaussian distributions with means

m1 = (−0.5, 2.0) and m2 = (0.5, 2.0) and covariances diag(Σ1,Σ2) = 0.2 and off-diagonal covariance

elements drawn uniformly at random on [0.0, 0.1], then ensuring the covariance matrices are semi-positive

definite by application of the nearPD() function from the R Matrix package. We note in particular that these

simulated points correspond to a ground-truth isoproportional boundary p/r = 1 (i.e., log p
r = 0). Finally,

we apply the one-to-one additive logistic transformation to map each simulated logratio point r ∈ Rd back

to x ∈ RD in the space of compositions by xi = exp(ri)/S for i = 1, . . . , d and xD = 1/S, with

normalization constant S = exp(r1) + · · ·+ exp(rd) + 1.

The test data in the top row of Figure 2 was generated by the same process as the training data but with

means v1 = (−0.5,−2.0) and v2 = (0.5,−2.0). Importantly, the positions of the test means correspond to

the same isoproportional boundary as the training data but centered in a different region of the simplex due

to different-scaled contributions from the q component, representing, e.g., possible out-of-study differences

across populations, methodologies, or noise levels.

3.11.2.2 Compositional line decision boundary

Using the so-called “Aitchison’s Geometry,” compositional boundaries on the simplex can be defined

using geometric power transformations and perturbation operations [Pawlowsky-Glahn et al., 2007]. Given

a compositional vector z = [z1, . . . , zD] on a (D − 1)-dimensional simplex (that is, constrained to∑
i zi = 1), the power operation is defined by α⊙ z = [zα1 , . . . , z

α
D]/

∑
i z

α
i . Similarly, the perturbation

operation between two compositional vectors y and z is defined by y ⊕ z = [y1z1, . . . , yDzD]/
∑

i yizi.

Armed with these algebraic operations, we can define a compositional-line decision boundary

b(α) = y⊕ (α⊙ z) by specifying y and z, with α ∈ [−∞,∞]. The boundary in the bottom row of Figure

2 was defined by setting y = (1/3, 1/3, 1/3) and z = (0.6, 0.3, 0.1).
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For interpretation, we emphasize that a decision boundary constructed in this way is equivalent to the

zero level set of particular linear combinations of logratios, noting that different linear combinations of

logratios may be algebraically equivalent to one another. Indeed, such linear combinations of logratios are

then equivalent to a linear combination of log part values which are automatically constrained to be

independent of a constant multiplicative factor applied uniformly to all values. In particular, in terms of the

composition (p, q, r), the decision boundary in the bottom row of Figure 2 using the y and z listed above is

equivalent to the zero level set of

f(p, q, r) = 1
log 2 log(

p
q )−

1
log 3 log(

q
r )

.
= 1.44 log p− 2.35 log q+ 0.91 log r. That is, f > 0 is on one side

of the boundary with f < 0 is on the other side. We again note there are other linear combinations of

logratios giving the same zero level set boundary. We call attention to the fact that the resulting coefficients

on the logged parts (i.e., on log p, log q, log r) sum to zero by construction, since any linear combination of

logratios is independent of an overall multiplicative scale applied uniformly to each component part. We

also note that the decision boundary in the bottom row of Figure 2 has zero offset because of the symmetry

in the selected y used here, but non-zero offsets would result from other y selections. Finally, we note that

the zero level set of a linear combination of logratios (with possible non-zero offset coefficient) is left

unchanged by a scalar multiple applied across all coefficients; that is, in a sense aligned with logistic

regression, the f = 0 boundary of equal probability would be left unchanged but the certainty one might

assign to a class label prediction is affected by how quickly f changes away from the zero level set.

To generate simulated data (perfectly) separated by the compositional line boundary b(α), we generate

n = 100 random α values uniformly on [−10, 10] and evaluate b(α) for each point. We then randomly shift

each of these points to the same side of the boundary by sampling the shift size ∆ uniformly on [0.1, 0.2]

and moving the point to x = b(α)⊕ (∆⊙ ρ), where the constant shift direction here is set to

ρ = (1, 1, 100)/102. We similarly generate points on the other side of the boundary by the same procedure,

starting from n = 100 new α values and a new ∆ for each point, but with the shift given by

x = b(α)⊕ ([−∆]⊙ ρ). Finally, we partition this data into train and test sets according to the value of the

first component (x1 = p in (p, q, r)) of each data point, with x1 > 1/3 points assigned to the train set and

those with x1 ≤ 1/3 assigned to the test set.

3.11.2.3 Machine learning analysis

For the isoportional decision boundary simulation 100 samples were generated for both classes of data

for both training and testing sets. Using the R caret and Random Forest packages, random forest models
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were fit to the training data with mtry = 2 with ntrees = 500. Training set AUC was estimated using 10

repeats of 10-fold cross-validation. Final models for all data transformations were fit to the full training

dataset and used for prediction on the testing dataset. Classification performance was estimated using the

AUC metric from the R pROC package.

For the compositional line decision boundary, 200 samples for each class were simulated for both

training and testing sets. Using the training set, feature discovery and model fitting was carried out with the

glmnet R package with alpha = 1 (LASSO penalty). Only the selected features from these procedures were

included in the final training and test data. Notably, to simulate true feature selection, such as in the case of

biomarker discovery, for relative abundance normalized and CLR-transformed data, the

normalization/transformation operation was applied to the selected features. For PLR-transformed data,

only the selected ratios were computed on the training and test data. A final logistic regression model was fit

to the training data and tested on the test data for all data transformations. Classification performance was

assessed using the AUC performance metric.

3.11.3 Synthetic 16S and WGS data simulation

To simulate data with real 16S and WGS characteristics, we used the selEnergyPerm R package.

Specifically, we used the simFromExpData.largeMeanShft() function from the selEnergyPermR package to

simulate count data with differences in the mean vectors of additive logratio transformed data. To do this, we

used the process described in Ref. [Hinton and Mucha, 2021] where a zero inflated negative binomial model

(ZINB) is fit to healthy WGS sequenced samples from the Observational Study of Blood Glucose Levels

and Gut Microbiota in Healthy Individual trial [Zeevi et al., 2015] using the curatedMetagenomicData

[Pasolli et al., 2017] and 16S sequenced fecal samples from the TwinsUK population [Goodrich et al., 2014]

using the zinbwave R package. We note parametric simulations and goodness of fit analysis in Ref. [Calgaro

et al., 2020] demonstrate ZINB models are reasonable for modeling metagenomic count data. Once the

ZINB models were fit we synthesized binary class count data for n = 200 samples (100 in each class), with

true differences between the classes. In addition to the raw count matrix, the primary experimental

parameters of the simFromExpData.largeMeanShft() function are the featureShiftPercent parameter (effect

size) which controls the magnitude of difference between mean vectors of each class and the

perFixedFeatures parameter (Signal Density) which controls the number of parts that will have simulated

between class mean differences where higher values are associated with fewer parts being shifted (sparse

signal density). From a machine learning classification perspective, these parameters directly control how
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difficult or easy the learning task will be where smaller effect sizes among fewer parts are more difficult to

learn vs. larger effect sizes among more parts which are easier to detect. Here we set featureShiftPercent =

{18%, 24%, 30%} and perFixedFeatures = {50%, 70%, 90%, 95%, 98%}.

3.11.4 Publicly-available datasets used for benchmarking

We utilized 16S and WGS data from several publicly-available data sources as benchmark data,

extracting processed OTU/taxa tables with matched clinical data. The following data sources were used:

3.11.4.1 curatedMetagenomicData

Metagenomic datasets were extracted from version 3.0.0 of the curatedMetagenomicData [Pasolli et al.,

2017] R package. The curatedMetagenomicData R package provides a common interface to access

standardized metagenomic data (e.g. relative abundance, pathway abundance) for new analyses. Using the

curatedMetagenomicData() function in this package, the following studies were extracted by study ID:

ZhuF 2020 [Zhu et al., 2020], RubelMA 2020 [Rubel et al., 2020], WirbelJ 2018 [Wirbel et al., 2019], and

QinN 2014 [Quinn et al., 2019]. The SummarizedExperiment R package rowData() and assay() functions

were used to extract the taxa information and count tables respectively. Sample clinical data were extracted

directly from the curatedMetagenomicData object using the SummarizedExperiment colData() function.

Each study was checked for repeated measures on subjects to ensure appropriate cross-validation schemes

were applied. Only samples with at least 106 total reads were included in our analysis. Additionally, taxa

were aggregated to the species taxonomic level.

3.11.4.2 Qitta

Metagenomic data for the gut microbial metabolism and nonalcoholic fatty liver disease (NFALD)

study [Sharpton et al., 2019] were downloaded from Qitta [Gonzalez et al., 2018]. Qitta is an open source

multi-omics platform that provides database resources for storing and processing publicly-available omics

studies. Using this platform, the sample information and two related BIOM files were downloaded directly

from the web interface using Qitta Study ID 11635. The 16S BIOM files were loaded in R using the

biomformat R package. For this study, the total samples (n = 290) were filtered to only include samples

with a NFALD status collected with at least 1,000 total reads, yielding 185 samples (NFALD+Cirrhosis =

44, nonNFALD+Cirrhosis=141). Taxa were aggregated to the genus taxonomic level.
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3.11.4.3 MicrobiomeHD

16S data from the clostridium difficile infection (CDI) microbiome study [Schubert et al., 2014] were

downloaded from the microbiomeHD database [Duvallet et al., 2017], a standardized database of uniformly

processed publicly-available case-control studies. Specifically, the

cdi schubert results.tar.gz file was downloaded from the microbiomeHD web interface. Within this

directory, we extracted the OTU data from cdi schubert.otu table.100.denovo.rdp assigned and sample

clinical data from cdi schubert.metadata.txt. Taxa data were aggregated up to the genus level.

3.11.4.4 Selbal

The 16S Crohn’s and HIV benchmark datassets originally included in the presentation of the selbal

method [Rivera-Pinto et al., 2018] were extracted from the cloned selbal R package available on gitHub

[Rivera-Pinto et al., 2018].

3.11.5 Publicly-available case study datasets

3.11.5.1 Necrotizing enterocolitis (NEC)

Fecal metagenomic data were extracted from microbiomeDB version 23 [Oliveira et al., 2018], a web

based discovery tool and database that uniformly processes and stores 16S and WGS datasets along with

related clinical metadata, using the NICU NEC (WGS) study ID. The longitudinal NICU NEC study [Olm

et al., 2019] contains 1,100 microbiome-profiled fecal samples from 150 pre-term infants collected during

the first months of life where some infants go on to develop NEC. For our case study, we downloaded

processed WGS taxon abundance (NICUNEC.WGS.taxon abundance.tsv) and sample detail

(NICUNEC.WGS.sample details.tsv) tables. The NEC positive samples were filtered to include only

microbiomes related to an onset of greater than 7 days (Days of period NEC diagnosed > 7) and samples

after the first day (Age at sample collection days > 0) of life (since some samples developed NEC within

the first 7 days of life). The filtered NEC positive samples were then merged with the NEC negative samples.

The taxa tables were aggregated at the genus level. Further, because these data are longitudinal and involve

repeated measures, cross-validation folds were evenly stratified by infant and NEC.

3.11.5.2 Colorectal cancer (CRC) meta-analysis

Fecal metagenomic datasets for our 11-cohort meta-analysis were processed and collected from the

curatedMetagemic R package (also used for some of the benchmark datasets, as described above). In

particular, we aggregated sample clinical data and WGS fecal microbiome data (n = 1, 395) from the
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following study IDs: FengQ2015 (n = 107) [Feng et al., 2015], GuptaA2019 (n = 60) [Gupta et al., 2019],

HanniganGD2017 (n = 55) [Hannigan et al., 2018], WirbelJ2018 (n = 125) [Wirbel et al., 2019],

ThomasAM2018b (n = 60) [Thomas et al., 2019], ThomasAM2018c (n = 80) [Thomas et al., 2019],

VogtmannE2016 (n = 104) [Vogtmann et al., 2016], ThomasAM2018a (n = 53) [Thomas et al., 2019],

YachidaS2019 (n = 509) [Yachida et al., 2019], YuJ2015 (n = 128) [Yu et al., 2017a], ZellerG2014

(n = 114) [Zeller et al., 2014]. Only samples with at least 106 total reads were retained (n = 1, 305). To

most conservatively estimate out-of-sample generalizability, all (outer loop) cross-validation partitions in

this meta-analysis were strictly stratified by dataset only. Because only 9 samples from the

HanniganGD2017 were retained, we always included this dataset in the partition with 6 data sets (the other

partition containing 5 data sets). Our analysis then considered all
(
11−1
5

)
= 252 such partitions into 5/6

datasets, using each split once for training and testing.

3.11.6 Use of existing methods in benchmarks

3.11.6.1 Selbal

To estimate the classification performance of selbal we used the selbal R pacakge available on github

[Rivera-Pinto et al., 2018]. Because the primary selbal function in the selbal package performs cross

validation internally, the following process was used to comparably nest the selbal feature selection method

and test on common folds. Using the count data from the ijth discovery set, we identify taxa to include in

the balance using the selbal.aux() function with the zero.rep = “one”. If the number of taxa returned after

this step is ≤ 1 then all taxa are included. After taxa have been identified we extract the balance values for

both the discovery and testing folds using the bal.value() function. A final logistic regression model is fit to

the balances with corresponding class labels for the discovery set and used to make predictions on the test.

Performance metrics are computed as described above.

3.11.6.2 CLR-LASSO

To implement the clr-lasso method we use standard functions in a manner consistent with [Susin et al.,

2020]. To comparably apply the clr-lasso method in a nested way to common folds for benchmarking, we

first compute the CLR transformation on the discovery/test sets after adding a pseudo count of 1. Feature

scaling is first estimated from the discovery set and then applied to scale features in the discovery and test

sets. The glmnet R package is then used to fit a LASSO model (alpha = 1) to the discovery data for feature

discovery. If the number of features selected after this step is ≤ 1 (indicates LASSO failed to converge) then

all features are used. After subsetting the discovery and test sets for the ijth parititon to include only the
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features selected (nested feature discovery), the CLR transformation is recomputed. Finally, after scaling

features as described above, a LASSO penalized logistic regression model is fit to the discovery data (after

feature selection) and used to make predictions (i.e. using the predict() function with ”lambda.min”) on the

test data (after feature selection). Overall performance metrics are computed as described above.

3.11.6.3 Coda-LASSO

To implement the coda-lasso method for feature selection we cloned functions from the referenced

github repository in [Susin et al., 2020] and carried out the analysis similar to the github documentation.

Specifically, to comparably estimate classification performance in a nested manner on common folds, the

following process was used. We first added a 1 pseudo count to the discovery and testing data sets (default

for coda-lasso). Here, to minimize test data leaking into the discovery set, the z-transform (coda-lasso

specified) was estimated from the discovery data only and applied to both the discovery and test data for the

ijth partition. To identify a suitable lambda value for input into the coda logistic lasso() function, we used

the glmnet R package to estimate a grid of lambda values and then selected the lambda value that both

included > 0 features and maximized the “proportion of explained deviance” estimated from the

coda logistic lasso() function. Once lambda was estimated, the coda logistic lasso() was used to select a

subset of features for further model development. After subsetting the discovery and test sets for the ijth

partition to include only the features discovered in the previous step, a pseudo count of 1 was added and the

z-transformation was again performed as described above. If the number of features selected after this step

was ≤ 1 (indicates LASSO failed to converge) then all features were used. We again optimize lambda and

construct a final LASSO regularized logistic regression model using the coda logistic lasso(). The returned

“beta” coefficients from the coda logistic lasso() function were used to compute the final scores for both the

discovery and test data. From this, a logistic regression model was fit to the discovery data (after feature

selection) and used to make predictions on the test data. Overall performance metrics are computed as

described above.

3.12 Data availability

All data used to benchmark the DiCoVarML framework is publicly available and can be accessed as

described in the Methods section.

3.13 Code availability

All functions required to implement the DiCoVarML framework have been made publicly available in

the DiCoVarML R package available on gitHub at https://github.com/andrew84830813/DiCoVarML.git. All
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code used here to benchmark the DiCoVarML framework, conduct case studies, and produce the figures is

accessible on github at

https://github.com/andrew84830813/DiCoVarML.ProjectRepo.git.
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CHAPTER 4: SELENERGYPERM NASAL MICROBIOME ANALYSIS3

4.14 Introduction

Approximately 7 million adults and more than 3.5 million youth are current electronic cigarette

(e-cigarette) users [Wang et al., 2017, Leventhal et al., 2019, Wang et al., 2020]. E-cigarettes heat and

aerosolize e-liquids containing nicotine and flavorings dissolved in humectants propylene glycol and

glycerin. E-cigarette use has been steadily increasing over the past decade, especially among teenagers and

young adults, reversing the previous decline in youth tobacco use [Wang et al., 2017, Cullen et al., 2019].

Public health crises, such as the outbreak of e-cigarette and vaping-associated lung injury in 2019-2020 and

the ongoing SARS-CoV-2 global pandemic, highlight the importance of research examining the effects of

e-cigarettes on respiratory immune function [Kiernan et al., 2021, McAlinden et al., 2020].

There is emerging evidence that e-cigarettes disrupt respiratory innate immunity. Previous work has

demonstrated the potential for e-cigarette toxicity and impairment of respiratory immune defense using in

vitro and in vivo models as well as in samples from human subjects [Martin et al., 2016, Reidel et al., 2018,

Clapp et al., 2017, Madison et al., 2019, Ghosh et al., 2019]. For example, e-cigarette users have altered

markers of innate immune responses in induced sputum and bronchoalveolar lavage fluid in comparison

with smokers and nonsmokers [Reidel et al., 2018, Ghosh et al., 2019], and chronic e-cigarette exposure in

mice can dysregulate endogenous lung lipid homeostasis and innate immunity [Madison et al., 2019, Sussan

et al., 2015]. In vitro studies have demonstrated that e-liquids, e-cigarette aerosols, and their components

can impair the function of ciliated airway cells and respiratory immune cells [Clapp et al., 2017, Gerloff

et al., 2017, Muthumalage et al., 2017, Behar et al., 2018, Clapp et al., 2019, Hickman et al., 2019].

Furthermore, e-cigarette exposure has been shown to enhance bacterial virulence and adhesion to airway

cells [Hwang et al., 2016, Miyashita et al., 2018], suggesting that e-cigarette exposure may impact the

3This chapter was adapted from our manuscript(preprint) available on Research Square. For context, the full details
from the manuscript/preprint are included here: follows: Elise Hickman*, Andrew Hinton*, Bryan Zorn et al.
E-Cigarette Use, Cigarette Use, and Sex Modify the Nasal Microbiome and Nasal Host-Microbiota Interactions, 03
August 2021, PREPRINT (Version 2) available at Research Square [https://doi.org/10.21203/rs.3.rs-725763/v2].
*indicates that these authors contributed equally to the work; My contributions to this work include the multivariate
statistical and machine learning methods and analysis as described in the Methods and Results of the manuscript.
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respiratory microbiome. However, the effects of e-cigarette use on the respiratory microbiome in humans

have not been evaluated.

The respiratory microbiome includes distinct communities of microbiota along the length of the

respiratory tract [Man et al., 2017]. Similar to microbial communities at other body sites, respiratory

microbiota interface with the host immune system, and dysbiosis of the respiratory tract microbiome has

been associated with diseases, including cystic fibrosis, chronic obstructive pulmonary disease, asthma, and

chronic rhinosinusitis, as well as with disease exacerbations and smoking cigarettes [Man et al., 2017,

Ubags and Marsland, 2017, Charlson et al., 2010, Ramakrishnan et al., 2016]. Sampling the nasal

microbiome is straightforward in contrast to the lower airway microbiome, which is easily contaminated

with oral microbiota during specimen collection [Grønseth et al., 2017]. In addition, the nose is an

important gatekeeper in the respiratory tract, as potential pathogens must often colonize this region before

progressing to the lower respiratory tract [Man et al., 2017]. This role has become even more clear and

relevant with the emergence of SARS-CoV-2, with recent studies showing associations between the nasal

microbiome and SARS-CoV-2 infection [Di Stadio et al., 2020, Rosas-Salazar et al., 2021]. Of note is that

dysbiosis of the nasal microbiome specifically has been associated with smoking cigarettes [Charlson et al.,

2010], and gene expression and histopathological changes due to smoking are similar in the nasal and lower

airway epithelium [Martin et al., 2016], supporting the use of the nasal microbiome for studying the effects

of environmental exposures on the respiratory microbiome.

Mechanistic study of the human microbiota is an important focus when studying the human

microbiome, where identifying microbes associated with disease is paramount [Gilbert et al., 2018]. To

uncover complex interactions in microbiome association studies changes to classical statistical methods are

required [Li, 2019]. In addition, computational methods that robustly integrate disparate data types with 16S

microbiome data for association testing have been limited [Jiang et al., 2019]. In particular, microbiome

datasets have interspecies interactions, small sample sizes, high dimensionality (where the number of

features greatly exceed the number of samples), are sparse (where the data matrix contains many zeroes),

and when converted to relative abundance are compositional, meaning the total number of reads is not

informative [Gloor et al., 2017]. Combined, these challenges significantly confound the multivariate

integrative analysis required to improve our understanding of host-microbiome interactions. Thus, novel

analytical tools are necessary to uncover true signals hidden within small sample size microbiome data.
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In this study, we sampled the nasal microbiomes of smokers, nonsmokers, and e-cigarette users using a

non-invasive absorptive strip to collect nasal epithelial lining fluid. We then used high-throughput

sequencing of the bacterial 16S rRNA gene from the strips to identify bacteria present and analyze the

bacterial composition of the nasal microbiome in our subjects. Because these microbial communities are

composed of highly interdependent taxa that have complex interaction patterns, multivariate data analysis is

critical to extract biologically relevant information.

Here, we leverage Selection Energy Permutation [Hinton and Mucha, 2021], a novel multivariate

association test that simultaneously tests associations while identifying robust subsets of pairwise logratios

in the setting of high-dimensional, low sample size data. These reduced subsets are then used to

integratively analyze nasal microbiome and matched cell-free nasal lavage fluid mediator data to determine:

1) whether there were significant compositional differences in the nasal microbiomes of E-cigarette users,

smokers, and nonsmokers, 2) whether levels of nasal lavage fluid (NLF) mediators are significantly different

in e-cigarette users and smokers in comparison with nonsmokers, and 3) whether changes in levels of these

mediators correlate with nasal microbiome dysbiosis. Our data demonstrate nasal microbiome dysbiosis and

unique networks of host-microbiota mediators in e-cigarette users and smokers in comparison with

nonsmokers. This is indicative of disrupted respiratory mucosal immune responses in these groups and

potentially increased susceptibility to infection by specific bacterial taxa. We also observed significant sex

differences in the nasal microbiome, highlighting the importance of including sex as a biological variable in

nasal microbiome studies.

4.15 Methods

4.15.1 Subject recruitment

Nasal epithelial lining fluid (NELF) strips, nasal lavage fluid (NLF), and venous blood were obtained

from healthy adult human e-cigarette users, smokers, and nonsmokers as described previously (Table 1)

[Rebuli et al., 2017], forming our exposure groups. Inclusion criteria were healthy adults age 18-50 years

who are either nonsmokers not routinely exposed to environmental tobacco smoke, active regular cigarette

smokers, or active e-cigarette users. Active cigarette smoking and e-cigarette use were determined as

described previously [Martin et al., 2016]. Exclusion criteria were current symptoms of allergic rhinitis

(deferred until symptoms resolve), asthma, FEV1 less than 75% predicted at screen, bleeding disorders,

recent nasal surgery, immunodeficiency, current pregnancy, chronic obstructive pulmonary disease, cardiac

disease, or any chronic cardiorespiratory condition. After the consent process was completed, a medical
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history and substance use questionnaire was obtained, and subjects were issued a diary to document

smoking/vaping for up to 4 weeks, after which they returned for sample collection. E-cigarette users

averaged less than 1.5 cigarettes/day in their smoking/vaping diaries, while cigarette users ranged from

4.93-20 cigarettes per day in their diaries. To compare demographic characteristics between subjects in the

different exposure groups, age, BMI, and serum cotinine levels were tested for normality using the

Shapiro-Wilk test, and groups were compared using the Kruskal-Wallis test followed by the Steel-Dwass

method for non-parametric multiple comparisons (analogous to a one-way ANOVA with Tukey’s HSD for

parametric data).

4.15.2 Serum Cotinine Measurement

Venous blood was collected in BD Vacutainer serum-separating tubes (Fisher Scientific, Waltham, MA)

and allowed to clot for a minimum of 15 minutes at room temperature. The blood was then centrifuged at

1200 x g for 10 minutes, and the serum layer was transferred to a fresh tube and stored at −80◦C until

samples were collected from all subjects. Serum was assayed for cotinine, a metabolite of nicotine that can

be measured as a biomarker of nicotine consumption, using a commercially available ELISA kit

(Calbiotech, Mannheim, Germany) per manufacturer’s instructions. Absorbance was read on a CLARIOstar

plate reader (BMG Labtech, Ortenberg, Germany). The limit of quantification for serum cotinine was 5

ng/mL. For samples below the limit of detection, a value of zero was assigned. Serum was not available for

one subject in the cohort.

4.15.3 NELF Strip 16S Sequencing

DNA was extracted from whole NELF strips using Powersoil DNA Isolation Kit (MoBio Laboratories).

Sequencing libraries were prepared as previously described [Muhlebach et al., 2018]. Samples were

sequenced on an Illumina MiSeq kit version V3 2x300 paired end over the V3-V4 bacterial 16s gene. Raw

sequencing data were demultiplexed and processed to generate a table of operational taxonomic units

(OTUs). Specific primer schema, qPCR data, and the OTU table (having at least 10 sequences per OTU

across all samples) are provided in the supplement. Raw sequence data have been uploaded under the

BioProject accession number PRJNA746950 within the Sequence Read Archive.

4.15.4 NLF Processing and Soluble Mediator Measurement

Cell-free nasal lavage fluid was obtained via processing of raw nasal lavage fluid as described

previously [Horvath et al., 2011]. Briefly, raw nasal lavage fluid from each nostril was pooled and

centrifuged at 500x g through a 40 mum strainer for 10 minutes. Supernatant (cell-free NLF) was collected
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and stored at −80◦C until samples were collected from all subjects. Cell-free NLF was assayed for

mediators of host-microbiota interaction (neutrophil elastase, immunoglobulin A (IgA), lactoferrin,

lysozyme, interleukin 8 (IL-8), alpha-defensin 1, beta-defensin 1, beta-defensin 2, cathelicidin (LL-37))

using commercially available ELISA kits per manufacturer’s instructions as described in (Appendix B:

Table A.1). Absorbance was read on a CLARIOstar plate reader. For samples below the limit of detection, a

value of 1/2 the lowest standard was assigned. Cell-free nasal lavage fluid was not available for one subject

in the cohort (Appendix B: Figure A.5).

4.15.5 Sequencing Data Processing and Filtering

Five samples were removed from the dataset due to a low number of reads (Appendix B: Figure A.5). A

spiked pseudomonas positive control was identified correctly as pseudomonas. To control for potential

contamination on the NELF strips, the decontam R package was used to remove contaminants [Davis et al.,

2018]. This package uses an algorithm that takes into account the relative abundance of OTUs in samples

and controls to remove the most likely contaminants and has been shown useful for respiratory samples

[Drengenes et al., 2019]. This reduced the number of OTUs from 5346 to 4677. Alpha diversity measures

(Observed, Chao1, ACE, Shannon, Simpson, Fisher) were calculated using the phyloseq R library before

trimming OTU counts less than 5 for downstream analysis. This brought the number of OTUs to 3059 for

downstream analysis.

4.15.6 Alpha diversity

Shannon and Simpson diversity indices were computed for each sample. Diversity indices were tested

for normality using the Shapiro-Wilk test and further statistical tests to compare groups were carried out

using the appropriate parametric (two-tailed t-test, ANOVA) or non-parametric (Kruskal-Wallis, Steel

Dwass) tests. These analyses were performed using JMP Pro 14 and GraphPad Prism 8.

4.15.7 Nasal Microbiome Compositional Data Analysis

To limit spurious findings and because absolute sequencing counts are uninformative [Gloor et al.,

2017, Quinn et al., 2019, Tsilimigras and Fodor, 2016], compositional data analysis (CoDA)[Aitchison,

1982] was carried out on the OTU count table after aggregating OTUs (O = 3059) by family (min. level

assigned) and genera (max level assigned) and removing taxa not present in at least 20% of samples. The

20% sparsity threshold was selected to maximize class-specific information (Sex, Exposure group) while

ensuring the microbial signatures were robust and contained minimal noise due to excessive sparsity. After

aggregating OTUs, we define the taxa count matrix, X ∈ Rn×p, with n = 62 samples and p = 143 taxa. The
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closure operator, C[·], was then used to map the count data of each element xij of X onto its corresponding

coordinate on the unit-sum simplex, defining X′ = C[X] in terms of matrix elements as

x′ij = (C[X])ij =
xij∑p
k=1 xik

. (4.12)

Because the presence of zeros is a major limitation of the logratio transformation essential to CoDA, all

zeroes must be robustly imputed to non-zero values. To overcome this we use the ratio-preserving

multiplicative replacement strategy which has been shown to have several theoretical advantages over

simple additive replacement:[Martın-Fernandez et al., 2003] we set the δ imputed values to a single constant

equal to the smallest nonzero value encountered in X′. Here the constant δ gives provides a consistent

interpretation of zeroes across samples. From this, we impute zeros and replace X′ with Z defined in matrix

elements as

zij =


δ , x′ij = 0(
1−

∑
k|xik=0 δ

)
x′ij , x′ij > 0

. (4.13)

4.15.8 Partial redundancy analysis to remove variation due to Sex

To remove the significant effect of Sex (which otherwise obscures the exposure group effect) on Z,

partial Redundancy Analysis (pRDA)[Legendre and Legendre, 2012] was used. Here we encode the Sex

variable into the design matrix S. Additionally, to ensure multiple regression computations used in pRDA

are performed on symmetric vectors in real space that preserves the inter-sample Euclidean distances, a

center logratio (clr) transformation was applied [Aitchison, 1982] to Z, defining the clr values in C ∈ Rn×p

where for the clr of the ith sample is:

C = clr(zi∗) = ci∗ =

[
log

zi1

(
∏

zi∗)
1/p

, . . . , log
zip

(
∏

zi∗)
1/p

]
for i = 1, . . . , n. (4.14)

With C defined, pRDA was carried out in the vegan R package [Oksanen et al., 2015]. Multivariate linear

regression of C on S (i.e. computed as a series of multiple linear regression on individual features) was

used to produce the fitted values Ĉ. To remove the Sex effect as in analyzing the residuals after pRDA, the

adjusted values of C were computed by P = C− Ĉ where Ĉ contains the variation attributable to Sex.

With the residuals matrix P defined in clr-coordinates which are not suitable for downstream pairwise

logratio transformations, an inverse clr transformation was applied to map the adjusted coordinates back to
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the unit-sum simplex. The Sex adjusted relative abundance matrix M by applying the inverse clr

transformation as

M = clr−1(pi∗) = C [exp(pi∗)] for i = 1, . . . , n. (4.15)

4.15.9 Nasal Microbial Signature Identification using Selection Energy Permutation

To identify microbial logratio signatures in the setting of high-dimensional microbiome data we utilized

the recently developed Selection Energy Permutation (SelEnergyPerm) method [Hinton and Mucha, 2021].

The SelEnergyPerm, which is inspired by the direction-projection-permutation (DiProPerm) [Wei et al.,

2016] method, detects sparse associations in high-dimensional compositonal microbiome data in conditions

(low sample size) where traditional non-parametric association test (e.g. PERMANOVA, ANOSIM) have

limited statistical power. More specifically, treating the data as compositional, SelEnergyPerm: (1) selects,

from the full frame of PLRs, a set of logratio signature that maximizes the the association between groups

and (2) test the statistical significance of the association using distribution free permutation testing. Key to

SelEnergyPerm is the statitsic used to measure the overall between group association. In this work, we use

SelEnergyPerm with the energy statistic (E-statistic)[Rizzo and Székely, 2016]. To describe the energy

statistic, let the logratio signature matrices be defined as X and Y where n,m are the number of samples in

each group and f is the number of PLR logratios in the selected. From this the E-statistic[Rizzo and

Székely, 2016] is defined by

Eα
n,m(X,Y) = 2A−B − C, (4.16)

where α = 2 and A,B, and C are specified by

A =
1

nm

n∑
i=1

m∑
j=1

∥xi − yj∥α, B =
1

n2

n∑
i=1

n∑
j=1

∥xi − xj∥α, C =
1

n2

n∑
i=1

m∑
j=1

∥yi − yj∥α.

From this, extending the E-statistic to two or more groups the multi-group E-Statistics is defined as

S =
∑(

nj + nk

2N

)[
njnk

nj + nk
Eα
nj ,nk

(Aj ,Ak)

]
. (4.17)

where 0 < α < 2 is the α-norm, A is the pooled samples for the jth and kth group, K is the number of

groups, and nj , nk are the number of samples for the jth and kth groups.
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In selEnergyPerm, the multi-group E-statistic is then maximized using greedy forward selection on a

subset selected from the set of pairwise logratios. As in the approach in Greenacre et al.,45 selEnergyPerm

requires the reduced subset of logratio to be non-redundant. Computationally, it is infeasible in the case of

high dimensional metagenomic data to test all possible non-redundant subsets of pairwise logratio which

can be expresed as the Cayley number(p(p− 2)) [Greenacre, 2019]. To overcome this, SelEnergyPerm first

ranks the strength of the between group variation for each logratio using the differential compositional

variation (DCV) scoring algorithm [Hinton and Mucha, 2021]. Specifically, the DCV score, which is

comprised of five diverse statistics (Welch’s t-statistic, F-statistic, Brown-Forsythe F-Statistic,

Kolmogorov–Smirnov statistic, and Information), measures the variation (location, scale, distributional, etc.)

between groups for each logratio. The single DCV score, representing the relative strength of the between

group variation for each logratio, is computed as the sum of the z-score scaled (by score) statistics. Network

methods are then used to compute a maximum spanning tree (MST), which is intrinsically non-redundant,

from a DCV weighted logratio network. Greedy forward selection is then carried out on the MST to identify

the final subset of logratios. Specifically, given a logratio signature discovered with true labels, Overall,

SelEnergyPerm tests if the observed mutli-sample E-statistic (S∗) is more extreme than random using

permutation testing [Ernst, 2004]. That is, multi sample E-statistic are sampled from the permutation

distribution of logratio signatures selected under random labels (Si, indexing different random-label

samples). With γ such multi-samaple E-statistics randomly sampled from the permutation distribution the

one-sided p-value becomes

p̂ =
1 +

∑γ
i=1 I(Si > S∗)

γ + 1
. (4.18)

4.15.10 Network Visualization of Microbial signature

As shown in [Greenacre, 2019], logratio can be conveniently visualized using networks. To visualize

the microbial logratio signatures, we constructed undirected networks connecting the key taxa

(vertices/nodes) by edges representing the formation of a ratio between two taxa with edge weight

corresponding to the between-group Kruskal-Wallis H-statistic. While the full logratio structure is directed

in distinguishing numerators from denominators, directedness in the visualizations used here does not

fundamentally change our interpretation. Networks were visualized using Gephi[Bastian et al., 2009] and

R-igraph [Csardi and Nepusz, 2005].
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4.15.11 Multivariate statistical test for microbial signals

To specifically test the associations between microbial logratio signatures and Sex/Exposure group

identified by SelEnergyPerm, traditional multivariate hypothesis testing was done using permutational

multivariate analysis of variation[Anderson, 2017] and implemented using the R vegan package [Oksanen

et al., 2015]. Unsupervised lower-dimensional projections of samples and group centroids were done using

principal coordinate analysis (PCoA) and were implemented using the R stats package.

4.15.12 Partial Least Squares Discriminate Analysis

Because effect sizes and direction are different to interpret and not well explored in the context of

multivariate statistics, we utilized partial least squares discriminate analysis (PLS-DA) [Barker and Rayens,

2003, Brereton and Lloyd, 2014]. PLS-DA is a versatile multivariate statistical regression technique where

here we used it to model and understand the relationship between Sex/Exposure group to the

SelEnergyPerm selected microbial logratio signatures. We specified a priori the number of PLS-DA

components (ncomp) as follows: for the between Sex nasal microbial signature, ncomp = 1; for the between

Exposure group nasal microbial signature, ncomp = 2. Model fitting was done using the R caret [Kuhn,

2008] plsda function, with latent space projections and loadings extracted from the final models fit using all

samples using R caret [Kuhn, 2008]. PLS-DA biplots were created by scaling and superimposing the

loading vectors onto the score coordinates extracted from the final fitted model. PLS-DA biplots were

visualized using the R ggplot2 package [Wickham, 2016].

4.15.13 Receiver operating characteristic curve analysis and PLS-DA performance metric

To understand how well the binary PLS-DA models discriminate between Sex using the nasal

microbiome signature, we utilized the area under the receiver operating characteristic metric (AUC), as a

measure of effect size. We note, in this context (effect size), AUC is not used to estimate out of sample

predictive performance. Specifically, AUC represents the probability that a randomly selected instance of

class 1 will be ranked higher than a randomly selected instance of class 2 where a value of 0.5 indicates no

discrimination between groups and a value of one indication perfect discrimination between groups

[Fawcett, 2006]. Additionally, to understand the discriminatory potential of the PLS-DA exposure group

models, the multi-class AUC metric was used. Multi-class AUC generalizes binary AUC through pairwise

class AUC averaging and has the useful property of being independent of cost and priors as in AUC while

having a similar interpretation to misclassification rate [Hand and Till, 2001]. AUC metrics were estimated
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using repeated k-fold cross-validation [Stone, 1974]. The R pROC package[Robin et al., 2011] was used to

compute all AUC metrics. ROC curves, which graph the false positive and true positive rate of a classifier

over a range of thresholds, were computed using the R pROC package[Robin et al., 2011] and visualized

using the R ggplot2 package [Wickham, 2016].

4.15.14 NLF mediator and microbiome data integration

In this section we detail the exposure group logratio signature identification and data integration for

both the NLF mediator and nasal microbiome data. For NLF mediators, we define the NLF data matrix,

L ∈ Rn×τ , where n = 66 samples and τ = 7 mediators. Here we treated the NLF mediator data as

multivariate relative data such that the sample-wise total concentrations are relative (Appendix B: Figure

A.7A). Zeroes in L were imputed after applying the closure operator as described in our compositional data

analysis methods. From this, using a compositional approach, we define all pairwise logratios of L to be

L′ ∈ R(n× k), with k = τ(τ − 1)/2 = 21. With a focus on multivariate associations we sought to remove

uninformative NLF mediators using feature selection. To do this we computed the differential compositional

variation (DCV) score [Hinton and Mucha, 2021] and assigned each NLF mediator logratio a score by

averaging the within-fold DCV score using 20 repeats of 10-fold cross-validation. NLF logratios with a

DCV score < 0 were considered uninformative and were removed (Appendix B: Figure A.7B). From this

L′ was reduced to L̂ ∈ Rn×k where k=4 (Appendix B: Figure A.7C) logratios. With key logratio features

selected univariate associations testing between NLF mediator logratios in L̂ and Exposure group the

Kruskal-Wallis test was applied followed by pairwise Wilcoxon rank-sum testing if α < 0.05.

For the nasal microbiome signal, we obtained the exposure group logratio signature by applying the

SelEnergyPerm method to M to get M̂ ∈ Rn×r where n = 62 samples and r = 9 SelEnergyPerm selected

logratios. Concatenating these data, we define the integrated NLF mediator and nasal microbiome matrix as

D ∈ Rq×f where q = 61 (6 samples were removed due to either missing nasal microbiome or NLF data)

and f = 13 (4-nasal lavage plus 9 microbiome log-ratio features). Exposure group discrimination was

estimated separately for L̂, M̂, and D using multi-class AUC from 50 repeats of 10-fold cross-validation

using 2-component PLS-DA models. Multi-class AUC estimates using L̂, M̂, and D were compared

between groups using the non-parametric Wilcoxon rank-sum test.

4.15.15 Nasal NLF mediator and microbiome association analysis

A final 2-component PLS-DA model to discriminate between exposure groups was fit to M̂. Using

dimensionality reduction inherent to PLS-DA, the first PLS-DA component (explaining the most variation)
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was extracted as a latent variable for further analysis. Pearson’s correlation coefficients (PCC) and

subsequent p-values were computed between the first PLS-DA component and L′ defined in “NLF mediator

and microbiome data integration” method section above. The p-values obtained for PCC were adjusted for

multiple comparisons (q-value) using the Benjamini-Hochberg (BH) correction[Benjamini and Hochberg,

1995] and were considered significant if q ≤ 0.10. These analyses were carried out using the R stats and

caret packages.

4.15.16 Between Exposure group Correlation analysis

Partitioning the samples of D into 3 matrices based on exposure group (nonsmokers, e-cig users, or

smokers), we calculated all pairwise PCC and p-values between features for each group. We corrected

p-values for multiple testing using the BH procedure and report q-values. Correlations were considered

significant if q ≤ 0.10. Significant PCC within each subject were then aggregated across all exposure

groups and visualized as a graph using the R igraph package [Csardi and Nepusz, 2005].

4.15.17 Confidence Intervals and univariate statistical test for logratios

Logratio 95% confidence intervals were calculated for each logratio i as

CIi = x̄i ± 1.96
si√
n
. (4.19)

where for the ith logratio, xi =sample mean, si =sample standard deviation and n=number samples.

logratios with confidence intervals bounds that do not include 0 are interpreted as enriched on average for

the numerator if x ≥ 0 or denominator if x < 0. The Kruskal-Wallis and Wilcoxon rank-sum test were used

for univariate comparisons of logratios between Sex or Exposure groups. Moreover, p-values were adjusted

for multiple comparisons using the BH correction using the R stats library and are reported as q-values. For

more conservative control of false discovery, false coverage rate adjusted confidence intervals can be

considered.

4.16 Results

4.16.1 Subject Demographics

Demographic, questionnaire, and smoking/vaping diary data are summarized in Table 1. The study

cohort was comprised of 30% nonsmokers (n = 20), 42% e-cigarette users (n = 28), and 28% smokers (n =

19) with at least n = 8 per sex within each exposure group. E-cigarette users were significantly younger

(26.39± 1.44) than nonsmokers (30.75± 1.32) and smokers (31.89± 1.91) (p < 0.05). BMI did not differ
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significantly between the exposure groups. Questionnaires and smoking/vaping diaries were completed for

95% (19/20) of nonsmokers and 100% of e-cigarette users and smokers. However, there was variability in

the completeness of diaries filled out by e-cigarette users, particularly for the e-cigarette use parameters

(mL/day, puffs/day, nicotine concentration, flavor, device). Cigarette users smoked an average of

12.68± 0.96 cigarettes per day, whereas 25% (7/28) of e-cigarette users smoked a cigarette during the diary

period with an average of 0.14± 0.07 cigarettes per day, while 13 e-cigarette users reported puffs per day

and 16 reported mL e-liquid/day and e-liquid nicotine concentration in mg/mL. These e-cigarette users

averaged 53.90± 16.54 puffs/day, 3.60± 0.70 mL of e-liquid, and 19.43± 4.92 mg/mL nicotine in

e-liquids. One smoker reported vaping on one day of the diary, which is the reason for the non-zero values

for e-cigarette use parameters in the smoker category. Nonsmokers did not report previous cigarette

smoking or marijuana use, whereas 79% (22/28) of e-cigarette users were former cigarette smokers, while

14% (4/28) of e-cigarette users and 21% (4/19) of smokers reported marijuana use in their diaries. Cotinine,

a metabolite of nicotine, was not detectable in the serum of nonsmokers and was significantly elevated in the

serum of e-cigarette users (127.99± 15.42) and smokers (170.16± 21.41) in comparison with nonsmokers

(p < 0.0001), as expected.

Nonsmokers E-Cigarette Users Smokers

n 20 28 19
Sex (Male/Female) 8/12 19/9 10/9

Race (White/AA/Asian/Other) 16/1/2/1 18/4/5/1 10/8/0/1
Age 30.75±1.32 26.39±1.44# 31.89±1.91
BMI 27.11±1.31 30.01±1.51 27.65±1.43

Cigarettes/Day 0±0 0.14±0.07 12.68±0.96
mL E-Liquid/Day 0±0 3.60±0.70 0.015±0.015

E-Cigarette Puffs/Day 0±0 53.90±16.54 0.466±0.414
E-Liquid Nicotine (mg/mL) 0±0 19.43±4.92 0.158±0.158

Former Cigarette Smoker (Yes/No) 0/20 22/6 19/0
Marijuana Use (Yes/No) 0/20 4/24 4/15
Serum Cotinine (ng/mL) 0±0 127.99± 15.42**** 170.16±21.41****

Table 4.1: Subject demographics. Reported values are mean ± standard error. Groups were compared
using the Steel Dwass method for non-parametric multiple comparisons. AA = African American. # p<0.05
in comparison with nonsmokers and smokers. **** p<0.0001 in comparison with nonsmokers.

4.16.2 Nasal Microbiome Characteristics

The 4677 OTUs included in the dataset represented OTUs from 19 unique phyla and 225 unique genera.

The top four most abundant phyla by average relative abundance across all samples were Actinobacteria
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(50.2%), Firmicutes (36%), Proteobacteria (12.0%), and Bacteroidetes (1.6%). The top six most abundant

genera by average relative abundance across all samples were Corynebacterium (40.7%), Staphylococcus

(19.9%), Propionibacterium(11.8%), Alliococcus (8.5%), Moraxella (5.3%), and Streptococcus (4.2%).

This microbial composition is similar to previously reported studies of the nasal microbiome [Kumpitsch

et al., 2019, De Boeck et al., 2017]. These data are summarized in Figure 4.1, where relative abundances by

exposure group and sex are plotted for the most highly abundant phyla and genera.

Figure 4.1: Average relative abundances of the top 4 phyla (A-C) and top 10 genera (D-E) plotted by
exposure group (A, D), sex (B, E), and sex within exposure groups (C, F). NS = nonsmoker, EC = e-cigarette
user, SM = smoker, M = male, F = female.

4.16.3 Alpha Diversity

To determine whether there are differences in alpha diversity between the nasal microbiomes of

smokers, nonsmokers, and e-cigarette users, we calculated alpha diversity indices (Observed, Chao1, ACE,

Shannon, Simpson, Fisher) using phyloseq [McMurdie and Holmes, 2013]. We did not find any statistically

significant differences between the exposure groups for any measure of alpha diversity; however, we did

observe a non-significant trend of increased alpha diversity in smokers (Figures 4.2A and 4.2B). Because our

group and others have previously observed sex differences in respiratory mucosal immune responses[Rebuli

et al., 2018, Cho et al., 2019] we also tested whether alpha diversity was significantly different between
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male and female subjects. We found that both the Shannon and Simpson indices were significantly higher in

males than females (p = 0.021 and p = 0.0078, respectively) (Figures 4.2C and 4.2D). We then tested for the

interaction between sex and exposure group and found that sex was a significant source of observed

variation (p = 0.0286 for Shannon; p = 0.0102 for Simpson), while exposure group was not. When the data

were stratified by exposure group, the only male-female comparison that remained significant was in the

e-cigarette user group (p = 0.0361 for Shannon; p = 0.0124 for Simpson) (Figures 4.2E and 4.2F). These

results suggest that sex is an important biological variable to consider in studies of the nasal microbiome.

Figure 4.2: Shannon and Simpson indices of alpha diversity are significantly different between sexes,
and this difference is most pronounced in e-cigarette users. The Shannon and Simpson indices for alpha
diversity were calculated and plotted by exposure group (A, B), sex (C, D), and sex within exposure groups
(E, F). NS = nonsmoker, EC = e-cigarette user, SM = smoker. Data are presented as mean ± standard error.
* p < 0.05, ** p < 0.01 by t-test (C), Kruskal-Wallis test (D), or two-way ANOVA with Fisher’s LSD (E, F).

4.16.4 Compositional Difference of the Nasal Microbiome by Sex

Because we observed distinctions in alpha diversity between sexes, we next tested whether there were

significant compositional differences between the sexes and to identify specific genera capable of explaining

these dissimilarities. Given challenges presented by sparse, compositional 16S rRNA sequencing data

combined with high-dimensionality (genera = 255) and small sample size (n=62), we leveraged the

82



SelEnergyPerm [Hinton and Mucha, 2021] method to identify a robust signature of nasal microbiome taxa

(among sparse noisy data) capable of explaining compositional differences between sexes.

By applying this method, we discovered (beyond random noise) a subset of genera (g = 6) capable of

maximizing the energy distance between male and female samples (p = 0.0123, Appendix B: Figure A.6A).

This microbial signature was comprised of four logratios between Rhodococcus, Finegoldia, Sneathia,

Abiotrophia, Tannerella, and Yaniella genera (Figure 4.3A). Using the identified logratio signature,

PERMANOVA analysis (pseudo-F = 16.586, p =0.0002, Figure 4.3B) also confirmed the existence of

differences in the nasal microbiome composition between sex. Analysis of individual taxa logratios between

sexes demonstrated important nasal microbiome compositional differences (Figure 4.3C). In female

samples, Yaniella was more abundant on average than Rhodoccous and Tannerella, while the reverse was

true for males. In male samples, Abiotrophia was more abundant on average than Sneathia, while the

opposite was true for females. Finally, in both males and females, Finegoldia was observed to be more

abundant than Yaniella, however, Finegoldia was significantly more enriched relative to Yaniella in males

compared to females.

Next, we analyzed the microbial signature as a whole using Partial Least Squares Discriminate

Analysis (PLS-DA) with a single component to predict sex. Using 20 repeats of 10-fold cross-validation, the

average area under the receiver operating characteristic curve (AUC) for predicting sex given the reduced

microbial signature was 0.862 (95% CI 0.842 – 0.883, Figure 4.3D). With strong cross-validated predictive

performance, a final PLS-DA model was trained on all samples (n=62). Scores from the single PLS-DA

component indicated strong separation between sexes (Figure 4.3E). The PLS-DA loading plot (Figure

4.3F), which shows how each logratio contributes to the final score, demonstrates key relationships between

taxa logratios. Increased abundance of Abiotrophia and Finegoldia (in logratios where they appear) were

characteristic of males, and increased abundance of Yaniella was associated with females. Overall, these

findings indicate there exists a compositionally distinct taxa subset that differs strongly in the nasal

microbiomes of males and females. Therefore, controlling for sex differences present in the nasal

microbiome is important in further analysis.

4.16.5 Compositional Difference of the Nasal Microbiome by Exposure group

We next examined whether there were distinct nasal microbiome compositions between exposure

groups (e-cigarette users: n = 24; smokers: n=19; nonsmokers: n=19; See Methods and Table 1). Taking

into account nasal microbiome sex differences and applying SelEnergyPerm, we identified a subset of
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Figure 4.3: Nasal microbiome differences between sexes (Males: n=35; Females: n=27). (A) Network
representation of SelEnergyPerm (p=0.0123) derived genus aggregated taxa logratio signature of nasal
microbiome differences between sexes (Node = genera; edge = logratio between taxa, Edge-weight = Kruskal
Wallis H-statistic between sexes, Size/Color = node strength). (B) Principal coordinate analysis plot of nasal
microbiome logratio signature between sex explaining 82.37% of the total variation. (C) Univariate analysis
of logratio signature showing average depletion or enrichment of specific taxa logratios between sexes.
Error bars reflect 95% confidence intervals of the mean log-ratio value for males and females. (D) Receiver
operating characteristics (ROC) curve displaying the area under the curve (AUC) predictive performance
(20x10-fold cross-validation) of 1-component partial least squares discriminant analysis (PLS-DA) models
trained on nasal microbiome signature between sexes. (E) PLS-DA scores plot of single discriminating
component between sexes. Final PLS-DA model fit using all samples (n=62). (F) PLS-DA loadings plot
showing contributions of each logratio to final scores.

genera (g = 12) important for explaining key nasal microbiome alterations between exposure groups (p =

0.032, Appendix B: Figure A.6B). This microbial signature comprised nine logratios (edges) between 12

key genera (nodes) (Figure 4.4A). PERMANOVA analysis (pseudo-F = 8.4889, p =0.0002, Figure 4.4B)

confirmed differences in nasal microbiome composition between exposure groups given the microbial

signature of 9 logratios.
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Individual analyses of logratios elucidated specific compositional differences between exposure groups

(Figure 4.4C). In e-cigarette users, Lactobacillus taxa were significantly more abundant relative to Bacillus

taxa, while in smokers and nonsmokers, these taxa presented in similar proportions, suggesting an

enrichment of Lactobacillus among e-cigarette users. E-cigarette users’ nasal microbiomes also contained

significantly more Staphylococcus relative to Bacillus than what was observed in nasal microbiomes of both

smokers (q = 0.0097) and nonsmokers (q = 0.0031). In smokers, Maccrocus genera were significantly

more abundant on average relative to Hymenobacter, Mycobacterium, Varibaculum, and Rhodococcus,

suggesting that smoking may enrich Macrococcus taxa populations in the nasal passage. Additionally,

smoker nasal microbiomes contained more Hymenobacter relative to Moryella, whereas the opposite was

true for nonsmokers, both in contrast to e-cigarette users, which maintained on average equal amounts of

both genera. In nonsmokers, Lautropia taxa were significantly more abundant relative to Bulleidia, but this

was not observed in smokers and e-cigarette users.

To understand how taxa logratios work together to discriminate between exposure groups, PLS-DA was

used with 20 repeats of 10-fold cross-validation (Figure 4D). The estimated multi-classification AUC was

0.851 (95% CI 0.835 – 0.866) suggesting excellent exposure group discrimination. Pairwise examination of

exposure group classifications shows strong differences between the nasal microbiomes of

nonsmokers/e-cigarette users (AUC = 0.895: 95% CI 0.874 – 0.915) and smokers/e-cigarette users (AUC =

0.893: 95% CI 0.873 – 0.913), with weaker yet distinct differences between smokers/nonsmokers (AUC =

0.803: 95% CI 0.773 – 0.833) (Figure 4.4D). The relative importance of taxa logratios for discriminating

between exposure groups was computed using a final PLS-DA model fit using all samples (n=62). The

logratio between Macrococcus relative to Hymenobacter was found to be most important for classifying

samples as smoker (least important for e-cigarette user classification), and the logratio between Bacillus

taxa relative to taxa from the Micrococcaceae family was most important for samples to be classified as

e-cigarette users (least important to be classified as smokers). (Figure 4.4E). Interestingly, inspection of

relative logratio importance data failed to uncover logratios disproportionately important for nonsmokers.

This observation suggests smoking and e-cigarette use recognizably alter the nasal microbiome in otherwise

healthy adults. Overall, analysis of the taxa logratios signature suggests alterations in Macrococcus and

Bacillus genera are important for distinguishing between these exposure groups.
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Figure 4.4: Nasal microbiome differences between exposure groups (Ecig-users: n=24; Nonsmokers:
n=19; and Smokers: n=19) adjusted for sex. (A) Network representation of SelEnergyPerm (p=0.032)
derived genus aggregated taxa logratio signature of nasal microbiome differences between exposure groups
(Node = genera; edge = logratio between taxa, Edge-weight = Kruskal Wallis H-statistic between sex,
Size/Color = node strength). (B) Principal coordinate analysis plot of nasal microbiome logratio signature
between exposure groups explaining 62.63% of the total variation. (C) Univariate analysis of logratio
signature showing average depletion or enrichment of specific taxa logratios between exposure groups.
Error bars reflect 95% confidence intervals of the mean log-ratio value for each exposure group. (D) ROC
curve displaying the multi-classification AUC for predicting exposure group (20x10-fold cross-validation)
of 2-component PLS-DA models trained on nasal microbiome signature between exposure groups. (E)
Relative importance of logratios for distinguishing between exposure groups in PLS-DA model trained on
all samples (n=62).

4.16.6 Differences in NLF mediator Expression Patterns Between Exposure groups

Because smoking and e-cigarette use were associated with distinct changes in the nasal microbiome, we

next explored if there was altered expression of innate immune response mediators in the exposure groups.

Accounting for differences in absolute concentration (Appendix B: Figure A.7A) and subsequently applying

differential compositional variation scoring 32 (See Methods, Appendix B: Figure A.7B), we identified four

logratios among NLF mediators that showed strong intergroup variability (Appendix B: Figure A.7C).
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These ratios comprised the following NLF mediators: IL-8, DEFB4A-2, neutrophil elastase, IgA, and

lactoferrin. Kruskal-Wallis one-way testing (Appendix B: Figure A.7D) of each logratio suggest there exist

intergroup differences in NLF mediator expression formed between the concentrations of neutrophil elastase

relative to IL-8 (H = 6.4417; p = 0.0399; q = 0.0798) and lactoferrin relative to IL-8 (H = 8.2080; p =

0.0165; FDR = 0.0660). There were no significant differences between exposure groups among logratios

formed by IgA relative to IL-8 or DEFB4A-2 relative to neutrophil elastase. However, multivariate analysis

with PERMANOVA (pseudo-F = 3.7678, p =0.0030) using the four key logratios confirmed there were

differences in NLF mediator expression patterns between exposure groups when considered together. To

better understand which groups were different, we applied PLS-DA. Training a PLS-DA model with the

NLF mediator expression patterns revealed the strongest between-subject-group discrimination to be among

Smokers and Nonsmokers (AUROC = 0.8230, 95%CI 0.7920-0.8530, Appendix B: Figure A.7E). Notably,

e-cigarette users’ NLF mediators were weakly distinguishable from nonsmokers (AUROC = 0.6720, 95%CI

0.6350-0.7100, Appendix B: Figure A.7E) but more discernible from smokers (AUROC = 0.7480, 95%CI

0.7130-0.7820, Appendix B: Figure A.7E). Together, these results suggest that the expression of NLF

mediators in smokers was distinct from that of e-cigarette users and healthy adults.

4.16.7 Integration of NLF mediators and nasal microbiome composition

Finally, we aimed to understand if alterations in NLF mediator expression are associated with nasal

microbiome dysbiosis resulting from smoking or e-cigarette use. To this end, we first estimated the

discriminatory AUROC of a 2-component PLS-DA model fit on logratios from NLF mediators (Appendix

B: Figure A.7C), nasal microbiome (Figures 4.4A), or both nasal microbiome and NLF mediators

(Appendix B: Figure A.8A). When compared to individual signatures, improved discriminatory AUROC

(Figure 4.5B) was observed when PLS-DA models were fit using the combined nasal microbiome and NLF

mediator signatures. Therefore, with established synergy between mediator expression and nasal

microbiome composition in discriminating between exposure groups, we next examined if correlations were

present between the two.

4.16.8 Association between altered NLF mediator expression and nasal microbiome dysbiosis

Using the first PLS-DA component of the nasal microbiome signature, we found significant correlations

with NLF mediator expression, showing an association between the nasal microbiome composition and NLF

mediator expression (Figure 4.5C). Examination of the location of samples by exposure group projected

along the first PLS-DA component show important projective distinctions between smokers (on average
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negative projections) and both e-cigarette users and nonsmokers (on average positive projections)

(Appendix B: Figure A.8B). Given this, these correlations suggest nasal microbiome dysbiosis caused by

cigarette smoke exposure is associated with increased expression of IL-8 relative to neutrophil elastase,

Total IgA, and lactoferrin (Figure 4.5C). Moreover, the loadings along the first PLS-DA component

(Appendix B: Figure A.8C) show logratios with higher abundance of Maccroccous as being the most

important contributor to negative projections. Combined, these data propound an important link between

dysbiosis in Macrococcus communities within the nasal microbiome and NLF IL-8 expression.

Figure 4.5: Integrating data uncovers association between NLF mediators and nasal microbiome
along with identifying distinct correlation patterns between exposure groups (Ecig-users: n=23;
Nonsmokers: n=19; and Smokers: n=19). (A) PLS-DA biplot of integrated NLF mediators and nasal
microbiome (B) Box and whisker’s plot comparing area under the receiver operating characteristic curve
performance of 2-component PLS-DA model (50x10-fold cross-validation) using each data type alone or
integrated. (C) Scatter plot showing correlations between logratios formed between concentrations(µg⁄mL)
of Lactoferrin, Neutrophil Elastase relative to IL-8 and the first PLS-DA component of the nasal micro-
biome. (D) Correlation heatmap showing Pearson’s correlation coefficients (PCC) between and within the
microbiome and protein logratio signatures. (*indicates within group q ≤ 0.10)
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4.16.9 Microbial functional and mediator expression differences between exposure groups

Correlation analysis of the combined NLF mediator expression and nasal microbiome signature reveal

distinct correlation patterns within exposure groups suggesting distinct functional differences (Figures

4.5D). Most notably, a significant negative correlation between logratios formed by Hymenobacter/Moryella

and Macrococcus/Hymenobacter was observed only in the nonsmoker group. This negative correlation

highlights a possible role of Hymenobacter, in that it appears to be important for maintaining a healthy

balance of Maccroocous and Moryella. In the e-cigarette and smoking groups, we observed a significant

positive correlation between the logratios formed by IgA/IL-8 and Lactoferrin/IL-8. Analysis of this

correlation pattern reveals that increased expression of IL-8 in these groups may come at the expense of

decreased expression of IgA and lactoferrin or vice versa. We also observed a significant negative

correlation between the logratios formed by Neutrophil Elastase/IL-8 and DEFB4A-2/Neutrophil Elastase in

the e-cigarette and smoking groups. These strong negative correlations show that increased expression of

IL-8 and DEFB4A-2 subsequently results in decreased expression of neutrophil elastase. The final

significant correlation pattern observed was in smokers only and consisted of four positively correlated

logratios formed by Macrococcus relative to Hymenobacter, Mycobacterium, Varibaculum, and

Rhodococcus (Figure 4.5D). Relatively interpreting these correlations between logratios suggests that as

Macrococcus becomes more abundant (among these ratios) the abundance of Hymenobacter,

Mycobacterium, Varibaculum, and Rhodococcus decreases. This suggests an assocaiotn between cigarette

smoke exposure favorable colonization conditions for Maccroccous genera which subsequently reduce the

abundance of Hymenobacter, Mycobacterium, Varibaculum, and Rhodococcus.

From these analyses, our results demonstrate there exists a strong association between altered NLF

mediator expression and nasal microbiome dysbiosis. Our findings indicate nasal microbiome dysbiosis

from smoking results in the simultaneous increase in IL-8 expression and Maccroccous abundance.

Additionally, variations in the correlation networks among e-cigarette users and smokers, while similar,

were distinct from nonsmokers, suggesting functional differences at the microbial and mediator levels

between exposure groups.

4.17 Discussion

Despite the growing body of research showing that e-cigarette use can disrupt the respiratory immune

system, no studies to date have assessed the effects of e-cigarettes on the respiratory microbiome and
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host-microbiota interactions. In this study, after adjusting for sex differences, we found that e-cigarette

users, smokers, and nonsmokers have unique nasal microbiomes, with differences driven by the

relationships between a subset of key taxa. We also found a subset of immune mediators that had distinct

relationships between each other in the different exposure groups. Importantly, we found a link between

nasal microbiome dysbiosis and soluble immune mediator networks.

A fundamental feature of our study is that we detected microbial signatures from the nasal microbiome

that explained differences between sex and exposure groups using the novel SelEnergyPerm computational

method. This method directly accounts for the sparse, high-dimensional and compositional nature of the

16S relative abundance data. Additionally, SelEnergyPerm identifies subsets of robust logratios between

taxa, as opposed to analyzing taxa relative abundance alone, yielding higher statistical power in the sparse

association setting with low-sample-size compositional data [Hinton and Mucha, 2021]. Most importantly,

traditional statistical techniques such as PERMANOVA, ANOSIM, and ANCOM alone were unable to

detect these sparse associations within the high-dimensional nasal microbiome feature space. Further, our

parsimonious yet statistically significant signatures were then integrated with NLF mediators where we

were then able to uncover novel interactions between a taxa subset within the nasal microbiome and the

NLF mediators in response to exposure to cigarette or e-cigarette aerosol.

We observed that there were relationships between a subset of taxa that were important in separating

the microbial communities of smokers, nonsmokers, and e-cigarette users (Figure 4.4). Only a few studies

have previously compared the nasal microbiome of smokers and nonsmokers [Charlson et al., 2010, Yu

et al., 2017b]. Charlson et al. found specific bacteria genera that were differentially abundant in smokers

and that some genera belonging to the phylum Firmicutes were important in distinguishing smokers from

nonsmokers [Charlson et al., 2010]. Other studies did not find any significant differences in diversity

measures or relative taxa abundance between smokers and nonsmokers [Charlson et al., 2010]. In our study,

which focused on the composition of the nasal microbiome and ratios between taxa rather than relative

abundance of individual taxa, we found that alterations in Macrococcus and Bacillus genera are important

for distinguishing between exposure groups. Our data also suggest an enrichment of Lactobacillus and

Staphylococcus relative to Bacillus in e-cigarette users and enrichment of Macrococcus relative to

Hymenobacter, Mycobacterium, Varibaculum, and Rhodococcus in smokers. A shift from Lactobacillus to

Bacillus in the lung microbiome has been previously demonstrated in response to influenza A infection and

increases in anaerobic bacteria, such as Lactobacillus, have been associated with chronic rhinosinusitis
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[Kumpitsch et al., 2019]. Furthermore, Bacillus have been shown to produce antimicrobials against S.

aureus [Piewngam et al., 2018], indicating that the patterns we have observed may be directly linked to

specific interactions between taxa. An increase in Staphylococcus relative to Bacillus in e-cigarette users is

also notable due to the role of species such as Staphylococcus aureus, which is carried normally by about

30% of people and is also considered to be a potential pathogen of the skin and mucosal surfaces [Liu et al.,

2015, Sakr et al., 2018]. Our data provide evidence that e-cigarette and smoker nasal microbiomes are

distinctly shifted from nonsmokers. Importantly, we also observed that different subsets of taxa were

important in separating e-cigarette users and smokers, rather than effects on a continuum from nonsmokers

to e-cigarette users to smokers, highlighting the concept that the effects of e-cigarettes are likely unique

from those of smokers, even though they are commonly directly compared.

We also measured concentrations of mediators of host-microbiota interactions in nasal lavage fluid to

determine whether the changes in the nasal microbiome in different exposure groups are potentially caused

by direct effects on the microbiome, mediated by changes in the host immune system, or both. Our data

indicate that the expression of immune mediators in nasal lavage fluid samples differed among exposure

groups and was driven by shifts in neutrophil elastase and lactoferrin relative to IL-8. Neutrophil elastase

and IL-8 are associated with inflammation and neutrophil recruitment, while lactoferrin is an antimicrobial

protein primarily produced by epithelial cells and has a wide array of functions, including antioxidant and

immune-modulating properties [Actor et al., 2009]. Our results suggest that e-cigarette users and smokers

may have altered immune mediator milieu, indicating a shift away from immune homeostasis and towards

increased inflammation and neutrophil recruitment. This shift could be partially driving observed

differences in the nasal microbiome. Our data indicate that both e-cigarette users and smokers have altered

nasal microbial communities and relationships between markers of innate immune response, which could

imply that they are at increased susceptibility to respiratory infections and/or that they exist in a state of

inflammation and altered immune response. We also uncovered interactions of key immune mediators with

the host and microbiota, such as IL-8, neutrophil elastase, and lactoferrin, that are also disrupted by

e-cigarette and cigarette use. The microbial shifts we observed in association with e-cigarette and cigarette

use could be driven by changes in the microenvironment, such as temperature, pH, free radical formation,

and availability of metabolic substrates (e.g. sugars) that could then alter the fitness of different bacteria in

the nasal microbial community. The shifts we observed could also be mediated through direct effects on

respiratory host defense function, inflammation, and/or specific microbes. Multiple processes are likely at
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play, but our novel findings on the effects of e-cigarettes on the nasal microbiome add to the growing body

of literature demonstrating that e-cigarettes are not without health effects and that they should be more

thoroughly investigated for inhalational toxicity.

Because sex differences in the human immune system and its response to respiratory disease and

toxicant exposure have been observed previously [Rebuli et al., 2018, Casimir et al., 2013], we also

investigated whether there were sex differences in the nasal microbiomes of our subjects. We observed that

the relationships between six genera were important in separating the nasal microbiomes of males and

females (Figure 4.4A). Increased abundance of Abiotrophia and Finegoldia (in logratios where they appear)

were characteristic of males, and increased abundance of Yaniella was associated with Females. Many of

these genera have been detected in previous studies of skin, oral, and/or respiratory microbiomes [Charlson

et al., 2010, Kumpitsch et al., 2019, Man et al., 2019, Neumann et al., 2020, Hoggard et al., 2017, Chiu

et al., 2020, Bacci et al., 2016], but detailed information on the functions of these bacteria as part of the

microbial community, as well as their impact on host health, are not available for all taxa. Although some of

these genera, such as Abiotrophia and Finegoldia have been associated with disease- and exposure-driven

alterations in the respiratory microbiome [Charlson et al., 2010, Kumpitsch et al., 2019, Man et al., 2019,

Neumann et al., 2020], we hypothesize that the observed sex difference is neither good nor bad; rather, it is

reflective of a different baseline composition in males and females or altered microenvironments in males

and females due to differences in toxicant metabolism rates or mechanisms of immune regulation [Zanger

and Schwab, 2013, Vemuri et al., 2019]. In other body sites, such as the gut, sex differences have been

detected and have been attributed to a variety of factors, including sex hormone levels, pharmaceutical use,

and diet [Kim et al., 2020, Shin et al., 2019]. In mice, sex-related differences in gut microbiota were shown

to impact pulmonary responses to ozone [Cho et al., 2019]. However, few studies have explored sex

differences in the respiratory microbiome [Han et al., 2018]. In the studies that have analyzed data by sex,

detection of sex differences is not consistent between studies and is typically not explored in-depth

[De Boeck et al., 2017, Liu et al., 2015, De Boeck et al., 2019]. Importantly for the data presented here,

compositional differences in the nasal microbiomes of e-cigarette users, smokers, and nonsmokers were not

apparent until sex was properly adjusted for, further underscoring the importance of considering sex as a

biological variable which significantly modifies exposure effects and can substantially affect data

interpretation.
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Though our study reveals important community shifts in nasal microbiota and immune mediators

associated with e-cigarette and cigarette use as well as with sex, there are limitations to our study. Our novel

analysis approach, while properly accounting for the compositional nature of the data, limits us in

comparing our work to previous studies, which have been more focused on specific taxa rather than ratios

across the microbial community as a whole. As with any study of human subjects, there is also inherent

inter-subject variability that can interfere with detection of differences between groups. In our e-cigarette

user group, there was considerable variability in factors that could impact the exposure subjects are

receiving, including e-liquid flavor, device, nicotine content, and frequency of use. The e-cigarette user

group also includes previous smokers and some marijuana use was reported in both smoker and e-cigarette

user questionnaires. These factors were included in our analysis and did not show a significant impact on

our overall findings due to the nature of the computational models we used. In future studies, larger cohort

sizes coupled with more extensive questionnaires could improve the ability to detect which, if any, of these

factors may be driving changes in microbiota composition and would also increase power to detect overall

changes and shifts in the nasal microbiomes of such subjects given the compositional and sparse nature of

16S sequencing data.

As a whole, our results support and expand on the previously published notion that exposure to inhaled

toxicants, including tobacco products, can influence the respiratory microbiome [Charlson et al., 2010, Chen

et al., 2020, Mariani et al., 2018]. The novel, robust computational approach in terms of pairwise logratios

that we applied allowed us to uncover both exposure- and sex-dependent effects on nasal mucosal host

defense responses using straightforward, non-invasive sampling of the upper respiratory tract of human

subjects. Importantly, we were able to integrate 16S sequencing data with expression of soluble immune

mediators to understand interactions between the nasal microbiome and host milieu by appropriately

handling the sparse, compositional data generated by 16S sequencing, accounting for inter-individual

variability between subjects’ mediator levels, and selecting for features that were most important for

separating classes, resulting in interpretable, biologically meaningful results. Conventional analysis

pipelines would have limited our ability to integrate these two types of data and detect the exposure and

sex-dependent effects we observed, highlighting the importance of applying innovative computational

methods to address specific research questions and integrating multiple factors in understanding biological

outcomes of exposure and disease.
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APPENDIX A: CHAPTER 2 SUPPLEMENTAL DATA

Algorithm 1 Association maximization with greedy forward stepwise selection

procedure SELECTIONENERGY(Z′, y, α, patience, ε)
if PERMDISP2(Z′y) < α then ▷ Determine test statistic

testStatisticFunction = cF ()
Metric = ’combinedF’

else
testStatisticFunction = Fn,α()
Metric = ’discoF’

end if
X = Z′ ∈ Rn×3 ▷ Select first 3 columns
maxF = testStatisticFunction(X,y)
improvementTime = 0
for i ∈ [4, . . . , |Z′|] do

Xnew = X ∪ z′∗,i ▷ Append ith column
newF = testStatisticFunction(Xnew,y)
diff = newF - maxF
if diff ≥ ε then

X = Xnew

maxF = newF
improvementTime = 0

else
improvementTime = improvementTime +1

end if
if improvementTime > patience then

Break
end if

end for
return(X , testStat )

end procedure
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Figure A.1: Feature selection computational time comparisons for balanced and unbalanced sampling
designs between SelEnergyPerm, LASSO, RFE, RF, Information Gain, and Boruta across each scenario and
dimension. Points are the mean for each experimental condition.
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Figure A.2: Comparison of SelEnergyPerm-selected log-ratio subset characteristics with Boruta,
Information Gain Filtering, LASSO, and RFE across five simulation scenarios for the unbalanced sampling
design. Using 200 simulations for each scenario-dimension by method we assessed: (Top Row) the clustering
coefficient of logratio networks formed by selected subsets returned from each method, (Middle Row)
the magnitude of the association as measured by the cF -statistic on selected subsets returned from each
method, and (Bottom Row) the number of logratios returned by each method. Points are the mean for each
experimental condition and error bars indicate 95% confidence interval.
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Figure A.3: Overall mean performance comparison for data generated from synthetic distributions
aggregated across all scenarios and dimensions using MCC, Sensitivity, Specify, Positive predictive value
(PPV), Negative predictive value (NPV), Youden Index, and False Positive Rate (FPR) metric. Error bars
indicate standard error.
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Figure A.4: Overall mean performance comparison for data generated from 16S and WGS synthetic
data aggregated across all scenarios and effect levels using MCC, Sensitivity, Specify, Positive predictive
value (PPV), Negative predictive value (NPV), Youden Index, and False Positive Rate (FPR) metric. Error
bars indicate standard error.
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APPENDIX B: CHAPTER 4 SUPPLEMENTAL DATA

Mediator Limit of Detection Company Company Location

Neutrophil Elastase 0.8 ng/mL Thermo Fisher Scientific (Invitrogen) Waltham, MA
Total IgA 1.6 ng/mL Thermo Fisher Scientific (Invitrogen) Waltham, MA

Lactoferrin 156.3 pg/mL Abcam Cambridge, UK
Lysozyme 31.25 pg/mL Abcam Cambridge, UK

IL-8 3.1 pg/mL BD Biosciences San Diego, CA
Beta-Defensin 1 7.8125 pg/mL LifeSpan Biosciences Seattle, WA
Beta-Defensin 2 7.8125 pg/mL LifeSpan Biosciences Seattle, WA

Table A.1: Commercially available ELISA kits used to measure mediators of host-microbiota interaction.

Figure A.5: Flow chart showing inclusion and exclusion criteria for NELF microbiome component, NLF
component, and integrative analysis.
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Figure A.6: SelEnergyPerm taxa subset selection and significance results. (A) Left - Selection of number
of taxa (t = 10) by normalized energy maximization to test in the final by Sex microbial logratio signature.
Right – SelEnergyPerm by Sex microbial signature significance via permutation testing. (B) Left - Selection
of number of taxa (t = 20) by normalized energy maximization to test in the final by Subject microbial
logratio signature. Right – SelEnergyPerm by Exposure group microbial signature significance results via
permutation testing.
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Figure A.7: NLF Mediator Analysis (A) Histogram of total NLF mediator concentrations by sample.
(B) DCV scoring of NLF mediator logratios. Grey: DCV < 0; Blue: DCV ≥ 0 (C) Graph representation of
DCV derived key NLF mediators. (D) logratio values of key NLF mediator logratios by exposure group
with subsequent Wilcoxon Rank-Sum test pairwise comparison displayed. (E) NLF mediator exposure
group discrimination via ROC curve displaying the multi-class AUC results of 50 repeats of 10-fold cross-
validation using a 2-component PLS-DA model.
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Figure A.8: By Exposure group Nasal Microbial Signature Latent Space Analysis (A) 2-Component
PLS-DA Biplot (B) Violin plot with means showing the distribution of first PLS-DA component scores by
exposure group (C) PLS-DA loadings on the first component.
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Sara Gandini, Davide Serrano, Sayaka Mizutani, Hirotsugu Shiroma, Satoshi Shiba, Tatsuhiro Shibata,
Shinichi Yachida, Takuji Yamada, Levi Waldron, Alessio Naccarati, Nicola Segata, Rashmi Sinha,
Cornelia M. Ulrich, Hermann Brenner, Manimozhiyan Arumugam, Peer Bork, and Georg Zeller.
Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal
cancer. Nature Medicine, 25(4):679–689, April 2019. ISSN 1546-170X. doi:
10.1038/s41591-019-0406-6.

Andrew Maltez Thomas, Paolo Manghi, Francesco Asnicar, Edoardo Pasolli, Federica Armanini, Moreno
Zolfo, Francesco Beghini, Serena Manara, Nicolai Karcher, Chiara Pozzi, Sara Gandini, Davide Serrano,
Sonia Tarallo, Antonio Francavilla, Gaetano Gallo, Mario Trompetto, Giulio Ferrero, Sayaka Mizutani,
Hirotsugu Shiroma, Satoshi Shiba, Tatsuhiro Shibata, Shinichi Yachida, Takuji Yamada, Jakob Wirbel,
Petra Schrotz-King, Cornelia M. Ulrich, Hermann Brenner, Manimozhiyan Arumugam, Peer Bork, Georg
Zeller, Francesca Cordero, Emmanuel Dias-Neto, João Carlos Setubal, Adrian Tett, Barbara Pardini,
Maria Rescigno, Levi Waldron, Alessio Naccarati, and Nicola Segata. Metagenomic analysis of colorectal
cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation.
Nature Medicine, 25(4):667–678, April 2019. ISSN 1546-170X. doi: 10.1038/s41591-019-0405-7.

Emily Vogtmann, Xing Hua, Georg Zeller, Shinichi Sunagawa, Anita Y. Voigt, Rajna Hercog, James J.
Goedert, Jianxin Shi, Peer Bork, and Rashmi Sinha. Colorectal Cancer and the Human Gut Microbiome:
Reproducibility with Whole-Genome Shotgun Sequencing. PloS One, 11(5):e0155362, 2016. ISSN
1932-6203. doi: 10.1371/journal.pone.0155362.

Shinichi Yachida, Sayaka Mizutani, Hirotsugu Shiroma, Satoshi Shiba, Takeshi Nakajima, Taku Sakamoto,
Hikaru Watanabe, Keigo Masuda, Yuichiro Nishimoto, Masaru Kubo, Fumie Hosoda, Hirofumi Rokutan,
Minori Matsumoto, Hiroyuki Takamaru, Masayoshi Yamada, Takahisa Matsuda, Motoki Iwasaki, Taiki
Yamaji, Tatsuo Yachida, Tomoyoshi Soga, Ken Kurokawa, Atsushi Toyoda, Yoshitoshi Ogura, Tetsuya
Hayashi, Masanori Hatakeyama, Hitoshi Nakagama, Yutaka Saito, Shinji Fukuda, Tatsuhiro Shibata, and
Takuji Yamada. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the
gut microbiota in colorectal cancer. Nature Medicine, 25(6):968–976, June 2019. ISSN 1546-170X. doi:
10.1038/s41591-019-0458-7.

Jun Yu, Qiang Feng, Sunny Hei Wong, Dongya Zhang, Qiao Yi Liang, Youwen Qin, Longqing Tang, Hui
Zhao, Jan Stenvang, Yanli Li, Xiaokai Wang, Xiaoqiang Xu, Ning Chen, William Ka Kei Wu, Jumana
Al-Aama, Hans Jørgen Nielsen, Pia Kiilerich, Benjamin Anderschou Holbech Jensen, Tung On Yau,
Zhou Lan, Huijue Jia, Junhua Li, Liang Xiao, Thomas Yuen Tung Lam, Siew Chien Ng, Alfred Sze-Lok
Cheng, Vincent Wai-Sun Wong, Francis Ka Leung Chan, Xun Xu, Huanming Yang, Lise Madsen,
Christian Datz, Herbert Tilg, Jian Wang, Nils Brünner, Karsten Kristiansen, Manimozhiyan Arumugam,
Joseph Jao-Yiu Sung, and Jun Wang. Metagenomic analysis of faecal microbiome as a tool towards
targeted non-invasive biomarkers for colorectal cancer. Gut, 66(1):70–78, January 2017a. ISSN
1468-3288. doi: 10.1136/gutjnl-2015-309800.

Georg Zeller, Julien Tap, Anita Y. Voigt, Shinichi Sunagawa, Jens Roat Kultima, Paul I. Costea, Aurélien
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Njamnshi, Frederic D. Bushman, and Sarah A. Tishkoff. Lifestyle and the presence of helminths is
associated with gut microbiome composition in Cameroonians. Genome Biology, 21(1):122, May 2020.
ISSN 1474-760X. doi: 10.1186/s13059-020-02020-4.

Suzanne R. Sharpton, Germaine J.M. Yong, Norah A. Terrault, and Susan V. Lynch. Gut Microbial
Metabolism and Nonalcoholic Fatty Liver Disease. Hepatology Communications, 3(1):29–43, 2019.
ISSN 2471-254X. doi: 10.1002/hep4.1284. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/hep4.1284. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hep4.1284.

Alyxandria M. Schubert, Mary A. M. Rogers, Cathrin Ring, Jill Mogle, Joseph P. Petrosino, Vincent B.
Young, David M. Aronoff, and Patrick D. Schloss. Microbiome Data Distinguish Patients with
Clostridium difficile Infection and Non-C. difficile-Associated Diarrhea from Healthy Controls. mBio, 5
(3):e01021–14, May 2014. ISSN 2150-7511. doi: 10.1128/mBio.01021-14. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010826/.

TW Wang, K Asman, AS Gentzke, and et al. Tobacco Product Use Among Adults — United States, 2017.
MMWR Morb Mortal Wkly Rep, 67(45):1225–1232, 2017. doi:
http://dx.doi.org/10.15585/mmwr.mm6744a2. Type: Journal Article.

Adam M. Leventhal, Richard Miech, Jessica Barrington-Trimis, Lloyd D. Johnston, Patrick M. O’Malley,
and Megan E. Patrick. Flavors of e-Cigarettes Used by Youths in the United States. Jama, 2019. ISSN
0098-7484. doi: 10.1001/jama.2019.17968. Type: Journal Article.

T. W. Wang, L. J. Neff, E. Park-Lee, C. Ren, K. A. Cullen, and B. A. King. E-cigarette Use Among Middle
and High School Students - United States, 2020. MMWR Morb Mortal Wkly Rep, 69(37):1310–1312,
2020. ISSN 0149-2195 (Print) 0149-2195. doi: 10.15585/mmwr.mm6937e1. Type: Journal Article.

113

https://www.researchsquare.com/article/rs-703177/v1
https://onlinelibrary.wiley.com/doi/abs/10.1002/hep4.1284
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010826/


K. A. Cullen, A. S. Gentzke, M. D. Sawdey, J. T. Chang, G. M. Anic, T. W. Wang, M. R. Creamer, A. Jamal,
B. K. Ambrose, and B. A. King. e-Cigarette Use Among Youth in the United States, 2019. Jama, 2019.
ISSN 0098-7484. doi: 10.1001/jama.2019.18387. Type: Journal Article.

E. Kiernan, E. S. Click, P. Melstrom, M. E. Evans, M. R. Layer, D. N. Weissman, S. Reagan-Steiner, J. L.
Wiltz, S. Hocevar, A. B. Goodman, and E. Twentyman. A Brief Overview of the National Outbreak of
e-Cigarette, or Vaping, Product Use-Associated Lung Injury and the Primary Causes. Chest, 159(1):
426–431, 2021. ISSN 0012-3692. doi: 10.1016/j.chest.2020.07.068. Type: Journal Article.

K. D. McAlinden, M. S. Eapen, W. Lu, C. Chia, G. Haug, and S. S. Sohal. COVID-19 and vaping: risk for
increased susceptibility to SARS-CoV-2 infection? Eur Respir J, 56(1), 2020. ISSN 0903-1936 (Print)
0903-1936. doi: 10.1183/13993003.01645-2020. Type: Journal Article.

E. M. Martin, P. W. Clapp, M. E. Rebuli, E. A. Pawlak, E. Glista-Baker, N. L. Benowitz, R. C. Fry, and
I. Jaspers. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal
epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol, 311(1):L135–44, 2016.
ISSN 1040-0605. doi: 10.1152/ajplung.00170.2016. Type: Journal Article.

B. Reidel, G. Radicioni, P. W. Clapp, A. A. Ford, S. Abdelwahab, M. E. Rebuli, P. Haridass, N. E. Alexis,
I. Jaspers, and M. Kesimer. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung,
Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am J Respir Crit Care Med,
197(4):492–501, 2018. ISSN 1535-4970 (Electronic) 1073-449X (Linking). doi:
10.1164/rccm.201708-1590OC. URL https://www.ncbi.nlm.nih.gov/pubmed/29053025.
Type: Journal Article.

P. W. Clapp, E. A. Pawlak, J. T. Lackey, J. E. Keating, S. L. Reeber, G. L. Glish, and I. Jaspers. Flavored
e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am J Physiol
Lung Cell Mol Physiol, 313(2):L278–L292, 2017. ISSN 1522-1504 (Electronic) 1040-0605 (Linking).
doi: 10.1152/ajplung.00452.2016. URL
https://www.ncbi.nlm.nih.gov/pubmed/28495856. Type: Journal Article.

M. C. Madison, C. T. Landers, B. H. Gu, C. Y. Chang, H. Y. Tung, R. You, M. J. Hong, N. Baghaei, L. Z.
Song, P. Porter, N. Putluri, R. Salas, B. E. Gilbert, I. Levental, M. J. Campen, D. B. Corry, and
F. Kheradmand. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of
nicotine. J Clin Invest, 129(10):4290–4304, 2019. ISSN 0021-9738. doi: 10.1172/jci128531. Type:
Journal Article.

A. Ghosh, R. D. Coakley, A. J. Ghio, M. S. Muhlebach, Jr. Esther, C. R., N. E. Alexis, and R. Tarran.
Chronic E-Cigarette Use Increases Neutrophil Elastase and Matrix Metalloprotease Levels in the Lung.
Am J Respir Crit Care Med, 2019. ISSN 1073-449x. doi: 10.1164/rccm.201903-0615OC. Type: Journal
Article.

T. E. Sussan, S. Gajghate, R. K. Thimmulappa, J. Ma, J. H. Kim, K. Sudini, N. Consolini, S. A. Cormier,
S. Lomnicki, F. Hasan, A. Pekosz, and S. Biswal. Exposure to electronic cigarettes impairs pulmonary
anti-bacterial and anti-viral defenses in a mouse model. PLoS One, 10(2):e0116861, 2015. ISSN
1932-6203. doi: 10.1371/journal.pone.0116861. Type: Journal Article.

J. Gerloff, I. K. Sundar, R. Freter, E. R. Sekera, A. E. Friedman, R. Robinson, T. Pagano, and I. Rahman.
Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified
by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells
and Fibroblasts. Appl In Vitro Toxicol, 3(1):28–40, 2017. ISSN 2332-1512 (Print) 2332-1512 (Linking).

114

https://www.ncbi.nlm.nih.gov/pubmed/29053025
https://www.ncbi.nlm.nih.gov/pubmed/28495856


doi: 10.1089/aivt.2016.0030. URL https://www.ncbi.nlm.nih.gov/pubmed/28337465.
Type: Journal Article.

T. Muthumalage, M. Prinz, K. O. Ansah, J. Gerloff, I. K. Sundar, and I. Rahman. Inflammatory and
Oxidative Responses Induced by Exposure to Commonly Used e-Cigarette Flavoring Chemicals and
Flavored e-Liquids without Nicotine. Front Physiol, 8:1130, 2017. ISSN 1664-042X (Print) 1664-042X
(Linking). doi: 10.3389/fphys.2017.01130. URL
https://www.ncbi.nlm.nih.gov/pubmed/29375399. Type: Journal Article.

R. Z. Behar, W. Luo, K. J. McWhirter, J. F. Pankow, and P. Talbot. Analytical and toxicological evaluation
of flavor chemicals in electronic cigarette refill fluids. Sci Rep, 8(1):8288, 2018. ISSN 2045-2322
(Electronic) 2045-2322 (Linking). doi: 10.1038/s41598-018-25575-6. URL
https://www.ncbi.nlm.nih.gov/pubmed/29844439. Type: Journal Article.

P. W. Clapp, K. S. Lavrich, C. A. van Heusden, E. R. Lazarowski, J. L. Carson, and I. Jaspers.
Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary
motility by dysregulation of mitochondrial function. Am J Physiol Lung Cell Mol Physiol, 316(3):
L470–l486, 2019. ISSN 1040-0605. doi: 10.1152/ajplung.00304.2018. Type: Journal Article.

E. Hickman, C. A. Herrera, and I. Jaspers. Common E-Cigarette Flavoring Chemicals Impair Neutrophil
Phagocytosis and Oxidative Burst. Chem Res Toxicol, 32(6):982–985, 2019. ISSN 0893-228x. doi:
10.1021/acs.chemrestox.9b00171. Type: Journal Article.

J. H. Hwang, M. Lyes, K. Sladewski, S. Enany, E. McEachern, D. P. Mathew, S. Das, A. Moshensky,
S. Bapat, D. T. Pride, W. M. Ongkeko, and L. E. Crotty Alexander. Electronic cigarette inhalation alters
innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J Mol Med
(Berl), 94(6):667–79, 2016. ISSN 0946-2716. doi: 10.1007/s00109-016-1378-3. Type: Journal Article.

L. Miyashita, R. Suri, E. Dearing, I. Mudway, R. E. Dove, D. R. Neill, R. Van Zyl-Smit, A. Kadioglu, and
J. Grigg. E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. Eur Respir J,
51(2), 2018. ISSN 0903-1936. doi: 10.1183/13993003.01592-2017. Type: Journal Article.

W. H. Man, W. A. de Steenhuijsen Piters, and D. Bogaert. The microbiota of the respiratory tract:
gatekeeper to respiratory health. Nat Rev Microbiol, 15(5):259–270, 2017. ISSN 1740-1526. doi:
10.1038/nrmicro.2017.14. Type: Journal Article.

N. D. J. Ubags and B. J. Marsland. Mechanistic insight into the function of the microbiome in lung diseases.
Eur Respir J, 50(3), 2017. ISSN 0903-1936. doi: 10.1183/13993003.02467-2016. Type: Journal Article.

E. S. Charlson, J. Chen, R. Custers-Allen, K. Bittinger, H. Li, R. Sinha, J. Hwang, F. D. Bushman, and R. G.
Collman. Disordered microbial communities in the upper respiratory tract of cigarette smokers. PLoS
One, 5(12):e15216, 2010. ISSN 1932-6203. doi: 10.1371/journal.pone.0015216. Type: Journal Article.

V. R. Ramakrishnan, L. J. Hauser, and D. N. Frank. The sinonasal bacterial microbiome in health and
disease. Curr Opin Otolaryngol Head Neck Surg, 24(1):20–5, 2016. ISSN 1068-9508. doi:
10.1097/moo.0000000000000221. Type: Journal Article.

Rune Grønseth, Christine Drengenes, Harald G. Wiker, Solveig Tangedal, Yaxin Xue, Gunnar Reksten
Husebø, Øistein Svanes, Sverre Lehmann, Marit Aardal, Tuyen Hoang, Tharmini Kalananthan,
Einar Marius Hjellestad Martinsen, Elise Orvedal Leiten, Marianne Aanerud, Eli Nordeide, Ingvild
Haaland, Inge Jonassen, Per Bakke, and Tomas Eagan. Protected sampling is preferable in bronchoscopic
studies of the airway microbiome. ERJ Open Research, 3(3):00019–2017, 2017. doi:

115

https://www.ncbi.nlm.nih.gov/pubmed/28337465
https://www.ncbi.nlm.nih.gov/pubmed/29375399
https://www.ncbi.nlm.nih.gov/pubmed/29844439


10.1183/23120541.00019-2017. URL
http://openres.ersjournals.com/content/3/3/00019-2017.abstract. Type:
Journal Article.

Arianna Di Stadio, Claudio Costantini, Giorgia Renga, Marilena Pariano, Giampietro Ricci, and Luigina
Romani. The Microbiota/Host Immune System Interaction in the Nose to Protect from COVID-19. Life
(Basel, Switzerland), 10(12):345, 2020. ISSN 2075-1729. doi: 10.3390/life10120345. URL
https://pubmed.ncbi.nlm.nih.gov/33322584https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC7763594/. Type: Journal Article.

C. Rosas-Salazar, K. S. Kimura, M. H. Shilts, B. A. Strickland, M. H. Freeman, B. C. Wessinger, V. Gupta,
H. M. Brown, S. V. Rajagopala, J. H. Turner, and S. R. Das. SARS-CoV-2 Infection and Viral Load are
Associated with the Upper Respiratory Tract Microbiome. J Allergy Clin Immunol, 2021. ISSN
0091-6749 (Print) 0091-6749. doi: 10.1016/j.jaci.2021.02.001. Type: Journal Article.

Jack A. Gilbert, Martin J. Blaser, J. Gregory Caporaso, Janet K. Jansson, Susan V. Lynch, and Rob Knight.
Current understanding of the human microbiome. Nature Medicine, 24(4):392–400, 2018. ISSN
1546-170X. doi: 10.1038/nm.4517. URL https://doi.org/10.1038/nm.4517. Type: Journal
Article.

Hongzhe Li. Statistical and Computational Methods in Microbiome and Metagenomics. In Handbook of
Statistical Genomics, pages 977–550. 2019. doi: https://doi.org/10.1002/9781119487845.ch35. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119487845.ch35.
Type: Book Section.

Duo Jiang, Courtney R. Armour, Chenxiao Hu, Meng Mei, Chuan Tian, Thomas J. Sharpton, and Yuan
Jiang. Microbiome Multi-Omics Network Analysis: Statistical Considerations, Limitations, and
Opportunities. Frontiers in Genetics, 10(995), 2019. ISSN 1664-8021. doi: 10.3389/fgene.2019.00995.
URL https://www.frontiersin.org/article/10.3389/fgene.2019.00995. Type:
Journal Article.

M. E. Rebuli, A. M. Speen, P. W. Clapp, and I. Jaspers. Novel applications for a noninvasive sampling
method of the nasal mucosa. Am J Physiol Lung Cell Mol Physiol, 312(2):L288–l296, 2017. ISSN
1040-0605. doi: 10.1152/ajplung.00476.2016. Type: Journal Article.

M. S. Muhlebach, B. T. Zorn, C. R. Esther, J. E. Hatch, C. P. Murray, L. Turkovic, S. C. Ranganathan, R. C.
Boucher, S. M. Stick, and M. C. Wolfgang. Initial acquisition and succession of the cystic fibrosis lung
microbiome is associated with disease progression in infants and preschool children. PLoS Pathog, 14(1):
e1006798, 2018. ISSN 1553-7366 (Print) 1553-7366. doi: 10.1371/journal.ppat.1006798. Type: Journal
Article.

K. M. Horvath, M. Herbst, H. Zhou, H. Zhang, T. L. Noah, and I. Jaspers. Nasal lavage natural killer cell
function is suppressed in smokers after live attenuated influenza virus. Respir Res, 12:102, 2011. ISSN
1465-9921. doi: 10.1186/1465-9921-12-102. Type: Journal Article.

N. M. Davis, D. M. Proctor, S. P. Holmes, D. A. Relman, and B. J. Callahan. Simple statistical identification
and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome, 6(1):226,
2018. ISSN 2049-2618. doi: 10.1186/s40168-018-0605-2. Type: Journal Article.

C. Drengenes, H. G. Wiker, T. Kalananthan, E. Nordeide, T. M. L. Eagan, and R. Nielsen. Laboratory
contamination in airway microbiome studies. BMC Microbiol, 19(1):187, 2019. ISSN 1471-2180. doi:
10.1186/s12866-019-1560-1. Type: Journal Article.

116

http://openres.ersjournals.com/content/3/3/00019-2017.abstract
https://pubmed.ncbi.nlm.nih.gov/33322584 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763594/
https://pubmed.ncbi.nlm.nih.gov/33322584 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763594/
https://doi.org/10.1038/nm.4517
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119487845.ch35
https://www.frontiersin.org/article/10.3389/fgene.2019.00995


Matthew C. B. Tsilimigras and Anthony A. Fodor. Compositional data analysis of the microbiome:
fundamentals, tools, and challenges. Annals of Epidemiology, 26(5):330–335, 2016. ISSN 1047-2797.
doi: 10.1016/j.annepidem.2016.03.002. Type: Journal Article.

Pierre Legendre and Louis Legendre. Canonical analysis. In Developments in Environmental Modelling,
volume 24, pages 625–710. Elsevier, 2012. ISBN 978-0-444-53868-0. Type: Book Section.

Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, P. Legendre, Peter Minchin, Bob O’Hara, Gavin
Simpson, Peter Solymos, Hank Stevens, and Helene Wagner. Vegan: Community Ecology Package. R
Package Version 2.2-1, 2:1–2, 2015. Type: Journal Article.

Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An Open Source Software for
Exploring and Manipulating Networks. 2009. Type: Book.

Gabor Csardi and Tamas Nepusz. The Igraph Software Package for Complex Network Research.
InterJournal, Complex Systems:1695, 2005. Type: Journal Article.

Matthew Barker and William Rayens. Partial least squares for discrimination. Journal of Chemometrics, 17
(3):166–173, 2003. ISSN 1099-128X. doi: https://doi.org/10.1002/cem.785. Type: Journal Article.

Richard G. Brereton and Gavin R. Lloyd. Partial least squares discriminant analysis: taking the magic away.
Journal of Chemometrics, 28(4):213–225, 2014. ISSN 1099-128X. doi:
https://doi.org/10.1002/cem.2609. Type: Journal Article.

Max Kuhn. Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 28(5),
2008. ISSN 1548-7660. doi: 10.18637/jss.v028.i05. Type: Journal Article.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Use R! Springer International Publishing,
2 edition, 2016. ISBN 978-3-319-24275-0. Type: Book.

David J. Hand and Robert J. Till. A Simple Generalisation of the Area Under the ROC Curve for Multiple
Class Classification Problems. Machine Learning, 45(2):171–186, 2001. ISSN 1573-0565. doi:
10.1023/A:1010920819831. Type: Journal Article.

M. Stone. Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal
Statistical Society: Series B (Methodological), 36(2):111–133, 1974. ISSN 2517-6161. doi:
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x. Type: Journal Article.

Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique Lisacek, Jean-Charles
Sanchez, and Markus Müller. pROC: an open-source package for R and S+ to analyze and compare ROC
curves. BMC Bioinformatics, 12(1):77, 2011. ISSN 1471-2105. doi: 10.1186/1471-2105-12-77. Type:
Journal Article.

Yoav Benjamini and Yosef Hochberg. Controlling the False Discovery Rate: A Practical and Powerful
Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1):
289–300, 1995. ISSN 0035-9246. Type: Journal Article.

C. Kumpitsch, K. Koskinen, V. Schöpf, and C. Moissl-Eichinger. The microbiome of the upper respiratory
tract in health and disease. BMC Biol, 17(1):87, 2019. ISSN 1741-7007. doi:
10.1186/s12915-019-0703-z. Type: Journal Article.

117



Ilke De Boeck, Stijn Wittouck, Sander Wuyts, Eline F. M. Oerlemans, Marianne F. L. van den Broek, Dieter
Vandenheuvel, Olivier Vanderveken, and Sarah Lebeer. Comparing the Healthy Nose and Nasopharynx
Microbiota Reveals Continuity As Well As Niche-Specificity. Frontiers in microbiology, 8:2372–2372,
2017. ISSN 1664-302X. doi: 10.3389/fmicb.2017.02372. URL
https://pubmed.ncbi.nlm.nih.gov/29238339https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC5712567/. Type: Journal Article.

P. J. McMurdie and S. Holmes. phyloseq: an R package for reproducible interactive analysis and graphics
of microbiome census data. PLoS One, 8(4):e61217, 2013. ISSN 1932-6203. doi:
10.1371/journal.pone.0061217. Type: Journal Article.

M. E. Rebuli, A. M. Speen, E. M. Martin, K. A. Addo, E. A. Pawlak, E. Glista-Baker, C. Robinette,
H. Zhou, T. L. Noah, and I. Jaspers. Wood Smoke Exposure Alters Human Inflammatory Responses to
Viral Infection in a Sex-Specific Manner: A Randomized, Placebo-Controlled Study. Am J Respir Crit
Care Med, 2018. ISSN 1073-449x. doi: 10.1164/rccm.201807-1287OC. Type: Journal Article.

Y. Cho, G. Abu-Ali, H. Tashiro, T. A. Brown, R. S. Osgood, D. I. Kasahara, C. Huttenhower, and S. A.
Shore. Sex Differences in Pulmonary Responses to Ozone in Mice. Role of the Microbiome. Am J Respir
Cell Mol Biol, 60(2):198–208, 2019. ISSN 1044-1549 (Print) 1044-1549. doi:
10.1165/rcmb.2018-0099OC. Type: Journal Article.

G. Yu, S. Phillips, M. H. Gail, J. J. Goedert, M. S. Humphrys, J. Ravel, Y. Ren, and N. E. Caporaso. The
effect of cigarette smoking on the oral and nasal microbiota. Microbiome, 5(1):3, 2017b. ISSN
2049-2618. doi: 10.1186/s40168-016-0226-6. Type: Journal Article.

Pipat Piewngam, Yue Zheng, Thuan H. Nguyen, Seth W. Dickey, Hwang-Soo Joo, Amer E. Villaruz,
Kyle A. Glose, Emilie L. Fisher, Rachelle L. Hunt, Barry Li, Janice Chiou, Sujiraphong Pharkjaksu,
Sunisa Khongthong, Gordon Y. C. Cheung, Pattarachai Kiratisin, and Michael Otto. Pathogen elimination
by probiotic Bacillus via signalling interference. Nature, 562(7728):532–537, 2018. ISSN 1476-4687.
doi: 10.1038/s41586-018-0616-y. URL https://doi.org/10.1038/s41586-018-0616-y.
Type: Journal Article.

Cindy M. Liu, Lance B. Price, Bruce A. Hungate, Alison G. Abraham, Lisbeth A. Larsen, Kaare
Christensen, Marc Stegger, Robert Skov, and Paal Skytt Andersen. Staphylococcus aureus and the
ecology of the nasal microbiome. Science Advances, 1(5):e1400216, 2015. doi: 10.1126/sciadv.1400216.
URL https:
//advances.sciencemag.org/content/advances/1/5/e1400216.full.pdf. Type:
Journal Article.
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