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ABSTRACT

KENTARO J. HOFFMAN: Borrowing from your Neighbors: Three new statistical techniques
from non-traditional sources.

(Under the direction of Cynthia Rudin and Kai Zhang)

From Generalised Fiducial Inference to Causal Inference, the past few years have seen a

rising tide of new statistical paradigms calling into question our previous approaches of learning

from data. This thesis will follow in this movement and demonstrate how these newer paradigms

allow us to perform analyses that would be difficult to perform using conventional approaches. In

the first chapter, we show how Dempster-Shafer and Fiducial Inference can be used as an

alternative approach to the conventional Neyman-Pearson hypothesis testing paradigm through

the inclusion of an “unknown” class into the testing procedure. This not only allows for tests with

in-built robustness estimates, but allows for a natural analysis of the effects of adversarial attacks

on hypothesis tests. In the second chapter, we demonstrate how interpretable causal inference

combine with differential equation modeling gives users a powerful new approach to answering

causal questions about patients exhibiting epileptiform activity. Finally, we combine the

Empirical Mode Decomposition, which pioneered a signal decomposition that makes far fewer

assumptions than traditional Fourier or Wavelet decompositions, with statistical techniques to

allow for more accurate signal identification and cleaning.
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Chapter 1

Introduction

In this thesis, we demonstrate how theoretical developments in three non-statistical field,

Reliability Engineering, Differential Equations, and Signal Processes can be adapted to create

new statistical methodology. Such cross disciplinary work has a long history. One of the most

famous statisticians of the 20th century, John Tukey, was known for saying, “The best thing

about being a statistician is that you get to play in everyone’s backyard” (Lin et al., 2014). While

pithy, this quote illustrates that statistics, at its core, is an interdisciplinary subject. An

interdisciplinary approach begets new problems and new solutions. For example, the 2010’s saw

the rise of single-cell RNA sequencing which pushed the boundaries of higher dimensional

statistics through a new demand for sparser methods (Efron and Hastie, 2016). Other times, new

theoretical developments in other subjects have important implications for existing statistical

problems. Take, for example, the development of Dempster-Shafer Inference. While it rose to

prominence in the Reliability Engineering and Artificial Intelligence communities (Dempster,

1967) for its novel approach to decision making under uncertainty, it has had an important

influence on the development of robust inferential methods (Gelman, 2006) and Fiducial Inference

(Hannig, 2009). Another important example is the development of causal inference. Statistics and

Computer Science have each proposed a powerful paradigm for causal inference, the Rubin Causal

Model (Splawa-Neyman et al., 1990) and Do-Calculus (Pearl, 1995) respectively, each of which

have influenced and challenged the other.

In this thesis, we build on these cross-paradigm conversations of the past and demonstrate

how different statistical and non-statistical paradigms can be applied to problems, new and old,

to create powerful new approaches which address weaknesses in existing approaches. In the first

project, we study one of the oldest problems in statistical inference: multinomial hypothesis

testing. Being one of the oldest distributions in statistics (Bernoulli, 1713), the multinomial plays
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an important role in application areas which rely on categorical data. Two such areas are the

fields of Differential Privacy and Adversarial Attacks. In both domains, it is important not only

to be able to perform statistical inference, but to include uncertainty estimates of the inferences

which incorporate the unique noise structure of these problems. A primary tool for such analyses

is Dempster-Shafer Inference, but it was only in the past decade that reliable methods for

inferring multinomial parameters under the Demspter-Shafer paradigm have become feasible

(Zhang and Liu, 2014; Jacob et al., 2021).

In our investigation, we develop a testing procedure outside of the Neyman-Pearson paradigm

to perform a Dempster-Shafer hypothesis test for multinomial data. Our method closely matches

the results for a corresponding frequentist Chi-squared test and provides additional information

about the epistemic uncertainty in the test. Additionally, it provides several surprising

connections between Dempster-Shafer, Frequentist, and Fiducial inferential procedures which hint

at new way of relating the three approaches.

In our second project, we investigate the causal effects of epileptiform activity on critically ill

patients. Epileptiform activity is an irregular proto-seizure-like brain activity that can be

identified from a patient’s EEG (Hirsch et al., 2021). Despite epileptiform activity being common

in critically ill patients suffering from brain injuries (Lucke-Wold et al., 2015), there is yet to be a

causal analysis of epileptiform activity which controls for the various anti-seizure medications a

patient received. Ignoring anti-seizure medications is especially problematic as anti-seizure

medications are administered by a physician to directly lower the level of epileptiform activity,

creating a powerful confounding factor. Furthermore, due to the temporal aspect of these drug

treatments and low signal to noise ratio, analyzing the damage that epileptiform activity causes

requires the creation of new statistical methodology.

This is accomplished through a new framework which merges interpretable causal inference

and differential equation-based Pharmacokinetic/Pharmacodynamic modeling. This method

retains the strengths of both approaches, allowing us to make well founded causal claims, while

leveraging known drug mechanisms to make accurate drug response estimates even in the

presence of high background noise and frequently missing EEG segments. Using this framework,

we have identified a causal effect between epileptiform activity and reduced adverse patient

outcomes, as well as identified the patients that are at increased risk for epileptiform activity.
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Finally, in our third project, we bring to attention how the mathematical properties of a new

signal decomposition technique, the Ensemble Empirical Mode Decomposition can be utilized to

design a new change point and signal cleaning technique. Specifically, while it lacks the

large-sample properties of Fourier and Wavelet decompositions, the Ensemble Empirical Mode

Decomposition is adept at modeling non-linear signals with relatively few basis functions. This

low dimensional representation presents a new opportunity as some techniques, such as change

point detection, perform much better at lower dimensions than higher ones. By combining the

low-dimensionality of the representation with appropriate low-dimensional statistical techniques,

we demonstrate a signal cleaning technique, LCDSC is able to match the performance of competing

signal cleaning techniques and serves as a powerful tool for cleaning infrasound acoustic waves.
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Chapter 2

Dempster-Shafer Hypothesis Testing for Multinomial Data

2.1 Introduction

Dempster-Shafer (DS) Inference was developed in the 1960-70s by Arthur Dempster

(Dempster, 1968) and Glen Shafer (Dempster and Shafer, 1976) as a prior-free approach to

statistical inference. Historically, DS Inference has played an important role in the development of

artificial intelligence (Yager and Liu, 2008) and reliability engineering (Sentz and Ferson, 2002),

leading to the development of the field of “imprecise probability.” Despite its popularity in other

fields, DS Inference has had a smaller impact on the statistical world in which it originated. It

has been hypothesized that it failed to take off due to technical difficulties in interpreting beliefs

and plausibilities (Pearl, 1988), computational burden, and lack of conventional long-run

frequentest properties under repeated sampling (Martin et al., 2010).

However, in the last several years, there has been a renewed interest from the statistical

community in other forms of prior-free forms of posterior inference which incorporate epistemic

uncertainty. This has come from closely related topics such as Jan Hannig’s Generalized Fiducial

Inference (Hannig, 2009), Confidence Distributions (Xie and Singh, 2013), and faster

computational techniques using Gibbs Sampling on polytopes (Jacob et al., 2021). We build on

this rising wave and demonstrate that one can perform a wide variety of Dempster-Shafer

Hypothesis Tests which are computationally fast and model epistemic uncertainty: in particular,

we focus on the uncertainty that can result from adversarial attacks. Moreover, we will show

through classical large sample bounds and simulations that there exists a close connection

between our form of DS hypothesis testing and the classical frequentist testing paradigm. The

connection is close enough that we can approximate frequentist results using our DS approach.

Finally, we will demonstrate how our approach gives unique insights into the dimensionality of a

hypothesis test as well as models the effects of adversarial attacks on multinomial data.
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2.2 Multinomial Data Generation via Dirichlet-DSM

In a Multinomial Data generation scheme, we observe n, k-dimensional multinomial

observations (n1, ...nk) with unknown but fixed probabilities P = (p1, ...pk) such that
∑k

i=1 pi = 1

n1, ..., nk ∼ Multinomial (n, p1, ..., pk).

To perform DS inference, it is first necessary to define the data generation process that yielded

(n1, ..., nk). This can be done through prior insight into the data generation scheme, or it can be

chosen to facilitate the inference of the parameters. In line with the second reason, we will employ

an insightful data generation process described in Lawrence et al. (2009) as the Dirichlet-DSM

process. In this process, we first define an unknown permutation π of {1, ...k}. We then define Ia,

a ∈ {1, ..., k} as an interval of length pa whose location is determined by the process:

Ia =


[0, pa) if π(1) = a

[
∑ã−1

i=1 pπ(i),
∑ã−1

i=1 pπ(i) + pa) if π(1) ̸= a

where ã = π−1(a). Regardless of each permutation π, each segment Ia is of length pa. Using these

latent intervals, it is posited that each ni is generated according to the equation:

ni = a iff Wi ∈ Ia(i = 1, ...n)

where (W1, ...Wn) are n independent, uniform random variables on [0,1].

While this data generation scheme is fairly complex compared to others such as simplex-DSM

seen in Dempster (1966), interval-DSM in Hannig (2009), and Simplex-DS in Jacob et al. (2021),

it holds two distinct advantages. First, unlike interval-DSM, this inference procedure for

Dirichlet-DSM is not sensitive to the order of the categories. Further, unlike the simplex-DSM

and Simplex-DS, Dirichlet-DSM has a relatively simple expression for its posterior estimation

which requires no expensive acceptance-rejection or Gibbs sampling. For this reason we will be

demonstrating our hypothesis testing procedure on data generated using Dirichlet-DSM, although

much of the intuition could also be applicable to these other approaches.
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2.2.1 A Recipe for Multinomial DS Inference using Dirichlet-DSM

To infer P from data generated by the Dirichlet-DSM scheme, we employ a latent parameter

approach to estimate the posterior random set. This is equivalent to a reformulation of the

method described in Lawrence et al. (2009), except we emphasize the Fiducial perspectives of this

approach to connect this into related developments from Generalized Fiducial Inference. To start,

we first generate a k + 1 dimensional vector of latent parameters Z = (Z0,Z−0)

(Z0,Z−0) = (Z0, Z1, ...Zk) ∼ Dirichlet (1, n1, ...nk) (2.1)

Given fixed instances of (Z0,Z−0) the latent parameters, z = (z0, z−0) from our Dirichlet

distribution, we will define the posterior random set, P̂(z), as a polytope with edges:

vj = (z1, ...zj−1, zj + z0, zj+1, ...zk), ∀j ∈ {1, ...k}.

It is because these polytope edges come from a Dirichlet distribution that this may be referred to

as a Dirichlet DSM. Any element of P̂(z) can equivalently be written as the set:

P̂(z) = {z−0 + θT z0|θ = (θ1, ..., θk),
k∑

j=1

θj = 1, 0 ≤ θj ≤ 1, for j = 1, ..., k}

or in vector form:

P̂(z) =


Z1 + θ1Z0

...

Zk + θkZ0

 .

When referring to the distribution of posterior random sets, we will denote this as:

P̂(Z) = {Z−0 + θTZ0|θ = (θ1, ..., θk),
k∑

j=1

θj = 1, θj ≥ 0 for j = 1, ..., k}. (2.2)

To demonstrate that P̂(Z) provides a reasonable estimate of P, we can show that these random

sets asymptotically converge to P.

Theorem 1. P̂(Z) converges almost surely to P.
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Proof. First, recall that we can write the distribution of our posterior random set as

P̂(Z) =


Z1 + θ1Z0

...

Zk + θkZ0


for any fixed θ1, ...θk on a k + 1 dimensional simplex. This random vector lies on the probability

space (∆k,B(∆k), P ) where ∆k is the k + 1 dimensional simplex and B(∆k) is the borel sigma

algebra. To make the relationship with this space clear, for this proof, we will use the notation:

P̂(Z)(w) =


Z1(w1) + θ1Z0(w0)

...

Zk(wk) + θkZ0(w0)


where w = (w1, ..., wk) ∈ ∆k. To show almost sure convergence, it suffices to show that for all

ϵ > 0:

P (lim sup
n→∞

{w ∈ ∆k : ||P̂(Z)(w)− P(w)||1 ≥ ϵ) = 0

To demonstrate this, we employ the triangle inequality, the union bound, and the fact that

|θi| ≤ 1 to get the bound:

P (lim sup
n→∞

{w ∈ ∆k : ||P̂(Z)(w)− P||1 ≥ ϵ}) (2.3)

= P (lim sup
n→∞

{w ∈ ∆k :

∥∥∥∥∥∥∥∥∥∥


Z1(w1) + θ1Z0(w0)

...

Zk(wk) + θkZ0(w0)

−


p1
...

pk


∥∥∥∥∥∥∥∥∥∥
1

≥ ϵ}) (2.4)

= P (lim sup
n→∞

{w ∈ ∆k :
k∑

i=1

|Zi(wi)− pi + θiZ0(w0)| ≥ ϵ}) (2.5)

≤ P (lim sup
n→∞

{w ∈ ∆k :
k∑

i=1

|Zi(wi)− pi| ≥
ϵ

2
}) + P (lim sup

n→∞
{w ∈ ∆k :

k∑
i=1

|θiZ0(w0)| ≥
ϵ

2
}) (2.6)

≤
k∑

i=1

P (lim sup
n→∞

{w ∈ ∆k : |Zi(wi)− pi| ≥
ϵ

2k
}) + P (lim sup

n→∞
{w ∈ ∆k : |Z0(w0)| ≥

ϵ

2k
}) (2.7)

Thus, it suffices to show that Zi
a.s→ pi for i ∈ {1, ...k} and Z0

a.s→ 0 with respect to n.
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To see this, due to the aggregation property of the Dirichlet (Ng et al., 2011):

Z0 ∼ Beta(1, n) (2.8)

Z−0 ∼ Dirichlet(n1, ..., nk). (2.9)

For the first summand, any Beta distribution can be written as the ratio of independent Gammas

which in turn can be written as a sum of Exponentials (Casella and Berger, 2001):

Z0 =
U

U + V
=

U

U +
∑n

i=1 Vi
=

U/n

(U +
∑n

i=1 Vi)/n
.

Here U ∼ Gamma(1, 1) = Exp(1), and V ∼ Gamma(n, 1), V1, ...Vn ∼ Exp(1). Then, by the

strong law of large numbers limn→∞
∑n

i=1 Vi

n = 1 and limn→∞
U
n = 0. Furthermore, by the

continuous mapping theorem, the numerator goes to 0 and the denominator goes to 1. Therefore,

by the continuous mapping theorem:

Z0
a.s→ 0.

As for the second summand, like the Beta, we can write any Dirichlet as a ratio of independent

Gammas using Ui ∼ Gamma(ni, 1) for i ∈ {1, ...k}, U =
∑k

i=1 Ui ∼ Gamma(n, 1), and

Vi ∼ Exp(1). (Ng et al., 2011):

Dirichlet(n1, ..., nk) =

(
U1

U
, ...,

Uk

U

)
.

Each Ui
U for i ∈ {1, ...k} can be written as a ratio of gamma distributions:

Ui

U
=

Ui

Ui +
∑

j ̸=i U
′
j

=

∑ni
j=1 Vi∑ni

j=1 Vi +
∑

j ̸=i

∑nj

k=1 V
′
k

=

∑ni
j=1(Vi)/n∑ni

j=1(Vi)/n+
∑

j ̸=i

∑nj

k=1(V
′
k)/n

.
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Here, V
′
i is an independent copy of Vi. Focusing just on the denominator, their sum is equivalent

to:
ni∑
j=1

(Vi)/n+
∑
j ̸=i

nj∑
k=1

(V
′
k)/n =

n∑
j=1

Vi/n.

Which by the strong law of large numbers, converges almost surely to 1.

As for the numerator, (n1, ..., nk) comes from a multinomial so each count ni ∀i ∈ {1, ...k} is

marginally a Binomial(n, pi) distribution. Combine this with Wald’s lemma and we get:

lim
n→∞

E(

ni∑
j=1

Vi/n) = lim
n→∞

E(ni)E(Vi)/n = lim
n→∞

npi
n

= pi.

So the whole fraction goes to pi almost surely. Thus, by the continuous mapping theorem:

Z−0
a.s→ P

which completes the proof.

2.3 Point Estimation with DS Inference

Before we describe hypothesis testing, we must make a few comments about how we will be

performing point estimation of our posterior random sets, P̂(z), and how this connects to point

estimation in other forms of inference. Recall that P̂(z) is a polytope that describes the region of

feasible parameter estimates. To emphasize this fact and differentiate it from a point estimate P̂,

we will alternatively denote P̂(z) using ∆(z) and P̂(Z) using ∆(Z). Using a test statistic

T (P̂,P0) and fixed (n1, ..., nk), one can compute an upper, mean, and lower test statistic for

each ∆(z) as follows:

Tupper(z) = sup
P̂∈∆(z)

T (P̂,P0) (2.10)

Tmean(z) = T (E∆(z)P̂,P0) (2.11)

Tlower(z) = inf
P̂∈∆(z)

T (P̂,P0). (2.12)
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E∆(z) in this case represents taking the expectation with respect to the uniform measure upon

∆(z).

By marginalizing over Z, this turns the upper, mean and lower statistics into upper, mean,

and lower distributions:

Tupper = sup
P̂∈∆(Z)

T (P̂,P0) (2.13)

Tmean = T (E∆(Z)P̂,P0) (2.14)

Tlower = inf
P̂∈∆(Z)

T (P̂,P0). (2.15)

Assuming that T defines a valid distance metric, Tupper(z) represents the largest possible test

statistic one could create on ∆(z), Tlower(z) represents the smallest, and Tmean represents the

average case. Note that since by definition for any fixed z:

Tupper(z) ≥ Tmean(z) ≥ Tlower(z).

This implies that:

Tupper ≽ Tmean ≽ Tlower

where ≽ defines a stochastic ordering.

2.3.1 Comparison to other common point estimators

The creation of the upper, mean, and lower test statistics contrasts with the frequentist

hypothesis testing paradigm. Under a frequentist paradigm, one often derives a point estimate,

P̂Freq, usually using the maximum likelihood equation, and evaluates the asymptotic distribution

of the point estimate plugged into the test statistic:

TFreq = T (P̂Freq,P0)

where P0 is the parameter value for the null hypothesis. However, in spite of their seeming

differences, one can connect the frequentist test statistic with that of the DS through the choice of

summary statistic used on the posterior random set.
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Theorem 2. For fixed observations (n1, ..., nk) from a multinomial distribution and test statistic

T, Tmean is equal to TFreq = T (P̂Freq,P0) where P̂Freq = (n1+1/k
n+k , ..., nk+1/k

n+k )

Proof. Since:

Tmean = T (E∆(Z)P̂,P0)

TFreq = T (P̂Freq,P0)

and P0 is fixed, it suffices to show that:

E∆(Z)P̂ = P̂Freq.

To see this, note that we can write:

E∆(Z)(P̂ ) = EZE∆(z)(P̂ )

= EZE∆(z)z−0 + θiz0

= EZz−0 +
1

k
z0

= EZ(z−0) +
1

k
EZ(z0)

=
ni

n+ 1
+

1

k

1

n+ 1

=
ni + 1/k

n+ 1

= P̂Freq.

Note that at this point, Tmean is the bayes estimator under MSE of when the (p1, ..., pk) has a

prior distribution of Dirichlet(1/k, ..., 1/k) (Lehmann and Casella, 1998). This illustrates that the

frequentist approach of choosing an arbitrary point estimate is equivalent to choosing an arbitrary

way to summarize the posterior random sets P̂(Z). To the best of our knowledge, we are unaware

of other results which connect various forms of inference via the summarization of DS random sets.
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2.4 Hypothesis Testing with DS Inference

With our upper, lower, and mean point estimates and their distributions defined, we are

ready to define how we perform a level α-hypothesis test with our DS approach.

Definition 2.4.1. Level α one-sided DS Hypothesis Test

Let us have two competing hypotheses H0 and H1 about k-dimensional parameter P0 ∈ ∆k−1

such that:

H0 : P = P0, H1 : P ̸= P0.

Using P0 and point estimate, P̂observed based on fixed counts (n1, ..., nk), we compute tail

probabilities for the upper and lower distributions:

πupper = P (Tlower ≤ T (P̂observed,P0)) (2.16)

πlower = P (Tupper ≤ T (P̂observed,P0)). (2.17)

We then conclude based on the tail probabilities:


Reject H0 If πupper ≤ α

Fail to Reject H0 If πlower > α

Unknown If πlower ≤ α but πupper > α

As an example, let us perform a DS goodness of fit test using the chi-squared test statistic.

The data comes from a Multinomial(n, (13 ,
1
3 ,

1
3) and the null hypothesis is that all three classes

are equally likely. The number of elements observed in each class are (n1, n2, n3) = (3, 2, 5). In

such a case, our upper and lower test statistics are based on the chi-squared statistic:

Tupper(Z) = sup
(p̂1,p̂2,p̂3)∈∆(Z)

3∑
i=1

(10p̂i − 10/3)2

10/3

Tlower(Z) = inf
(p̂1,p̂2,p̂3)∈∆(Z)

3∑
i=1

(10p̂i − 10/3)2

10/3
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where elements of ∆(Z) are:

P̂(Z) =


p̂1

p̂2

p̂3

 =


Z1 + θ1Z0

Z2 + θ2Z0

Z3 + θ3Z0


for fixed θ1 + θ2 + θ3 = 1 and 0 ≤ θi ≤ 1 for i ∈ {1, 2, 3} and:

(Z0, Z1, Z2, Z3) ∼ Dirichlet(1, 3, 2, 5).

In Figure 2.1, we plot out 100 realizations of posterior random sets as well as the the null point,

P0 = (13 ,
1
3 ,

1
3) and point estimate (n1+1

n+3 ,
n2+1
n+3 ,

n3+1
n+3 ) = ( 4

13 ,
3
13 ,

6
13). Note how most of the

polytopes are clustered around the point estimate which is some distance from the null point.

Figure 2.1: A) 100 randomly chosen posterior random sets from a 3 dimensional test of uniformity.
Note how the polytopes are centered around the point estimate (red). 100 was chosen for visibility
reasons. B) 1000 simulations of the upper and lower test statistic and a vertical line representing
P0. For this data, πlower is 0.12 and πupper is 0.034. Notice how since the lower test statistic is
stochastically smaller than the upper, πlower is larger than πupper.

In the figure 2.2, we have summarized 1000 posterior random sets into their upper and lower

chi-squared test distributions. As is, the lower tail probability is 0.034 while the upper tail

probability is 0.12, so at the α = 0.05 level, we conclude that we lack the power to make a

conclusion either way. More precisely, if we performed a hypothesis test using our most optimistic

upper test statistic, we would reject while our conservative lower test statistic would fail to reject.
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Having reasonable posterior estimates leading to opposite conclusions is not a sign of reliability so

we conclude that we cannot make a conclusion either way. Now, if we increase our sample size

from n=10 to n=100 and observe (n1, n2, n3) = (30, 20, 50), we now have much more evidence

that the null hypothesis of each class being equally likely is incorrect. Note that our posterior

random sets are now defined by:

(Z0, Z1, Z2, Z3) ∼ Dirichlet(1, 30, 20, 50).

The width of each random set is Z0 ∼ Beta(1, 100), rather than Z0 ∼ Beta(1, 10) as in the

previous example. Correspondingly, in Figure 2.2, we can see in part A) that the polytopes are

smaller and more clustered around our point estimate. This corresponds with our intuition that a

larger sample size should result in more concentrated posterior estimates. Now none of the 1000

posterior random sets are close to the null point. Thus, πlower and πupper are both < 0.001

meaning that we reject our null hypothesis with confidence.

Figure 2.2: A) 100 randomly chosen posterior random sets. Note how the polytopes are more
tightly centered around the point estimate than in figure 2.1. B) 1000 simulations of the upper
and lower test statistic and a vertical line representing P0. With the larger sample size, both πlower

and πupper are < 0.0001.

As we saw in the previous example, increasing our sample size made us go from an uncertain

conclusion to a certain one. This turns out to be not only a feature of the previous example, but

holds for any continuous, bounded test statistic.
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Theorem 3. Consider a k-dimensional DS hypothesis as described above based on a continuous

and bounded test statistics, T (P̂,P0), where there exists an M such that

supp1,p2∈∆k |T (p1, p2)| ≤M . As the sample size increases, the probability of a DS hypothesis test

returning an unknown result goes to 0.

Proof. To make the relationship between the posterior random sets, P̂, sample size, n, and an

element in the complement of the null set w ∈ N c clear, we will denote the posterior random set

based on a sample of size n as P̂n(w).

As we saw in Theorem 1, for any fixed n, P̂n(w)
a.s→ P, by the continuous mapping theorem,

we may claim that:

T (P̂(Z)n(w),P0)
a.s→ T (P,P0).

Moreover, by the boundedness of our measure on our compact set, Egorov’s theorem states that

a.s convergence implies almost uniform convergence (Beals, 2004). And since almost uniform

convergence of a bounded function on a compact set allows for the interchange of supremum and

limits, (Rudin, 1953) we may claim:

lim
n→∞

sup
w∈Nc

T (P̂(Z)n(w),P0) = sup
w∈Nc

lim
n→∞

T (P̂(Z)n(w),P0) = sup
w∈Nc

T (P,P0) = T (P,P0)

lim
n→∞

inf
w∈Nc

T (P̂(Z)n(w),P0) = inf
w∈Nc

lim
n→∞

T (P̂(Z)n(w),P0) = inf
w∈Nc

T (P,P0) = T (P,P0)

for any w ∈ N c.

To finish the proof, recall that we return an “unknown” conclusion when πupper ≤ α but

πlower > α. However, as Tupper and Tlower converge almost surely to a constant, T (P,P0), they

must convergence in distribution as well. Since convergence in distribution is, by definition

convergence in CDFs, by direct consequence, the CDFs of Tupper and Tlower converge to a

Heaviside function centered at T (P,P0). Now, if we recall that we have defined πupper and πlower

as quantiles of Tupper and Tlower :

πupper = P (Tlower ≤ T (P̂observed,P0)) (2.18)

πlower = P (Tupper ≤ T (P̂observed,P0)), (2.19)
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and the CDFs of Tupper and Tlower converge to a Heaviside function centered at T (P,P0), thus

πupper must be equal to πlower. Since πupper and πlower are equal, it is not possible for one to be

larger than the other, thus completing the proof.

2.5 DS and Fiducial Interpretations

Now that we have defined what we claim to be a DS hypothesis test, we show how this test

fits into the DS paradigm and the Fiducial paradigm. In addition, demonstrate additional

connections between our method and the frequentist paradigm.

2.5.1 DS Interpretation

To summarize our current procedure, the Dirichlet-DSM data generation scheme, we are

given observations (n1, ..., nk) which arise from some unknown parameter P, unknown random

variables U = (U1, ...Un), and unknown permutation π. Moreover, through the inference

procedure, we can generate Dirichlet random variables (Z0, ...., Zk) which define a posterior

random set to estimate P. Finally, these random sets are then summarized using various

summaries and test statistics, tail probabilities are computed, and hypotheses are either rejected,

not rejected, or unknown. To see how this procedure fits into the DS framework, we will first

abstract this procedure in the spirit of Fraser’s structural inference (Fraser, 1968) and illustrate

how our tail probabilities define proper DS upper and lower probabilities.

First, let us write our data generation scheme in terms of a Fraser inspired randomized

structural equation:

X = G(P,U|π).

here G is our deterministic data generating equation, P are our parameters of interest, U is the

random component and π is an unknown permutation. Unlike Fraser’s structural equation

framework, we will not be assuming a group structure and will allow for aspects of the data

generating equation to contain randomized components via π. We will further expand upon the

implications of this randomized data generating equation in the Fiducial Inference interpretation

section.
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Using this, we can define the subset of dependent uniform random variables U = (U1, ...Un)

that could have generated (n1, ...nn) for some P = (p1, ...pk) as:

Rx = {U ∈ [0, 1]n : ∃P ∈ ∆k and ∃π ∈ S({1, ..., k}) st (n1, ...nn) = G(P,u|π)}.

Here, S({1, ..., k}) is the symmetry group on the set {1, ..., k} which is the set of all permutations,

π. Given u ∈ Rx , there exists a non-empty “feasible” set on the parameter space F(U) ⊂ ∆k

that could have been used to generate the data:

F(U) = {P ∈ ∆k : (n1, ...nk) = G(P,u|π), ∃π ∈ S{1,....,k}}.

While this object may seem daunting, in the case of Dirichlet-DSM, F(U) has a very simple

expression. F(U) is directly equal to our previously described polytopes with Dirichlet vertices,

what we have been calling ∆(Z). Moreover, as we can see in our definition of ∆(Z), there is no

dependence on which permutation π was used to generate the data. The ability to decouple the

class randomization from the inference is one of the method’s greatest strengths.

We now introduce how these random sets yield valid DS upper and lower probabilities.

Consider a continuous test statistic T (P̂,P0) which defines a measurable map

T (·,P0) : (∆
k−1,M∆k−1) → (Ω,MΩ), where Mk−1

∆ is the usual Borel algebra on the k − 1

dimensional simplex and Ω is a one-dimensional Polish space, most commonly R or N. Given a

measurable posterior random set, ∆(Z), via continuity of T , T (∆(Z)) as well as supT (∆(Z)) and

inf T (∆(Z)) are all continuous measurable sets in MΩ. To perform a hypothesis test, the user

now provides a measurable set Σ ⊂ MΩ that corresponds to the hypothesis of interest. For the

previous example in section 2.4, we tested if the parameters were uniform, (p1 = p2 = p3 = 1/3)

with chi-squared test statistic T (P,P0) =

√∑3
i=1(npi−n/3)2

n/3 . With the test of uniformity, our

corresponding set of interest is: Σ = {T (P,P0) ≤ T (P̂,P0)α%} where T (P̂,P0)α% is the α

quantile of T (P̂,P0).

DS theory presumes the existence of a mass function m such that:

m : 2Ω → [0, 1]
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such that:

m(∅) = 0

and ∑
S∈2Ω

m(S) = 1.

As we can see, any probability measure can be written as a mass function by letting every

measurable set be equal to its probability and setting unmeasurable sets to 0:

m(A) =


P (A) if A ∈ MΩ

0 if A ̸∈ MΩ

.

Moreover, for any set S ⊂ 2Ω (as opposed to any measurable set), the belief of a set S is defined

as the mass of sets which are contained within S:

bel(S) =
∑

A|A⊂S

m(A).

The plausibility of S is defined as the mass of sets that intersect S:

pl(S) =
∑

A|A∩S ̸=∅

m(A).

Due to this construction:

bel(A) ≤ P (A) ≤ pl(A).

With the above defined, we now have the tools to show that πupper and πlower are valid belief and

plausibility functions for the one-sided hypothesis test previously described:

Theorem 4. When T defines a distance metric, πupper and πlower define valid belief and

plausibility functions for S where S = [T (P, P̂)α%,∞).

Proof. First, since T defines a distance metric, if for a given Z:

Tupper(Z) ≤ T (P, P̂)α,
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this implies that:

S = [Tupper(Z)α,∞) ⊂ [Tupper(Z),∞).

Now, if we let m be the counting measure:

bel(S) =
∑

[Tupper(Z),∞)|[Tupper(Z),∞)⊂S

m([Tupper(Z),∞))

=
∑

Tupper(Z)≤T (P,P̂α%)

m([Tupper(Z),∞))

= P (Tupper ≤ T (P, P̂)α%,)

= πupper

Likewise using the same argument, we can show that pl(S) = πlower.

Based on this theorem, we can view the belief function as the probability we observe a

posterior set where every element have a T value less than the α% cutoff. This belief function is

what we have been referring to as our lower p-value. On the other hand, the plausibility function

is the probability that we observe a posterior set where there exists at least one element who’s T

value is less than α.

2.5.2 Fiducial Interpretation

In terms of Fiducial Inference, we will be showing that the previously defined ”feasible” set

∆(Z) defines what is known as a Generalized Fiducial Quantity. Recall that given fixed latent

parameters z from a Dirichlet Distribution, our inference procedure results in a polytope ∆(z) of

parameters values for which there exists uniform random variables (U1, ...Uk) that could have

generated the observed data. As above, we write the set of parameters that could have feasibly

generated (n1, ..., nk) as:

F(U) = {P ∈ ∆k : (n1, ...nk) = G(P,u|π), ∃π ∈ S{1,....,k}}.

However, unlike DS, which directly works with the random posterior sets, F(U), in the

Generalized Fiducial Scheme, when F(U) contains multiple elements one selects an element
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according to some possible random rule V. Mathematically, we say that for any measurable set

S ∈ ∆k of feasible parameters, one selects a possibly random element V (S) with support S where

S in the Closure of S. In our case, our random set is F(U) from which we choose either the

supremum, infimum, or the average value of the polytope. As supremum, infimum, and average

value are all random rules that lie within the closure, our upper, lower, and mean test

distributions define valid Fiducial Generalized Quantities.

2.6 Connection to Frequentist Hypothesis Testing

Earlier, we defined the tail probabilities for Tupper and Tlower as πupper and πlower. Some

readers may have noticed that this resembles the notation commonly used for p-values. This

similarity is no coincidence. For common test statistics such as the chi-squared statistic, it is

possible to show that: 1) at finite samples, our p-values are relatively close to the frequentist

p-values based with the same test statistic, 2) that our p-value have the same asymptotic

coverage as a frequentist test, and 3) πmin and πmax not only bound the DS πmean, but the

frequentist πfreq. We will start with the first two claims:

Theorem 5. For a k-dimensional test of uniformity:

H0 : (p1, ..., pk) =

(
1

k
, ...,

1

k

)
H1 : (p1, ..., pk) ̸=

(
1

k
, ...,

1

k

)

based on fixed observations (n1, ...nk), using the usual chi-squared test statistic and the point

estimate (n1+1/k
n+1 , ..., nk+1/k

n+1 ):

P (|πfreq − πmean| ≥ α) ≤ n(k − 1)

(a/2)k(n+ 1)2
+
kn2 + (k − 1)n− k

∑k
i=1 n

2
i

(a/2)k(n+ 1)2(n+ 2)

where n is the sample size, a > 0, and πfreq is the p-value from a chi-squared test and πmean is

the p-value from our DS test.
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Proof. Like previously, our Dirichlet-DSM assumes that:

(n1, ..., nk) ∼Multinomial(n, p1, ..., pk)

(Z0, ...Zk) ∼ Dirichlet(1, n1, ..., nk).

Using the point estimate, p̂Freq = (n1+1/k
n+1 , ..., nk+1/k

n+1 ), πfreq and πmean become:

πfreq = P∗(||p̂∗Freq − p0||2 ≥ ||p̂Freq − p0||2) (2.20)

πmean = P∆(Z)(Eθ||∆(Z)− p̂Freq||2 ≥ ||p̂Freq − p0||2). (2.21)

Here p̂∗Freq refers to a frequentist point computed from an independent realization of a

Multinomial(n,( 1k ), ...,
1
k )) distribution. By rearranging equation 2.20, one can see that πfreq is

indeed equal to the p-value one generates using the chi-squared statistic.

P∗(||p̂∗Freq − p0||2 ≥ ||p̂Freq − p0||2) = P∗(||np̂∗Freq − np0||2 ≥ ||np̂Freq − np0||2) (2.22)

= P∗

(
k∑

i=1

(np̂∗Freq,i − np0,i)
2

np0,i
≥

k∑
i=1

(np̂Freq,i − np0,i)
2

np0,i

)
(2.23)

As πfreq and πmean are tail probabilities for the same quantity, ||p̂Freq − p0||2, we will demonstrate

that ||p̂∗Freq − p0||2 and ||∆(Z)− p̂Freq||2 have similar levels of concentration in their tails.

We will first start with ||p̂∗Freq − p0||2. In scalar form:

||p̂∗Freq − p0||22 =
k∑

i=1

(p̂∗Freq,i − p0,i)
2 =

k∑
i=1

(
n∗i + 1/k

n+ 1
− 1/k

)2

.
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As p̂∗Freq is an unbiased estimator of p0:

E(p̂∗Freq) = E

(
n∗1 + 1/k

n+ 1
, ...,

n∗k + 1/k

n+ 1

)
=

(
E(n∗1) + 1/k

n+ 1
, ...,

E(n∗k) + 1/k

n+ 1

)
=

(
n/k + 1/k

n+ 1
, ...,

n/k + 1/k

n+ 1

)
=

(
1

k
, ...,

1

k

)
.

This has variance:

V ar(p̂∗Freq,i) = V ar

(
n∗i + 1/k

n+ 1

)
=

1

(n+ 1)2
V ar(n∗i )

=
npi(1− pi)

(n+ 1)2

=
n 1
k
k−1
k

(n+ 1)2

=
n(k − 1)

k2(n+ 1)2
.
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From this, we can get a Chebyshev bound of the form:

P (||p̂Freq − p0||22 > a2) ≤
E(||p̂Freq − p0||22)

a2

≤
E(||p̂Freq − E(p̂Freq)||22)

a2

≤
E(
∑k

i=1(p̂Freq,i − E(p̂Freq,i))
2)

a2

≤
∑k

i=1 V ar(p̂Freq,i)

a2

≤
∑k

i=1
n(k−1)

k2(n+1)2

a2

≤
n(k−1)
k(n+1)2

a2

≤ n(k − 1)

a2k(n+ 1)2
.

We now switch our focus to:

Eθ||∆(Z)− p̂Freq||22 = Eθ

k∑
i=1

(
Zi + θiZ0 −

ni + 1/k

n+ 1

)2

For this section, Zi + θiZ0 is a function of two independent random variables Z and θ, we must

delineate which variable we are taking expectation with respect to. We will let EZ and Eθ refer to

expectations over Z and θ respectively. Like previously, EZEθ(Zi + θZ0) =
ni+1/k
n+1 so:

EZEθ(Zi + θiZ0) = EZ

(
Zi +

1

k
Z0

)
= EZ(Zi) +

1

k
E(Z0)

=
ni

n+ 1
+

1

k

1

n+ 1

=
ni + 1/k

n+ 1
.
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Which has component-wise variances:

V arZEθ(Zi + θZ0) = V arZ(Zi +
1

k
Z0)

= V arZ(Zi) +
1

k2
V ar(Z0) +

2

k
Cov(Zi, Z0)

=
ni
n+1(1−

ni
n+1)

n+ 2
+

1

k2
(

1
n+1(

n
n+1)

n+ 2
) +

2

k

− ni
n+1

1
n+1

n+ 2

=
ni(n+ 1− ni)

(n+ 1)2(n+ 2)
+

n

k2
1

(n+ 1)2(n+ 2)
+

2

k

−ni
(n+ 1)2(n+ 2)

.

Thus by the same Chebychev inequality:

PZ(Eθ||∆(Z)− p̂Freq||22 > a2) ≤
V arZ(Eθ

∑k
i=1(Zi + θZ0))

a2

≤ V arZ(Eθ∆(Z)

a2
)

≤
V arZ(Eθ

∑k
i=1 Zi + θiZ0)

a2
)

=
V arZ

∑k
i=1(Zi +

1
kZ0)

a2

=

∑k
i=1 V ar(Zi +

1
kZ0)

a2

=
k∑

i=1

ni(n+ 1− ni)

a2(n+ 1)2(n+ 2)
+

n

k2
1

a2(n+ 1)2(n+ 2)
+

2

k

−a2ni
(n+ 1)2(n+ 2)

=
n2 + n−

∑k
i=1 n

2
i

a2(n+ 1)2(n+ 2)
+
n

k

1

a2(n+ 1)2(n+ 2)
+

2

k

−n
a2(n+ 1)2(n+ 2)

=
k(n2 + n−

∑k
i=1 n

2
i )− n

a2k(n+ 1)2(n+ 2)

=
kn2 + (k − 1)n− k

∑k
i=1 n

2
i

a2k(n+ 1)2(n+ 2)
.

Then using the union bound, we can create the bound:

P (|πfreq − πmean| ≥ α) ≤ P (|πfreq + πmean| ≥ α)

≤ P (πfreq ≥ α/2) + P (πmean ≥ α/2)

≤ n(k − 1)

(a/2)k(n+ 1)2
+
kn2 + (k − 1)n− k

∑k
i=1 n

2
i

(a/2)k(n+ 1)2(n+ 2)
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A direct implication of this finite sample bound is that asymptotically, πfreq becomes equal to

πmean.

Using theorems 5, we have demonstrated that:

πmin ≤ πmean ≤ πmax (2.24)

πmin ≈ πfreq (2.25)

From this, one may suspect that:

πmin ≤ πfreq ≤ πmax

Indeed, we observe through simulation that this holds, regardless of whether the null or alternate

hypothesis is true. In Figure 2.3, we show the results for a test-of-uniformity for a 4-dimensional

multinomial distribution:

Multniomial

(
q,

1− q

3
,
1− q

3
,
1− q

3

)
Where q ∈ [0.05, 0.45], n is 100, and the test statistic is the chi-squared test statistic. When q is

0.25, we have the null hypothesis being true. From the results in Figure 2.3 we can observe that

at all values of q, the average upper and lower power is well bounded the average power of a

frequentist test while the mean power very closely matches the Frequentist p-value. From this, we

now have our two main results, 1) upper and lower DS p-values can be used as a reasonable bound

for frequentist p-values and 2) mean p-values allow for the creation of the oft-difficult DS testing

procedure that controls the asymptotic Type I error level. This result is particularly exciting as one

of the largest disadvantages of DS is the inability for its testing procedures to guarantee

long-running type I error rates, which is something our two main results directly address. In our

case, we can say that the correct Type I error rate can be controlled through πmean, while using

the gap between πupper and πlower to do the uncertainty analysis that DS is adept at.
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Figure 2.3: Comparison of power to reject the null hypothesis for a variety of perturbation param-
eters (q). Regardless of choice of q, the Upper p-value and Lower p-value serve as a good bound
on the Frequentist p-value and the Mean p-value.
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2.7 The Advantages of DS Multinomial Hypothesis Testing

Up to now, we have focused our attention on defining DS Multinomial Hypothesis testing as

well as noting its connections to other forms of inference. While the surprising connection between

frequentist and DS hypothesis testing is insightful, we would now like to pivot to demonstrating

features of our DS hypothesis testing procedure and the powerful properties though an

investigation of DS’s robust insight into testing and DS’s useful high-dimensional properties.

2.7.1 The Unknown Class gives insight into the difficulty of a test

DS has has a long history in the engineering community providing a way to comprehend the

level of epistemic uncertainty in a hypothesis test through the inclusion of an “unknown” option.

In figure 2.4, we demonstrate the utility of this unknown class through a simulated 4-class

Multinomial goodness-of-fit test. The alternate hypothesis had the probabilities (26 ,
1
6 ,

2
6 ,

1
6). The

test statistic used was the chi-squared statistic and the sample size, n, ranged from 4 to 256. At

each sample size, 1000 tests were performed and the upper and lower p-values were generated

using 100 polytopes. The null distribution of the Frequentist test was simulated from 1000 draws

from a multinomial distribution with equal probabilities. No multiple testing correction was

performed.

In the first plot in figure 2.4, we can see that while both tests reach the correct 0.05 level as

the sample size increases, they have very different behavior at low samples sizes. In the

frequentist test, when the dimension to sample size ratio is one, the frequentist test rejects too

few tests. This inability to reject is a well-documented high-dimensional phenomenon

(Balakrishnan and Wasserman, 2018) not just for multionmials, but for a large class of hypothesis

tests (Wainwright, 2019). However, in the DS test, when the sample size is too small, there is a

substantial possibility that the hypothesis test will return with an “Uncertain” conclusion. Unlike

the frequentist test which fails to reject nearly all, this unknown class is giving additional

information to the user on the difficulty of making a conclusion at the current sample size. We see

this additional information at work in Figure 2.5. Once again, at low sample sizes, the frequentist

test does not give indication if we are failing to reject the null because the null is true or because
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Figure 2.4: Results of Frequentist and DS hypothesis test of uniformity when the null is true. At
low sample sizes, the Frequentist test gives a deceptively low rejection rate while the DS properly
indicates the difficulty of this problem by having a large probability for an “Uncertain” result.

we lack the sample size to make any conclusions. However, if we look at the DS test, the large

probability of a test returning an “Uncertain” result indicates that our issue is in the sample size.

2.7.2 DS can model Adversarial Attacks on a Test

In addition to providing a novel characterization of power, our approach can also employ a

technique called “weakening” to evaluate the the effect an adversarial attack would have on a

hypothesis. Weakening is a common practice in reliability engineering when one gives additional

weight for the unknown class either to satisfy long-running frequentist properties (Martin et al.,

2010) or to account for potential uncertainties in the observed data (de Campos and Benavoli,

2011). For our DS model, we will perform weakening by artificially increasing the width of our

polytopes. Formally:
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Figure 2.5: Results of Frequentist and DS hypothesis test of uniformity when the null is false. Once
again, with the frequentist test, at low sample sizes, it is unclear if the alternate is correct or if the
sample size is lacking, while the DS makes this clear through the unknown class that the sample
size is lacking.
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Definition 2.7.1 (α-Weakened Hypothesis Test). An α-Weakened Hypothesis test is the same as

the original DS hypothesis testing procedure except the Dirichlet parameters are drawn from:

(Z0, ..., Zk) ∼ Dirichlet(1 + α, x1, ..., xk)

where α > 0.

Recalling that Z0 directly controls the width of the random polytopes that serves as our

posterior estimates, one can see how this directly increases the gap between the upper and lower

test statistics. Since our DS testing procedure returns an “unknown” when the upper and lower

test statistics disagree, this weakening directly leads to increasing the possibility of a test

returning an ‘unknown” result.

As a demonstration of this, in Figure 2.6, we added weakening to a 4-class multinomial

hypothesis test with the same alternate hypothesis as the previous simulation. The sample size is

128 and once again, no multiple testing correction was performed. From the results in the figure,

we can see that increasing the amount of weakening leads to a dramatic increase in the

probability of an uncertain result with a weakening of around 10-20 leading to almost all tests

resulting in an unknown result.

In addition to allowing for the addition of user-specified uncertainty, this particular form of

weakening comes with an easy-to-understand interpretation. For demonstration purposes, let us

consider a 3-dimensional hypothesis test where the observed counts were (n1, n2, n3) with total

count n∗ = n1 + n2 + n3. Since:

(Z0, Z1, Z2, Z3) ∼ Dirichlet(1, n1, n2, n3)

component wise, the Zi’s have the distributions:

• Z0 ∼ Beta(1, n+ 1)

• Z1 ∼ Beta(n1, n+ 1− n1)

• Z2 ∼ Beta(n2, n+ 1− n2)

• Z3 ∼ Beta(n3, n+ 1− n3)
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Figure 2.6: Effect of weakening on a DS test of uniformity when the null is false. As the number
of adversarial samples (represented by alpha) increases, the conclusions become increasingly more
muddled.
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As described previously, Z0 is then added to each of the other Zs to define the edges of the

polytope:

• (Z1 + Z0, Z2, Z3)

• (Z1, Z2 + Z0, Z3)

• (Z1, Z2, Z3 + Z0)

So Z0 controls the width of our polytope while Z1, Z2, Z3 controls the location of the polytope.

Now, let us say that an additional α data points has been added to our dataset. We are

unclear which of the 3 classes it has been added to, so we act as though it was as likely to have

been added to any of the 3 class. This would result in observed counts of (n1 +
α
3 , n2 +

α
3 , n3 +

α
3 )

and n = n1 + n2 + n3 + α. Component wise, our Zi’s will become:

• Z0 ∼ Beta(1 + α, n+ 1 + α)

• Z1 ∼ Beta(n1, n+ 1 + α− n1)

• Z2 ∼ Beta(n2, n+ 1 + α− n2)

• Z3 ∼ Beta(n3, n+ 1 + α− n3)

Thus, our width, Z0, has been increased proportional to the addition of α datapoints.

Therefore, α- weakening is analogous to the effect of adding α datapoints to any of the classes. If

we previous confidently rejected or failed to reject before weakening, but then became unknown

after α-weakening, this indicates that α datapoints is sufficient to contradict our previous results.

Combine this with the previous assertions that πlower, πupper serve as a reasonable bound on the

behavior of πfreq and we can also make reasonable claims about the behavior of πfreq under

α-weakening.

Returning to Figure 2.6, this simulation indicates that if 20 datapoints were added to the

original 128, it is possible to have the hypothesis reject (hence why πlower ≤ 0.05) and not reject

(hence by πupper ≥ 0.05). Stated another way, with 20 additional datapoints, you can make a

hypothesis test return whichever result you would like.
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2.8 Our DS approach compares favorably to Simplex-DS

Finally, we will demonstrate that our method compares well not only to frequentest methods,

but also to other DS approaches for multinomials, in particular, one known as Simplex-DS (Jacob

et al., 2021). Simplex-DS determines the edges of the polytope through an resourceful

combination of a Gibbs sampler and shortest-path algorithm on a graph. While this approach

offers a theoretically interesting representation using shortest path algorithm on graphs, this

algorithm has some drawbacks in terms of scalability. For example, generating 1000 MCMC

samples a 7-Dimensional multinomial takes approximately 1 minute. However, converting the

Gibbs sampler’s results into a convex polytope takes nearly 20 times as long as running the Gibbs

sampler. This is due to the large number of vertexes in the polytopes that result from the

Simplex method. The simulation resulted in polygons with an average of 62 and a max over 250

edges placing a large computational burden on the simplex method.

Time Running the Gibbs Sampler Time converting MCMC to convex polytope

2.6 seconds 53.6 seconds

Figure 2.7: (Top): Runtime comparison of Gibbs sampler vs convex polytope computation. (Bot-
tom): The number of edges in 1000 Convex polytopes from the Simplex method.

On the other hand, our Dirichlet DS has a number of clear computational advantages. First,

independent sampling from Dirichlet(1, z1, . . . , zk) can be done directly using methods built into

most software packages. Additionally the Dirichlet DS polytope is always a simplex, so for k = 7 it

yields a convex polytope with 8 vertexes, instead of a maximum of 250. This makes the Dirichlet
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DS to scale to much larger problems, e.g. multinomial distributions with thousands of categories,

which is important for testing independence at high dimensions and/or high resolutions.

Next, many estimators of the multinomial proportions have the following invariance property:

If we merge two categories, the estimate of the merged proportion is the sum of the proportions

that are being merged. Investigation of Dempster (1966) reveals that Dirichlet DS has this

invariance property. Consequently, inference on proportions for categories in which we have

observations is not influenced by addition or deletion of empty categories. As seen in Section 4.1

of Jacob et al. (2021), simplex DS does not have this invariance property.

Finally, we have demonstrated that the effect of adversarial attacks can be simply included

into the Dirichlet model through the weakening parameter. It is not clear if simplex DS could be

weakened to accommodate missing observations.

In terms of performance, we consider a series of tests of independence. First, 100 data sets of

sample size n = 30 are generated under either the following null or alternate hypotheses:

H0 ∼ Beta(1, 1)2, H1 ∼ Beta(1, 2)2. (2.26)

Each of these data sets is then discretized into 2×2, 3×3, and 6× 6 contingency tables and

each table is tested for independence using the simplex DS, the Dirichlet DS, and the classical χ2

tests. To generate the p-values for the test of independence, both the simplex and Dirichlet DS

generate 200 polytopes with a burn-in of 300 for the former. The purpose of the low sample size

(n = 30) in this simulation is to demonstrate that as the resolution k and the number of

multinomial categories k2 increases with sample size held constant, the uncertainty indicated

between the gap between the upper and lower p-values increases.
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Figure 2.8: Empirical CDFs of the upper and lower p-values for H0 analyzed using three tests:
(Top Left): Simplex DS, (Top Right) Dirichlet DS, and (Bottom): χ2. The x-axis is the nominal
p-value, the y-axis is proportion of p-values below p-value cutoff.

In Figure 2.8 we present plots of the Empirical CDFs of the upper and lower p-values under

the assumption that H0 is true. Well calibrated p-values follow a uniform distribution which CDF

is represented by the 45o line. As expected, we see that p-values empirical CDFs from the χ2 test

closely follow this dotted line. The upper p-values for both DS tests are below the dotted line,

showing that these p-values are conservative, i.e., sub-uniform. Next, we see that while the upper

p-values for the Dirichlet and simplex method behave similarly, the lower p-values of the simplex

method are more skewed towards rejecting. Consequently, Dirichlet DS has a much smaller gap

between the upper and lower p-values than the simplex DS. Finally, we remark that there are no

p-values for the 6x6 simplex method as the computation timed out after 2hr without producing a

simplex.
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Figure 2.9: Empirical CDFs of the upper and lower p-values for H0 analyzed using three tests:
(Top Left): Simplex DS, (Top Right) Dirichlet DS, and (Bottom): χ2. The x-axis is the nominal
p-value, the y-axis is proportion of p-values below the cutoff.

In Figure 2.9 we show empirical CDFs based on data generated under the alternate

hypothesis in (2.26). All three tests correctly lean towards rejecting the null hypothesis. In terms

of the power of the lower p-value, the simplex method performs similarly to the Dirichlet method.

However, the empirical CDFs of upper p-values for the simplex method is lower than their

corresponding empirical CDFs for the Dirichlet DS empirical CDFs. This indicates that for the

Dirichlet method has more power to reject H0. In addition, we can see the gaps between lower

and upper p-value plots increase as the resolution increases in both the simplex and Dirichlet DS.

As for runtime comparisons, the difference is substantial. Generating one polytope under

Dirichlet DS at the 3× 3 level takes approximately 2 seconds while a similar polytope takes

nearly 30 seconds under Simplex DS. The difference in runtime comparison gets larger with the

6× 6 level, where the Dirichlet DS is still under 5 seconds while the Simplex DS timed out after

at least 2 hours.
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Method Runtime to generate one polytope

Our Method for 2× 2 1.76 seconds

Our Method for 3× 3 2.15 seconds

Our Method for 6× 6 4.15 seconds

Simplex-DS 2× 2 5.31 seconds

Simplex-DS 3× 3 29.60 seconds

Simplex-DS 6× 6 Timed out at > 2hr

Table 2.1: Runtime for Our Method vs DS Simplex

2.9 Conclusion

Although Dempster-Shafer inference is not as common of an approach as Bayesian or

Frequentist inference, DS Inference has played an important role in statistics, making us

reconsider how inference should be performed and how to draw conclusions from data. This

problem has been no different. Our DS inference procedure demonstrated that by including a

third “unknown” class into hypothesis tests, this can give users new insights into the diminishing

effect that dimension has on power in multinomial tests. On the theoretical side, our DS infernece

has shown that there exist a strong connection between the pvalues we get from our DS approach

and traditional frequentest pvalues, addressing a long-standing weakness in other forms of DS

inference. And in application, our approach hints at a direct connection between the theoretical

technique of weakening and that of adversarial attacks, giving us a new tool by which we can

address this increasingly important statistical problem. From this, we hypothesize that DS still

has more to contribute to the statistical world and its insights will be useful for years to come.
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Chapter 3

Interpretable Causal Inference for Critically Ill Seizure Patients

3.1 Introduction

Caring for critically ill patients is extremely challenging: the decisions are high stakes, there

are difficult causal questions (will this patient respond to available drugs?), and decisions about

drug dosage are entangled with observations that physicians are making about the patient over

time.

Experiments (clinical trials) on such patients are difficult, observational datasets are noisy

and small, and there may be potential important variables, such as drug absorption rates, and the

severity of the patient’s condition, which typically are not recorded in a database. Ignoring these

variables can lead to biased estimates of treatment effects, a näıve statistical analysis is doomed

to fail, and the use of black box models in either analysis or decision making could easily lead to

erroneous conclusions and cause harm. Ideally, we need an interpretability-centered framework for

these types of high-stakes causal analyses: a physician should be able to verify the quality of

every single step in the analysis, from how a current patient compares to past patients

(case-based reasoning), how drug absorption and response is modeled, and an understanding of

the relative importance of variables.

This paper introduces a general framework that can help estimate heterogeneous causal

effects from high-dimensional patient data with complex time-series interactions, low

signal-to-noise ratio and where treatments are not randomly assigned. Each step of the

framework is designed to be interpretable. Importantly, we leverage established interpretable

pharmacokinetic-pharmacodynamic (PK/PD) models to describe personalized

clinical-decision-physiological-response interactions, allowing us to identify individuals who might

react similarly to treatments. We learn a flexible distance metric on the space of covariates to

perform matching for estimating the medium- and long-term causal effects of both the clinical
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decisions and physiological responses; the matched group we construct for each patient can be

validated, or possibly, criticized. In the context of medical data, this validation can be performed

via a chart review that provides a qualitative assessment of the matches in terms of information

that was not directly used in the matching procedure.

Using this framework, we perform the first causal analysis of a common form of potentially

harmful electrical activity in the brain known as “epileptiform activity” (Hirsch et al., 2021). EA

is common to critically ill patients suffering from brain injury (Lucke-Wold et al., 2015), cancer

(Lee et al., 2013), organ-failure (Boggs, 2002), affecting more than half of patients who undergo

electroencephalography (Gaspard et al., 2013). Prolonged EA is associated with increased

in-hospital mortality, and survivors often suffer from a functional and cognitive disability

(Ganesan and Hahn, 2019; Rossetti et al., 2019; Kim et al., 2018). While there is a growing body

of literature indicating that EA is associated with poor outcomes (Oddo et al., 2009), there is still

a debate as to whether (a) EA is part of a causal pathway that worsens a patient’s outcomes and

thus requires aggressive treatment, or (b) the worsened outcomes are due to mechanisms other

than EA such as the side-effects of medications or the inciting medical illness, with EA occurring

as an epiphenomenon. (Chong DJ, 2005; Rubinos et al., 2018; Osman et al., 2018; Johnson and

Kaplan, 2017; Tao et al., 2020; Cormier et al., 2017).

However, the study of EA suffers from a variety of limitations. First, a hypothetical clinical

trial studying EA would need to randomly induce EA in patients while limiting their drug

treatments, which is neither plausible nor ethical. Second, as it requires a physician to order an

EEG and trained technologist to monitor the device, sample sizes for EA datasets tend be to no

larger than a few hundred to a thousand and of limited time windows. Worst of all, what

complicates the study of EA is its complex interactions with anti-seizure medications (ASM).

Medical caregivers administer ASMs based on patients’ EA, and in turn, EA is affected by ASMs.

Therefore, this creates an entanglement (see Figure 3.1) between the EA (treatment) and ASMs

(confounder), potentially obscuring the true causal effect of EAs.

The study of EA has been a case where scientists have been using predictive models to answer

a causal question despite strong confounding factors. Researchers have used regression models to

adjust for the patient’s medical history and demographic factors (Payne et al., 2014; De Marchis

et al., 2016; Zafar et al., 2018; Muhlhofer et al., 2019), and have interpreted the resulting
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regression coefficient for EA as the causal effect of EA on a patient’s outcome. While this

approach is appealing for its simplicity and is widely used, it is not appropriate to interpret

regression coefficients as causal in the presence of strong confounding interactions. Using

conventional prognostic modeling approaches can put one at the risk of misinterpreting the

association between high levels of ASM, EA, and poor outcomes as causal even if no causal link

exists.

Current illness

Medical history

***

Observed epileptiform activity (EA) is entangled with anti-seizure
medication (ASM)

Observational data: What Happened

30%

Current illness

Medical history

***

Counterfactual: What would happen if the patient experienced different level of EA

30%

40%

Outcome

Outcome

***

Scenario 1: If high burden of EA and no ASM

Scenario 2: If no EA and no ASM

25%

35%

40%

45%

25%

30%

Figure 3.1: Upper: Illustration showing that observed epileptiform activity (EA) and treatment
decision form a feedback loop, that is also influenced by current illness and medical history (left).
The entire time-series of EA and ASM influence patient outcomes. Possible outcomes include
return to normal health, disability, or death at the time of hospital discharge (right). Lower: Our
goal is to estimate the effect of EA on patient outcomes. The effect is obtained by comparing the
patient outcome across counterfactual scenarios. Scenario 1 is where every patient in this cohort
had certain (high) level (or burden) of EA but no ASM is given; Scenario 2 is where every patient
had no EA and also no ASM is could given. (Note that the probabilities given here are illustrative,
and not taken from data.) [Credit to Dr. Brandon Westover for the figure]

Our framework is different than other approaches in that it aims to tightly match patients on

all known relevant confounding factors such as medical history and diagnosis, pharmacological
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Figure 3.2: Flowchart demonstrating our framework for interpretable inference of causal effects

characteristics and demographics. We adjust for important pharmacokinetic/pharmacodynamic

(PKPD) parameters to better characterize individualized responses to anti-seizure medications;

this mechanistic information helps compensate for our not-large sample size and limited EEG

observation time window. The interpretability of our framework also gives important medical

insights into the EA process which are easier for practicing clinicians to incorporate.

We can thus finally provide the first high quality causal analysis of EA. We find that higher

EA burden indeed leads to worse neurologic outcomes (Figure 3.4), in a way that depends on the

intensity (max burden over 6 hours) and duration (average burden over 24 hours) of EA.

Specifically, those with a max burden between 0.75 to 1 are on average 13.4% more likely to be

discharged with a poor outcome (as defined by modified Rankin Scale of Burn, 1992) than those

with max burden less than 0.25. Additionally, we find that patients with central nervous system

infection or toxic metabolic encephalopathy are affected by EA more than the average level in this

cohort. Importantly, the validity of the estimate is supported by a detailed clinical chart review of

the matched groups, which could only be accomplished because of the interpretability of our

framework.
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3.2 Framework

The general framework is shown in Figure 3.2. The first step of our framework is the

identification of physiological phenomena that might affect long-term health outcomes.

Importantly, these phenomena are frequently not recorded directly, and instead relevant patterns

must be extracted from raw waveforms. Examples include monitoring blood pressure and serial

blood cultures in patients with sepsis; heart rhythms, blood pressure, oxygen levels, and serial

blood electrolyte levels in patients with life threatening arrhythmias like atrial fibrillation or atrial

flutter; urine output, body weight, and blood electrolytes in patients with acute kidney failure;

intracranial pressure and brain tissue oxygen levels in patients with severe traumatic brain injury;

or, as in the example that we analyze in this paper, detecting EA from EEG signals. Our

framework focuses on estimating the long-term effects of these patterns. However, the raw

waveform data rarely exists in settings without clinical interventions: we must control for the

effects of interventions, for example, in the medical scenarios mentioned above: effects of

medications to increase blood pressure and antibiotics given in sepsis; medications to abort

arrhythmias and raise blood pressure in patients with atrial fibrillation/flutter; electrolyte

infusions, diuretic drugs, and hemodialysis given to patients with acute kidney failure; high

concentration saline or surgical treatments given to reduce intracranial pressure in patients with

brain trauma; or the amount of antiseizure medication given how well it was absorbed in patients

treated for EA.

As the goal is to identify the long-term effects of observed patterns, a patient who was never

treated is not comparable to a patient who was. Thus, we combine the patient’s demographic

variables (e.g., age, weight) and patient characteristics within a

pharmacodynamic/pharmacokinetic model to estimate drug response parameters for each patient.

The patient data, including drug response parameters, are all used for high-quality matching;

each patient is matched almost exactly to past patients with similar characteristics, medical

history, and estimated drug response parameters. Almost-exact matching (Parikh et al., 2018)

matches patients directly on potential confounders (not, for instance, on proxies such as the

propensity score). The matched groups permit case-based reasoning, and allow us to estimate the

effects of both seizure-like activity and drugs meant to reduce seizure-like activity on patient
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outcomes. In addition to these matched groups being almost-exact, domain experts can perform

chart review for each patient’s matched groups to evaluate their quality. As these charts contain

not only the quantitative factors used for matching but also qualitative information such as

doctors’ notes, they allows for a holistic assessment that might lead to unobserved confounding.

3.3 The Causal Study of EA

As discussed, EA affects more than half of critically ill patients on EEG (Gaspard et al.,

2013), and understanding its effects can help prevent severe brain damage. In what follows, we

outline our approach to EA analysis following the framework discussed above.

Patient Cohort Our study is a retrospective cross-sectional analysis of patients admitted to the

Massachusetts General Hospital (MGH) between September 2011 and February 2017.

Institutional review boards at MGH, Duke University, and University of North Carolina at

Chapel Hill approved the retrospective analysis without requiring written informed consent.

Inclusion criteria included (1) admission to the hospital, (2) monitoring with continuous

electroencephalography (EEG) for more than 2 hours, and (3) availability of drug administration

data from the hospital’s electronic records. Patients who had poor quality of EEG signal for more

than 30% of the total recording length or those missing discharge outcome were excluded from the

study. For patients with multiple visits to the hospital, we only analyzed their first visit. A

flowchart of the full patient selection procedure can be seen in Figure 3.3. The final cohort

contained 995 critically ill patients.

For each patient, we collected a variety of variables about their medical history including

demographics (gender, marital status, and age), clinical factors (substance abuse, history of

seizures or epilepsy, chronic kidney disease, etc.), and what disease(s) they were diagnosed with

(cancer, subarachnoid hemorrhage , or central nervous system infection). As this information

concerns factors that are fixed before admission to the hospital for treatment, these are referred

to as the pre-admission variables. A full list of these pre-admission variables can be found in

Table 4.2.

Outcomes of Interest Once a patient has stabilized (or passed away), they are discharged from

the hospital. The level of disability at discharge is quantified on a 0 to 6 ordinal scale called the
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1524 patients 

1317 patients 

1309 patients 

exclude patients with
unknown discharge mRS

exclude patients
with EEG < 2h

995 patients 

exclude patients with missing
values in covariates

1420 patients 

exclude patients with the
duration of consecutive artifact
in EEG >30% of the total length 

Figure 3.3: Data flowchart showing the preprocessing of patients

Modified Rankin Scale (mRS). In the literature the post-discharge outcome is frequently binarized

into those with (mRS≥4) and without (mRS≤3) serious disabilities (Zafar et al., 2018). Our

work also uses this binarized Modified Rankin Scale as the outcome of interest, with Y equal to 1

representing a patient discharged with serious disabilities or death and 0 representing a patient

without serious disabilities.

Complex Time Series Interactions: Drug treatments and EA After treatment is started,

patients are kept under close observation including frequent visits by physicians and nurses, and

continuous brain monitoring using electroencephalography (EEG). Based on these observations,

physicians update a patient’s treatment by adjusting the types and doses of anti-seizure

medications (ASMs). This observation-treatment cycle results in: (1) a univariate time series of

the average proportion of time the i-th patient experienced EA in the past ω hours({Zω
i,t}Tt=1)

based on an EEG sampling rate of 2 seconds and (2) a 6-dimensional vector time-series

({Wi,t}Tt=1) representing the dose of 6 most commonly used ASMs (Lacosamide, Levetiracetam,

Midazolam, Phenobarbital, Propofol, and Valproate) received by i-th patient at time-step

0 ≤ t ≤ T . We use ω = 6 hours as it is a reasonable amount of time to observe the effects of the
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ASMs on EA and for physicians to adjust a patient’s ASM regimen (Garoud et al., 2006). Details

on how EA signals were identified in the EEG recordings can be found in Appendix ??.

Clinically Relevant Summaries of EA Burden Over Time. We summarize the EA time

series {Z6
i,t}Tt=1 in two clinically relevant ways, which we refer to as an EA burden:

1. Mean EA burden (Ei,mean) measures the average proportion of time a patient experiences

EA in the first 24 hour recording period.

2. Max EA burden (Ei,max) measures the 6 hour sliding window with the highest proportion of

EA within the first 24 hour recording period.

The former measures the prevalence of EA while the second summary provides insights into the

most intense periods of EA over a short period of time. By quantifying EA burden in these two

different ways, we seek to separately understand the potential harm caused both by brief periods

of intense EA and by prolonged periods of less intense EA burden.

Estimands of Interest. We would like to estimate the degree to which untreated epileptiform

activity (of different intensities) can cause worse neurological outcomes. The potential outcomes

of interest are a function of the full time series of EA burden and drug exposures

Y ({Ei,t,Wi,t : t = 1, . . . , T}) and we make the simplifying assumption that they vary only

according to the clinically relevant summaries of EA burden and and whether drugs are present or

absent. That is, we say that Y ({E1,t,W1,t : t = 1, . . . , T}) = Y ({E2,t,W2,t : t = 1, . . . , T}) if

Emax({E1,t : t = 1, . . . , T}) = Emax({E2,t : t = 1, . . . , T}) and W 1 =W 2, where

W i = 1
[
(
∑

t

∑
j Wi,t,j) > 0

]
. Thus, W i = 1 if any drugs are administered otherwise W i = 0. Our

estimand of interest is the probability a patient is discharged with severe disability if the patient

has EA burden (either Emax or Emean) equal to e and was not treated with ASMs. This can be

represented as:

Pr
[
Yi(Ei,max ∈ e,W i = 0) = 1

]
and Pr

[
Yi(Ei,mean ∈ e,W i = 0) = 1

]
. (3.1)

Here, Yi is the binarized post-discharge outcome, e is the binned EA burden with

e ∈ {mild,moderate, severe, very severe} and Wi,t = 0 ∀t indicates that no ASMs were ever

administered. We are interested in estimating the potential outcome when there are no
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administered ASMs because this allows us to disentangle the effects of EA on outcome from the

effect of drugs. For interpretability, we bin EA burden (e) into 4 levels – mild (0% to 25%),

moderate (25% to 50%), severe (50% to 75%), very severe (75% to 100%) – see Table 4.4 in the

the Appendix for the number of patients in each category. The choice of cutoffs was influenced by

animal models which showed that an EA burden of 50% serves as an important indicator of when

EA begins to damage the brain (Trinka et al., 2015). A sensitivity analysis to these choices is

provided in Appendix 4.5.

The variables we Control for: Pre-admission Covariates and Drug-response

Covariates. In the ASM observation-treatment procedure, we observed two large sources of

potential confounding. First, those with different diagnoses and patient characteristics may

receive more or less ASM treatment from physicians, potentially confounding the estimated harm

caused by EA with the harm due to diagnosis or patient characteristics. To address this, a

collection of 70 pre-admission covariates that could potentially influence ASM treatment were

selected by a group of practicing neurologists and were controlled for via the matching algorithm,

Matching After Learning To Stretch (MALTS).

A second source of potential confounding comes from a patient’s drug response. Due to

differing past medical history, current medical conditions, age, and other factors, some patients

respond well to some ASMs while other patients respond less. This in turn, can directly affect the

amount and number of ASMs that a patient receives and their final outcome. To account for this,

we modeled each patient’s response to ASM drugs via a one-compartment

Pharmacokinetic/Pharmacodynamic (PK/PD) model, and controlled for each patient’s drug

responsiveness parameters using MALTS.

3.4 Result: EA Burden have a Direct Causal Effect on Survival

With the EA data summarized as above, our framework can now provide the first causal

analysis of the effect of seizure-like activity on the possibility of severe brain damage.

Average Effect of Max EA Burden on Patient Outcomes. Figure 3.4(a) illustrates our

first main result: those with higher levels of Emax are at higher risk of poor neurologic outcomes.

Moreover, the risk of a poor outcome increases monotonically as the EA burden increases,
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(a) Pr[Y (Emax = e,W i,t = 0) = 1] (b) Pr[Y (Emean = e,W i,t = 0) = 1]

Figure 3.4: The probability of a poor outcome mRS for either Mild, Moderate, Severe, or Very
Severe EA burden. EA Burden is quantified as (Left): Maximum EA in a 6-hour moving average
window; (Right): Mean EA in a 6-hour moving average window. In both scenarios, an increase in
EA burden leads to a worse outcome for the patient. Outcome worsens monotonically for Emax,
whereas for Emean, there is a jump at approximately 0.5. In both plots the horizontal line represents
the baseline median average potential outcome for mild case. Note that these baselines need not
be equal due to the marginalization over W i,t.

culminating in an average increase of 16.7% in probability of a poor outcome when a patient’s

untreated EA burden increases from mild (0 to 0.25) to very severe (0.75 to 1).

Average Effect of Mean EA Burden on Patient Outcomes. Figure 3.4(b) shows our other

main result: those with higher levels of Emean are also at higher risk of being discharged with

poor outcomes. However unlike Emax, the risk caused by increasing Emean spikes up when a

patient goes above even a moderate EA burden, [0.25, 0.50). Our results indicate that severe and

very severe prolonged EA burden (over 24 hours) increase the risk of worse outcome by 11.2% as

compared to mild or moderate prolonged EA burden.

Heterogeneity in Effects for Max EA Burden. While increases in EA burden tend to lead

to worse outcomes overall, we found also that there is significant heterogeneity in the size of the

effect due to each patient’s pre-admission covariates. We can quantifying the relative change in

outcome from a very severe max EA as the ratio of expected outcomes for those with high EA
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burden over the expected outcome of those with low EA burden minus one:

Average Effect of EA =
Pr
[
Y (Emax ≥ 0.75,W = 0) = 1

]
− Pr

[
Y (Emax < 0.25,W = 0) = 1

]
Pr
[
Y (Emax < 0.25,W = 0) = 1

] .

(3.2)

Thus if the average effect of EA is zero, a very severe max EA is no worse than a mild max EA

while an average effect of EA of one would represent a 100% increase in the probability of a bad

outcome. Based on this relative effect, we observe that those with central nervous system

infections or with toxic metabolic encephalopathy are at higher risk of a worse outcome if they had

a large increase in Emax burden. We conjecture that this may be the result of a central nervous

system infection and EA leading to a higher inflammatory response in the patient, potentially

leading to or exacerbating damage to the brain. Figure 3.5(a) uses a decision tree to break down

the population into subpopulations with differing conditional average treatment effects.

We further examined race and gender as possible effect modifiers of EA burden. Figure 3.5(b)

shows that race does not seem modify the risk from increases in Emax. By contrast, sex does

appear to modify the risk: male patients appear to be more susceptible to very severe Emax

worsening the chances of recovery compared to female patients (see Figure 3.5(c)).

3.5 Interpretable Matched Group Analysis

In this section, we provide an assessment of the quality of the matched groups. These types of

analyses determine trust of the causal conclusions.

3.5.1 Stretch Coefficients Give Insight into the Matching Process

Through visualizing the stretch coefficients, one can gain insight into the relative importance

of variables in the MALTS matching procedure. For max EA burden, one can see in Figure 3.6

that two medical scoring systems were both heavily weighted, with the iGCS Score being the

most important variable and APACHE II score being the third most important variable. These

two scoring systems capture a patient’s level of consciousness and severity of illness. When

considering that age and systolic blood pressure were the second and fourth most important

variables, this shows that our matched groups essentially must consist of individuals that agree on

these medical scores and biomarkers representing overall health and current level of neurologic
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(a) Recursive partitioning of covariate space and respective relative effects of very severe EA

(b) Effect by Race (c) Effect by Sex

Figure 3.5: Heterogeneity in the average effect of EA, stratified by: (a) Recursive partitioning on
the entire covariate space using Gini splitting to find the most important splits; (b) Partitions
the space according patients’ race. The remaining race classes (other, undisclosed, and missing)
are rare representing 0.5%, 5%, and 8.4% of the total population. (c) Partitions the space across
to patients’ gender. Orange coloring in the boxes implies that the subgroup experiences a larger
average estimated causal effect of EA on neurologic outcomes than the cohort mean, and blue
implies a smaller causal effect. Subgroups in orange fare worse as a result of a higher EA burden.
[Credit to future Dr. Harsh Parikh for the figure]

impairment. In Figure 3.6, one can also see that the three least important variables to match on

are Hill coefficients and ED50 parameters from one of the anti-seizure medications. This stands in

contrast with the ED50 parameter for Propofol, which was one of the top five most important

variables. This presents an interesting result: perhaps Propofol, a potent intravenous anesthetic

drug used to treat seizures, including information about how it is prescribed, may be much more

important in understanding the effect of seizure burden than its fellow anti-seizure medications,

most of which are less potent.
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Figure 3.6: The top and bottom 5 variables, based on the average stretching weights in MALTS,
when we are studying the effect of the maximum EA burden Emax. BP = blood pressure; Coef
= coefficient.; Lacosamide50 = concentration of Lacosamide that reduces EA burden by 50%;
Propofol50 = concentration of propofol that reduces EA burden by 50%; Hx = History.

3.5.2 Matched Groups are Validated by Neurologist’s Chart Review

To ensure the validity of our causal conclusions, it is crucial that the matching process does

not overlook major unobserved confounding factors. Inspired by similar approaches in the social

sciences (Hasegawa et al., 2019), one can check for unobserved confounders by having a domain

expert perform a post-facto analysis of the matched groups. If a domain expert who has access to

all of a patient’s medical information finds the patients in each matched group to be qualitatively

comparable, this gives us confidence that we are controlling for all relevant sources of confounding.

This approach to considering unobserved confounding is well suited for medical data. In

addition to factors that are easy to quantify, such as APACHE II scores, it is common for a

patient to have a large volume of qualitative information along with quantitative data in the form

of doctor’s notes and documentation. As doctors’ chart reviews are not restricted to quantitative

information, this ensures that we are checking for qualitative and quantitative sources of

unobserved confounding.

For our matched groups analysis, three practicing neurologists, Chart Reviewers 1, 2, and 3

(CR 1-3), were sent 3 randomly chosen matched groups and asked to perform a manual chart

review of the selected patients. Based on these charts, the neurologists were asked to

independently make a qualitative analysis of the patients within the matched groups and to
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report their outcome prognosis (chance of a poor neurologic outcome) and likelihood of

experiencing a high EA burden.

From the results of the post-hoc analysis, as in Table 3.1, the three neurologists found no

problematic sources of confounding, therefore validating our causal effect estimate. Moreover,

from the reviewer’s qualitative analyses, we can observe which factors each matched group was

matched tightly on. For example, group three is tightly matched with all patients having similar

APACHE II scores and all but one having relatively good prognoses. This contrasts with group

one, where patients are tightly matched on acute neurological injuries at the cost of a tighter

match on APACHE II score. Viewing what is tightly matched in each group provides a holistic

evaluation of which factors have been properly controlled for, such as age, and which factors are

either unimportant or lack the sample size to tightly match upon, such as many of the less

common diseases.

3.6 Discussion

We presented four main points in this work: (1) First, we developed a novel framework that

combines mechanistic modeling with a distance metric learning-based matching method to adjust

for complex time-series confounders. (2) Second, we have provided, for the first time (to the best

of our knowledge), an estimate of the causal effect of epileptiform activity (EA) on post-discharge

outcomes in patients with critical illness. We find that higher EA burden indeed leads to worse

neurologic outcomes (Figure 3.4), in a way that depends on the intensity (max burden over 6

hours) and duration (average burden over 24 hours) of EA. (3) Third, our results provide insights

into individualized potential outcomes. For example, we show that patients with central nervous

system infection or toxic metabolic encephalopathy are affected by EA to a higher extent

compared to the average level in this cohort. (4) Finally, we leveraged the interpretability of our

approach to validate our matched patients via chart review with the help of three neurologists.

The general consensus in the chart review found that the matches were of high quality, matching

together patients with similar prognoses.

Clinical Implications. Our findings have two primary implications for treatment of EA: (1)

First, treatment should be based on EA duration as well as intensity. We find that intense
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periods of EA burden (max EA), even if relatively brief (6 hours) lead to worse outcomes. By

contrast, sustained periods of EA (mean EA burden) show a binary relationship with outcome:

EA < 50% has minimal effect, but EA ≥ 50% causes worse outcome. This suggests that

interventions should put higher priority on patients with mean EA burden higher than 50%, while

treatment intensity should be low and conservative when EA intensity is low. (2) Second,

treatment policies should be based on admission profile, because the potential for EA to cause

harm depends on age, past medical history, reason for admission, and other characteristics. For

example, as our results suggest, patients with central nervous system infection or toxic metabolic

encephalopathy should be monitored more closely with more robust treatment. By contrast,

current treatment protocols used in hospitals tend to be generic, recommending that treatment be

tailored based on the intensity or duration of EA (e.g., more aggressive treatment for status

epilepticus), but providing little guidance on how to take other patient characteristics into

account. As a result, treatment approaches vary widely between doctors. This suggests an

opportunity to improve outcomes by personalizing treatment approaches.

Results in context. Our work builds on prior results demonstrating associations between EA,

treatments, and neurologic outcomes. Oddo et al. (2009) studied a cohort of 201 ICU patients

where 60% had sepsis as a primary admission diagnosis. They found that EA (seizures and

periodic discharges) were associated with worse outcomes, after performing a regression

adjustment for age, coma, circulatory shock, acute renal failure, and acute hepatic failure.

However, these authors did not adjust for treatment with ASM, including phenytoin (given to

67% of patients), levetiracetam (62% of patients), lorazepam (57% of patients), and four other

drugs. Tabaeizadeh et al. (2020) found that the maximum daily burden of EA/seizures, together

with their discharge frequency, are associated with higher risk of poor outcome (mRS at hospital

discharge 4–6) in 143 patients with acute ischemic stroke. However, they did not control for

ASMs which were given to 83% of patients. Lack of adjusting for drug use is also found in the

pediatric literature on EA (Ganesan and Hahn, 2019). Not adjusting for treatment is problematic

because a growing number of studies suggest that aggressive treatment with ASM may be

harmful. One example is the use of therapeutic coma for status epilepticus, where anesthetics

such as pentobarbital or propofol are used to temporarily place the brain into a state of

profoundly suppressed activity to stop EA while giving treatments of the underlying cause of EA
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to take effect. Recent evidence shows that use of therapeutic coma is associated with worse

outcomes, including a recent retrospective study of 467 patients with incident status epilepticus of

Marchi et al. (2015) which found that therapeutic coma was associated with poorer outcome,

higher prevalence of infection, and longer hospital stay (Lin et al., 2017; Rossetti et al., 2005).

However, because more aggressive treatment is reserved for more severely ill patients, these

studies have also come under criticism for failing to adequately adjust for the type and severity of

medical illness, and for the burden of epileptiform activity. Adequately adjusting for these factors

has been challenging before now because of the complex interactions and feedback loops involved.

However, without adjusting for these factors, it remains unclear whether the association between

EA and poor outcomes is due to over-treatment, the underlying illness, or the direct effects of

EA. Without an answer to this question, it has remained unclear whether current treatment

approaches are helping or hurting patients.

We addressed this gap by introducing an analytic approach that is able to simultaneously

account for the entwined and time-varying effects drug and EA burden, and their interactions

with patient characteristics. One key component of our approach is adjusting for patients’

pharmacodynamic (PD) parameters to account for heterogeneity among patients. Critically ill

patients can be different in many ways including measured and unmeasured variables. PK/PD

parameters provide a way to quantify the dynamics of the propensity of experiencing EA. The

PK/PD parameters are important to take into account since they create spurious correlations

impacting both the propensity of having high EA burden and the clinical outcome. By accounting

for PK/PD parameters, we were able to adjust for exposure to anti-seizure drugs, such as

phenytoin and pentobarbital, where the medications themselves may worsen outcomes. Because

prior studies did not disentangle the potential harmful effects of EA and seizures from anti-seizure

drugs, the field remained worried but uncertain. Another key innovation is our application of an

advanced methodology designed specifically for causal inference using observational data. In the

prior studies cited above, multiple regression was used to adjust for potential confounding from

medical history and patient diagnosis, but not drug response. The nature of observational data

and multivariate regression (model misspecification) have made it impossible to establish a causal

link between seizures and other EA vs. clinical outcome. The matching approach in MALTS,

being a causal inference method, achieves both the flexibility of being free of model
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misspecification (non-parametric) and the interpretability of the learned weights, therefore

creating less biased estimates of the causal effects. With this new approach, we are able to

provide, for the first time, credible estimates of how much harm EA causes and in which types of

patients. Moreover, MALTS comes with the additional advantage that one can easily perform

post-hoc analyses of the matched groups, ensuring that the causal claims are accounting for

potential unobserved confounders that an expert may be able to identify.

Our approach has several limitations that could be improved in future work. When

evaluating the EA burden, it would be worthwhile in future work to consider the subtype of EA

(GPD/LPD/LRDA), discharge frequency for periodic discharge patterns, the morphological

features (such as seizure with/without triphasic waves), and the spatial extent of EAs. We

currently do not have high quality human labels at the necessary resolution to pursue these tasks.

On the other hand, the automatic EA annotator, based on a trained convolutional neural

network, although not perfect, achieves similar inter-rater reliability as that of experts for the six

normal/EA/seizure patterns (Ge et al., 2021a). To reduce this uncertainty in this study, we

grouped these EA patterns into binary EA (seizure/GPD/LPD/LRDA) vs. non-EA categories

(GRDA/normal/artifact). The definition of EA burden is also relatively coarse compared to those

defined by Ganesan and Hahn (2019). The PK/PD model can be further improved by including

more mechanistic or physiological detail, such as a context sensitive half-life for propofol (Hughes

et al., 1992).

In summary, our results present a data-driven statistical causal inference approach to quantify

the harm of EA in ICU. We not only confirm that EA burden (adjusted for ASM) are indeed

harmful and worsen patients’ neurologic outcomes, but careful analysis illustrates that there exist

important subgroups of patients that are more affected by EA. Based on this, a future direction is

to learn an interpretable optimal treatment policy for EA burden to improve patient outcomes.
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Chapter 4

Local Change Point Detection and Signal Cleaning

4.1 Introduction

The Ensemble Empirical Mode Decomposition (EEMD) and the preceding Empirical Mode

Decomposition method have become important techniques for the decomposition of nonlinear and

non-stationary signals in fields including medicine (Liu et al., 2012; Lozano et al., 2016),

hydrology (Wang et al., 2015), seismology (Wang et al., 2012), and mechanical engineering (Chen

and Cui, 2016; Zheng et al., 2017). A reason for their success has been the EEMD’s ability to

create data-adaptive, rather than predefined, basis functions called Intermediate Mode Functions

(IMFs). These adaptive basis functions can be non-stationary and nonlinear, making them ideal

for complex signals that are not as natural to express in Fourier or Wavelet bases.

However, this data-adaptive nature of the EEMD’s basis functions can make it hard to know

a priori in which basis function a signal may end up. For instance, consider a chirp signal linearly

increasing in frequency perturbed with white noise. When decomposed by EEMD, we can see in

Figure 4.1 that the signal glides between IMFs 8-6. Common EEMD signal cleaning techniques

such as those used in (Wu et al., 2019; Hotradat et al., 2019; Chen et al., 2019; Lei and Zuo, 2009;

Huimin et al., 2017; Li et al., 2016; Liu, 2015; Gaci, 2016) first decompose the signal into its base

IMF functions, but then treat the entire length of an IMF as either signal or noise. However, in

this example, due to the increasing frequency of the chirp signal, no basis function is consistently

signal or noise. To properly clean this signal, a more nuanced technique that is able to identify

subsections of IMF as signal or noise is necessary. In this paper, we provide a novel example of an

EEMD signal cleaning technique, Local Change Detection and Signal Cleaning (LCDSC), that is

able to identify and clean subsections of EEMD signals. Moreover, we show how this technique

can improve the identification of acoustic shock waves.
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Figure 4.1: A chirp with white noise decomposed by EEMD. The boxed-in areas identify when
each basis function is picking up the sinusoidal signal. Notice how the increasing frequency of the
sinusoid makes it such that no basis function picks up the signal for the entire duration.

4.2 Local Change Point Detection and Signal Cleaning

4.2.1 EEMD

The Ensemble Empirical Mode Decomposition (EEMD) was invented by Wu and Huang

(2009) as a novel technique for analyzing nonlinear and non-stationary time signals. The EEMD

procedure uses iteratively computed, adaptive filters to decompose a signal X(t) into basis

functions:

X(t) =

n∑
j=1

IMFj(t) + r(t).

Here, IMFj(t) is the j-th basis function, which is referred to as an Intermediate Mode Function

(IMF), and r(t) is the residual. As the EEMD is a numerical algorithm, it requires a stopping

criteria to select the correct number of basis functions. While many stopping criteria exist for the

EEMD family of numerical algorithms, one of the most common, called S-stoppage, results in the

remainder term r(t) becoming a monotonic or a constant function (Huang et al., 2003). In such

cases, the resulting r(t) can easily be subtracted from the original signal X(t) to create a

decomposition with no residual term. Thus, for the purposes of this paper, we will employ

S-stoppage and assume that either X(t) has an r(t) of 0, or X(t) has had its remainder
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subtracted out resulting in:

X(t) =
n∑

j=1

IMFj(t). (4.1)

While this additive decomposition resembles the traditional Fourier decomposition, they differ in

the properties of the basis functions that are generated. In a Fourier decomposition, the basis

functions are orthogonal sinusoidals at fixed amplitudes and frequencies. In the EEMD, each IMF

has a time-varying amplitude and time-varying frequency while still being orthogonal to one

another (Huang and Shen, 2014). To evaluate how each IMF’s amplitude and frequency are

changing over time, it is common practice to compute each IMFs instantaneous amplitude and

instantaneous frequency using a Hilbert Transform (Huang and Shen, 2014). Given the j-th IMF,

IMFj , the Hilbert Transform of IMFj is:

H(IMFj)(t) =

∫ ∞

−∞

IMFj(t)

t− τ
dτ

From this, we can generate the analytic signal of IMFj using:

˜IMF j(t) = IMFj(t) + jH(IMFj)(t)

where j is the complex conjugate. Expressing this via polar coordinates using Euler’s Identity,

this results in:

˜IMF j(t) = ãj(t) exp(jϕ(t))

where ϕ(t) is the phase. Finally, from this analytic signal, we can extract the instantaneous

amplitude for IMFj , aj(t) and instantaneous wj(t) frequency using the identity (Huang and

Shen, 2014):

aj(t) = |ãj(t)|

wj(t) =
dϕj
dt

(t)
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Thus, given equation 4.1, we can represent each basis function of X(t) as:

X(t) =
n∑

j=1

IMFj(t)

=

n∑
j=1

aj(t)e
iϕj(t).

IMFs also come with several crucial properties. By definition, an IMF is a nonlinear oscillatory

function that satisfies the requirements (Huang et al., 1998):

1. For each IMF, the number of local extrema and zero crossings must differ by at most one.

2. Let gj,max(t) and gj,min(t) be smooth functions connecting the local maxima and minima of

the j-th IMF. These functions are commonly referred to as the upper and lower envelope of

X(t). At time point t, the mean of the upper envelope of the j-th IMF, gj,max(t), and the

lower envelope, gj,min(t), is zero:

gj,max(t) + gj,min(t) = 0.

These properties will serve an important role in designing our change point detection and signal

cleaning algorithm.

4.2.2 Additive Local Noise Model

In performing local change point detection, we will assume that the observed signal X(t) for

t ∈ [1, T ] consists of the true underlying signal we would like to extract, S(t), which only occurs

during the set of times A ⊂ [1, T ] and independent, background white noise R(t) which occurs

throughout the entire duration of the signal. To ensure measurability and identifiablility, A is a

finite union of finite intervals and S(t) is a deterministic function. Moreover, as the EEMD is well

posed for non-linear and non-stationary signals, S(t) will be smoothly changing in amplitude and

frequency. This will contrast with R(t) which will be independent white noise. Assuming an

additive relationship between signal and noise, this gives us the data generating process:

X(t) = S(t)1A(t) +R(t),
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4.2.3 Change Point Detection of the IMFs

Under the additive local noise model, the goal of signal cleaning is to recover the true signal

S(t) by first estimating the interval A, or when the true signal is occurring, and then performing

a signal cleaning on X(t) for t ∈ A to recover S(t). To identify when changes are occurring in

X(t), we first decompose X(t) into its constituent IMFs and then perform a change point

detection procedure on each IMF. From a statistical perspective, identifying change points entails

finding the set of time points Sj = {τ (i)1 , ..., τ
(i)
nj } such that:

f(IMFj(t1)) ̸= f(IMFj(t2)),

∀t1 ∈ [τ
(i)
k , τ

(i)
k+1],

∀t2 ∈ (τ
(i)
k+1, τ

(i)
k+2],

∀k ∈ [1, ..., nj − 2].

Here, f(IMFj(t)) represents the distribution of IMFj at time t. However, as the distribution of

each IMF is generally unknowable a priori outside of well-known distributions such as white noise

(Wang et al., 2013), this quickly becomes a very difficult problem. To make this more tractable,

we utilize several of the properties of IMFs and the additive local noise model to construct a more

feasible change point detection problem. According to our additive local noise model

X(t)2 =


(S(t) +R(t))2 If t ∈ A

R(t)2 If t ̸∈ A.

Combining this with the statistical independence between R(t) and S(t) assumed in the additive

local noise model, this implies that

E[X(t)2] =


E[S(t)2] + E[R(t)2] If t ∈ A

E[R(t)2] If t ̸∈ A.

(4.2)

Thus, when we are in interval A, there is an increase in expected power in X(t) (power being

X(t)2). In addition, the orthogonality of each IMF directly implies that an increase in power in
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X(t) must lead to a corresponding increase in at least one of the constituent IMFs. Therefore, to

identify when we are experiencing a signal, it suffices to search for IMFs that are showing

increased power.

Additionally, as each IMF has a mean of zero with respect to its envelope, an increase in

power in an IMF implies an increase in the variance in that IMF

E[IMF (t)2] = E[(IMF (t)− E(IMF (t))2] = V ar(IMF (t)).

Therefore, we have reduced the complex problem of detecting an arbitrary change in a signal

down to detecting changes in an IMF’s variance.

To identify when an IMF is experiencing an increase in variance, we employ techniques from

a well-developed branch of statistics, change point detection. A commonly used approach in the

statistical estimation of change points is to minimize an objective function of the form

min
m

min
τ1,...τm−2

m−1∑
i=1

L(Xτi−1:τi−1, Xτi:τi+1−1, Xτi+1−1 : τi+2) + βD(m),

where τ0 is 1 and τm is the length of the signal. In addition, m is the number of change points, τi

is the location of the i-th change point, β is a constant, L is a function that decreases when τ is a

true change point, and D(m) is a penalization function that increases with the number of change

points selected. By balancing L and D(m), the objective seeks to select the correct number and

locations of changes in variance.

As for choice of L, we can once again employ the properties of the EEMD. Wu and Huang

(2014) identified that the power of IMFj(t) (power in this case referring to aj(t)
2) is

approximately normally distributed. As aj(t)
2 controls the variance of the IMF, a natural choice

for L is to base it on the likelihood ratio test for the change in variance in normal distributions

(Inclan and Tiao, 1994)

L(Xτi−1:τi−1, Xτi:τi+1−1, Xτi+1−1 : τi+2) =
Cτi

Cτi+1−1
− τi − τi−1

τi+1 − 1− τi−1

Here Cτi is the cumulative normalized second moment,
∑τi

k=τi−1+1(X(k)−Xτi)
2 and Xτi is the

cumulative mean, 1/(τi − τi−1 + 1)
∑τi

k=τi−1+1X(k). As for βD(m), this is a penalization term
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that combines some function of the number of change points, D(m), with a constant, β. Some of

the most popular penalty terms include Akaike’s Information Criterion (βm) (Akaike, 1974) and

Bayesian Information Criterion (m log(n)) (Schwarz, 1978) (n is the total signal length). For our

uses, the newer Modified Bayesian Information Criterion

(−1/2(3m+ log(n) +
∑m+1

i=1 log(τi − τi−1)) (Zhang and Siegmund, 2007) is preferred for its

combination of solid theoretical justification and real world performance.

4.2.4 Hypothesis Test and Sparse Basis Selection

Once the change points algorithm has identified the points where the each IMF has

undergone a change, we must determine how we are to clean each signal segment. We propose a

simple hypothesis-test-based algorithm that is able to automatically create sparsely cleaned IMFs

based on changes in power. As equation 4.2 demonstrated that during the presence of the

underlying signal, there should be an increase in variance relative to before and after, we are

interested in the hypothesis test:

H0 : σ
2
during ≤ γ ∗max(σ2before, σ

2
after)

H1 : σ
2
during > γ ∗max(σ2before, σ

2
after),

where σ2before is the variance of the previous interval, σ2during is the variance of the current

interval, σ2after is variance of following interval, and γ is assumed to be greater than or equal to 1.

By rearranging the alternate hypothesis, γ >
σduring

max(σbefore,σafter)
, we can see that γ serves as a

measure of how much the ratio of variances much increase to be considered significant. Setting

γ = 1 tests if there has been any statistically significant increase in variance.

As for the test statistic, leaning on the fact that when there is Gaussian noise, the variance

follows a normal distribution (Huang and Shen, 2014), we employ the F-statistic to detect

changes in variance

Fbefore/during =
γmax(S2

before, S
2
after)

S2
during

,
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where Sbefore is the sample variance used to estimate σbefore. Fbefore/during is compared against

the F distribution with degrees of freedoms, df1 = nduring, df2 = max(nbefore, nafter) (where

nduring is the length of the during interval) to determine the p-value and thus significance.

As this process involves performing a hypothesis test at every potential change point, across

every IMF, this can quickly lead to a large number of tests being performed for the same goal:

identifying a significant segment. This large number of tests can lead to the multiplicity issue

where one or more spurious false positives may occur. To perform these tests so they collectively

have an α (1 > α > 0) probability of a false positive (which is known as the the Family-Wise

Error Rate), we employ the multiple testing correction method, Holm-Bonferroni method (Holm,

1979). If the p-value is significant after the Holm-Bonferroni correction, then we can claim that

the interval contains the desired signal. If not, the interval does not contain the true signal and is

cleaned by setting it to 0. If an IMF only has one change point (and thus cannot have a before,

during, and after interval), then then max(σ2before, σ
2
after) is replaced with σ2after. If there are no

change points, then the entire IMF is set to 0. As this performs a Local Change point Detection

and Signal Cleaning, we refer to this as LCDSC.

4.3 Simulation

4.3.1 Simulation 1: Doppler Signal

To demonstrate this signal cleaning procedure, we take a synthetic example where a Doppler

signal is hidden in the midst of Gaussian white noise. We will refer to this as the Local Doppler

example. For Simulation 1, we will use a Local Doppler of length 2500 with the Doppler occurring

during the middle of the signal:

X(t) =


R(t) if t < 1000, t > 1500

S(t) +R(t) if 1000 ≤ t ≤ 1500.

S(t) is the Doppler signal from Donoho and Johnstone (1994).

S(t) = 7(t(1− t))0.5 sin(2π(1 + 0.05)/(t+ 0.05)).
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As can be seen in Figure 4.2, the Doppler signal in the middle is expressed in all 7 IMFs with first

IMFs expressing the higher frequency parts of the signal and the latter IMFs expressing the lower

frequency sections. Moreover, no single IMF is ever purely signal or purely noise necessitating a

local change point detection and signal cleaning. Running the change point detection algorithm in

Figure 4.2: EEMD of the Local Doppler Signal. The IMF numbers are on the right with “IMF
0” referring to the original signal. In the EEMD, none of the IMFs are purely signal or noise
necessitating a local signal cleaning procedure.

Figure 4.3 at an α = 0.05 type I error level and γ = 1 identifies many locations at which a change

in the signal was detected. While IMFs 1-3 have perfect identification of the Doppler signal, in

IMFs 4-7, many spurious change points are detected that are not necessarily due to the Doppler

signal. To remove these, the F-test cleaning step is performed. The resulting cleaned signal in

Figures 4.4 and 4.5 illustrates how all of the change points outside of the duration of the Doppler

signal were deemed nonsignificant by Holm-Bonferroni and set to zero. Not only does this provide

a good estimation of the shape of the Doppler signal, matching the general sinusoidal shape and

increasing frequency, but LCDSC provides a good estimate of when the Doppler signal starts, as

the first nonzero point in IMF1 is at point 1010, only 1% of the way into the start of the Doppler

signal.

4.3.2 Simulation 2: Doppler Signal-Comparison Study

To compare the performance of our algorithm, we extend our Doppler simulation from

Simulation 1 and compare our performance against other EEMD signal cleaning techniques.
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Figure 4.3: Change points that were detected in the Local Doppler Signal in Figure 4.2 when
employing the normal likelihood ratio objective function and the Modified Bayesian Information
Criterion over-fitting penalty.

These techniques come in two general varieties. Techniques 2-5 in Table 4.1 are based on

identifying some subset of the IMFs as containing only noise and cleaning the signal by

completely removing the noise IMFs. Many times, the correct number of IMFs to remove is

determined subjectively by the experimenter though a trial-and-error process. To account for any

possible variability in performance due to these judgements, we will come up with an

upper-bound for the performance of each algorithm by computing the best possible set of IMFs

for each of the algorithms in question.

As for the Wavelet Hard Thresholding (WHT) and Wavelet Interval Thresholding (WIT)

cleaning techniques, these are based on performing a Wavelet-like thresholding on each of the

IMFs (Kopsinis and Stephen, 2009). These compute the base noise level within each IMF and

perform a hard or soft thresholding if the IMF lies within the expected noise band. While this

method does not suffer from a subjective choice of IMF removal, it assumes that the true signal

occurs throughout the entire duration of the signal, leading to a biased estimation of the base

noise level.
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Figure 4.4: The IMFs in Figure 4.3 after each section that was identified by the change point
detection algorithm was cleaned using the F-test/Hole-Bonferroni procedure with γ = 1. Notice
how the basis functions are set to 1 when the signal is not present within the basis function.

The data model for the simulation will utilize the Local Doppler Model with the middle

containing our desired signal but with the total signal length T at differing values:

X(t) =


R(t) if t < 2

5T, t >
3
5T

S(t) +R(t) if 2
5T ≤ t ≤ 3

5T.

T is tested at 1000, 2000, and 2500 time steps. R(t) will again be Gaussian white noise but with

the noise level varying from 0.2 to 0.5. The cleaned signal is then compared to the underlying

Doppler signal and error computed in terms of Residual Sum of Squares (RSS) as this

corresponds to the total power difference between the estimated and the cleaned signal,

RSS =
T∑
t=1

(X(t)− Cleaned(t))2.

At each level of noise and signal length, 20 replicates of the simulation were performed.

The results in Figure 4.6 illustrate that across a wide scale of noise levels and sample sizes,

the LCDSC performs well at local signal cleaning, uniformly outperforming other non-local signal

cleaning techniques.
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Figure 4.5: Comparison of the original signal with the cleaned signal. The recovers much of the
original signal. It performs especially well at cleaning the signal to closely match the true start and
end points.

Cleaning Method Description

k-Highest Removal all but the k-highest IMFs (Wu et al., 2019)

l-Lowest Removal all but the k-lowest IMFs (Hotradat et al., 2019)

k-Highest & l-Lowest Combination of k-Highest and l-Lowest (Huimin et al., 2017)

Power Set Cleaning Perform a best subset selection over all possible subsets.

WHT Wavelet Hard Thresholding each IMF (Kopsinis and Stephen, 2009)

WIT Wavelet Interval Thresholding each IMF (Kopsinis and Stephen, 2009)

No Cleaning No Signal cleaning

Table 4.1: List of Signal Cleaning Techniques

4.3.3 Simulation 3: Comparison Study- What if the signal is not local?

While the LCDSC is built for the problem of local signal detection and cleaning, it is important

to determine its performance as the duration of true signal is increased or decreased. We can

express how local our signal is in terms of a “locality Ratio”:

locality Ratio =
len(A)

T
− 1.

len(A) is the length of the interval A when the true signal is being expressed and T is the total

length of the noisy signal. We vary the locality Ratio between 0 to 4, making the local signal

cleaning problem increasingly local and favorable to LCDSC.
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Figure 4.6: RSS Comparison of common cleaning methods vs LCDSC. The center point represents
the mean RSS across 20 replicates and the bar represents one standard deviation from the center.
From this, we observe that LCDSC performs better than competing signal cleaning methods, able
to create the closest representation of the true signal.

Figure 4.7 illustrates that when the locality Ratio is at or below one, then LCDSC performs

approximately the same as the best performing method such as k-Highest. However, once the

locality ratio goes beyond one, LCDSC becomes the dominant signal cleaning technique followed by

WIT. This gives us a rough guide for when to start considering a signal cleaning problem local or

global. When the Noise Ratio is below one, it can be better to clean with global cleaning methods

whereas local cleaning methods are better when the ratio is greater than one.
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Figure 4.7: Changes in Residual Sum of Squares as the Locality Ratio is increased. When the noise
ratio is low, the LCDSC performs slightly worse than k-Highest and k-Highest & L-lowest, but once
the noise ratio increases above 1, the LCDSC becomes the best performing method. No cleaning was
not plotted as it had a much higher error than all the others and Power Set was near equivalent to
k-Highest & l-Lowest.
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4.4 Application: Detection of Gliding events in Acoustic Explosions

On October 28, 2014 an Anteras rocket operated by Orbital Sciences Corporation exploded

shortly after takeoff (Northon, 2015). The resulting explosion was powerful enough that acoustic

shockwave arrivals were observed at stations over 2000km away from the launch site. At the time,

226 acoustic and atmospheric stations from the Transportable USArray network were located

within range of the explosion, resulting in arrivals from the explosion being picked up by the

array’s infrasound sensors. Many of these arrivals exhibited characteristics of dispersive waves at

the infrasound level (<20 Hz). This is of interest as dispersive waves were only recognized

recently in the infrasound domain (Negraru and Herrin, 2009) and because the Anteras explosion

was one of the largest demonstrations to date of the existence of infrasound dispersive waves

(Vergoz, 2018). These dispersive waves are a result of the arrivals being reflected at different

heights in the troposphere as well as being influenced by atmospheric conditions such as

temperature and windspeed. This makes studying infrasound arrivals important tools in

evaluating atmospheric density models (Vergoz, 2018).

Isolating these dispersive waves can be complicated due to the relatively short time periods

when the explosion was detected as well as the complex weather and atmospheric factors affecting

recording conditions at each sensor.

However, this problem is well suited for LCDSC. First, each infrasound is relatively quick (on

the order of a few seconds within the 24-hour monitoring of the USArray sensors). Second, as

seen in Figure 4.8, one of the canonical features of an infrasound dispersive wave is the presence

of a “gliding” or steadily increasing frequency in the signal. This makes infrasound dispersive

waves display gliding similar to a Doppler signal reversed, which the LCDSC has performed well at

cleaning. Performing LCDSC on the signal from one of the acoustic stations, we do indeed observe

in Figure 9 that LCDSC cleans the signal well especially compared to WIT which has made very

little change to the signal due to the large period of noise throwing off the estimation WIT’s

baseline noise estimation.

Moreover, in Figure 10, by increasing the Threshold value, γ, we can clean the signal further

and further until only the acoustic explosions are singled out. This occurs when gamma is around
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Figure 4.8: A canonical example of an Infrasound Dispersive wave. Note the increase in frequency
over the duration of the signal in the Spectrogram plot.
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Figure 4.9: Comparison of uncleaned gliding signal with LCDSC cleaned signal and WIT cleaned
signal. Note that LCDSC performs a better job at cleaning the signal than WIT, especially in helping
to isolate the two spikes between 800-1000 that represent the infrasound dispersive wave.
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Figure 4.10: Comparison of LCDSC signal cleaning as γ is increased. As γ is increased, this results
in a sparser and sparser signal cleaning, with γ = 2 most cleanly isolating the dispersive wave.
This indicates that the dispersive wave can be identified in each IMF as a 2 fold increase in SNR
compared to background noise.

2. This informs us that dispersive waves seem to lead to at least a 2 times increase in power in all

of the IMFs.

4.5 Conclusion

Here we provided a demonstration of the utility of LCDSC for the problem of local change

point detection and signal cleaning. While other EEMD signal cleaning algorithms can exhibit

drawbacks when there are long periods of no signal, our LCDSC does not suffer from the same

disadvantage. This makes it ideal for the cleaning of short-term signals such as acoustic shock
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waves. We believe that the future development of EEMD signal decomposition will benefit greatly

from the further development of methods based on local changes in basis functions.

Chapter 420pt
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APPENDIX A: PATIENT CHARACTERISTICS

Table 4.2: Preadmission Patient Covariates

Variable Value

Age, year, median (IQR) 61 (48 – 73)

Male gender, n (%) 475 (47.7%)

Race

Asian, n (%) 33 (3.3%)

Black / African American, n (%) 72 (7.2%)

White / Caucasian, n (%) 751 (75.5%)

Other, n (%) 50 (5.0%)

Unavailable / Declined, n (%) 84 (8.4%)

Married, n (%) 500 (50.3%)

Premorbid mRS before admission, median (IQR) 0 (0 – 3)

APACHE II in first 24h, median (IQR) 19 (11 – 25)

Initial GCS, median (IQR) 11 (6 – 15)

Initial GCS is with intubation, n (%) 415 (41.7%)

Worst GCS in first 24h, median (IQR) 8 (3 – 14)

Worst GCS in first 24h is with intubation, n (%) 511 (51.4%)

Admitted due to surgery, n (%) 168 (16.9%)

Cardiac arrest at admission, n (%) 79 (7.9%)

Seizure at presentation, n (%) 228 (22.9%)

Acute SDH at admission, n (%) 146 (14.7%)

Take anti-epileptic drugs outside hospital, n (%) 123 (12.4%)

Highest heart rate in first 24h, /min, median (IQR) 92 (80 – 107)

Lowest heart rate in first 24h, /min, median (IQR) 71 (60 – 84)

Highest systolic BP in first 24h, mmHg, median (IQR) 153 (136 – 176)

Lowest systolic BP in first 24h, mmHg, median (IQR) 116 (100 – 134)

Highest diastolic BP in first 24h, mmHg, median (IQR) 84 (72 – 95)
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Lowest diastolic BP in first 24h, mmHg, median (IQR) 61 (54 – 72)

Mechanical ventilation on the first day of EEG, n (%) 572 (57.5%)

Systolic BP on the first day of EEG, mmHg, median (IQR) 148 (130 – 170)

GCS on the first day of EEG, median (IQR) 8 (5 – 13)

History

Stroke, n (%) 192 (19.3%)

Hypertension, n (%) 525 (52.8%)

Seizure or epilepsy, n (%) 182 (18.3%)

Brain surgery, n (%) 109 (11.0%)

Chronic kidney disorder, n (%) 112 (11.3%)

Coronary artery disease and myocardial infarction, n (%) 160 (16.1%)

Congestive heart failure, n (%) 90 (9.0%)

Diabetes mellitus, n (%) 201 (20.2%)

Hypersensitivity lung disease, n (%) 296 (29.7%)

Peptic ulcer disease, n (%) 50 (5.0%)

Liver failure, n (%) 46 (4.6%)

Smoking, n (%) 461 (46.3%)

Alcohol abuse, n (%) 231 (23.2%)

Substance abuse, n (%) 119 (12.0%)

Cancer (except central nervous system), n (%) 180 (18.1%)

Central nervous system cancer, n (%) 85 (8.5%)

Peripheral vascular disease, n (%) 41 (4.1%)

Dementia, n (%) 45 (4.5%)

Chronic obstructive pulmonary disease or asthma, n (%) 139 (14.0%)

Leukemia or lymphoma, n (%) 22 (2.2%)

AIDS, n (%) 12 (1.2%)

Connective tissue disease, n (%) 47 (4.7%)

Primary diagnosis
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Septic shock, n (%) 131 (13.2%)

Ischemic stroke, n (%) 85 (8.5%)

Hemorrhagic stroke, n (%) 163 (16.4%)

Subarachnoid hemorrhage (SAH), n (%) 188 (18.9%)

Subdural hematoma (SDH), n (%) 94 (9.4%)

SDH or other traumatic brain injury including SAH, n (%) 52 (5.2%)

Traumatic brain injury including SAH, n (%) 21 (2.1%)

Seizure/status epilepticus, n (%) 258 (25.9%)

Brain tumor, n (%) 113 (11.4%)

CNS infection, n (%) 64 (6.4%)

Ischemic encephalopathy or Anoxic brain injury, n (%) 72 (7.2%)

Toxic metabolic encephalopathy, n (%) 104 (10.5%)

Primary psychiatric disorder, n (%) 35 (3.5%)

Structural-degenerative diseases, n (%) 35 (3.5%)

Spell, n (%) 5 (0.5%)

Respiratory disorders, n (%) 304 (30.6%)

Cardiovascular disorders, n (%) 153 (15.4%)

Kidney failure, n (%) 65 (6.5%)

Liver disorder, n (%) 30 (3.0%)

Gastrointestinal disorder, n (%) 18 (1.8%)

Genitourinary disorder, n (%) 34 (3.4%)

Endocrine emergency, n (%) 28 (2.8%)

Non-head trauma, n (%) 13 (1.3%)

Malignancy, n (%) 65 (6.5%)

Primary hematological disorder, n (%) 24 (2.4%)
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APPENDIX B: ANTI-SEIZURE MEDICATIONS

Six drugs were studied: propofol, midazolam, levetiracetam, lacosamide, phenobarbital, and

valproate. Propofol and midazolam are sedative antiepileptic drugs (SAEDs) which are given as

continuous infusion, while the others are non-sedative antiepileptic drugs (NSAEDs) which are

given as bolus. Only the period when there is EEG recording is used. The dose is normalized by

body weight (kg). We use the half-lives from the literature (see Table 4.3) for calculating the drug

concentrations Di,t,j in the blood using the PK model.

Table 4.3: Half life for the anti-seizure medications used in the PD modeling.
Drug Half Life

Propofol 20 minutes
Midazolam 2.5 hours

Levetiracetam 8 hours
Lacosamide 11 hours

Phenobarbital 79 hours
Valproate 16 hours
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APPENDIX C: BINNING OF EA BURDEN

For statistical efficiency and interpretability, we bin the EA burden (e) into 4 levels – mild,

moderate, severe, very severe – see Table 4.4.

Table 4.4: APPENDIX C: Binning of EA burden
EA Burden Mild Moderate Severe Very Severe

Emax or Emean 0 to 0.25 0.25 to 0.5 0.5 to 0.75 0.75 to 1
Number of patients with Emax 272 130 107 451
Number of patients with Emean 661 134 88 77
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APPENDIX D: SUMMARY OF NOTATION

Table 4.5: Primary table of notations.

Symbol Description

Ci Vector pre-admission covariates such as age, vital signs, and medical history
Wi,t Sequence of ASMs administered during their stay in the hospital
Di,j,t Blood concentration of ASM j at time t
Ei,max Worst 6 hour epoch of EA burden within a 24 hour period
Ei,mean Average amount of time a patient experiences EA in a 24 hour period

Yi Binarized post-discharge outcome (0 if mRS ≤ 3 and 1 if mRS > 3)
Yi(e, w) Potential outcome if EA burden is e and total ASMs administered is w
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APPENDIX E: METHODOLOGY

Let us describe how we applied the framework from Section 3.2 to analyze the EA data to

obtain the results in Section 3.4. We divide the estimation pipeline into three stages (Figure 4.11):

1. In the first stage, we calculate Emax and Emean. To do this, we need to first identify

segments of the EEG signal containing seizure-like EA behavior. Doing this using human

annotators would be extremely time consuming, so we use a convolutional neural network

(CNN) trained on human annotators’ classifications of 10 second windows into non-EA and

EA in a semi-supervised fashion (Ge et al., 2021b; Zafar et al., 2021; Jing et al., 2016). We

use the predictions to compute EA time series (Zω
t ). As described in Section 3.4, Emax and

Emean are computed directly from Zω
t . Details are in the appendix in Section ??.

2. In the second stage (Section 4.5), we fit a personalized pharmacokinetic/pharmacodynamic

(PK/PD) model to each patient’s response to ASM (Hill, 1909).

3. In the third stage (Section 4.5) we combine the pre-admission covariates, such as baseline

demographic datas and data related to the nature and severity of the present illness, and

the PK/PD parameters estimated in the second stage, to adjust for potential confounding

and to estimate the potential outcomes of interest. We learn a distance metric to create

high-quality matched groups using an interpretable and accurate matching method,

Matching After Learning to Stretch for EA effect estimation (MALTS, Parikh et al., 2018).
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Figure 4.11: The overall analysis framework, consisting of three parts (indicated by different
colors): EA burden computation, individual PK/PD modeling, and MALTS matching and effect
estimation.
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APPENDIX F: MECHANISTIC PHARMACOLOGICAL MODEL

As noted in section 3.3, doctors dynamically modify the type and dosage of ASM using the

current EA observation, previous treatment, and patient’s responsiveness to these treatments.

This cyclical relationship potentially confounds the relationship between EA and a patient’s final

outcome. The heterogeneity in a patient’s responsiveness to ASMs can be due to a variety of

factors such as past medical history, current medical conditions, age, etc. However, the

infrequency of some rare medical conditions makes it difficult to learn a nonparametric model of

drug response that incorporates all relevant medical factors. To account for this, we leveraged the

domain knowledge from pharmacology and use a one-compartment

Pharmacokinetic/Pharmacodynamic (PK/PD) mechanistic model to estimate drug response as a

function of ASM dose. The parameters of the PK/PD model can be interpreted as

high-dimensional propensity scores that summarize a patient’s responsiveness to a drug regime,

such that any two patients with similar PK/PD parameters will exhibit similar responses under

identical drug regimes.. To account for the effect of past medical history and current medical

conditions on drug responsiveness, these factors and the parameters from the PK/PD model are

controlled for via a matching procedure as described in Section 4.5.

We use a single-compartment PK model to estimate the bloodstream concentration Di,t,j of

ASM j in patient i at time t (drug PK), and Hill’s PD model (Hill, 1909) to estimate a

short-term response to drugs:

dDi,t,j

dt
= − 1

κj
Di,t,j +Wi,t,j , (4.3)

Zi,t = 1−
∑
j

D
Ni,j

i,t,j

D
Ni,j

i,t,j + ED
Ni,j

50,i,j

. (4.4)

Here κj is the average half-life of the drug (see Appendix 4.3 for half-lives), Wi,j,t is the body

weight-normalized drug administration rate in units of mg/kg/h, Ni,j represents how responsive

the patient is to drug j, and ED50,i,j is the dosage required to reduce the patient’s EA burden by

50%. Since Ni,j (the Hill coefficient) is constrained to be non-negative, a positive correlation

between drug concentration and EA burden results in an Ni,j value of 0. The PD parameters

were fit using scipy ’s nonlinear least squares function. The estimated PD parameters reflect wide
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heterogeneity across patients as well, and indicate clearly which patients responded well to ASMs

(shown in Figure 4.12).

Figure 4.12: Hill coefficient vs. ED50 for the six drugs. Each point is a patient. The non-responsive
patients with Hill coefficient of zero are highlighted.
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APPENDIX G: INTERPRETABLE CAUSAL INFERENCE

In this section, we discuss the causal inference method used to estimate the potential

outcomes. Given the stakes involved and the high level of noise in the data, we chose an

interpretable-and-accurate causal inference method, MALTS, to estimate cause-effect

relationships. MALTS is an honest matching method invented by future Dr. Harsh Parikh that

learns a distance metric using a subset of data as training set. Further, the learned metric is used

to produce high-quality matched groups on the rest of the units (also called as estimation set).

These matched groups are used to estimate heterogeneous causal effects with high accuracy.

Previous work on MALTS shows that it performs on-par with contemporary black-box causal

machine learning methods while also ensuring interpretability (Parikh et al., 2018, 2019).

The conventional objective function of MALTS, described in Parikh et al. (2018), was

designed to estimate the contrast of potential outcomes under binary “treatment.” In this paper,

we adapt it to estimate conditional average potential outcomes for n-ary “treatment.” For our

problem there are 4× 2 “treatment” arms – four levels of EA burden crossed by whether or not

drugs were administered. We construct the matched group Gi for each patient i by matching on

Xi = [{Ci,j}j , {Ni,j}j , {ED50,i,j}j ] - the vector of pre-admission covariates and PD parameters.

We estimate Pr[Y (e, δ) = 1|X = Xi] by averaging the observed outcomes for units in the matched

group Gi with Emax equals e and W equals δ. We use an analogous estimator for Emean.

MALTS’ estimates of the conditional average potential outcome are interpretable because it is

computed with the units in the matched groups. These matched groups can be investigated by

looking at the raw data to examine their cohesiveness. One might immediately see anything that

may need troubleshooting, and easily determine how to troubleshoot it. For instance, if the

matched group does not look cohesive, the learned distance metric might need troubleshooting.

Or, processing of the EEG signal might need troubleshooting if the max EA burden values do not

appear to be correct. Or, the PK/PD parameters might need troubleshooting if patients who

appear to be reacting to drugs quickly are matched with others whose drug absorption rates

appear to be slower, when at the same time, the PK/PD parameters appear similar. We will

demonstrate this with a matched group analysis in the next section.
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APPENDIX H: EXPERT LABELING OF EEG SIGNALS

The EEG signals of 1309 patients at Massachusetts General Hospital who met the inclusion

criteria (described in Section 3.3) were recorded from September 2011 to February 2017. Of these,

82 randomly selected patients had their EEG signals re-referenced into 18 channels via a standard

double banana bipolar montage (Benbadis, 2006) to create a time-frequency representation of a

patient’s neurological state. These time-frequency representations were then segmented by

domain experts using the labeling assistance tool NeuroBrowser (Jing et al., 2016) to identify

occurrences of EA patterns. These 82 patients served as the training set for a semi-supervised

procedure to create an neural network to automatically identify EA patterns.
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APPENDIX I: NEURAL NETWORK BASED LABELING OF EEG SIGNALS

For the cEEG signal labeling procedure, the time-frequency representation was split into

10-second sliding windows with an 8-second overlap. These windows were then converted into an

8-bit color image and used as inputs to the recursive convolutional neural network DenseNet

(Huang et al., 2017); a Hidden Markov model was added to smooth the outputs (Ge et al.,

2021a). By treating this as an image classification problem, this closely mimics the procedure

performed by the domain experts using NeuroBrowser. DenseNet classified each 10-second

window as either normal brain activity or one of 4 types of common EA patterns: (1) generalized

periodic discharges (GPD), (2) lateralized periodic discharges (LPD), (3) lateralized rhythmic

delta activity (LRDA) and (4) Seizure (Sz), as defined by the American Clinical Neurophysiology

Society (Hirsch et al., 2021). The trained automatic EA annotator demonstrated accuracy for

Seizure at 39% (human inter-rater agreement 42%), GPD at 62% (62%), LPD at 53% (58%),

LRDA at 38% (38%), GRDA at 61% (40%), and normal brain-activity/artifact at 69% (75%),

therefore, closely matching human performance up to the level of uncertainty one would get from

interrater reliability studies.
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APPENDIX J: OPERATIONALIZING DENSENET

We used DenseNet with 7 blocks (Figure 4.13). Each block included 4 dense layers. Each

dense layer is comprised of 2 convolutional layers and 2 exponential linear unit (ELU) activations.

In between each dense block was a transition block consisting of an ELU activation, a

convolutional layer, and an average pooling layer. There were 6 transition blocks in total. The

last two layers of DenseNet were a fully connected layer followed by a softmax layer. The loss

function includes Kullback-Leibler divergence inversely weighted by the class ratio to account for

imbalance among the EA classes. After fitting, it was observed that DenseNet’s classifications

were much more volatile than the original data, with predictions abruptly changing from normal

brain activity to EA patterns. This highlighted a limitation of traditional EEG classification from

images, as the images were fed independently with no context about neighboring images beyond

the 10-second window given. To correct for this volatility, the results of DenseNet were smoothed

using a Hidden Markov Model. To smooth to a similar degree as the human labeled data, the

probabilities of the transition matrix were fit on the 82 human-labeled patients. These

probabilities were then used as the hidden state to smooth the output from DenseNet. We made

the HMM first order due to precedent of first order HMMs providing good smoothing for other

EEG problems (Sun et al., 2017).

The results of the automatic EA annotator resulted in accuracy for Seizure at 39% (human

inter-rater agreement 42%), GPD at 62% (62%), LPD at 53% (58%), LRDA at 38% (38%),

GRDA at 61% (40%), and others/artifact at 69% (75%). Therefore matching human

performance. We further combined the classification into binary classes, EA

(seizure/GPD/LPD/LRDA) vs. non-EA (GRDA/other/artifact) (Figure 4.14) to reduce the

chance of error since these patterns are intrinsically on a continuous spectrum.
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Figure 4.13: Structure of the DenseNet for automatic EA labeling.
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Figure 4.14: (A) Confusion matrix for the CNN prediction vs. human annotation, where each
row represents the fraction of 2-second segments classified into EA (seizure/GPD/LPD/LRDA)
or Non-EA (GRDA/other/artifact). The overall Cohen’s kappa is 0.52. (B) The top panel shows
the spectrogram of the EEG signal of one example subject; the middle panel shows EA patterns
annotated by a human expert for every 2 second interval. The bottom panel shows the EA pattern
annotated by the CNN followed by HMM smoothing. [Credit to Dr. Haoqi Sun for the figure]
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APPENDIX K: SENSITIVITY TO THE DEFINITION OF EA BURDEN

Throughout the analysis, the summaries of EA burden, Emax and Emean are quantized into

four equally sized groups . This is done in accordance with clinician recommendations. In this

section we evaluate the sensitivity of our analysis to these decisions. Specifically, we consider

Emax ∈ {[0, ρ1), [ρ1, 0.5), [0.5, ρ2), [ρ2, 1.0]} where the analysis in the paper specifies ρ1 = 0.25 and

ρ2 = 0.75. The interpretation of these parameters is as follows: the mild EA burden category

allows for no more than 100× ρ1 percent of a six hour window to be spent with EA and the very

severe EA burden category allows for no less than 100× ρ2 percent of a six hour window to be

spent with EA. By varying these parameters we redefine which individuals are considered mild

versus very severe EA during the analysis.

From sensitivity analysis to definition of EA burden, we observe following (see Figure 4.15):

• The potential outcome under mild EA burden (E[Y ([0.0, ρ1), 0)]) is mildly sensitive to

changes in ρ2 which is expected. Further, we observe that the gradient of the same with

respect to ρ1 is relatively flat, and E[Y ([0.0, ρ1), 0)] is bounded between 0.525 and 0.6 for

ρ1 ∈ [0.1, 0.4].

• Analogously the potential outcome under mild EA burden (E[Y ([ρ2, 1.0], 0)]) is mildly

sensitive to changes in ρ1 and its gradient with respect to ρ2 is relatively flat, and

E[Y ([0.0, ρ1), 0)] is bounded between 0.645 and 0.705 for ρ1 ∈ [0.6, 0.9].

• The point estimates of E[Y ([0.0, ρ1), 0)] are always strictly less than the point estimates of

E[Y ([ρ2), 1.0]]
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Figure 4.15: Sensitivity to quantization of EA burden into four levels. ρ1 is the boundary between
mild and moderate EA burden and ρ2 is the boundary between severe and very severe EA burden.
The contour plot shows estimated average potential outcomes – Y ([0, ρ1), 0) and Y ([ρ2, 1], 0) – for
a range of ρ1 and ρ2. We find that the gradient of contours is more or less flat and the estimates
do not change by a large amount as the sensitivity parameters change. [Credit to future Dr. Harsh
Parikh for the figure]
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APPENDIX L: MISSINGNESS PATTERN

To check for possible selection bias, we compared the discharge mRS in patients with different

missing conditions in Figure 4.16 where some of them were excluded in this cohort. We used the

Mann-Whitney U test (nonparametric t-test) to compare the medians, since mRS does not follow

a normal distribution.
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Figure 4.16: (A) The histogram of patients’ discharge mRS (possible values are 0,1,2,3,4,5,6). The
two subsets that are compared are patients who have EEG data (n = 1968) vs. patients who do not
have EEG data (n = 17). To make the subsets comparison, the y-axis shows the density instead of
the count. The p-value is from the Mann-Whitney U test of the two subsets. (B) Similar to A, but
for patients who have EEG and drug data (n = 1514) vs. patients who do not have EEG or drug
data (n = 471).

The results show that the medians of discharge mRS in patients with EEG, versus that in

patients without EEG, are not significantly different; similarly, the medians in patients with both

EEG and drug data, versus that in patients without EEG or drug data, are not significantly

different neither. Therefore the missingness pattern can be considered as not influencing our

results, hence the selection bias is negligible.
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APPENDIX M: ROBUSTNESS TO CAUSAL ASSUMPTIONS

In providing our estimate of average potential outcome, our causal approach makes several

important assumptions including: 1) pre-admission covariates and PD parameters are both

potential sources of confounding and thus need to be controlled for 2) the post-discharge outcome,

Y, is directly affected by both the level of EA burden, Emax/Emean and the presence of

Anti-seizure medications W . In this section, we demonstrate how the estimation of potential

outcome can vary with these assumptions.

Assumption 1): Control of pre-admission covariates and PD parameters

Average Potential Outcomes under differing assumptions

Figure 4.17: Estimated average potential outcome for different levels of Emax by matching on (left)
all pre-admission covariates and PD parameters, (middle) all pre-admission covariates, and (right)
only age of the patients.

Figure 4.18: Estimated average potential outcomes computed using (left) Naive Average approach,
(middle) Outcome modeling approach, and (right) Propensity Score matching.

Previously, it was posited that pre-admission covariates such as age and diagnosis and PD

parameters could be large sources of confounding in the estimation of average potential outcomes.

In this section, we investigate this assumption by having MALTS create matched groups based on

fewer and fewer factors and comparing the resulting average potential outcomes.
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The left side of Figure 4.17 shows the estimated average potential outcome when MALTS

controls for only one, albeit important, variable, age. The results do not to show a monotonic

relationship between EA burden and average potential outcome. When matching on all

pre-admission covariates but no PD parameters using MALTS, while the monotonic relationship

between EA burden is average potential outcome is now clear, the uncertainty in the estimates

and the shape of the trend differs. In particular, without adding in the information from the

ASM’s PK/PD models, one tends to underestimate the probability that a patient would leave the

hospital impaired or dead.

Assumption 2): Outcomes are a function of EA burden and medications

In this section, we compare our method, which posits that both the level of EA burden and

the presence of Anti-seizure medications are the only two causal factors with a “Naive Average”

approach which posits that EA burden is the only causal factor, an “Outcome Modeling”

approach that treats all of the factors in our study as having a direct causal effect on the

outcome, and a Propensity score approach, which performs a causal estimation, albeit under

differing assumptions.

In the Naive Average approach, at each EA burden, 1
3 of the data is left out and the

probability of leaving the hospital impaired is computed on the remaining 2
3 of the data. This

procedure is repeated 15 times and the mean and standard deviation of the replicates are report

as the left-most figure in Figure 4.18. The choice of 15 and 2
3 was done to match as closely as

possible the 15 replicates and 2:1 training to testing ratio that was used by MALTS.

In the outcome modeling approach, which takes up the middle of Figure 4.18, we perform a

logistic regression where we regress the post-discharge outcome against EA burden, the presence

of anti-seizure medications, and all of the factors that MALTS matched such as pre-admission

covariates and PD parameters. Note that this approach makes the assumption that there are no

interactions between the regressors, which goes contrary to our understanding of the treatment

procedure, as factors such as age and diagnosis have a known interaction with a patient’s response

to anti-seizure medications. Like the naive averages approach, we perform 15 replicates of a
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logistic regression with the same 2:1 train/test used in the Naive Averages approach and MALTS

approach.

On the right of Figure 4.18, we have the average potential outcome computed with a common

approach to causal estimation, propensity score matching. Unlike MALTS which matches

together patients directly on their covariates, propensity score matching is based on matching

together patients based on a their probability of being within the treatment or control arm. This

makes the stronger assumption that the probability of being within the treatment or control arm

can be modeled parametrically, in this case as using a logistic regression.

The results of these three approaches all yield similar results, showing an approximately

sinusoidal relationship between EA burden and average potential outcome. This differs from the

original MALTS result in the top left of Figure 4.17 which shows a clear monotonic relationship

between EA burden and average potential outcome. As MALTS is the only method that takes a

causal approach without making the strong parametric assumptions in propensity score matching,

this seems to hint that perhaps the lack of control for confounding variables has been throwing off

the regression based approaches to analyzing the damage caused by EA burdens.

Sensitivity Analysis for Unobserved Confounding

In this section, we study how sensitive our inferences are to unobserved confounding. In

particular, we study the sensitivity to an unobserved confounder that correlates patients’

post-discharge outcome with Emax. We would like to see if the presence of an unobserved

confounder we failed to control for could have biased our inferences. We can encode the effect of

an unobserved confounder using a selection bias function q(e) with sensitivity parameter ψ. This

approach is similar to the one proposed in Blackwell (2014). We parameterize q(·) as a

logarithmic function of e.

q(e) = E[Yi((e, 0))|Emax,i = e,W i = 0]−E[Yi((e, 0))|Emax,i ̸= e,W i = 0]

= ψln(e+ 1)

When ψ is positive (negative), this indicates that patients with observed bad (good) outcomes

also have high observed EA burden. This parametric form also assumes that a patient with low
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Figure 4.19: Sensitivity to unobserved confounding The results show that even at very high levels
of selection bias, the effect of EA burden is not lost, indicating a degree of robustness in our results.

Emax is affected less by an unobserved confounder U compared to a unit with higher Emax with

the marginal increase tapering off as the Emax increases. This is congruent with the neurologist’s

intuition that a perfectly healthy individuals with normal brain activity will be affected less by an

unobserved confounder U .

To perform the sensitivity analysis, we apply the following debiasing to the observed outcome

and re-estimate the average potential outcomes:

Y debiased
i = Yi − q(Emax,i)(1− P (Emax,i|X = Xi)).

If the unobserved confounding does not large impact on the estimation of average potential

outcome, then the estimated potential outcome under very severe EA burden ([0.75,1.0]) will be

more than average potential outcome under mild EA burden ([0.0,0.25)).

Our sensitivity analysis found that point estimate of potential outcome under very severe EA

burden is always worse than the potential outcomes under mild EA burden for a range of

sensitivity parameter ψ between [-1,1]. We further find that our inference is statistically
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significant for a wide range of ψ: −1.0 ≤ ψ ≤ 0.50. The sensitivity highlights that the conclusions

from our study and analysis are insensitivity to high levels of unobserved confounding.
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