
ECHELON FORMS AND REFORMULATIONS OF PATHOLOGICAL SEMIDEFINITE
PROGRAMS

Aleksandr I. Touzov

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Statistics and Operations Research.

Chapel Hill
2022

Approved by:

Quoc Tran-Dinh

Gábor Pataki

Sayan Banerjee

Jan Hannig

Greg Blekherman

©2022
Aleksandr Touzov

ALL RIGHTS RESERVED

ii

ABSTRACT

ALEKSANDR TOUZOV: Echelon forms and reformulations of pathological semidefinite programs
(Under the direction of Gábor Pataki)

This thesis seeks to better understand when and why various well-known pathologies arise in

semidefinite programs (SDP). The first part of this thesis is concerned with the pathology of weak

infeasibility. Unlike in linear programs, Farka’s lemma may fail to identify infeasible SDPs. This

pathology occurs precisely when an SDP has no feasible solution, but it has nearly feasible

solutions that approximate the constraint set to arbitrary precision. These SDPs are ill-posed and

numerically often unsolvable. They are also closely related to “bad” linear projections that map

the cone of positive semidefinite matrices to a nonclosed set. We describe a simple echelon form of

weakly infeasible SDPs with the following properties: it is obtained by elementary row operations

and congruence transformations; it makes weak infeasibility evident; and using it we can

construct any weakly infeasible SDP or bad linear projection by an elementary combinatorial

algorithm. We also prove that some SDPs in the literature are in our echelon form, for example,

the SDP from the sum-of-squares relaxation of minimizing the famous Motzkin polynomial.

The second part of this thesis deals with the pathology of exponentially sized solutions in

SDPs. As a classic example of Khachiyan shows, some SDPs have solutions whose size - the

number of bits necessary to describe it - is exponential in the size of the input. Although the

common consent seems that large solutions in SDPs are rare, we prove that they are actually

quite common: a linear change of variables transforms every strictly feasible SDP into a

Khachiyan type SDP, in which the leading variables are large. As to how large, that depends on

the singularity degree of a dual problem. We further show some SDPs in which large solutions

appear naturally, without any change of variables. Along the way, we draw connections to

continued fractions, Fourier-Motzkin elimination, and give positive progress to answering the

long-standing open question: can we decide feasibility of SDPs in polynomial time?

iii

To my beloved family

iv

ACKNOWLEDGEMENTS

Beyond anything, I would like to thank the support and guidance of my advisor Gábor Pataki

in the completion of this work and my time at UNC Chapel Hill. I have grown to learn a lot from

him. Academically - Professor Pataki exemplifies everything that makes a great teacher great: a

genuine care to see the growth and development of his students, an innate ability to break down

and present complicated information in an easy to digest form, and, most importantly, a patience

and perseverance that makes learning from him an opportunity and a privilege. Personally - he

demonstrates that nothing is accomplished without hard work and and a steadfast resolve; it is

often easy to let a challenging undertaking go by the wayside from fear of failure, but through

example, Professor Pataki has shown on numerous occasions that we do indeed reap the rewards

of our hard work. He is a great person that has made my experience at Chapel Hill a positive

one, and I will surely miss working with him after my time here is done.

I would also like to thank the kind and supportive faculty and staff of our department. Prior

to coming here, I have always heard that graduate school was a stressful undertaking that would

take a psychological toll on anyone that went through it. After working with and learning from

everyone, I must disagree. This program has been illuminating as much as it has been enjoyable

to come to the department each day. The atmosphere created by the department and everyone

working in it is one of a team, that I will always consider a pleasure to have been on.

Last, but absolutely not the least, I would like to thank my loving parents, sister, and my love

Emily. You have always been my greatest support and those whom I could always lean on in

times of need. I am lucky to have you in my life, and no matter where my road takes me in the

future, or how far we may depart, you will always be by my side.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES. ix

LIST OF ABBREVIATIONS AND SYMBOLS . x

1 Introduction . 1

1.1 Semidefinite programming . 2

1.2 New contributions and techniques. 4

1.3 Outline of dissertation . 7

2 An echelon form of weakly infeasible semidefinite programs and bad projections
of the psd cone . 8

2.1 Introduction . 8

2.2 Preliminaries . 13

2.3 The main result, and the easy direction . 16

2.4 How to construct any weakly infeasible SDP and bad projection of the psd cone 27

2.5 Proofs: certificates of infeasibility and not strong infeasibility separately 34

2.6 Proof of Theorem 1. 39

2.7 Our problem library and computational tests . 51

2.8 Discussion and conclusion . 53

3 How do exponential size solutions arise in semidefinite programming? . 56

3.1 Introduction . 56

3.1.1 Notation and preliminaries . 62

3.2 Main results and proofs . 64

3.2.1 Reformulating (P) and statement of Theorem 5 . 64

3.2.2 Proof of Theorem 5 . 70

vi

3.2.3 Computing the exponents by Fourier-Motzkin elimination . 85

3.3 When we do not even need a change of variables . 86

3.4 Conclusion . 91

BIBLIOGRAPHY. 93

vii

LIST OF TABLES

2.1 Parameters of our weakly infeasible SDPs: k + 1 being the length of the
infeasibility certificate, ` + 1 the length of the not-strong infeasibility cer-
tificate, n the matrix order, and m the number of constraints. 52

2.2 Number of infeasible instances correctly identified by MOSEK and SDPA-GMP 53

viii

LIST OF FIGURES

2.1 A visualization of (ME) . 9

2.2 The matrix of inner products of the A′i and Xj in Theorem 1 . 18

2.3 Proving that (Pweak) is infeasible . 19

2.4 Proving that (Pweak) is not strongly infeasible . 20

2.5 The A′i and Xj obtained from reformulating the SDP (2.11) . 22

2.6 Certificates of weak infeasibility in the Motzkin polynomial SDP . 23

2.7 How to diagonalize X(R1:t) in Lemma 7 . 42

2.8 Xj+1 before it is transformed . 46

2.9 How step (2.45) changes Xj+1 . 47

2.10 How steps (*) and (**) in Algorithm 3 change Xs, where s ≤ j. 48

2.11 How step (*) in Algorithm 4 changes A′i, when q = i . 49

2.12 How step (*) in Algorithm 4 changes A′i, when q < i . 50

2.13 How step (2.45) changes A′i, when q > i . 50

3.1 Feasible sets of (Khachiyan) (on the left) and of the quadratic inequalities
(3.13) derived from (M ild-SDP) (on the right) . 57

3.2 Verifying that x1, . . . , xk exist, without computing them . 71

3.3 The tail-index of A′j+1 . 72

3.4 Feasible sets of (Khachiyan) (on left) and of inequalities derived from the
perturbed Khachiyan SDP (3.29) (on the right) . 78

3.5 Shifting x2 to the right increases α2 . 83

ix

LIST OF ABBREVIATIONS AND SYMBOLS

Rn

Rn+

Rn++

Sn

Sn+

Sn++

A∗

R(A)

N (A)

A •B

A⊕B

A � B

A � B

Set of n dimensional real valued vectors

The positive orthant cone

The interior of the positive orthant cone

Set of n× n real symmetric matrices

Cone of positive semidefinite symmetric matrices

Cone of positive definite symmetric matrices

The adjoint of a matrix or linear operator A

Range space of a matrix or linear operator A

Null space of a matrix or linear operator A

The inner product between matrices A and B, defined Tr(A>B)

Diagonal concatenation of square matrices A and B

The difference A−B is positive semidefinite

The difference A−B is positive definite

x

CHAPTER 1

Introduction

Over the past several decades we have seen drastic growth in computing power for solving

mathematical and real world problems. Problems which were previously ignored due to their

large scope and intractability are now approachable, and moreover, frequently central to the

study of many modern mathematical fields. One salient examples of such a problem is

mathematical programming.

Although not a new concept, with origins dating back to Kantorovich and Dantzig in the

1940s [13], mathematical programming was largely limited in scope to linear programming (LP)

by simplex method until the first polynomial-time LP algorithms discovered by Khachiyan in

1979 [24]. Since then, interior point methods for conic optimization have taken off alongside the

computer revolution of the 21st century. With the advent of semidefinite programming (SDP),

often referred to as linear programming for the 2000’s, we are now able to solve previously

impossible problems with a high degree of accuracy and precision. In particular, SDPs are now

crucial, in many modern industries, for solving problems in control theory, probability theory,

robust optimization, facility planning, PDEs, coding theory, statistical estimation, geometric

optimization, and much more. For an in-depth survey of SDPs we refer to [64]. However, even

after decades of study, SDPs are not without their own mysteries and anomalous behaviors.

Despite being a rather straightforward extension of linear programming, many of the nice

behaviors we take for granted in LPs, such as strong duality, polynomial time solvability, exact

certificates of infeasibility, etc. fail in SDPs in what we call pathological semidefinite programs.

To understand why these problematic SDPs arise, we leverage seemingly innocuous tools from

basic convex analysis and linear algebra to effectively “diagnose” these pathological instances.

When trying to understand pathologies such as exponentially size SDP solutions or weakly

infeasible semidefinite programs, these “diagnostics” often express themselves as a reformulation

of the original problem in which the problematic behavior becomes trivial to see.

1

1.1 Semidefinite programming

One of the most important sub-fields of mathematical programming is that of semidefinite

programming. A semidefinite program (SDP) in standard primal form is a mathematical

optimization problem of the form

inf B •X

s.t. Ai •X = ci, i = 1, . . . ,m

X � 0

(P)

where B,A1, . . . , Am are real symmetric matrices, X � 0 means that X is symmetric and positive

semidefinite, and for two symmetric matrices A,B we let A •B = Tr(AB). If we look closely at

this problem and the natural dual problem

sup c>y

s.t. B −
∑m

i=1Aiyi � 0
(D)

it may not be surprising why SDPs are often considered the natural generalization of the linear

program. After all, if we replace each matrix with a vector, • with the canonical euclidean inner

product, and each instance of � with an element-wise ≥, then we precisely recover the standard

primal-dual linear program.

However, it is not by accident that the SDP is expressed with “inf” and “sup” as opposed to

“min” and “max”. This difference highlights one of the many symptoms that pathological SDPs

may exhibit, which linear programs do not. In this case, while weak duality between the above

primal-dual pair always holds, strong duality and more so attainment of optimal values does not

always follow.

While we often assume a constraint qualification, such as existence of an interior point (i.e.

Slater’s condition), to enforce strong duality when studying SDPs, this is simply avoiding the

pathological behaviors rather than diagnosing and solving them. To rectify these pathological

problems, two tools are often leveraged: Ramana’s extended dual formulation [55] and facial

reduction. Ramana’s dual extends the original SDP instance with a polynomial number of

constraints and variables into a new SDP which satisfies strong duality and attainment of optimal

2

solutions analogous to the nice properties we enjoy in linear programming. Facial reduction, on

the other hand, is a more general concept that can in fact be used to show correctness of

Ramana’s dual [56].

The idea of facial reduction is simple: if we can find the largest face of the semidefinite cone

which has a nonempty intersection of its interior with the affine space of solutions

H := {X | Ai •X = ci} for (P), then reducing the problem to this minimal face produces a

problem which automatically satisfies Slater’s constraint qualification. Originally proposed by

Borwein and Wolkowicz in [10] to strengthen the conditioning of conic-convex programs, facial

reduction algorithms have become a powerful practical and theoretical tool for studying SDPs

and other conic-convex optimization problems. For a comprehensive survey of facial reduction

algorithms, where they are useful, and how they are leveraged to rectify loss of Slater’s condition,

we refer to [14].

It would appear then, that facial reduction algorithms are key to diagnosing and solving SDP

pathologies when they arise. In fact, this idea is not a new one. Recent work by Liu and Pataki

[31] used facial reduction to construct exact duals for more general conic linear programs,

effectively generalizing the SDP dual of Ramana. The same work also examined pathological

infeasible conic linear programs. It is well known that, beyond linear programs, both (P) and the

corresponding Farka’s alternative system may be infeasible; identifying these pathological

infeasible problems is difficult. In their work, Liu and Pataki used the facial reduction toolbox to

construct strong alternative systems for both the primal and dual conic program for the case that

this “weak” infeasibility presents itself: producing a result akin to a “strong” Farka’s Lemma.

Similarly, we study the pathology of weak infeasible in SDPs in more detail and explore

previously unexamined bad behaviors related to the long standing open question: can we

determine SDP feasibility in polynomial time? Using facial reduction and basic results from

convex analysis and linear algebra, we make positive progress towards finding answers and solving

these problems.

3

1.2 New contributions and techniques

The first type of pathology that this thesis examines is the pathology of weakly infeasible

semidefinite programs. Unlike linear programs, Farka’s alternative system for (P)

∑m
i=1Aixi � 0

c>x = −1

may be infeasible, even when the primal standard form SDP is infeasible. This is problematic as

the alternative system is one of the best tools for providing certificates of infeasibility for an SDP.

The issue with semidefinite programs that gives rise to this pathology stems from a fundamental

question in convex analysis: when is the linear image of a closed convex set closed? In particular,

for SDPs, the convex set of interest is the semidefinite cone while the linear map is the operator

A : X 7→ (A1 •X, . . . , Am •X)>

When the mapping of the semidefinite cone is not closed, we can find some vector c ∈ Rm for

which the primal standard form is infeasible, yet there exist matrices which satisfy A(X) = c and

are arbitrarily close to the semidefinite cone. These instances are referred to as being weakly

infeasible. Geometrically, weakly infeasible SDPs arise precisely when the solution space H is an

asymptote of the semidefinite cone such that the classical separating hyperplane theorem fails to

hold. However, in modern literature this pathology is even more interesting. Among weak

infeasibility’s many guises, a few notable cases in which we see this behavior are:

1. in difficult to solve SDPs which state-of-the-art interior point solvers such as MOSEK or

SDPA-GMP fail to correctly identify infeasibility, even for instances as small as n = 3 with

MOSEK and n = 7 with the general precision solver SDPA-GMP which can carry out

calculations with precision 10−200.

2. in cases for which the operator A maps the semidefinite cone to a non-closed set. The space

of such A was recently studied from the perspective of convex algebraic geometry by Jiang

and Sturmfels [21] where membership to this variety can explicitly be checked under

appropriate parameterization.

4

3. in the study of condition for the SDP feasibility problem; these problems are ill-posed, that

is, their distance to the set of feasible instances is zero and so interior point methods whose

complexity bounds depend on Renegar’s distance to ill-posedness have no convergence

guarantees [51].

4. in certain classes of polynomial optimization problems related closely to minimizing

non-negative polynomials which are not a sum-of-squares [67].

In this regard, weak infeasibility appears to be a topic well-worth examining and understanding.

In our study of these instances, we develop an echelon form for weakly infeasible SDPs: a form

that any such instance can be “untangled” into using only elementary reformulations akin to

those used in gaussian elimination. As a biproduct of our work, the echelon form developed for

weakly infeasible SDPs also characterizes orbits of non-closed projections of the semidefinite cone.

Moreover, our work in developing this characterization answers an important question: how

do we generate any weakly infeasible semidefinite program and bad projection of the semidefinite

cone? While previous works by Liu and Pataki [31] and Waki [67] provide partial answers to this

question, we see that our echelon form allows us to solve the problem entirely and we produce a

library of weakly infeasible SDPs with instances which have unique geometric structure not

present in either of the previous works.

The second pathological behavior we study is the existence of exponentially large solutions in

SDPs relative to the problem’s size: the number of bits necessary to encode the problem data. By

a classical argument using Cramer’s rule, the size of any basic feasible solution to a linear

program is polynomial in the size of the problem instance. This is not the case in SDPs. A classic

example by Khachiyan shows that even simple SDPs can exhibit solutions which would require

exponential size relative to the problem data to encode. These exponentially sized solutions

appear to be the main obstacle in answering the long standing open question: can we decide SDP

feasibility in polynomial time?

It would seem that if we cannot even write down a solution in polynomial time, then what

hope do we have in claiming the SDPs feasibility status is decidable as such? If we look more

5

closely at Khachiyan’s example,

x1 ≥ x22, x2 ≥ x23, . . . xk−1 ≥ x2k, xk ≥ 2

it is not too difficult to convince ourselves that x1 = 22
k−1

is feasible using simple symbolic

manipulation. It seems then, that writing down the solutions to an SDP may not necessarily be

required to decide the problem’s feasibility. This gives us hope and in fact, we show that any

strictly feasible SDP can be reformulated into a Khachiyan type instance: where deciding

feasibility of the problem no longer requires computing values for the k largest leading variables.

As to how large is k? That depends on the singularity degree of a dual type problem. Along the

way, we show that when generalizing Khachiyan’s example to Khachiyan-type SDPs, the size of

leading variables depends tightly on certain combinatorial properties of the SDP: properties which

algebraically manifest through connections with continued fractions and Fourier-Motzkin

elimination.

The assumptions of our work are minimal. In fact, the main idea that we leverage is the idea

of elementary reformulation which we used in the first part of this thesis to develop an echelon

form for weakly infeasible SDPs, and it appears to be necessary once again here, since even

Khachiyan’s simple example can be reformulated into an instance with variables which no longer

need be large by replacing x← Gx for a random dense matrix G. Moreover, we show that even

reformulation is unnecessary in many cases. In fact, for any unconstrained polynomial

minimization problem relaxed into a sum-of-squares SDP using the standard monomial basis, we

see that exponentially sized solutions appear naturally. Additionally, we see that Khachiyan’s

example is not as artificial as it may originally seem: [40] proposed an example of certifying

polynomial non-negativity with a sum-of-squares proof system which we show is essentially

equivalent to Khachiyan’s original example.

We conclude this section by partially answering the question: how do we represent

exponentially sized solutions to SDPs in polynomial space?

6

1.3 Outline of dissertation

1. In Chapter 2 we study the pathology of weak infeasibility in semidefinite programs. After

reviewing preliminary material, Section 2.3 presents Theorem 1, our main result: an echelon

form which makes weak infeasibility of an SDP evident with readily available certificates for

SDP infeasibility and not-strong infeasibility. In this section, we prove the “easy” direction

of the theorem to build some intuition and relegate the more difficult direction to a later

section. Section 2.4 describes an algorithm for constructing weakly infeasible SDPs, and we

show that any weakly infeasible SDP and non-closed projection of the semidefinite cone is

among its outputs. The main work for developing this result is presented in Section 2.6,

where we prove the difficult direction of Theorem 1. Afterwards, in Section 2.7, we describe

our problem library and computational tests. We finish this chapter with Section 2.8 in

which we reinterpret Theorem 1 in two ways: as a “sandwich” theorem and as a

“factorization” theorem.

2. In Chapter 3 we tackle the pathology of exponentially sized solution in SDPs. To begin this

section, we review some related material and outline Khachiyan’s example: a motivating

SDP which exhibits exponentially large solutions, yet verifying feasibility can trivially be

done in polynomial time with simple symbolic algebra. We go on to present the main result,

Theorem 5 in Section 3.2.1 and illustrate it via two extreme examples; Theorem 5 shows

that, in fact, any strictly feasible SDP is equivalent to a Khachiyan-type SDP where

existence of exponentially sized solutions is easy to verify without computing the values of

large variables. In Section 3.2.2 we go on to prove Theorem 5 through a sequence of

Lemmas. Along the way, we show explicit connections between this work and continued

fractions as well as Fourier-Motzkin elimination for linear inequalities: an interesting

contrast with the non-linearity of SDPs. In Section 3.3 we turn our attention to

implications of our result to the study of polynomial optimization problems. Here, we show

that exponentially large solutions appear naturally in polynomial minimization problems

and present Theorem 6. We conclude this section with a discussion.

7

CHAPTER 2

An echelon form of weakly infeasible semidefinite programs and bad projections
of the psd cone

2.1 Introduction

Semidefinite programming (SDP) feasibility problems of the form

AX = b

X ∈ Sn+,
(P)

are fundamental in many areas of applied mathematics, including combinatorial optimization,

polynomial optimization, control theory, and machine learning. Here A is a linear map from n× n

symmetric matrices to Rm, b is in Rm, and Sn+ is the set of symmetric positive semidefinite (psd)

matrices.

Semidefinite programs – either in the feasibility form, or in an optimization form, with an

objective function attached – are often pathological and this work focuses on their pathological

kind of infeasibility, called weak infeasibility. Precisely, we say that (P) is weakly infeasible when

it has no feasible solution, but the set of solutions of the linear system of equations AX = b has

zero distance to Sn+.

Example 2.1. An enlightening, classical, and minimal example is

x11 = 0

x12 = x21 = 1

X ∈ S2+,

(ME)

8

where the (i, j)th element of X is denoted by xij . If X satisfies the equality constraints of (ME),

then

X =

0 1

1 x22

for some x22 real number, so X cannot be positive semidefinite. Hence (ME) is infeasible.

However, such X matrices converge to S2+ if we choose x22 > 0 to be large: then to make X psd,

we must only slightly change its 0 entry to 1/x22. So we conclude that (ME) is weakly infeasible.

We visualize this example in Figure 2.1. The solid blue set bordered by a hyperbola is

S =
{

(x11, x22) ∈ R2
+ : x11x22 ≥ 1

}
,

the set of diagonals of 2× 2 psd matrices whose offdiagonal elements are 1. We approach S

arbitrarily closely if we fix x11 = 0 and make x22 large, moving towards infinity on the x22 axis.

x11

x22

S

(0, 0)

Figure 2.1: A visualization of (ME)

♦

Weakly infeasible SDPs appear in the literature in many guises, some of which are modern

and some others classic:

• they are difficult SDPs that are often mistaken for feasible ones by even the best solvers.

• they are closely related to linear maps under which the image of Sn+ is not closed. Precisely,

(P) is weakly infeasible, if it is infeasible, but a sequence {Xi} ⊆ Sn+ satisfies

AXi → b, as i→ +∞,

9

in other words, when b is in the closure of ASn+, but not in ASn+ itself. Such linear maps

cause other pathologies in SDPs, such as unattained optimal values and positive duality

gaps [49, Lemma 2]. They are also intriguing from the viewpoint of pure mathematics: they

were recently christened bad projections of the psd cone by Jiang and Sturmfels [21] and

explored from the perspective of algebraic geometry.

More broadly, bad projections are a good example of linear maps that carry a closed set

into a nonclosed one, because Sn+ is one of the simplest sets for which such maps even exist.

The “(non)closedness of the linear image” question appears in several equivalent forms, for

example, we may ask whether the sum of closed convex cones is closed. (Non)closedness of

the linear image can be ensured by many diverse conditions: some of the key ones are

Jameson’s property (G) (Jameson [20] and Bauschke et al. [6]) and existence of certain

tangent directions [46, Theorem 1.1, Theorem 5.1].

• they are ill-posed, i.e., their distance to the set of feasible instances is zero. Hence their

infeasibility cannot be detected by interior point methods whose complexity depends on the

distance to feasibility; the best we can do is compute solutions of nearby feasible instances,

see Peña and Renegar [51, Theorem 13]. Nor can we detect their infeasibility by the

algorithm of Nesterov et al. in [39], though this algorithm can detect near ill-posedness.

For a sample of the thriving literature on algorithm analysis based on distance to

(in)feasibility, we refer to Renegar [59, 60]; Peña [50]; and the comprehensive book by

Bürgisser and Cucker [12].

• according to a classic viewpoint of Klee [25], when (P) is weakly infeasible, the affine

subspace {X : AX = b } is an asymptote of Sn+. The asymptotic behavior is indeed

apparent on Figure 2.1. 1

Although the infeasibility of weakly infeasible SDPs cannot be reliably detected in general,

several algorithmic approaches are available:

1To be precise, although Klee introduced the notion of asymptotes, he did not specifically mention asymptotes of the
psd cone.

10

• Facial reduction algorithms can handle pathological SDPs, at least in theory, since they

must be implemented in exact arithmetic. Facial reduction originated in a paper by Borwein

and Wolkowicz [11], then simpler variants were proposed, for example in [44, 47]. We will

use facial reduction as a theoretical tool to develop our echelon form. In particular, we will

use Parts (1) and (2) of Theorem 5 in [31]; an earlier version of the latter appeared in

Lourenço et al. [34].

• In contrast to the previous points, approximate, or robust solutions to SDPs in the Lasserre

hierarchy of polynomial optimization can be found by SDP solvers, even when exact

solutions are impossible to compute: see Henrion and Lasserre [19] and Lasserre and

Magron [29]. Some of these SDPs are weakly infeasible and one of them comes from

minimizing the famous Motzkin polynomial. We closely examine this SDP in Example 2.4.

In other related work, the Douglas-Rachford method presented in Liu et al. [32] successfully

identified infeasibility of the weakly infeasible SDPs from [31].

To sketch our contributions, we revisit Example 2.1, where we naturally describe the affine

subspace

H = {X | X is n by n symmetric, AX = b } (2.1)

in two ways. First, with equations A1 •X = 0 and A2 •X = 2, where

A1 =

1 0

0 0

 and A2 =

0 1

1 0

 (2.2)

and the • product of symmetric matrices is the trace of their regular product. By the argument in

Example 2.1, this representation certifies that (ME) is infeasible.

Besides, H = {λX1 +X2 : λ ∈ R} where

X1 =

0 0

0 1

 and X2 =

0 1

1 0

 . (2.3)

This generator representation proves that H is an asymptote of S2+, since λX1 +X2 approaches

S2+ as λ→ +∞.

11

We see that A1, A2 and X1, X2 share a common “echelon” structure and we may wonder

whether such a structure appears in every weakly infeasible SDP. The answer is naturally no,

since we can easily ruin this structure even in (ME). For example, we may take linear

combinations of the equations and perform congruence transformations, in other words, replace

both Ai by T>AiT for some invertible T.

However, it turns out that the same operations can untangle any weakly infeasible SDP. More

precisely, in Theorem 1 we develop an echelon form of weakly infeasible SDPs with the following

features: i) it is constructed using elementary row operations and congruence transformations; ii)

it makes weak infeasibility evident, since the matrices both in the equality and in the generator

representation of the underlying affine subspace have the same echelon structure; and iii) it

permits us to construct any weakly infeasible SDP.

Let us explain the last point by an analogy with basic linear algebra. We know that any

infeasible linear system of equations Ax = b can be brought to a normal form

A′x = b′

0>x = 1
(2.4)

using elementary row operations. Thus we can verify infeasibility of a linear system using the

normal form (2.4). Further, we can construct any infeasible linear system as follows: we choose A′

and b′ in (2.4) arbitrarily, then perform elementary row operations. This basic algorithm always

succeeds and every infeasible linear system is among its outputs.

This work shows that a similar scheme works for a more involved pathology – weak

infeasibility – in a much more involved problem – an SDP.

Further, in Example 2.4 we present an SDP that is naturally in our echelon form, without

ever having to perform elementary row operations or congruence transformations. This SDP

arises from a sum-of-squares (SOS) relaxation of minimizing the famous Motzkin polynomial; we

thus hope that our work will be of interest to the sum-of-squares optimization community.

The plan of the paper is as follows. In Section 2.2 we review preliminaries consisting of basic

linear algebra and SDP duality. In Section 2.3 we present and illustrate our main result, Theorem

1, and to build intuition, we prove the “easy” direction. In Section 2.4 we describe our algorithm

12

to construct weakly infeasible SDPs and show that any weakly infeasible SDP is among its

outputs. Our algorithm also constructs any bad projection of the psd cone. For the reader’s

convenience, some of the proofs are postponed to Section 2.5 and 2.6. The most difficult proof is

the “hard” direction in Theorem 1, which we give in Section 2.6. Section 2.7 describes our

problem library and computational tests. In Section 2.8 we reinterpret Theorem 1 in two ways: as

a “sandwich” theorem and as a “factorization” theorem. Here we also discuss open research

directions.

To make the paper’s results accessible to a broad audience, we prove them using only basic

results in SDP duality and linear algebra, all of which we summarize in Section 2.2. This work

has some unavoidable overlap with [31], where the lemmas of Section 2.5 were already proved. On

the other hand, here we prove these lemmas in a more elementary fashion. Reference [31] also

gave a scheme to construct weakly infeasible SDPs in a certain restricted class; however, that

scheme does not capture even some weakly infeasible SDPs with 3× 3 matrices. We comment in

detail on these points in Section 2.5 and Section 2.6.

2.2 Preliminaries

Operators and matrices For a linear operator (or matrix) M, we denote its rangespace by

R(M) , its nullspace by N (M) , and its adjoint by M∗.

We denote the set of n×n symmetric matrices by Sn. Further, N stands for the set {1, . . . , n}.

Given a matrix M ∈ Rn×n and R,S ⊆ N, we denote the submatrix of M corresponding to

rows in R and columns in S by M(R,S). When R = {r} is a singleton, we simply write M(r, S)

for M({r}, S). For brevity, we let M(R) := M(R,R).

We denote the concatenation of matrices A and B along the diagonal by A⊕B,

A⊕B :=

A 0

0 B

 .

Thus, M ⊕ 0 is the matrix obtained by attaching zero rows and colums to M. The dimensions of

M ⊕ 0 will be clear from the context.

13

Further, X � 0 means that the matrix X is symmetric and positive semidefinite and X � 0

means it is symmetric and positive definite.

Basics of SDP duality Consider the pair of SDPs

inf C •X

s.t. X is feasible in (P)

(P-opt)
sup b>y

s.t. A∗y � C,
(D)

where C ∈ Sn, and for T, S ∈ Sn we write T � S to say S − T � 0. We say that (D) is the dual of

(P-opt) and vice versa, (P-opt) is the dual of (D).

When both are feasible, the optimal value of (P-opt) is at least as large as the optimal value

of (D). These optimal values agree and the optimal value of (P-opt) is attained when (D) satisfies

Slater’s condition, i.e., when there is y ∈ Rm such that C −A∗y � 0.

We say that (P) is strongly infeasible, if the distance of the affine subspace H (see (2.1)) from

Sn+ is positive. By this definition, we see that every infeasible SDP is either strongly or weakly

infeasible.

We know that (P) is strongly infeasible exactly when its alternative system

A∗y � 0

b>y = −1
(P-alt)

is feasible. In other words, strong infeasibility of (P) is certified by (P-alt).

We will use the above results as building blocks, since they can be proven in a few pages, with

real analysis and elementary linear algebra as sole prerequisites; see Renegar [61, Chapter 3].

Reformulations In the sequel we represent the operator A via symmetric matrices A1, . . . , Am

as

AX = (A1 •X, . . . , Am •X)>.2 (2.5)

The following definition will be used throughout the paper.

Definition 2.1. We say that we reformulate (P) if we apply to it some of the following

operations (in any order):

2Then the adjoint A∗ is given as A∗y =
∑m

i=1 yiAi for y ∈ Rm.

14

1. Exchange (Ai, bi) and (Aj , bj), where i and j are distinct indices in {1, . . . ,m}.

2. Replace (Ai, bi) by λ(Ai, bi) + µ(Aj , bj), where λ and µ are reals and λ 6= 0.

3. Replace all Ai by T>AiT, where T is a suitably chosen invertible matrix.

We also say that by reformulating (P) we obtain a reformulation; and that we reformulate the

map A : Sn → Rm if we reformulate (P) with some b ∈ Rm.

We make two observations that will be useful later. First, reformulating (P) preserves its

status: it is feasible (infeasible, weakly infeasible) if and only if has the same status after

reformulating it. Second, in Definition 2.1 operations 1 and 2 can be naturally viewed as

elementary row operations performed on the constraints of system AX = b.

Semidefinite echelon form To motivate our next definition, suppose that a square matrix M is

in row echelon, i.e., upper triangular form

M =

∗ ∗ . . . ∗

∗ . . . ∗
. . .

∗

where the empty cells are all zeroes. Assuming the diagonal entries of M are nonzero, this form

serves two purposes. First, it makes it clear that the columns of M span the whole space; and

second, it shows that the nullspace of M contains only 0.

Analogously, we define an echelon form of a sequence of symmetric matrices:

Definition 2.2. We say that the sequence of symmetric n× n matrices (M1, . . . ,Mk) is in

semidefinite echelon form with structure {P1, . . . , Pk} if the following three conditions hold: i) the

Pi are disjoint subsets of N, ii) for i = 1, . . . , k

Mi(Pi) is diagonal with positive diagonal entries, and

Mi(P1 ∪ · · · ∪ Pi−1, N) is arbitrary,
(2.6)

and iii) the remaining elements of all Mi are zero. (Note that by symmetry

Mi(N,P1 ∪ · · · ∪ Pi−1) = Mi(P1 ∪ · · · ∪ Pi−1, N).)

15

Thus, for a suitable permutation matrix T the Mi look like

T>M3TT>M2TT>M1T

P ′1 P ′2 P ′3

+

+

× × × ×
×
×
×

+

× × × ×
×
×
× ×
×
× × × · · ·

where the columns of Mi with indices in Pi were permuted into columns of T>MiT with

indices in P ′i .

Here the + red blocks are positive definite and diagonal, the × blue blocks may have

arbitrary elements, and the white blocks are zero.

To highlight the analogy with the row echelon form, suppose (M1, . . . ,Mk) is in semidefinite

echelon form with structure {P1, . . . , Pk}. In Section 2.3 we will see that this special form serves

two purposes. First, suppose that X � 0 satisfies Mi •X = 0 for all i. Then by an elementary

argument the rows (and columns) of X indexed by P1 ∪ · · · ∪ Pk are zero. Second, suppose X is a

symmetric matrix whose N \ (P1 ∪ · · · ∪ Pk) diagonal block is positive definite. Then by another

elementary argument
∑k

i=1 λiMi +X is positive definite for suitable λ1, . . . , λk reals.

Remark 2.2.1. A sequence (M1, . . . ,Mk) in semidefinite echelon form is a type of facial

reduction sequence [11, 44, 47]. Precisely, (M1, . . . ,Mk) certifies that any X � 0 such that

Mi •X = 0 for all i belongs to a face of Sn+, namely the set of of psd matrices with certain rows

and columns equal to zero.

Let us consider a special case when the structure of (M1, . . . ,Mk) is {P1, . . . , Pk}, P1 contains

the first |P1| indices of N, P2 contains the next |P2| indices, and so on, and the positive definite

blocks in all Mi are identities. These sequences were defined in [31], and baptized as regularized

facial reduction sequences.

2.3 The main result, and the easy direction

The main result of the paper is the following.

16

Theorem 1. The problem (P) is weakly infeasible if and only if it has a reformulation

A′X = b′

X � 0
(Pweak)

with the following properties:

1. (A′1, . . . , A
′
k+1) is in semidefinite echelon form and (b′1, . . . , b

′
k, b
′
k+1) = (0, . . . , 0,−1) for

some k ≥ 1;

2. there is (X1, . . . , X`+1) in semidefinite echelon form such that ` ≥ 1 and

A′Xi = 0 for i = 1, . . . , `

A′X`+1 = b′.
(2.7)

Here we understand that A′ is represented by symmetric matrices A′i as

A′X = (A′1 •X, . . . , A′m •X)>. (2.8)

If (P) is weakly infeasible, then we can choose the reformulation (Pweak) so the positive

definite blocks in A′1, . . . , A
′
k and X1, . . . , X` are all nonempty. Indeed, in the proof of the “only

if” direction we will construct the reformulation (Pweak) and Xj sequence precisely in this manner.

Example 2.2. (Example 2.1 continued) As a quick check, the problem (ME) needs only a

minimal reformulation. To put it into the echelon form of (Pweak), we set

A′1 := A1, A
′
2 := −1

2
A2, (2.9)

where A1 and A2 are given in (2.2), and use (X1, X2) from equation (2.3). In this SDP we have

k = ` = 1. ♦

It is useful to visualize Theorem 1 via the matrix of inner products of the A′i and Xj in Figure

2.2.

17

(A′i •Xj)
m,`+1
i=1,j=1 =

0 . . . 0 0

0
. . . 0 0

0 . . . 0 0

0 . . . 0 −1

0 . . . 0 b′k+2

. . .

0 . . . 0 b′m

`+ 1

k + 1

Figure 2.2: The matrix of inner products of the A′
i and Xj in Theorem 1

The proof of the “only if” direction of Theorem 1 is technical and deferred to Section 2.6.

However, the proof of the “if” direction is elementary, and we provide it below.

Proof (of “if” in Theorem 1). It suffices to prove that (Pweak) is weakly infeasible. To that end,

we first prove it is infeasible, so to obtain a contradiction we assume that X is feasible in it. We

also assume that (A′1, . . . , A
′
k+1) has structure {P1, . . . , Pk+1} (see Definition 2.2).

Since A′1 •X = 0, a positively weighted linear combination of the diagonal elements of X(P1)

is zero. Since X � 0, these elements are zero, hence the rows (and columns) of X indexed by P1

are zero.

Continuing, A′2 •X = 0, . . . , A′k •X = 0 implies that the rows (and columns) of X indexed by

P2 ∪ · · · ∪ Pk are zero. Hence A′k+1 •X is a positively weighted linear combination of the diagonal

elements of X(Pk+1), so

A′k+1 •X ≥ 0.

This contradiction proves that (Pweak) is indeed infeasible.

This process is illustrated on Figure 2.3, where the submatrices marked by ⊕ are positive

semidefinite. For convenience we assume in this figure that the columns of all matrices indexed by

P1 come first; the columns indexed by P2 come next; etc.

18

⊕

X

A′1 •X = 0
−→ ⊕0

0 0

P1

X

A′2 •X = 0
−→

⊕0 0

0 0

0 0 0

0

P1 P2

X

. . .
−→

Figure 2.3: Proving that (Pweak) is infeasible

Next we prove that (Pweak) is not strongly infeasible. For that, let

H ′ = {X ∈ Sn : A′X = b′ },

and fix ε > 0. We will construct a psd matrix which is ε close to H ′. Suppose the structure of

(X1, . . . , X`+1) is {Q1, . . . , Q`+1} and for brevity, let Q`+2 = N \ (Q1 ∪ · · · ∪Q`+1).

First we define Xδ ∈ Sn so that Xδ(Q`+2) = δI and the other elements of Xδ are zero. Here

δ > 0 is chosen so the norm of Xδ is at most ε. See the leftmost picture in Figure 2.4.

Second, we define X ′`+1 := X`+1 +Xδ. Then the (Q`+1 ∪Q`+2) diagonal block of X ′`+1 is

positive definite and X ′`+1 is within ε distance of H ′ (since X`+1 ∈ H ′). See the middle picture in

Figure 2.4.

Next we let X ′` := γ`X` +X ′`+1 where γ` is a positive real. The definition of positive

definiteness (G � 0 if x>Gx > 0 for all nonzero x) implies that

X ′`(Q` ∪Q`+1 ∪Q`+2) � 0

if γ` is sufficiently large. Further, X ′` is still within ε distance of H ′ (since A′X` = 0). We refer to

the rightmost picture in Figure 2.4.

19

� 0

δI

7−→
+X`+1

� 0

δI

+

× × × ×
×
×
× ×
×
× × × 7−→

+γ`X`

γ` � 0

� 0

+

δI

+

× × × ×
×
×
× ×
×
× × 7−→

+γ`−1X`−1

γ`−1 � 0
. . .

Xδ X ′`+1 X ′`

Q`+2 Q`+1 Q`

Figure 2.4: Proving that (Pweak) is not strongly infeasible

Continuing in this fashion we add γ`−1X`−1 to X ′` for some large γ`−1 and so on. Eventually

we obtain a positive definite matrix, within ε distance of H ′, and conclude that (Pweak) is not

strongly infeasible. The proof is complete.

Remark 2.3.1. Suppose (P) is weakly infeasible. Based on Theorem 1 we can prove this to a

“third party” by the following data:

1. The original problem (P) and the reformulation (Pweak);

2. The sequence of matrices (X1, . . . , X`+1);

3. The operations needed to reformulate (P) into (Pweak). These can be encoded in a very

compact manner, just by two matrices: the elementary row operations by an m×m matrix

G = (gij) and the congruence transformations by an n× n matrix T. Then the equations

A′i = T>
(∑m

j=1 gijAj
)
T for i = 1, . . . ,m

b′ = Gb
(2.10)

hold.

So, to verify that (P) is weakly infeasible, we check that (Pweak) and (X1, . . . , X`+1) are in the

required form, and equations (2.7) and (2.10) hold. All these computations must be done over

real numbers and in exact arithmetic. This discussion implies that the problem “is (P) weakly

infeasible?” is in NP in the real number model of computing 3.

3It is also in co-NP, since if (P) is not weakly infeasible, we can verify this by exhibiting either a feasible solution of
(P), or a feasible solution of (P-alt).

20

This result already follows from previous works [55, 26]. Precisely, these papers described

certificates to verify infeasibility of any infeasible SDP, regardless of whether it is strongly or

weakly infeasible. For example, Ramana’s infeasibility certificate of an SDP is a semidefinite

system which is feasible exactly when the SDP in question is infeasible. Note that (Pinfeas) in

Lemma 5 also certifies infeasibility of (P). Thus, using any of these certificates, we obtain a

certificate that (P) is weakly infeasible, if we verify that (P) and its alternative system (P-alt) are

both infeasible.

On the other hand, our echelon form (Pweak) does more than just verify weak infeasibility. It

makes weak infeasibility evident to see; and we can use it to conveniently construct any weakly

infeasible SDP, a feature that previously known certificates do not have.

Note that the following related question: “Can we decide the feasibility status (feasibility, or

weak/strong infeasibility) of (P) in polynomial time?” is open in the real number model, and in

the Turing model as well.

Example 2.3. The SDP in the form (P) with data

A1 =

8 −1 −9 −2

−1 −26 3 39

−9 3 10 3

−2 39 3 −16

, A2 =

5 −3 −6 −2

−3 −6 5 21

−6 5 7 2

−2 21 2 −11

A3 =

−6 −3 7 4

−3 34 1 −43

7 1 −8 −5

4 −43 −5 18

, A4 =

5 4 −9 −6

4 −28 6 48

−9 6 13 5

−6 48 5 −21

b = (−44,−22, 44,−68)>

(2.11)

is weakly infeasible, but from this form this would be very difficult to tell.

21

However, once we reformulate (2.11) by the formulas in (2.10) and the G and T matrices

G =
1

2

1 0 1 0

0 2 1 0

1 1 3 1

0 0 1 1

, T =

−1 1 1 1

0 1 0 0

0 −1 0 1

0 0 −1 0

,

it is brought into the form (Pweak) with the A′i and Xj shown on Figure 2.5.

A′3A′2A′1

X3X2X1

P1

P2

P3

Q1

Q2

Q3

1 −2 1/2

−2
1/2

10

2 0

1

1

1
3/2

1

3

0 3 1 3/2

4

4

1

1

1

−1 1 0 −4
0

1

−1

1

0 −5−4 2

−4
−5
0

−204

4

−2

.

Figure 2.5: The A′
i and Xj obtained from reformulating the SDP (2.11)

In the reformulation equations A′1 •X = A′2 •X = 0, A′3 •X = −1 certify infeasibility and

(X1, X2, X3) certify not strong infeasibility. The matrix A′4 is omitted (and is straightforward to

compute from the formulas in (2.10)). Note that now k = ` = 2. ♦

The reader may ask whether some SDPs are naturally in the echelon form of (Pweak) without

even having to reformulate them. We next present such an SDP from a prominent application of

semidefinite programming, polynomial optimization.

We first recall a definition. Given a multivariate polynomial f = f(x1, . . . , xn), we say that f

is a sum of squares (SOS) if f =
∑t

i=1 f
2
i for some t positive integer and fi polynomials. An SOS

polynomial is of course nonnegative. On the other hand, the first example of a nonnegative, but

not SOS polynomial was given by Motzkin in [35] and there are many more nonnegative

polynomials than SOS polynomials: see Blekherman [9].

22

Example 2.4. Given the famous Motzkin polynomial

f(x, y) = 1− 3x2y2 + x2y4 + x4y2, (2.12)

we can find its infimum over R2 by solving the problem

sup λ

s.t. f(x, y)− λ ≥ 0.
(2.13)

In the SOS relaxation of (2.13) proposed in [28] and [43] we solve the following problem instead:

sup λ

s.t. f − λ is SOS.
(2.14)

In turn, we formulate (2.14) as an SDP as follows. We define a vector of monomials 4

z = (x2, y2, x, y, xy, xy2, x2y, 1)>,

then we know that f − λ is SOS if and only if f − λ = X • zz> for some X � 0.

1

0
0
0
0
0
0
0
00 0 0 0 0 0 0 0

1

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

1

1

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

1

1

1

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

1

1
1

1
1

1
1

1 0 0 0 0 0 0 0 00
0
0
0
0
0
0
0

0
0

0
02
2

-1 -1

-1
-1

0 0 0 0 0 0 0 00
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
0

0
0
0

0
0
01

1
1

-1
-1

-1
-1

A5A4A3A2A1

X3X2X1

Figure 2.6: Certificates of weak infeasibility in the Motzkin polynomial SDP

We then match the coefficients of monomials in f − λ and X • zz> and obtain the SDP

4To strictly follow the SOS recipe we should also include in z the monomials x3 and y3. We omitted these for
simplicity, but it is straightforward to check that even if we do include them, the resulting SDP is still in the echelon
form of (Pweak).

23

sup −E88 •X

s.t. E11 •X = 0 (x4)

E22 •X = 0 (y4)

(E33 + E18) •X = 0 (x2)

(E44 + E28) •X = 0 (y2)

(E55 + E12 + E36 + E47) •X = −3 (x2y2)

...

X � 0.

(2.15)

In (2.15) the Eij are unit matrices in S8 whose elements in the (i, j) and (j, i) position are 1 and

the rest zero. For each equation we show the corresponding monomial in parentheses. For

example, E11 •X = 0 because f − λ has no x4 term. Note that in (2.15) we indicated the

equation corresponding to x2y and several other equations only by vertical dots.

Of course, we know that f − λ is not SOS for any λ, hence (2.15) is infeasible. We next verify

that it is weakly infeasible, and in the echelon form (Pweak) without ever having to reformulate it.

We see that A1 := E11, A2 := E22, . . . , A5 := E55 + E12 + E36 + E47 is in semidefinite echelon

form, hence the equations in (2.15) prove it is infeasible (the last right hand side is −3, not −1 as

in Theorem 1, but this does not matter).

On the other hand, let

X1 := E88

X2 := 2E33 + 2E44 − E18 − E28

X3 := E55 + E66 + E77 − E47 − E36.

(2.16)

Then (X1, X2, X3) is in semidefinite echelon form and proves that (2.15) is not strongly infeasible.

To see why, we write the equations in (2.15) as AX = b, then we can check that AX1 = AX2 = 0

and AX3 = b.

In Figure 2.6 we visualize the certificates of infeasibility (on the top) and the certificates of

not-strong-infeasibility (on the bottom).

♦

24

To better explain Example 2.4, we make three remarks.

First, SDPs that come from polynomial optimization problems are widely known to be

difficult, both due to their often pathological behavior, and also due to their size. On the one

hand, some remedies to address the difficult behaviors are available. For example, if such an SDP

is feasible, we can ensure strong duality by adding a redundant ball constraint, see Henrion and

Josz [22]. See also references [19, 29] mentioned in the introduction. One may also entirely do

away with the SDP based approach, and either optimize directly over SOS polynomials, see Papp

and Yildiz [41]; or use a second order conic programming, or linear programming relaxation,

which is a bit weaker, but much more scalable, see Ahmadi and Majumdar [1]. Example 2.4

complements these works: it gives a combinatorial insight into why some of the pathologies arise

in the first place.

Second, Waki in [67] constructed a library of weakly infeasible SDPs from the SOS relaxation

of polynomial optimization problems; on the other hand [67] did not provide certificates of the

kind we study in this work.

Third, suppose we just wish to decide whether f − λ is SOS for some fixed λ. For that, we set

up an SDP feasibility problem with the constraints of (2.15), and add the constraint

E88 •X = 1− λ. Interestingly, this SDP turns out to be strongly infeasible, as it was proved by

Henrion [18].

We now move on, and in Corollary 1 characterize the underlying operators in weakly

infeasible SDPs. The discussion in the introduction shows that these are linear operators that

map Sn+ to a nonclosed set. These operators were recently baptized as “bad projections of the psd

cone,” and explored through the lens of algebraic geometry [21].

Corollary 1. Suppose A : Sn → Rm is a linear map. Then ASn+ is not closed if and only if A

has a reformulation A′ with the following properties:

1. (A′1, . . . , A
′
k+1) is in semidefinite echelon form, where k ≥ 1;

2. There is (X1, . . . , X`+1), in semidefinite echelon form, where ` ≥ 1 and the matrix of inner

products of the A′i and Xj matrices looks like

25

(A′i •Xj)
m,`+1
i=1,j=1 =

0 . . . 0 0

0
. . . 0 0

0 . . . 0 0

0 . . . 0 −1

0 . . . 0 ×
. . .

0 . . . 0 ×

`+ 1

k + 1

where the × symbols denote arbitrary elements.

Proof. To show the “only if” direction, suppose ASn+ is not closed, and suppose b ∈ Rm is in the

closure of ASn+ but b 6∈ ASn+. Then (P) is weakly infeasible, so we appeal to Theorem 1 and

construct A′, b′, and X1, . . . , X`+1 therein. Then the matrix (A′i •Xj)
m,`+1
i=1,j=1 is in the form given

in Figure 2.2, so items 1 and 2 in our corollary hold.

For the “if” direction, suppose A′ and (X1, . . . , X`+1) are as in the statement of Corollary 1,

and let b′ = A′X`+1. Then (A′, b′) and (X1, . . . , X`+1) satisfy items 1 and 2 in Theorem 1. Hence

the system (Pweak) therein is weakly infeasible, so b′ is in the closure of A′Sn+ but b′ 6∈ A′Sn+. Thus

A′Sn+ is not closed, hence neither is ASn+, as required.

We next contrast Corollary 1 with an equivalent characterization of nonclosedness of ASn+

that we recap below in Theorem 2. Theorem 2 is obtained from [48, Theorem 1] by setting B = 0.

Theorem 2. Suppose that Z is a maximum rank psd matrix in R(A∗), the linear span of

A1, . . . , Am. Assume without loss of generality that Z is of the form

Z =

Ir 0

0 0

 (2.17)

26

for some r ∈ {0, . . . , n}. Then ASn+ is not closed if and only if there is a matrix V ∈ R(A∗) of the

form

V =

V11 V12

V >12 V22

 , (2.18)

where V22 ∈ Sn−r+ and R(V >12) 6⊆ R(V22).

Next we argue that Corollary 1 is more useful than Theorem 2, although the latter is more

compact. In particular, Corollary 1 can be used to construct maps under which Sn+ is not closed,

as we show in Section 2.4.

On the other hand, Theorem 2 cannot be used for this purpose in a straightforward manner.

Suppose indeed that we try to construct such an A and choose A1 := Z as in (2.17) (with

0 < r < n) and A2 := V as in (2.18) as elements of R(A∗). However, we cannot guarantee that Z

remains a maximum rank psd matrix in R(A∗) after we chose the other Ai.

2.4 How to construct any weakly infeasible SDP and bad projection of the psd cone

We now build on Theorem 1, and present a combinatorial algorithm, Algorithm 1, to

construct any weakly infeasible SDP of the form (P). Algorithm 1 (with Algorithm 2 as a

subroutine) also constructs any bad projection of the psd cone, and provides a vector b in the

closure of ASn+ such that b 6∈ ASn+.

Algorithm 1 first chooses positive integers m, k and `, such that k + 1 ≤ m, then constructs a

weakly infeasible SDP with just k + 1 constraints in the echelon form of (Pweak). It also chooses a

sequence (X1, . . . , X`+1) in semidefinite echelon form that certifies not strong infeasibility of this

“small” SDP. Finally, it chooses the remaining m− (k + 1) equality constraints and reformulates

the SDP.

Algorithms 1 and 2 rely on Theorem 1, but to simplify notation, everywhere we write Ai in

place of A′i and bi in place of b′i.

27

Algorithm 1 Construct Weakly Infeasible SDP

1: Choose m, k and ` positive integers such that k + 1 ≤ m. Also choose (A1, . . . , Ak+1) and

(X1, . . . , X`+1) in semidefinite echelon form, which satisfy the following base equations:

Ai •Xj =

0 if (i, j) 6= (k + 1, `+ 1)

−1 if (i, j) = (k + 1, `+ 1)

(BASE)

2: Let (b1, . . . , bk, bk+1) = (0, . . . , 0,−1).

3: Choose Ak+2, . . . , Am so they have zero • product with X1, . . . , X`.

4: Set bi := Ai •X`+1 for i = k + 2, . . . ,m.

5: Reformulate (P).

Observe that step 1 ensures that the first k + 1 rows of the (Ai •Xj)
m,`+1
i,j=1 matrix are as

required in Figure 2.2. Steps 3 and 4 ensure that the rest of the matrix looks like as required in

the same figure.

The only nontrivial step in Algorithm 1 is step 1, so the question is, how to carry out this

step?

The main idea is that we have many potentially nonzero blocks in the Ai and the Xj , and

only a small number of equations to satisfy. Precisely, by a straightforward count the Ai

altogether have at least constant times k3 potentially nonzero blocks of the form Ai(Ps, Pt), where

{P1, . . . , Pk+1} is the structure of (A1, . . . , Ak+1). Similarly, the Xj have at least constant times `3

potentially nonzero blocks. So if we set these blocks in the right order, then the Ai and Xj will

satisfy the (BASE) equations, of which there are only (k + 1)(`+ 1).

To carry out this plan, we need two lemmas.

Lemma 1. Suppose that (A1, . . . , Ak+1) is in semidefinite echelon form with structure

{P1, . . . , Pk+1} and (X1, . . . , X`+1) is in semidefinite echelon form with structure {Q1, . . . , Q`+1}.

Also suppose that (A1, . . . , Ak+1) and (X1, . . . , X`+1) satisfy the base equations (BASE). Then

P1 ∩ (Q1 ∪ · · · ∪Q`+1) = ∅ (2.19)

Q1 ∩ (P1 ∪ · · · ∪ Pk+1) = ∅. (2.20)

28

Proof. We prove (2.20), the proof of (2.19) is analogous. Since (A1, . . . , Ak+1) is in semidefinite

echelon form, and X1 � 0, an argument like in the “if” direction in Theorem 1 proves

X1(P1 ∪ · · · ∪ Pk+1, N) = 0. Since the only nonzero entries of X1 are in X1(Q1), the statement

follows.

Lemma 2 shows how to solve a linear system of equations in an unusual setup, in which only

the right hand side is fixed. In Lemma 2 we index the bj reals and Yj matrices from 2 to `+ 1 for

convenience. We also define the inner product of possibly nonsymmetric matrices M and Y as the

trace of M>Y.

Lemma 2. Given positive integers p, q and `, and real numbers b2, . . . , b`+1 there is a polynomial

time algorithm to find M,Y2, . . . , Y`+1 in Rp×q such that

M • Y2 = b2

...

M • Y`+1 = b`+1.

(2.21)

Further, any solution to (2.21) is a possible outcome of this algorithm.

Proof. If all bj are zero, we first choose an arbitrary M, then choose Y2, . . . , Y`+1 to solve the

system (2.21). If not all bj are zero, we do the same, but we make sure to pick M 6= 0.

Algorithm 2, which is used as a subroutine in Algorithm 1, constructs sequences of Ai and Xj

that satisfy the (BASE) equations.

29

Algorithm 2 Base Equations Algorithm

1: Choose (Ai)
k+1
i=1 and (Xj)

`+1
j=1 in semidefinite echelon form with structure {Pi}k+1

i=1 and {Qj}`+1
j=1

respectively, which satisfy

P1 6= ∅, . . . , Pk 6= ∅, Q1 6= ∅, . . . , Q` 6= ∅, (2.19), and (2.20).

2: for i = 2 : k + 1 do

3: Set Ai(Pi−1, Q1), X2(Pi−1, Q1), . . . , X`+1(Pi−1, Q1) to satisfy the base equations (BASE)

with left hand side Ai •X2, . . . , Ai •X`+1.

4: end for

Lemma 3. We can implement step 3 of Algorithm 2 so the algorithm is correct.

Proof. For brevity, we define Pk+2 := N \ (P1 ∪ · · · ∪ Pk+1) and we fix i ∈ {2, . . . , k + 1}. To

implement step 3 of Algorithm 2 we first set the (Pi−1, Q1) block of Ai, X2, . . . , X`+1 to zero, then

introduce a target vector (b2, . . . , b`+1)
> :

bj =

−1

2Ai •Xj if (i, j) 6= (k + 1, `+ 1)

−1
2

(
Ai •Xj + 1

)
if (i, j) = (k + 1, `+ 1).

Next we invoke Lemma 2 with Ai(Pi−1, Q1) in place of M and Xj(Pi−1, Q1) in place of Yj for

j = 2, . . . , `+ 1. Finally we symmetrize Ai and the Xj , namely we set

Ai(Q1, Pi−1) := Ai(Pi−1, Q1)
>and Xj(Q1, Pi−1) := Xj(Pi−1, Q1)

>

for j = 2, . . . , `+ 1.

Suppose we perform step 3 with a certain i ∈ {2, . . . , k + 1} to satisfy the base equations

(BASE) with left hand side Ai •Xj for j = 2, . . . , `+ 1. We next show that the previously

satisfied equations remain true.

If i = 2 then there is nothing to show, so assume i ≥ 3. Let us fix t ∈ {2, . . . , i− 1} and

j ∈ {2, . . . , `+ 1}. We will show that the equation with left hand side At •Xj remains satisfied.

30

For that, we note that the support of At is contained in the blocks

I1 := (P1 ∪ · · · ∪ Pt, P1 ∪ · · · ∪ Pt)

I2 := (P1 ∪ · · · ∪ Pt−1, Pt+1 ∪ · · · ∪ Pk+2)

I3 := (Pt+1 ∪ · · · ∪ Pk+2, P1 ∪ · · · ∪ Pt−1)

(2.22)

cf. Definition 2.1. In iteration i we change Xj(Pi−1, Q1) and Xj(Q1, Pi−1) for j = 2, . . . , `+ 1. So

it suffices to show

(Pi−1, Q1) ∩ I1 = ∅ (2.23)

(Pi−1, Q1) ∩ I2 = ∅ (2.24)

(Pi−1, Q1) ∩ I3 = ∅. (2.25)

Indeed, (2.23) and (2.25) follow by (2.20). Further, (2.24) follows from t− 1 < i− 1 and the proof

is complete.

In summary, we have the following theorem.

Theorem 3. Algorithm 1 always correctly constructs a weakly infeasible SDP and any weakly

infeasible SDP of the form (P) is among its outputs.

Proof. Lemmas 1–3 imply that Algorithm 1 always correctly outputs a weakly infeasible SDP. On

the other hand, suppose (P) is weakly infeasible. Then (P) has a reformulation (Pweak) as

presented in Theorem 1. For simplicity, let us denote the operator in (Pweak) by A and represent

A with matrices A1, . . . , Am. Also let us denote the right hand side in (Pweak) by b.

Assume the first k + 1 ≥ 2 equations in (Pweak) prove it is infeasible. We know that (Pweak) is

not strongly infeasible, and we let (X1, . . . , X`+1) be the sequence that certifies this as presented

in Theorem 1. Recall that ` ≥ 1.

Suppose that (A1, . . . , Ak+1) has structure {P1, . . . , Pk+1} and (X1, . . . , X`+1) has structure

{Q1, . . . , Q`+1}. By the remark following Theorem 1 we can assume that P1, . . . , Pk and

Q1, . . . , Q` are nonempty. Hence by Lemma 2 we have that (A1, . . . , Ak+1) and (X1, . . . , X`+1)

are possible outputs of Algorithm 2. Besides, Ak+2, . . . , Am and bk+2, . . . , bm are possible outputs

31

of steps 3 and 4 in Algorithm 1. Because of the reformulation step 5 we see that (P) is a possible

output of Algorithm 1, and the proof is complete.

As a quick check, Algorithm 1 constructs a variant of (ME) as follows. First it sets

m = 2, k = ` = 1, P1 = {1}, Q1 = {2}, P2 = Q2 = ∅ and

A1 =

1 0

0 0

 , A2 =

0 α

α 0

 , X1 =

0 0

0 1

 , X2 =

0 β

β 0

 ,

where α and β are arbitrary. Then the subroutine Algorithm 2 sets α and β to satisfy 2αβ = −1.

Algorithm 1 in step 2 sets b = (0,−1)>. Then it skips steps 3 and 4 (since m = k + 1) and also

skips the reformulation of step 5.

Example 2.5. Let k = ` = 1, P1 = {1}, P2 = {2}, Q1 = {3}, Q2 = {2}, α and β be arbitrary

reals, and

A1 =

1 0 0

0 0 0

0 0 0

 , A2 =

0 0 α

0 1 0

α 0 0

 , X1 =

0 0 0

0 0 0

0 0 1

 , X2 =

0 0 β

0 1 0

β 0 0

 .

Our algorithms construct a weakly infeasible SDP from this data as follows. Algorithm 2 sets α

and β so that αβ = −1. After this the Ai and Xj satisfy the (BASE) equations. Then Algorithm

1 in step 2 sets (b1, b2) = (0,−1) and in step 3 it chooses

A3 :=

0 1 0

1 0 1

0 1 0

 ,

as it has zero inner product with X1. Finally, in step 4 it sets b3 := A3 •X2 = 0 and skips the

reformulation of step 5. ♦

We note that a scheme to construct weakly infeasible SDPs was given in [31]. That scheme is

somewhat similar to the one presented here, as it uses a sequence of Ai matrices to certify

32

infeasibility and a sequence of Xj matrices to certify not strong infeasibility. However, the scheme

in [31] assumes that the positive definite blocks of the Ai and Xj matrices do not overlap, so the

variety of weakly infeasible SDPs it can construct is limited. In particular, it cannot even

construct the small SDP of Example 2.5.

On the other hand, our Algorithm 1, that generates any weakly infeasible SDP, relies on

Theorem 1; that result is simple to state, but somewhat technical to prove.

Example 2.6. (Example 2.3 continued) We now show how Algorithm 1 constructs the SDP in

Example 2.3. We first set m = 4, k = ` = 2, and select (A1, A2, A3) and (X1, X2, X3) in

semidefinite echelon form shown below:

A3A2A1

X3X2X1

P1

P2

P3

Q1

Q2

Q3

1 −2 ∗

−2
∗

10

2 0

∗

∗
1

3/2

1

3

0 3 1 3/2

4

4

1

1

1

∗ ∗ 0 −4
0

∗
∗

1

∗ ∗ −4 2

−4
∗
∗

−204

4

−2

Here at the start the entries marked by ∗ are arbitrary. Algorithm 2 first ensures

A2 •X2 = A2 •X3 = 0 by setting

A2(1, 4) = 1/2, X2(1, 4) = −1, X3(1, 4) = 0.

Then it ensures A3 •X2 = 0, A3 •X3 = −1 by setting

A3(2, 4) = 1, X2(2, 4) = 1, X3(2, 4) = −5.

(It also sets the symmetric blocks, for example, it sets A2(4, 1) = 1/2 and so on.)

33

Next, Algorithm 1 in step 2 sets (b1, b2, b3) = (0, 0,−1), then in step 3 it selects

A4 :=
1

2

−1 −2 −1 3

−2 2 −1 2

−1 −1 0 −1

3 2 −1 0

as it is orthogonal to X1 and X2. Then in step 4 it sets b4 = A4 •X3 = −12. We thus get the

weakly infeasible instance of Example 2.3 with the Ai and Xj shown above and

b = (0, 0,−1,−12)>.

♦

2.5 Proofs: certificates of infeasibility and not strong infeasibility separately

In this section we construct two distinct reformulations of (P): one to certify it is infeasible,

and the second to certify it is not strongly infeasible. Lemma 5 already appeared as part (1) of

Theorem 5 in [31] and Lemma 6 as part (2) of Theorem 5 in [31]. An earlier version of the latter

result appeared in [34]. Here we give shorter and more elementary proofs.

We first state a necessary condition for a semidefinite system to be infeasible. Lemma 4 is a

slightly stronger version of Lemma 3.2 in Waki and Muramatsu [68].

Lemma 4. Suppose B ∈ Sn and L ⊆ Sn is a subspace such that (B + L) ∩ Sn+ = ∅. Then the

following hold:

1. The system (2.26) is feasible:

B • Y ≤ 0

Y ∈ L⊥ ∩
(
Sn+ \ {0}

)
.

(2.26)

2. If (2.26) has a positive definite solution, then it has a positive definite solution Y such that

B • Y < 0.

34

Proof. To prove item 1, let B : Rm → Sn be a linear map whose rangespace is L. We claim that

the optimal value of the SDP

sup y0

s.t. −By0 − By � 0
(2.27)

is zero. Indeed, its optimal value is nonnegative, since (y, y0) = (0, 0) is feasible in it. On the

other hand, the optimal value cannot be positive: if y0 > 0 were feasible with some y, then we

would get the contradiction B + 1
y0
By � 0.

First assume that (2.27) satisfies Slater’s condition. Then its dual (which is of the form

(P-opt)), is feasible. Any Y feasible in the dual of (2.27) satisfies

B • Y = −1, B∗Y = 0,

as required.

Second, assume that (2.27) does not satisfy Slater’s condition. We claim that the optimal

value of the SDP

sup t

s.t. tI −By0 − By � 0
(2.28)

is zero. Indeed, it is nonnegative since setting all variables to zero we obtain a feasible solution.

On the other hand if t > 0 were feasible with some y0 and y, then the contradiction

By0 + By � tI � 0 would follow.

Note that (2.28) does satisfy Slater’s condition with t = −1, y = 0, and y0 = 0. Thus there is

a Y feasible in the dual of (2.28), which satisfies

B • Y = 0, B∗Y = 0, I • Y = 1,

as required.

To prove item 2, we observe that (B + L) ∩ Sn+ = ∅ implies B 6∈ L. So there is Y ′ ∈ L⊥ such

that

B • Y ′ < 0.

35

Suppose (2.26) has a positive definite solution. Then we add a sufficiently small positive multiple

of Y ′ to it and obtain a Y positive definite feasible solution such that B • Y < 0. The proof is now

complete.

Lemma 5. The SDP (P) is infeasible if and only if it has a reformulation

A′X = b′

X � 0
(Pinfeas)

in which (A′1, . . . , A
′
k+1) is in semidefinite echelon form and (b′1, . . . , b

′
k, b
′
k+1) = (0, . . . , 0,−1) for

some k ≥ 0.

Proof. The “if” direction is given verbatim in the proof of the “if” direction in Theorem 1. For

the “only if” direction, by elementary row operations (operations 1 and 2 in Definition 2.1) we

will first achieve the following:

A1 � 0, b1 ∈ {0,−1} (2.29)

and

b1 = 0 ⇒ 0 < rankA1 < n. (2.30)

For that, we distinguish two cases.

Case 1 (The linear system AX = b is infeasible). Then by elementary linear algebra there is y

such that

A∗y = 0, b>y = −1.

We have y 6= 0 so after permuting the equations in AX = b we assume y1 6= 0 without loss of

generality. Next, using elementary row operations we replace A1 by A∗y and b1 by b>y. As a

result, (2.29) and (2.30) hold.

Case 2 (The linear system AX = b is feasible). We first fix X0 ∈ Sn such that AX0 = b. Then

we apply Lemma 4 with L := N (A) and B := X0 and find Y feasible in the system (2.26).

Further, using item 2 in Lemma 4, if Y is positive definite, we ensure X0 • Y < 0. We have

36

Y ∈ L⊥, and L⊥ = R(A∗), so we write Y = A∗y for some y ∈ Rm and deduce

0 ≥ X0 • Y = X0 • A∗y = (AX0)
>y = b>y.

We then proceed as in Case 1: we permute the equations in AX = b, if needed, and replace

A1 by A∗y and b1 by b>y. Afterwards, if b1 < 0 then we rescale A1 and b1 so that b1 = −1.

Again, (2.29) and (2.30) hold.

Now that we have satisfied (2.29) and (2.30), we choose an invertible T matrix such that

T>A1T = Ir ⊕ 0 for some r ≥ 0, and let

A′i := T>AiT, b
′
i := bi for i = 1, . . . ,m. (2.31)

If b′1 = −1, we set k = 0 and stop.

If b′1 = 0, then we must have 0 < r < n. We must also have m > 1, otherwise the all zero

matrix would be feasible in (P). We then delete the equation A′1 •X = 0 and also delete the first

r rows and columns from the other A′i. We thus obtain a smaller SDP, say (P′), with m− 1

equations and order n− r matrices. We see that (P′) is infeasible: if X ′ were feasible in it, then

X := 0⊕X ′ would be feasible in (P). So we proceed by induction, as a reformulation of (P′) into

the form of (Pinfeas) yields a reformulation of (P) into the same form.

As a quick sanity check, we consider the SDP in (ME), and the reformulation given in

Example 2.2 (see equation (2.9)). This reformulation is in the form (Pinfeas). Note that now k = 1.

The proof of Lemma 5 implies that the positive definite blocks in A′1, . . . , A
′
k are nonempty,

and can be chosen as identity matrices. However, the positive definite block in A′k+1 may be

empty, as it is in the reformulated version of (ME) given in the previous paragraph.

We next present Lemma 6 to construct a certificate that (P) is not strongly infeasible.

Lemma 6 builds on two ideas. First, if (P) is not strongly infeasible, then the alternative system

(P-alt) is infeasible. In turn, if (P-alt) is infeasible, then using Lemma 5 we will reformulate it to

make its infeasibility evident.

37

Lemma 6. The SDP (P) is not strongly infeasible if and only if it has a reformulation

A′′X = b′′

X � 0,
(Pnotstrong)

such that for some (X1, . . . , X`+1) in semidefinite echelon form with ` ≥ 0 the following holds:

A′′Xi = 0 for i = 1, . . . , ` and

A′′X`+1 = b′′.
(2.32)

Proof. The proof of the “if” direction is given in the proof of the “if” direction in Theorem 1.

For the “only if” direction, we assume that (P) is not strongly infeasible, and choose an

operator B : Sn → Rm such that R(A∗) = N (B). We also choose X0 ∈ Sn such that AX0 = b

(such an X0 must exist, otherwise (P) would be strongly infeasible). Since (P) is not strongly

infeasible, the alternative system (P-alt) is infeasible. We claim that (P-alt) is equivalent to

BY = 0

X0 • Y = −1

Y � 0.

(2.33)

Indeed, by the choice of B we have that BY = 0 for some Y ∈ Sn iff Y = A∗y for some y ∈ Rm.

For any such Y and y we see that

b>y = (AX0)
>y = X0 • Y,

and this proves that (P-alt) and (2.33) are equivalent.

Thus, by Lemma 5, the system (2.33) has a reformulation of the form (Pinfeas), in which for

some ` ≥ 0 the first `+ 1 equations prove the infeasibility. These equations are of the form

Xj • Y = 0 (j = 1, . . . , `)

X`+1 • Y = −1,
(2.34)

where (X1, . . . , X`+1) is in semidefinite echelon form.

38

Note that in (2.33) the only equation with nonzero right hand side is X0 • Y = −1. Given

that from (2.33) we derived equations (2.34) by elementary row operations and by congruence

transformations, we see that

Xj ∈ T>R(B∗)T for j = 1, . . . , `

X`+1 ∈ T>
(
R(B∗) +X0

)
T

(2.35)

for some invertible matrix T.

Observe that R(B∗) = N (A). Then from (2.35) we deduce that for i = 1, . . . ,m

Ai • T−>XjT
−1 =

 0 if j ∈ {1, . . . , `}

bi if j = `+ 1

holds. We have Ai • T−>XjT
−1 = T−1AiT

−> •Xj for all i. We define the operator A′′ as

A′′X = (A′′1 •X, . . . , A′′m •X)>,

where A′′i = T−1AiT
−> for all i and let b′′ = b. We see that A′′, b′′, and the X1, . . . , X`+1 that we

already defined satisfy the requirements of our lemma.

Yet again, consider the reformulation of (ME) given in Example 2.2 and set A′′1 = A′1, and

A′′2 = A′2, and X1 and X2 as in (2.3). Then (A′′1, A
′′
2) and (X1, X2) with b′′ = (0,−1)> satisfy the

conclusions of Lemma 6. Note that now ` = 1.

By the proof of Lemma 6 the positive definite blocks in X1, . . . , X` are nonempty, and can be

chosen as identity matrices. However, the positive definite block in X`+1 may be empty, as it is in

the reformulated version of (ME) that we gave in the previous paragraph.

2.6 Proof of Theorem 1

Section 2.5 showed how to produce a reformulation (Pinfeas) to prove that (P) is infeasible;

and another reformulation (Pnotstrong) to prove it is not strongly infeasible. In this section we

show that a single reformulation can accomplish both. This common reformulation was fairly

39

straightforward to produce when we started with a simple problem like (ME). In the general case

we need a technical proof.

We first define operators that transform a certain targeted block of a matrix. To absorb

Definition 2.3 we need to recall the notation M(R,S) and M(R) for blocks of a matrix M from

the start of Section 2.2.

Definition 2.3. Suppose R ⊆ N and G is matrix of order |R|. The matrix IR,G is obtained from

the n× n identity by replacing I(R) by G, i.e., by performing the following two steps:

IR,G := I,

IR,G(R) := G.

For example, if n = 4, R = {1, 4}, and G =

2 3

4 5

 , then

IR,G =

2 0 0 3

0 1 0 0

0 0 1 0

4 0 0 5

.

Suppose M ∈ Rn×n and R ⊆ N . Then the operation

M := M · IR,G

right multiplies by G the columns of M indexed by R and leaves the rest of M unchanged.

Given subsets R1, . . . , Rt of N and indices i and j such that 1 ≤ i ≤ j ≤ t we will use the

following shorthand:

Ri:j := Ri ∪Ri+1 ∪ · · · ∪Rj . (2.36)

We will often use a congruence transformation to put matrices into a convenient block diagonal

form, bringing us to the following lemma:

40

Lemma 7. Suppose X ∈ Sn and R1, . . . , Rt are disjoint subsets of N such that

X(R1:t) � 0.

Then there is an invertible matrix T such that

(T>XT)(R1:t) is nonnegative diagonal,

and T can be chosen as the product of n× n invertible matrices

T = IR1,U1W1 . . . IRt,UtWt,

where

1. the Ui are orthonormal matrices for all i.

2. right multiplying an n× n matrix, say M, by Wi adds multiples of columns in M(N,Ri) to

columns of M(N,Rj) for some j indices in {i+ 1, . . . , t}.

Suppose Wi is a matrix in the statement of Lemma 7. We can describe Wi algebraically as

follows: i) it has all 1 entries on the main diagonal; ii) the block Wi(Ri, Rj) is nonzero for some j

indices in {i+ 1, . . . , t}; iii) all other blocks of Wi are zero.

Proof (of Lemma 7). Let U1 be a matrix of orthonormal eigenvectors of X(R1) and define

T := IR1,U1 . Then (T>XT)(R1:t) looks like on the first picture of Figure 2.7, where the × symbols

represent arbitrary elements.

41

+

0 0 0

0

0 ××

× ×

×××

×

R1 Rt. . .

� 0 � 0

7−→

+

0 0 0

0

0 ××

0 0

××0

0

R1 Rt. . .

Figure 2.7: How to diagonalize X(R1:t) in Lemma 7

Next we let W1 be a matrix such that right multiplying T>XT by W1 adds columns of

T>XT indexed by R1 to columns indexed by Rj to zero out the T>XT (R1, Rj) block for all

j > 1. Then the R1:t region of W>1 T
>XTW1 looks like in the right picture on Figure 2.7.

We then redefine T := TW1 and X := T>XT, and continue in like fashion with the R2:t

diagonal block of X.

The next definition is from the theory of facial reduction [11, 47].

Definition 2.4. We say that a sequence of symmetric matrices X1, . . . , Xt is a facial reduction

sequence for Sn+ if

X1 ∈ Sn+, and Xi+1 ∈
(
Sn+ ∩X⊥1 ∩ · · · ∩X⊥i

)∗
for i = 1, . . . , t− 1.

Here, for a set C ⊆ Sn we write C∗ = {Y : X • Y ≥ 0 for all X ∈ C } for its dual cone.

Evidently, if (X1, . . . , Xt) is in semidefinite echelon form, then it is a facial reduction

sequence, but the converse is not true in general.

Lemma 8 below follows from Lemma 1 in [31]; however, below we give a simpler proof.

Lemma 8. Suppose that (X1, . . . , Xt) is a facial reduction sequence, and V is an invertible

matrix. Then (V >X1V, . . . , V
>XtV) is also a facial reduction sequence.

Proof. Let (X1, . . . , Xt) be as stated. For brevity, define the map V : Sn → Sn as

VX = V >XV for X ∈ Sn. Then the conjugate of V is computed as V∗Y = V Y V > for Y ∈ Sn.

42

Let us fix i ∈ {1, . . . , t− 1} and let Y ∈ Sn+ ∩ (VX1)
⊥ ∩ · · · ∩ (VXi)

⊥. We will show

VXi+1 • Y ≥ 0, (2.37)

and this will prove our claim. From the definition of the conjugate we deduce

V∗Y ∈ Sn+ ∩X⊥1 ∩ · · · ∩X⊥i . (2.38)

Hence VXi+1 • Y = Xi+1 • V∗Y ≥ 0, where the inequality follows from (2.38) and from

(X1, . . . , Xt) being a facial reduction sequence. Hence (2.37) follows and the proof is complete.

We can now prove the difficult direction in Theorem 1.

Proof (of “only if” in Theorem 1). Suppose that (P) is weakly infeasible and Lemma 5 produced

the reformulation (Pinfeas) with operator A′ and right hand side b′. We claim that k ≥ 1, so to

obtain a contradiction, suppose k = 0. Then the alternative system of (Pinfeas) (namely the

system (P-alt) with (A′, b′) in place of (A, b)) is feasible, in particular, y = (1, 0, . . . , 0)> is feasible

in it. Hence (Pinfeas) is strongly infeasible. Thus (P) is also strongly infeasible, which is the

desired contradiction.

Also suppose that Lemma 6 produced the reformulation (Pnotstrong) with operator A′′ and

right hand side b′′; and it produced the sequence (X1, . . . , X`+1) which is in semidefinite echelon

form and certifies that (Pnotstrong) is not strongly infeasible. We claim that ` ≥ 1. Indeed, if `

were 0, then X1 would be feasible in (Pnotstrong), hence (P) would also be feasible, which would

be a contradiction.

As usual, we represent the operator A′ with matrices A′i and the operator A′′ with matrices

A′′i for i = 1, . . . ,m. Further, following the proof of Lemma 5 we assume without loss of generality

that the positive definite blocks in the A′i are identities.

If (Pnotstrong) is the same as (Pinfeas), then there is nothing to do. Otherwise, since both are

reformulations of (P), we can transform (Pnotstrong) into (Pinfeas) if we

1. perform a sequence of elementary row operations on the equations A′′i •X = b′′i ; then

43

2. replace all A′′i by V >A′′i V for some invertible matrix V.

Suppose we perform only the elementary row operations, and for simplicity we still call the

resulting reformulation (Pnotstrong) with operator A′′ (represented by matrices A′′i) and right hand

side b′′. Of course, now b′ = b′′. Afterwards equations (2.32) still hold. At this point we have

A′i = V >A′′i V for i = 1, . . . ,m,

A′′i •Xs = V >A′′i V • V −1XsV
−> for i = 1, . . . ,m; for s = 1, . . . , `+ 1,

(2.39)

where the second set of equations follows from the properties of the • product. We next perform

the following operations:

Xs := V −1XsV
−> for s = 1, . . . , `+ 1. (2.40)

Let us consider the following invariant conditions, where j ∈ {0, . . . , `+ 1}:

(INV-1): The semidefinite system (Pinfeas) is a reformulation of (P) with properties given in

Lemma 5. In particular, (A′1, . . . , A
′
k+1) is in semidefinite echelon form and

(b′1, . . . , b
′
k, b
′
k+1) = (0, . . . , 0,−1).

(INV-2):

A′Xs = 0 for s = 1, . . . , `

A′X`+1 = b′.
(2.41)

(INV-3): (X1, . . . , X`+1) is a facial reduction sequence.

(INV-4): (X1, . . . , Xj) is in semidefinite echelon form.

We claim that all these conditions hold when j = 0. Indeed, (INV-1) holds since (Pinfeas) was

constructed in Lemma 5. Condition (INV-4) holds vacuously. Condition (INV-2) holds by

(2.39), by b′ = b′′, and since we performed the operations in (2.40). Finally, condition (INV-3)

holds by Lemma 8, since we started with (X1, . . . , X`+1) being in semidefinite echelon form, then

we performed operations (2.40).

44

The goal is to have the invariant conditions satisfied with j = `+ 1. Once that is done, the

proof is complete, since we can set (Pweak) equal to (Pinfeas). So let us assume that j ∈ {0, . . . , `}

is an integer, and all the invariant conditions hold with j.

We will perform Step j below, which diagonalizes a certain block of Xj+1 and in the process

also transforms A′ and the other Xj . We will prove that afterwards the invariant conditions hold

with j + 1. Recall the notation (2.36).

Step j We assume that (A′1, . . . , A
′
k+1) has structure {P1, . . . , Pk+1} and set Pk+2 := N \ P1:(k+1).

We also assume that (X1, . . . , Xj) has structure {Q1, . . . , Qj}.

By condition (INV-4) and using an argument like in the proof of the “if” direction in

Theorem 1 we see that Sn+ ∩X⊥1 ∩ · · · ∩X⊥j is the set of psd matrices whose rows and

columns corresponding to Q1:j are zero. By condition (INV-3) we have

Xj+1 ∈
(
Sn+ ∩X⊥1 ∩ · · · ∩X⊥j

)∗
,

hence

Xj+1(N \Q1:j) � 0. (2.42)

Let us define Ri = Pi \Q1:j for i = 1, . . . , k + 2. Then we rewrite (2.42) as

Xj+1(R1 ∪ · · · ∪Rk+2) � 0. (2.43)

So Xj+1 looks like on Figure 2.8, where the red submatrix is positive semidefinite, and the

blue and white submatrices are arbitrary.

45

.
.
.

P1 ∩Q1:j

R1

P2 ∩Q1:j

R2

Pk+2 ∩Q1:j

Rk+2

Figure 2.8: Xj+1 before it is transformed

We now apply Lemma 7 with X := Xj+1, t := k + 2 and the Ri just defined. The goal is to

diagonalize Xj+1(R1:t). Let T be the transformation matrix produced by Lemma 7, then

T = IR1,U1W1 . . . IRk+2,Uk+2
Wk+2, (2.44)

where

(a) the Ui are orthonormal matrices for all i.

(b) right multiplying an n× n matrix, say M, by Wi adds multiples of columns in

M(N,Ri) to columns of M(N,Rj) where j ∈ {i+ 1, . . . , k + 2}.

We perform the operations

Xs := T>XsT for s = 1, . . . , `+ 1,

A′i := T−1A′iT
−> for i = 1, . . . ,m,

(2.45)

and set

Qj+1 := {t | the (t, t) element of Xj+1(N \Q1:j) is positive}.

We claim that the invariant conditions now hold for j + 1. Indeed, (INV-2) holds by how we

redefined the Xs and A′i in (2.45). Condition (INV-3) holds by Lemma 8.

46

We next look at (INV-4). We first show on Figure 2.9 how Xj+1 looks before and after step

(2.45). To better see what happened, we permuted the rows and columns of Xj+1, so that rows

(and columns) indexed by Q1:j come first. The ⊕ block stands for a positive semidefinite block.

Step (2.45) transforms Xj+1(N \Q1:j) to be nonnegative diagonal, and in this process

Xj+1(Q1:j , N \Q1:j) (and the symmetric counterpart) is also transformed. We show the changed

block in red in Figure 2.9.

×

××

⊕
×

×× ×

× +
7−→

Q1:j N \Q1:j Q1:j Qj+1N \Q1:j+1

Figure 2.9: How step (2.45) changes Xj+1

Next we look at how X1, . . . , Xj change due to step (2.45), so we fix s ∈ {1, . . . , j}. Given the

factorization of T in (2.44), replacing Xs by T>XsT amounts to running Algorithm 3 below:

Algorithm 3 Transforming Xs

for t = 1 : (k + 2) do

(*) Xs := I>Rt,Ut
XsIRt,Ut ;

(**) Xs := W>t XsWt;

end for

We claim that after Algorithm 3 is run, the matrix Xs remains in the same shape it was in

before. Suppose this is true after we performed steps (*) and (**) for t = 1, . . . , q− 1, where q ≥ 1.

We next perform step (*) with t = q. This amounts to first multiplying Xs(N,Rq) from the

right by Uq, then multiplying Xs(Rq, N) from the left by U>q . Since R1 ∪ · · · ∪Rk+2 = N \Q1:j ,

we see that

Rq ⊆ N \Q1:j ⊆ N \Q1:s.

We depict Xs on Figure 2.10, with the affected parts shaded in red and conclude that Xs remains

in the shape it was in before step (2.45). Note that on Figure 2.10 we permuted the rows and

columns of Xs so that Xs(Q1:s) is in the upper left corner.

47

+

× × × ×

×

×

×

Q1:s−1 Qs N \Q1:s

Rq

Figure 2.10: How steps (*) and (**) in Algorithm 3 change Xs, where s ≤ j.

We next perform step (**) with t = q. Multiplying Xs from the right by Wq adds multiples of

columns in Xs(N,Rq) to columns in Xs(N,Rq′) where q′ ∈ {q + 1, . . . , k + 2}. Then we perform

the analogous row operations. Thus Figure 2.10 again tells us that Xs remains in the same shape.

We thus conclude that condition (INV-4) holds after step (2.45) with j + 1 instead of j.

We next prove that condition (INV-1) remains unchanged after step (2.45) is executed, so we

look at how the A′i change. Let us fix i ∈ {1, . . . ,m}.

Given the decomposition (2.44), we have

T−> = I−>R1U1
W−>1 . . . I−>Rk+2,Uk+2

W−>k+2,

T−1 = W−1k+2I
−1
Rk+2Uk+2

. . .W−11 I−1R1,U1
.

(2.46)

We also know that for all t ∈ {1, . . . , k + 2} by the the definition of IR,G and by U>t = U−1t the

following hold:

I−1Rt,Ut
= IRt,U>t

I−>Rt,Ut
= IRt,Ut .

(2.47)

Thus, given the decomposition (2.46), performing step (2.45) on A′i amounts to running

Algorithm 4 below.

Algorithm 4 Transforming A′i

for t = 1 : (k + 2) do

(*) A′i := IRt,U>t
A′iIRt,Ut ;

(**) A′i := W−1t A′iW
−>
t ;

end for

48

We claim that after Algorithm 4 is run, the matrix A′i remains in the shape it was in before.

Suppose this is true after we performed steps (*) and (**) for t = 1, . . . , q − 1, where q ≥ 1.

Next we perform (*) with t = q. We need to keep in mind that q ∈ {1, . . . , k + 2} and Rq ⊆ Pq.

We distinguish three cases.

q = i We show on Figure 2.11 the A′i matrix before and after step (*). The changed portion is in

red.

First the submatrix A′i(N,Rq) is multiplied from the right by Uq, then the submatrix

A′i(Rq, N) is multiplied from the left by U>q .

Thus A′i(Rq) = I is replaced by U>q IUq = I, so it remains an identity. In summary, A′i has

the same form before and after step (*).

I

I

×

×

×

× ×

×

×

P1:i−1 Pi N \ P1:i

Rq

Figure 2.11: How step (*) in Algorithm 4 changes A′
i, when q = i

q < i We show on Figure 2.12 the A′i matrix, before and after step (*). The changed portion is in

red.

First the submatrix A′i(N,Rq) is multiplied from the right by Uq, then the submatrix

A′i(Rq, N) is multiplied from the left by U>q .

Again, A′i has the same form before and after step (*).

49

I

×

×

×

×

×

×

× ×

×

×

×

×Rq

P1:i−1 Pi N \ P1:i

Figure 2.12: How step (*) in Algorithm 4 changes A′
i, when q < i

q > i We show on Figure 2.13 the A′i matrix, before and after step (*). The changed portion is

again in red.

First the submatrix A′i(N,Rq) is multiplied from the right by Uq, then the submatrix

A′i(Rq, N) is multiplied from the left by U>q .

Yet again, A′i has the same form before and after step (*).

I

× × × ×

×

×

×

Rq

P1:i−1 Pi N \ P1:i

Figure 2.13: How step (2.45) changes A′
i, when q > i

Next we perform step (**) with t = q. We recall that right multiplying A′i by Wq adds

columns of A′i(N,Rq) to columns in A′i(N,Rq′) where q < q′. By the algebraic description of Wq

(after the statement of Lemma 7) we see that multiplying A′i from the right by W−>q adds

columns of A′i(N,Rq′) to columns in A′i(N,Rq) where q < q′. (Multiplying A′i from the left by

W−1q works analogously on the rows of A′i.)

50

Recall that Rq ⊆ Pq and Rq′ ⊆ Pq′ . Thus Figures 2.11, 2.12, and 2.13 tell us that A′i remains

in the same shape as it was in before step (**). Thus condition (INV-1) holds, and the proof is

complete.

2.7 Our problem library and computational tests

Using the results of the previous sections, we now show how to generate a library of weakly

infeasible SDPs. We accompany our SDPs with an intuitive visualization and examine whether

their infeasibility can be recognized by the prominent SDP solvers MOSEK [4] and SDPA-GMP

[15].

Libraries of weakly infeasible SDPs are available [31, 67] the latter of these was generated

using the Lasserre relaxation of polynomial optimization problems. On the other hand, any

weakly infeasible SDP is a possible output of our Algorithm 1, so our current library includes

instances that are unlikely to appear in any previous collection.

The instances We constructed all 80 instances using Algorithm 1 and split them into two

classes: clean and messy.

• We constructed our clean instances by steps 1–4 of Algorithm 1, without using the

reformulation step of step 5, so our clean SDPs are in the echelon form (Pweak).

• From each clean instance we created a corresponding messy instance as follows. We applied

elementary row operations that we represent by an m×m integral matrix F = (fij), then a

congruence transformation that we represent by an n× n integral matrix T.

That is, if (P) is a clean instance, then in the corresponding messy instance constraint i is

T>(

m∑
j=1

fijAj)T •X =

m∑
j=1

fijbj .

We further categorize the instances as “miniature”, “small”, “medium”, and “large”, with

parameters given in Table 2.1. In each category the clean and messy instances are in one-to-one

correspondence. For example, from the “mini, clean, 9” instance we constructed the “mini, messy,

51

Miniature Small Medium Large

k 1 3 3 4

` 1 1–3 2–4 2–4

n 3 5–15 25–40 120–240

m 2–5 4–7 4–7 5–8

Table 2.1: Parameters of our weakly infeasible SDPs: k+ 1 being the length of the infeasibility certificate,
`+1 the length of the not-strong infeasibility certificate, n the matrix order, and m the number of constraints.

9” instance. In all instances all data is integral, so their weak infeasibility can be verified by hand,

in exact arithmetic.

Data storage For convenience we give our instances in three formats.

1. In the “.mat” files (in Matlab format) the A1, . . . , Am are stored as rows of a matrix A and

the X1, . . . , X`+1 are stored as rows of a matrix X. These files also contain the right hand

side b.

For each messy instance the files also include the matrices F and T that were used to create

it from the corresponding clean instance.

2. The “.cbf” and “.dat-s” files contain the same SDPs. The “.cbf” files can be directly read

by MOSEK and the “.dat-s” files can be directly read by SDPA-GMP.

The “.jpg” files in the “image” subdirectories contain visualizations of the matrices Ai, Xj

and F and T for each problem. Matrices A1, . . . , Ak+1 and X1, . . . , X`+1 are color coded, just like

in Figure 2.5.

Computational testing For computational testing we selected the SDP solvers MOSEK and

SDPA-GMP as representative industry standards. MOSEK is currently the only commercially

available SDP solver, it is fast and accurate on most industrial problems, however, it has limited

numerical precision. On the other hand, SDPA-GMP can carry out calculations with precision

10−200.

The results are in Table 2.2, where we reported a solver’s output as “correct” if it marked an

instance as infeasible.

52

Miniature Small Medium/Large

Clean Messy Clean Messy Clean Messy

MOSEK 0 0 0 0 0 0

SDPA-GMP 10 10 0 2 0 0

Total correct 10 10 10 10 20 20

Table 2.2: Number of infeasible instances correctly identified by MOSEK and SDPA-GMP

We see that while MOSEK failed to identify infeasibility of any of the SDP instances,

SDPA-GMP correctly identified the infeasibility of all miniature and of some small instances.

However, both solvers failed on the the larger instances.

Besides standalone SDP solvers we also tested two implementations of facial reduction. The

first is the Sieve-SDP algorithm [69], which works very well if the constraint matrices of an SDP

are in semidefinite echelon form. Not surprisingly, Sieve-SDP quickly proved infeasibility of all

clean instances, but failed on all messy instances. The second implementation is the facial

reduction method of Permenter and Parrilo [52] which performed very similarly.

The problem instances are available from the webpage of the first author.

2.8 Discussion and conclusion

We presented an echelon form of weakly infeasible SDPs that permits us to construct any

weakly infeasible SDP and any bad projection of the psd cone by a combinatorial algorithm. We

conclude with a discussion.

First we recall normal forms of other types of SDPs and linear maps; these normal forms are

similar in spirit, but much easier to derive. For example, in [49] and in Section 2.2.1 in [48] we

produced a normal form of well-behaved semidefinite systems of the form

m∑
i=1

xiAi � B, (2.48)

and called the normal form a good reformulation. The system (2.48) with B = 0 is well behaved

iff ASn+ is closed, hence we obtain a normal form of linear maps that carry Sn+ to a closed set.

53

This normal form also permits us to construct any such linear map. In contrast, to derive such a

normal (echelon) form of weakly infeasible SDPs and of maps that carry Sn+ to a nonclosed set, we

needed a much more technical proof.

Next, we reinterpret Theorem 1 in two equivalent forms.

The first interpretation is a “sandwich theorem” which we state in terms of weak infeasibility

of H ∩ Sn+ where the affine subspace H is defined in (2.1).

Theorem 4. The semidefinite program H ∩ Sn+ is weakly infeasible if and only if there are

positive integers k and `, an invertible matrix T, and sequences (A′1, . . . , A
′
k+1) and

(X1, . . . , X`+1), both in semidefinite echelon form such that

X`+1 + lin{X1, . . . , X` } ⊆ T>HT

⊆ {X : A′1 •X = · · · = A′k •X = 0, A′k+1 •X = −1}.

Here lin{X1, . . . , X` } stands for the linear span of X1, . . . , X`, and T>HT for the set

{T>XT : X ∈ H }.

The second interpretation is a “factorization” result. Suppose that (Pweak) in Theorem 1 was

obtained by elementary row operations that we represent by an m×m matrix G and by

congruence transformations that we represent by an n× n matrix T, see the discussion in Remark

2.3.1. We define the map T : Sn → Sn as T (X) = TXT> for X ∈ Sn. Then in Theorem 1 the

operators A and A′ and vectors b and b′ are related as

A′ = GAT , b′ = Gb,

so (A, b) can be “factorized” into (A′, b′) (and vice versa).

Next we comment on computing the echelon form (Pweak). In general, we do not have an

efficient or stable method to do that, since we would need to solve the SDPs that arise in Lemma

4 in exact arithmetic. However, the complexity of even finding a feasible solution to an SDP is

unknown (see Remark 2.3.1). Thus the echelon form (Pweak) is similar in spirit to the Jordan

normal form of a matrix, which also must be computed in exact arithmetic [16]. At the same

54

time, even though they are nontrivial to compute, both our echelon form, and the Jordan normal

form yield both theoretical and practical insights.

We finally mention some intriguing research questions. First, it may be of interest to interpret

our results from the viewpont of projective geometry, in the spirit of Naldi and Sinn’s recent

paper [36]. Second, recall again Example 2.4: here the SDP from minimizing the sum-of-squares

(SOS) relaxation of the Motzkin polynomial is weakly infeasible, and is in the echelon form of

(Pweak) without having to reformulate it. It would be interesting to see whether the same is true

of other sum-of-squares SDPs.

55

CHAPTER 3

How do exponential size solutions arise in semidefinite programming?

3.1 Introduction

Linear programs and polynomial size solutions The classical linear programming (LP)

feasibility problem asks whether a system of linear inequalities

Ax ≥ b

has a solution, where the matrix A and the vector b both have integer entries. When the answer

is “yes”, then by a classical argument a feasible rational x has size at most 2n2 log n times the size

of (A, b), where n is the number of variables. When the answer is “no”, there is a certificate of

infeasibility whose size is similarly bounded. Here and in the sequel by “size” of a matrix or

vector we mean the number of bits necessary to describe it.

Semidefinite programs and exponential size solutions Semidefinite programs (SDPs) are a

far reaching generalization of linear programs, and they have attracted widespread attention in

the last few decades. An SDP feasibility problem can be formulated as

x1A1 + · · ·+ xmAm +B � 0, (P)

where the Ai and B are symmetric matrices with integer entries and S � 0 means that the

symmetric matrix S is positive semidefinite.

In a stark contrast to a linear program, the solutions of (P) may have exponential size in the

size of the input. This surprising fact is illustrated by a classical example of Khachiyan:

x1 ≥ x22, x2 ≥ x23, . . . , xm−1 ≥ x2m, xm ≥ 2. (Khachiyan)

56

We can formulate (Khachiyan) as an SDP, if we write its quadratic constraints as

 xi xi+1

xi+1 1

 � 0 for i = 1, . . . ,m− 1. (3.1)

We see that x1 ≥ 22
m−1

, hence the size of x1, and of any feasible solution of (Khachiyan), is at

least 2m−1.

We show the feasible set of (Khachiyan) with m = 3 on the left in Figure 3.1. For better

visibility, we replaced the constraint x3 ≥ 2 by 2 ≥ x3 ≥ 0 and made x3 increase from right to left.

Figure 3.1: Feasible sets of (Khachiyan) (on the left) and of the quadratic inequalities (3.13) derived from
(M ild-SDP) (on the right)

Exponential size solutions in SDPs are mathematically intriguing, and greatly complicate

approaches to the following fundamental open problem:

Can we decide feasibility of (P) in polynomial time?

Indeed, algorithms that decide feasibility of (P) in polynomial time must assume that a

polynomial size solution exists (if there is one): see a detailed exposition in [17]. In contrast, the

algorithm in [53] that achieves the best known complexity bound for SDP feasibility uses a

fundamental result from the first order theory of reals [58], and is polynomial only in fixed

dimension.

57

We know of few papers that deal directly with the complexity of SDP. However, several works

study the complexity of a related problem, optimizing a polynomial subject to polynomial

inequality constraints. On the positive side, some polynomial optimization problems are

polynomial time solvable when the dimension is fixed: see [58, 7, 8, 5, 66]. Further, polynomial

size solutions exist in special cases [65]. On the other hand, several fundamental problems in

polynomial optimization are NP-hard, see for example, [8, 42, 2, 3].

Khachiyan’s example naturally leads us to the following questions:

Are exponential size solutions common in SDPs? (3.2)

Can we represent them in polynomial space? (3.3)

The answer to (3.2) seems to be a definite “no”, for some of the following reasons:

• Exponential size solutions do not appear in typical SDPs in the literature.

• They can be eliminated even in (Khachiyan) by a fairly simple change. For example, let us

add a new variable xm+1, and change the last constraint to xm ≥ 2 + xm+1; afterwards x1

does not have to be large anymore.

Or, let us replace x by Gx, where G is a random, dense matrix; afterwards (Khachiyan) will

be quite messy, and will have no variables that are obviously larger than others.

To question (3.3) we have hope to get a “yes” answer. After all, to convince ourselves that

x1 := 22
m−1

(with a suitable x2, . . . , xm) is feasible in (Khachiyan), we do not need to explicity

write it down, a symbolic computation suffices. Still, question (3.3) seems to be open.

Contributions It turns out that, despite these obstacles, we can still answer “yes” to question

(3.2). One of the underlying techniques we use is facial reduction [11, 45, 47, 14, 68] that was

originally introduced to induce strong duality in conic optimization problems.

We assume that (P) has a strictly feasible solution x for which
∑m

i=1 xiAi +B is positive

definite. We fix a nonnegative integer parameter k, the singularity degree of a dual problem. We

precisely define k soon, but for now we only need to know that k ≤ 1 holds when (P) is a linear

program. An informal version of our main result follows.

58

Informal Theorem 5 After a linear change of variables x←Mx, where M is a suitable

invertible matrix, the leading k variables in strictly feasible solutions of (P) for which xk is

sufficiently large obey a Khachiyan type hierarchy. Namely, the inequalities

x1 ≥ d2xα2
2 , x2 ≥ d3xα3

3 , . . . , xk−1 ≥ dkxαk
k (3.4)

hold, where

2 ≥ αj ≥ 1 +
1

k − j + 1
for j = 2, . . . , k. (3.5)

Here the dj and αj are positive constants that depend on the Ai, on B, and the last m− k

variables, that we consider fixed.

Hence, if k is large and xk is large then x1 is larger than xk.

How much larger? In the worst case, when αj = 2 for all j, like in (Khachiyan), x1 is at least

constant times x2
k−1

k . In the best case, when αj = 1 + 1
k−j+1 for all j, by an elementary

calculation x1 is at least constant times xkk. So even in this best case the magnitude of x1 is

exponentially larger than that of xk.

Our assumptions are minimal. We assumed that (P) has a strictly feasible solution, and

indeed there are semidefinite programs without strictly feasible solutions, with large singularity

degree, and without large solutions: we discuss such an SDP after Example 3.1. Further, we need

to focus on just a subset of variables and allow a linear change of variables.1 Nevertheless, we

show that in SDPs coming from minimizing a univariate polynomial, large variables appear

naturally, without any change of variables. The same is true of an SDP published in [40] that

proves nonnegativity of a linear function over a set described by quadratic constraints.

We also partially answer the representation question (3.3). We show that in strictly feasible

SDPs, after the change of variables x←Mx, we can verify that a strictly feasible x exists,

without even computing the values of the “large” variables x1, . . . , xk. The same is true of SDPs

coming from minimizing a univariate polynomial; in the latter SDPs we do not even need a

change of variables.

1Since a change of variables, say x← Gx ruins the structure even of the nicely structured (Khachiyan), we may need
to perform the inverse operation x← G−1x.

59

Related work Linear programs can be solved in polynomial time, as it was first proved by

Khachiyan [24]; see Grötschel, Lovász, and Schrijver [17] for an exposition that handles important

details like the necessary accuracy. Other landmark polynomial time algorithms for linear

programming were given by Karmarkar [23], Renegar [57], and Kojima et al [27].

On the other hand, to decide SDP feasibility in polynomial time, we must assume that there

is a polynomial size solution (should there be a solution). We refer to [17] for such an algorithm

based on the ellipsoid method. The algorithm of Porkolab and Khachiyan [53] is the fastest

known algorithm to decide SDP feasibility; however, it runs in polynomial time only for fixed n

and m. The algorithm of [53] uses a foundational result of Renegar [58], which decides in

polynomial time the feasibility of a system of polynomial inequalities in fixed dimension. We

further refer to Nesterov and Nemirovskii [38] for foundational interior point methods to solve

SDPs with an objective function. We also refer to Renegar [61] for a very clean treatment of

interior point methods for convex optimization.

The complexity of SDP is closely related to the complexity of optimizing a polynomial subject

to polynomial inequality constraints. To explain how, first consider a system of convex quadratic

inequalities

x>Qix+ b>i x+ ci ≤ 0 (i = 1, . . . ,m) (3.6)

where the Qi are fixed symmetric psd matrices, and x ∈ Rn is the vector of variables. The

question whether we can decide feasibility of (3.6) in polynomial time is also fundamental, open,

and, in a sense, easier than the question of deciding feasibility of (P) in polynomial time. The

reason is that (3.6) can be represented as an instance of (P) by choosing suitable Ai and B

matrices. On the other hand, we can formulate semidefiniteness of a symmetric matrix variable

by requiring the principal minors (which are polynomials) to be nonnegative.

Among positive results in polynomial optimization, we already mentioned Renegar’s paper

[58]. Bienstock [7] proved that such problems can be solved in polynomial time, if the number of

constraints is fixed, the constraints and objective are quadratic, and at least one constraint is

strictly convex. The work of [7] builds on Barvinok’s fundamental result [5] that proved we can

test in polynomial time whether a system of a fixed number of quadratic equations is feasible. It

also builds on early work of Vavasis [65] which proved that a system with linear constraints and

60

one quadratic constraint has a solution of polynomial size. In other important early work, Vavasis

and Zippel [66] proved we can solve indefinite quadratic optimization problems with a ball

constraint, in polynomial time.

On the flip side, there are many hardness results. For example, Bienstock, del Pia, and

Hildebrand [8] proved it is NP-hard to test whether a system of quadratic inequalities has a

polynomial size rational solution, even if we know that the system has a rational solution.

Pardalos and Vavasis [42] proved the fundamental problem of minimizing a (nonconvex) quadratic

function subject to linear constraints is also NP-hard. The following problem is also classical, and

was proven to be NP-hard only in 2013, by Ahmadi, Olshevsky, Parrilo, and Tsitsiklis [2]: can we

test convexity of a polynomial? It is also NP-hard to test whether a polynomial optimization

problem attains its optimal value, see Ahmadi and Zhang [3].

One of the tools we use is an elementary facial reduction algorithm. These algorithms were

originally designed to ensure strong duality in conic optimization problems. They originated in

the paper of Borwein and Wolkowicz [11], then simpler variants were given, for example, by Waki

and Muramatsu [68] and in [45, 47]. For a recent comprehensive survey of facial reduction and its

applications, see Drusvyatskiy and Wolkowicz [14].

In other related work, O’ Donnell [40] presented an SDP that certifies nonnegativity of a

polynomial via the sum-of-squares proof system, and is essentially equivalent to (Khachiyan).

Previously it was thought that sum-of-squares proofs, a popular tool in theoretical computer

science, can be found in polynomial time. However, due to this work, it is now clear that this is

not obviously the case. Precisely, the complexity of finding SOS proofs is just as open as the

complexity of deciding feasibility of SDPs.

The plan of the paper In Subsection 3.1.1 we review preliminaries. In Subsection 3.2.1 we

formally state Theorem 5 and illustrate it via two extreme examples. In Subsection 3.2.2 we prove

it in a sequence of lemmas. In particular, in Lemma 13 we give a recursive formula, akin to a

continued fractions formula, to compute the αj exponents in (3.4). As an alternative, in

Subsection 3.2.3 we show how to compute the αj using the classical Fourier-Motzkin elimination

for linear inequalities; this is an interesting contrast with SDPs being highly nonlinear. In Section

61

3.3 we cover the case of SDPs coming from polynomial optimization and also revisit the example

from [40]. Section 3.4 concludes with a discusion.

Our proofs are fairly elementary. We use Proposition 1, a convex analysis argument about

positive semidefinite matrices and linear subspaces, but other than that, we only rely on basic

linear algebra, and on manipulating quadratic polynomials.

3.1.1 Notation and preliminaries

Matrices Given a matrix M ∈ Rn×n and R,S ⊆ {1, . . . , n} we denote the submatrix of M

corresponding to rows in R and columns in S by M(R,S). We write M(R) to abbreviate

M(R,R).

We let Sn be the set of n× n symmetric matrices and Sn+ be the set of n× n symmetric

positive semidefinite (psd) matrices. The notation S � 0 means that the symmetric matrix S is

positive definite. The inner product of symmetric matrices S and T is defined as

S • T := trace(ST).

Definition 3.1. We say that (C1, . . . , C`) is a regular facial reduction sequence for Sn+ if each Ci

is in Sn and of the form

C1 =

r1︷︸︸︷ n− r1︷ ︸︸ ︷
I 0

0 0

, . . . , Ci =

r1 + . . .+ ri−1︷ ︸︸ ︷ ri︷︸︸︷ n− r1 − . . .− ri︷ ︸︸ ︷
× × ×

× I 0

× 0 0

for i = 1, . . . , `, where the ri are nonnegative integers, and the × symbols correspond to blocks

with arbitrary elements.

These sequences appear in facial reduction algorithms. The term “facial reduction” reflects

the following: given a psd matrix Y which has zero • product with C1, . . . , C` we see that the first

r1 diagonal elements of Y are zero (by C1 • Y = 0), hence the first r1 rows and columns are zero.

62

Continuing, we deduce that the first r1 + · · ·+ r` rows and columns of Y are zero, so overall Y is

reduced to live in a face of Sn+. 2

Next we formalize what we mean by “replacing x by Mx for some invertible matrix M in

(P).”

Definition 3.2. We say that we reformulate (P) if we apply to it some of the following

operations (in any order):

1. Exchange Ai and Aj , where i and j are distinct indices in {1, . . . ,m}.

2. Replace Ai by λAi + µAj , where λ and µ are reals, and λ 6= 0.

3. Replace all Ai by T>AiT and B by T>BT, where T is a suitably chosen invertible matrix.

We also say that by reformulating (P) we obtain a reformulation.

We see that operations (1) and (2) amount to performing elementary row operations on a

dual type system, say, on

Ai • Y = 0 for i = 1, . . . ,m.

Since operations (1) and (2) can be encoded by an invertible matrix, they amount to replacing

the variable x by Mx in (P), where M is some invertible matrix. As to operation (3), it does not

influence the magnitude of the xi and we only use it to put (P) into a more convenient looking

form.

Reformulations were previously used to study various pathologies in SDPs, for example,

unattained optimal values and duality gaps [48]; and infeasibility [30]. In this work we show that

they help us understand another classical pathology, exponential size solutions.

We will rely on the following statement about the connection of Sn+ and a linear subspace.

Proposition 1. Suppose L is a linear subspace of Sn. Then exactly one of the followig two

alternatives is true:

1. There is a nonzero positive semidefinite matrix in L.

2. There is a positive definite matrix in L⊥.

2A convex subset F of Sn
+ is a face, if for any X,Y ∈ Sn

+ if the open line segment {λX + (1 − λ)Y : 0 < λ < 1}
intersects F, then both X and Y must be in F.

63

3.2 Main results and proofs

3.2.1 Reformulating (P) and statement of Theorem 5

In our first lemma we present an algorithm to reformulate (P) into a more convenient looking

form. The algorithm is a simplified version of the algorithm in [30]; the latter, in turn, is a

specialized facial reduction algorithm.

Lemma 9. The problem (P) has a reformulation

x1A
′
1 + · · ·+ xkA

′
k + xk+1A

′
k+1 + · · ·+ xmA

′
m +B′ � 0 (P ′)

with the following properties:

• k is a nonnegative integer, and (A′1, . . . , A
′
k) is a regular facial reduction sequence.

• If r1, . . . , rk is the size of the identity block in A′1, . . . , A
′
k, respectively, then n− r1 − · · · − rk

is the maximum rank of a matrix in

{Y � 0 |Ai • Y = 0 for i = 1, . . . ,m }. (3.7)

Proof. Let L be the linear span of A1, . . . , Am and apply Proposition 1. If item (2) holds we let

k = 0, A′i = Ai for all i, B′ = B and stop.

If item (1) holds, we choose a nonzero psd matrix V =
∑m

i=1 λiAi in L and assume λ1 6= 0

without loss of generality. We then choose a T invertible matrix so that

T>V T =

Ir1 0

0 0

 ,

where r1 is the rank of V. We let A′1 := T>V T,A′i := T>AiT for i ≥ 2, and B′ = T>BT.

Let r be the maximum rank of a psd matrix in L⊥ (i.e., in (3.7)). Also, let Lnew be the linear

span of A′1, . . . , A
′
m. We claim that r is also the maximum rank of a psd matrix in L⊥new. For that,

64

suppose Y � 0 is in L⊥. Then

Ai • Y = T>AiT • T−1Y T−> = 0,

so T−1Y T−> is in L⊥new and has the same rank as Y. Similarly, from any psd matrix in L⊥new we

can construct a psd matrix in L⊥ with the same rank. This proves our claim.

We see that if Y ∈ L⊥new ∩ Sn+ then A′1 • Y = 0 so the sum of the first r1 diagonal elements of

Y is zero, hence the first r1 rows and columns of Y are zero.

We next construct an SDP
m∑
i=2

xiFi +G � 0,

where Fi is obtained from A′i by deleting the first r1 rows and columns for i = 2, . . . ,m and G is

obtained from B′ in the same manner. By the above argument the maximum rank of a matrix in

{Z � 0 : Fi • Z = 0 (i = 2, . . . ,m)} is also r, so we can proceed in a similar manner with this

smaller SDP. When our process stops, we have the required reformulation.

From now on we assume that

k is the smallest integer that satisfies the requirements of Lemma 9.

Using the terminology of facial reduction, k is the singularity degree of the system (3.7). This

concept was originally introduced by Sturm in [63] and used to derive error bounds, namely,

bounds on the distance of a point from the feasible set of an SDP. For a broad generalization of

Sturm’s result to conic systems over so-called amenable cones, see a recent result by Lourenço [33].

Definition 3.3. We say that (x̄k+1, . . . , x̄m) is partially strictly feasible in (P ′) if there is

(x1, . . . , xk) such that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in it.

For the rest of the paper we fix

(x̄k+1, . . . , x̄m) a partially strictly feasible solution in (P ′).

From now on we will say that a number is a constant, if it depends only on the x̄i, Ai and B.

Theorem 5 will rely on such constants.

We now formally state our main result.

65

Theorem 5. There is (x1, . . . , xk) such that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′)

and xk is arbitrarily large.

Further, if xk is sufficiently large and (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′) then

xj ≥ dj+1x
αj+1

j+1 for j = 1, . . . , k − 1, (3.8)

where

2 ≥ αj+1 ≥ 1 +
1

k − j
for j = 1, . . . , k − 1. (3.9)

Here the dj and αj are positive constants.

The proof of Theorem 5 has three main parts. First, in Lemma 10 we prove the first

statement, that in strictly feasible solutions of (P ′) we can have arbitrarily large xk. Lemma 11 is

a technical statement about a certain parameter, the tail-index of the A′j .

In the second part, Lemma 12 deduces from (P ′) a set of quadratic polynomial inequalities.

These are typically “messy”, namely they look like

(x1 + x2 + x3)(x4 + 10x5) > (x2 − 3x4)
2.

Third, in Lemma 13 from these messy inequalities we first derive “cleaned up” versions, such as

x1x4 > constantx22,

then from these cleaned up inequalities we deduce the inequalities (3.8) and a recursive formula to

compute the αj . Next, Lemma 14 proves that the αj exponents are a monotone function of the

tail-index of the A′j . Finally, Lemma 15 shows that a minimal tail-index gives the smallest

possible exponent αj . Combining all lemmas gives us Theorem 5.

Before we get to the proof, we illlustrate Theorem 5 via two extreme examples. Although

Theorem 5 is about strictly feasible solutions, the examples are simple, and in all of them we just

look at feasible solutions.

66

Example 3.1. (Khachiyan SDP) Consider the SDP

x1 x2

x2 x3

x3 x4

x4

x2 x3 x4 1

� 0, (Kh-SDP)

which can be written in the form of (P ′) with the A′i matrices given below and B′ the matrix

whose lower right corner is 1 and the remaining elements are zero:

1

0

0

0

0

︸ ︷︷ ︸

A′1

,

0 1

1

0

0

1 0

︸ ︷︷ ︸

A′2

,

0

0 1

1

0

1 0

︸ ︷︷ ︸

A′3

,

0

0

0 1

1

1 0

︸ ︷︷ ︸

A′4

.

The subdeterminants in (Kh-SDP) with three red, three blue, and three green corners,

respectively, give the inequalities

x1 ≥ x22, x2 ≥ x23, x3 ≥ x24 (3.10)

that appear in (Khachiyan). (For simplicity we left out the inequality x4 ≥ 2). ♦

We note in passing that the feasible sets of (Kh-SDP) and of the derived quadratic

inequalities (3.10) are not equal. For example x = (256, 16, 4, 2) is not feasible in (Kh-SDP), but

is feasible in (3.10). However, we can easily construct an SDP that exactly represents

(Khachiyan), as follows. We define a (2m− 1)× (2m− 1) matrix whose first m− 1 order two

principal minors are of the form (3.1) and the last order one principal minor represents the

constraint xm ≥ 2. Permuting rows and columns puts this exact SDP into the regular form of (P ′).

67

We next note that the singularity degree of {Y � 0 : A′i • Y = 0 for i = 1, . . . , 4 } is four.

Indeed, consider a regular facial reduction sequence, say Â1, Â2, . . . whose members are in the

linear span of the A′i. Suppose without loss of generality that Â1 6= 0. Then Â1 = A′1, since A′1 is

the only nonzero psd matrix in the linear span of the A′i. Similarly, asume without loss of

generality that the lower right 3× 3 block of Â2 is nonzero. Then Â2 = A′2, and so on.

We finally discuss whether we need to assume that a strictly feasible solution exists, in order

to derive Theorem 5. On the one hand, there are semidefinite programs which have no strictly

feasible solutions, nor do they exhibit the hierarchy among the leading variables seen in (3.5).

Suppose indeed that in (Kh-SDP) we change x1 to x1 + 1 and the 1 entry in the bottom right

corner to 0. This change does not affect the parameter k. Further, the new SDP is no longer

strictly feasible, and x2 = x3 = x4 = 0 holds in any feasible solution, but x1 can be −1 3.

On the other hand, there are SDPs with no strictly feasible solution, which, however, have

large size solutions: to produce such a problem, we simply take any SDP that has large solutions,

and add all-zero rows and columns.

Example 3.2. (Mild SDP) As a counterpoint to (Kh-SDP) we next consider a mild SDP (we

will see soon why we call it “mild”)

x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1

� 0. (M ild-SDP)

3We can similarly create such an SDP with any number of variables.

68

We write (M ild-SDP) in the form of (P ′) with the A′i matrices shown below and B′ the matrix

whose lower right corner is 1 and the remaining elements are zero:

1

0

0

0

0

︸ ︷︷ ︸

A′1

,

0 1

1

1 0

0

0

︸ ︷︷ ︸

A′2

,

0

0 1

1

1 0

0

︸ ︷︷ ︸

A′3

,

0

0

0 1

1

1 0

︸ ︷︷ ︸

A′4

.

In (M ild-SDP) the subdeterminants with three red, three blue, and three green corners,

respectively, yield the inequalities

x1x3 ≥ x22, x2x4 ≥ x23, x3 ≥ x24. (3.11)

Next from (3.11) we derive the inequalities

x1 ≥ x4/32 , x2 ≥ x3/23 , x3 ≥ x24 (3.12)

as follows. The last inequality x3 ≥ x24 is copied from (3.11) to (3.12) only for completeness. Next

we plug x
1/2
3 ≥ x4 into the middle inequality in (3.11) to get x2 ≥ x3/23 . We finally use this last

inequality in the first one in (3.11) and deduce x1 ≥ x4/32 .

To summarize, the exponents in the derived inequalities (3.12) are the smallest permitted by

our bounds (3.9).

♦

To illustrate the difference between (Khachiyan) and the inequalities derived from

(M ild-SDP), we show the set defined by the inequalities

x1x3 ≥ x22, x2 ≥ x23, 2 ≥ x3 ≥ 0 (3.13)

69

on the right in Figure 3.1. Note that the set defined by (3.13) is a three dimensional version of

the set given in (3.11), normalized by adding upper and lower bounds on x3.

3.2.2 Proof of Theorem 5

In Lemmas 10–12 we will use the following notation:

rj = size of the identity block in A′j for j = 1, . . . , k,

I1 := {1, . . . , r1},

I2 := {r1 + 1, . . . , r1 + r2},
...

Ik := {r1 + · · ·+ rk−1 + 1, . . . , r1 + · · ·+ rk},

Ik+1 := {r1 + · · ·+ rk + 1, . . . , n}.

(3.14)

Lemma 10. There is (x1, . . . , xk) such that xk is arbitrarily large, and (x1, . . . , xk, x̄k+1, . . . , x̄m)

is strictly feasible in (P ′).

Proof. Let

Z :=
m∑

i=k+1

x̄iA
′
i +B′.

Since there is x1, . . . , xk such that
∑k

i=1 xiA
′
i + Z � 0, and A′i(Ik+1) = 0 for i = 1, . . . , k we see

that

Z(Ik+1) � 0.

By the definition of positive definiteness (G is positive definite if x>Gx > 0 for all nonzero x), and

by the shape of A′k, we see that the Ik ∪ Ik+1 diagonal block of xkA
′
k +Z is positive definite when

xk is large enough. For any such xk there is xk−1 so the Ik−1 ∪ Ik ∪ Ik+1 diagonal block of

xk−1A
′
k−1 + xkA

′
k + Z is positive definite. We construct xk−2, . . . , x1 in a similar manner.

The proof of Lemma 10 partially answers the representation question (3.3). In particular, for

the moment let us ignore the requirement that we need to choose xk to be large and just focus on

completing (x̄k+1, . . . , x̄m) to a strictly feasible solution. The proof that the required (x1, . . . , xk)

70

could be computed is fairly simple, and it is illustrated on Figure 3.2, where the red blocks stand

for the larger and larger blocks that we make positive definite. So we can convince ourselves that

(x1, . . . , xk) exist, even without computing their actual values.

× × × ×
× × × ×
× × × ×
× × × +

× × × ×
× × × ×
× × + ×
× × × +

× × × ×
× + × ×
× × + ×
× × × +

Ik+1

� 0

Z

7−→
+xkA

′
k

xk � 0

Ik

� 0

xkA
′
k + Z

7−→
+xk−1A

′
k−1

xk−1 � 0

Ik−1

� 0

xk−1A
′
k−1 + xkA

′
k + Z

7−→
+xk−2A

′
k−2

xk−2 � 0

. . .

Figure 3.2: Verifying that x1, . . . , xk exist, without computing them

From now on we will assume

r1 + · · ·+ rk < n, (3.15)

and we claim that we can do so without loss of generality. Indeed, suppose that the sum of the rj

is n. Then an argument like in the proof of Lemma 10 proves that A′1, . . . , A
′
k have a positive

definite linear combination. Hence the singularity degree of (3.7) is actually just 1, so Theorem 5

holds vacuously.

By (3.15) we see that Ik+1 6= ∅.

To motivate our next definition we compare our two extreme examples from two viewpoints.

From the first viewpoint we see that in (Kh-SDP) the xj variables in the offdiagonal positions

are more to the right than in (M ild-SDP). From the second viewpoint, in the inequalities (3.10)

derived from (Kh-SDP) the exponents are larger than in the inequalities (3.12) derived from

(M ild-SDP). We will see that these two facts are closely connected, so in the next definition we

capture “how far to the right the xj are in off-diagonal positions.”

Definition 3.4. The tail-index of A′j+1 is

tj+1 := max { t : A′j+1(Ij , It) 6= 0} for j = 1, . . . , k − 1. (3.16)

71

A′
j+1 =

×

Ij︷︸︸︷
×

Ij+1︷︸︸︷
× ×

Itj+1︷︸︸︷
× ×

Ik+1︷︸︸︷
×

× × × × •
× × I

× ×
× •
×
×

.

Figure 3.3: The tail-index of A′
j+1

In words, tj+1 is the index of the rightmost nonzero block of columns “directly above” the

identity block in A′j+1. We illustrate the tail-index on Figure 3.3. Here and in later figures the •

blocks are nonzero, and we separate the columns indexed by Ik+1 from the other columns by

double vertical lines.

Continuing our examples, we see that t2 = t3 = t4 = 5 in (Kh-SDP), whereas

t2 = 3, t3 = 4, t4 = 5 in (M ild-SDP).

Lemma 11.

tj+1 > j + 1 for j = 1, . . . , k − 1.

Proof. We will use the following notation: for r, s ∈ {1, . . . , k + 1} such that r ≤ s we let

Ir:s := Ir ∪ · · · ∪ Is. (3.17)

Let j ∈ {1, . . . , k − 1} be arbitrary. To help with the proof, we picture A′j and A′j+1 in equation

(3.18). As always, the empty blocks are zero, and the × blocks are arbitrary. The blocks marked

by ⊗ are A′j+1(Ij , I(j+2):(k+1)) and its symmetric counterpart. We will prove that these blocks are

nonzero.

A′j =

I1:(j−1)︷ ︸︸ ︷
×

Ij︷︸︸︷
×

Ij+1︷︸︸︷
×

I(j+2):(k+1)︷ ︸︸ ︷
×

× I

×

×

, A′j+1 =

I1:(j−1)︷ ︸︸ ︷
×

Ij︷︸︸︷
×

Ij+1︷︸︸︷
×

I(j+2):(k+1)︷ ︸︸ ︷
×

× × × ⊗

× × I

× ⊗

. (3.18)

72

For that, suppose the ⊗ blocks are zero and let A′j := λA′j +A′j+1 for some large λ > 0. Then by

the definition of positive definiteness (G is positive definite if xTGx > 0 for all nonzero x) we find

A′j(Ij:(j+1)) � 0.

Let Q be a matrix of suitable scaled eigenvectors of A′j(Ij:(j+1)), define

T :=

I1:(j−1)︷︸︸︷
I

Ij:(j+1)︷ ︸︸ ︷ I(j+2):(k+1)︷ ︸︸ ︷
Q

I

 ,

and let

A′i := T>AiT for i = 1, . . . , j, j + 2, . . . , k.

Then an elementary calculation shows that (A′1, . . . , A
′
j , A

′
j+2, . . . , A

′
k) is a length k − 1 regular

facial reduction sequence that satisfies the requirements of Lemma 9. However, we assumed that

the shortest such sequence has length k. This contradiction completes the proof.

In Lemma 12 we construct a sequence of polynomial inequalities that must be satisfied by any

(x1, . . . , xk) that complete (x̄k+1, . . . , x̄m) to a strictly feasible solution. We need some more

notation. Given a strictly feasible solution

(x1, . . . , xk, x̄k+1, . . . , x̄m)

we will write δj for an affine combination of the “x” and “x̄” terms with indices larger than j, in

other words,

δj = γj+1xj+1 + · · ·+ γkxk + γk+1x̄k+1 + · · ·+ γmx̄m + γm+1 (3.19)

where the γi are constants.

We will actually slightly abuse this notation. We will write δj more than once, but we may

mean a different affine combination each time. For example, if k = m = 4, then we may write

73

δ2 = 2x3 + 3x4 + 5 on one line, and δ2 = x3 − 2x4 − 3 on another. Given that x̄k+1, . . . , x̄m are

fixed, δk will always denote a constant.

Lemma 12. Suppose that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′). Then

pj(x1, . . . , xk) > 0 for j = 1, . . . , k − 1, (3.20)

for some pj polynomials defined as follows:

• if tj+1 ≤ k, then we choose pj as

pj(x1, . . . , xk) = (xj + δj)(xtj+1 + δtj+1)− (βj+1xj+1 + δj+1)
2 (3.21)

where βj+1 is a nonzero constant. In this case we call pj a type 1 polynomial.

• if tj+1 = k + 1, then we choose pj as

pj(x1, . . . , xk) = (xj + δj)− (βj+1xj+1 + δj+1)
2, (3.22)

where βj+1 is a nonzero constant. In this case we call pj a type 2 polynomial.

Before we prove it, we discuss Lemma 12. First we note that by Lemma 11 we have tk = k+ 1

so pk−1 is always type 2.

In Khachiyan’s example (Khachiyan) all inequalities come from type 2 polynomials, namely

from xj − x2j+1 for j = 1, . . . , k − 1. In contrast, among the inequalities (3.11) derived from

(M ild-SDP) the first two come from type 1 polynomials and the last one from a type 2

polynomial.

Proof (of Lemma 12). Fix j ∈ {1, . . . , k − 1}. Let `1 ∈ Ij and `2 ∈ Itj+1 such that (A′j+1)`1,`2 6= 0.

As stated, suppose that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′). For brevity,

define

S :=
k∑
i=1

xiA
′
i +

m∑
i=k+1

x̄iA
′
i +B′. (3.23)

We distinguish two cases.

74

Case 1: Suppose tj+1 ≤ k. Below we show the matrices that will be important in defining pj :

×

Ij︷︸︸︷
× ×

Itj+1︷︸︸︷
× ×

Ik+1︷︸︸︷
×

× I

×

×

×

×

︸ ︷︷ ︸

A′
j

,

×

Ij︷︸︸︷
× ×

Itj+1︷︸︸︷
× ×

Ik+1︷︸︸︷
×

× × × •

× × ×

× •

×

×

︸ ︷︷ ︸

A′
j+1

,

×

Ij︷︸︸︷
× ×

Itj+1︷︸︸︷
× ×

Ik+1︷︸︸︷
×

× × × × × ×

× × × × × ×

× × × I

× × ×

× × ×

︸ ︷︷ ︸

A′
tj+1

.

(3.24)

As usual, the empty blocks are zero, the × blocks may have arbitrary elements, and the • block

is nonzero. (More precisely, A′j+1(Ij+1) = I, but we do not indicate this in equation (3.24), since

the other entries suffice to derive the pj polynomial.)

Define βj+1 := (A′j+1)`1,`2 . Let S′ be the submatrix of S that contains rows and columns

indexed by `1 and `2, then

S′ =

 xj + δj βj+1xj+1 + δj+1

βj+1xj+1 + δj+1 xtj+1 + δtj+1

 .

We define pj(x1, . . . , xk) as the determinant of S′, then pj is a type 1 polynomial in the form

(3.21). Since S′ � 0, we see that pj(x1, . . . , xk) > 0 and the proof in this case is complete.

75

Case 2: Suppose tj+1 = k + 1. Now pj will mainly depend on two matrices that we show

below:

×

Ij︷︸︸︷
× ×

Itj+1︷︸︸︷
×

× I

×

×

︸ ︷︷ ︸

A′j

,

×

Ij︷︸︸︷
× ×

Itj+1︷︸︸︷
×

× × × •

× × ×

× •

︸ ︷︷ ︸

A′j+1

(3.25)

Again, the • blocks are nonzero. We again let S′ be the submatrix of S that contains rows and

columns indexed by `1 and `2.

Define λ := (A′j+1)`1,`2 , µ := S′`2,`2 . Observe that µ depends only on x̄k+1, . . . , x̄m, the A′i and

B′, in other words it is a constant. Then S′ looks like

S′ =

 xj + δj λxj+1 + δj+1

λxj+1 + δj+1 µ

 .

Define

pj(x1, . . . , xk) :=
1

µ
detS′.

Since S′ � 0 we have µ > 0. So pj(x1, . . . , xk) > 0 and pj(x1, . . . , xk) is a type 2 polynomial in the

form required in (3.22) with βj+1 = λ/
√
µ (note that according to our definition of δj , if we divide

it by a constant, the result is still δj). The proof in this case is now complete.

Lemma 13. Suppose that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′) and xk is

sufficiently large. Then

xj ≥ dj+1x
αj+1

j+1 for j = 1, . . . , k − 1, (3.26)

76

where the dj+1 are positive constants and the αj+1 can be computed by the recursion

αj+1 =

2− 1

αj+2 . . . αtj+1

if tj+1 ≤ k

2 if tj+1 = k + 1

(3.27)

for j = 1, . . . , k − 1.

Before proving it, we discuss Lemma 13. We have tk = k + 1 (by Lemma 11) hence Lemma 13

implies αk = 2. Hence, by induction the recursion (3.27) implies that αj ∈ (1, 2] holds for all j.

Thus, if xk is large enough, then xj > 0 for j = 1, . . . , k.

It is also interesting to note that formula (3.27) is reminiscent of a continued fractions formula.

To illustrate Lemma 13 we show how from (M ild-SDP) we can deduce the inequalities (3.12)

much more quickly than we did before. Precisely, we compute the exponents by the recursion

(3.27) as

α4 = 2 (since t4 = 5)

α3 = 2− 1/α4 = 3/2 (since t3 = 4)

α2 = 2− 1/α3 = 4/3 (since t2 = 3).

(3.28)

The proof of Lemma 13 has two ingredients. First, from the messy looking type 1 inequalities

(3.21) we deduce cleaned up versions

xjxtj+1 ≥ constantx2j+1,

and we similarly clean up the type 2 inequalities (3.22). Then from the cleaned up inequalities we

derive the required inequalities (3.26) and the recursion (3.27).

Since the proof of Lemma 13 is somewhat technical, we illustrate the cleaning up step with an

example.

77

Figure 3.4: Feasible sets of (Khachiyan) (on left) and of inequalities derived from the perturbed Khachiyan
SDP (3.29) (on the right)

Example 3.3. (Perturbed Khachiyan) Consider the SDP

x1 − 2x2 x2 − x3

x2 + x3 x3

x3

x2 − x3 x3 1

� 0. (3.29)

From its principal minors we deduce the inequalities

x1 − 2x2 ≥ (x2 − x3)2 (3.30)

x2 + x3 ≥ x23. (3.31)

These two inequalities are a “perturbed” version of the inequalities in (Khachiyan), since we

obtain them by replacing x1 by x1 − 2x2 and x2 by x2 ± x3.

Suppose (x1, x2, x3) is feasible in (3.29). Then the inequalities x1 ≥ x22 and x2 ≥ x23 no longer

hold. However, assuming x3 ≥ 10, we claim that the following inequalities do:

x1 ≥ 1

2
x22 (3.32)

x2 ≥ 1

2
x23. (3.33)

78

Indeed, (3.33) follows from (3.31) and x3 ≥ 10 directly. Using (3.33) we see that x3 is lower order

than x2. A straightforward calculation shows

(x2 − x3)2 ≥
1

2
x22. (3.34)

Hence from (3.30) we get

0 ≤ x1 − 2x2 − (x2 − x3)2

≤ x1 − (x2 − x3)2

≤ x1 −
1

2
x22,

(3.35)

where the last inequality follows from using (3.34). Thus (3.32) follows, and the proof is complete.

♦

We show the feasible set of (Khachiyan) (when m = 3) and the feasible set described by the

inequalities (3.30) on Figure 3.4. From (Khachiyan) we removed the inequality x3 ≥ 2 and we

normalized both sets by suitable bounds on x3. Note that x3 increases from right to left for better

visibility.

Proof (of Lemma 13). We use an argument analogous to the one in Example 3.3. We use

induction and show how to suppress the “δ” terms in the type 1 and type 2 polynomials at the

cost of making xk large and choosing suitable dj constants.

Suppose that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′). Then by Lemma 12 the

inequalities pj(x1, . . . , xk) > 0 hold for j = 1, . . . , k − 1.

When j = k − 1 we have pk−1(x1, . . . , xk) = (xk−1 + δk−1)− (βkxk + δk)
2 > 0. Using the

definition of δk−1 we get

(xk−1 + γkxk + δk)− (βkxk + δk)
2 > 0,

where γk is a constant (possibly zero) and βk 6= 0. Then for a suitable positive dk we have

xk−1 ≥ dkx2k if xk is sufficiently large.

For the inductive step we will adapt the O,Θ and o notation from theoretical computer

science. Given functions f, g : Rk → R+ we say that

79

1. f = O(g) (in words, f is big-Oh of g) if there are positive constants C1 and C2 such that for

all (x1, . . . , xk) such that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′) and xk ≥ C1

we have

f(x1, . . . , xk) ≤ C2g(x1, . . . , xk).

2. f = Θ(g) (in words, f is big-Theta of g) if f = O(g) and g = O(f).

3. f = o(g) (in words, f is little-oh of g) if for all ε > 0 there is δ > 0 such that if

(x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′) and xk ≥ δ then

f(x1, . . . , xk) ≤ εg(x1, . . . , xk).

The usual calculus of O,Θ and o carries over verbatim. For example

f = o(g) ⇒ f = O(g)

f = O(g) and h = O(g) ⇒ f + h = O(g).

(3.36)

Suppose next that j+ 1 ≤ k− 1 and we have proved the following: there are positive constants

dj+1, . . . , dk and αj+2, . . . , αk derived from the recursion (3.27) such that the inequalities

xj+1 ≥ dj+2x
αj+2

j+2

xj+2 ≥ dj+3x
αj+3

j+3

...

xk−1 ≥ dkx
αk
k

(3.37)

hold for all x1, . . . , xk such that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′) and xk is

large enough.

We will construct positive constants dj+1, and αj+1 according to the recursion (3.27) such

that

xj ≥ dj+1x
αj+1

j+1 (3.38)

80

holds for all x1, . . . , xk such that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′) and xk is

large enough.

We first observe that the recursion (3.27) implies αj+2, . . . , αk ∈ (1, 2], so by the inequalities

(3.37) we have

xs = o(x`) when s > ` > j. (3.39)

Assume that (x1, . . . , xk, x̄k+1, . . . , x̄m) is strictly feasible in (P ′). We distinguish two cases.

Case 1: First suppose that tj+1 ≤ k, in other words, the quadratic polynomial pj is type 1

(see Lemma 12).

Then the inequality pj(x1, . . . , xk) > 0 implies

0 < (xj + δj)(xtj+1 + δtj+1)− (βj+1xj+1 + δj+1)
2

= (xj + γj+1xj+1 + δj+1)(xtj+1 + δtj+1)− (βj+1xj+1 + δj+1)
2

= (xj + γj+1xj+1 + o(xj+1))(xtj+1 + o(xtj+1))− (βj+1xj+1 + o(xj+1))
2

≤ (xj + Θ(xj+1))Θ(xtj+1)−Θ(xj+1)
2

(3.40)

where γj+1 is a constant (which may be zero). The first equality follows from the definition of δj

(see 3.19). The second equality follows since by (3.39) and by tj+1 > j + 1 we have

|δj+1| = o(xj+1), |δtj+1 | = o(xtj+1). (3.41)

The last inequality follows from βj+1 6= 0 and the calculus rules (3.36). We now continue (3.40):

0 < (xj + Θ(xj+1))Θ(xtj+1)−Θ(xj+1)
2

= xjΘ(xtj+1) + Θ(xj+1xtj+1)−Θ(xj+1)
2

≤ xjΘ(xtj+1) + o(x2j+1)−Θ(xj+1)
2

≤ xjΘ(xtj+1)−Θ(xj+1)
2,

(3.42)

where the second inequality follows, since tj+1 > j + 1 hence by (3.39) we have xtj+1 = o(xj+1).

The last inequality follows from the calculus rules (3.36).

81

Next from the inequalities (3.37), using tj+1 > j + 1 we learn that

xαtj+1
= O(xj+1)

where α = αj+2αj+3 . . . αtj+1 . Hence xtj+1 = O(x
1/α
j+1).

We plug this last estimate into the last inequality in (3.42) and deduce

0 < xjΘ(x
1/α
j+1)−Θ(x2j+1).

Dividing by x
1/α
j+1 and a constant, we see that αj+1 := 2− 1/α satisfies the recursion (3.27), as

required.

Case 2 Suppose that tj+1 = k + 1, in other words, the quadratic polynomial pj is type 2.

Then

pj(x1, . . . , xk) = (xj + δj)− (βj+1xj+1 + δj+1)
2

= (xj + γj+1xj+1 + δj+1)− (βj+1xj+1 + δj+1)
2

for some βj+1 6= 0 and γj+1 constants, where γj+1 may be zero. By (3.39) we have δj+1 = o(xj+1),

hence

xj ≥ Θ(x2j+1).

So we can set αj+1 = 2, thereby completing the proof.

As a prelude to Lemma 14, in Figure 3.5 we show three SDPs (for brevity we left out the �

symbols). The first is (M ild-SDP). The second and third arise from it by shifting x2 in the

offdiagonal position to the right. Underneath we show the vector of the α = (α2, α3, α4)

exponents in the inequalities derived by the recursion (3.27).

We see that α2 increases from left to right and Lemma 14 presents a general result of this

kind.

Lemma 14. The αj exponents in (3.9) are strictly increasing functions of the tj+1 tail-indices

defined in Definition 3.4.

82

x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1

︸ ︷︷ ︸

α =(4/3, 3/2, 2)

→

x1 x2

x2 x3

x3 x4

x2 x3 x4

x4 1

︸ ︷︷ ︸

α =(5/3, 3/2, 2)

→

x1 x2

x2 x3

x3 x4

x3 x4

x2 x4 1

︸ ︷︷ ︸

α =(2, 3/2, 2)

Figure 3.5: Shifting x2 to the right increases α2

Precisely, suppose we derived the inequalities

x` ≥ d`+1x
α`+1

`+1 for ` = 1, . . . , k − 1 (3.43)

from (P ′) using the recursion (3.27).

Suppose also that j ∈ {1, . . . , k − 1}, tj+1 ≤ k, and we change A′j+1 so that tj+1 increases by

1. After the change we derive inequalities

x` ≥ f`+1x
ω`+1

`+1 for ` = 1, . . . , k − 1, (3.44)

using the recursion (3.27). Here f`+1 is a positive constant for all `.

Then

ω`+1

= α`+1 if ` > j

> α`+1 if ` = j

≥ α`+1 if ` < j.

(3.45)

Proof. Recall from the proof of Lemma 12 that A′j+1 affects only polynomial pj . Also recall from

the proof of Lemma 13 that pj does not affect inequalities (3.43) for ` > j. So we conclude that

ω`+1 = α`+1 for all ` > j.

We next prove ωj+1 > αj+1. For brevity, let s = tj+1 and recall that

αj+1 = 2− 1

α
,

where α = αj+2 · · · · · αs.

83

We distinguish two cases. If s < k, then formula (3.27) implies ωj+1 = 2− 1/(α · αs+1), hence

ωj+1 > αj+1, as wanted. If s = k, then by the same formula 2 = ωj+1 and 2 > αj+1 so

ωj+1 > αj+1 again follows.

The remaining inequalities in (3.43) follow by induction using the recursion formula (3.27).

Lemma 15. Suppose that tj+1 = j + 2 for j = 1, . . . , k − 1, in other words, tj+1 is the smallest

possible. Then in the inequalities (3.37) we have

αj+1 = 1 +
1

k − j
for j = 1, . . . , k − 1. (3.46)

Proof. We use induction. First suppose j = k − 1. Since pk−1 is of type 2, we see αj+1 = αk = 2,

as wanted. Next assume that 1 ≤ j < k − 1 and

αj+2 = 1 +
1

k − j − 1
.

By the recursion (3.27) we get

αj+1 = 2− 1

αj+2
= 1 +

1

k − j
,

completing the proof.

Proof (of Theorem 5). The result follows from Lemmas 10 through 15. Precisely, by Lemma 10

variable xk can be arbitrarily large in a strictly feasible solution of (P ′). By Lemma 12 we derive

the polynomial inequalities (3.20). From these in Lemma 13 we derive the clean inequalities

(3.26) via the recursion (3.27).

From the recursion (3.27) it directly follows that all αj+1 are at most 2. The lower bound on

the αj+1 is proved as follows: by Lemma 14 the αj+1 are monotone functions of the tail-indices

tj+1. On the other hand tj+1 ≥ j + 2 for all j by Lemma 11 and when tj+1 = j + 2 for all j, then

by Lemma 15 we have αj+1 = 1 + 1/(k − j). The proof is now complete.

84

3.2.3 Computing the exponents by Fourier-Motzkin elimination

The recursion (3.27) gives a convenient way to compute the αj exponents. Equivalently, we

can compute the αj via the well known Fourier-Motzkin elimination algorithm, designed for linear

inequalities; this is an interesting contrast, since SDPs are highly nonlinear.

We do this as follows. If polynomial pj is of type 1, then we suppress the lower order terms to

get

xjxtj+1 ≥ constantx2j+1, (3.47)

see the last inequality in (3.42). If polynomial pj is of type 2, then we similarly suppress the lower

order terms to deduce

xj ≥ constantx2j+1. (3.48)

After this, since x1, . . . , xk are all positive, we rewrite the inequalities in terms of yj := log xj for

all j, then eliminate variables. For example, from the inequalites (3.11) we deduce

y1 + y3 ≥ 2y2

y2 + y4 ≥ 2y3

y3 ≥ 2y4.

(3.49)

We add 1
2 times the last inequality in (3.49) to the middle one to get

y2 ≥
3

2
y3. (3.50)

We then add 2
3 times (3.50) to the first inequality in (3.49) to get

y1 ≥
4

3
y2. (3.51)

Finally, (3.50), (3.51) and the last inequality in (3.49) translate back to the inequalities (3.12).

85

3.3 When we do not even need a change of variables

As we previously discussed, the linear change of variables x←Mx is necessary to obtain a

Khachiyan type hierarchy among the variables. Nevertheless, in this section we show a natural

SDP in which large variables occur even without a change of variables; more precisely, the SDP is

in the form of (P ′). For completeness, we also revisit the example from [40], and show that the

SDP therein is also in the regular form of (P ′).

Given a univariate polynomial of even degree f(x) =
∑2n

i=0 aix
i we consider the problem of

minimizing f over R. We write this problem as

sup λ

s.t. f − λ ≥ 0.

(3.52)

We will show that in the natural SDP formulation of (3.52) exponentially large variables appear

naturally, although here by “exponentially large” we only mean in magnitude, not in size.

It is known that f − λ is nonnegative iff it is a sum of squares (SOS), that is, f =
∑t

i=1 g
2
i for

a positive integer t and polynomials gi.

Define the vector of monomials

z = (1, x, x2, . . . , xn)>.

Then f − λ is SOS if and only if (see [28, 37, 43, 62]) f − λ = zz> •Q for some Q � 0. Matching

monomials in f − λ and zz> •Q we translate (3.52) into the SDP

max −A0 •Q

s.t. Ai •Q = ai for i = 1, . . . , 2n

Q ∈ Sn+1
+ .

(3.53)

Here for all i ∈ {0, 1, . . . , 2n} the (k, `) element of the matrix Ai is 1 if k + ` = i+ 2 for some

k, ` ∈ {1, . . . , n+ 1} and all other entries of Ai are zero.

86

The dual problem of (3.53) is

min
∑2n

i=1 aiyi

s.t.
∑2n

i=1 yiAi +A0 � 0,

(3.54)

whose constraints can be written as

1 y1 y2 . . . yn

y1 y2 . . . yn+1

y2 . . . yn+2

...
. . .

...

yn yn+1 yn+2 . . . y2n

� 0.

Permuting rows and columns, this is equivalent to

y2n y2n−1 y2n−2 . . . yn

y2n−1 y2n−2 . . . yn−1

y2n−2 . . . yn−2

...
. . .

...

yn yn−1 yn−2 . . . 1

� 0. (3.55)

Let us rename the variables so the even numbered ones come first, and the rest come afterwards,

as

x1 = y2n, x2 = y2n−2, . . . xn = y2;

xn+1 = y2n−1, xn+2 = y2n−3, . . . x2n = y1.

Then the constraints (3.55) become

2n∑
i=1

xiA
′
i +B′ � 0. (3.56)

87

Here the A′i for i = 1, . . . , n and B′ are defined as follows. In A′i the (k, `) and (`, k) entry is 1, if

k + ` = 2i and all other entries are zero. In B′ the lower right corner is 1 and the other elements

are zero.

For example, when n = 3 the constraints (3.56) look like

x1

1

0

0

0

+ x2

0 1

1

1 0

0

+ x3

0

0 1

1

1 0

+

6∑
i=4

xiA
′
i +B′ � 0.

Thus (A′1, A
′
2, . . . , A

′
n) is a regular facial reduction sequence and (3.56) is in the form of (P ′).

The tail-indices (cf. Definition 3.4) are tj+1 = j + 2 for j = 1, . . . , n− 1, hence we can derive the

following inequalities, just like we did in Lemma 12:

xjxj+2 ≥ x2j+1 for j = 1, . . . , n− 2; and xn−1 ≥ x2n.

Note that now the “δ” terms that appear in Lemma 12 are all zero, so we do not have to worry

about “making xk large.” Hence by Lemma 15 we deduce that

xj ≥ x
αj+1

j+1 for j = 1, . . . , n− 1

hold, where αj+1 = 1 + 1/(n− j) for all j.

We translate these inequalities back to the original yj variables, and obtain the following

result:

Theorem 6. Suppose that y ∈ R2n is feasible in (3.54). Then

y2(n−j+1) ≥ y
1+1/(n−j)
2(n−j) for j = 1, . . . , n− 1.

88

Combining these inequalities we obtain

y2n ≥ yn2 .

Theorem 6 complements a result of Lasserre [28, Theorem 3.2], which states the following: if x̄

minimizes the polynomial f(x) then

(y1, y2, . . . , y2n) = (x̄, x̄2, . . . , x̄2n)

is optimal in (3.54). On the one hand, Theorem 6 states bounds on all feasible solutions, on the

other hand, it does not specify an optimal solution.

For completeness, we next revisit an example of O’ Donnell in [40], and show how the SDP

that arises in there is in the regular form of (P ′).

Example 3.4. We are given the polynomial with 2n variables

p(x, y) = p(x1, . . . , xn, y1, . . . , yn) = x1 + · · ·+ xn − 2y1

and the set K defined as

2x1y1 = y1, 2x2y2 = y2 . . . 2xnyn = yn

x21 = x1, x22 = x2 . . . x2n = xn

y21 = y2, y22 = y3 . . . y2n = 0.

Note that in the description of K the very last constraint y2n = 0 breaks the pattern seen in the

previous n− 1 columns. We ask the following question:

• Is p(x, y) ≥ 0 for all (x, y) ∈ K?

The answer is clearly yes, since for all (x, y) ∈ K we have x1, . . . , xn ∈ {0, 1} and

y1 = · · · = yn = 0.

On the other hand, the sum of squares procedure verifies the “yes” answer as follows. Let

z = (1, x1, . . . , xn, y1, . . . , yn)>

89

be a vector of monomials, and find λ, µ, ν ∈ Rn and Q � 0 such that

p(x, y) = z>Qz + λ1(2x1y1 − y1) + µ1(x
2
1 − x1) + ν1(y

2
1 − y2)

+ λ2(2x2y2 − y2) + µ2(x
2
2 − x2) + ν2(y

2
2 − y3)

...

+ λn(2xnyn − yn) + µn(x2n − xn) + νn(y2n − 0)

(3.57)

Matching coefficients on the left and right hand side, [40] shows that any Q feasible in (3.57) must

be of the form

Q =

u1 0 . . . 0 0 −u2 . . . 0 0 0 0

0 u2 . . . 0 0
...

. . .
...

...
...

...

...
...

. . .
...

... 0 . . . −un−1 0 0 0

0 0 . . . un−1 0 0 . . . 0 −un 0 0

0 0 . . . 0 un 0 . . . 0 0 −2 0

−u2 . . . 0 0 0 1 . . . 0 0 0 0

...
. . .

...
...

...
...

. . .
...

...
...

...

0 . . . −un−1 0 0 0 . . . 1 0 0 0

0 . . . 0 −un 0 0 . . . 0 1 0 0

0 . . . 0 0 −2 0 . . . 0 0 1 0

0 . . . 0 0 0 0 . . . 0 0 0 0

(3.58)

for suitable u1, . . . , un. Looking at 2× 2 subdeterminants of Q we see that the ui satisfy

4 ≤ un, u2n ≤ un−1, . . . , u22 ≤ u1, (3.59)

which is the same as (Khachiyan), except we replaced the constant 2 by 4.

90

Let us define Ek` to be the unit matrix in S2n+1 in which the (k, `) and (`, k) entries are 1

and the rest zero. Define

A′1 = E11, A
′
i = Eii − Ei−1,n+i−1 for i = 2, . . . , n.

Then any Q feasible in (3.57) is written as

Q = u1A
′
1 + u2A

′
2 + · · ·+ unA

′
n +B′ � 0, (3.60)

for a suitable B′ (precisely, B′ = −2En,2n +
∑2n

i=n+1Eii).

We see that (A′1, . . . , A
′
n) is a regular facial reduction sequence, thus the system (3.60) is in

the regular form of (P ′).

♦

We remark that (3.60) arises by concatenating 2× 2 psd blocks of the form (3.1), then

permuting rows and columns. In other words, (3.60) is the exact representation of (Khachiyan)

(apart from the constant 2 being replaced by 4), that we discussed after Example 3.1.

Among followup papers of O’ Donnell [40] we should mention the work of Raghavendra and

Weitz [54] which gave SDPs which also have a sum-of-squares origin, and exponentially large

solutions. It would be interesting to see whether those SDPs are also in the normal form of (P ′).

3.4 Conclusion

We showed that large size solutions do not just appear as pathological examples in

semidefinite programs, but are quite common: after a linear change of variables, they appear in

every strictly feasible SDP. As to “how large” they get, that depends on the singularity degree of

a dual problem and the so-called tail-indices of the constraint matrices. Further, large solutions

naturally appear in SDPs that come from minimizing a univariate polynomial, without any

change of variables.

We also studied how to represent large solutions of SDPs in polynomial space. Our main tool

was the regularized semidefinite program (P ′). If (P) and (P ′) are strictly feasible, then in the

latter we can verify that a strictly feasible solution exists, without computing the actual values of

91

the “large” variables x1, . . . , xk : see Figure 3.2. Further, SDPs that arise from polynomial

optimization (Section 3.3) and the SDP that represents (Khachiyan) are naturally in the form of

(P ′). Hence in these SDPs we can also certify large solutions without computing their actual

values.

Several questions remain open. For example, what can we say about large solutions in

semidefinite programs that are not strictly feasible? The discussion after Example 3.1 shows that

we do not have a complete answer.

Also, recall that we transform (P) into (P ′) by a linear change of variables (equivalent to

operations (1) and (2) in Definition 3.2) and a similarity transformation (operation (3) in

Definition 3.2). The latter has no effect on how large the variables are. We are thus led to the

following question: are all SDPs with exponentially large solutions in the form of (P ′) (perhaps

after a similarity transformation)? In other words, can we always certify large size solutions in

SDPs using a regular facial reduction sequence? Answering this question would help us answer

the greater question: can we decide feasibility of SDPs in polynomial time?

92

BIBLIOGRAPHY

[1] Amir Ali Ahmadi and Anirudha Majumdar. DSOS and SDSOS optimization: more tractable
alternatives to sum of squares and semidefinite optimization. SIAM Journal on Applied
Algebra and Geometry, 3(2):193–230, 2019.

[2] Amir Ali Ahmadi, Alex Olshevsky, Pablo A Parrilo, and John N Tsitsiklis. Np-hardness of
deciding convexity of quartic polynomials and related problems. Mathematical Programming,
137(1):453–476, 2013.

[3] Amir Ali Ahmadi and Jeffrey Zhang. On the complexity of testing attainment of the optimal
value in nonlinear optimization. Mathematical Programming, pages 1–21, 2019.

[4] Erling D Andersen and Knud D Andersen. The mosek interior point optimizer for linear
programming: an implementation of the homogeneous algorithm. In High performance
optimization, pages 197–232. Springer, 2000.

[5] Alexander I Barvinok. Feasibility testing for systems of real quadratic equations. Discrete &
Computational Geometry, 10(1):1–13, 1993.

[6] Heinz H Bauschke, Jonathan M Borwein, and Wu Li. Strong conical hull intersection
property, bounded linear regularity, Jameson’s property (G), and error bounds in convex
optimization. Mathematical Programming, 86(1):135–160, 1999.

[7] Daniel Bienstock. A note on polynomial solvability of the cdt problem. SIAM Journal on
Optimization, 26(1):488–498, 2016.

[8] Daniel Bienstock, Alberto Del Pia, and Robert Hildebrand. Complexity, exactness, and
rationality in polynomial optimization. arXiv preprint arXiv:2011.08347, 2020.

[9] Grigoriy Blekherman. There are significantly more nonegative polynomials than sums of
squares. Israel Journal of Mathematics, 153(1):355–380, 2006.

[10] Jon M Borwein and Henry Wolkowicz. Facial reduction for a cone-convex programming
problem. Journal of the Australian Mathematical Society, 30(3):369–380, 1981.

[11] Jonathan M. Borwein and Henry Wolkowicz. Regularizing the abstract convex program. J.
Math. Anal. App., 83:495–530, 1981.

[12] Peter Bürgisser and Felipe Cucker. Condition: The geometry of numerical algorithms,
volume 349. Springer Science & Business Media, 2013.

[13] George B Dantzig. Linear programming. Operations research, 50(1):42–47, 2002.

[14] Dmitriy Drusvyatskiy and Henry Wolkowicz. The many faces of degeneracy in conic
optimization. Foundations and Trends® in Optimization, 3(2):77–170, 2017.

[15] K. Fujisawa, M. Fukuda, M. Kojima, K. Nakata, M. Nakata, and M. Yamashita. SDPA
(semidefinite programming algorithm) and SDPA-GMP User’s Manual – Version 7.1.0.
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology.
Research Reports on Mathematical and Computing Sciences Series B-448, 2008.

93

[16] Gene H Golub and James Hardy Wilkinson. Ill-conditioned eigensystems and the
computation of the jordan canonical form. SIAM review, 18(4):578–619, 1976.

[17] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization, volume 2. Springer Science & Business Media, 2012.

[18] Didier Henrion. Semidefinite representation of convex hulls of rational varieties. Acta
Applicandae Mathematicae, 115(3):319, 2011.

[19] Didier Henrion and Jean-Bernard Lasserre. Detecting global optimality and extracting
solutions in GloptiPoly. In Positive polynomials in control, pages 293–310. Springer, 2005.

[20] Graham James Oscar Jameson. The duality of pairs of wedges. Proceedings of the London
Mathematical Society, 3(3):531–547, 1972.

[21] Yuhan Jiang and Bernd Sturmfels. Bad projections of the psd cone. arXiv preprint
arXiv:2006.09956, 2020.

[22] Cédric Josz and Didier Henrion. Strong duality in Lasserre’s hierarchy for polynomial
optimization. Optimization Letters, 10(1):3–10, 2016.

[23] N Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395, 1984.

[24] Leonid Genrikhovich Khachiyan. A polynomial algorithm in linear programming. In Doklady
Akademii Nauk, volume 244, pages 1093–1096. Russian Academy of Sciences, 1979.

[25] Victor Klee. Asymptotes and projections of convex sets. Mathematica Scandinavica,
8(2):356–362, 1961.

[26] Igor Klep and Markus Schweighofer. An exact duality theory for semidefinite programming
based on sums of squares. Math. Oper. Res., 38(3):569–590, 2013.

[27] Masakazu Kojima, Shinji Mizuno, and Akiko Yoshise. A primal-dual interior point algorithm
for linear programming. In Progress in mathematical programming, pages 29–47. Springer,
1989.

[28] Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001.

[29] Jean-Bernard Lasserre and Victor Magron. In SDP relaxations, inaccurate solvers do robust
optimization. SIAM Journal on Optimization, 29(3):2128–2145, 2019.

[30] Minghui Liu and Gábor Pataki. Exact duality in semidefinite programming based on
elementary reformulations. SIAM J. Opt., 25(3):1441–1454, 2015.

[31] Minghui Liu and Gábor Pataki. Exact duals and short certificates of infeasibility and weak
infeasibility in conic linear programming. Mathematical Programming, pages 1–46, 2017.

[32] Yanli Liu, Ernest K Ryu, and Wotao Yin. A new use of Douglas–Rachford splitting for
identifying infeasible, unbounded, and pathological conic programs. Mathematical
Programming, 177(1-2):225–253, 2019.

94

[33] Bruno F Lourenço. Amenable cones: error bounds without constraint qualifications. to
appear, Mathematical Programming, arXiv preprint arXiv:1712.06221, 2017.

[34] Bruno F. Lourenço, Masakazu Muramatsu, and Takashi Tsuchiya. A structural geometrical
analysis of weakly infeasible sdps. Journal of the Operations Research Society of Japan,
59(3):241–257, 2016.

[35] Theodore Samuel Motzkin. The arithmetic-geometric inequality. Inequalities (Proc. Sympos.
Wright-Patterson Air Force Base, Ohio, 1965), pages 205–224, 1967.

[36] Simone Naldi and Rainer Sinn. Conic programming: Infeasibility certificates and projective
geometry. Journal of Pure and Applied Algebra, 225(7):106605, 2021.

[37] Yurii Nesterov. Squared functional systems and optimization problems. In High performance
optimization, pages 405–440. Springer, 2000.

[38] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex
programming. SIAM, 1994.

[39] Yurii Nesterov, Michael J Todd, and Yinyu Ye. Infeasible-start primal-dual methods and
infeasibility detectors for nonlinear programming problems. Mathematical Programming,
84(2):227–268, 1999.

[40] Ryan O’Donnell. SOS is not obviously automatizable, even approximately. In 8th
Innovations in Theoretical Computer Science Conference (ITCS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[41] Dávid Papp and Sercan Yildiz. Sum-of-squares optimization without semidefinite
programming. SIAM Journal on Optimization, 29(1):822–851, 2019.

[42] Panos M Pardalos and Stephen A Vavasis. Quadratic programming with one negative
eigenvalue is NP-hard. Journal of Global optimization, 1(1):15–22, 1991.

[43] Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Mathematical programming, 96(2):293–320, 2003.

[44] Gábor Pataki. A simple derivation of a facial reduction algorithm and extended dual
systems. preprint http://gaborpataki.web.unc.edu/files/2018/07/fr.pdf, 19, 2000.

[45] Gábor Pataki. A simple derivation of a facial reduction algorithm and extended dual
systems. Technical report, Columbia University, 2000.

[46] Gábor Pataki. On the closedness of the linear image of a closed convex cone. Math. Oper.
Res., 32(2):395–412, 2007.

[47] Gábor Pataki. Strong duality in conic linear programming: facial reduction and extended
duals. In David Bailey, Heinz H. Bauschke, Frank Garvan, Michel Théra, Jon D. Vanderwerff,
and Henry Wolkowicz, editors, Proceedings of Jonfest: a conference in honour of the 60th
birthday of Jon Borwein. Springer, also available from http://arxiv.org/abs/1301.7717, 2013.

[48] Gábor Pataki. Characterizing bad semidefinite programs: normal forms and short proofs.
SIAM Review, 61(4):839–859, 2019.

95

[49] Gábor Pataki. Bad semidefinite programs: they all look the same. SIAM J. Opt.,
27(1):146–172, 2017.

[50] Javier Peña. Understanding the geometry of infeasible perturbations of a conic linear system.
SIAM Journal on Optimization, 10(2):534–550, 2000.

[51] Javier Peńa and James Renegar. Computing approximate solutions for convex conic systems
of constraints. Mathematical Programming, 87(3):351–383, 2000.

[52] Frank Permenter and Pablo Parrilo. Partial facial reduction: simplified, equivalent sdps via
approximations of the psd cone. Mathematical Programming, pages 1–54, 2014.

[53] Lorant Porkolab and Leonid Khachiyan. On the complexity of semidefinite programs.
Journal of Global Optimization, 10(4):351–365, 1997.

[54] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares proofs.
arXiv preprint arXiv:1702.05139, 2017.

[55] Motakuri V. Ramana. An exact duality theory for semidefinite programming and its
complexity implications. Math. Program. Ser. B, 77:129–162, 1997.

[56] Motakuri V Ramana, Levent Tunçel, and Henry Wolkowicz. Strong duality for semidefinite
programming. SIAM Journal on Optimization, 7(3):641–662, 1997.

[57] James Renegar. A polynomial-time algorithm, based on newton’s method, for linear
programming. Mathematical programming, 40(1):59–93, 1988.

[58] James Renegar. On the computational complexity and geometry of the first-order theory of
the reals. part i: Introduction. preliminaries. the geometry of semi-algebraic sets. the decision
problem for the existential theory of the reals. Journal of symbolic computation,
13(3):255–299, 1992.

[59] James Renegar. Some perturbation theory for linear programming. Mathematical
Programming, 65(1-3):73–91, 1994.

[60] James Renegar. Linear programming, complexity theory and elementary functional analysis.
Mathematical Programming, 70(1-3):279–351, 1995.

[61] James Renegar. A Mathematical View of Interior-Point Methods in Convex Optimization.
MPS-SIAM Series on Optimization. SIAM, Philadelphia, USA, 2001.

[62] Naum Z Shor. Class of global minimum bounds of polynomial functions. Cybernetics,
23(6):731–734, 1987.

[63] Jos Sturm. Error bounds for linear matrix inequalities. SIAM J. Optim., 10:1228–1248, 2000.

[64] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM review,
38(1):49–95, 1996.

[65] Stephen A Vavasis. Quadratic programming is in NP. Information Processing Letters,
36(2):73–77, 1990.

[66] Stephen A Vavasis and Richard Zippel. Proving polynomial-time for sphere-constrained
quadratic programming. Technical report, Cornell University, 1990.

96

[67] Hayato Waki. How to generate weakly infeasible semidefinite programs via Lasserre’s
relaxations for polynomial optimization. Optim. Lett., 6(8):1883–1896, 2012.

[68] Hayato Waki and Masakazu Muramatsu. Facial reduction algorithms for conic optimization
problems. J. Optim. Theory Appl., 158(1):188–215, 2013.

[69] Yuzixuan Zhu, Gábor Pataki, and Quoc Tran-Dinh. Sieve-SDP: a simple facial reduction
algorithm to preprocess semidefinite programs. Mathematical Programming Computation,
11(3):503–586, 2019.

97

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS AND SYMBOLS
	Introduction
	Semidefinite programming
	New contributions and techniques
	Outline of dissertation

	An echelon form of weakly infeasible semidefinite programs and bad projections of the psd cone
	Introduction
	Preliminaries
	The main result, and the easy direction
	How to construct any weakly infeasible SDP and bad projection of the psd cone
	Proofs: certificates of infeasibility and not strong infeasibility separately
	Proof of Theorem 1
	Our problem library and computational tests
	Discussion and conclusion

	How do exponential size solutions arise in semidefinite programming?
	Introduction
	Notation and preliminaries

	Main results and proofs
	Reformulating (P) and statement of Theorem 5
	Proof of Theorem 5
	Computing the exponents by Fourier-Motzkin elimination

	When we do not even need a change of variables
	Conclusion

	BIBLIOGRAPHY

