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ABSTRACT

Yaqi Hou: Automated Algebra for the Quantum Virial Expansion of Strongly-coupled Matter
(Under the direction of Joaquin E. Drut)

The thermodynamics of generic quantum many-body systems is a technically challenging area

of research relevant to different fields covering a vast energy range, from condensed matter physics

at the low-energy end, atomic systems in the middle, and nuclear and QCD at higher energies.

An open question at the forefront of research concerns, for instance, the thermodynamics of neu-

tron and nuclear matter at finite temperature, as it is directly relevant to the behavior of dense

matter in neutron star mergers. With the advent of multimessenger astronomy, these astrophysi-

cal environments where nuclear many-body physics is essential have attracted considerable atten-

tion in recent years. This dissertation focuses on one of the most widely-applied methods in the

calculation of the thermodynamics of quantum many-body systems, namely the Quantum Virial

Expansion (QVE), which is an expansion of the grand canonical partition function in powers of

the fugacity. While applications of the QVE have seen successes in systems as different as ultra-

cold atoms and dilute neutron matter, most investigations have been limited to the lowest order,

due to the increasing complexity of the quantum few-body problem. The main development of

this work is the construction of a new class of semi-analytic methods which we will generally call

“Automated-Algebra methods” to tackle the QVE, offering higher and more accurate analytic es-

timations for its coefficients than ever before.

Due to general interest from the condensed matter, atomic physics, and nuclear astrophysics

communities, we focus on a system of spin-1/2 fermions with and without external harmonic trap-

ping. In both cases, we were able to push the calculation of the QVE to the unprecedented fifth or-

der. The analytic nature of our method makes our results an analytic function of parameters such

as dimension, coupling strength, and external trapping frequency, which greatly extends the range

of prior results on lower-order coefficients. We applied our high-order QVE to examine properties,

such as density, Tan’s contact compressibility and spin susceptibility, and finding good agreement
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with existing experimental results.

Thanks to the access to such high-order coefficients, we were able to apply series resummation

methods, which greatly extended the applicability of the QVE to regimes at lower temperature,

where the truncated finite-order expansion usually fails.
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CHAPTER 1: Introduction

The last few decades witnessed a boom in the research of quantum many-body systems: the

advent and maturity of experimental techniques led adventures into uncharted regimes; the fur-

ther development and adoption of theoretical tools such as quantum field theory greatly enrich

the theoretical arsenal and keep offering new insights. Furthermore, the rapid evolution in mod-

ern computer offers unimaginable computational powers, pushing the study of many-body prob-

lem into the precision era.

This dissertation is mostly devoted to ultracold atoms and its relatives, which have basically

experienced the full story above, while still mysterious, holding the key to various fields such as

superconductors and quantum computing. Starting around the beginning of this century, the

achievements from the experimental side greatly boosted the investigation in the field of ultra-

cold atoms. Among them, the so-called Feshbach resonance technique is surely special as it al-

lows researchers to finely control the interaction strength between the particles, making it possi-

ble to explore various regimes in the phase diagram. In particular, with Feshbach resonances, ex-

perimentalists are able to connect two famous and well-developed theories: the Bardeen-Cooper-

Schrieffer (BCS) theory which governs weakly attractive fermions, and the Bose Einstein conden-

sation (BEC) theory for bosonic systems. Such process is called BCS-BEC crossover and will play

a central role in this dissertation. Although its existence has long been theoretically predicted [1–

4], it did not become experimentally accessible until 2004 using the Feshbach resonance technique

[5, 6]. Since then, the investigations in relevant fields have been heated in the physics community.

In this dissertation, we mainly focus on the non-relativistic spin-1/2 Fermi gas system through

the lens of a method called Quantum Virial Expansion (QVE). The physics of such a system is

not just relevant to the ultracold atom community: via a universal point in the middle of BCS-

BEC crossover called the unitarity limit, for example, we can relate the ultracold atoms to neu-

tron matter and even nuclear matter (as an approximation). On the methodological side, although

QVE has been widely applied in various fields to offer predictions of thermodynamics or other

observables, they are usually limited to the second or third order in the expansion. The theo-
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retical study of high-order coefficients in the QVE has been limited by the increasing difficulties

of higher-body physics from both analytical and numerical fronts. One of the central questions

we aim to answer in this dissertation is how to tackle this challenge by developing a novel semi-

analytical method which bridges the analytical and numerical fronts.

Section 1.1: BCS-BEC crossover and ultracold atoms

In this first section, we begin with a qualitative introduction to the BCS-BEC crossover. Al-

though this dissertation focus more on the theoretical studies, we devote a short section on ul-

tracold atoms experiment to offer more context and establish the rough physics picture for our

works.

1.1.1: BCS-BEC Crossover

Phenomenology and phase diagram

One of the most commonly investigated systems in the ultracold atoms community is the two-

species (↑, ↓) Fermi gas with attractive interactions in 3D. In the absence of polarization, i.e.

when there are N↑ = N↓ particles for species ↑, ↓, the phase diagram is shown in Fig. 1.1. The

horizontal axis shows 1/(kFas), which is a measure of the coupling strength. Here, kF ∝ n1/3 is

the Fermi momentum and equivalently a measure of the density, and as is the s-wave scattering

length. For the dilute regimes studied with ultracold gases, as is the only scale characterizing the

interaction. The smooth transition of the coupling strength from the left to right, as controlled

using the Feshbach resonance in the experiments, then defines the famous BCS-BEC crossover.

As 1/(kFas) → −∞, we are in the so-called BCS regime1, where the system is Fermionic with

weak attractive interaction. BCS theory governs and describes the formation and condensation of

Cooper pairs. The size of Cooper pairs ξ follows ξ ≫ λF ∝ n−1/3, where λF corresponds to the

interparticle distance.

At 1/(kFas) = 0, we are at the so-called unitary limit (or unitary point), which is the thresh-

old for bound-state formation. In this regime, the pairs have size comparable to the interparticle

distance, i.e. ξ ≈ λF . The divergence of the only length scale, the scattering length, is a peculiar

feature. Due to the lack of length scales, properties in this unitary regime are universal: all phys-

1strictly speaking, the system becomes a free Fermi gas in the limit
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Figure 1.1: (Figure is inspired by Fig. 3 of Ref. [7]) Qualitative phase diagram of the BCS to BEC crossover as a
function of the temperature T/TF , where TF is the Fermi temperature, and the dimensionless coupling 1/(kF as),
where kF is the Fermi momentum and as is the scattering length. The attraction coupling is changing from weak
to strong from the left to right. To the left as 1/(kF as) → −∞, the system approaches the BCS limit; and as
1/(kF as) → ∞, the system approaches the BEC limit. In between at 1/(kF as) = 0, as indicated by the dashed-
dotted line, it is a special point called the unitary limit or unitarity. The thick dashed line represent the pairing-
formation crossover temperature T ∗. Note that the T ∗ boundary does not represent a phase presentation and is
only a qualitative representation of the crossover scale. The solid line represents the condensation temperature Tc,
below which condensate exists. Different colors represent the phases qualitatively. The yellow region corresponds
to the superfluid phase. In the blue region, the system is Fermionic, in the form of normal Fermi liquid at low
temperature. In the red region, One caveat is that the boundary between Fermi phase and Bose phase should not
be taken as precise, but rather a “blurred” boundary representing the finite-temperature crossover between the
Fermi liquid and Bose liquid. Such crossover is presumably related to a pseudogap phase [8, 9], represented as the
cross-shaded region in between T ∗ and Tc.

ical quantities are given by dimensionless functions that do not depend on the details of the sys-

tem (cold atoms, neutrons, etc.) multiplied by a power of the density. For example, as pointed by

Bertsch [10], the ratio between the ground-state energy of the unitary gas and its noninteracting

counterpart is a universal number called Bertsch parameter, which can also describe low density

neutron matter.

As 1/(kFas) → +∞, we reach the BEC regime. The strong attractive interaction bound

Fermions into bosonic dimers with pair size ξ ≪ λF . The inter-dimer interaction is the reminisce

of attraction and becomes effectively weak repulsion, which is therefore governed by the BEC the-

ory. The bosonic dimers condense into a superfluid phase below the critical temperature Tc. Com-

pared to the BCS limit, where the pair formation and condensation occur nearly simultaneously,
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the pair-formation temperature T ∗ diverges from the the condensation critical temperature Tc,

leaving room to the so-called pseudogap region in between, whose existence is currently under ac-

tive investigations and debates. We will revisit this topic in Sec. 3.4.5.

Low-energy effective theory

In scattering theory, the scattering can happen in states with different angular momentum

l = 0, 1, 2, . . ., named as s-, p-, d-wave scattering and so on. In the case of ultracold atoms, the

system is very dilute and the incident energy is so small that the angular motion is frozen out.

Therefore, the s-wave scattering (l = 0) is the dominant contribution. The corresponding phase

shift defines scattering parameters via the effective range expansion [11]

k cot δ0(k) = −1/as +
1

2
rek

2 + . . . (1.1)

where as is scattering length and re is the effective range. At low energies and low densities,

rek
2 ≪ 1 and so the second term can be omitted.

The unitary limit mentioned above is named after that fact that the phase shift cot δ0 =

−1/kas becomes zero and the scattering amplitude f(k) = (k cot δ0 − ik)−1 reaches its max-

imum value −(ik)−1 allowed by unitarity. Passing this point, two fermions form a bound state

with energy EB = 1/ma2s.

In particular, the scattering length diverges at unitarity, erasing out the only length scale.

This implies the universality in the unitary limit and hence relates distinct systems such as dilute

ultracold atoms at density n ≈ 10−12cm−3 and neutron matter at low density n ≈ 10−4fm−3 [12].

1.1.2: Ultracold atom experiments

For a relative long time, quantum gases and strongly correlated systems were two distinct top-

ics, as the quantum gases were thought to be weakly-coupled and research in strongly correlated

systems was mostly restricted to the dense and strongly interacting quantum liquids [13]. Start-

ing around 2000s, several experimental achievements changed this picture and revolutionized the

study of ultracold atoms. In this section, we will discuss three types of developments:

1. techniques such as laser cooling or evaporative cooling to cool atomic clouds down to the

mili-Kelvin regime, where quantum effects are manifest;
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Figure 1.2: The qualitative sketch of the two-channel model for a Feshbach resonance. The blue and green curves
correspond to the energy of open and closed channel respectively. The orange dotted line corresponds to the scat-
tering energy E, which is close to zero for the ultracold atoms. The green dashed line represents the molecular
bound state supported by the closed channel, with a tunable bound energy Ec. The Feshbach resonance occurs as
Ec approaches E.

2. the trapping techniques like magnetic or optical ones to modulate the system;

3. the Feshbach resonance technique to tune the interaction strength

In the end, we also outline other active areas such as the microscopes that brings ultracold atom

experiments to the single-atom level.

Cooling, trapping and tuning

The most popular system in ultracold atom experiments is the system of dilute ultracold al-

kali atoms such as 40K or 6Li or their mixtures, because there is only one electron in the outer-

most shell and the nuclei structure is negligible compared to the overall experimental length scale.

In ultracold atom experiments, the atomic cloud is cooled down into the degenerate regime us-

ing techniques like laser cooling or evaporative cooling. The low temperature corresponds to large

thermal de Broglie wave length λT , which then defines the diluteness by requiring the density n

to satisfy n−1/d ≪ λT , where d is the spatial dimension.

After cooling down, an external trap is imposed to confine the atoms and separate the sys-

5



tem from the “hot” walls. The optical dipole trap is the most commonly used confinement, which

is formed by two focused counter-propagating Gaussian beams. Compared to magnetic traps,

optical traps are compatible with arbitrary homogeneous magnetic fields without affecting the

trap, which is essential for Feshbach tuning (described below). Optical traps are also more univer-

sal than magnetic traps as the latter cannot be used to investigate lowest atomic state, which is

high-field seeking state [14]. Due to the shape of the trap, the density profile is no longer homo-

geneous. Usually, the trapping frequency is small enough such that the so-called local-density ap-

proximation (LDA) can be safely assumed. Under its assumption, the gas can be regarded as lo-

cally homogeneous everywhere in the trap. However, even at small trap frequency, the LDA may

still break down [15] and hence the trapped system is an important topic for theoretic study (See

Chap. 5).

The external traps also serve to modulate the system by reducing the dimensionality or cre-

ating periodic lattices. For example, when squeezing the transverse potential such that the trans-

verse trap energy ℏω⊥ is much larger than the Fermi energy EF = Nℏωz, the trapped gas be-

comes kinematically one-dimensional [16]. Another example is the optical lattice: by overlapping

two or three orthogonal standing waves, it is possible to trap the gases in two- and three- dimen-

sional periodic lattice potentials. The optical lattice allows the experimental simulation of lattice

models such as Hubbard-Fermi model, which is believed to be important for high-Tc superconduc-

tors, and is generally an important model in condensed matter physics.

Another revolutionary technique to modulate the system is the Feshbach resonance, which can

tune the coupling strength between difference species either magnetically or optically. Both real-

izations share the similar concepts and can be qualitatively described with a two-channel model,

as shown in Fig. 1.2. The open (blue) and closed (green) channels are “resonantly coupled” when

the bound state in closed channel has energy Ec close to the open channel threshold, which is

usually set to be zero. Taking the magnetic Feshbach resonance for example, if the open and

closed channels carry different magnetic moments, it is possible to magnetically tune the position

of Ec. In experiments, the atoms are prepared in the open channel with low incident energy be-

fore collision. In the course of the collision, the open channel is coupled to the closed channel, and

when a bound state has energy Ec close to zero, a scattering resonance occurs. It is then shown
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that the scattering length is

a(B) = abg

(
∆

B −B0

)
, (1.2)

where abg is the scattering length associated with open channel potential only while ∆ and B0

are the width and position of resonance respectively. Therefore, via controlling external magnetic

field, it is possible to probe scattering length from −∞ to ∞. The resonant point where a(B) di-

verges is just the unitary point. This is only a rough picture of Feshbach resonance; for more de-

tails, see e.g. Ref. [17].

Atomic microscopes

Another active area in ultracold atom experiments aims to improve the probing resolution and

achieve finer control of the system, which is called atomic microscopy. Usually, the resolution is

determined by the probing wavelength, half of it to be more specific. Multiple methods have been

developed in recent years to achieve “superresolution” imaging that could resolve objects up to

50 times smaller than the probing optical wavelength [18], and therefore it is possible to probe

the system at the single atom level. The atomic microscope is essential to quantum simulators,

a sub-area of the quantum computation, as it allows the direct observation of properties such as

magnetic order and entanglement. One example of such a quantum simulator is fermions trapped

in an optical lattice as a realization of the Fermi-Hubbard model, which is believed to be relevant

to high-Tc superconductors [19].

Section 1.2: Review of Quantum Statistical Physics: noninteracting Fermi gas

We devote this section to reviewing several important concepts in quantum statistical physics.

In particular, we consider the noninteracting, non-relativistic spin-1/2 Fermi gas as example to

demonstrate the basic formalism and derive some thermodynamic properties.

For a general system, the Hamiltonian can be written as three terms:

Ĥ = T̂ + V̂ext︸ ︷︷ ︸
Ĥ0

+V̂int, (1.3)

7



where T̂ is the kinetic energy operator. In the non-relativistic system, it is

T̂ =
∑
s=↑,↓

∫
ddr ψ̂†

s(r)

(
−ℏ∇2

2m

)
ψ̂s(r), (1.4)

where ψ̂†
s(r) and ψ̂s(r) are, respectively, the creation and annihilation operators for particles of

spin s at position r. Alternatively, we use its diagonal form in the momentum representation

T̂ =
∑
s=↑,↓

∫
ddp

p2

2m
n̂s(p), (1.5)

where n̂s(p) = ψ̂†
s(p)ψ̂s(p) is the particle number operator in the momentum space.

The second term V̂ext is the operator of external potential, whose form depends on the con-

figuration. In most part of this dissertation, we consider the homogeneous system, i.e. V̂ext = 0,

while in Chap. 5, we will discuss the harmonically trapped system with the non-zero V̂ext term.

The last term V̂int is the inter-particle interaction operator. Through out this dissertation, we

exclusively consider the contact interaction model in form of

V̂int = −gd
∫
ddr n̂↑(r)n̂↓(r), (1.6)

where gd is the bare coupling and the minus sign is by convention to make gd positive for the at-

tractive interactions. The operator n̂s(r) = ψ̂†
s(r)ψ̂s(r) is the particle density operator for spin-s

particles in the coordinate space. Note that we have only one parameter gd as there is only one

parameter as modeling the scattering in the zero-range s-wave model. To tune the system to the

unitary limit, we renormalize the bare coupling gd, or just g for short, to reproduce the unitary

physics, as will be discussed in more details in Sec. 2.2.4. For simplicity, we will denote V̂int as V̂

from now on. We will also use natural units across the dissertation such that ℏ = kB = m = 1.

In the noninteracting case, consider the Hamiltonian in the momentum representation

Ĥ = T̂ =
p̂2

2m
, (1.7)

where the boldface momentum p refers to the vector in arbitrary dimensions, a notation we will

use throughout this document.
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The core quantity of quantum statistical physics is the Grand-Canonical Partition Function

(GCPF) Z, defined as

Z = TrF exp
[
−β(Ĥ − µN̂)

]
, (1.8)

where β = (kBT )
−1 is the inverse temperature (also known as the imaginary time), µ the chemi-

cal potential, N̂ the particle number operator, and TrF the trace over the many-body Fock space.

To evaluate the GCPF, at least in theory, we have the freedom to choose any representation.

Here, we take the conventional path as in Ref. [20] using the occupation number representation.

Denote the occupation number basis as |n⟩ = |n0, n1, n2, . . .⟩, where i is the ith energy level and

ni is the particle number occupying that level, we have

Ĥ |n⟩ =
∑
i

niϵi,

N̂ |n⟩ =
∑
i

ni ≡ N,

(1.9)

where ϵi is the energy at ith level. The GCPF is then

Z =
∞∑

N=0

∑
{|n⟩}N

exp

[
−β
∑
i

(niϵi − µni)

]
,

=
∞∑

N=0

∑
{|n⟩}N

∏
i

[zni exp(−βniϵi)] ,
(1.10)

where z = exp(βµ) is the fugacity and the {|n⟩}N under the second summation refers to all possi-

ble states satisfying
∑

i ni = N . The double summation is equivalent to summing over all possible

values of ni independently, i.e.

Z =

∞∑
n0=0

(
ze−βϵ0

)n0
∞∑

n1=0

(
ze−βϵ1

)n1
∞∑

n2=0

(
ze−βϵ2

)n2

. . . , (1.11)

For Fermi gases, ni can only take the value of 0 or 1, and therefore

Z =
∏
i

(
1 + ze−βϵi

)
. (1.12)
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The GCPF encodes all the thermodynamics of the system and we can derive multiple equa-

tions of state from it. More specifically, the directly-related quantity is the logarithm lnZ, which

is also called q-potential as in Ref. [20] or written in terms of the grand potential Ω via

−βΩ = lnZ =
∑
i

ln
(
1 + ze−βϵi

)
. (1.13)

The pressure is then immediately accessible through the relation

βPV = −βΩ =
∑
i

ln
(
1 + ze−βϵi

)
, (1.14)

and the particle number is given as

N =
∂ lnZ
∂ ln z

=
∑
i

1

1 + z−1eβϵi
. (1.15)

Other quantities such as the energy, free energy and entropy can be derived in a similar fashion.

To evaluate the above expressions, we use the free particle energy

ϵi = ϵ(p) =
p2

2m
. (1.16)

In a continuous system, the summation is replaced with the corresponding integration, and

Eq. (1.14) now becomes

lnZ =
∑
p

ln[1 + ze−βp2/(2m)]

=

(
L

2π

)d ∫ ∞

−∞
ddp ln[1 + ze−βp2/(2m)],

(1.17)

where d is the dimension and L is the system size in one dimension2, and

ddp =

d∏
i

dpi. (1.18)

2Here we assume the system has the same length in all dimension just for simplicity. The result is valid for any
systems and we can replace Ld with V to accommodate it.
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In the 3D case, we use spherical coordinates

lnZ =

(
L

2π

)3 ∫ π

−π
dϕ

∫ π

0
sin θdθ

∫ ∞

0
r2dr ln[1 + ze−βr2/(2m)], (1.19)

where the angular parts are trivial and yield 4π. The integral over r can be evaluated using inte-

gration by parts, leading to the final expression

lnZ =
V

λ3T

[
4

3
√
π

∫ ∞

0
dx

x3/2

z−1ex + 1

]
=

V

λ3T
f 5

2
(z), (1.20)

where we substituted the integration variable p → x = βp2/(2m) and λT =
√
2πβ is the thermal

wavelength.

This integral inside the square bracket is called Fermi-Dirac function, denoted as f 5
2
(z) where

the subscript 5
2 is the order of Fermi-Dirac function. More generally, the Fermi-Dirac function is

defined as

fν(z) ≡
1

Γ(ν)

∫ ∞

0

xν−1dx

z−1ex + 1
= z − z2

2ν
+
z3

3ν
+ . . . . (1.21)

The same function is sometimes referred to in the literature by its mathematical name, the poly-

logarithm function Liν(z), defined as

Liν(z) =
∞∑
k=1

zk

kν
= z +

z2

2ν
+
z3

3ν
+ . . . , (1.22)

Hence Eq. (1.20) is now written as

lnZ =
V

λ3T
f 5

2
(z) = − V

λ3T
Li 5

2
(−z). (1.23)

So far, we have not yet taken into consideration the spin degree of freedom. In the noninter-

acting case, it is straightforward to include the second species as there is no interaction between

the two species. Therefore the total GCPF is factorized as Z = Z↑Z↓, and in the spin-balanced
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case, such internal structure introduces a multiplicity factor into Eq. (1.23)

lnZ =
gV

λ3T
f 5

2
(z) = −gV

λ3T
Li 5

2
(−z), (1.24)

where g = 2 for the spin-1/2 system, but could take other values in general. 3

More generally, in d dimensions, the integral element becomes

∑
k

→
(
L

2π

)d ∫
ddk =

(
L

2π

)d ∫ ∞

0
dkSd(k), (1.25)

where Sd(k) = 2
Γ(d/2)π

d/2kd−1. Following the same steps, we eventually have

−βΩ = lnZ =
gLd

λdT
f d

2
+1(z). (1.26)

Similarly, the noninteracting density and pressure equation in d dimensions are

P =
g

βλdT
f d

2
+1(z), (1.27)

n =
N

V
=

g

λdT
f d

2
(z), (1.28)

where we used the property of Fermi-Dirac function ∂fν(z)/∂ ln z = fν−1(z).

Section 1.3: Quantum Virial Expansion

1.3.1: Breaking down many-body systems

In the previous section, we evaluated the grand-canonical partition function Z in the occu-

pation number representation. When evaluating the GCPF, we converted the Fock trace into a

double summation over the system particle number N and all possible states of N particles, as

shown in Eq. (1.10). In evaluating that equation, we convert the double summation into a series

of independent summation for each state as in Eq.(1.11). A natural question arises: can we eval-

uate this double summation in a straightforward fashion, i.e. taking the first summation over N

from 0 to ∞ explicitly?

3In fact, in other contexts (QCD but also in condensed matter), it is often useful to theoretically consider systems
with g species, where g can take on any value, even complex!
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Interpreting Eq. (1.10) from this perspective leads to the idea of an important technique, also

the central piece of this dissertation, called Quantum Virial Expansion (QVE). To begin with,

rewrite Eq. (1.10) as

Z =
∞∑

N=0

zN

 ∑
{|n⟩}N

∏
i

exp(−βniϵi)

 . (1.29)

Let us neglect the terms inside the square bracket for a while and assume they are just some

known numbers. Now, the r.h.s. of Eq. (1.29) can be treated as a power series in z, and inter-

preted as an approximation of the true infinite-body system using finite system of N particles.

In other words, we are reconstructing the open system (i.e. Z) using a series of closed systems of

N = 0, 1, 2, 3, . . . particles. By adding one particle at a time, we will approach the true physics

eventually.

Formally, the above interpretation is the result of the decomposition of the Fock space as a

direct sum of the Hilbert spaces for systems of 0, 1, 2, . . . particles, i.e.

F =
∞⊕

N=0

HN , (1.30)

where F is the Fock space and HN is the N -particle Hilbert space. The latter is constructed from

the single-particle Hilbert space H as HN = SH⊗N , where S is the (anti-)symmetrization opera-

tor depending on the particle type.

We can then write the Fock trace as

TrF =
∞⊕

N=0

trN , (1.31)

where trN is the trace over the Hilbert space for the N -particle system. Thus, the grand-canonical

partition function Z is also decomposed as

Z =

∞∑
N=0

zNQN . (1.32)

where QN = trN e−βĤ is the Canonical Partition Function (CPD) QN for N -particle system.

Now, we see that the QN is exactly the square-bracketed term in Eq. (1.29), which sums over all
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possible states {|n⟩}N in a system of N =
∑

i ni particles, i.e. takes the trace in the N -body

Hilbert space.

In short, instead of evaluating the GCPF directly in the Fock space consisting infinite parti-

cles, we can approximately reproduce the physics by summing up a series of finite-body systems

of N = 0, 1, 2, . . . particles. This is the fundamental philosophy behind the QVE.

Mathematically, we define the QVE as the expansion of the grand potential −βΩ = lnZ in

terms of fugacity z.

−βΩ = lnZ ≡ Q1

∞∑
k=1

znbn, (1.33)

where bn is a dimensionless number defined as the nth-order virial coefficient. For clarity, we will

use lower n to denote the particle number for the virial coefficients, while still keeping the capital

N to refer the particle number in the canonical partition function QN .

Once we knew the virial coefficients bn (ideally in form of an analytic function of the order n),

we can then reconstruct the GCPF as well as other thermodynamics observables. For example,

using Eq. (1.15), the density in terms of QVE is then

n =
Q1

V

∞∑
n=1

nbnz
n. (1.34)

However, for large n, it is very challenging to obtain numerical results, not to mention ana-

lytic ones, especially in the presence of interactions. In practice, our best hope is to push the cal-

culation of bn to as large n as possible and use the truncated finite-order series (or its variants as

will be explained later) to approximate the true many-body physics.

At the first glance, the QVE may seem like a sub-optimal method compared to the direct ap-

proach. However, in general situations when the interaction is present, it is even more difficult,

if not impossible, to take the Fock trace directly. On the other hand, the finite-body systems are

usually easier for both analytical (at least for N ≤ 3) and numerical studies. In fact, as we will

see in the later chapters, we do not need very high order in the expansion to reproduce the true

many-body physics with satisfactory accuracy, even when z is greater than unity.

The QVE is particularly useful in studying strongly coupled systems in the regime λT /λF ≪
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1. One prominent example is the Unitary Fermi Gas as will be discussed in Sec. 3.1, where the

conventional perturbation theory is no longer applicable due to the lack of small-value expansion

parameter. In this sense, we can also interpret the QVE as a kind of perturbation theory around

the interacting classical system, with z as the expansion parameter. To be precise, if z ≪ 1, such

that only N = 1 system is important, then we are in a noninteracting regime. However, interac-

tions will typically leave a clear imprint on the N = 2, 3, . . . subspaces, which in turn modify the

many-body picture.

1.3.2: Calculation of virial coefficients

To evaluate the coefficients bn, we start by substituting the Z in Eq. (1.33) with Eq. (1.32),

and then expand the logarithm in powers of z, we have

lnZ = ln

∞∑
N=0

zNQN = ln
(
1 + zQ1 + z2Q2 + . . .

)
= (zQ1 + z2Q2 + . . . )− 1

2
(zQ1 + z2Q2 + . . . )2 +

1

3
(zQ1 + z2Q2 + . . . )3 + . . .

(1.35)

Expanding and organizing Eq. (1.35) by the power of z, and comparing to Eq. (1.33) order by or-

der, the virial coefficients bk can be expressed in terms of QN . The first few coefficients are given

as

b1 = 1, (1.36)

b2 =
Q2

Q1
− Q1

2!
, (1.37)

b3 =
Q3

Q1
− b2Q1 −

Q2
1

3!
, (1.38)

b4 =
Q4

Q1
−
(
b3 +

b22
2

)
Q1 − b2

Q2
1

2!
− Q3

1

4!
, (1.39)

b5 =
Q5

Q1
− (b4 + b2b3)Q1 −

(
b22 + b3

) Q2
1

2
− b2

Q3
1

3!
− Q4

1

5!
, (1.40)

and so on.

The above equations verify our previous statement that the bn captures the physics of the N -

particle system, which is represented mathematically by the first term QN for each bn. Based on

the dimensional argument, the bn is a dimensionless number, while QN is of dimension VN , where

V is for volume. In this sense, the expression for bn can be divided into two parts: the first term
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QN/Q1 which includes both volume-independent and higher-dependent parts; and the rest terms

to cancel out the contributions from QN/Q1 at higher-volume order. We can also interpret the

expression diagrammatically: the first term includes all kinds of diagrams, both connected and

disconnected, while the rest terms are all disconnected diagrams. Hence the bn contains only the

connected diagram contributions. More details and examples of the diagrammatic interpretation

are presented in Appendix. E.

The derivation of Eq. (1.36) relies on the Taylor expansion of logarithm function. Generally

speaking, it is expected that the QVE is a good description when z ≪ 1. Unfortunately, there are

essentially no studies regarding its radius of convergence, which will typically be reduced by inter-

actions. However, from a more physical standpoint, the expansion corresponds to a true physical

quantity, which must converge. In this sense, the divergence of QVE is barely a mathematical ar-

tifact in the polynomial basis. In theory, we are able to obtain the convergent physical results by

using a different basis or implementing other mathematical tools to circumvent certain singulari-

ties4. Actually, as we will demonstrate in later chapters, we observe quantitatively correct results

using QVE even beyond z > 1.

Now, the task of calculating bn is converted to calculating QN , or at least the part of QN at

the same volume order as Q1. We further break down the whole space of N -particle system into

corresponding subspaces, i.e. decompose QN as

QN =
∑
MJ

′
QMJ , (1.41)

where the primed summation is subject to the constraint M + J = N , and M,J ≥ 0 for M (J)

spin-up (down) particles. For example, we have

Q3 = Q30 +Q21 +Q12 +Q03 = 2Q30 + 2Q21, (1.42)

Q4 = Q40 +Q31 +Q22 +Q13 +Q04 = 2Q40 + 2Q31 +Q22, (1.43)

and so on. Note that we use the particle symmetry that QMJ = QJM as we consider only the

4However, we note that such argument may not work in the critical region around the phase transition, where in-
finite singularities will accumulate in the complex plane of z. In this case, we will not find an appropriate tool
circumventing the singularities to cross the critical point.
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mass-balanced system (m↑ = m↓) in this dissertation. In the case of mass imbalance, the second

equal will no longer hold true.

We will leave the details on evaluating the subspace partition function QMJ to Sec. 2.2.2. For

now, let us revisit the noninteracting system with QVE. Using Eq. (1.17) with g = 2, we expand

the integrand into a Taylor series in terms of z,

lnZ = 2
1

2d
2

Γ(d/2)

(
L√
π

)d ∞∑
n=1

zn
(−1)n+1

n

∫ ∞

0
dk kd−1e−nβk2/2

= 2

(
L

λT

)d ∞∑
n=1

zn
(−1)n+1

n(d+2)/2
,

(1.44)

where we used Eq. (1.25) and

∫ ∞

0
dx xae−x2

=
1

2
· Γ
(
a+ 1

2

)
. (1.45)

With the single-particle partition function

Q1 = 2Q10 = 2
∑
k

exp
(
−βk2/2

)
→ 2

(
L

2π

)3 ∫ ∞

−∞
ddk e−βk2/2 = 2

(
L

λT

)d

, (1.46)

the noninteracting virial coefficients are

b(0)n =
(−1)n+1

n(d+2)/2
, (1.47)

which is exactly the polylogarithm results we obtained in Eq. (1.24) when expressed in power of z

as given by Eq. (1.21) or Eq. (1.22).

Alternatively, we can arrive at the same results using Eq. (1.36) by evaluating the partition

function QN . It may look trivial and redundant for the noninteracting system, as we have already

obtained the analytic series expression for lnZ. However, it is not always possible (or rather, im-

possible for most time) to obtain the analytical expression of lnZ as in Eq. (1.23) when the inter-

action is present. In such situations, the standard way is to start with the finite-body system to

calculate QN (or QMJ), and use Eq.(1.36) to calculate the virial coefficient.

Taking the calculation of b2 for example, we need the two-particle partition function Q2 =
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2Q20 + Q11. The second term is trivial in the absence of interaction as the two species are inde-

pendent, hence

Q11 = Q10 ·Q01 = Q2
10. (1.48)

We should be careful when evaluating Q20 as the particles are identical so that we need to take

into account the Fermi statistics. This gives us

Q20 = tr2[e
−βĤ ] =

1

2!

∑
k1k2

⟨k1k2|e−βĤ |k1k2⟩ − ⟨k1k2|e−βĤ |k2k1⟩

=
1

2

[
Q2

10 −Q10(2β)
]
,

(1.49)

where Q10(a · β) is

Q10(a · β) =
∑
k

e−a·βk2/2 →
(
L

2π

)d ∫ ∞

−∞
ddk e−a·βk2/2 =

(
1√
a

)d

Q10. (1.50)

Substituting the above results into Eq.(1.36), we obtained

b
(0)
2 =

2Q20 +Q11

2Q10
− 2Q10

2
= −1

2
Q10(2β) = − 1

25/2
, (1.51)

agreeing with Eq. (1.47). The same procedure can be applied to higher-order terms.

As the noninteracting results are analytically known, we can focused on the interaction-induced

changes to bn, denoted as ∆bn, which describe ln[Z/Z(0)]. Similarly, denote the interaction-induced

contribution to the canonical partition function as ∆QN , Eq. (1.36) now becomes

∆b2 =
∆Q2

Q1
, (1.52)

∆b3 =
∆Q3

Q1
−∆b2Q1, (1.53)

∆b4 =
∆Q4

Q1
−
[
∆b3 +

∆(b22)

2

]
Q1 −∆b2

Q2
1

2!
, (1.54)

∆b5 =
∆Q5

Q1
−∆(b4 + b2b3)Q1 −∆

(
b22 + b3

) Q2
1

2
−∆b2

Q3
1

3!
, (1.55)
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where

∆bn = bn − b(0)n , (1.56)

∆(bibj) = bi · bj − b
(0)
i · b(0)j = ∆bi ·∆bj +∆bib

(0)
j + b

(0)
i ∆bj . (1.57)

1.3.3: Subspace virial coefficients

Until now, we treat particles of different species on the same footing, which is enough for the

unpolarized system (also known as spin-balanced system), i.e. the spin-up and spin-down parti-

cles have the same chemical potential. However, for the polarized (spin-imbalanced) system, we

need to consider the difference between particles of different species in our calculation.

The convention we will use across the dissertation is to denote µs, s =↑, ↓ as the chemical

potential for spin-up/down particles, µ = (µ↑ + µ↓)/2 as the average chemical potential, and

h = (µ↑ − µ↓)/2 is the polarization.

For finite h, we further decompose Eq. (1.32) and (1.33) into subspace contributions5,

Z =

∞∑
N=0

∑
MJ

′
zM↑ zJ↓QMJ , (1.58)

lnZ = Q1

∞∑
n=1

∑
mj

′
zm↑ z

j
↓bmj , (1.59)

where zs = exp(βµs) for s =↑, ↓.

Following the same procedure as in the unpolarized case, we can express the subspace virial

coefficients bmj in terms of the subspace partition function just as we derived in the whole space

case. For n = 4, we have

∆b31 =
∆Q31

Q1
− Q2

10 −Q10(2β)

4Q10
∆Q11 −

1

2
∆Q21 +

Q10

2
∆Q11, (1.60)

∆b22 =
∆Q22

Q1
− ∆Q2

11

4Q10
− Q10

2
∆Q11 −∆Q21 +Q10∆Q11. (1.61)

Note that following our definition, we have ∆b4 = 2∆b31 + ∆b22, while some works [21] prefer

5We used the same convention to use capital subscripts for partition function and lower subscripts for virial coeffi-
cients, but they all refer to the same thing, the particle number.
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∆b4 = ∆b31 + ∆b22/2. Hence the above equation needs a factor of 2 when compared to their

results. Similarly for n = 5, we have

∆b41 =
∆Q41

Q1
− ∆Q31

2
+

(
Q1

4
− Q20

Q1

)
∆Q21 +

(
Q20 −

Q30

Q1
− Q2

1

8

)
∆Q11, (1.62)

∆b32 =
∆Q32

Q1
− ∆Q31 +∆Q22

2
− ∆(Q21Q11)

Q1
+

(
3

4
Q1 −

Q20

Q1

)
∆Q21

+

(
Q20 −

3

8
Q2

1

)
∆Q11

∆(Q2
11)

2
, (1.63)

where we use the same notation as in Eq. (1.56) such that

∆Qn = Qn −Q(0)
n , (1.64)

∆(QiQj) = Qi ·Qj −Q
(0)
i ·Q(0)

j = ∆Qi ·∆Qj +∆QiQ
(0)
j +Q

(0)
i ∆Qj . (1.65)

Lastly, though we discussed the subspace virial coefficients in the context of spin-polarized

systems, they are applicable to the unpolarized system as well. In fact, even in our investigations

of the unpolarized systems, we focused on the subspace contribution as well since it allows better

control over the extrapolation and management of computational loads.

1.3.4: Virial expansion vs cluster expansion

Before concluding this section, we devote this short paragraph to clarify the ambiguity be-

tween the term “virial expansion” and “cluster expansion”. Initially, the QVE inherits the same

definition from the classical virial expansion, i.e. expand the pressure (and hence the GCPF) in

terms of the density as

βP = n
[
1 + nB2(T ) + n2B3(T ) + . . .

]
, (1.66)

where Bn(T ) are the original virial coefficients.

The virial expansion we used here was then called either fugacity expansion or as cluster ex-

pansion, which is related to Mayer’s cluster integrals [22, 23] (see also Ref. [20]). For such his-

torical reasons, the ambiguous terminology may still be used in modern works. Throughout this

dissertation, the QVE will be used only to refer the fugacity expansion.
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Section 1.4: Existing works on QVE for the interacting Fermi gas

Before leaving this chapter, let us take a short detour to review existing theoretical and ex-

perimental works related to QVE for interacting Fermi gas. For more detailed discussions, see e.g.

Ref. [24].6

1.4.1: Second-order virial coefficient ∆b2

As the first step towards the investigation of QVE, the study of second-order virial coefficient

can date back to more than 80 years ago. In 1930s, Beth and Uhlenbeck analytically calculated

the second-order virial coefficient b2 in terms of binding energy and scattering phase shift, which

describe the two-particle interaction properties.

Their work is later known as Beth-Uhlenbeck formula, relating the virial coefficient and scat-

tering properties. For a spin-1/2 Fermi gas in 3D, there is

∆b2 =
√
2
∑
i

e−βEi
B +

√
2
∑
l

2l + 1

π

∫ ∞

0
dp

dδl
dp
e−

λ2T p2

2π , (1.67)

where the first summation is over all bound states, the second summation is over all partial waves,

and δl is the phase shift of each partial wave.

The above expression can be applied in different dimensions and expressed in parameters of

the corresponding effective range expansion as shown in Eq. 1.1 (i.e., scattering length, effective

range, etc.). For a zero-range interaction (see, e.g., Ref. [26, 27] for results in 1D, Ref. [28–33] for

2D, and Ref. [34] for 3D):

∆b1D
2 = − 1

2
√
2
+
eλ

2
1/4

2
√
2
[1 + erf(λ1/2)] , (1.68)

∆b2D
2 = eλ

2
2 − 2

∫ ∞

0

dp

p

2e−λ2
2p

2

π2 + 4 ln2(p2)
, (1.69)

∆b3D
2 =

eλ
2
3

√
2
[1 + erf(λ3)] , (1.70)

6This section is partly based on works published in Ref. [25]
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where λd is the physical coupling strength in d dimensions, defined as

λ1 = 2

√
β

a0
,

λ2 =
√
βEB,

λ3 =

√
β

a0
,

(1.71)

where a0 is the s-wave scattering length and EB is the binding energy of the single two-body

bound state of the 2D case.

The above results are sufficient descriptions for ultracold atoms, for which the zero-range model

interaction is a precise approximation. However, for systems like neutron matter or more compli-

cated nuclear matter, the scattering properties are much richer and require more parameters such

as a non-zero effective range and/or other angular momentum channels.

For pure neutron matter, Refs. [12, 35] integrate by parts to rewrite the Beth–Uhlenbeck re-

sult as

∆b2 =
1

21/2πT

∫ ∞

0
dE e−βE/2δtot

neutrons(E), (1.72)

where δtot
neutrons(E) is the sum of all the scattering phase shifts at laboratory energy E, whose con-

tributions from different angular momentum channels enter as

δtot
neutrons(E) =

∑
S,L,J

(2J + 1)δ2S+1LJ
(E), (1.73)

where the partial wave terms δ2S+1LJ
(E) are obtained from partial wave analyses of experimental

data such as Nijmegen’s [36].

For nuclear matter, on the other hand, one must account for the deuteron bound state, such

that

∆b2 =
3

21/2

(
eEd/T − 1

)
+

1

23/2πT

∫ ∞

0
dE e−βE/2δtot

nuc(E), (1.74)

where Ed is the binding energy of the deuteron and the −1 term comes from partial integration

when accounting for the phase shift at zero energy being π times the number of bound states
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(see also Ref. [37]). The work of Ref. [12, 35] also analyzed the contributions due to pure alpha-

particle scattering and nucleon-alpha scattering, thus obtaining all possible contributions to the

second-order QVE for nuclear matter composed of neutrons, protons, and alpha particles.

These analytic works for the second-order virial coefficients offered a benchmark and, more

importantly, the reference to renormalize the effective model.We will discuss more about the renor-

malization process in Sec. 2.2.4.

1.4.2: Third-order virial coefficient ∆b3

Since the pioneering work by Beth and Uhlenbeck on ∆b2, the community started to work on

the next term in the ladder, see early works e.g. Refs.[38–40]. However, it took nearly 70 years

until finally in the 2000s the community established a conclusive accurate estimation of ∆b3, with

the help of modern numerical solution and powerful theoretical tools such as diagrammatic expan-

sions.

Impressive exact analytic progress has been made by notable works of Leyronas [41], Kaplan

and Sun [42], and Castin and colleagues [43–45], as well as the large effective range expansion

of Ngampruetikorn et al. [46] (see also the early work of Ref. [47] focusing on the unitary limit).

Readers may also be interested in Ref. [48, 49], which attacked this problem from different an-

gles: in Ref. [48], authors used the harmonic approximation for the inter-particle interaction, and

Ref. [49] followed and extended Lee and Yang’s cluster expansion method [50–53].

Leyronas organizes the calculation of ∆bn around the QVE of the density equation of state, it-

self expressed as an integral over all momenta of the equal-time single-particle Green’s function in

momentum space (i.e., the momentum distribution). Diagrams of various types are then identified

at each order in z (up to order z3), where contributions from the two- and three-body T matrix

appear (the latter describing the atom-dimer scattering). The resulting time integrals are con-

verted into energy integrals, which are then evaluated analytically where possible and otherwise

numerically. The resulting approach is thus for the most part analytic and in principle exact and

is in remarkable agreement in the unitary limit with prior purely numerical results for b3 [54].

Other diagrammatic approaches also made interesting contributions. The work of Kaplan and

Sun [42], which preceded Leyronas, starts from the density equation-of-state written as a momen-

tum integral over the single-particle Green’s function (as Leyronas does), but rather than carrying
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out the Matsubara sum from the outset, it uses a Poisson summation to express the propagator

directly as a power series in z. The latter is then interpreted as a sum over the winding number

of worldlines around the compact imaginary time direction. The diagrams associated with each

term in that expansion are referred to as “chronographs”. Adding the contributions from such

chronographs and accounting for systematic effects by extrapolation, very good agreement with

prior numerical results [54] for b3 was obtained in the unitary limit.

Ngampruetikorn et al. [46] used an expansion around large effective range re (compared to the

thermal wavelength λT ), which allows them to examine up to the four-particle subspace diagram-

matically, thus obtaining numerical estimates for up to ∆b4. They focused on the unitary Fermi

gas by interpolating between R∗ ≫ λT and λT /|a| ≫ 1, where a is the scattering length, and

applied their method to the pressure, density, entropy, and spectral functions. Their interpolation

results for ∆b3 and ∆b4 at unitarity agree with those obtained by other groups, including those

presented here. In Ref. [30], Ngampruetikorn et al. also studied the pairing correlations of the 2D

Fermi gas up to third order in the virial expansion, additionally obtaining Tan contact (we return

to the expansion of this and other quantities below).

In Ref. [55], Werner and Castin analyzed the (2+1)-body problem of harmonically trapped

spin-1/2 fermions at unitarity. They analytically solved the system and obtain the exact spec-

trum and eigenstates.

On the numerical side, some of the early works used exact diagonalization in hyperspherical

coordinates [54, 56], whereby a large number of eigenstates can be calculated and their energies

summed over to calculate canonical partition functions, thus providing access to b3 (and to some

extent b4, and with low accuracy b5) for systems of cold atoms with short-range interactions.

In spite of all of the above remarkable progress, it is evident that, due to the complexity of the

n-particle quantum mechanical problem, a different kind of approach is needed if one is to deter-

mine high-order virial coefficients with well-controlled systematic error. In particular, stochastic

methods tend to have too large uncertainties to yield the accurate estimates, which could be fatal

to the resummation techniques as will be discussed in Sec. 2.4. On the other hand, direct numeri-

cal methods such as exact diagonalization can be very powerful in providing detailed information

(furnishing not only energies but also the associated eigenstates), but have not yet succeeded in

accurately determining virial coefficients beyond the third order. One of the main objectives of
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this dissertation is to present our work on developing a non-perturbative, semi-analytic, computa-

tional approach that is free of stochastic effects, as well as its applications in various systems and

on different physical quantities.

1.4.3: Fourth-order virial coefficient ∆b4 and beyond

The calculation of ∆b4 is even more challenging as it requires studying a four-particle system,

which includes two subspaces. All existing works focused on the ∆b4 at the unitary limit and

there are large discrepancies especially between the experimental measurements and theoretical

calculations.

On the theoretical side, multiple groups contribute using diagrammatic approaches. In the

same work [46], Ngampruetikorn et al. examined the four-particle subspace as well, and obtained

estimates ∆b4 = 0.06. Endo and Castin [43, 44] (see also Ref. [45]) generalized their work on

∆b3 to the problem of (3+1) and (2+2) particles, and calculated the value of ∆b4 as a function

of the trapping frequency βω and obtained ∆b4 = 0.062. As we will show in Sec. 5.3.1, our non-

perturbative determination turned out to be in remarkable agreement with their result, which

they considered to be only a conjecture.

Along the line of stochastic method, a notable work is the calculation by Yan and Blume [21,

57], where they designed an ad hoc Monte Carlo method to tackle the calculation of ∆b4 for

fermions at unitarity, resulting in the first determination of this quantity with stochastic meth-

ods. Their calculation featured a harmonic trapping potential, which induces a temperature de-

pendence in ∆b4. To obtain the temperature-independent value of ∆b4 in the unitary limit, they

performed a high-temperature extrapolation to extrapolate the results to the βω → 0 limit, in-

troducing an extra source of systematic error. The only important drawback of this work was the

large uncertainty in the final result, induced by the increased stochastic noise as the trapping po-

tential is removed. We will revisit this issue later in Sec. 5.3.1.

Rakshit et al. [56] gave predictions based on the energy spectra of a trapped system. They

extrapolated the coefficients to the high-temperature limit βω → 0 based on the low-lying portion

of the excitation spectra, and obtained negative prediction ∆b4 = −0.016(4). For other works, see

e.g. Ref. [58–60].

On the experimental side, groups from MIT [61] and ENS [62] determined b4 based on the
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measurement of pressure or density. For example, the MIT group directly measured the local den-

sity and the pressure can then be reconstructed by integrating the local density over the trapping

potential. In terms of the virial coefficient, as shown in Eq. (1.27), the pressure is written as

βPλ3T /2 = b1z + b2z
2 + b3z

3 + b4b
4 +O(z5), (1.75)

where b1 = 1, b2 = 3
√
2/8 are known exactly and the authors used b3 = −0.29095295 from

Ref. [54]. The higher-order terms O(z5) is assumed to be negligible, and b4 is obtained by fitting

to the reconstructed pressure, which yields the prediction b4 = 0.065(10), or equivalently ∆b4 =

0.096(10). The ENS group used a similar procedure except that they directly measured the local

pressure P (µ, T ), and fitted both ∆b3 and ∆b4 to the ratio P/Pfree. They obtained a very close

estimation ∆b4 = 0.096(15)7.

The agreement between the experimental determination is not a big surprise considering the

accurate pressure measurement in both experiments and the accurate results at the third order.

As we will show later, the true culprit behind the discrepancy between the experimental determi-

nation and theoretical calculation is that the fifth-order contribution is actually not negligible. In

fact, it is positive, the same sign as the fourth-order, and has comparable magnitude to that of

the fourth order, which explains the overestimates from the experiments.

Beyond fourth-order coefficient, the existing results are even more limited. In the same

work [56], Rakshit et al predicted ∆b5 ∈ [0.0017, 0.101] and the sign of bn at low temperature

follows +,−,−,+,+,−,−,+,+, . . . for n = 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .. In Refs [63, 64], Bhaduri et

al. proposed an ansatz

∆bn = (−1)n
∆b2

2(n−1)(n−2)/2
, (1.76)

which is based on their conjecture of n-body cluster in terms of two-body systems.

As will be further explained later, one main drawback of the conjectures is that they are based

on the properties of n-body system, while our results demonstrate that the competition between

the subsystems plays an important role in ∆bn, and therefore it will be more accurate to conjec-

7Their fitted results yielded ∆b3 = −0.35(2), agreeing very well with expected ∆b3 = −0.355.
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ture for the subspace contribution ∆bmj .

Section 1.5: Dissertation overview

This dissertation is mainly based on the following published works:

1. Leading- and next-to-leading-order semiclassical approximation to the first seven virial coeffi-

cients of spin-1/2 fermions across spatial dimensions, Hou, Y., Czejdo, A. J., DeChant, J.,

Shill, C. R. and Drut, J. E., Physical Review A, 100, 6, 063627 (2019)

2. Fourth- and fifth-order virial coefficients from weak coupling to unitarity, Hou, Y. and

Drut, J. E., Physical Review Letters, 125, 5, 050403 (2020)

3. Virial expansion of attractively interacting fermi gases in one, two, and three dimensions, up

to fifth order, Hou, Y. and Drut, J. E. Physical Review A, 102, 3, 033319 (2020)

4. Fourth- and fifth-order virial expansion of harmonically trapped fermions at unitarity, Hou,

Y., Morrell, K. J., Czejdo, A. J. and Drut, J. E., Physical Review Research, 3, 3, 033099

(2021)

5. Toward an automated-algebra framework for high orders in the virial expansion of quantum

matter, Czejdo, A. J., Drut, J. E., Hou, Y., and Morrell, K. J., Condensed Matter, 7, 1, 13

(2022)8

Several sections are partially related to the following published works

1. Virial coefficients of trapped and untrapped three-component fermions with three-body forces

in arbitrary spatial dimensions, Czejdo, A. J., Drut, J. E., Hou, Y., McKenney, J. R. and

Morrell, K. J., Physical Review A, 101, 6, 063630 (2020)

2. Pairing and the spin susceptibility of the polarized unitary fermi gas in the normal phase,

Rammelmüller, L., Hou, Y., Drut, J. E. and Braun, J., Physical Review A, 103, 4, 043330

(2021)

8Authors are in the alphabetic order
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This dissertation is organized as follow: Chap. 2 focuses on the methodology, where we briefly

review the conventional methods and the motivations behind the development of the automated-

algebra methods. In Chap. 3 and Chap. 4, we apply the automated-algebra method to homoge-

neous Fermi gas. Chap. 3 is exclusively devoted to the Unitary Fermi gas while Chap. 4 focuses

on the general settings for arbitrary coupling strength across the BCS-BEC crossover and in dif-

ferent dimensions. Chap. 5 discusses the harmonically trapped Fermi gases, for which we gener-

alized of automated-algebra method to the coordinate space. Chap. 6 concludes the dissertation

and presents the outlook for the automated-algebra framework.
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CHAPTER 2: Computational methods: Automated-algebra framework

In this chapter, we focus on the technical aspects. We start with a detour to a brief review on

the existing methods that are widely applied for quantum many-body problems. We particularly

focus on the Quantum Monte Carlo method to introduce several important concepts such as the

Trotter-Suzuki decomposition and the Hubbard-Stratonovich transformations. After the review,

we dive into the formalism and technical details of the so-called automated-algebra method.

Section 2.1: Review of existing computational methods

Before starting this section, we would like to clarify that this section is definitely not a ex-

haustive review on methods for Quantum Many-body problems. Rather, its aim is to offer more

contexts to establish the foundation for better analysis of the automated-algebra method pre-

sented later.

Roughly speaking, the computational methods for the quantum many-body problem could be

categorized into two classes: the direct ones (also called memory-intensive) vs the stochastic ones

(or statistical-intensive), and the criterion is whether the statistical sampling is used. The com-

mon examples of the first type are the exact diagonalization (see e.g. [65, 66]) and the coupled

cluster methods (see e.g. [67, 68]). Though taking the advantages such as “exact” accuracy and

free from numerical analytic continuation, such methods are extremely memory-hungry due to the

exponential growth of the Hilbert space dimension as the size of system increases, i.e. the “curse

of dimensionality doom“.

In dealing with the growing memory requirement, the second type of methods takes a different

route by incorporating the statistical samplings, rather than work directly in the complete Fock

space. The most prominent example of this type is the Quantum Monte Carlo (QMC) method.

The QMC is not the name of a single method, but rather refers to a set of techniques that in-

corporate the Monte Carlo method into quantum systems. Depending on the formalism, there

are multiple variations in the big QMC family such as Variational QMC [69, 70], path-integral

QMC [71], hybrid QMC [72] and so on.
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Here, we will focus on one kind called Determinant QMC (DQMC) to introduce several com-

mon concepts and demonstrate the challenges encountered by the conventional numerical meth-

ods. For more details of QMC method, see e.g. Ref. [73].

The essential principle of QMC is the same as its classical counterpart. Assume we have a

given quantity also denoted as Z, and it can be written as

Z =
∑
n

Pn or Z =

∫
ddn P(n), (2.1)

where
∑

n or
∫
ddn is over all possible configurations and P(n) is any semi-positive function at

the corresponding configuration n, i.e. probability measure (again, with proper normalization).

Using the Monte Carlo method, we could estimate this quantity by randomly sampling a large

number of configurations n and taking the average.

In our case, in order to estimate the GCPF, we rewrite it in form of

Z = TrF [e
−β(Ĥ−µN̂)] =

∫
Dσe−S[σ]. (2.2)

Now the integrand e−S[σ] plays the role of probability measure (with proper normalization), and

our goal is now to find the proper form of S[σ]. To express the GCPF into this desired form, we

introduce two techniques: the Trotter-Suzuki decomposition and the Hubbard-Stratonovich trans-

formation.

At first, we would like to “decouple” the kinetic operator T̂ and interaction operator V̂ as they

usually belong to different eigenspace. To decompose the exponential operator exp
[
−τ(Â+ B̂)

]
properly, we use the Trotter-Suzuki decomposition

e−τ(Â+B̂) = e−τÂ/2e−τB̂e−τÂ/2 +O(τ3). (2.3)

With a small τ , the Suzuki-Trotter decomposition can approximate the quantum effect with rela-

tively small error. In our case, we firstly discretize β into Nτ slices such that τ = β/Nτ is a small
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quantity, where τ is now the imaginary time spacing. We can then write

e−βĤ =
∏
τ

e−τ(T̂+V̂ ) =
∏
τ

e−τT̂ /2e−τV̂ e−τT̂ /2. (2.4)

Higher-order decomposition are also available [74], while in most cases, the leading order for-

mula with small τ is accurate enough as the decomposition error is insignificant compared to

other sources such as statistical error from sampling.

Now we have successfully decoupled the two operators but it remains that T̂ is a single-body

operator while V̂ is a two-body operator (or n-body operator in general). The next step is to

transform operator V̂ into decoupled single-particle operators so that we can work uniformly in

the single-body space.

To this end, the conventional technique is the Hubbard-Stratonovich (HS) transformation [75,

76], which is originally defined through the identity

exp

(
−x

2

2

)
=

√
1

2πa

∫ ∞

−∞
dy exp

[
−y

2

2a
− ixy

]
, (2.5)

where the x2 term in the LHS plays the role of our two-body operator, i.e. x can be interpreted

as the density operator, and y is the newly-introduced “auxiliary field”. From a physical stand-

point, the above transformation convert a system with two-body inter-particle interaction into a

noninteracting system coupled to a auxiliary field1.

Though this original form is still being widely used, evaluating an unbound integral is not a

cheap operation. Therefore, later research propose more choices (see e.g. Refs. [73, 78]) to decou-

ple V̂ operator. Here we use the broader definition and call all of them the HS transformation,

and specifically, we will use the bounded continuous version as

exp(τgn̂↑n̂↓) =
∫ π

−π

dσ

2π
(1 +A sinσn̂↑)(1 +A sinσn̂↓), (2.6)

where A =
√

2(eτg − 1).

After applying the TS decomposition and HS transformation, we end up with GCPF expressed

1Though we consider only the two-body contact interaction, the Hubbard-Stratonovich transformation could be
generalized to the arbitrary many-body case, see e.g. Ref. [77]
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in the form as in Eq.(2.2).

Z =

∫
Dσe−Seff [σ], (2.7)

where Dσ is the path integral over all possible configurations of the field σ, and S[σ] = Seff [ϕ]

now takes the physical meaning of the effective action. It can be shown that

e−Seff [σ] = detM↑[σ] detM↓[σ], (2.8)

where Ms is called fermion matrix for each species. The “canonical” definition of the Fermion ma-

trix is

M =



1 0 0 0 · · · UNτ

−U1 1 0 0 · · · 0

0 −U2 1 0 · · · 0

...
...

...
. . .

...
...

0 0 · · · −UNτ−2 1 0

0 0 0 · · · −UNτ−1 1


, (2.9)

where we omit the subscript s for spin species and Ui is the decomposed and transformed ith slice

defined as

[Ui]jk = ⟨pj |exp
(
−τ
2
T̂
)
(1 +A sinσin̂) exp

(
−τ
2
T̂
)
|pk⟩ ≡ T Vi[σ]T (2.10)

Alternatively, it can be demonstrated that the detM can be written as

detM = det(1+ U) = det(1+ UNτUNτ−1 · · · U1). (2.11)

Note that we did not consider the contribution from operator exp
(
βµN̂

)
as it yields just the fu-

gacity z in the single-body space. We omit it from the above expressions for clarity and in prac-
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tice we absorb the fugacity into kinetic matrix, i.e.

T = exp

(
−τ
2

p2

2

)
exp
(τµ

2

)
. (2.12)

Lastly, to evaluate the path integral on a computer, coordinates are also discretized into a d-

dimensional lattice of size Nd
x with lattice spacing ℓ, which is set to one by convention and defines

the lattice unit. The lattice parameters are required to satisfy 1 = ℓ ≪ λT ≪ Nx to “fit” the sys-

tem properly. The lattice spacing ℓ imposes an ultraviolet cutoff in the momentum space Λ ∝ ℓ−1

in lattice units, and the lattice size Nx discretizes the momentum in units of 2π/Nx and repre-

sents an infrared cutoff.

Such finite lattice can also be regarded as a cutoff of Fock space. However, in the ultracold

regime, the low-lying states contribute dominantly and the effects are expected not to change the

physics qualitatively. With finite lattice results, the result in the thermodynamic limit can be ob-

tained by extrapolation.

One of the greatest challenge inhibiting the wide application of QMC is the infamous sign

problem. In the previous section, we claimed that the exp(−Seff) can be treated as probability

measure. However, as in Eq. (2.8), the product of determinants is not guaranteed to be semi-

positive for all σ configurations. When the sign of P[σ] depends on σ, the interpretation as prob-

ability measure is no longer valid, which is why the issue is called (minus) sign problem. More

generally, P[σ] can even be complex (for example, when the Hamiltonian is complex) and hence

the sign problem is actually a special case of a more general problem called complex phase prob-

lem.

In the presence of sign problem, the contributions with different sign will cancel each other

out, leading to exponential calculation time. In this sense, the sign problem can be regarded as a

signal-to-noise issue. The sign problem is common in many systems of physical interests, such as

the imbalanced [79, 80] or repulsively interacting fermions, as well as finite-density QCD [81], the

sign problem emerges and severely limits the application of QMC.

The sign problem has been proven to be NP-hard [82], which means no polynomial time method

exists in the presence of sign problem. To mitigate the sign problem, many methods has been de-

veloped, such as the “naive” reweighting method [83] or the more recent Fermion’s bag approach [84].
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In some situations, it is also possible to circumvent the sign problem by taking a different repre-

sentation, such as by using the Majorana representation [85]. For a more comprehensive review,

see e.g. Ref. [86]. Another direction is to turn to alternative methods that does not depend on

the probabilistic interpretation. One example is the complex Langevin which has been success-

fully applied in fields of both QCD and condensed matter. For more details on complex Langevin

as well as other approaches for the sign problem, see e.g. Ref. [87].

Besides the theoretical obstacles like the sign problem, some practical issues related to the

Fermion determinant are also inhibiting the wide application of QMC. We present two forms of

the Fermion determinant in Eq. (2.9) (sparse version) and (2.11) (compact version), and both

forms have their own pros and cons. Compared to the sparse matrix M, the compact matrix 1+U

is better-conditioned and more memory economical. However, it is more complicated to calculate

the term δM/δσ, which is required in calculation some observables, using the compact form than

the sparse matrix, since the derivative of the product of Uis yields a series of length Nτ . More-

over, the product of the long sequence matrices is numerically unstable. Though it is possible to

stabilize the product by incorporating rank-revealing decomposition such as the singular value

decomposition (SVD) or QR decomposition [88, 89], whose idea is to align the number by order

such that the multiplication results remains exact with in the machine precision, the huge expense

of the rank-revealing decomposition hinders its application in large scale simulation.

Another issue related to the fermion matrix arises when simulating in large lattice, which is

important for understanding the extrapolation to thermodynamic limit and the finite size effect.

In QMC methods, one computationally expensive step is the inverse of fermion matrix M−1. The

direct method is to calculate the explicit form of M−1 using LU decomposition, scaling as cubic

of the matrix size, namely O[(Nd
xNτ )

3]. It is therefore impractical to apply the direct method in

large lattice. The limited memory is another reason why direct inversion is not the optimal choice

for simulation in large lattice. The LU decomposition requires the storage of two matrices of the

same size as the fermion matrix. As the simulation usually consists of dozens or even hundreds of

jobs in parallel, the direct inversion will swallow up the memory in no time. One possible solution

is to treat the problem as a linear problem, instead of trying to find the explicit form of M−1.
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Section 2.2: Automated-algebra method

2.2.1: From QMC to Automated-Algebra

In the last section, we discussed several general limitations of QMC. In the context of QVE,

there is another specific issue rooting from the statistical sampling errors. Due to the decreasing

order of magnitude and dedicated volume cancellations, it is very expensive to apply QMC, when

it is applicable, to evaluate higher-order virial coefficients. Moreover, due to its numerical nature,

one has to repeat the calculations to cover different parameters, or in other words, it is a kind of

“discrete method”. Even though a natural remedy to all the three issues above is to turn to an-

alytic method, analytic solutions for n-body systems with n > 3 are extremely difficult, if not

impossible.

In between the purely numerical and purely analytical method, a balance may be struck by

developing a semi-analytic method whose results, though still rely on complicated numerical meth-

ods for evaluation, are essentially analytical expressions.

To evaluate the partition function, we also use the TS decomposition, the same as in the QMC.

However, as it is much more expensive to perform the analytic evaluation, the calculations

are usually limited small Nτ , resulting into a larger decomposition error (or physically, a larger

truncation error when neglecting certain quantum effects). In a pilot work [90] (see also Sec. 4.1),

the authors found qualitative agreement between the QMC results and semiclassical results, i.e.

using Nτ = 1 in the TS decomposition. This success inspires us to explore the results at larger

Nτ . But to deal with the sheer increase in computational costs, we aim to develop a method to

automatically evaluate the above algebraic expression, which is also inspired by an early work by

our group on the automated perturbation theory [27].

As there is no need to rewrite the partition function as probability integral, no HS transforma-

tion is required. Instead, we express the Hilbert trace explicitly as

QN = trN

[
exp
(
−βĤ

)]
= trN

[∏
Nτ

exp
(
−τ T̂

)
exp
(
−τ V̂

)]
, (2.13)

where the cyclic property of trace is used, and insert a series of complete sets |X⟩⟨X| or |P⟩⟨P| to
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project operator into their eigenspace, where the capital states refers to a set of all particles, i.e.

P = {p1,p2, · · ·pM ,pM+1, · · ·pM+J}. (2.14)

The partition function is now explicitly expressed as

QN =trN

[∏
Nτ

exp
(
−τ T̂

)
exp
(
−τ V̂

)]

=
∑
P(1)

〈
P(1)

∣∣∣∏
Nτ

exp
(
−τ T̂

)
exp
(
−τ V̂

)∣∣∣P(1)
〉

=
∑
{P}

∑
{X}

ϵ[P(1)]
〈
P(1)

∣∣∣X(1)
〉
V [X(1)]

〈
X(1)

∣∣∣P(2)
〉

× ϵ[P(2)]
〈
P(2)

∣∣∣X(2)
〉
V [X(2)]

〈
X(2)

∣∣∣P(3)
〉

× . . . ϵ[P(Nτ )]
〈
P(Nτ )

∣∣∣X(Nτ )
〉
V [X(Nτ )]

〈
X(Nτ )

∣∣∣P(1)
〉
. (2.15)

Reordering the terms, we have

QN =
∑
{P}

ϵ[P(1)]ϵ[P(2)] · · · ϵ[P(Nτ )]
∑
{X}

〈
P(1)

∣∣∣X(1)
〉
V [X(1)]

〈
X(1)

∣∣∣P(2)
〉
· · · . (2.16)

The first part is summing over all momentum variables and ϵ[P] is the free-space propagator

ϵ[P] = exp

(
−τ

n∑
i=1

p2
i

)
. (2.17)

The second part sums over all coordinate space, which is to calculate the representation of V̂ in

the momentum representation, i.e.
〈
P(i)

∣∣V̂ ∣∣P(j)
〉
.

The wavefunction ⟨X|P⟩ is given by the Slater determinant, i.e.

⟨X|P⟩ =
√

1

N !

√
1

V N

∣∣∣∣∣∣∣∣∣∣
eix1p1 eix1p2 · · ·

eix2p1 eix2p2 · · ·
...

...
. . .

∣∣∣∣∣∣∣∣∣∣
M

∣∣∣∣∣∣∣∣∣∣
eixM+1pM+1 eixM+1pM+2 · · ·

eixM+2pM+1 eixM+2pM+2 · · ·
...

...
. . .

∣∣∣∣∣∣∣∣∣∣
J

, (2.18)
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and the interaction matrix V [X] is in form of

V [X] = ⟨X|exp
(
−τ V̂

)
|X⟩ = ⟨X|exp(τgn̂↑n̂↓)|X⟩ = ⟨X|

∏
x

exp[τgn̂↑(x)n̂↓(x)]|X⟩ (2.19)

where we used the density operator in the coordinate space n̂s =
∏

x n̂s(x). Expanding the opera-

tor exp[τgn̂↑(x)n̂↓(x)], we obtain

exp[τgn̂↑(x)n̂↓(x)] =1 + τgn̂↑(x)n̂↓(x) +
(τg)2

2!
n̂↑(x)n̂↓(x) + . . .

=1 + Cn̂↑(x)n̂↓(x),

(2.20)

where C is also referred as bare coupling and defined as

C = exp(τg)− 1. (2.21)

The product now becomes

∏
x

[1 + Cn̂↑(x)n̂↓(x)] = 1 + C
∑
x

n̂↑(x)n̂↓(x) + C2
∑
x ̸=x′

′n̂↑(x)n̂↓(x)n̂↑(x
′)n̂↓(x

′) + . . . (2.22)

where the primed summation is the result of the Pauli exclusion principle. Due to the limited

number of pairs, the series is not infinite but rather truncated at order min(M,J), i.e. the maxi-

mum number of pairs allowed in the subsystem.

Without the HS transformation, the interaction operator remains a two-body operator but its

analytic forms are explicitly known. For example, the first summation yields

C
∑
x

n̂↑(x)n̂↓(x) |Y⟩ =C
∑
x

[
M∑

m=1

δ(x− ym)

] J∑
j=1

δ(x− yM+j)

 |Y⟩

=C
∑
(m,j)

δ(ym − yM+j) |Y⟩ ,
(2.23)

where the last summation is over all possible particle pairs (m, j). Similarly the second summa-
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tion corresponds to the two-pair summation and is given as

C2
∑
x ̸=x′

′n̂↑(x)n̂↓(x)n̂↑(x
′)n̂↓(x

′) |Y⟩ = C2
∑
(m,j)

∑
(m′,j′)

′δ(ym − yM+j)δ(ym′ − yM+j′) |Y⟩ (2.24)

where the primed double sum is over all possible two-pairs. Note that we use the Dirac delta no-

tation δ(·) for clarity but they are still Kronecker deltas as we have not yet taken the continuum

limit.

In the end, the coordinate variable summation is in general form as

∑
x1,x2

exp
[
ix1(p

(τ)
j − p

(τ+1)
k )

]
exp
[
ix2(p

(τ)
l − p(τ+1)

m )
]
δ(x1 − x2)

=
∑
x1

exp
[
ix1(p

(τ)
j + p

(τ)
l − p

(τ+1)
k − p(τ+1)

m )
]
= V δ

[
p
(τ)
j + p

(τ)
l − p

(τ+1)
k − p(τ+1)

m

]
,

(2.25)

where x1 and x2 are particles of different species. The exponential terms are from the wave func-

tion (Slater determinants) and δ(x1 − x2) is from the interaction matrix V [X]. For other particles

not participating in the connect interaction, the summation takes the form as

∑
x3

exp
[
ix3(p

(τ)
j − p

(τ+1)
k )

]
= V δ

[
p
(τ)
j − p

(τ+1)
k

]
. (2.26)

Eq. (2.25) and (2.26) are just the conservation description in the momentum space for different

particles during the two-body scattering process.

Denote the momentum representation of V̂ as

V [P(i),P(j)] =
〈
P(i)

∣∣∣V̂ ∣∣∣P(j)
〉
= 1 + Cf1(P

(i),P(j)) + C2f2(P
(i),P(j)) + · · · , (2.27)

where fi(P(i),P(j)) are composed of all combinations of Eq. (2.25) and Eq. (2.26). Eventually, we

simplify Eq. (2.15) into

QN =
∑
{P}

ϵ[P(1)]ϵ[P(2)] · · · ϵ[P(Nτ )]V [P(1),P(2)]V [P(2),P(3)] · · ·V [P(Nτ ),P(1)], (2.28)

where ϵ[P(i)] are Gaussian functions and V [P(i),P(j)
] are a bunch of delta functions. Taking the
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continuum limit as in Eq. (1.25), the final form of QN is turned into a multidimensional Gaus-

sian integral, which can be evaluated analytically (see Sec. 2.3 for details). As V [P(i),P(j)] is a

polynomial of C at degree min(M,J), the final expressions of QN is therefore a polynomial of

C at degree Nτ min(M,J). In fact, as demonstrated later, the polynomials are actually in pow-

ers of the dimensionless C/λdT ≡ C̃, where the extra factors comes in the continuum limit as in

Eq. (1.25).

One important feature of this automated-algebra calculation is that we can track the vol-

ume power analytically, as shown in Eq. (2.18) and (2.25) (also from the continuum limit as in

Eq. (1.25)). As discussed in Sec. 1.3, the dedicated volume cancellation as in Eq. (1.36) is one

of the main reason that the bn is more susceptible to the statistical error. The analytical volume

power count allows a analytic cancellation, making the AA method an ideal way for the QVE.

However, the calculation in such naive form is very expensive. The wavefunction at each imag-

inary time step grows factorially as particle number N , and the number of terms in interaction

matrix also scales factorially as particle content M and J . The total computational costs is there-

fore roughly at order of O[(N !M !J !)Nτ ].

Fortunately, as pointed out by Lee and Yang [50, 51], we do not need to anti-symmetrize the

“pseudo-particles” at immediate imaginary steps. It is because all operators preserve the particle

symmetry, and therefore we only need to account for the particle symmetry just once. In other

words, we can treat particles at imaginary slices, i.e. P(2) to P(Nτ ) as classical distinguishable

particles, and only the particles P(1) are treated as quantum identical particles. Equivalently,

we can treat particles at all times steps as distinguishable. In this case, instead of evaluating〈
P(1)

∣∣exp(−βĤ)∣∣P(1)
〉
, we compute the matrix elements

〈
P(1)

∣∣exp(−βĤ)∣∣P(Nτ+1)
〉
, and the

Fermi statistics is encoded as different boundary conditions of P(1) and P(Nτ+1). In the end, such

simplification greatly reduces the overall computational cost to O[N !(M !J !)Nτ ].

Furthermore, due to the cyclic property of the trace, we do not need to evaluate all (M !J !)Nτ

terms from the expansion of product of V [P(1),P(2)]V [P(2),P(3)] · · ·V [P(Nτ ),P(1)]. Instead, we

only need to evaluate the contributions that are not cyclically identical. For example, the O(C)

term from the product V [P(1),P(2)]V [P(2),P(3)] · · ·V [P(Nτ ),P(1)] is from f1(P
(1),P(2)) × 1 ×

· · · × 1, 1 × f1(P
(2),P(3)) × · · · × 1 and so on. They all give the same results, as can be easily

shown by cyclically shifting the variables (see Sec. 2.3 for a more explicit example). Such property
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defines a mathematical object called the “necklace”. The k-ary necklace of length n is defined as

an equivalence class of n-character strings over an alphabet of size k. In our case, we are looking

for the necklace of length Nτ , and the alphabet size k = 1 + min(M,J) is the number of terms as

in Eq. (2.27).

Now, instead of taking the full expansion of the product of interaction matrices, we only need

to find all possible necklaces, whose number is sub-factorial and given as

Nk(n) =
1

n

∑
d|n

φ(d)k
n
d , (2.29)

for the k-ary necklaces of length n, where φ(·) is Euler’s torrent function

φ(n) = n
∏
p|n

(
1− 1

p

)
, (2.30)

and a|b under the summation and multiplication is over the distinct prime numbers dividing b.

For more details of the necklace and the generation algorithms, see e.g. Refs. [91–93].

2.2.2: Transfer matrix formalism

The formalism presented in the last section laid down the foundation for the AA method.

However, its details heavily depend on the particle content and it is unclear how the antisym-

metrization is implemented in its current form. Therefore, we develop another unified framework

based on the transfer matrix.

Recall that the GCPF can be written in the path integral form as

Z ≡ Tr
[
e−β(Ĥ−µN̂)

]
=

∫
Dσ det2(1 + zU [σ]), (2.31)

where U [σ] = UNτ . . .U2U1 and Ui = T V[σi]T , see Eq. (2.10) and (2.11) for details. Note that

compared to the previous equations, here we write out the fugacity z explicitly.

Differentiate with respect to fugacity z at z = 0, we reproduce

∂

∂z

∣∣∣∣
z=0

∫
Dσ det2(1 + zU [σ]) = 2

∫
Dσ trU = 2

(
L

λT

)d

= Q1. (2.32)
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Similarly higher-order derivatives yields contributions from other systems. For example, we have

Q2 =
1

2!

∫
Dσ
[
4(trU)2 − 2(trU2)

]
, (2.33)

Q3 =
1

3!

∫
Dσ4

[
2(trU)3 − 3(trU)(trU2) + tr

(
U3
)]
, (2.34)

and so on.

To carry out the path integral, we write the matrix product in its explicit form. Generally,

every time U appears, a given temporal index j0 and its corresponding field σ(x, j0) will appear

once, and that factor will become part of the integrand for the σ(x, j0) integral living on that

time slice. In the case of b2, for instance, the j0 factor will appear twice in each of the traces. The

corresponding path integral will then take the form

∫
Dσ(x, j0)

[
T Vj0 [σ]T

]
xy

[
T Vj0 [σ]T

]
wz
. (2.35)

Writing out all the indices explicitly at this point, the integral is separated from the kinetic en-

ergy factors and one is left with the simple task of evaluating

∫
Dσ(x, j0)

[
Vj0 [σ]

]
i

[
Vj0 [σ]

]
j
= 1 + [exp(τg)− 1] δij = 1 + Cδij , (2.36)

where we have used the fact that the potential energy factors are diagonal in coordinate space for

a contact interaction.

Furthermore, we can unify the path integral over different kind of traces using the transfer

matrix M. For example, for the two body case, we have

∫
Dσ(trU)2 =

∑
ab

[
MNτ

2

]
ab,ab

, (2.37)∫
Dσ tr

(
U2
)
=
∑
ab

[
MNτ

2

]
ab,ba

, (2.38)

where the r.h.s. of the first equation corresponds to a regular trace while that of the second equa-
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tion to a “twisted” trace. The transfer matrix for the two-body case is given as

[M2]ab,cd =
[
T 2
]
ac

[
T 2
]
bd
+ C [I2]ab,cd , (2.39)

where the interaction part is

[I2]ab,cd =
∑
i

[T ]ai [T ]bi [T ]ic [T ]id . (2.40)

Eventually, the partition function is now in form of

Q2 =
1

2

∑
a,b

{
4
[
MNτ

2

]
ab,ab

− 2
[
MNτ

2

]
ab,ba

}
, (2.41)

To evaluate MNτ , we use the explicit forms

[
T 2
]
pp′

= e−τ p2

2m δpp′ = ϵ[p]δpp′ , (2.42)

and similarly

[I2]p1p2,p′1p′2 =
1

V
e−

τ
2

p21+p22
2m e−

τ
2

p′21 +p′22
2m δp1+p2,p′1+p′2

= ϵ[p1]ϵ[p2]ϵ[p
′
1]ϵ[p

′
2]δp1+p2,p′1+p′2

, (2.43)

which corresponds to Eq. (2.26) and (2.25) respectively. More generally, in the N -body case, the

form of M is

MN = K0 + CK1 + C2K2 + . . . , (2.44)

which truncates at order minM,J , the same as in Eq. (2.22). K0 represents the noninteracting

piece, namely

[K0]ab =
[
T 2
]
a1b1

[
T 2
]
a2b2

. . .
[
T 2
]
aN bN

, (2.45)

where we have used collective indices a = (a1, a2, . . . , aN ) and b = (b1, b2, . . . , bN ). Higher-order

Kn matrices are composed of the noninteracting part as K0 and the n-pair interactions tensor In,
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which is the combinations of I2 (due to the contact interaction) over all possible pairing configu-

rations. For example, for a three-body system, the interaction matrix I3 is

[I3]abc,def =
[
T 2
]
ad

[I2]bc,ef +
[
T 2
]
be
[I2]ac,df , (2.46)

which includes two possible pairs. In other words, the matrix Kn plays the role of fn(P(i),P(j)) as

in Eq. (2.27), except that Kn also includes the propagator terms T 2.

Taking the Nτ -th power of the above MN , we may identify the various multinomial-expansion

terms contributing at each order in powers of Cn, n = 0, 1, 2, . . . , Nτ min(M,J) as

(MN )Nτ = KNτ
0 + C

Nτ−1∑
k=0

Kk
0K1K

Nτ−k−1
0 + C2

[
Nτ−1∑
k=0

Kk
0K2K

Nτ−k−1
0 + . . .

]
+ . . . . (2.47)

It is also easier to identify the cyclic property using the above expression.

As discussed in Sec. 1.3, it is advantageous to work in the subspace directly, i.e. calculating

the subspace contribution QMJ rather than QN . In analogue to the derivation of subspace coeffi-

cients, we write GCPF with explicit z↑ and z↓

Z ≡ Tr
[
e−β(Ĥ−µN̂)

]
=

∫
Dσ det(1 + z↑U [σ])det(1 + z↓U [σ]), (2.48)

and take derivative with respect to z↑ and z↓ at different order. All the following steps are the

same as demonstrated above. Below, we list the final explicit expressions for QMJ up to the five-

body system that yields a non-zero interaction-induced contribution.

Q11 =
∑
ab

[
MNτ

2

]
ab,ab

, (2.49)

Q21 =
1

2!

∑
abc

{[
MNτ

3

]
abc,abc

−
[
MNτ

3

]
abc,bac

}
, (2.50)

Q31 =
1

3!

∑
abcd

{[
MNτ

4

]
abcd,abcd

− 3
[
MNτ

4

]
abcd,bacd

+ 2
[
MNτ

4

]
abcd,bcad

}
, (2.51)

Q22 =
1

(2!)2

∑
abcd

{[
MNτ

4

]
abcd,abcd

− 2
[
MNτ

4

]
abcd,abdc

+
[
MNτ

4

]
abcd,badc

}
, (2.52)
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Q41 =
1

4!

∑
abcde

{[
MNτ

5

]
abcde,abcde

− 6
[
MNτ

5

]
abcde,abdce

+3
[
MNτ

5

]
abcde,badce

+ 8
[
MNτ

5

]
abcde,acdbe

− 6
[
MNτ

5

]
abcde,bcdae

}
,

(2.53)

Q32 =
1

3!2!

∑
abcde

{[
MNτ

5

]
abcde,abcde

− 3
[
MNτ

5

]
abcde,acbde

+2
[
MNτ

5

]
abcde,bcade

−
[
MNτ

5

]
abcde,abced

+ 3
[
MNτ

5

]
abcde,acbed

− 2
[
MNτ

5

]
abcde,bcaed

}
.

(2.54)

In summary, within the transfer matrix formalism, we are able to present the expression for

QMJ in a unified form. It also allows a cleaner representation of the necklace object as demon-

strated in Eq. (2.47). Moreover, the particle symmetry has also been automatically encoded in

the GCPF and is present in form of the trace and “anomalous” traces. The distinguishable parti-

cles at the intermediate imaginary time steps are easy to implement using matrix elements.

2.2.3: Observables

To calculate observables in the QMC method, we firstly need to couple the one-body observ-

able operator to a source in the Hamiltonian, i.e.

Ĥ → Ĥ(j) = Ĥ + jÔ, (2.55)

where j is the source current and Ô is the desired one-body observable. Similarly, the GCPF be-

comes

Z[j] = TrF

(
exp
[
−β(Ĥ[j]− µN̂)

])
. (2.56)

The expected value of observable is then given by

〈
Ô
〉
=

1

Z TrF

[
e−β(Ĥ−µN̂)Ô

]
=
δ lnZ(j)

δj

∣∣∣∣
j=0

. (2.57)

For higher-body observables, multiple source terms are required, i.e. Ĥ → Ĥ(j1, j2, · · · ), and

the observables are reproduced via taking higher-order derivatives. As the QMC results are dis-

crete, the calculation of the numerical derivative could be expensive and can be unstable in case

of higher-order derivatives are involved.
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On the other hand, the calculation of observable in the AA method is more straightforward.

Same as Eq. (2.57), we decompose both numerator and denominator into subspaces

〈
Ô
〉
=

1

Z TrF

[
e−β(Ĥ−µN̂)Ô

]
=

zW1 + z2W2 + z3W3 + · · ·
1 + zQ1 + z2Q2 + z3Q3 + · · ·

=

(∑
N=1

zNWN

)1−(∑
N=1

zNQN

)
+

(∑
N=1

zNQN

)2

+ · · ·


= z ·W1 + z2 · (W2 −Q1W1) + z3 ·

[
W3 −Q1W2 +

(
Q2

1 −Q2

)
W1

]
+ · · · ,

(2.58)

where we expand the denominator in the second line and WN is defined as

WN = trN (e−βĤÔ). (2.59)

To evaluate WN we take the same procedure

WN =
∑
P

⟨P|e−βĤÔ|P⟩ =
∑
P

∑
Q

⟨P|e−βĤ |Q⟩ ⟨Q|Ô|P⟩ , (2.60)

where the first term takes the same form as in evaluating QN , and the second matrix element can

be written explicitly as analytic expressions for general operator Ô.

However, the observable calculation in the AA method also faces its own challenges. For ex-

ample, the general form of WN is no longer necessarily a multidimensional Gaussian integral due

to the arbitrary form of ⟨Q|Ô|P⟩ term. If no analytical solution to the integral is available, it will

lead to sheer increase in computational costs as we have to incorporate numerical methods for

evaluation. Fortunately, as we will show later, the Gaussian form assumptions hold true for many

observables of physical importance.

2.2.4: Renormalization

The results we obtained so far are in terms of the bare coupling strength C. To encode the

true physics, our next step is to renormalize the bare coupling strength. To this end, we present

two different procedures here and claim that the first procedure is advantageous. We leave the

details and discussions supporting this argument to Appendix. A.
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Procedure I The first way is to tune the bare coupling such that the calculation of ∆b2, at a

given order Nτ in the Trotter-Suzuki factorization, reproduces the known, continuum-limit value

of that coefficient as in Eq. (1.68), (1.69) and (1.70). The idea of this procedure is that one is ap-

proaching the continuum limit along the “line of constant physics”, where the physics is set by the

second-order virial coefficient. More specifically, our calculations yield, at a given Nτ , analytic

expressions for ∆bn which are polynomials in the dimensionless coupling C̃. The latter is then de-

termined by matching to ∆b2. The remaining ∆bn are then simply evaluated by plugging in the

tuned value of C̃.

Procedure II This procedure is commonly used in QMC, where we tuned the bare coupling

such that the largest eigenvalue of the factorized transfer matrix matched the value dictated by

Lüscher’s formula [94]. As we show next, this can be accomplished mostly analytically. Starting

with Trotter-Suzuki-factorized transfer matrix

Uτ ≡ e−βT̂ /(2Nτ )e−βV̂ /Nτ e−βT̂ /(2Nτ ), (2.61)

whose two-body matrix elements, in the center-of-mass frame, are given by

T (pr, qr) = ⟨p1p2|e−βT̂ /(2Nτ )e−βV̂ /Nτ e−βT̂ /(2Nτ )|q1q2⟩ , (2.62)

where
p1 + p2 = 0

q1 + q2 = 0

and


p1 − p2 = 2pr

q1 − q2 = 2qr

. (2.63)

Inserting complete sets of states, we have

T (pr, qr) = e−βp2r/(2Nτ )e−βq2r/(2k)

(
δprqr +

C

V

)
, (2.64)
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which evaluated at momenta pr = 2πa/L and qr = 2πb/L, where a and b are integer vectors,

becomes

Tab = fafb

(
δab +

C

V

)
≡ fafb

[
δab + C̃ (2πx)3/2

]
. (2.65)

For convenience, we defined fa = exp
(
− x

2k
4π2a2

m

)
, rescale C into C̃, and used x = β/L2. Tuning

C̃ to reproduce the leading eigenvalue λ0 = exp
(
−x

k
4π2η20
m

)
amounts to imposing the condition

∑
b

[T − λ0I]ab vb = 0, (2.66)

which can be solved analytically to obtain the dependence of the bare coupling on λ0:

C̃ =
1

(2πx)
3
2

[
Λ∑
a

1

λ0/f2a − 1

]−1

, (2.67)

Section 2.3: Automated-algebra method: technical details

2.3.1: Method overview

In this section, we present a more detailed technical discussion of our automated algebra

method to capture the general idea represented in our code. The ultimate goal of the method is

to evaluate the canonical partition functions, which requires the evaluation of the matrix elements

of MNτ . Roughly speaking, the complete computation is composed of three steps:

1. Term generation: Expand the product MNτ symbolically, which will yield a large number

of terms as Nτ is increased.

2. Delta crunch: Introduced by T 2 and I tensors, the expanded expressions are now com-

posed of propagator terms ϵ(·) as well as a bunch of delta functions. This step contracts in-

dices to saturate all Kronecker deltas, thus simplifying each term into a product of Gaussian

functions, namely the propagator ϵ(p), by integrating out a subset of variables. This is the

most computationally expensive step.

3. Gaussian integration: For each term, take the summation over the rest of the variables

and take the continuum limit, ultimately turning each term into a multidimensional Gaus-
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sian integral whose results are analytically available as the well-known formula

∫
Dx exp

(
−1

2
xTAx

)
=

√
(2π)n

detA , (2.68)

where n is the dimension of vector x and A is the quadratic coefficient matrix.

We now proceed to elaborate on the above steps.

Step 1 The first step is to expand the product of interaction matrix as in Eq. (2.47), i.e.

(MN )Nτ = KNτ
0 + C

Nτ−1∑
k=0

Kk
0K1K

Nτ−k−1
0 + C2

[
Nτ−1∑
k=0

Kk
0K2K

Nτ−k−1
0 + . . .

]
+ . . . . (2.69)

It is easier to organize the expansion order by order. To find all necklaces contributing at the or-

der O(C l), we firstly generate all partitions of the integer l with Nτ parts, under the constraint

li ≤ min(M,J),∀i ∈ [1, Nτ ] (2.70)

where li is the value of ith part, and min(M,J) is the highest degree in Eq. (2.27) and (2.44), i.e.

the maximum pairs allowed. For example, in a (2+2) subsystem when Nτ = 3, there are two

partitions (2, 2, 0) and (2, 1, 1) at O(C4) order, which means the O(C4) terms are either K2K2K0

or K2K1K1. Each partition corresponds to a subset of the 3-ary necklace class of length 3 called

the fixed-content necklaces. In the language of necklace, the two partitions above corresponds to

two contents: one with 1 type-0 (i.e. K0), 0 type-1 and 2 type-2 beads, and another with 0 type-

0, 2 type-2 and 1 type-2 beads.

Breaking the k-ary necklaces into subsets of fixed-content necklaces also allows better control

of the computational load and favors the parallelization as the calculations are completely inde-

pendent.

In our implementation, we use the program by Ref. [93] to generate the fixed-content necklace,

which represents the combinations of Kn operators. We then symbolically expand it in terms of

propagators and interaction matrices, and eventually the results expressions contains Nτ propaga-

tors and interaction terms in form of delta functions. By using the volume power counting, we are

also able to discard terms at higher-volume order, i.e. the disconnected diagrams contributions,

48



and therefore the volume cancellation is performed analytically.

We also takes this opportunity to show an explicit example of the cyclic symmetry. It is more

clear to use the form as in Eq. (2.27) that

Nτ∏
i=1

〈
P(i)

∣∣∣e−τV̂
∣∣∣P(i+1)

〉
=

Nτ∏
i=1

[1 + Cf1(P
(i),P(i+1)) + C2f2(P

(i),P(i+1)) + · · · ] (2.71)

For example, for Nτ = 2, there are two terms f1(P(1),P(2))f2(P
(2),P(3)) and

f2(P
(1),P(2))f1(P

(2),P(3)) at O(C3), which are equivalent under the cyclic variable substitution

P(1) → P(2), P(2) → P(3), P(3) → P(1).

Step 2 After the expansion, we obtain a large number of independents terms and each of them

is in the form of a product of propagators and delta functions as

ϵ(P(1))ϵ(P(2))ϵ(P(3)) · · · ×∆(P(1),P(2),P(3), · · · ) (2.72)

where we omit the summation indices in front. The propagator ϵ(P(i)) is a shorthand for the

kinetic-energy product ϵ(p(i)
1 )ϵ(p

(i)
2 ) · · · ϵ(p(i)

M+N ), and ∆(·) is a product of Kronecker δ’s from the

combination of fi(P(i),P(i+1)) functions.

The second step of the method is to carry out the omitted sums on such a term over all mo-

mentum variables from P(2) to P(Nτ−1), i.e., all intermediate complete sets inserted. This opera-

tion is called “Delta crunch” as it will reduce the ∆ function by substituting all available momen-

tum variables, i.e., “crunching” the δ’s into the ϵ factors. To this end, we loop through the δ’s in

the ∆ function one at a time, and perform variable substitution in both ϵ and ∆. To provide ef-

ficiency in variable substitutions, the ϵ and the δ’s are represented as a hashmap, which offers a

O(1) time in lookup and modification.

In short, at this step we perform the tensor contraction (for all internal indices; not the trace

indices) over all intermediate time steps. At the end of this step, the expressions is just the ma-

trix element
〈
P(1)

∣∣M̂ ∣∣P(Nτ+1)
〉
=
[
MNτ

]
abc...,αβγ...

Step 3 The last step is to take the traces (both the normal and anomalous ones), which en-

codes the pertinent quantum statistics, and evaluate them in the continuum limit. To this end,
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we implement different boundary conditions on P(1) and P(Nτ )+1. For example, in Eq. (2.50),

the first term on the right-hand side is a normal trace, which we obtain by imposing a periodic

boundary condition

p
(1)
i = p

(Nτ+1)
i , ∀i = 1, 2, 3 (2.73)

The second term is the analogus trace with “twisted” indices, corresponding to the boundary con-

dition
p
(1)
1 = p

(Nτ+1)
2

p
(1)
2 = p

(Nτ+1)
1

p
(1)
3 = p

(Nτ+1)
3

(2.74)

These boundary conditions introduce the last set of delta functions to be crunched at time step

Nτ .

Once the last delta crunch step is completed, the resulting expression will be a product of

propagators only, e.g. in form like

ϵ(p
(1)
1 )ϵ(p

(1)
2 )ϵ(p

(1)
3 )ϵ(p

(1)
1 + p

(1)
2 − p

(1)
3 ) · · · . (2.75)

Note that momentum variables at other time steps also exist, which corresponds to the loop as in

the Feynman diagrams.

Recalling that ϵ(p) is a Gaussian function, the evaluation of the summation over the remain-

ing momentum variables is easiest carried out in the continuum limit. We convert the above prod-

uct into a multidimensional quadratic Gaussian integral

exp
(
− τ

2m
pTAp

)
(2.76)

where p contains all remaining momentum variables. The matrix Ā is symmetric and positive-

definite, such that one can use Cholesky decomposition to evaluate the determinant, which is

computationally more efficient and numerically more stable than the LU decomposition.
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2.3.2: Parallelization

Before concluding this section, we want to add one more technical note on the paralleliza-

tion of our method. Compared to more conventional methods such as QMC, ours is much easier

to parallelize. All the terms generated in the first step are independent from each other, which

means they can be evaluated in fully parallel fashion with little or no communication overhead

among processes. Moreover, the evaluation of each term is cheap as it does not involve compli-

cated linear algebra operations, and so it is suitable to run on any number of CPU cores. These

features make our method ideal to run on a distributed, heterogeneous computing cluster, such as

the Open Science Grid or the Folding@home project, where the computational power is unevenly

distributed across nodes, in contrast with traditional supercomputers, where the number of avail-

able cores can be much higher. We would like to acknowledge Open Science Grid [95, 96] here for

the computational resources supporting part of works presented in this dissertation.

Section 2.4: Resummation techniques

The last piece in our arsenal is a mathematical technique called resummation which has been

widely applied in physics to deal with asymptotic series. Here, we introduce two kinds of resum-

mation techniques that will be used later: the Padé resummation and the Borel-Padé (or just

Borel for short) resummation.

Firstly, we define the Padé approximant. For a given series F (z) in form of

F (z) =
∑
n

fnz
n, (2.77)

the Padé approximation at [M/N ] order is defined as

F̃ (z) =
PM (z)

QN (z)
=
p0 + p1z + · · ·+ pMz

M

1 + q1z + · · ·+ qNzN
, (2.78)

where the coefficients pi and qi are determined by requiring F̃ (z) reproduce the first M + N

known coefficients in F (z) after expanding the denominator. The calculation can be turned into

a linear problem Ax = b, and the matrix A depends on the original coefficients in F (z) (see

e.g. [97, 98] for details).

Using the Padé approximant in place of the truncated M + N order series is the Padé resum-
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mation. Similarly the Borel-Padé resummation combines the Borel integral sum with the Padé

approximant, and is especially useful when the series coefficients diverge quickly.

By applying the Borel transformation B on the original series F (z), we have a new series

BF (z) =
∑
n

fn
n!
zn, (2.79)

where the factorial damping factors are expected to help the series to converge.

If the integral

B(z) ≡
∫ ∞

0
dt e−tBF (tz) (2.80)

converges for the given z, we then reproduce the original series and B(z) is called the Borel sum

of series F (z). As only a finite number of coefficients of F (z) known and so does B(z), one can

further apply the Padé approximation on BF (z)

BF (z) = PM (z)/QN (z), (2.81)

and the Borel sum becomes

B(z) =

∫ ∞

0
dte−tPM (tz)

QN (tz)
, (2.82)

which defines the Borel-Padé resummation for the original series F (z).

Conventionally, most applications of resummation method are related to the perturbation the-

ory [99] or diagrammatic expansion [100]. The lack of knowledge of higher-order coefficients limits

its application to the QVE.

In this dissertation, we will mainly use the Padé resummation method, though sometimes

show the Borel-Padé results for comparison. This is because the Borel-Padé method is more suit-

able to divergent asymptotic series, especially with diverging coefficients (which is one of the mo-

tivations using the Borel transformation). Such features are more common in the context of QCD

rather than the QVE for ultracold atoms. But we would like to note that in the general ultra-

cold atoms study, there are many successful applications of the Borel-Padé methods such as in
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Refs. [101–103]

As will be shown in later chapters, with our estimations on up to the fifth-order coefficients,

the resummation significantly improve the convergence region compared to the finite-order se-

ries at its face value. In some situations, we even observed quantitative agreements between the

resummed results and other existing results at low temperature in the vicinity of the critical tem-

perature.

But the resummation method is definitely not a free meal and a few intrinsic issues stand

against the application of resummation techniques. The major issue is that the validity of the

Padé approximation cannot be taken for granted a priori, which is also pointed out in Ref. [24].

In the absence of reference results for benchmark, we cannot tell the region of convergence of the

resummed results beforehand. Making new predictions using the resummation method therefore

should be taken with a grain of salt. See Sec. 5.3.2 for an example.

A related issue is that there is no robust proof nor theorem about the order of Padé approxi-

mant. We empirically observed that the central order, i.e. [m/m], or off-central order, i.e. [(m +

1)/m] or [m/(m + 1)], always yield better results compared to other order. Among these three

choices, which specific order to use varies case by case. Indeed, we can make an argument based

on the asymptotic behavior of the target quantity in the dense limit z → ∞ such that we select

the central order [m/m] if the observable is expected to converge. In the case of the order param-

eter during a phase transition, [m/(m + 1)] seems a better choice, while [(m + 1)/m] order cap-

tures the monotonic behaviour better than the other two choices. However, in practice, it is easy

to find counter-example to the above assumptions. In addition, another issue is that the Padé

approximant is deterministic, depending only on the known coefficients of the series. Therefore,

there is no way to systematically improve Padé resummed results.

Despite of such issues, the resummation method remains an important technique in practice,

as it offers a computationally economical way to extrapolate the QVE to a much wide regime.

In situations where results from other methods such as the QMC exist, we can make confident

predictions and extend the discrete results to smooth and even analytic ones.
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CHAPTER 3: Homogeneous Fermi Gas: The unitary limit

In this chapter, we will focus on a system called Unitary Fermi Gas, i.e. the homogeneous

Fermi gas in the unitary limit. In the next chapter, we will revisit the homogeneous system across

the BCS-BEC crossover and in different dimensions.1

Section 3.1: Unitary Fermi Gas (UFG)

In Sec. 1.1.2 when we discussed BCS-BEC crossover, we emphasized that in the middle there

was a peculiar point called the unitary limit, or simply “unitarity”. In this limit, the scattering

length diverges 1/(kFas) → 0, leaving the only length scale in the system being the interparti-

cle distance ∝ n−1/3. The system at unitarity is therefore universal, whose properties could be

written as the product of a dimensionless function and a power of density. In other words, the mi-

croscopic details of the interaction have no influence on the physics. Such universality is like the

Bifröst connecting different domains in the world of physics [13, 106–110]. For example, systems

as different as ultracold atoms and neutron matter can be described by the same dimensionless

function.2

Here, we consider the spin-1/2 Fermi gas at the unitarity. As shown in Eq. (1.3) with V̂ext =

0, the Hamiltonian of the homogeneous Fermi gas is given as

Ĥ = T̂ + V̂ . (3.1)

where T̂ and V̂ are

T̂ =
∑
s=↑,↓

∫
ddr ψ̂†

s(r)

(
−ℏ∇2

2m

)
ψ̂s(r), (3.2)

1This chapter is based on works published in Ref. [104, 105]

2Strictly speaking, this statement hold only up to the order (kF re)
2, as we neglect the effect range term in Eq. 1.1.

Therefore, the universality between the UFG and neutron matter is only valid in the dilute regime where the
finite-range effect is negligible.
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Table 3.1: The maximum temporal steps Nτ,max calculated with automated-algebra method for homogeneous
Fermi gas.3

QMN Q11 Q21 Q31 Q22 Q41 Q32 Q51 Q42 Q33 Q61 Q52 Q43

Nτ,max 21 21 15 14 12 11 8 8 8 6 6 6

and

V̂int = −g
∫
ddr n̂↑(r)n̂↓(r). (3.3)

See Eq. (1.4) and (1.6) for details. To tune the system to the unitary limit, we renormalize g to

reproduce ∆bUFG
2 = 1/

√
2, see Eq. (1.70).

Section 3.2: Quantum Virial Expansion of Unitary Fermi Gas with the AA method

3.2.1: From Nτ = 1 and 2 to Nτ → ∞ limit

In Sec. 2.2.2, we demonstrated an example evaluating the general partition function at leading-

(semi-classical approximation, Nτ = 1) and next-to-leading-order (Nτ = 2). Although the semi-

classical approximation results are qualitatively correct (see Ref. [90] and Sec. 5.3.1), to achieve

quantitatively accurate results, results at higher Nτ and, more importantly, the extrapolation to

the Nτ → ∞ limit are required. With the help of automated-algebra method, we achieved the

calculation of QMN up to Nτ,max shown in Table. 3.1.

In Fig. 3.1, we plot the ∆bn at given Nτ for n = 4, 5 as functions of 1/Nτ for different cou-

pling strengths, represented as the fraction of ∆b2/∆bUFG
2 . In this notation, the noninteracting

limit corresponds to ∆b2/∆b
UFG
2 = 0 and the unitary limit is at ∆b2/∆b

UFG
2 = 1.

Although the convergence curve is monotonically approaching specific values in the case of

∆b5 as Nτ → ∞, we observed non-monotonic convergence in the case of ∆b4. This is because

our results are not based on perturbation theory and there is no systematical description of the

convergence as a function of Nτ . Recall that during the renormalization process, we tune the cou-

pling strength C to the two-particle physics (∆b2) and use it to calculate in higher-particle sys-

tems. At the same decomposition order Nτ , however, the truncated quantum effects are not the

same for different systems. In other words, the effects of finite imaginary-time spacing are differ-

3Note that this table include values from latest ongoing works and different from those reported in Ref. [104]
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ent for different particle contents. Therefore, the final error we observed is a mixed effect of the

direct decomposition error and the indirect competition between such unmatched error from trun-

cated quantum effects. As a result, we may observe the curve points in the wrong direction at low

Nτ , where the error from competition still dominates; while when Nτ is large enough, the direct

decomposition error dominates and the convergence becomes monotonic again. From a alterna-

tive technical point of view, the non-monotonicity can also be interpreted as temporal “finite size

effect” in analogue to its counterpart in the spatial lattice, which introduces unphysical error at

lower Nτ .
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Figure 3.1: ∆b4 (left) and ∆b5 (right) as functions of 1/Nτ for different values of the coupling, parametrized by
∆b2/∆bUFG

2 as in the main text.

To extrapolate to the Nτ → ∞ limit, the most straightforward way is to directly extrapolate

the curve as shown in Fig. 3.1 to 1/Nτ = 0. However, due to the lack of analytic knowledge of the

error term, there are no objective and consistent fitting functions applicable to all ∆bn. For ex-

ample, the ∆b4 and ∆b5 curves in Fig. 3.1 show different asymptotic behaviors. Also, in the case

of ∆b4, the non-monotonic convergence curve also makes it even harder to find a proper fitting

function.

Therefore, we propose a parameterized approach by extrapolating indirectly through the ra-

tio C∆bn/C∆b2 to unify the extrapolation process for all ∆bn. Recall that in the renormalization

process, we tune the coupling strength C to reproduce the physical ∆b2 by fitting ∆b
(Nτ )
2 (C) ≡

∆banalytic2 . For clarity, this renormalized C is denoted as C∆b2 . We repeat the same process for a

set of values for ∆bn and obtain a series C∆bn for each Nτ .
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Figure 3.2: C̃∆bn/C̃∆bUFG
2

as a function of 1/Nτ . The left panel is for ∆b4 and right panel for ∆b5. The crosses
show the various orders Nτ calculated. The dashed lines show our polynomial fit and extrapolation to large Nτ .
The dashed-line endpoints indicate that data beyond that value of Nτ was not included in the fit.

We now have a series of C∆bn/C∆b2 ratios as a function of 1/Nτ for a set of given values for

∆bn, as plotted in Fig. 3.2. The ratios are then extrapolated to the 1/Nτ → 0 limit using polyno-

mial fittings, which can be understood as a power series approximating the unknown error term.

The intercept then represent if the n-body system of the given ∆bn value shares the same physics,

i.e. the same interaction strength, as the two-body system of the target ∆b2. In the end, we ob-

tain the intercept ratio as a function of ∆bn, and use a linear interpolation to pin down the exact

value ∆bn that corresponds to C∆bn/C∆b2 = 1.

To measure the uncertainty of our estimation, we use polynomial fittings at different degree

in extrapolating the ratio C∆bn/C∆b2 to the large Nτ limit. It yields different spared of intercepts

and therefore leads to different interpolation results, as shown in Fig. 3.2. The final estimation

is then the average of interpolated results. To calculate the error term σ, we use the half of the

difference between the maximum and minimum estimations instead of the standard deviation, be-

cause there is no statistical support to assume the errors follow the normal distribution. In the fi-

nal interpolation, we always use the linear interpolation as the accuracy can be systematically im-

proved by using finer ∆bn value mesh. Finally, to further increase the confidence interval, which

cannot be quantified in our case due to the unknown distribution of error terms, we report our

estimation error as 2σ, i.e. we add an ad hoc error term of the same magnitude.

In short, using the indirect method, we are “double renormalizing” both the two-body and n-

body system, and “phase lock” the physical coupling strength, i.e. C∆bn/C∆b2 → 1. From a purely
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Figure 3.3: Uncertainty estimation from polynomial fits at different degrees for ∆b4 (left) and ∆b5(right) in the
unitary limit.

physical standpoint, this indirect extrapolation scheme is nothing different from the direct way,

as both methods are renormalizing the system to the desired two-particle physics. However, we

argue from a technical perspective that there is still a slight difference and the extrapolation of

C∆bn/C∆b2 ratio is more uniform. This is because the underlying assumption behind the extrap-

olation of the ratio is that C∆bn/C∆b2 as a function of 1/Nτ is smooth, and therefore it does not

depend on the particle number n. In comparison, when taking the direct extrapolation of ∆bn as

a function of 1/Nτ , the error term is n-dependent as there are different subspace contributions for

different n.

Moreover, another advantage of the indirect method is related to the numerical error. At high

Nτ , the polynomial ∆bn(C) is of high degree in C with very large coefficients. Tuning such poly-

nomial to reproduce a small ∆b2 (recall that ∆bUFG
2 = 1/

√
2 ≈ 0.707) results into C several

orders of magnitude smaller, which will then be substituted into ∆bn(C). On the contrary, using

the ratio of two C at the same order of magnitude helps reduce the exposure to numerical errors.

However, considering that we could always use the arbitrary precision calculations to circumvent

this problem, its influences are mostly restricted to the application level.

3.2.2: Virial coefficients estimation

Using the methods described above, we report in this section the estimates for ∆bn, for n =

3, 4, 5 by extrapolating to the large-k limit with uncertainties. The results are shown in Fig. 3.4,

where we parametrize the coupling strength with the ratio ∆b2/∆b
UFG
2 . The top panel shows the
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Figure 3.4: Our results for ∆b3 (blue), ∆b4 (red) and −∆b5 (green) shown with error bands as functions of the
coupling strength given by ∆b2/∆bUFG

2 . [We plot −∆b5 to avoid display interference with ∆b4 around unitarity.]
The dashed line shows ∆b3 from Ref. [41]. The dark red cross (with errorbar) shows the Monte Carlo results of
Ref. [21]: ∆bUFG

4 = 0.078(18); the dark red plus sign (with small error bar) indicates the conjecture of Ref. [43]:
∆bUFG

4 = 0.0620(8); finally, the dark red dot shows the approximate results of Ref. [46]: ∆bUFG
4 = 0.06.

results for whole-space virial coefficient ∆bn while the bottom panel shows the subspace virial

coefficients ∆bmj .

Whole-space virial coefficients

As shown in Sec. 1.4.2, ∆b3 is by now well-understood, and multiple numerical as well as an-

alytical estimations have been given, e.g. Refs. [41, 42, 45, 54, 111]. At unitarity, the unanimous

result is ∆bUFG
3 ≃ −0.3551 · · · [41, 54]4, while our calculation yields ∆bUFG

3 = −0.356(4). Even

though our result is not as precise as the previous unanimity, it only differs by 0.25%. Across

the crossover from the noninteracting limit to unitarity, our calculations are in excellent agree-

ment with Leyronas’ analytic result [41] (black dashed line) in the regime where the comparison is

available.

The red curve is our result for ∆b4, compared with prior theoretical estimates (solid error bar)

and experimental determinations (dashed error bar) at unitarity ∆bUFG
4 . Our work extend the

4The result is truncated for simplicity but the accuracy is enough for our purpose.
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results to arbitrary coupling between the noninteracting limit and the unitarity. At unitarity,

we obtained ∆bUFG
4 = 0.062(2), which compares well at face value with every other theoretical

estimate, namely Yan and Blume [21]: ∆bUFG
4 = 0.078(18); Endo and Castin [43]: ∆bUFG

4 =

0.0620(8), and Ngampruetikorn et al. [46]: ∆bUFG
4 = 0.06. While the last two are a conjecture

and an approximate result, respectively, Yan and Blume’s is a Monte Carlo result with a compar-

atively large uncertainty encompassing all prior theoretical estimates. Our calculation, like Yan

and Blume’s, comes from a first-principle nonperturbative approach but does not incur statistical

errors and thus provides a substantial reduction in the overall uncertainty (see also Sec. 2.2.1).

On the experimental side, ∆bUFG
4 can be determined by fitting to experimental data on the

equation of state, e.g. ENS [62]: 0.096(15), and MIT [61]: 0.096(10) (See Sec. 1.4.3 for details).

However, those analyses face a challenging numerical problem, namely fitting a fourth-order poly-

nomial with no knowledge of the size of higher order contributions or where the fourth order truly

dominates. In fact, as will be discussed soon in Sec. 3.3.2, the assumption of negligible contri-

butions to the density or pressure from O(z5) and beyond terms are not supported by our cal-

culations. While the Monte Carlo result of Ref. [21] overlaps with the above analyses, our result

disagrees with them (as do Refs. [43, 46]). All the results discussed above are shown in the inset

panel of Fig. 3.4, also plotted in Fig. 3.5 for a better visualization.

Lastly, we show the fifth-order virial coefficient as the green curve and flip its sign to fit the

layout. We find that ∆b5 starts negative at weak coupling and changes sign from negative to pos-

itive around ∆b2/∆b
UFG
2 ≃ 0.63. It then proceeds to grow in magnitude enough to overtake ∆b4.

At unitarity we obtain ∆bUFG
5 = 0.078(6), which is the first estimate of this universal quantity,

to the best of our knowledge. Crucially, such a large ∆b5 could easily interfere with the exper-

imental determination of ∆b4, which would explain the discrepancies between our results and

the experimental equation-of-state analyses of ∆b4. The large magnitude of ∆b5 is notable be-

cause the “normal” ordering |∆b3| > |∆b4| > |∆b5| is preserved from weak couplings up to

∆b2/∆b
UFG
2 ≃ 0.96, but |∆b5| > |∆b4| after that, in particular at unitarity.

Subspace virial coefficients

For ∆b4 and ∆b5, an interesting difference from ∆b3 is that they are not monotonic functions

of the coupling strength. In particular, ∆b5 experienced a sign flip as the system undergoes from
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Figure 3.5: Comparison between our calculation of ∆bUFG
4 and existing results. The red line is our estimation

∆bUFG
4 = 0.062(2), with shaded region showing the uncertainty. The two orange dots are experimental determi-

nation from equation of states by the group from ENS [62] with 0.096(15) and MIT [61] with 0.096(10). The blue
dots are numerical or analytical estimations by Yan & Blume [21] with 0.078(18), Ngampruetikorn [46] with 0.06,
and Endo & Castin [43] with 0.0620(8).

noninteracting to the unitarity. To better understand the origin of behaviors, we need to dive into

the different subspace configurations contributing to ∆b4 and ∆b5. In Fig. 3.6, we plot the sub-

space contributions to ∆b4 and ∆b5. For completeness, we also include ∆b21 = ∆b3/2. Note that

we flip the sign for ∆b41 and ∆b32 in the plot so that they could be more easily compared to their

counterparts. Therefore, we roughly divide the plot into two parts with the top panel showing the

M + 1 subspace contribution and the bottom the M + 2 subspace. Nearly all subspace coefficients

are monotonic functions of the coupling strength, except for a small weak coupling region in the

case of ∆b32.

The subspace contributions ∆bmj allow us to study the first steps of the “polaron sequence”

∆bm1. Beyond the qualitative resemblance of |∆bm1| for all m, we find that |∆bm1| decreases as

m is increased for all the couplings we studied (see Table 3.2 in particular), which we interpret as

due to the largely noninteracting majority particles (as the interaction is of zero range). In the

m → ∞ limit, the system effectively approaches the noninteracting limit. Furthermore, we ob-

serve that the sequence alternates in sign, which we conjecture will persist for arbitrary m.

For the ∆bm2 sequence, we only have two samples but also observe the different sign between
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Figure 3.6: Subspace contributions ∆bmj as functions of the coupling strength. Our results are shown as error
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22 = −0.0920(128); the

red dot shows Ref. [46]: ∆bUFG
31 = 0.100 and ∆bUFG

22 = −0.144; finally, the red plus sign (with small error bar)
shows Ref. [43]: ∆bUFG

31 = 0.09188(16) and ∆bUFG
22 = −0.1220(8). Our results are closest to the latter; we obtain

∆bUFG
31 = 0.0931(8) and ∆bUFG

22 = −0.1244(7).

∆b22 and ∆b32 and |∆b22| > |∆b32| for most couplings. Moreover, ∆bm2 is more susceptible to the

interaction strength than ∆bm1, leading to larger magnitudes for ∆bm2 at unitarity.

In the subspace, we find more monotonic behavior of ∆bmj as a function of the coupling

strength. For essentially all couplings studied, ∆b31 is increasingly positive and ∆b22 increasingly

negative as unitarity is approached. Their competition eventually results in the non-monotonic

behavior of ∆b4 in Fig. 3.4, and reaches its low value at unitarity.

Fig. 3.6 also yields a more detailed comparison with prior theoretical approaches at unitarity.

Specifically, at the 95% confidence level, i.e. using the 2σ error bar discussed above,5 our result

for ∆b31 overlaps with Endo and Castin [43] but not with Yan and Blume [21] nor with Ngam-

pruetikorn et al. [46]. On the other hand, at the same level our ∆b22 also overlaps with Endo and

Castin [43] and marginally with Yan and Blume [21], but not with Ngampruetikorn et al. [46].

This analysis suggests that the closer agreement for ∆b4 at unitarity shown in Fig. 3.4 is due at

5with the caveat that it is strictly speaking unknown whether the errors are normally distributed
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Table 3.2: Estimates for ∆b3 to ∆b5 in the unitary limit, including the subspace coefficients for the polarized case
∆bmj .

n = 3 n = 4 n = 5

∆bUFG
n -0.356(4) 0.062(2) 0.078(6)

∆bUFG
(n−1)1 -0.178(2) 0.0931(8) -0.0598(7)

∆bUFG
(n−2)2 – -0.1244(7) 0.0988(29)

least in part to error compensation between ∆b31 and ∆b22.

As with ∆b4, the non-monotonicity of ∆b5 can also be traced back to the competition be-

tween two sectors with (largely) monotonic but opposite behavior. Shown as the green curves in

Fig. 3.6, ∆b41 and ∆b32 become progressively more negative and more positive, respectively, as

the coupling is increased (with the exception of a small region at very weak couplings where ∆b32

is negative). Thus, ∆b5 = 2∆b41 + 2∆b32 becomes non-monotonic. Furthermore, the same factor

for ∆b41 and ∆b32 indicates that the (3 + 2) subspace plays a more dominant role compared to

the four-particle case, contributing to the stronger non-monotonicity of ∆b5 and the sign flip. In

other words, the (3 + 2)-space contributes to ∆b5 on the same footing as the (4 + 1) space, while

for ∆b4 the contribution from (2 + 2)-system is effectively halved compared to that from (3 + 1)-

system. As a result, the (3 + 2)-space becomes more dominant as the interaction grows stronger.

Finally, we note that our analysis of ∆bmj , and their apparent more systematic behavior, sug-

gests that the conjectures as in Ref. [56, 63, 64] on the high-order virial coefficients in the unitary

limit may be refined by focusing on the subspaces rather than the full ∆bn.

Section 3.3: Thermodynamics and Tan’s Contact of Unitary Fermi Gas

3.3.1: Pressure state equation

First of all, we examine the pressure equation of state, which is directly related to grand po-

tential via Ω = −PV , and therefore we have

β∆P =
2

λ3T

∞∑
n=2

∆bnz
n. (3.4)

Due to its direct connection with the grand potential, it offers a benchmark to check our estima-

tions on the virial coefficients and examine the resummation methods.

In Fig. 3.7, we plot as a function of fugacity z the pressure P/P0 in unit of its noninteracting
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Figure 3.7: Pressure equation of state at unitarity as a function of the fugacity z showing our virial expansion
results (error bands) compared with the data of Ref. [61].

counterpart P0 given as

βP0 =
2

λ3T
f5/2(z), (3.5)

where f5/2 is the Fermi-Dirac function and calculated by numerically integrating the Fermi-Dirac

integral instead of using the truncated polylogarithm series, i.e. the noninteracting physics is fully

encoded. For reference, we also show the experimental determinations from Ref. [61]. The solid

lines are the results using the truncated virial expansion. As expected, all three curves diverge

from the experimental values as z increases, but higher-order expansion shows larger regime of

convergence. We also examine the Padé resummations using different order of expansion. In each

case, we choose the Padé approximant at either central or off-central order. Compared to the bare

results, the resummed results present better agreements and larger regime of convergence. We

observed the resummed third-order expansion nearly collapse with the bare fifth-order result for

z < 1. In particular, the resummed fifth-order result agree quantitatively with the experimen-

tal determinations up until fugacity as large as z ≈ 3, even after which the resummed result

is still convergent and follows the trend to larger fugacity. Such excellent agreement indirectly
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supports the accuracy of our estimations on ∆bn. Moreover, the surprising convergence of the re-

summed results shows a promising direction in applying QVE, i.e. by including to higher-order

terms, whose contributions were previously considered negligible, and implementing mathematical

techniques, we may improve the series convergence well beyond z = 1.

3.3.2: Density state equation

For the density equation of state as given in Eq.(1.34), the interaction-induced change in den-

sity is expressed as

∆n =
Q1

V

∞∑
n=2

n∆bnz
n =

2

λ3T

∞∑
n=2

n∆bnz
n. (3.6)

The noninteracting result is given in Eq. (1.27),

n(0) =
2

λ3T
f 3

2
(z), (3.7)
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where f3/2(z) is the Fermi-Dirac function and evaluated the same way as shown before. We plot

the ratio n/n(0) = 1 +∆n/n(0) as a function of fugacity z in Fig. 3.8 and compare with the exper-

iment of Ref. [61].

The solid curves are results using the above series of different order at its face value, i.e. the

truncated series, with the shaded region as the propagated error using the 2σ error in ∆bn. While

our results at fourth order are somewhat farther away from the data than those of Ref. [21] (the

red dashed curve), the fifth-order contribution considerably improves the agreement for z = 0.5 −

0.73. Such improvement further indicates the non-negligible fifth-order contribution. We also plot

the truncated fourth-order series with the experimental determination ∆b4 = 0.096 as the red dot-

ted line, which agrees with the experimental density nearly perfectly up until z = 1. Such agree-

ment demonstrates how the experimental determination overestimates ∆b4 when neglecting the

fifth- and higher-order contributions. The Padé-resummed result at order [3/2] are plotted as the

black dashed line and find agreement with the experimental data up until z = 4 (the horizontal

limit of the plot is capped at 2 for better comparison).

Lastly, in Fig. 3.9, we show a comparison of the density equation of state, following closely the

style of Fig. 5 of Ref. [100]. By plotting the scaled density deviations from the third-order virial

expansion (n − n
(3)
virial)/(8z

4), the authors of Ref. [100] showed how their diagrammatic Monte

Carlo data compares with previous work on the fourth-order virial coefficient coming from exper-

iments and theory. The red line shows the function ∆b4 + z · ∆b5 and the shaded region encodes

the uncertainty estimations. For small z, such linear relation successfully meet the diagrammatic

results at z = 0.2. However, at z increases, the relation becomes apparently nonlinear, indicating

the non-negligible role of higher-order terms.

3.3.3: Tan’s contact

In a series of works [113–115] in 2008, Shina Tan derived a set of universal relations around a

quantity referred as Tan’s contact I, or just contact for short. Physically the contact captures the

the short-distance and high-frequency behavior of correlation functions for short-range interac-

tions. Furthermore, Tan (and later others) reveals that via a set of universal relation, the contact

are related to thermodynamic and other properties. For example, the famous tail of the momen-

tum distribution relation states that the distribution of momentum has a power-law tail at large k
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as (see also Ref. [116])

I = lim
k→∞

k4ns(k). (3.8)

Through the adiabatic relation, the contact is connected to the energy through

ℏ2

4πm
I =

[
∂E

∂(−1/as)

]
S,N

(3.9)

The third relation relates the short-distance pair density to contact density as

〈
n↑(R+

1

2
r)n↓(R− 1

2
r)

〉
→ 1

16π2

(
1

r2
− 2

asr

)
I(R). (3.10)

In this sense, the contact density can be interpreted as the density of a two-body pair separated

by a short distance r. There are many more relations connecting the contact to various quanti-

ties and for more studies on the contact, see Tan’s original works as well as e.g. Refs. [117–128]

Due to its relations to that many quantities, the contact is a crucial piece of the thermodynamic
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puzzle that complements conventional quantities and attracts significant attentions.

In this section, we consider only the system in 3D and will revisit the 1D and 2D case in the

next chapter. In practice, we use the adiabatic relation to calculate Tan’s contact, which differ-

entiates with respect to the coupling λ =
√
β/a0. As our results give ∆bn as a function of ∆b2

rather than the physical coupling, we also use the chain rule in the derivative. In the end, we

have

I = −4π

β

∂(βΩ)

∂a−1
0

=
4π√
β

∂ lnZ
∂∆b2

∂∆b2
∂λ

, (3.11)

Thus,

I =
8π2

λT
Q1

∞∑
m=2

cmz
m, (3.12)

and we define the contact coefficient cm as

cm =
1√
2π

∂∆bm
∂∆b2

∂∆b2
∂λ

. (3.13)

For the second order, Beth-Uhlenbeck formula yields

∂∆b2
∂λ

=

√
2

π
+
√
2 λ eλ

2
(1 + erf(λ)), (3.14)

such that

c2 =
1

π
+

1√
π
λ eλ

2
[1 + erf(λ)]. (3.15)

To evaluate higher-order cn, we take the numerical differentiation to estimate ∂∆bn/∂∆b2 for

n = 3, 4, 5 at a fine mesh of ∆b2/∆bUFG
2 . Thanks to the analytical nature of our method, it takes

no extra computations to adjust the mesh and therefore we could easily improve the quality of

numerical differentiation in a systematical way. The results are shown as solid lines in Fig. 3.10.

Though the curves are overall smooth, there are some jigsaw-like shaded regions for ∆b4 near

the unitary limit, which are the numerical artifacts due to the numerical differentiation. To that
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Figure 3.10: Derivative of ∆bn with respect to ∆b2 as a function of the coupling.

end, we implemented a second way to estimate the contact coefficients cn without involving the

numerical differentiation.

Recall that in our method, we have ∆bn as a polynomial of C in form of

∆bn =

lmax∑
l

AlC
l, (3.16)

where lmax = ⌊n/2⌋ ·Nτ , then the derivative is

∂∆bn
∂λ

=

lmax∑
l=1

l ·AlC
l−1∂C

∂λ
≡ D ·

lmax∑
l=1

lAlC
l−1, (3.17)

Now, we treat C and D ≡ ∂C/∂λ as two “independent” bare coupling strengths to be renor-

malized to the true physics. We take a two-pass renormalization process at each Nτ : firstly we

renormalize C to reproduce the expected ∆b2 and then substitute the physical C into Eq. (3.17)

to calculate D using the physical c2 given in Eq. (3.15). In the end, we use the same extrapola-

tion scheme to reach Nτ → ∞ limit to obtain the estimation for cm.

In Fig. 3.11 we compare our results for the Tan contact with the both experimental measure-

ments of Refs. [61, 129] and theoretical calculations of Refs. [130–134]. For easier comparisons
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among different works, we use the dimensionless, thermodynamically intensive form I/(NkF )

given as

I
NkF

= 3π2(4π)2
1

k4Fλ
4
T

∞∑
n=2

cnz
n = 3π2

(
T

TF

)2 ∞∑
n=2

cnz
n, (3.18)

where we used Q1 = 2V/λ3T , k3F = 3π2n and n = N/V in the first identity, and TF = k2F /2 and

T = 2π/λ2T in the second one. The dimensionless temperature T/TF is related to the dimension-

less density ρ via

ρ ≡ λ3Tn/2 = 4/(3
√
π)(TF /T )

3/2, (3.19)

which can be expressed as expansion

ρ = ρ0 +
∞∑
n=2

n∆bnz
n, (3.20)

and ρ0 is the dimensionless noninteracting density, i.e. the Fermi-Dirac function f3/2(z) by itself.

Section 3.4: Spin-polarized unitary Fermi gas

Another system of great interests is the spin-polarized UFG for e.g. the potential exotic po-

larized superfluid phase (see e.g. Refs [135–137]) or its connection to the long-sought pseudogap

phase (see Sec. 3.4.5). In Sec. 1.3.3, we introduce the notation µ = (µ↑ + µ↓)/2 as the average

chemical potential, and h = (µ↑ − µ↓)/2 as the polarization. Similarly, we defined z = exp(βµ)

and zs = exp(βµs) for s =↑, ↓. With the GCPF expressed in terms of ∆bmj in Eq. (1.58), we then

have

ln(Z/Z0) = Q1

∞∑
m=2

∑
ij

′
∆bijz

i
↑z

j
↓, (3.21)

where the primed sum is subject to i + j = m and i, j > 0. We will use a different summation in-

dex convention temporarily in this section to avoid the ambiguity from the density n. The whole-

space index is now denoted as m while the subspace subscripts as i and j.

It is more common to express the series in terms of z = exp(βµ) and exp(βh). For example,
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Figure 3.11: Dimensionless contact I/(NkF ) as a function of the dimensionless temperature T/TF . Our virial
expansion results at different orders are shown as thick solid line in blue (3rd order), red (4th order), and green
(5th order). The solid purple line is the result using Padé approximant at order [3/2] on the sum series to fifth
order. The gray dashed line shows the critical temperature Tc/TF = 0.167. Also shown are the experimental mea-
surements from Ref. [61] (dark red data with error bars); the experimental measurements from Ref. [129] (dark
blue squares); the Quantum Monte Carlo (QMC) estimates from Ref. [130] (light purple plus signs); the bold-
diagrammatic QMC estimates from Ref. [131] (gray triangles); the Luttinger-Ward (LW) results from Ref. [132]
(purple dash-dot line); the T-Matrix calculation from Ref. [133] (green dotted line); and the Gaussian-pair-
fluctuation theory (GPF) estimates from Ref. [134] (dark red dashed line).

for n = 3, the primed sum is

∑
i+j=3

zm↑ z
j
↓∆bij = z2↑z↓∆b21 + z↑z

2
↓∆b12 = z3 [2 cosh(βh)]∆b21, (3.22)

i.e. the polarized whole-space coefficient ∆b3 now becomes polarization-dependents as ∆b3 =

[2 cosh(βη)]∆b21, which reduced to the unpolarized results ∆b3 = 2∆b21 in the limit βh → 0.

In such form, the series is converted to the polynomials in z with polarization-dependent coeffi-

cients, and therefore we can use the same procedures as in the spin-balanced case to the polarized

Fermi gases.
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line at third order, dashed line at fourth order, and solid line at fifth order. The black dotted line is the result of
the [3/2] Padé resummation. The limiting value for βµ → −∞ is known exactly and is given by cosh(βh).

3.4.1: Density equation of state

The polarized density is expressed in terms of subspace coefficients

∆n =
2

λ3T

∞∑
m=2

m
∑
ij

′
∆bijz

i
↑z

j
↓. (3.23)

To apply the resummation technique, we rewrite the series in Eq. (3.23) in powers of as z =

exp(βµ) with coefficients as functions of exp(βh). In our case, we have the series up to the fifth

order as

5∑
m=2

m
∑
ij

′
∆bijz

i
↑z

j
↓

=z2∆b11 + z3 3[2 cosh(βh)∆b21]

+ z4 4[2 cosh(2βh)∆b31 +∆b22] + z5 5[2 cosh(3βh)∆b41 + 2 cosh(βh)∆b32].

(3.24)

In Fig. 3.12, we present our results for the polarized density equation of state in the unitary
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limit and compare with the complex-Langevin results of Ref. [138]. The fifth-order expansion

shows the best agreement compared to its lower-order counterparts, although the improvement is

mostly marginal. When applying the Padé resummation technique, however, the agreement with

the data is extended even beyond βµ = 0. Notably, the change in curvature displayed by the data

is reproduced by the Padé approximant. Beyond βµ = 0.6, however, the Padé approximant pro-

gressively departs from the data.

3.4.2: Tan’s contact of spin-imbalanced system

In terms of subspace contributions, the contact is

I =
4π

β
Q1λT

∞∑
m=2

∑
ij

′
cijz

i
↑z

j
↓, (3.25)

where cmj is defined as, in analogue to Eq. (3.13),

cij =
1√
2π

∂∆bij
∂∆b11

∂∆b11
∂λ

, (3.26)

note that ∆b2 = ∆b11. The subspace contact coefficients cij are related to the whole-space con-

tact coefficient cm in the same way as the virial coefficients case.

The dimensionless contact is now defined as

I
2N↓kF↑

= 3π2
(
T

TF↑

)2(n↑
n↓

) ∞∑
m=2

∑
ij

′
cijz

i
↑z

j
↓. (3.27)

where we used k3F↑ = 6π2n↑. The dimensionless temperature T/TF↑ is related to the spin-↑ di-

mensionless density ρ↑ via

ρ↑ = λ3Tn↑ = 4/(3
√
π)(TF↑/T )

3/2, (3.28)

and ρs is given by

ρs = f3/2(zs) + 2
∞∑

m=2

∑
ij

′
[iδs,↑ + jδs,↓] bijz

i
↑z

j
↓. (3.29)

In practice, we fix the impurity concentration n↓/n↑ and, for a given z↑, one can first solve
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Figure 3.13: The spin-imbalanced contact I/(N↓kF↑) as a function of temperature TF↑/T . The black circles shows
the experimental measurements from Ref. [139] at impurity concentration of 10%, the solid curves are the results of
virial expansion.

for z↓ using the above equations and then calculate the dimensionless contact I/(2N↓kF↑) and

dimensionless temperature T/TF↑. In Fig. 3.13, we compare the result of virial expansion to ex-

perimental measurements [139] with impurity concentration of 10%.

Finally, we note for future reference that, in the noninteracting limit,

I
2N↓kF↑

= 23/2
√
π
(√

2− 1
)√ T

TF↑
n↑λ

3
T . (3.30)

3.4.3: Magnetization

Another set of properties of interest in the presence of the spin imbalance is the magnetic

properties such as the magnetization m = n↑ − n↓. We usually present the magnetization m in

its dimensionless form

m =
m

n(βh = 0)
. (3.31)

where n(βh = 0) is the density of the interacting system in the unpolarized limit βh → 0. With

Eq. (3.29), we calculate the dimensionless magnetization m = m/n(βh = 0) with QVE and plot
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the results as a function of βh at βµ = −3,−2,−1 and 0 in Fig. 3.14 and compared to a selection

of QMC calculations from Ref. [138].

For βµ = −3,−2 and −1, we plot the truncated QVE results at different order and observe

(slightly) improved convergence and better agreement with the QMC result. At βµ = −1, we find

the results using QVE at its face value start to diverge for large βh, indicating the decreasing in

radius of convergence as the polarization-dependent coefficients varies. At βµ = 0, we omitted the

truncated QVE results from the plot as the series diverge immediately at βh = 0.

The resummation technique is applied in the same way as shown in Eq. (3.24). In the end, we

have the series up to the fifth order for the spin-up case as

5∑
m=2

∑
ij

′
i bijz

i
↑z

j
↓ =z2∆b11 + z3(2eβh + e−βh)∆b21

+ z4
[
(3e2βh + e−2βh)∆b31 + 2∆b22

]
+ z5

[
(4e3βh + e−3βh)∆b32 + (3eβh + 2e−βh)∆b32

]
(3.32)

and a similar equation for the spin-down case with slightly different factors in the coefficient. We

apply the Padé approximant at order [2/3] (purple dash-dotted lines) and find excellent agree-

ment throughout all βh examined. We note that in Ref. [138], authors also studied the case of

βµ = 1 and 2. However even the resummed results failed to converge in this case, indicating that

higher-order terms are needed, i.e. for denser system, the contribution from higher-body subsys-

tem becomes more important.

3.4.4: Compressibility

Another set of important properties for a polarized system is the response properties. Here,

we consider the spin and density susceptibility, which are denoted as χs and χn respectively, and

defined as

χn/s =
∂(n↑ ± n↓)
∂(µ↑ ± µ↓)

(3.33)

where + sign is for χn and − sign for χs. In this section, we will focus on the density susceptibil-

ity χn and leave χs to the next.

The density susceptibility is also called the normalized compressibility as it is related to the
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Figure 3.14: Dimensionless magnetization m = m/n0(βh = 0) as a function of dimensionless chemical potential
difference βh. The circles (βµ = -3), triangles (βµ = -2), pentagons (βµ = -1) and squares (βµ = 0) are the QMC
calculations from Ref. [138] for different values of βµ. Note that only the results relevant to the virial expansion
are presented here. The blue, red, and green curves show the result of truncated QVE at third, fourth, and fifth
order respectively. The black dashed line is the second order QVE result for reference. For βµ = −1, part of the
curve is shown as a dotted line in the regime when the QVE at its face value starts to diverge for better visibility.
Due to the immediate divergence, we do not show the truncated series results for βµ = 0. The purple dash-dotted
lines are the Padé approximation at order [2/3] for βµ = −1 and 0, showing excellent agreement with the QMC
calculations. The inset shows a closer view of the comparison between the virial expansion and QMC results, from
which it is clear that the fifth-order virial expansion yields an improved estimate.

isothermal compressibility κ via

χn = n2κ, (3.34)

and κ is defined as

κ = − 1

V

[
∂V

∂P

]
T

=
β

n2

[
∂n

∂βµ

]
T

. (3.35)

The partial derivative is expressed in form of series as

∂n

∂(βµ)
=

∂n0
∂(βµ)

+
∞∑

m=2

m2
∑

i+j=m

∆bijz
i
↑z

j
↓. (3.36)
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In Fig. 3.15, we present our estimates for the compressibility κ in the unitary limit as a func-

tion of T/TF , represented in the dimensionless form scaled by its noninteracting counterpart κ0 =

3/(2nϵF ). We compare our results with the experimental measurements from Ref. [61], the

Luttinger-Ward calculations of Ref. [140], and the complex-Langevin results from Ref. [138], Simi-

lar as we did in Sec. 3.3.2, we investigated the performance of different the resummation methods

for this more complicated observables. The results of Padé and Borel-Padé resummations show

much better agreement with experimental data than the bare finite-order virial expansion, and

work well beyond the convergence region z ≪ 1 for the truncated series. Specifically, the resum-

mations smoothly follow the trend of the experimental data up to fugacity as large as z = 10

(maximum fugacity shown in Fig. 3.15), which is surprising considering that the superfluid tran-

sition occurs at z ≃ 10. For Padé approximants at different orders, we compare [2/1] (use up to

∆b3), [2/2] (use up to ∆b4) and [3/2] (use up to ∆b5). Though the resummed [2/1] result devi-

ates from others around T/TF ≈ 1, it shows comparable performance as the fifth-order virial ex-

pansion at its face value. The resummed fourth- and fifth order results agree with other works to

very low temperature around 0.25. However, such agreement should be taken with a salt as there

is no guarantee whether such convergence is coincidental. The improvements over the third-order

resummation at [2/1] supports our early argument that the lack of higher-order coefficients limits

systematic study of resummation method in the context of QVE.

One may have noticed that at low temperature, the resummed fifth-order result (green dash-

dotted line) seems to perform worse compared to the fourth-order result (red dash-dotted line).

Considering the uncontrollability of the resummed method, we cannot draw from it conclusions

such as the central-order approximant is better or the fifth-order coefficients is not accurate. Fur-

ther work on sixth- and higher-order coefficients are required for more systematic investigations.

We then compare the Borel-Padé method and the Padé method, and found no significant dif-

ference as the virial coefficients in 3D are not divergent. See Sec. 4.2.2 for an example that Borel

method shows better performance. We also observed that it is more difficult to find solvable co-

efficients in the case of Borel-Padé method. Up to the fifth order expansion, we found only one

order at which the Padé approximant exists, as shown in the plot.
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Figure 3.15: Compressibility κ of the unitary Fermi gas in units of its noninteracting, ground-state counterpart
κ0, as a function of the temperature T in units of the Fermi temperature TF . Our results for the virial expansion
for fugacity z ∈ [0, 1] are shown as solid lines: blue for third order, red for fourth order, and green for fifth or-
der. The dash-dotted lines are the result of Padé resummation, whose color follows the same convention and the
order is diagonal or off-diagonal. The green dotted line is the result of a [2/3] Borel-Padé resummation, which is
the only solvable case. Other resummation orders are omitted due to the appearance of poles on the real axis in
the region of interest. The vertical dotted line corresponds to the approximate T/TF where z = 1 for the three
resummed results. The red circles show the data from the MIT experiment of Ref. [61]. The purple diamonds are
the Luttinger-Ward calculations of Ref. [140]. The black squares are complex-Langevin results from Ref. [138].

3.4.5: Magnetic susceptibility and the pseudogap phase

Based on Eq. (3.33), the interaction-induced change in spin-susceptibility is expressed in terms

of expansion as

∆χ =
λ2T
8π
Q1

∞∑
n=3

∑
m+j=n

(m− j)2∆bmjz
m
↑ z

j
↓, (3.37)

where we omit the subscript in χs for simplicity. To apply the Padé resummation, we use the

same scheme of rewriting the series in terms of z = exp(βµ) and exp(βh)6.

In Fig. 3.16, we plot for the UFG the spin-susceptibility in its dimensionless form χ/χ0, scaled

by Pauli susceptibility χ0 which is the noninteracting spin susceptibility at T = 0 and defined as

χ0 = 3n/(2ϵF). (3.38)

6Part of this section is based on the work published on Ref. [105]
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Figure 3.16: Spin susceptibility χ in units of the Pauli susceptibility χ0 as a function of T/TF for the UFG. The
green solid curve is the fifth-order QVE at its face value, and the green dotted line is the Padé resummed results
at order [3/2]. For comparison, we plot the t-matrix results from Ref. [141] (red dashed line) and Ref. [142] (purple
dash-dotted line), the PIMC results from Ref. [143], the Luttinger-Ward results from Ref. [140], and the Auxiliary-
Field QMC (AF-QMC) results from Ref. [144].

where ϵF = TF = k2F/2 in the natural unit.

For clarity, we only present the best QVE results, i.e. the fifth-order truncated QVE and the

resummed results at [3/2], and compare with a selection of existing results [140–144]. With the

help with resummation method, we find agreement with the Luttinger-Ward results [140] up to

around T/TF ≈ 0.6. Finally, we note that even though both the bare and resummed results dis-

plays the suppression of susceptibility at low temperature (the resummed results even shows a

similar peak location compared to the PIMC result), such agreement should be taken only as co-

incidental due to onset of phase transition at such a low temperature. For other works omitted in

the plot, see e.g. Refs. [145, 146] for theoretical calculations, and Refs. [147–149] for experimental

measurements7. See also Ref. [105] for more details on the presented results.

In Fig. 3.17, we compare the QVE results with the CL results (see also Ref. [138]) at different

polarizations βh. As βh increases, we find better agreement at lower temperature between the the

resummed results and CL calculations. Mathematically, it is the result of the dominant role of

7Note that the results of Ref. [148] are at odds with all other values, which is presumably the result of trapping
averaging.
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polaron coefficients ∆bm1, which are better-behaved as seen in the subspace sequence. Physically,

the increasing polarization effectively approaches to the noninteracting limit, whose information is

better captured by fewer-body systems (which favors the resummation method).

As the polarization increases, we also observe from the CL results the emergency of a plateau

of χ/χ0. Even though less obvious, the QVE results also present a similar trend with a broad

maximum. At lower temperature, the plateau turns into a rapid suppression, which could be the

result of the onset of superfluid phase, or the pairing formed in the so-called pseudogap regime.

Though the precise definition or indicator of the pseudogap regime is still under debate [145,

150], a commonly accepted one is the gap between pairing temperature and the condensation

temperature, as indicated in Fig. 1.1. Therefore, if the suppression is indeed from the pairing in

the pseudogap regime8, we expect a gap between the pairing temperature and the critical temper-

ature of the superfluid phase transition. We defined the pairing temperature fuzzily as the region

around the maximum location of χ/χ0. Thanks to the analytic nature of our QVE results, we are

able to define a smooth region without repeating calculations.

We present the Fig. 2 from Ref. [105] in Fig. 3.18. Here we only summarize the results re-

lated to the QVE and readers are recommended to Sec. V in Ref. [105] for more discussions. The

squares represent the maximum location from the CL results for βh = 0.0, 0.4 and 0.8, where a

sharp peak can be clearly determined. The surrounding lines are uncertainty estimation due to

the discrete grid parameters used. For βh > 0.8, the plateau is more obvious and only the esti-

mated region (the solid line) is given. Similarly, in the QVE results, the plateau emerges in the

form of a broad peak region. We plot the shaded gray region using the conservative 99.7% of the

maximum value. The selection of this value is purely artificial and has no statistical connection

to the 3σ region. The gray dotted line indicates the regime where the resummation results are

expected to fail at lower temperature.

In both panels, we see the overlap of the solid lines and the onset of superfluid phase. For the

QVE results, the gap between the pairing temperature and superfluid phase is because of the con-

servative parameter (99.7% of the maximum value) used to define the broad shaded region.

Therefore, for βh ≥ 1.2, the narrow room between the pairing temperature determined from

8another mechanism for the susceptibility suppression is the transition into superfluid phase
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Figure 3.17: Spin susceptibility χ in units of the Pauli susceptibility χ0 as a function of T/TF for the spin-
imbalanced Fermi gas with different polarization βh = 0, 0.4, 0.8, 1.2, 1.6 and 2.0. The vertical dotted line rep-
resents the critical temperature for the superfluid phase at T/TF ≈ 0.167 [61]. The colorful solid curves are the
Padé-resummed fifth-order QVE at order [3/2] and colorful squares are the CL results.

the susceptibility and the condensation temperature indicates the absence of the pseudogap regime.

If it even exists, we may only expect it develops at lower polarization in the regime βh < 1.2.
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Figure 3.18: [Excerpt from Fig. 2 of Ref. [105], Reprinted with permissions. Copyright (2022) by the American
Physical Society] Phase diagrams of the spin-polarized UFG. (a) Phase diagram spanned by the dimensionless
temperature (βµ)−1 and the dimensionless Zeeman field h/µ. The black solid line depicts the second-order phase
transition line from a fRG study [151] where the black dot represents the location of the critical point. The thick
line reflects the spin-gap temperature Ts as obtained from the PRVE along with an uncertainty estimate (shaded
area). (b) Phase diagram spanned by T/TF,↑ and the polarization as measured in experiment [152] (gray squares
reflect experimental measurements, thick lines are the inferred phase boundaries) and compared to recent deter-
minations via LW theory [153, 154] (dot-dashed line) as well as ETMA [146] (red dashed line). For the balanced
limit Ts is shown as determined via AFQMC [145] and ETMA [146]. In both panels, squares reflect the maximum
of the CL data and thick lines indicate the uncertainty estimate (see main text). The thin colored lines reflect the
the observed plateau in the spin-susceptibility (βh = 1.2, 1.6, 2.0 from left to right, respectively). Critical values
correspond to experimental values from the MIT group [61] (red triangles) and ENS group [62, 155] (green tri-
angles), LW results [154] (orange triangle), FN-DMC calculations [156] (dark blue triangles), ϵ-expansion (purple
triangle) and Worm-MC data [157] (light gray-shaded area). The black shaded areas in both panels mark potential
pseudogap regions.
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CHAPTER 4: Homogeneous Fermi Gas: crossover in different dimensions

In this chapter, we move away from the UFG and investigate the spin-1/2 Fermi gas with dif-

ferent coupling strength and in different dimension. We begin with a short section on ∆bn up to

n = 7 with semiclassical approximations. In particular, we study its behaviour as a function of

dimension d. Then we take the large-Nτ limit and investigate the system in integer dimensions1.

Section 4.1: Semiclassical ∆bn up to seventh order and dimensional crossover

In last chapter when we studied the UFG, we presented only the results using virial coeffi-

cients extrapolated to Nτ → ∞ limit. However, despite of the lack of quantitative accuracy, the

semi-classical approximation remains an essential tool which shreds light on the physics insights

with reasonable computational costs, especially useful for higher-order coefficients. Moreover,

with a small Nτ , we can write down the analytic formulas for ∆bn explicitly, making it much eas-

ier to manipulate parameters such as the dimension c. The last benefit of the semiclassical ap-

proximation is that we could express ∆bn in terms of ∆b2.2 In other words, such analytic expres-

sions qualitatively demonstrate the effect of two-body system on n-body systems.

In Ref. [90], with semiclassical approximation, i.e. at Nτ = 1, ∆bn are expressed in terms of

∆b2 for n = 3 and 4 as

∆b3 = −21−
d
2∆b2, (4.1)

∆b4 = 2(3−
d
2+2−d−1)∆b2 + 21−

d
2 (2−

d
2
−1−1)(∆b2)2, (4.2)

where we also fix a typo in the coefficient of (∆b2)2 term of ∆b4 from the published version in

Ref. [90].

We extended the calculation up to n = 7 at leading order (LO) and obtained the following

1This chapter is based on works published in Ref. [158, 159]

2For Nτ = 1, it is straightforward to do so as ∆b2 is proportional to the bare coupling C. For Nτ = 2, this relation
becomes quadratic. Despite of more complicated formulas, it is still plausible to invert the relation into C(∆b2).
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formulas

∆b3 =− 21−d/2∆b2, (4.3)

∆b4 =
[
2(3−d/2 + 2−d−1)

]
∆b2 +

[
21−d/2(2−d/2−1 − 1)

]
(∆b2)

2, (4.4)

∆b5 =
[
−2(2−d + 6−d/2)

]
∆b2 +

[
4
(
2−d + 3−d/2 − 7−d/2

)]
(∆b2)

2, (4.5)

∆b6 =
[
21−3d/2 + 3−d + 2 · 5−d/2

]
∆b2

+
[
−21−3d/2 − 3 · 21−d(1− 3−d/2)− 22−d/2(31−d/2 − 5−d/2)

]
(∆b2)

2

+
[
22−d − 8 · 7−d/2 + 8 · 3−d/2−1(1 + 2−d)

]
(∆b3)

3, (4.6)

∆b7 =
[
−21−d/2

(
6−d/2 + 5−d/2 + 3−d/2

)]
∆b2

+
[
24−3d/2 + 8 · 5−d/2 + 8 · 3−d/2(3−d/2 + 2−d)− 4(2−d5−d/2

−13−d/2 − 3 · 17−d/2)
]
(∆b2)

2

+
[
−23−3d/2 − 23−d(1− 31−d/2)− 8 · 2−d/2(31−d/2 − 7−d/2)

−16 · 10−d/2(2−d/2 − 1)
]
(∆b2)

3. (4.7)

We also obtained the next-to-leading order (NLO) results, i.e. at Nτ = 2, and express them in

terms of the dimensionless coupling C̃ = C/λdT = (eβgd/2 − 1)ℓd/λdT . For clarity, we show here only

the results up to the fifth order to avoid the cluttering.

∆b2 =C̃ + 2
d
2
−1C̃2, (4.8)

∆b3 =− 21−
d
2 C̃ +

(
1− 21+d

5
d
2

)
C̃2, (4.9)

∆b4 =2(3−
d
2 + 2−d−1)C̃ +

(
31−

d
2 + 2−d−1− 3

2
d
2

)
C̃2

+

(
1 + 21−

d
2 − 2d+2

5
d
2

)
C̃3 +

(
3

4
− 2d

3
d
2

)
C̃4, (4.10)

∆b5 =−
(
21−d +

21−
d
2

3
d
2

)
C̃

+

(
7

2d
− 21+d

3
3d
2

+
7

3
d
2

− 2

7
d
2

− 21+d

11
d
2

− 3 · 2
1+d

19
d
2

)
C̃2

+

[
21−d − 21−

d
2 + 4 · 31− d

2 − 2
d
2
+2

(
2

3d
+ 5−

d
2 − 7−

d
2

)]
C̃3
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+

(
1 + 22−

d
2 − 21+d 31−d − 3 · 2

1+d

5
d
2

− 4d

3d 5
d
2

+
31−

d
2 4d

7
d
2

+ 3 · 2
1+2d

29
d
2

)
C̃4. (4.11)

The above formulas can also be expressed in powers of ∆b2 ((∆b2)1/2 to be specific) by inverting

Eq. (4.8):

C̃ = 2−
d
2

(√
1 + 2

d
2
+1∆b2 − 1

)
. (4.12)

which is the solution yielding the positive C̃ corresponding to the positive ∆b2 for the attractive

Fermi gas.

Based on the analytic structure, we note that just as in the Nτ = 1 case, in the Nτ = 2 case

∆b2 is always positive and ∆b3 is always negative, for positive C̃ in d = 1, 2, 3. The behavior of

∆b4 and ∆b5, however, is less obvious as (partly) a result from the competing subspace contribu-

tions.

In Fig. 4.1, we plot the coefficients as a function of dimension and study the behavior of ∆bn

in the dimension crossover. The left panel corresponds to stronger coupling where we renormal-

ized the bare coupling to ∆b2 = 1/
√
2, i.e. the system becomes the UFG in 3D. The right panel

shows the case in weaker coupling where the bare coupling is renormalized to ∆b2 = 1/(5
√
2). Ex-

perimentally, the dimension crossover can be realized by imposing anisotropic trapping potential.

In the left panel, we also compare with the results in integer dimensions by Refs. [21, 41, 46, 90].

In 1D and 2D, we interpolated their results to the same physical coupling strength to match our

choice of ∆b2. For ∆b3, we found that the NLO results accurately capture the crossover behav-

ior. The LO results deviates from the existing results but shows qualitatively correct trend. In

the case of ∆b4, as we explained in Sec. 3.2.2, the LO result is closer to the existing estimation at

unitarity (3D), but both LO and NLO results show similar trend in the dimension crossover. Fur-

thermore, the difference between the LO and NLO results grows larger as the coupling strength

become stronger and the particle number increases. In particular, the dependence on particle

number implies larger Nτ,max needed to achieve a similar accuracy, one of the major technical dif-

ficulties for the calculation of higher-order coefficients.
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Figure 4.1: Interaction-induced change in virial coefficients ∆b3 – ∆b7 as a function of the spatial dimension d,
at LO and NLO (solid and dashed lines, respectively). The left panel shows the results at unitarity, i.e. with C̃
renormalized to ∆bUFG

2 = 1/
√
2 and the right panel shows the weak coupling case with ∆b2 = 1/(5

√
2). In the left

panel, the crosses represent ∆b3 as follows: Monte Carlo results in 1D from Ref. [90], diagrammatic results in 2D
from Ref. [46], and exact results in 3D [41]. The square shows the ∆b4 result of Ref. [21].

Section 4.2: Systems in different dimensions

In this section we move to the integer dimensions. Similar to the last chapter, in each spatial

dimension, we present our estimations of ∆bn up to n = 5 after extrapolating to the Nτ → ∞

limit, and demonstrate applications centered around quantities such as the density equation of

state, Tan contact, and the isothermal compressibility. The exception is the 3D case, where only

the coefficients are presented as we have examined its application comprehensively in the last

chapter. Furthermore, we focus largely on unpolarized systems (the exceptions being the density

equation of state in 1D), but also provide the subspace decomposition of ∆b4 and ∆b5, which ex-

tend the applicability of the polarized system as shown in Sec. 3.4.

4.2.1: 1D System

Virial coefficients in 1D

The Beth-Uhlenbeck formula takes the form as Eq. (1.34) [26, 27]

∆b1D
2 = − 1

2
√
2
+
eλ

2
1/4

2
√
2
[1 + erf(λ1/2)]. (4.13)

where the physical coupling λ1 = 2
√
β/a0 with the 1D scattering length a0.

In Fig. 4.2, we show the scaled virial coefficients as a function of λ1 for both whole- and sub-
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Figure 4.2: Top: Virial coefficients ∆bn for n = 3 − 5 for the 1D attractive Fermi gas as a function of the di-
mensionless coupling λ1. To fit the scale, the ∆bns are scaled by exp(−qβϵb), where q is the maximum number of
spin-↑↓ pairs. The k = 2 results are shown as dashed lines, k = 3 as dashed-dotted lines, and the k → ∞ extrapo-
lation with solid lines. Results for ∆b3 appear in blue, ∆b4 in red, and ∆b5 in green (as labeled). Blue squares and
red stars show the QMC results for ∆b3 and ∆b4, respectively, from Ref. [90]. Bottom: Subspace contributions
∆bmj as functions of the coupling strength, scaled by exp(−jβϵb). Our results are shown as labeled error bands,
color-coded as in the top plot by n = m + j: blue for −∆b21, red for ∆b31 and ∆b22, and green for −∆b41 and
−∆b32. Specific cases are inverted in sign for clarity and to avoid overlaps.

space. Unlike the 3D case where the two-body bound state threshold is the unitarity, in 1D and

2D, the two-body bound state forms as soon as the interaction is turned on. The virial coeffi-

cients will tend to grow exponentially with the binding energy, as is evident at second order from

the Beth-Uhlenbeck formula. To capture that behavior, we scaled our virial coefficients by the in-

verse Boltzmann weight exp(−qβϵB) of the available particle pairs q = ⌊n/2⌋ (i.e. q = 1 for ∆b3

and q = 2 for ∆b4 and ∆b5), where ϵB = 1/a20 is the binding energy of the two-body system.

In the top panel of Fig. 4.2, we show the whole-space results ∆bn and find excellent agree-

ments with the QMC data of Ref. [90] for ∆b3 and ∆b4. For the latter, the QMC calculations

are very limited and stop beyond at λ1 ≃ 1.0 (where the QMC method begins to break down),

whereas our present results go well beyond that region.
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The resulting mild behavior at strong coupling shows that indeed the scaling factor captures

the shape of ∆bn as the coupling grows stronger. Beyond that leading contribution, however, ∆b3

is controlled by the atom-dimer scattering properties, just as ∆b4 is controlled by dimer-dimer

properties, and so on.

Same as the 3D case, we find that ∆b3 is of constant sign, whereas ∆b4 and ∆b5 change sign

at strong enough coupling, as a result of the competition between positive and negative contribu-

tions coming from the subspaces ∆bmj . In terms of magnitudes, we observed that |∆b5| ≈ |∆b4|

for all coupling strengths examined.

The ∆bmj are shown in the bottom panel of Fig. 4.2. The alternating sign as observed in the

3D case holds true for both ∆bm1 and ∆bm2 subspace sequences, though all curves are no longer

monotonic in 1D. The sequence |∆bm1| follows essentially the same trend as a function of the cou-

pling for all m, and magnitudes are increasingly suppressed for increasing m, i.e. following the

“normal ordering”. The suppression is similar to that in the 3D case: at large m both |∆bm1| and

|∆bm2| must approach the noninteracting values (i.e. zero) as the majority of the particles do not

interact due to Pauli blocking. In the case of ∆bm2, the inverted ordering, i.e. |∆b32| > |∆b22|,

holds for wider range until the crossing point at λ1 ≈ 4, which is presumably the result of en-

hanced interaction effects in the low dimension3.

Applications in 1D

Density equation of state at finite polarization - In Fig. 4.3 we show our estimates for

the density equation of state for attractively interacting fermions at finite polarization in 1D us-

ing QVE (see Sec. 3.4.1 for the formalism), . We compare our results with those of Ref. [160] ob-

tained with the complex Langevin method. The fifth-order virial expansion provides a modest im-

provement over the third and fourth orders. However, for all the available polarizations the agree-

ment with the data is reasonable as long as βµ is sufficiently small. The resummed results (dot-

ted lines) uses Padé approximant at order [2/3] and it extends the agreement to larger βµ ≈ −1.

Recall that in the 3D case where we find agreements up to βµ = 0.7. Such difference is a mani-

festation of the enhanced interaction effects in the low-dimensional systems. This example shows

3However, due to different definition of physical coupling λ in different dimensions (differed by a constant factor),
it is not straightforward to make a direct comparison. Therefore we only make a qualitative argument here.
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Figure 4.3: Density equation of state n of the attractive 1D Fermi gas, shown in units of the noninteracting, un-
polarized counterpart n0 with coupling strength λ1 = 1.0, for several values of the chemical potential difference
βh = β(µ↑ − µ↓)/2. The colored symbols are complex-Langevin results from Ref. [160] and the colored lines show
the virial expansion at various orders: dashed-dotted line at third order (VE3), dashed line at fourth order (VE4),
and solid line at fifth order (VE5). The black dotted line is the result of the [3/2] Padé resummation. The Padé
approximant for βh = 1.5 contains a pole close to βµ = −1.2; the corresponding dotted line is therefore cut off at
that value. The limiting value for βµ → −∞ is known exactly and is given by cosh(βh).

one of the major limitations of the resummation technique: it is deterministic and depends only

on the series coefficients. In other words, we have to accept the results as they are: there is no

systematic way to improve the region of convergence, nor a way to determine the correctness a

priori.

Contact - In 1D, the contact is given by [118]

I =
2

β

∂(βΩ)

∂a0
, (4.14)

such that its virial expansion becomes

I =
4π

λ3T
Q1

∞∑
m=2

cmz
m, (4.15)
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1), as a function of βµ, for the attractive 1D Fermi

gas. The dots show the QMC results of Ref.[26] and the curves show the virial expansion at various orders, fol-
lowing the same line style as in Fig. 4.3. The color encodes the coupling strength of from λ1 = 0.5 (dark blue) to
λ1 = 4.0 (dark red) in steps of 0.5. From bottom to top, the curves and data correspond to λ1 = 0.5, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, and 4.0.

and

cm =

√
π

2
λ21
∂∆bm
∂λ1

. (4.16)

The Beth-Uhlenbeck formula in Eq. (4.13) yields

c2 =
λ21
4

+

√
π

8
eλ

2
1/4λ31[1 + erf(λ1/2)], (4.17)

as first shown in Ref. [26]. Using the λ1 dependence of our results for ∆bn, we obtained the virial

expansion of I up to fifth order.

In Fig. 4.4 we show the dimensionless, intensive form of the contact, Iπβ2/(2Lλ21) as a func-

tion of temperature in the virial expansion. At weak couplings (λ1 ≤ 2.0), the virial expansion

shows good agreement with the QMC results of Ref.[26]. However, as the coupling strength in-

creases, the disparity becomes significant, which is not completely unexpected as both methods

face challenges in the strong coupling regime: the radius of convergence of the QVE can be very
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Figure 4.5: Top: Virial coefficients ∆bn for n = 3 − 5 for the 2D attractive Fermi gas, as a function of the square
of the dimensionless coupling λ2. To fit the scale, ∆bns are scaled by exp(−qβϵb), where q is the maximum number
of spin-↑↓ pairs, and ∆bmj are scaled by exp(−jβϵb). The Nτ = 2 results are shown as dashed lines, Nτ = 3 as
dashed-dotted lines and the Nτ → ∞ extrapolation with solid lines. Results for ∆b3 appear in blue, for ∆b4 in red,
and for ∆b5 in green (as labeled). The diagrammatic result for ∆b3 from Ref. [30] appear as blue dots. Bottom:
Subspace contributions ∆bmj as functions of the coupling strength. Our results are shown as labeled error bands,
color-coded as in the top plot by n = m + j: blue for −∆b21, red for ∆b31 and ∆b22, and green for −∆b41 and
−∆b32.

small, such that the expansion ceases to be useful even at very negative βµ; on the other hand,

the lattice QMC method may suffer from increasing lattice-spacing effects at strong coupling, due

to the reduced size of the two-body bound state. We also noted that as coupling increases, the

differences between QVE results at different order become negligible, resulting from the dominant

role of two-body bound state.
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4.2.2: 2D System

Virial coefficients in 2D

The 2D Beth-Uhlenbeck result is shown in Eq. (1.69)

∆b2D
2 = eλ

2
2 −

∫ ∞

0

dy

y

2e−λ2
2y

2

π2 + 4 ln2 y
, (4.18)

where the physical coupling λ22 = βϵB, and ϵB is the binding energy of the two-body system.

In Fig. 4.5 we show our results for ∆bn as a function of λ22 for the 2D attractive Fermi gas

(see e.g. the review Ref. [161]). As in 1D, we scaled the coefficients by exp(−qβϵB), where q =

⌊n/2⌋ is the maximum number of available spin-↑↓ pairs.

In the top panel, we find similar behaviors of the whole-space coefficients, just as in 1D and

3D: ∆b3 remains negative for all the couplings studied; ∆b4 and ∆b5 change sign at strong enough
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coupling and their magnitudes are similar save that |∆b5| is slightly larger, the same as the case

in 1D and 3D. For reference, we plot the diagrammatic results of ∆b3 by Ref. [30] as blue dots,

and find agreement across the coupling strength studied.

The subspace contributions ∆bmj are shown in the bottom panel of Fig. 4.5 and parallel the

behaviors in the other two dimensions. Furthermore, |∆bm1| and |∆bm2| follow consistent trends

as a function of the coupling across all m (with the expected suppression as m is increased). In

fact, once the exp(−qβϵB) factor is included, |∆bm1| and |∆bm2| are approximately constant as

the coupling is increased, hinting the dominant role of the two-body bound state. Also, compared

to the 1D case, the ∆bm2 sequence is closer to the 3D case, where the crossing point between the

“inverted ordering” and “normal ordering” occurs early at weak coupling, and both curves show

(nearly) monotonic trends.

Finally, as the details at weak coupling are elusive in the scale of Fig. 4.5, we zoom in the

weakly coupling regime and plot in Fig. 4.6 the raw values of ∆bn as functions of ∆b2, whose

range corresponds roughly to λ22 ∈ [0, 0.6]. All the coefficients tend smoothly to zero as the cou-

pling is weakened. The non-perturbative behavior at weak coupling is completely captured by

∆b2.

Applications in 2D

Density equation of state at zero polarization - We firstly investigated the density equa-

tion of state in absence of polarization and compare our results with several theoretical and ex-

perimental works.

In Fig. 4.7, we plot the dimensionless density n/n0 as a function of βµ at different coupling

strength, which is represented by the bound-state energy βϵB. For reference, we compare our es-

timations with the QMC results of Ref. [162] and the Luttinger-Ward results of Ref. [163]. The

agreement with the QMC data is outstanding. With the exception of the weakest coupling βϵB =

0.1, where the QMC results likely incur volume effects due to the large size of the two-body bound

state (although small, this discrepancy remains unresolved), the virial expansion is systemati-

cally closer to the QMC data than to the Luttinger-Ward results. At weak coupling, especially

at βϵB = 0.5 (green), we observed significant improvements from the Padé resummation method,

whose results agree with QMC calculation even at large βµ ≈ 2. Moreover, for all the couplings
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Figure 4.7: Density equation of state n, shown in units of the noninteracting counterpart n0 at different coupling
strength λ2

2 = βϵB in 2D. The colored dots are the QMC results from Ref. [162], the colored thin line shows the
Luttinger-Ward result of Ref. [163], and the colored thick lines are virial expansions at different orders (same line
style as in previous Fig. 4.3). The black dotted lines and dashed lines are the results, respectively, of Padé and
Borel resummation of order [3/2] using the virial coefficients up to the fifth order.

considered, the Padé and Borel resummations substantially extend the region of agreement to ap-

proximately βµ ≈ 0. But as the coupling is increased, the Borel-resummed results outperformed

the Padé-resummed ones, showing better agreements with the QMC calculations, while both re-

summation methods yields qualitative correct trend. Such difference is because of the exponential

contribution from the bound-state to the virial coefficients. Therefore, the factorial damping fac-

tor used in the Borel method makes it more suitable in this case.

In Figs. 4.8 and 4.9, we compare our results with the experimental data of Refs. [164] and [165],

respectively. In all cases, the agreement is remarkable in the regions where the virial expansion is

expected to work. Naturally, that region is pushed to progressively more negative βµ as the cou-

pling is increased; in other words, the radius of convergence of the virial expansion decreases as

the coupling increases. However, it is also clear that, beyond weak and intermediate couplings

(roughly up to βϵB = 3.0), the benefits of pushing the virial expansion up to fifth order start to

diminish, if the virial expansion is taken at face value. We find, on the other hand, that Padé and

Borel resummations dramatically enhance the usefulness of the virial coefficients. As shown in

Fig. 4.8 (left and center panels in particular), the resummed results agree not only qualitatively
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Figure 4.9: Density equation of state n, shown in units of the noninteracting counterpart n0 at different coupling
strength λ2

2 = βϵB in 2D. The colored symbols are the results of experimental analyses from Ref. [165] and the col-
ored lines are virial expansions at different orders (the same line style applied). The black dotted lines and dashed
lines are the results, respectively, of Padé and Borel resummation of order [3/2] using coefficients up to the fifth
order.

but in several cases also quantitatively with the experimental data.

Contact - In 2D, the contact is [32]

I =
2π

β

∂(βΩ)

∂ ln(a0/λT )
, (4.19)

such that its virial expansion becomes

I =
(2π)2

λ2T
Q1

∞∑
m=2

cmz
m, (4.20)

where

cm = λ2
∂∆bm
∂λ2

. (4.21)
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Figure 4.10: Contact I, represented in the dimensionless form Iλ4
T /(8π

2L2), as a function of βµ in 2D. The
squares are the QMC results of Ref. [162] and the lines are the results of virial expansion at various orders (dash-
dot for third order, dashed for fourth order, and solid for fifth order). From bottom to top, the data shown corre-
sponds to coupling strengths βϵB = 0.1, 0.5, 1.0, 2.0, and 3.0.

The Beth-Uhlenbeck formula yields

c2 = 2λ22e
λ2
2

[
1 + 2

∫ ∞

0
dy
ye−λ2

2(y
2+1)

π2 + 4 ln2 y

]
, (4.22)

as shown in Refs. [30, 162]. Using the λ2 dependence of our results for ∆bn, we obtained the virial

expansion of I up to fifth order.

In Fig. 4.10 we show the dimensionless, intensive form of the contact, Iλ4T /(8π2L2), as a func-

tion of βµ in the virial expansion and compared with the QMC results from Ref. [162]. As with

the equation of state shown above, the agreement with the QMC data is remarkable in the re-

gion where the virial expansion is expected to work well. Moreover, our results extend the dis-

crete QMC calculations to larger region as smooth analytical curves.

4.2.3: 3D System

In Fig. 3.4 and Fig. 3.6, we plot ∆bn and ∆bmj respectively as a function of ∆b2/∆bUFG
2 .

Here, we present the same coefficients but as a function of the physical coupling strength λ3 =

√
β/a0 in the same fashion as that in 1D and 2D. For the attractive system we studied, λ3 takes
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Figure 4.11: Left: ∆bn for n = 3 − 5 for the 3D Fermi gas in the weak-coupling regime, as a function of the di-
mensionless coupling λ3. The k = 2 results are shown with dashed lines, k = 3 with dashed-dotted lines, and the
k → ∞ extrapolation with solid lines. Results for ∆b3 appear in blue, for ∆b4 in red, and for ∆b5 in green, as la-
beled, following the same convention as Fig. 4.2. Right: ∆bn for n = 3 − 5 for the 3D Fermi gas in the vicinity of
the unitary regime (a0 → ∞, which corresponds to λ3 = 0), as a function of the dimensionless coupling λ3. The ex-
act result for ∆b3 from Ref. [41] appears as a thin solid black line. The k = 2 results are shown with dashed lines,
k = 3 with dashed-dotted lines, and the k → ∞ extrapolation with solid lines. Results for ∆b3 appear in blue, for
∆b4 in red, and for ∆b5 in green, following the same convention as Fig. 4.2.

a negative value. The limit −1/λ3 → 0 corresponds to the noninteracting limit a0 → 0−, and the

limit −λ3 → 0 corresponds to the unitary limit a0 → −∞.

In Fig. 4.11, we present our results for ∆bn as a function of λ3. The left figure shows ∆bn as a

function of −1/λ3 to display the weak coupling regime, and in the right figure we plot the vicin-

ity around the unitary limit (λ3 = 0) as a function of λ3, where the same results from Ref. [41]

is also presented. The bottom panels show the subspace decomposition of ∆bn into ∆bmj . The

qualitative similarities with lower dimensions are clear. As in 3D there is no two-body bound

states formed in the regime we investigated4, we do not need to scale the coefficients by the fac-

tor exp(−qβϵB).

4The bound state formed after the unitary limit, see Sec. 1.1.1 for details
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CHAPTER 5: Harmonically trapped Fermi gas

In the last two chapters, we discussed the homogeneous Fermi gases under different settings.

In this chapter, we move one step further to put the homogeneous system under an external har-

monic trap, which is a common setup in ultracold experiments. From a theoretical standpoint,

The external trap is also a common setup not only because it matches the experimental configu-

ration but also as the trap behaves as a regulator and actually makes the calculation easier.

In this chapter, we generalize the AA method to deal with the harmonic trapped system, to

which end we need to evaluate the trace in the coordinate space. We will show that, unlike the

case for conventional methods, this extra term actually makes our calculation more expensive.

We present the virial coefficients as a function of trapping frequency and demonstrate with an

example to calculate physical observables with QVE.

Section 5.1: Non-interacting trapped Fermi gas and the homogeneous limit

The Hamiltonian for the trapped Fermi gas is very similar to that for the homogeneous sys-

tem, except for a non-zero external potential term,

Ĥ = T̂ + V̂ext + V̂ ≡ Ĥ0 + V̂ (5.1)

with the same T̂ and V̂ as shown in Eq. (1.4) and (1.6) respectively. We also denote Ĥ0 ≡ T̂ +

V̂ext as the noninteracting Hamiltonian. In our work, we consider only the isotropic trap but the

formalism and methodology can be generalized to anisotropic trap without much effort. For the

isotropic harmonic potential, V̂ext is

V̂ ext =

∫
d3r

1

2
mω2r2

[
n̂↑(r) + n̂↓(r)

]
, (5.2)

where ω is the trap frequency and r is the radial distance.

In the absence of inter-particle interactions, the system becomes a quantum harmonic oscil-

lator, whose Hamiltonian Ĥ = Ĥ0 = T̂ + V̂ext is diagonalizable in the subspace with eigenstate
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denoted as |n1n2 · · ·nM+N ⟩ ≡ |{n}⟩, where the bold face ni represents the energy level vector in

d dimension for the ith particle. In this basis, referred to as the HO basis, we have

Ĥ0 |{n}⟩ = ϵ({n}) |{n}⟩ , (5.3)

and the total energy is

ϵ({n}) =
M+N∑
i=1

ϵ(ni), (5.4)

where the single particle energy ϵni is

ϵ(ni) = ω

d∑
j=1

(
[n]j +

1

2

)
. (5.5)

Similar as the homogeneous case, we take the Fock trace using the HO basis and obtain lnZ

as

lnZ = 2
∑
n

ln

1 + ze−βωd/2
d∏

j=1

e−βω[n]j

 (5.6)

where the summation over bold face n is over all dimensions from 0 to ∞. Then expand the loga-

rithm in terms of z,

lnZ = 2
∑
n

∞∑
k=1

(−1)k+1

k
e−βωdk/2

d∏
j=1

e−βωk[n]j


= 2

∞∑
k=1

(−1)k+1

k
e−βωdk/2

∑
n

d∏
j=1

e−βωk[n]j

= 2

∞∑
k=1

(−1)k+1

k
e−βωdk/2

(∑
n

e−βωkn

)d

= 2

∞∑
k=1

(−1)k+1

k

[
1

2 sinh(βωk/2)

]d
.

(5.7)
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The last piece is the single-particle function Q1 as given by

Q1 = 2Q10 = 2
∑
n

e−βϵ(n) = 2e−βωd/2

(∑
n

e−βnω

)d

= 2

[
1

2 sinh(βω/2)

]d
(5.8)

Substitute the above equations into lnZ = Q1
∑

n=1 bnz
n and compare order by order, in the

end, we obtain the virial coefficients of noninteracting, harmonically trapped spin-1/2 fermions in

d spatial dimensions as

b
(0)
n,T (βω) =

(−1)n+1

n

[
sinh(βω/2)

sinh(βωn/2)

]d
. (5.9)

In the homogeneous limit βω → 0, the virial coefficient becomes1

b
(0)
n,T (βω → 0) =

(−1)n+1

nd+1
, (5.10)

Compared to Eq. (1.47), the trapped noninteracting virial coefficient ∆bn,T is related to the ho-

mogeneous one b(0)n through

bn,T (βω → 0) = n−d/2bn, (5.11)

as also shown in e.g. Refs. [24, 54, 166, 167].

One may have noticed that there is no superscript (0) in the above equation. It is because

this relation actually holds true for interacting Fermi gas in the unitary limit as well. An intu-

itive explanation is that, due to the divergence of (kFas)−1, the unitary virial coefficients are

temperature-independent, just as the case for the noninteracting coefficients. For a more math-

ematical explanation, see e.g. Ref. [24].

Section 5.2: Interacting trapped system

Compared to the interacting homogeneous system, the interacting trapped Fermi gas shares

nearly the same formalism and methods with Ĥ0 in the place of T̂ . However, the Ĥ0 is diago-

nal in its own HO basis instead of the momentum space, and therefore extra attentions are re-

1See also Ref. [24] for a alternative derivation of noninteracting coefficients using the Local Density Approximation
(LDA).
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quired. In this section, we will review one essential concept, the Mehler’s kernel, for the inter-

acting trapped system, which allows us to apply the AA method to the trapped case. The only

difference is that we are now working in the coordinate space, which further impose several tech-

nical challenges. Lastly, although we will only discuss the trapped unitary Fermi gas at unitarity

in this chapter, we note that the formalism and method presented are generally applicable.

5.2.1: Mehler’s kernel

As mentioned above, we will work in the coordinate space for the trapped Fermi gas. This is

because if we project it to the coordinate space, we can write the partition function in a compact

fashion using the so-called Mehler’s formula [168].2 Taking the single-particle partition function in

1D for example, the trace in the coordinate space yields,

Q10 =
∑
x

⟨x|e−βĤ0 |x⟩ =
∑
x

∞∑
n=0

⟨x|n⟩ ⟨n|e−βĤ0 |n⟩ ⟨n|x⟩ =
∞∑
n=0

e−βϵ(n)|ϕn(x)|2, (5.12)

where the 1D wavefunction for the oscillator ϕn(x) is explicitly written as

ϕn(x) =
1√
2πn!

(ω
π

)1/4
e−ωx2/2Hn(

√
ωx), (5.13)

where Hn is Hermite polynomial.

Eq. (5.12) is a special case of the Mehler’s formula. Its general form states

E(x, y) =
∞∑
n=0

(α/2)n

n!
Hn(x)Hn(y) =

1√
1− α2

exp

(
−α

2(x2 + y2)− 2αxy

1− α2

)
. (5.14)

Setting x = y and define

G(k, y) =

∞∑
n=0

e−kn

2nn!
[Hn(y)]

2 =
exp
[
2y2/(1 + ek)

]
√
1− e−2k

, (5.15)

Eq. (5.12) can then be expressed as

Q10 =
∞∑
n=0

e−βϵ(n)|ϕn(x)|2 =
√
ω

π
e−βω/2−ωx2

G(βω,
√
ωx). (5.16)

2The following paragraphs summarizes the derivations in Ref. [169].
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More generally, when x ̸= y and the system is in d dimensions, the matrix element in the

coordinate space can be written as

⟨x|e−βĤ0 |y⟩ =
∞∑
n=0

⟨x|n⟩ ⟨n|e−βĤ0 |n⟩ ⟨n|y⟩ ≡ ρ(x,y). (5.17)

ρ(x,y) is called the Mehler kernel and takes the form of

ρ(x,y) =
1

λ3T

[
βω

sinh(τω)

]3/2
exp
[
−ZTBZ

]
, (5.18)

where ZT = (xT /λT ,y
T /λT ), and matrix B is

B =
πβω

sinh(τω)

cosh(τω)1 −1

−1 cosh(τω)1

 , (5.19)

with 1 is the d-dimensional identity matrix.

5.2.2: Automated-algebra method in coordinate space

With the Mehler kernel, we can represent the transfer matrix in a compact from. For the sim-

plest example, the transfer matrix of the (1+1) system is written as,

[M11]XY = ⟨x1x2|e−τĤ0e−τV̂ |y1y2⟩

= ρ(x1,y1)ρ(x2,y2) [1+ Cδ(y1 − y2)] ,

(5.20)

where C = (eτg − 1) is the same coupling constant as defined before. It is now clear that the

physics meaning of Mehler kernel is just the propagator for the quantum harmonic oscillator.

The AA method works in the coordinate space in nearly the same way as it in the momentum
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space. The general form of the matrix element is

[MNτ
MN ]X0XNτ =

〈
X0
∣∣∏
Nτ

e−τĤ0e−τV̂
∣∣XNτ

〉
=

∑
X1X2···XNτ−1

[MMN ]X0X1 [MMN ]X1X2 · · · [MMN ]XNτ−1XNτ

=
∑

X1X2···XNτ−1

ρ(X0,X1)ρ(X1,X2) · · · ρ(XNτ−1,XNτ )

× fMN (X0,X1)fMN (X2,X2) · · · fMN (XNτ−1,XNτ )

(5.21)

where ρ(Xτ ,Xτ+1) is a shorthand for the product

ρ(Xτ ,Xτ+1) = ρ(xτ
1 ,x

τ+1
1 )ρ(xτ

2 ,x
τ+1
2 ) · · · ρ(xτ

M+N ,x
τ+1
M+N ) (5.22)

and fMN (Xτ ,Xτ+1), in analogue to Eq. (2.27), is the coordinate representation of the interaction

operator e−βV̂ . We summarize the explicit expressions in Appendix. C.

All the other steps in the AA method for the homogeneous systems hold valid to evaluate the

above expression. As we are now working in the coordinate representation, all terms will yield the

same volume order. Therefore, we can no longer use the volume power counting for the analytic

volume cancellation. In other words, we have to evaluate both connected and disconnected dia-

grams when calculating QN , which greatly increases the computational costs. However, it has no

impact to the accuracy as all terms in the cancellation are still analytic polynomials.

In the end, the virial coefficients are expressed as a polynomial in C, just as in the homoge-

neous case. At each Nτ , we renormalize the bare coupling C to reproduce exactly the second-

order coefficient ∆b2 such that the line of constant physics is followed in the extrapolation to

Nτ → ∞, for each βω. At unitary, the second-order virial coefficient can be obtained by ana-

lytically solving the spectrum of a trapped two-body system [24], and the final expression is

∆b2,T (βω) =
1

4
sech

(
βω

2

)
. (5.23)
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In the homogeneous limit, it approaches

∆b2,T (βω → 0) =
1

4
(5.24)

agreeing with the relation ∆b2,T (βω → 0) = 2−3/2∆b2 as in Eq.(5.11) with the homogeneous

∆b2 = 1/
√
2 in the unitary limit.

Section 5.3: Results

5.3.1: Trapped virial coefficients

The AA method is purely analytic in theory, which means the resulting expressions can be

written as symbolic functions of βω. However, it requires the symbolic evaluation of determi-

nants, which is more expensive than the numerical evaluations. Therefore, at lower decomposition

order when the computational costs is reasonable, we still performed the symbolic calculation and

report the analytic results at Nτ = 1, 2 as analytical functions of βω. However, when extrapo-

lating to the large-Nτ limit, the larger-Nτ results are required. In this case, we selected multiple

trap frequency samples and carried out the numerical evaluations as a compromise.

Analytic expressions at leading- and next-leading-order

At first, we report the analytical results as symbolic expressions of coupling strength C, trap-

ping frequency βω, and the spatial dimension d at leading- and next-to-leading order. Higher-

order calculations are also feasible with reasonable computational costs, but the resulting formu-

las are too long to fit properly in the dissertation.

At leading order Nτ = 1, the analytic formulas for ∆b3 and ∆b4 were firstly reported in

Ref. [169] by the other students from the same group, where the authors found qualitative agree-

ment between the semiclassical results and the numerical results using PIMC [21]3. Considering

the effectiveness of semiclassical approximation observed in the previous works, these formulas

offers benchmarks for calculations at larger Nτ and for systems with higher particle number for

which no existing results are available.

We present below the leading-order expressions for subspace virial coefficients up to four-

3In the large βω regime, quantitative agreements were observed as well.
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Table 5.1: The maximum temporal steps Nτ,max calculated with automated-algebra method for trapped Fermi
gas.

QMN Q11 Q21 Q31 Q22 Q41 Q32

Nτ,max 21 20 16 12 12 8

particle systems, and leave the formulas of the fifth-order coefficient and the next-to-leading order

results to Appendix. D.

∆b2 = ∆b11 =
1

2

C

λdT

[
βω

2 sinh(βω)

]d/2
, (5.25)

∆b21 = − ∆b2

[2 cosh(βω) + 1]d/2
. (5.26)

∆b31 =
2−d/2∆b2

coshd/2(βω) [2 cosh(βω) + 1]d/2
, (5.27)

∆b22 =
2−3d/2∆b2

coshd/2(βω) coshd(βω/2)

{
1 + 2d/2∆b2

[
coshd/2(βω)− 2d/2+1 coshd(βω/2)

]}
(5.28)

All formulas up to the fifth order at both Nτ = 1 and 2 are plotted in Fig. 5.1, together with the

extrapolated numerical results.

Here we limit our discussion to the comparison between the analytic formulas, and further dis-

cussions on their comparison to the numerical (extrapolated) results are left to the next subsec-

tion, Compared the two analytical results (black dotted and dashed lines respectively) to the ex-

trapolated results (blue dotted lines), we note that results at higher Nτ does not immediately or

necessarily converge to the expected results, rather, we observed that the results could move away

from the Nτ → ∞ limit before the asymptotic regime is reached, usually for Nτ > 2. In particu-

lar, in the case of ∆b4 the next-to-leading order results are actually worse than the leading-order

ones, which was never observed in the homogeneous system.

Only until some high value of Nτ , the convergence reaches the asymptotic regime and starts

to decrease monotonically as Nτ increase. Thus, it is important to investigate as large Nτ as pos-

sible, even if low values are qualitatively correct. In Table. 5.1, we summarized the maximum

temporal steps Nτ,max explored for each subspace.
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Figure 5.1: (a) ∆b3, (b) ∆b4, and (c) ∆b5 as functions of βω, for a trapped unitary Fermi gas. Our results are
shown with blue crosses and error bars, joined by a blue dotted line. The data by Yan and Blume from Ref. [21]
appears as red circles for (a) ∆b3 and (b) ∆b4, in both cases with error bars. The dashed-dotted line in the panel
(b) shows a high-temperature fit to the data of Ref. [21]. Black stars with error bars show the our homogeneous
results in , firstly reported in Ref. [104]. The dotted (dashed) line shows the Nτ = 1 (Nτ = 2) results given an-
alytically in Appendix B. The latter show that, for ∆b3, increasing Nτ from 1 to 2 shows a clear improvement,
whereas the case of ∆b4 is a cautionary tale: as Nτ goes from 1 to 2, the results move away from our final answer
(blue crosses). In fact, it is not until Nτ = 5 that ∆b4 reaches the asymptotic regime one can use for extrapolation.
Ref. [56] presented a large-βω asymptotic formula for ∆bn, but its validity is well outside the 0 < βω < 3 region
studied here.
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Numerically extrapolated results in Nτ → ∞ limit

In Fig. 5.1 we show our results for (a) ∆b3, (b) ∆b4, and (c) ∆b5 for the trapped UFG as a

function of βω. The error bars represent the uncertainty in the Nτ → ∞ extrapolation. The same

error estimation scheme as that for the homogeneous case is used by taking the difference between

the maximum and minimum predictions of polynomial extrapolation at different degree. For ∆b3

and ∆b4 we used polynomial fitting at degrees from 2 to 5, and for ∆b5 at degrees 2 and 3, as the

Nτ,max is more limited and the higher-degree polynomial fittings introduce uncontrolled artifacts.

Our results for ∆b3 are in superb agreement with the quantum Monte Carlo data of Ref. [21]

over all trapping frequencies. For ∆b4 the story is slightly different: even though there is good

agreement with Ref. [21] for βω ≥ 1, a clear difference remains at low frequencies. We will return

to explain this discrepancy very soon below. Finally, we predict ∆b5 as a function of βω, which

has not been explored by any other literatures to the best of our knowledge.

For all virial coefficients in the homogeneous limit βω → 0, we find good agreement with the

homogeneous estimation (black stars) reported in Chap. 3. In the case of ∆b5 in the homogeneous

limit, the error bar of the trapped virial coefficients (blue cross) appears much larger than the

previous results. It is from the different Nτ,max used for each subspace, especially for the (3 + 2)

subspace, due to the increasing computational costs as explained before.

As the HO potential confines the system, it naturally increases its kinetic energy, effectively

reducing the interaction effects. This suggests that, for a given interaction strength, the VE should

enjoy better convergence properties when a trapping potential is turned on (as argued also in

Ref. [24]). Indeed, although our results indicate that ∆b4 ≃ ∆b5 and, moreover, for 0.3 < βω <

1.4 we find ∆b5 > |∆b4|, we also find that |∆b2| ≫ |∆b3| ≫ |∆b4|. Specifically, at unitarity we

find ∆bT3 = −0.0685(8), ∆bT4 = 0.00775(25), and ∆bT5 = 0.0070(5). Notably, the factor n−3/2 in

Eq. (5.11) restores the “normal order” |∆bT3 | > |∆bT4 | > |∆bT5 |, in contrast to the homogeneous

case (see Sec. 3.2.2), supporting the notion that trapping potentials enhance the convergence of

the virial expansion [54].

To better understand the differences in ∆b4 between our results and Ref. [21], we zoom in to

study the subspace contributions ∆b31 and ∆b22, as plotted in Fig. 5.2 (a). As pointed out in

Ref. [21], these contributions partially cancel each other out. The increasing (effective) interact-
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Figure 5.2: (a) ∆b31 (blue diamonds) and −∆b22 (green squares) as functions of βω, compared with the PIMC
results of Ref. [21] (red circles joined by solid line for ∆b31 and joined by a dotted line for ∆b22). The black crosses
show our homogeneous results at βω = 0, as firstly reported in Ref. [104], The blue dotted lines are the results
from Ref. [43] and the open circle represents the βω → 0 limit. (b) −∆b41 (blue diamonds) and ∆b32 (green
squares) as functions of βω. The black cross shows the results at βω = 0 from Ref. [104].

ing effects leads to the observed larger uncertainty as βω decreases. Clearly, the largest difference

arises in the determination of ∆b22, which is not unexpected as a contact interaction in that this

subspace is less susceptible to Pauli blocking than ∆b31.

Similarly, in Figure 5.2 (b), we show our results for ∆b41 and ∆b32, whose behavior parallels

∆b31 and ∆b22 in that they enter with different signs but similar magnitude, thus leading to in-

creased uncertainty in the final result for ∆b5. Due to the different Nτ,max used, the size of the

error bars of ∆b32 is larger than that of ∆b41 as expected. But it may come as a surprise when

compared to the case of the homogeneous results, where we reported less uncertainty for ∆b32

than ∆b41. This is because that for the homogeneous results, both subspace coefficients were cal-

culated at the same Nτ = 9 order. In contrast, in the trapped case we achieved Nτ = 12 for ∆b41

but only Nτ = 8 for ∆b32, due to the increasing computational cost.

109



2

0

2

4

6

8

n
8

/(
2 T
Q

1)

(a)

Pade

3rd order VE
4th order VE
5th order VE
Pade [3/2]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z = exp( )

0.20

0.15

0.10

0.05

0.00

s
8

/(
2 T
Q

1)

(b)

Pade

Figure 5.3: Density and spin susceptibilities as a function of fugacity at βω ≈ 0.55 (a) Interaction effects on
the density susceptibility ∆χn, in units of 8π/(λ2

TQ1), as a function of the fugacity z for a harmonically trapped
unitary Fermi gas at βω = 1. The second, third, fourth, and fifth-order VE results are shown, respectively, with
dotted, dashed, dash-dotted, and solid lines. The Padé resummed result (with a [3/2] approximant) is shown as a
blue line. (b) Interaction effects on the magnetic susceptibility ∆χs as a function of z, for the same parameters as
in the panel (a). The second-order VE is omitted because it is identically zero for ∆χs.

5.3.2: Density and spin susceptibilities

Lastly, to present an example of observable calculation, we plot the density and spin suscepti-

bilities as defined in Eq. (3.33) in Fig. 5.3. The results are similar as the homogeneous case that

we found divergent bare QVE results and the (seemingly) convergent resummed result. How-

ever, due to the lack of existing benchmark results, we cannot decide if the seemingly convergent

Padé curve is following the correct physics, neither can we narrow down the boundary that the

resummed results start to deviate from the true physics. This is an excellent example showing the

limitation of the current resummation method, leaving an open question for more investigations.
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CHAPTER 6: Conclusion and outlook

In this dissertation, we focused on spin-1/2 Fermi gases using the QVE. To evaluate the higher-

order coefficients in this expansion, we developed a nonperturbative, semi-analytical method we

call Automated-Algebra. We firstly investigated the homogeneous system under different settings,

with particular attention on the universal unitary limit. With this method, we estimated virial

coefficients up to the unprecedented fifth order. For the third-order coefficient, we found excellent

agreement with previous work with as low as 0.25% relative error at unitarity, the strongest in-

teracting regime leading to largest calculation error. Our estimates of the fourth-order coefficient

helped resolve a long-debated discrepancy among experimental determinations and different the-

oretical predictions. Moreover, our results generalized beyond all existing results at unitarity by

extending to arbitrary coupling strength and arbitrary spatial dimension. At fifth-order, ours is

the first quantitatively accurate estimation to the best of our knowledge (aside from a few precise

estimates based on conjectures). We concluded that the non-negligible fifth-order contribution

explains the large discrepancy in the determinations of the fourth-order coefficient, for which the

fifth order coefficient was assumed to be small.

Using the high-order expansion, we investigated multiple observables, including but not lim-

ited to the density, Tan’s contact and susceptibilities, and found good agreement with existing

experimental and theoretical studies at high temperatures. Moreover, the higher-order coefficients

allowed us to incorporate resummation techniques into our analysis, greatly extending the appli-

cability of the QVE to lower-temperature regimes. In some situations, we found agreement with

experimental results and Monte Carlo data up to temperature as low as the critical temperature

of the superfluid transition. In particular, we demonstrated with an example how our calculations

helped in the search of long-sought pseudogap regime, via the study of spin susceptibility, whose

maximum and suppression are indicators of fermion pairing. The analytic expressions of coeffi-

cients help to yield smooth estimations of susceptibility, complementing the existing discrete re-

sults from stochastic methods.

We also generalized our method to harmonically trapped systems and calculated up to the
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fifth order in that case as well, also for the first time. Once again benefitting from the analytic

nature of our method, we observed nontrivial improvements in our fourth-order results as a func-

tion of external trapping frequency, especially in the regime close to the homogeneous limit, where

the existing results suffered from severe statistical noises and extrapolation issues.

To summarize, we developed a new method to calculate high-order coefficients in the QVE.

With those high-order coefficients and resummation methods, we found agreement between QVE

and other methods in regimes unimagined before. Our work presents a potential direction for fur-

ther investigations of QVE: with higher-order coefficients available, the QVE can be more than

a benchmark method as used so far. Rather, with the analytic nature and relatively cheap com-

putational cost, the QVE could serve as an ideal method for exploring novel phenomena, such as

exploring phase diagrams or predicting at least qualitatively correct results in more general set-

tings.

As a newly developed method, we look forward to the potential of the AA method in many

other fields that have not been covered in this dissertation. One interesting direction is to explore

its generalization to other observables. As the first step, a natural direction is to introduce local

dependence. For example, one of our ongoing projects works on generalizing the global density

⟨n̂⟩ to more “local” (in momentum space) ⟨n̂(k)⟩, i.e. the momentum distribution. The formalism

described in Sec. 2.2.3 is generally valid. The main challenge is technical: due to the dependency

on external variable k, we need to either incorporate symbolic determinant evaluation for analytic

results, or following the case of harmonic trapped system, repeat calculations at discrete values of

k for numerical results.

Another kind of observables that attract of great interests is the calculation of correlations.

One such example is the static structure factor, which attract attention from the astrophysics and

nuclear matter communities for its connection to the differential cross section.

The vector (axial) static structure factor is defined as the Fourier transformation of spatial

density-density (spin-spin) correlation

SV (q) =

∫
d3re−iq·r ⟨δn(r, 0)δn(0, 0)⟩

SV (q) =

∫
d3re−iq·r ⟨δSz(r, 0)δSz(0, 0)⟩

(6.1)
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where δn = n− ⟨n⟩ and δSZ = Sz − ⟨Sz⟩.

In a recent work, authors applied Monte method in large fugacity regime (z = 1.0 and 1.5)

[170, 171], leaving an interesting open question to compare with the resummed QVE results. To

apply the AA method, we can firstly perform the Fourier transformation analytically, converting

the problem into an observable in the momentum space, which shares a similar structure as the

momentum distribution as described above.

Beyond the static properties, we also wish to generalize the QVE and our method to the dy-

namical process. In a recent work [172], the authors successfully applied the second-order QVE

to study the quantum quench process, leaving an open question to explore higher order with our

semi-analytic method.

It is easy to incorporate the real-time evolution in our formalism by extending Eq. (2.59) to

WN (t) = trN (e−βĤ0eitĤÔe−itĤ). (6.2)

We can also incorporating the time-dependence into the static structure factor, i.e. the dy-

namic structure factor, which is shown to offer non-negligible correction to the differential cross

section in some energy range [173]. The dynamic structure factor is defined as the Fourier trans-

formation of spatial-temporal correlation, i.e.

SV (q, ω) =

∫
d3re−i(q·r−ωt) ⟨δn(r, t)δn(0, 0)⟩ ,

SV (q, ω) =

∫
d3re−i(q·r−ωt) ⟨δSz(r, t)δSz(0, 0)⟩ .

(6.3)

An even more complicated observable after the dynamic structure factor is the viscosity, which

has been investigated recently with a second-order QVE [174–176].

Another goal on our wish list is to extend our work to other systems, in particular neutron

matter (or even nuclear matter in the future). Connected through the universality at unitarity,

many existing works [12, 35, 177–183] achieved success probing the neutron matter using the

zero-range UFG system. However, for the zero-range approximation to hold true, we assume that

the length scales follow kFas ≫ 1 and kF re ≪ 1. For neutrons, the scattering length as = −18.5±

0.3fm and re = 2.7fm, limiting the universal regime to dilute ends with density n < 10−4fm−3[12].
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To extend the QVE to denser regime, we have to incorporate the finite range correction term by

introducing extra coupling parameters in the model.

Other systems of interest include e.g. four-component Fermi gas in 1D, which shows a one-

dimensional analog of the BCS-BEC crossover [184], as well as the bosonic systems such as the

Unitary Bose Gas [111, 185]. The four-component Fermi gas requires a four-body contact inter-

action, which has already been implemented in our method. But for the bosonic system, the in-

teraction includes both two- and three-body forces to stabilize the system, which requires further

investigation and code development.
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APPENDIX A: COMPARISON BETWEEN THE TWO RENORMALIZATION
PROCEDURES

In Sec. 2.2.4, we presented two different renormalization procedures. We claimed without

demonstration that we will use the procedure I, i.e. renormalize to ∆b2. Here, we take a closer

look to the procedure II and compare its results support our argument.

At first, we construct the transfer matrix using the coupling obtained with procedure I, i.e.

the renormalized C tuned to ∆bUFG
2 . The largest eigenvalue λ̄0 of that matrix is then compared

with the value λ0 dictated by Lüscher’s formula. In Fig. A.1, we plot the ratio λ̄0/λ0 as a func-

tion of 1/Nτ at different values of x = β/L2. As x → 0, which corresponds to the continuum

limit, we find the ratio approaches 1, proving the equivalence of two procedures in the continuum

limit.

0.0 0.1 0.2 0.3 0.4 0.5
1/N

1.00

1.01

1.02

1.03

1.04

1.05

0/
0

x=0.03
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x=0.09
x=0.1
x=0.15

Figure A.1: The ratio between the largest eigenvalue λ̄0 of transfer matrix obtained for C̃ tuned to ∆bUFG
2 and

the one corresponding to Lüscher’s formula λ0, as functions of the discretization order k, shown as 1/k, for several
values of the parameter x = β/L2.

To check their effects on the final estimations, we plot in Fig. A.2 and A.3 the estimations

∆bn using procedure II as a function of x. For comparison, we also plot the results using proce-

dure I, which are expected to be consistent to each other in the x→ 0 limit.

In the left panel of Fig. A.2, we show a calculation of ∆b2 at unitarity using procedure II and
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compare it to the analytic ∆bUFG
2 . As x → 0, we find that ∆b2 differs from the analytic value

by less than 0.25%. In the right panel, we show the corresponding results for ∆b3 and compare

with the procedure I estimation (horizontal red line with shaded region representing the uncer-

tainty). We find that the results of both procedures are consistent with each other within the un-

certainties, with a slight deviation of ≈ 1%. Similarly, in Fig. A.3, we show the results for ∆b4

(left panel) and ∆b5 (right panel) and we find consistent results for both cases as well.

In summary, the two procedures are consistent in the continuum limit. In our examination,

the procedure II differed from the analytic results with a minor error in the continuum limit,

which partially explain the deviations in ∆bn for n ≥ 3 with a similar magnitude. In addition, the

procedure I does not require an extra extrapolation to x → 0 limit, saving from another source

of systematical errors. From a physical standpoint, in procedure I, ∆b2 can be interpreted as en-

coding the whole spectrum, rather than the lowest state as in procedure II, and is therefore more

appropriate for the finite-temperature systems.
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Figure A.2: Left: Results for ∆b2 (red error bars) at unitarity using our renormalization procedure II and the ex-
trapolation scheme explained in the previous section, as a function of x. Right: Same as left but for ∆b3 (red er-
ror bars) compared with our renormalization procedure I (orange error band); the dotted line shows ∆b3 = 0.3551
(note that the entire vertical scale in this plot covers a range that is about 4% of the expected value).
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Figure A.3: Left: Results for ∆b4 (red error bars) at unitarity using our renormalization procedure II and the
extrapolation scheme explained in the previous section, as a function of x, compared with our renormalization
procedure I (orange error band). Right: Same as left but for ∆b5. Note: the entire vertical scales in these plots
cover ranges of 11% (left) and 30% (right) of the final reported values of ∆b4 and ∆b5, respectively.
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APPENDIX B: USEFUL EXPRESSIONS FOR VIRIAL COEFFICIENTS AND
PARTITIONS FUNCTIONS

Section B.1: High-order virial expansion formulas

For completeness, we provide here some of the formulas which we omitted in the main text for

the sake of brevity and clarity. These are model independent, except as noted below. The com-

plete expressions for b5, b6, and b7 in terms of the corresponding canonical partition functions and

prior virial coefficients can be written as

Q1b5 =Q5 − (b4 + b2b3)Q
2
1 −

(
b22 + b3

) Q3
1

2
− b2

Q4
1

3!
− Q5

1

5!
, (B.1)

Q1b6 =Q6 −
(
b5 +

b23
2

+ b2b4

)
Q2

1 −
(
b32
6

+
b4
2

+ b3b2

)
Q3

1

−
(
b22
2

+
b3
3

)
Q4

1

2!
− b2

Q5
1

4!
− Q6

1

6!
, (B.2)

Q1b7 =Q7 − (b6 + b2b5 + b3b4)Q
2
1 −

(
b23
2

+
b5
2

+ b2b4 +
b3b

2
2

2

)
Q3

1

−
(
b32
6

+
b4
6

+
b3b2
2

)
Q4

1 −
(
b22 +

b3
2

)
Q5

1

12
− b2

Q6
1

5!
− Q7

1

7!
, (B.3)

whereas the change in the above due to interactions (assuming here two-body interactions) are

given by

Q1∆b5 =∆Q5 −∆(b4 + b2b3)Q
2
1 −

1

2
∆
(
b22 + b3

)
Q3

1 −
∆b2
3!

Q4
1, (B.4)

Q1∆b6 =∆Q6 −∆

(
b5 +

b23
2

+ b2b4

)
Q2

1 −∆

(
b32
6

+
b4
2

+ b3b2

)
Q3

1

−∆

(
b22
4

+
b3
6

)
Q4

1 −
∆b2
4!

Q5
1, (B.5)

Q1∆b7 =∆Q7 −∆(b6 + b2b5 + b3b4)Q
2
1 −∆

(
b23
2

+
b5
2

+ b2b4 +
b3b

2
2

2

)
Q3

1

−∆

(
b32
6

+
b4
6

+
b3b2
2

)
Q4

1 −∆

(
b22
12

+
b3
24

)
Q5

1 −
∆b2
5!

Q6
1. (B.6)

To use these, it is useful to have the following:

∆(bn)
2 =∆(b2n) + 2b(0)n ∆bn, (B.7)

∆(bn)
3 =∆(b3n) + 3b(0)n ∆(b2n) + 3(b(0)n )2∆bn, (B.8)
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∆(bnbm) =∆bn∆bm + b(0)n ∆bm + b(0)m ∆bn, (B.9)

∆(bnb
2
m) =∆bn(∆bm)2 + b(0)n (∆bm)2 + 2b(0)m ∆bn∆bm + 2b(0)n b(0)m ∆bm + (b(0)m )2∆bn. (B.10)
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APPENDIX C: TRANSFER MATRIX FOR HARMONICALLY TRAPPED
SYSTEMS

Section C.1: Three-particle space

Here we will need

exp
(
−τ V̂

)
|X) = [1+ C(δ(x1 − x3) + δ(x2 − x3))] |X), (C.1)

where X = (x1,x2,x3) is a collective index, and we use |X) to denote a state of distinguishable

particles (i.e. no antisymmetrization among the xi labels). We thus obtain

[M21]x1,x2,x3;y1,y2,y3
= ρ(x1,y1)ρ(x2,y2)ρ(x3,y3) [1+ C(δ(y1 − y3) + δ(y2 − y3))] . (C.2)

Section C.2: Four-particle space

Here we distinguish the 3+1 subspace from the 2+2 subspace.

For the 3+1 case,

exp
(
−τ V̂

)
|X) = [1+ C(δ(x1 − x4) + δ(x2 − x4) + δ(x3 − x4))] |X), (C.3)

where X = (x1,x2,x3,x4), and so we obtain

[M31]X,Y =ρ(x1,y1)ρ(x2,y2)ρ(x3,y3)ρ(x4,y4)

× [1+ C(δ(y1 − y4) + δ(y2 − y4) + δ(y3 − y4))] .

(C.4)

For the 2+2 case, on the other hand,

exp
(
−τ V̂

)
|X) = [1+ C(δ(x1 − x3) + δ(x1 − x4) + δ(x2 − x3) + δ(x2 − x4))

+ C2(δ(x1 − x3)δ(x2 − x4) + δ(x1 − x4)δ(x2 − x3))
]
|X), (C.5)
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such that

[M22]X,Y =ρ(x1,y1)ρ(x2,y2)ρ(x3,y3)ρ(x4,y4)

× [1+ C(δ(y1 − y3) + δ(y1 − y4) + δ(y2 − y3) + δ(y2 − y4))

+C2(δ(y1 − y3)δ(y2 − y4) + δ(y1 − y4)δ(y2 − y3))
]
.

(C.6)

Section C.3: Five-particle space

Here we distinguish the 4+1 subspace from the 3+2 subspace.

For the 4+1 case,

exp
(
−τ V̂

)
|X) = [1+ C(δ(x1 − x5) + δ(x2 − x5) + δ(x3 − x5) + δ(x4 − x5))] |X), (C.7)

where X = (x1,x2,x3,x4,x5), such that

[M41]X,Y = ρ(x1,y1)ρ(x2,y2)ρ(x3,y3)ρ(x4,y4)ρ(x5,y5)×

[1+ C(δ(y1 − y5) + δ(y2 − y5) + δ(y3 − y5) + δ(y4 − y5))] (C.8)

For the 3+2 case, on the other hand,

exp
(
−τ V̂

)
|X)

= {1+ C [δ(x1 − x4) + δ(x1 − x5) + δ(x2 − x4) + δ(x2 − x5) + δ(x3 − x4) + δ(x3 − x5)]

+ C2 [δ(x1 − x4)δ(x2 − x5) + δ(x1 − x5)δ(x2 − x4)

+δ(x1 − x4)δ(x3 − x5) + δ(x1 − x5)δ(x3 − x4)]} |X),

(C.9)

such that

[M32]X,Y = ρ(x1,y1)ρ(x2,y2)ρ(x3,y3)ρ(x4,y4)ρ(x5,y5)×

[1+ C(δ(y1 − y4) + δ(y1 − y5) + δ(y2 − y4) + δ(y2 − y5) + δ(y3 − y4) + δ(y3 − y5))+

C2(δ(y1 − y4)δ(y2 − y5) + δ(y1 − y5)δ(y2 − y4) + δ(y1 − y4)δ(y3 − y5) + δ(y1 − y5)δ(y3 − y4)
]

(C.10)
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APPENDIX D: ANALYTIC EXPRESSIONS OF TRAPPED VIRIAL
COEFFICIENTS AT LEADING- AND NEXT-TO-LEADING

ORDER

As mentioned in Sec. 5.3.1, we present formulas for the subspace virial coefficients at leading-

(Nτ = 1) and next-to-leading (Nτ = 2) Trotter-Suzuki decomposition for arbitrary spatial dimen-

sion d, trapping frequency βω, and coupling strength (parameterized by ∆b2). For completeness,

the results that have already been reported in the main text are presented as well.

Section D.1: Analytic expressions at leading order

∆b11 =
C

λdT

(
βω

sinh(βω)

)d/2 1

2× 2d/2
, (D.1)

∆b21 = − ∆b2

[2 cosh(βω) + 1]d/2
, (D.2)

∆b31 =
2−d/2∆b2

coshd/2(βω) [2 cosh(βω) + 1]d/2
, (D.3)

∆b22 =
2−3d/2∆b2

coshd/2(βω) coshd(βω/2)
(D.4)

×
{
1 + 2d/2∆b2

[
coshd/2(βω)− 2d/2+1 coshd(βω/2)

]}
, (D.5)

∆b41 = − 2−d/2∆b2

coshd/2(βω) [2 cosh(βω) + 2 cosh(2βω) + 1]d/2
, (D.6)

∆b32 = −∆b2

[
cosh(βω)− 1

2 cosh2(2βω)− cosh(βω)− 1

]d/2
+ 2(∆b2)

2

{
1

[1 + 2 cosh(βω) + 2 cosh(2βω)]d/2
+

2d

[7 + 8 cosh(2βω)]d/2

− 2d

[11 + 16 cosh(βω) + 8 cosh(2βω)]d/2

}
. (D.7)
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Section D.2: Analytic expressions at next-to-leading order

∆b11 =
C

λdT

(
βω

sinh(βω)

)d/2 1

2d/2
+

(
C

λdT

)2( (βω)2

sinh2(βω/2)

)d/2
1

2d+1
(D.8)

∆b21 =
C

λdT

(
βω

sinh(βω)

)d/2 −1

[2 + 4 cosh(βω)]d/2

+

(
C

λdT

)2( (βω)2

sinh2(βω/2)

)d/2{
1

2d+1

1

[1 + 2 cosh(βω)]d/2
+

−1

[7 + 8 cosh(βω)]d/2

} (D.9)

∆b31 =
C

λdT

(
βω

sinh(βω)

)d/2 1

2d
1

[(1 + cosh(βω) + cosh(2βω))]d/2

+

(
C

λdT

)2( (βω)2

sinh2(βω/2)

)d/2{
1

[10 + 14 cosh(βω) + 8 cosh(2βω)]d/2

+
−1

4d
1

[2 cosh2(βω/2) cosh(βω)]d/2
+

1

22d+1

1

[cosh2(βω/2)(1 + 2 cosh(βω))]d/2

} (D.10)

∆b22 =
C

λdT

(
βω

sinh(βω)

)d/2 1

4d
1

[cosh2(βω/2) cosh(βω)]d/2

+

(
C

λdT

)2( (βω)2

sinh2(βω/2)

)d/2

×
{

1

23d+1

1

[cosh4(βω/2)]d/2
+

−1

[32 cosh2(βω/2) cosh(βω)]d/2

+
2

[cosh2(βω/2)(16 + 32 cosh(βω))]d/2
+

−2

[10 + 14 cosh(βω) + 8 cosh(2βω)]d/2

}
+

(
C

λdT

)3( (βω)3

sinh3(βω/2)

)d/2

×
{

−4

[24 cosh(βω/2) + 16 cosh(3βω/2)]d/2
+

2

[64 cosh3(βω/2)]d/2
+

[
sinh(βω/2)

8 sinh(2βω)

]d/2}

+

(
C

λdT

)4( (βω)4

sinh4(βω/2)

)d/2{ −1

[16 + 32 cosh(βω)]d/2
+

3

4

1

[64 cosh2(βω/2)]d/2

}
(D.11)

∆b41 =
C

λdT

(
βω

sinh(βω)

)d/2 −1

[4(1 + 2 cosh(βω) + cosh(2βω) + cosh(3βω))]d/2

+

(
C

λdT

)2( (βω)2

sinh2(βω/2)

)d/2{ −1

[13 + 20 cosh(βω) + 14 cosh(2βω) + 8 cosh(3βω)]d/2

123



+
1

[4(3 + 6 cosh(βω) + 4 cosh(2βω) + 2 cosh(3βω)]d/2

+
−1

[23 + 40 cosh(βω) + 24 cosh(2βω) + 8 cosh(3βω)]d/2

+
1

2

1

[4 cosh2(βω/2)(4 + 8 cosh(βω) + 8 cosh(2βω)]d/2

}
(D.12)

∆b32 =
C

λdT

(
βω

sinh(βω)

)d/2 −1

[6 + 12 cosh(βω) + 8 cosh(2βω) + 4 cosh(3βω)]d/2

+

(
C

λdT

)2( (βω)2

sinh2(βω/2)

)d/2{
1

[4 cosh2(βω/2)(4 + 8 cosh(βω) + 8 cosh(2βω))]d/2

+
1

[cosh2(βω/2)(28 + 32 cosh(2βω))]d/2

+
−1

[cosh2(βω/2)(44 + 64 cosh(βω) + 32 cosh(2βω))]d/2

+
−2

[23 + 40 cosh(βω) + 24 cosh(2βω) + 8 cosh(3βω)]d/2

+
1

[cosh2(βω)(28 + 32 cosh(βω))]d/2

+
2

[8 cosh2(βω/2)(3 + 3 cosh(βω) + 4 cosh(2βω))]d/2

+
−1

[(1 + 2 cosh(βω))2(7 + 8 cosh(βω))]d/2

+
1

2

1

[4(3 + 6 cosh(βω) + 4 cosh(2βω) + 2 cosh(3βω))]d/2

}
+

(
C

λdT

)3( (βω)3

sinh3(βω/2)

)d/2
{

1

[cosh(βω)(8 + 32 cosh(βω))]d/2

[
sinh(βω/2)

sinh(βω)

]d/2
+

−2

[76 cosh(βω/2) + 16(3 cosh(3βω/2) + cosh(5βω/2))]d/2

+
−2

[16 cosh(βω/2)(1 + 2 cosh(βω) + 2 cosh(2βω))]d/2

+
2

[4 cosh(βω/2)(5 + 12 cosh(βω) + 8 cosh(2βω))]d/2

+
6

[8 cosh(βω/2) cosh(βω)(7 + 8 cosh(βω))]d/2

+
−4

[4 cosh(βω/2)(15 + 22 cosh(βω) + 8 cosh(2βω))]d/2

+
1

[32 cosh3(βω/2)(1 + 4 cosh(βω))]d/2

}
+ see next page
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+

(
C

λdT

)4( (βω)4

sinh4(βω/2)

)d/2{ −3

[60 + 88 cosh(βω) + 32 cosh(2βω)]d/2

+
3

[41 + 72 cosh(βω) + 32 cosh(2βω)]d/2
+

1

[33 + 40 cosh(βω) + 32 cosh(2βω)]d/2

+
1

2

1

[16(1 + 2 cosh(βω) + 2 cosh(2βω))]d/2
+

−1

[4(1 + 4 cosh(βω))2]d/2

+
−2

[20 + 48 cosh(βω) + 32 cosh(2βω)]d/2
+

2

[32 cosh2(βω/2)(1 + 4 cosh(βω))]d/2

+
−1

2

1

[(7 + 8 cosh(βω))2]d/2
+

1

2

1

[25 + 48 cosh(βω) + 32 cosh(2βω)]d/2

}
(D.13)
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APPENDIX E: DIAGRAMMATIC REPRESENTATION OF AA METHOD

In this appendix, we present a diagrammatic representation of the expressions encountered

when evaluating partition functions in AA method. Even though it is not practically useful for

calculations at large Nτ due to the rapidly increasing complexities, it remains a convenient method

at low Nτ and provides a bridge to Feynman diagrams.

Below, we take the ∆Q21 at Nτ = 2 for example. For each time slice, we have

⟨p1p2p3|exp
(
−τ T̂

)
exp
(
−τ V̂

)
|q1q2q3⟩

=exp[−τϵ(p1)] exp[−τϵ(p2)] exp[−τϵ(p3)] ⟨p1p2p3|exp
(
−τ V̂

)
|q1q2q3⟩ ,

(E.1)

where the momentum representation of the interaction operator is

⟨p1p2p3|exp
(
−τ V̂

)
|q1q2q3⟩ = δp1,q1δp2,q2δp3,q3 +C(δp1+p3,q1+q3δp2,q2 + δp2+p3,q2+q3δp1,q1). (E.2)

The subscripts 1, 2 represent the spin-↑ particles, subscript 3 the spin-↓ particle. For simplicity,

we consider only the 1D case but the generalization to arbitrary d dimension is straightforward by

converting all variables to vectors.

We define the rules to represent the interaction matrix such that the line represents one mo-

mentum variable (not the propagator), the node represent one delta terms, and from left to right

represents the imaginary time direction.

Therefore, the first term of Eq. (E.2) is represented as

p1 q1

p3

p2

q3

q2 =

p1 q1

p3

p2

q3

q2 (E.3)

where we usually omit the node for free particles, i.e. those who are not participating the interac-

tion,
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And the O(C) term is represented as

p2 q2

p1 q1

p3 q3

+

p1 q1

p3

p2

q3

q2

(E.4)

As argued in Sec. 2.2, the particles at intermediate imaginary time steps can be treated as

classical. Correspondingly, the expansion of MNτ is to connect the diagrams order by order.

In case of Nτ = 2, the expression is up to the O(C2) order. The O(C0) order corresponds to

the noninteracting case and is the same for arbitrary Nτ :

p1 q1

p3

p2

q3

q2 (E.5)

where we use the open circle to represent the propagator. A form closer to the Feynman diagram

is to take the l.h.s. in Eq. (E.3),

p1 q1

p3

p2

q3

q2 (E.6)

Now the closed line, such as the one in the middle, represents the propagator just as in the Feyn-

man diagram. However, as in our case the propagator is the decomposition exp(−τϵ), we prefer

the form as in Eq. (E.5) for easier factor counting.

So far, we obtained the diagram representing the matrix element [M21]
2, and the last step is

to evaluate the traces as shown in Eq. (2.50),

Q21 =
1

2!

∑
abc

{[
MNτ

3

]
abc,abc

−
[
MNτ

3

]
abc,bac

}
, (E.7)

where we will call the first one the normal trace while the second “twisted” trace.
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Diagrammatically, taking the trace corresponds to connect the open ends and leads to the fi-

nal form of the diagram. For the normal trace, we use the boundary condition that pi = qi, ∀i (see

Eq. (2.73)), leading to the diagram

(E.8)

where the arrow represents one integral variable and the number of open circles represents the

factor in the propagator. The diagrams are implicitly multiplied together. The above diagram

hence represents the integral

(
L

2π

)3 ∫
dp1dp2dp3 exp[−2τϵ(p1)] exp[−2τϵ(p2)] exp[−2τϵ(p2)]. (E.9)

With τ = Nτ/2, the above integral is just Q3
10(β).

Similarly, for the “twisted” trace, we connect q2 to p1 and q1 to p2 (see Eq. (2.74)), which in-

troduces a twisted knots, hence the name. The q3 is normally connected to p3. The resulting dia-

gram is

(E.10)

corresponding to Q10(2β)Q10(β).

At O(C) order, by using the cyclic symmetry yields, we only need to consider one situation,

i.e. K0K1 with degeneracy of 2, and it corresponds to two diagrams. The first diagram is

p2 q2

p1 q1

p3 q3

(E.11)
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and after taking the trace, we have the normal trace diagram as

(E.12)

where the first two-loop diagram represent the integral

(
L

2π

)2 ∫
dp1dp2 exp[−2τϵ(p1)] exp[−2τϵ(p1)] = Q2

10(β). (E.13)

The twisted trace diagram is

(E.14)

corresponding to the integral

(
L

2π

)2 ∫
dp1dp2 exp[−4τϵ(p1)] exp[−2τϵ(p1)] = Q10(2β)Q10(β). (E.15)

Here we find that the normal trace diagram is disconnected and scales at L3, while the twisted

trace diagram is connected and scales at L2. This is the diagrammatic representation of the ana-

lytic volume cancellation, as discussed in Sec. 1.3.2.

The second diagram is

p1 q1

p3

p2

q3

q2

(E.16)

whose trace is exactly the same as in Eq. (E.12) and (E.14).
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At O(C2), there are four different diagrams while two of them are identical to each other un-

der cyclic symmetry. The two self-multiplication terms, and shares the same diagram (same under

particle permutation symmetry)

p2 q2

p1 q1

p3 q3

(E.17)

The normal trace diagram is disconnected

(E.18)

where the first “beach ball” diagram represents the integral

(
L

2π

)3 ∫
dp1dp2dp3 exp[−τϵ(p1)] exp[−τϵ(p2)] exp[−τϵ(p3)] exp[−τϵ(p1 + p2 − p3)]. (E.19)

Note that in the “beach ball” diagram, each line should also carry one open circle, but we omitted

for clarity.

The twisted trace diagram is connected and also a “beach ball” diagram with different weights

(E.20)

where we again omitted the single open circle in the other three lines. Similarly, the correspond-

ing integral is

(
L

2π

)3 ∫
dp1dp2dp3 exp[−3τϵ(p1)] exp[−τϵ(p2)] exp[−τϵ(p3)] exp[−τϵ(p1 + p2 − p3)]. (E.21)

The two cross-term diagrams at O(C2) are also equivalent due to the cyclic symmetry and is

130



in form of

p2 q2

p1 q1

p3 q3

(E.22)

The normal trace diagram is

(E.23)

corresponding to the integral

(
L

2π

)3 ∫
dp1dp2dp3 exp[−2τϵ(p1)] exp[−2τϵ(p2)] exp[−2τϵ(p3)] = Q3

10(β). (E.24)

And the twisted trace diagram is the same “beach ball” diagram as in Eq. (E.20).
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