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ABSTRACT

Anwica Kashfeen: Identifying and Characterizing Transposable Elements in the Genome
(Under the direction of Leonard McMillan)

A large fraction of mammalian genome consists of transposable elements (TEs). These el-

ements are segments of DNA that either move or are copied from one place in the genome to

another. TEs are a significant source of genetic variation and are directly responsible for many

diseases. It is difficult to identify, map, characterize, and determine the zygosity of TEs using cur-

rent high-throughput short-read sequencing data because of their numerous copies in the genome.

Existing approaches search for TE insertion (TEi) by aligning millions of mostly irrelevant short

reads to either a reference genome or a TE sequence library. In this dissertation I describe two

alignment-free novel TEi detection algorithms, ELITE and Frontier which outperform existing

tools in several different categories. Both algorithms use local-genome-assembly where ELITE

is template-dependent and Frontier is template-free. The key idea is to focus on identifying the

boundary of TE insertion which contains partial TE and non-TE context. I use a MultiString

Burrow Wheeler Transform, msBWT-based data structure to store and index all the reads from

a high-throughput sequencing dataset and leverages additional data structures FM-index and

Longest Common Prefix (LCP) to efficiently search for TEi boundaries. I show that combination

of two methods can identify nearly all the Endogenous RetoVirus (ERV) insertions that are segre-

gating in a population with more than 100 samples. These methods can also be used to identify

very recent or de novo TE insertions. Moreover, characterization based on the sharing pattern of

ERVis allows us to study phylogeny within a population.
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CHAPTER 1: INTRODUCTION

All organisms except viruses are made of one or multiple cells. For example, the average

human body contains more than 40 trillion cells (Bianconi et al., 2013). Within almost every

cell there is a complete blueprint that dictates many of the organism’s function. This blueprint

containing genetic information is called a genome. Non-virus genomes are encoded as a sequence

in a special molecule called DNA. This sequence is composed entirely from a linear arrangement

of four molecules or bases, Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). DNA

incorporates many forms of redundancy that help to assure both its stability and robustness. It

is double stranded where each strand stores the complementary information. The complement

version of DNA arises from chemical bonds between the nucleotides of two DNA strands where

Adenine always binds to Thymine, Cytosine always binds to Guanine. As a result of this two

stranded structure, we typically refer the nucleotides as basepairs instead of bases. In addition

to complimentary copies, DNA also strengthens and protects this genetic information in coiled

structures called chromosomes. A typical human genome is about 3 billion basepairs long and

and is distributed over 23 pairs of chromosomes. To put it simply, a genome is a long string

that can be divided into multiple substrings called chromosomes where each chromosome is

composed of 4 letters, A for Adenine, C for Cytosine, G for Guanine, and T for Thymine.

High-throughput sequencing also known as Next Generation Sequencing (NGS) is one of the

significant inventions of the last century. Due to its parallel processing and high throughput, we

are now able to sequence a large genome like the human in less than a day (Behjati and Tarpey,

2013). For contrast, first-generation sequencing technologies like Sanger sequencing (Sanger and

Coulson, 1975) took more than a decade just to present a draft of the human genome. However,

neither first nor second generation sequencing methods can output the whole genome at once.
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Instead, they produce many short overlapping fragments called reads. While the First generation

sequencers can produce reads longer than 500 bases, the reads produced by NGS are typically

very short (within 100-150 bases). All these reads together are like pieces of multiple jigsaw

puzzles where each puzzle corresponds to a different chromosome. And even within a chromo-

some, each piece has its particular place/position. Therefore, to reconstruct the original genome,

one needs to put majority of the reads in the right place of the right chromosome and also in the

right orientation. The overlapping nature of reads makes it even harder to find its correct position.

However, there are several algorithms available to perform this genome reconstruction. These

programs are called assemblers and the process is called genome assembly.

The typical genome assembly process starts with a short sequence of k nucleotides called

a seed kmer. Usually these are known sequences or genes that are presumed to be unique sub-

strings in the genome. Those seed k-mers are then extended in both directions as long as possible.

However, the extension is terminated whenever a branch or repeated sequence is reached. A

branch occurs when there are overlapping substrings with different sequences in the direction of

extension. Repeats occur when a previously seen substring reappears during the extension, and

are equivalent to finding a cycle in a graph. Repeats create ambiguity (i.e. loops) which many

lead to many different branching paths. Therefore, it is common practice to mask repeats and

resolve their connectivity via other experimental means such as optical mapping (Zhou et al.,

2007). The original purpose of RepeatMasker (Smit et al., 1996) was to “mask” all the repeats

in a genome so that assemblers and aligners can easily ignore them to focus on the non-repeated

sequences. Ignoring repeats simplifies many analyses but hinders the chance to discover other

interesting biological phenomena. Subsequent discoveries have shown that the majority of these

repeats are not random, but follow some specific patterns. Some of the repeats in the genome

are tandem, which refers to a repeat where a small substring (3-200 bases) is copied many times

and many of the copies are adjacent to each other in the genome. On the other hand, there are

also many repeats that are distributed randomly throughout the genome. The length of these

non-tandem repeats vary depending on their type and can be as long as 10,000 bases composed
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of otherwise normal appearing sequence. A significant portion of these interspersed repeats are

Transposable Elements (TEs) (McClintock, 1984). TEs are genetic sequences that have, or have

had in the past a unique mobility feature that allows them to change their position in the genome,

hence the name “transposable”. In the following sections, I will discuss more about these el-

ements, why they are important, why they are hard to find, why the existing methods are not

sufficient, and finally why do we need to develop a different approach to locate and identify these

repeated sequences.

1.1 Transposable Elements

In the first half of the 20th century, scientists thought of genomes as a mostly static entities

with a large, but stable organization, upon which relatively rare mutations accumulated over

time. The most common type of mutation, which only affects 1 base (Consortium et al., 2015)

is called a Single Nucleotide Polymorphism (SNP). SNPs are observed more frequently in non-

coding or non-functional genomic regions (Barreiro et al., 2008). Due to the short and static

nature of these mutations, they can easily be detected by performing alignments of sequenced

read fragments to a known, and previously assembled reference genome. However, in the late

1940s Barbara McClintock discovered that the organization of genomes is far more dynamic than

had been previously imagined. Certain genomic rearrangements are due to segments of DNA

that either jump or are copied from one place in the genome to another. These mobile segments

are now called Transposable Elements (TEs). When McClintock first introduced the concept of

TEs in a maize genome, her peers were skeptical about these elements. Over the next several

decades, other scientists confirmed the activity of TEs in other species like fungus, bacteria, etc.

Eventually, her theory of a dynamic genome was accepted and McClintock was awarded the

Nobel Prize for discovering TEs in 1983.

When sequencing become available, it has subsequently been discovered that a significant

fraction of eukaryotic (cells with a nucleus) genomes sequences are composed of TEs and their

vestiges. There are many types of TEs, and these can either be DNA-mediated or RNA-mediated.
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While DNA-mediated TEs move in a cut-paste fashion, RNA-mediated ones employ a copy-paste

mechanism of insertion that, over time, increases the overall size of the genome. About 45% of

the human reference genome (Consortium et al., 2001), 37% of the mouse reference (Consor-

tium et al., 2002), and 85% of maize genomes (SanMiguel et al., 1996) consist of TE-derived

sequence. In comparison to SNPs, mutations due to TE insertions are believed to have more

profound effects on the biological function (e.g. gene expression) (Uzunović et al., 2019) and

phenotypic changes (traits) (Chiang et al., 2017). The overwhelming majority of TE insertions

are largely detrimental to the organism and there is a strong selection pressure against passing

new TE insertions on to future generations. Most of the inherited TE insertions in a genome even-

tually lose their ability to move, but their remnants remain in the genome and continue to pass on

to the next generation. Recent studies suggest that many segregating structural variants in humans

are due to these inactive TEs that were inserted a long time ago (Ebert et al., 2021).

1.2 Importance of Transposable Element

Consequences of Transposable Elements are far more significant other than just making a

genome grow. For decades, scientists were skeptical about the ongoing TE activity and used to

refer them as “junk DNA” or “selfish DNA”. However, recent research that depends on modern

sequencing technology, have unveiled many consequences of recent TE insertions despite being

canonically thought of as non-coding DNA. In this section, we discuss the importance of TE

insertions in terms in the day-to-day function of the organism as well as it’s impacts on future

progeny.

• TE insertions in somatic cells (newly derived cells that emerge during normal mitotic cell

divisions) are responsible for many diseases. Even though, insertions in somatic cells can

not be passed to the offspring, they can be extremely deleterious. For example, many dis-

eases like hemophilia A, neurofibromatosis, choroideremia, cholinesterase deficiency,

Apert syndrome, Dent’s disease, β-thalassemia, and Walker-Warburg syndrome are re-
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ported to be consequences of TE translocations (Wallace et al., 1991) (van den Hurk et al.,

2003) (Muratani et al., 1991) (Chen et al., 2005) (Belancio et al., 2008) (Babushok and

Kazazian Jr, 2007).

• TE insertions in germline can also cause genetic disease. Hundreds of TE insertions are dis-

covered so far that are directly associated with disorders like Hereditary Breast and Ovar-

ian Cancer (HBOC) syndrome (Teugels et al., 2005), as well Lynch syndrome (Li et al.,

2020)(Hancks and Kazazian, 2016). Lynch syndrome causes colon cancer and increases the

risk for many other type of cancers.

• Germline TE insertions also facilitate the study of TE biology and genome evolution. A

deleterious insertion in germline is most likely to be purged quickly. On the other hand,

non-deleterious TEis can be passed on from generation to generation and remain perma-

nently in a population. Over the time, this accumulation of TEs makes the genome size

bigger. Most importantly, germline TEs make it possible to track heritability and build phy-

logeny based on the shared insertion events. Population-based analysis can further be used

to identify the the historical periods when a TE was actively mobile and periods where they

were silenced.

1.3 Challenges in Finding Transposable Element Insertions

A large fraction of any eukaryotic genome is composed of transposable elements (TEs). How-

ever, they are not easy to locate from high-throughput-short reads for both computational and

biological reasons. Most common challenges while locating TE insertions in genomes are stated

below:

• Analyzing and distinguishing between the numerous copies of transposable elements in

the genome is a computational challenge. A typical human genome which is sequenced

at 30x coverage can have more than 500 million reads. Since TEs comprises almost 50%

of the human genome, which indicates almost 250 million reads are associated with TEs.
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Locating and analyzing TEs thus remain a computational challenge as we have to deal with

millions of highly homologous reads. Unless there is an efficient algorithm to identify TE

insertions, it will cost high in terms of calculation, CPU, and memory usage.

• Location of TE insertion can not be identified using typical variant searching techniques.

SNPs and small INDELs can be easily detected by aligning all the reads to a reference

genome. In this case, about 99% of the bases will align perfectly (Treangen and Salzberg,

2012) (Teissandier et al., 2019) due its short length. However, TEs affect more bases of a

short read than SNPs or INDELs. In fact a single read is not enough to capture an entire

insertion event. Moreover, to identify the position, it requires the same read to have some

nonTE segment in addition to a TE segment. This creates a problem as length of TE se-

quence varies from 300 to 8000 basepairs, which is longer than typical short reads (100 -

150 bp).

• The biology of TEs also makes it hard to locate their inserted locations. Current TE locat-

ing methods are based some known TE templates found in online libraries like Repeat-

Masker (Smit et al., 1996) and RepBase (Bao et al., 2015). This libraries usually contain

consensus TE sequences that were found in the assembled genomes of an organism. How-

ever, TE sequences vary between species and between separated populations. Most TEs

are probably of viral origin. As a result, it is possible to have completely different types of

TEs or viruses that are not found elsewhere in the tree of life. Thus, detecting unknown TE

types is a significant challenge.

1.4 Limitations of Existing Approaches

Most existing approaches for detecting TE insertions (TEi) require that whole-genome short-

reads be aligned to either a reference genome sequence or to a catalog of known TE sequences.

Using a reference alignment to detect TEis presents several challenges. The TEis already in the

reference genome tend to attract the bulk of TE-like sequence and split-reads (those that span
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a novel insertion point) are often incorrectly mapped to regions where differences are within

alignment tolerances. Moreover, reference genomes are updated from time to time, thus the

whole alignment process needs to be done for this new version. On the other hand, alignments of

short-reads to TE catalogs depend on the inclusion of TE sequences that are generated either by

collecting sequences from seminal discoveries (Bao et al., 2015) or by synthesizing consensus

sequences for TE families (Wheeler et al., 2012) to get a match. Most importantly, it requires that

a model for each TE type is known in advance, and the sequences of TE types vary significantly

with TE classes and between species. If an isolated population contains a novel TE, chances are

very low that they will be found in TE libraries.

Even the best available TE discovery algorithms are not well-suited for population-based

TEi sharing analysis. As discussed previously, other than causing diseases, TE insertions are a

common source of structural variation. Just like SNPs, TEis can be used to track ancestry and

phylogeny in a given population. However, there exists only a few and incomplete pipelines that

attempts to make a population-level analysis based on the TEi sharing pattern.

1.5 Thesis Statement

My research attempts to close many of these existing gaps in TE discovery methods using

approaches that do not depend on genome alignments or TE libraries. These methods can aid

in understanding the variations of the TE landscape within a population. I also hope to detect

and differentiate recent and segregating TE insertion events to demonstrate that this activity is

ongoing. My approach is summarized in the following thesis statement:

”It is possible to localize Transposable Element (TE) insertions in the genome from short

reads by performing a local-genome-assembly around the insertion boundary within a given

sample. Further, by combining all the TE insertions that exist in a population, each insertion

can be characterized as fixed (present in everyone), segregating (present in a subset of samples),

or de novo (present only in a sample or its biological twin). This characterization based on TEi
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sharing pattern, can further be used for analyzing the evolutionary relationship among each

individual in a population. ”

1.6 Contributions

I introduce a pipeline that is well-suited for a population-based TEi sharing analysis. Cur-

rent algorithms focus primarily on identifying TE insertions from an individual genome. Many

clinical applications mainly focus on the TEis in somatic cells as they are more likely to cause

diseases. However, just like SNPs or INDELs, TEis can also be treated like a genetic variant in

a segregating population. This requires a TEi detection method to be fast enough so that it can

be applied to hundreds of genomes presented as short-reads. Moreover, this method needs to

have low false negatives and false positives for capturing the most reliable TEi sharing pattern.

Therefore, keeping these two points in mind, we introduce the concept of local-genome-assembly

in the process of locating TE insertion. We avoid the typical time and memory-consuming com-

putational steps that require the alignment of billions of irrelevant short-reads. Instead, we focus

mainly on the boundary of the TE insertion which is local to a particular insertion event. Even

though local-genome-assembly is not an absolutely new idea, and already has been used in find-

ing INDELs (Mose et al., 2019), we are the first to make it work for in the context of TE inser-

tions.

We proposed two novel approaches for finding insertion of transposable elements. Both of

our approaches, ELITE (chapter 3), and Frontier (chapter 4) work on the split-read principle.

split-reads refer to the TEi boundaries that contain partial nonTE and partial TE sequence adja-

cent to each other. While typical assembly starts from an unique seed kmer and ends in a repeat,

our local assembly does exactly the opposite. It starts from a TE or a highly repeated segment

and ends in a segment that is nonTE or non-repeated. Even though both ELITE and Frontier use

this same assembly technique, the key difference between them lies on the use of TE template.

ELITE needs a template to starts with, then allows adequate mutations to capture distant and un-

known TEs of the same type. On the other hand, Frontier is template-free and identifies all the
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instances of TE insertions using the pervasive nature of TE sequences. Since Frontier does not

start with any TE template, it uses one classifier to detect the true TEi boundaries and another to

classify the TE type for each true insertion.

The ability to identify presence and absence probes for each TEi also makes our pipeline

unique from existing methods. After the initial TEi detection in an individual sample, we com-

bine all the TEis in a population based on their location. Each event that takes place in the same

location is considered as one single event. For each event, TE probes are run on all the samples in

a given population to detect if there’s any false negative. On the other hand, for the samples with-

out TEi, we use the absent probes to further confirm the claim. Together with these TE present

and absent probes, we annotate all the insertions in a population. Therefore, it provides a unique

way to visualize how TE insertions are distributed in a population i.e., how many of them are

present in every sample (fixed), how many are shared by only a subset of samples (segregating),

and how many are unique (de novo) to a sample (or a few closely related samples). This TEi

sharing pattern gives us an idea about the age of each TE insertions. For example, TEis that are

present in everyone are most likely to be an old insertion which was passed on to all the descen-

dants, whereas a de novo insertion is likely to have occurred within this or recent generations.

As proof of this concept, this dissertation also includes an extensive analysis of the TEi diver-

sity within a population. This starts from the background materials to algorithm design, finding

limitations of the proposed algorithm to improving it, applying the improved algorithm in an

individual sample to extending it in a large population, detecting pattern of TEi sharing in a popu-

lation to analyzing the phylogeny.

The structure of this dissertation is as follows: In chapter 2, I first provide additional back-

ground materials to understand this dissertation. In chapter 3 and chapter 4, I describe two dif-

ferent TE detection approaches where each is based on local-genome-assembly. In chapter 5, I

demonstrate how these pipelines can be used to understand TE diversity in a large genetically

varying population. In chapter 6, I document all the tools and resources to make them available
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to public for future research. In chapter 7, I conclude with discussions of some future possible

research areas.
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CHAPTER 2: BACKGROUND

In this chapter, I discuss the relevant previous work and terminologies related to this dis-

sertation. Starting with the concept of transposable element insertion, their various types and

characteristics that are associated with each insertion. Then I discuss the nature of whole-genome

sequencing, and two different models that are currently applied on the sequenced data to find TE

insertions. Finally, I describe the algorithms and data structures that my methods are based on.

2.1 Genome, Repeats, Transposable Element

A genome is a complete set of genetic instructions needed to build and maintain an organism.

Most cells in a living organism have one or more copy these instructions that act as a blueprint

for all the possible functions that cells perform. Instructions in genome are encoded in a molecule

called DNA that is composed of four nucleic acid bases, Adenine, Cytosine , Guanine, Thymine

which are typically represented by the letters A, C, G, and T respectively. Two strands of DNA,

each carrying complementary information, together form a coil-like structure to maintain stability.

From a computer science perspective, we can think of DNA as a long string composed from an

alphabet of four symbols. Many genome sequences are divided into multiple segments called

chromosomes, and the small differences in these sequences makes each individual’s genome

unique. A typical mammalian genome is composed of approximately 3 billion bases of DNA.

However only 2% of genomes comprise a particular type of functional unit call genes. These

genes provide the instructions for constructing biological materials, such as proteins and func-

tional RNAs. The rest of the genome is full of different kinds of repeats. This organization is

typical of most eukaryotic genomes — organisms whose cells have a nucleus, including plants

and animals (Lander et al., 2001)(Waterston and Pachter, 2002)(Bennetzen, 2000).
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These repeated elements can be categorized into different classes based on their structure and

functionality. Some of them protect chromosomes from deterioration, i.e., telomeres, and some

of them are just simple tandem repeats. In this dissertation I am primarily interested in a class of

repeat, that is either currently capable of moving or copying itself within a genome, or had been

able to do so historically. This repeat class is called Transposable Elements (TEs). Transposable

elements alone account for to more than 90% of the repeats in human and mouse genomes. There

are also different kinds of TEs depending on their insertion mechanism, which we describe in the

next section.

Figure 2.1: Classification of Transposable Elements (TEs). TEs can be categorized into four
primary types based on their structure and properties. DNA Transposons are sometimes called
jumping genes because they can remove themselves from one place in the genome and reinsert
themselves in a new place. A second family of TEs rely on the RNA transcription to propagate
by making multiple copies. RNA transposons can be further subdivided according to structure.
Enodegenous RetroVirus (ERV) are remnants from ancient viral infections that have been perma-
nently integrated into the genome. ERVs are distinguished by Identical Long-Terminal Repeat
sequences flanking both sides of the viral sequence. Another class of RNA transposon is a Long
Interspersed Nuclear Element (LINE), which contain two key genes necessary for RNA transcrip-
tion. A third class of RNA transposon, Short Interspersed Nuclear Element (SINE) is unable to
copy itself independently, but instead relies on the two genes of active LINEs. LINEs and SINEs
are the most common type of TE in both human and mouse consisting more than 40% of their
genomes.
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2.2 Types of Transposable Element

Transposable Elements (TEs) are segments of DNA that either move or are copied from one

place in the genome to another. Different classes of TE are shown in figure 2.1. There are two

types of TEs depending on their insertion mechanism. Some TEs move in a cut-and-paste man-

ner, and are called DNA transposons. When they move, they leave their old place and are inserted

to a new place. These are relatively rare events in mammals, but common in many plants. A sec-

ond type of TE, is far more common in mammalian genomes relies on the RNA transcription

to propagate and they move in a copy-and-paste fashion. These types of TEs are called RNA

transposons. Due to their copy-and-paste nature, RNA transposons tend to increase genome size

and their insertions can either damage or interfere with existing functional sequences. On rare

occasions they can create entirely new function. To cover a large fraction of TEs, I thus decided

to focus on finding and locating RNA transposons. This also allows me to find the old insertions

still in the genome unless they were deleted. RNA transposons can further be classified into two

categories: 1) LTR retrotransposons, 2) non-LTR retrotransposons. LTR retrotransposons con-

tains identical long terminal repeats on both ends of the TE. The most common types of RNA-

transposons in mammals are (i) Endogenous RetroViruses (ERV), (ii) Long Interspersed Nuclear

Elements (LINEs) and (iii) Short Interspersed Nuclear Elements (SINEs). More than 99% of the

TEs in human and mouse genomes fall into one of these three categories (Smit et al., 1996).

2.3 Insertion Mechanism of RNA Transposons

RNA transposons move in a copy-and-paste manner and follow common patterns when in-

serted into a host genome. At first it makes a staggered cut with a 5’-overhang in the target DNA,

at the point where it inserts itself in the genome. This leads to a feature in which one small DNA

segment at the insertion point ends up being copied on both sides of the insertion. The size of

this small segment can vary for different TEs, but it is usually between 6-15 basepairs long and

in the same orientation. These repeated small DNA segments are called Target Site Duplications
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Figure 2.2: Insertion Mechanism of RNA Transposon: Transposable elements make a staggered
cut in the target DNA leaving a two overhanging ends. Each strand of TE attaches itself with one
of these ends. The remaining gap is then filled by duplicating a missing bases at the insertion site.
The overall result is that each incorporated TE is enclosed between two repeated sequence, which
are called Target Site Duplication (TSD).

(TSDs). This is separate from the LTR sequences of ERVs, which are part of the TE’s sequence.

TSDs are not part of a TE, but arise from the context of where a TE inserts itself into the DNA

sequence, on both the proximal and distal end of the TE. TSDs are common to both LTR and

non-LTR TEs. TSDs are analogous to open and closing parenthesis of the sequence. The same

type of TE will have different flanking TSD repeats around it depending on where it is inserted

in the genome. When transposon jumps to a new location, these flanking repeats do not move

with it, but are just left in the genome as “foot prints”. These TSDs are important feature of an

insertion and facilitates identification and verifying recent insertions.

2.4 Short Read Sequencing

Conceptually a genome is multiple large chromosome strings composed of 4 bases (A, C, G,

T). Each DNA molecule itself is composed of two redundant parts, a forward (5’-3’) copy and a

reverse-complemented copy that it is bonded to. When genomes are sequenced, DNA molecules
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are extracted from many thousands of cells. The DNA molecules are then independently chopped

into suitably sized fragments before sequencing. Frequently, the forward and reverse complement

strands of a fragment are sequenced together and are considered the ”paired-ends” of the frag-

ment. Lastly, equal-sized substrings from each fragment end are sequenced, and these substrings

are called “reads”. Together the two reads from the two-ends of a fragment are called “mates”

and, when considered together they are called a “read pair”. Figure 2.3 shows an example of a

short read-pair. This read pair consists of a read and its mate shown in pink and yellow respec-

tively. The number of reads typically sequenced in a genome depends on the genome’s size and

the desired coverage. For example a human genome sequenced with 150 base-pair reads with

30x coverage can have around half a billion reads once sequenced. Modern Next Generation

Sequencing (NGS) technology is optimized for high throughput and accuracy so that it can be

effectively applied to large genomes. In order to maximize accuracy and throughput, the length

of the reads are typically limited to a range of 100-150 base pairs. Depending only on short reads

creates ambiguities when analyzing repeated sequences. Note that, transposable elements (TEs)

are not only repetitive in nature but also longer than typical short reads. That’s why identifying

TEs requires more attention than any other genomic variants.

Figure 2.3: An example of a sequenced short read. Genome is chopped up into multiple overlap-
ping fragments. For each read, a mate is sequenced from the other direction producing a read-pair.
Read and pair are contiguous segments in the genome and have a gap in between them.
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Figure 2.4: Example of a discordant read-pair, where read (pink) maps uniquely in chromosome
3, but its mate (yellow) maps multiple times in chromosome 4, 5, 7, and X.

2.5 Discordant Read-Pair

A read-pair is called discordant if at least one of the following is true: 1) one read maps

uniquely to the reference genome while its mate maps to multiple places 2) both a read and

its mate map uniquely but in the same orientation 3) a read and its mate map uniquely in the

same position and in the same orientation, but their distance is more than the expected length (

greater than fragment length). TEs are expected to be repeated throughout the genome, so DNA

sequences of TE origin will tend to map to multiple places in the genome. At the same time, of-

ten a read’s mate will map uniquely. Such read-pair falls under the first category of discordant.

The uniquely mapped mate of a discordant pair can be used to infer a TE’s location. Figure 2.4

shows an example of a discordant read-pair, where one read (shown in pink) maps uniquely at

chromosome 3, but its mate (shown in yellow) maps to multiple positions (chromosome 3,5,7,and

X) in the genome.

Many existing methods like MELT (Gardner et al., 2017), TEMP (Zhuang et al., 2014), Ret-

roSeq (Keane et al., 2012) use discordant read-pairs to identify potential TE insertions. By run-

ning a BWA-like alignment tool on a sequenced dataset, all reads can be mapped to a known ref-

erence genome. For a large genome with 30x coverage, it often takes around 10 hours for BWA

to finish an alignment. Even though, aligning is a time consuming step, the output of alignment

is known to be useful for other analysis unrelated to TE discovery. However, since the alignment

is based on a reference genome, the whole process needs to be repeated when a new genome ver-
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sion is released. Finding discordant read-pairs also heavily relies on accurate alignment tools. If

any read contains more or less equal parts of TE and non-TE sequence, then depending on the

alignment’s tolerance level, it can either be mapped uniquely, multiple times, or not at all. In ad-

dition, the insertion location reported by discordant read-based methods can be significantly far

from the actual insertion point.

2.6 Split-Read

Figure 2.5: Example of split reads. Split-reads partially align with a known TE templates shown
by the red arrows. Split-read contains boundary reads, which can be either proximal or distal TE
boundary.

A split-read is a single read that can be broken into two non-overlapping segments where the

two segments map to different places in the genome. In the context of TE insertion, split-read can

be defined as the read where one segment contains TE sequence and the other segment contains

non-TE sequence. Figure 2.5 shows an example with several split-reads that partially align with a

given TE sequence. Since split-reads contain the boundary of TE they can be used for detecting

accurate insertion locations. Usually paired-end reads are not required to identify potential TE

insertions when using split-read approaches. However, the mate read can be useful for identifying

the insertion location the TE is inserted into repetitive genomic regions.

Some existing methods for finding TE insertions like Relocate2 (Chen et al., 2017), ITIS (Jiang

et al., 2015) use split-reads to find a breakpoint where a TE sequence is inserted. Typical split-

read models first align all the reads from a sequenced dataset to a set of known TE templates

rather than a reference genome as is case with discordant read-pair based methods. They iden-

tify those reads that contains partial TE and partial non-TE sequences. This alignment is not
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only time consuming but also useless for any other non-TE-related genomic analysis. Moreover,

they rely on a known set of TE templates which is usually obtained from TE databases like Re-

peatMasker(Smit et al., 1996) or Dfam(Wheeler et al., 2012). Therefore, split-read models fail

to identify any TE insertions where a TE template is not present in any databases. Split-read

approaches tend to have high true-positive rates when compared to discordant read-pair based

methods and they can predict the insertion locations much more accurately.

A recently published paper (Rishishwar et al., 2016) compared TE discovery and mapping

methods. It benchmarked seven different packages including: MELT, Mobster, RetroSeq, TEMP,

Tangram, ITIS, and T-lex2. The comparisons were done by using both real and simulated data.

Figure 2.6, provides a summary of their results and observations. Among these, only T-lex2 is

a tool that uses split-read-model exclusively for finding TE insertions. RetroSeq and TEMP use

discordant read model exclusively. MELT, Tangram, ITIS, Mobster use a combination of both

models.

The real dataset used in the evaluation was a female sample from the 1000 human genome

project (Siva, 2008). This sample has been extensively analyzed and validated for benchmarking

structural variations and TEi detection tools. For evaluation, the same sample was sequenced

twice with both low and high coverage. For low coverage (5.7x), MELT has the highest True

positives indicating high precision. ITIS has the lowest false positive indicating high recall rate,

but it failed to predict more than 800 true insertions. MELT is also faster than rest of the tools in

terms of both CPU and Wall-clock time. The only model in this analysis that uses split-reads ex-

clusively, T-lex2, did not even finish running within a week. Therefore, researchers tend to favor

of discordant-read-based models as they are faster compared to split-read models. Tools that use

only discordant reads, are not good at predicting the exact location of TE insertions. However,

MELT was good in finding the exact location by using split reads in combination with discordant

ones. In the case of high genomic coverage (95.6x), MELT identified only a few TEis compared

to RetroSeq and Mobster, which was similar to TEMP. Even though RetroSeq and Mobster had
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Figure 2.6: Benchmarking and validation results done by (Rishishwar et al., 2016) for 7 existing
TEi detection tools. Among these, RetroSeq, TEMP are discordant-read-based models, T-lex2 is
split-read-based model. MELT, Tangram, Mobster, ITIS use discordant reads for initial prediction
and split reads for some later validation.
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high true positive rates, they also reported many false positives too. One tool, Tangram did not

finish running for this high coverage dataset.

For the simulated data, ranging coverage from 5x to 50x, MELT performed consistently better

than than other methods. With the increase in coverage, its true positve rate increased, and false

negative rate decreased. For all datasets, MELT was the fastest. MELT was also better in predict-

ing the exact insertion location. Other than the memory usage, which is quite low for RetroSeq,

MELT in general outperformed all other tools.

2.7 MultiString Burrow Wheeler Transform, msBWT

The TEi location approach that I propose employs a specific sequence indexing data structure

that is widely used in genomics call the Burrows-Wheeler Transform. The Burrows-Wheeler

Transform (BWT) (Burrows and Wheeler, 1994) was originally developed to compress text

data. The transformation effectively determines the sequence of predecessors of every sorted

suffixes from a text, and it is, thus, a permutation of the original text. This BWT permutation

can also be inverted to reconstruct the original text. The BWT permutation also leads to long

runs of repeated characters in any text with redundancy. Therefore, simple compression tech-

niques, like run-length encoding, can be used to compress the BWT of any compressible text.

Beyond compressing data, the BWT has also been shown to be as efficient as a suffix-tree for

performing substring searches. BWT searches use a light-weight auxiliary data structure called

an FM-index (Ferragina et al., 2004). It is light-weight in the sense that it can be computed on

the fly while accessing the BWT. The FM-index supports searching for all substrings of length k

(k-mer) within a string in O(k) time. The classic BWT was devised to compress a single string

or text. It has since been extended to support collections of strings while maintaining the essen-

tial properties of the data structure. A BWT of a string collection is called a multi-string BWT.

Holt (Holt and McMillan, 2014) showed that assembling BWTs for multiple strings can be done

incrementally by merging msBWTs, and is thus suitable for parallelizing and can be used for
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divide-and-conquer approaches. Thus, msBWT is a great way to store large scale text data like

short reads and it supports searching for common substrings shared by multiple reads efficiently.

2.8 Longest Common Prefix, LCP

The Longest Common Prefix, LCP is a second auxiliary data structure (Kasai et al., 2001)

that can be built while constructing an msBWT. While an msBWT’s FM-index allows for the

traversal of all suffixes from each of its included strings, which we will refer to as reads, the LCP

provides the length of the Longest Common Prefix between two adjacent suffixes in the suffix

array implicitly represented by the msBWT. LCP and msBWT have a one-to-one correspondence

with each other. That means ith element of the LCP array stores the length of prefix shared by

ith and (i+ 1)th read suffix’s predecessor symbol of the msBWT. There are many algorithms for

creating msBWT and LCP in linear time (Egidi et al., 2019) (Bonizzoni et al., 2021). We used

Holt’s approach (Holt and McMillan, 2014) for building the msBWT and LCP, because of the

supporting functions offered by the supplied API. The relationship between the BWT and LCP

data structures and their use for finding repeat intervals is illustrated in figure 2.7.

2.9 Summary

Previous methods for identifying transposable element insertions have primarily relied on one

of two methods discordant-mates or split-reads. Both methods require some form of alignment,

either to a full genome for discordant mates or to a library of expected TE models for split-reads.

Split-read models are solely template-based. Alignments with respect to TE templates do not

serve any other purpose, and thus are often deleted once TE insertions are detected. None of

the split-read model (RelocaTE2 (Chen et al., 2017), T-lex2 (Fiston-Lavier et al., 2014)) use

any special data structure to process the reads to make it reusable for future. Therefore, this

type of model is an unpopular choice for detecting TEis even though they tend to have higher

true positive rates. In contrast, discordant-read TEi discovery models are quite popular among
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Figure 2.7: An example illustrating relationships between the LCP, Suffix Array, and BWT
shown for the sequence GGGCATGGGGTAGGGGCAT. Only the BWT and LCP are used to
identify Frontier candidates, whereas the suffix array is implicit. Intervals of the suffix array
where adjacent suffixes share a prefix of 3 or more bases include [4,6], [6,8], and [10,15]. These
represent the substrings CAT, GCA, and GGG respectively. These intervals are determined in a
single linear scan of the LCP. Of these, and assuming a repeat threshold of 4, only the interval
[10,15] is sufficiently large to be considered a repetitive element. A subsequent rescan of this
interval identifies four distinct prefixes of length 6 that appear two or fewer times (GGGCAT,
GGGGCA, GGGGTA, and GGGTAG). These prefixes are easily recovered using the BWT. The
memory requirements of the LCP and BWT are proportional to, and typically smaller than, the
original sequence.

the biologists. The alignment required for identifying discordant reads are often used for other

downstream analysis and and stored in a special alignment file called BAM. One discordant-

read-based model, RetroSeq (Keane et al., 2012) was used to find landscape of TE insertions

in 16 different types of mouse (Nellåker et al., 2012). MELT (Gardner et al., 2017) was used to

find TEis in chimpanzee, ancient Neanderthal and Denisovan genomes, cancer genomes, and

canines. However, discordant-read based methods have lower true positive rates than split-read-

models. Moreover, their inability to predict the exact location may complicate the inference of

TEi sharing patterns necessary for understanding the phylogeny of such events. Therefore, there
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is a need for TEi discovery and mapping pipelines that are highly sensitive like split-read-based

models and efficient and convenient like discordant-read-based models. In the next two chapters

(chapter 3 and 4), I provide new approaches and solutions to these problems. In chapter 5 I show

how my proposed methods work effectively to analyze TEi diversity and sharing patterns in a

large population.
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CHAPTER 3: EFFICIENTLY LOCATING INSERTIONS OF TRANSPOSABLE
ELEMENTS (ELITE)

A goal of this dissertation is to provide algorithms and methods capable of identifying com-

plete catalogues of the transposable element (TE) insertions in a given set of genomes. Towards

solving this problem, I describe and implement a tool called ELITE, which relies on a known

TE templates to identify TE insertions within short-read sequence data sets that are within a

user specified error tolerance of the given template (specified by edit-distance). Unlike typical

alignment-based methods, ELITE is based on a local-genome-assembly approach. It uses an

msBWT-based data structure to store and index all the reads from a high-throughput sequencing

dataset and leverages a sampled FM-index to detect TEis efficiently. It starts with a highly con-

served seed k-mer from a known TE template and uses the msBWT and FM-index to assemble

genomic sequence around the seed. Assembled sequences which extend beyond the TE boundary,

called the genomic context are then clipped and used to map the insertion location. In addition

to finding TEis, ELITE also predicts the zygosity status of each insertion, and it also discovers

unannotated TEs that are distantly related to the given target TE. Most importantly ELITE pro-

vides a summary set of TEi present and absent probes that can be used to identify segregating TEi

patterns within a population.

3.1 Challenges and Motivation

Detecting TEis in high-throughput short reads is a challenge. Short reads are usually be-

tween 100-150 basepairs long, while TE sequences can be as long as several thousands of base-

pairs. Moreover, similar TE sequences from past insertions can appear thousands of times in the

genome. Besides, many TEs have Long Terminal Repeats, where themselves repeats, that are
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Figure 3.1: An overview of ELITE: ELITE first finds two highly conserved seeds from any
annotated TE sequence. One near the proximal boundary, and the other near the distal boundary
(shown in gold). It assembles sequence paths around the seeds from unaligned HTS read data
using an FM-index. TE annotation is used to guide the path traversal in a depth-first search to
estimate the TEi boundaries. The overhangs of the assembled sequences are used to map the TEi
location. When possible, nearby insertions are merged informed by the sharing of a target-site
duplication (TSD) sequence. Finally, up to three probes are constructed for use in testing other
samples for a similar polymorphic TEi.

longer than a read’s length. Thus, it is difficult to identify such TEs using only short-reads. More-

over, TE sequences are repeated in the genome many times. Due to the copy-paste mechanism

of RNA transposon, all eukaryotic genomes contain numerous copies of the same TE. There-

fore, same TE sequence can be found throughout the genome, but in different places. It is hard to

identify the insertion context from all the different versions of TEs.

Various methods and tools have been developed, but all depend on specific knowledge and

assumptions about either the TE’s or the genome’s sequences. Some tools aim to find the inserted

sequence of the TE, and others are designed to localize TEs where the TE sequence is already

known. One commonly used tool for identifying TEs is RepeatMasker (Smit et al., 1996). It

masks all the repetitive sequences in the genome and provides a potential list of sequence re-

ferring to transposable element. Other databases such as Repbase (Bao et al., 2015) and dfam

(Wheeler et al., 2012) also annotate TEs that are specific to a particular species. Many existing

tools including ELITE, rely on TE sequence from Repbase as a template in order to detect and

localize them in a given sample.

Others have developed methods that attempt to detect and map TEi sites in the genome. Most

rely on a technique called alignment, which is applied to map reads to a reference genome or a

25



TE catalog (see Chapter 2). Some, RetroSeq(Keane et al., 2012), TEMP(Zhuang et al., 2014),

MELT(Gardner et al., 2017) align all the short reads to a reference genome and identify discor-

dant read pairs. These read pairs are those where one read is maps uniquely and the correspond-

ing mate maps to multiple places in the reference. The non-unique read is then compared with

a known library of TEs. This supports identifying insertions that are present in a sample but

not in the reference. Detecting TEis by resolving discordant reads depend heavily on the read

quality of the data and accuracy of the alignment method. Moreover, methods based on discor-

dant read pairs are unable to report exact insertion site without any additional steps. As reported

by (Rishishwar et al., 2016) the best TEi detection tools report a considerable number of false-

positive results. The best performing algorithms have precision rates ranging from to 63% to 95%

for simulated data, and between 25% to 73% for real data.

A second TE detection detection approach aligns short reads to a catalog of consensus TE

sequences. This is considerably faster than alignment to a reference, but such approaches typi-

cally employ lower throughput aligners (i.e. BLAST(Altschul et al., 1990) or BLAT(Kent, 2002))

that allow for more mismatches than typically used for genome alignment(Ewing, 2015). These

TEi detection tools attempt to find all the reads that contain some TE-like sequence. All these

reads are then “split” to two parts: a non TE segment and a TE segment. The non-TE part of

these split reads are then clustered, combined, and mapped to a reference genome to identify the

insertion site. ITIS(Jiang et al., 2015) uses BWA(Li and Durbin, 2009), and RelocaTE2(Chen

et al., 2017) uses BLAT to find sequence similarities between each read and the given TE. Split

reads are then identified to pinpoint the insertion site. These methods are able to report the exact

location of a TEi along with the TSD accurately by looking at the split reads from both sides of

the insertion. Finding the exact location and nearby sequence is important to create primers for

PCR verification.

TE detection tools based on alignments to a TE catalog have limitations too. ITIS looks for

one class of TE at a time, whereas RelocaTE2 is designed to search for multiple TEs in the single

run. It’s impractical to use RelocaTE2’s parallel search approach when an incremental search
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approach is required. Moreover, Repbase (Bao et al., 2015), dfam (Wheeler et al., 2012) or any

other TE databases are constantly adding new TEs to their repositories. To find these, RelocaTE2

must repeat all the steps of it’s alignment pipeline.

To avoid all these problems, I index whole-genome high-throughput sequence data using a

msBWT (Bauer et al., 2011) (Cox et al., 2012) (Holt and McMillan, 2014). In general, msBWTs

of short-read datasets are useful for other genomic applications. An msBWT compresses the data

of raw fastq files while supporting efficient searches. Many researchers have used BWTs as an

underlying data structure to perform local assembly (Simpson and Durbin, 2010) (Salikhov et al.,

2013). Others have leveraged it for correcting errors in reads (Greenstein et al., 2015) (Wang

et al., 2018). Mentaci et al. developed an extended version of BWT to distinguish between two

given genomes (Mantaci et al., 2007). It is important to note that, the cost of building BWT is

fixed, it only depends on the sequencing dataset. Once built, an msBWT is unaffected by differ-

ent versions of genome builds like genome alignments of the same read set are.

Using an msBWT as the primary indexing data structure, I have developed an efficient pipeline,

called ELITE, for identifying, mapping and characterizing Transposable Elements in the genome.

Unlike previous alignment-based approaches, ELITE uses a targeted local-genome-assembly-

based method. ELITE uses a branch-and-bound Depth-First-Search (DFS) algorithm for the as-

sembly, which efficiently searches the entire read set of a high-throughput sequencing dataset rep-

resented as a multi-string Burrows-Wheeler Transform (msBWT) (Holt and McMillan, 2014), us-

ing an FM-index (Ferragina and Manzini, 2000). ELITE also finds other TEis that are more dis-

tantly related but share some conserved TE kmers. Allowing for this divergence enables ELITE

to discover new TE families, that may not been annotated in any standard TE database (Bao et al.,

2015) (Wheeler et al., 2012). ELITE also reports a summary of TE sharing within a given set

of samples, which includes TEis that are present in all samples, TEis that are shared by only a

subset of samples, and TEis that are unique to a specific sample. This is helpful for ascertaining

phylogeny as well as treating TEis as genetic variants that may cause phenotypic differences.
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3.2 ELITE Pipeline

Given a template TE, and a sample, I aim to find all the locations of that and similar TE

classes in that sample. As a preprocess, I construct an msBWT of a whole-genome high-throughput

sequencing dataset. An msBWT sorts all the reads alphabetically and then assigns an index to

each read. An auxiliary data structure called FM-index is built on the fly (as a sideeffect of load-

ing the mSBWT). Searching for any particular k-mer is done incrementally in reverse or suffix

order. For example: to search ACT, it will first find all the read indices containing Ts, then CTs,

and finally ACTs. I use this backward search approach to assemble TE sequences from an inte-

rior seed towards the TE’s boundary. Searching is done for the two sides of a TE, which I call

proximal and distal ends. The assembled sequence beyond the TE boundary, called the context,

is then mapped to a reference genome to find the location of insertion. This TEi discovery phase

for the proximal side is illustrated in the figure3.3. The execution order of the steps goes from

right to left. After the discovery phase, several additional steps are taken which involves merging

proximal and distal TEis, identifying their zygosity and creating different probes to assess TEi

patterns in a population. All the steps are described in detail in the following subsections.

3.2.1 Choosing Seeds for Local Assembly

I use a seed-based search approach to perform local assembly where the seed is a highly

repeated substring near the boundary of a known TE model. Multiple seeds can be used to allow

some mutations in the seed itself. All the seeds, however, need to be within a certain distance

from the TE’s boundary because ELITE needs to have enough bases beyond the boundary to infer

the context of insertion. To ensure this, I only consider the kmer as seed whose distance from

TE boundary is no more than half of a read’s length. Among all these, I recommend a seed that

occurs most frequently in the sample’s genome. I identify two seeds, i.e., proximal and distal

ends of the TE’s sequence, where each one is closer to its respective boundary. Users are allowed,

however, to provide their own preferred seeds. In that case too, two seeds are required for the two
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Figure 3.2: Criteria for choosing seeds from the TE boundaries: From the given TE template, I
select a subsequence that is the first L bases from the TE as proximal TE. I then identify the kmer
that occurs most in the target sample’s msBWT.

boundaries. Figure 3.2 shows an example of choosing seed for the proximal TE boundary. Here I

consider 3 different lengths for seed k-mers, where k = 31, 25, 21 represent the lengths. At first

I choose a proximal TE which is of length L where L = 1/2 ∗ read length. Then I divide the

proximal TE into multiple overlapping segments of length k, and count their occurrence in the

sample’s msBWT. The kmer with the highest count is then selected as a seed. As we can see from

the figure 3.2, count varies throughout the boundary. It also depends on different k. However,

all of them have a peak at after the 50 bases of the proximal TE boundary. Therefore, I choose a

kmer as a seed from that region shown by the dotted line.

3.2.2 Finding TEs by Assembling Seed

The first step of our TEi discovery phase finds all mutated versions of TE in a given sample.

To allow for some mutations as well as the possiblity of capturing related, and perhaps unanno-

tated, TEs, I find all the sequences that are less than a given edit distance away from the original

29



TE Seed 

ck-2

S0

S1

S2

S0

Sj-1

Sj

ck-1
ck

c1

c2
c3 t1

t2
t3

ti

t1
t2
t3

ti

t1

ti

S1

Proximal TE 

S0

reverse 
complement

concat 
seed, TEreverse 

complement
S0

Sj

(a) Extend initial seed, S0 to 
get versions of TE, t1...ti

 

(b) Extend all reverse complemented versions 
of TE, t1...ti to get variant seeds s0...sj

(c) Extend all TE versions, t1S0…. tiSj
to get their contexts, c1...ck

Figure 3.3: TEi Discovery phase: We take the proximal sequence of a given TE and select a kmer
located distal to the TE’s start as a seed. A seed whose distance from the TE start is less than half
of the read length, is of suitable length and has the highly repeated in the data set is chosen. The
seed is then extended to find all the potential versions of TE (shown in green). To incorporate
any variants that may appear in the seed, I then extend all of the potential TEs in the opposite
direction. This is accomplished in the BWT by searching for the extension’s reverse complement
(shown in yellow). Finally all the versions are further extended to get all the possible prefixes,
which establishes their genomic context (shown in pink).

TE. I start with a seed as an input, which is our initial assembled sequence and use a depth-first-

search algorithm to extend it further towards the boundary of the TE (figure 3.3a).

Using algorithm 1, ELITE first finds the range of indices for the seed k-mer using a sam-

pled FM-index of the compressed msBWT (Holt and McMillan, 2014)(Ferragina and Manzini,

2000), where the range represents the number of occurrences of seed substring in the set of se-

quenced reads (specifically their interval in an implicit suffix array). This range, along with the

seed k-mer, is used to initialize the recursive DFS used by the local assembly. At each step in the

recursion, the algorithm adds a new possible base before the seed and updates the suffix array

range (newRange) concerning the newly added base and then continues along this child’s path in

the recursion tree.

I introduce two threshold parameters to limit the depth of recursion. First t1 sets the mini-

mum number of reads that contain evidence of TE. Second, t2 sets the maximum edit distance

that is allowed in a TE sequence with respect to the original TE template. If at any place the

value of newRange is less than t1 or the value of dist is greater than t2 we prune that path. This
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Algorithm 1: Extending seed k-mer
EXTEND-Kmer(range, seed, newTE)

if newTE Reaches TE Boundary then
Add newTE to the TE list

end
for base in A, C, G, T do

newTE ← base + newTE
newRange← findIndicesOfStr(base,(range))
dist← editDistance(TE,newTE)

. t1 and t2 are threshold parameters
if newRange > t1 and dist < t2 then

EXTEND-Kmer(newRange, seed, newTE)
end

end

prunes from our search sequences that are not present in the short read dataset, as well as the

sequences that differ too much from the given TE template.

At this point, all the versions end with the same seed sequence (The DFS traversal is in suffix

order). To allow for variants in the seed, I then remove it from all the TE versions and continue

assembling each version in the reverse direction towards the seed (figure 3.3b). I then assemble in

that direction until the length of the seed is reached without exceeding the edit-distance threshold

t2. Since searching in an msBWT using an FM-index is done by extending suffixes, finding

a prefix is more straightforward than finding a suffix. Thus, when extending TE sequences in

this second DFS pass, where the seed is removed, I conduct the search using the TE’s reverse

complement sequence, thus searching for alternative seeds that prefix. It works because of DNA’s

double-stranded structure where one strand contains the reverse complemented sequence of the

other to form a double helix. Now to get back to the original strand, I again reverse complement

the TE versions. I repeat the same assembly process for the distal side of a TE in the opposite

direction and adjust the strand so that the traversal is always in suffix order.
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3.2.3 Mapping TE Insertion Sites

After finding all the versions of a TE, I then attempt to place them in the genome. I assemble

the genomic context by extending the prefix and suffix of each discovered proximal and TE-like

sequence, respectively, to find the corresponding genomic context (figure 3.3c). I use the same

algorithm described in the previous subsection, but initialized with the suffix array range of each

TE version found by the ExtendKmer routine. I set the edit distance threshold t2 to a large

value and the support threshold, t1 to zero to allow the DFS to extend until it runs out of reads

containing the given TE version.

ELITE next maps all of the contexts sequences found (the additional bases fond by extend-

ing the TE versions) against the reference genome using bowtie2 alignment tool (Langmead

and Salzberg, 2012)(Langmead et al., 2009) to get the chromosome and position. In this phase,

ELITE only keeps the contexts that are uniquely mapped. Finally, it examines the reference

sequence adjacent to the alignment position to assess whether it differs or is a close match (as de-

termined by t2) to the TE sequence used to find the context originally. If the reference sequence

adjacent to the mapped TE differs from the context-TE sequence combination, I consider the

mapping a non-reference TEi.

3.2.4 Determining Zygosity

As a third step, for any non-reference TEi, ELITE determines if it is present in the homozy-

gous or heterozygous state. To find the zygosity, we extend the mapped context sequence found

in step 2 in the direction of TE, which differs depending on whether it was discovered from the

proximal or distal side of the TE template. If I find sequence paths, one matching the expected

TE, and a second similar to the reference sequence (as determined by the edit-distance param-

eter, t2) then I report the TEi as heterozygous. But, if the extended sequence only leads to the

expected TE-like sequence, then we report it as homozygous. Usually, heterozygous TEis are

indications of recent TE activity, although a similar pattern can be created by a duplication fol-
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Figure 3.4: Finding zygosity of a TE insertion

lowed by a TE insertion. This alternative explanation requires additional tests to validate and to

distinguish. Such tests which are beyond the scope of this discussion.

Figure 3.4 shows the process of finding the zygosity of a TE insertion. Recall that, I get two

probes from the discovery phase: proximal context + TE, and distal TE + context. By extending

these contexts (excluding the TE part), I further determine the zygosity. For the proximal context

(shown if left), I extend the context towards right which is direction to the proximal TE sequence.

And for the distal context (shown if right), I extend the context to the left which is the direction

of the distal TE sequence. In both cases, this extension must lead to at least one path which is

the TE we already discover. However, it may lead to another path that is similar to the reference

sequence (proximal context + distal context) given that reference does not have an insertion at

that point. Here two paths from the extended contexts refers to a heterozygous insertion, and one

path refers to a homozygous insertion.

ELITE predicts zygosity once a TEi is found. The method of finding TEi, even though is

same for both homozygous or heterozygous insertion, coverage may affect the algorithm’s out-

come. For heterozygous insertion, the number of paths containing the context+TE sequence will

goes down to almost half compared to a homozygous one. Therefore, to find the heterozygous

TEis, like most existing algorithms, ELITE also requires short read dataset with good coverage.
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3.2.5 Merging Proximal and Distal TEis

ELITE independently considers the two sides of a TE during the first three assembly steps. In

the next stage ELITE merges any non-reference TEi if there exists a pair of proximal and distal

contexts that map to the same genomic position after adjusting for a TSD. ELITE also attempts

to find the other side of non-reference TEis when a mapped TEi is discovered only from one side.

In this case ELITE uses the genomic sequence adjacent to the context on the side of the detected

TEi from the reference to once again guide a DFS to find any TE-like context adjacent to it. If

ELITE finds a reference-like context flanked by the expected TSD followed by any sequence

that is a significant edit distance from the originating context, the TEi is considered merged.

For merging TEs in the reference, I find all the proximal-distal context pairs that are near the

length of the TE plus or minus a gap parameter (≤ 10bp). If a consistent TSD is observed, I

merge the proximal-distal context pair. ELITE keeps all one-sided TEis if there is enough reads

to support the insertion. TEis can be one-sided in one of two ways; if the context on the other

side is unmappable due to being inserted into a genomic repeat, or if some subsequent insertion

or deletion modified the missing context at the other side of the TEi.

3.2.6 Assessing TEi patterns in a population

A final optional feature of ELITE is that, once a TEi is identified and mapped, several tar-

geted sequence probes (up to three) are generated to accelerate the testing of subsequent samples.

When a TEi is discovered, one or more of three probe types are created (see Figure 3.1). The first

is a TEi specific proximal probe for finding split-reads that contain the normal genomic context

and the adjacent TE sequence. ELITE’s proximal probes are constructed relative to the TE se-

quence’s orientation, not the reference genome’s orientation. The second distal probe includes

genomic sequence at the other end of the insertion preceded by a TSD sequence and the distal

TE sequence. The third absence probe represents the expected genomic sequence without the

TEi. Ideally, corresponding proximal and distal probes are derived from the TE-like sequence

found during the discovery phase. Absence probes are derived from reference genome and/or all
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the samples, which has some nonTE-like sequence in the same chromosome and position. The

presence or absence of a TEi is confirmed by querying the TEprobe (proximal and distal) and

absence probe, respectively. However, having both makes a sample heterozygous in that site. Cur-

rently no other TEi discover method attempts to construct absence probes even though they are

very useful for population based TEi sharing analysis. Lets consider a case, where an algorithm

found a TEi in every sample in a population except for one. Then it will just be automatically

assumed that TEi is absent in that one particular sample. However, it’s possible that the sample

has a TEi which the algorithm fails to find. Therefore, its important to know what the sample has

in that location if not the TEi. The presence of a nonTE-like sequence in that case can be used

to prove that the algorithm’s finding is indeed correct. And if the algorithm is wrong, then it can

be fixed in this step. Typical methods do not attempt to find absence probe thus gives wrong idea

when there’s a false negative. To remove this limitation, in addition to finding TE presence probe,

I also look for the absence probe for each TEi in a population.

3.3 Evaluating ELITE Pipeline

I applied ELITE to six short-read sequencing data sets from six mouse samples. These six

samples were drawn from two common laboratory mouse strains. Having replicates of each strain

allowed us to consider both consistency and differences within and between the two strains. The

expectations are that inferences from the same strain should be mostly consistent. There should

be few differences between samples from the same strain, so called biological replicates, and

these differences would more likely be found in a heterozygous state. Differences in TEis that

are consistent within strains but differ between strains and that are also homozygous suggests

segregating TEis. I examined ELITEs TEi predictions in the context of these expected sharing

patterns. I also show how this process could be applied to larger population to understand mouse

phylogeny and population genetics. Sharing within strains, in addition to simulated read data,

is used to estimate ELITE’s error rate and error types. To further examine ELITE’s error rate

I also compared it to other independent resources for validation, including other TE detection
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tools, and the most recent genome annotations available. I report on the performance of ELITE

applied to a synthetic dataaset where the truth is known. We use both discordant-read-based

model and split-read-based models for a fair comparison. Several of ELITE’s predictions were

also validated at the bench using standard Polymerase Chain Reaction (PCR) based methods.

Since PCR sequencing is expensive, I chose 9 insertions that were biologically more interesting.

Type Strain Sample Number of reads Read length Size of msBWT

B6 C57BL/6J m03636A 1,045,633,612 125/151 23,303,735,734
B6 B6N-Tyrc−Brd/BrdCrCrl m001 417,644,074 150 10,064,032,516
AJ A/JCr f001 741,355,602 150 16,094,491,291
AJ A/JOlaHsd m001 337,606,538 150 8,506,263,007
AJ A/JOlaHsd f015 556,997,844 150 10,928,292,735
AJ A/J f321 634,232,014 150 12,321,190,427

Table 3.1: Six real samples are used for evaluating ELITE. These are categorized into two
types (B6 and AJ) based on their similarities in strain. All these were sequenced using either
an Illumina X10 and Illumina HiSeq4000 sequencers with paired-end reads. One sample,
C57BL/6J(m03636A) incorporates multiple sequencing runs and is a mix of read lengths, 125-bp
to 150-bp, all others resulted from a single run (with multiple lanes) and used a uniform 150-bp
read length. The Illumina sequencing data from each sample was used to construct an msBWT
for each sample as described by (Holt and McMillan, 2014). Number of reads per sample and
size of each msBWT (in byte) are also shown for each sample.

3.3.1 TE discovery in real data

Laboratory inbred mouse strains are widely used in biomedical research as their genomes are

assumed to be fixed and reproducible. I examined six such mouse strains using ELITE to deter-

mine the variability of 6 Endogenous Retro Virus (ERV) TE types between them. The most com-

monly used mouse strain, C57BL/6J, is the basis for the mouse reference genome (GRCm38.68).

It is also the primary source of existing TEi annotations (Smit et al., 1996). Thus, I ran ELITE on

a C57BL/6J sample and a second related strain, B6N-Tyrc−Brd/BrdCrCrl, to assess the degree of

TE activity relative to the reference. I refer these two related samples as the B6 type.
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TE Length Seeds

ERVB4 2B-LTR MM 509
ATTGTCCTGATCTCTGAATTGGGCCTCTCCC
TTTGGTTCTTAGGAGAAGGTCCCCTCGAGAC

ERVB7 1-LTR MM 319
GTTCTGCCACGCCCACTGCTG
CCCCGTCTAGATTCCTCTCTTACAGCTCGAG

IAPEY3C LTR 304
TAACTGGTAAACAAGTAATGT
AATAAACGTGTGCAGAAGGAT

MERVL LTR 493
ATATTTGGAATGAACTACAAT
ACTGTAAGTCATCA ATAAATT

RLTR1IAP MM 351
CTGTGTTCTAAGTGGTAAACAAA TAATCTGC
GAAGATTCTGGTCTGTGGTGTTCTTCCTGGC

RLTRETN MM 322
ATTGTCCTGATCTCTGAATTGGGCCTCTCCC
TTCTCTTCCAGGTTTCCAAAATGCCTTTCCA

Table 3.2: 6 different ERV templates to capture majority of the ERV insertions in 6 samples.
Templates vary in lengths and sequence. Different seeds are used for each ERV, except for the
proximal seed of ERVB7 1-LTR MM and RLTRETN MM.

Sample TEis Reference Shared Polymorphic Private

C57BL/6J(m03636A) 11661 11519 8585 3072 4
B6N-Tyrc−Brd/BrdCrCrl(m001) 11407 11264 8585 2818 4

A/JCr(f001) 11119 9086 8585 2529 5
A/JOlaHsd(m001) 10639 8673 8585 2047 7
A/JOlaHsd(f015) 11148 9099 8585 2550 13

A/J(f321) 11190 9148 8585 2591 14

Table 3.3: Total number of TEis found by ELITE in each sample for the six TE templates. A
large fraction of these are also in reference. Total 8585 TEis are shared by all samples. More than
2000 TEis are polymorphic, meaning they are only present in a subset of these samples. A small
fractions are private to only one sample indicating potentially recent TE movement.

I also ran ELITE on four additional samples from a second widely used lab strain, A/J. Two

of the A/J samples are independent samples from the same vendor, which allows us to exam-

ine TEi pattern relative to that vendor. C57BL/6J(m03636A) incorporates multiple sequencing

runs and is a mix of read lengths, 125-bp to 150-bp, all others resulted from a single run (with

multiple lanes) and used a uniform 150-bp read length. The Illumina sequencing data from each
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sample was used to construct an msBWT for each sample as described by (Holt and McMillan,

2014).

C57BL/6J B6N-Tyrc−Brd A/JCr A/JOla(m001) A/JOla(f015) A/J(f321) count

0 0 1 1 1 1 1789
0 0 1 0 1 1 74
0 0 0 1 1 1 1
1 1 1 1 1 1 113
1 1 1 0 1 1 8
1 0 1 1 1 1 3
0 1 1 1 1 1 2
1 1 0 1 1 1 1
0 0 0 1 1 0 45
0 0 1 0 0 1 35
1 1 0 0 0 0 10
1 1 0 1 0 0 2
1 1 0 0 0 1 1
0 0 1 1 0 0 2
0 1 1 1 0 0 2
0 0 0 0 1 1 1

Table 3.4: A comprehensive list of TEi sharing patterns for discovered TEs that do not appear
in the reference sequence. The population structure of our samples allows us to cluster sharing
patterns according to expectations. Expected sharing patterns are highlighted in green above.
There are two primary groups in the population. One composed of the first two samples, which
are ”B6-like”, and the second four samples, which are ”AJ-like”. The AJ-like samples can be fur-
ther broken down into subpopulations according to vendor, which implies the possibly of sharing
between the two A/JOla samples. Sharing patterns that do not match these expectations are likely
indirect indicators of ELITE’s false-negative rate, which impacts recall, and its false-positive rate,
which impacts precision. Possible false-negative TEis are indicated in pink. If these cells were
non-zero the pattern would match its associated cluster’s sharing pattern. Possible false-positive
TEis are indicated in light blue, which, if zero, would conform to an expected sharing pattern. A
group of three unclustered and unexpected sharing patterns fill out the table. Combinations of
multiple false-negatives and/or false-positives create these patterns.

In each sequenced sample, ELITE looked for TEis using six different TE templates i.e.,

ERVB7 1-LTR MM, ERVB4 2B-LTR MM, RLTRETN MM, RLTR1IAP MM, MERVL LTR,

and IAPEY3C LTR obtained from Repbase. Separate seeds were found for each TE template

as described previously. For each template, I selected two conserved kmers as seeds each of

length 25 where one is from the proximal side, and the other is from the distal side. The seeds

are located within 60-80 bases from the terminal end of the TE sequences. The TE templates and
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examples seeds are shown in table 3.2. Here I use the same naming conventions of RepBase. The

proximal TE of ERVB7 1-LTR MM and RLTRETN MM have a high level of sequence similari-

ties that leads us to use only one proximal seed. Using one seed for both ERV types also reduced

the runtime of ELITE pipeline. Since, many TEs originate from the same type, it is also possible

to identify many more classes of TEs by using a highly conserved seed. For all other ERV types,

I chose one seed from the proximal TE, and one from the distal. All the samples were ran using

the same seeds which are given in the table 3.2. The rows for each ERV is the proximal seed and

the second row is the distal seed that we used for the B6 samples.

The edit distance threshold, t2 was set according to this offset to allow for no more than 1

edit per TE 8 bases, and the minimal read support threshold used was 4 for approximately 25×

- 30× genome coverage. The number of mapped TEis per data set is shown in Table 3.3. These

are broken down according to the number of TEis that are included in the reference sequence,

those that are common to all six samples, or shared, and those that are shared by two to five

samples, which I call polymorphic, and finally those that appear in only a single sample, which I

call private.

Since the mouse reference genome is based on B6, I see a large fraction of TEi found in

C57BL/6J and B6N-Tyrc−Brd/BrdCrCrl are also present in reference. Table 3.4 breaks down

the patterns of sharing detected between samples focusing only on those TEis absent from the

reference genome. As expected, the single largest pattern of TEi sharing is between the four AJ

samples. The second most common pattern of sharing is TEis that appear in all six samples, but

do not appear in the reference. There is also significant sharing in subpopulations. In particular,

between the two A/JOlaHsd samples, from a common vendor, and the A/JCr and A/J samples

distributed from two separate vendors.

By analyzing the sharing patterns of TEis I also gain some insight into ELITE’s error rate.

The expected patterns of sharing are highlighted as green rows in Table 3.4. Many of the un-

expected sharing patterns are shown clustered with their closest expected pattern and include

a highlighted cell which we hypothesize is due to a specific error types. I indicate presumed
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Figure 3.5: Summary of ELITE and RelocaTE2’s TEi detections in real sequencing data. Sample
types are shown in top and names are in parentheses. Sample name for the first two are ommited
due to simplicity. For six different samples, I compare the number of TEis discovered by both
tools. RelocaTE2 reports a TEi with high confidence if it is not present in reference and has a
consistent TSD. Although, ELITE reports a TEi even if its only discovered from one side, but for
a fair comparison, I consider here only the non-reference TEis where ELITE found both sides of
a TEi along with the TSD. As we can see, for each sample, a large fraction of TEis are discovered
by both tools. Since ELITE is less sensitive to the template TE sequence, it tends to find more
TEis than RelocaTE2. I investigated several examples where ELITE failed to find a TEi reported
by RelocaTE2. I found that unmappable context is one of the most common reasons RelocaTE2
succeeds by leveraging paired-end read information.

false negatives in red, and presumed false positives in blue. ELITE’s false-negative error rate

brings into question the validity of private TEi which is present only in one sample and has no

sharing pattern. Thus, those TEis are best validated by external means, including PCR based

experiments, and concordance with other TE detection tool, both of which I report on later. The

last three sharing patterns (total 5 TEis) are likely a result of multiple errors. There are only two

presumed false-negative TEis in the sample with the highest coverage, C57BL/6J. However it is

the only sample with a mix of read lengths (125-bp, 151-bp), and the shorter reads may play a

role in introducing that error. The single sample with the highest predicted error rate based on

these anomalous sharing patterns is A/JOlaHsd(m001), and the type of error is dominated by an

access of false negatives (74+8 false negatives vs 2 false positives). This is consistent with the

fact that A/JOlaHsd(m001) has lower than usual coverage, which is what we believe drives the

false-negative error rate of ELITE. This conjecture is tested by our experiments on simulated data

sets later on.
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3.3.2 Comparison of ELITE with other Split-Read-based Method

For comparison, I ran a recent transposable element detection tool, RelocaTE2 (Chen et al.,

2017), on the same set of six sequenced samples. Just like ELITE, RelocaTE2 also requires TE

template and finds insertions by identifying the split-reads. Recall split-reads are the ones that

contains partial TE and partial non-TE sequence. RelocaTE2 is a recently published paper (PeerJ

2017), where authors showed their tool outperforms three other TE detection tools - ITIS (Jiang

et al., 2015), TEMP (Zhuang et al., 2014), and RelocaTE (Robb et al., 2013) regarding precision,

recall and runtime. Geneticists had already used the first version of this tool, RelocaTE (Robb

et al., 2013) to assess TE activity in rice data. In addition to the good performance, this is a very

well-documented tool, and its installation is fairly simple. For these reasons, I chose this split-

read-based method to compare with ELITE.

In the six samples of our dataset, there is a high concordance between the TEi predictions

of both tools. However, ELITE discovers a few more than RelocaTE2. RelocaTE2 fails to iden-

tify any TEi in the reference, and it misses many non-reference TEis where the TE sequence

diverges too much from the template. A summary of RelocaTE2’s and ELITE’s TEi discoveries

are depicted as Venn diagrams in Figure 3.5. Note that I am only comparing the non-reference

predicted TEi’s for ELITE since RelocaTE2 does not consider them. RelocaTE2 tends to perform

better on samples that are B6 or samples that closely match the reference, such as C57BL/6J and

B6N-Tyrc−Brd/BrdCrCrl. In those samples, ELITE mostly fails in the mapping step. Mutation in

any B6 sample with respect to reference is very rare. Therefore, there’s rarely any variants in the

part of TE’s context. This helps RelocaTE2 to correctly map some TEis. However, other samples

are not like B6, and they have relatively higher mutations. It’s important to allow some edit dis-

tance in context too in order to locate TE in non B6 samples. That’s why ELITE performed better

in the 4 AJ samples.
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Figure 3.6: Effect of using multiple seeds: The left-most pair of bars show the number of TEi
found by ELITE using the most conserved seed. I denote 1 conserved seed by 1*. The next eight
pairs of bars show the number of TEi found using a different number of seeds ranging from one
to eight. As we can see, increasing the number of seed results in more TEi discovery. However, a
single conserved seed is often able to capture more TEis than eight random seeds. Thus I chose
to use data-driven seed which I call the conserved seed.

3.3.3 Effect of Multiple Seeds

To examine the effect of using multiple seeds, in comparison to selecting a single conserved

one I ran ELITE on A/JOla(f015) with a variable number of seeds (see Figure 3.6). For this

experiment, we only looked for two TE templates, i.e., ERVB7 1-LTR MM and ERVB4 2B-

LTR MM. I varied the number of seeds starting from one to eight. All the seeds had an equal

length of 25 bases and started from the boundary of a TE template. Here I only considered the

proximal TE and its seed. In case of more than one seed, all seeds were chosen to be equally

distant from their neighbors. As you can see from the figure, one conserved seed is enough to

find majority of the TE insertions for both of the TE templates. However, if I chose some random

seeds, it is highly unlikely to find all the TEis. In fact 8 random seeds from ERVB7 1-LTR MM

find less TEis (≈ 850) than a conserved one (≈ 1000). This is also true for ERVB4 2B-LTR MM.

8 random seeds from ERVB4 2B-LTR MM find less TEis (≈ 750) than a conserved one (≈ 850).

Therefore we recommend using a conserved seed for capturing more TEis.
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Figure 3.7: (i) and (iii): The precision rate of ELITE, MELT, and TEMP for TEi discovery in
simulated mouse and human genome as a function of genomic coverage is shown in red, green
and blue respectively. As we can see, ELITE did not produce a single false positive in either
mouse or human genome resulting in a precision rate of 1. However, TEMP (in both human and
mouse) and MELT (in mouse only) produced some false negatives when the coverage is around
40x. (ii) and (iv): The recall rate of three tools. For each tool, it increased with the increase in
coverage Although, at low coverage, ELITE performed poorly compared to others, but caught up
when the coverage is around 10x. At coverage higher than 10x, MELT and TEMP had many false
negatives resulting in a reduced recall rate compared to ELITE.

3.3.4 Evaluation of ELITE on Simulated Data

To estimate the precision and recall of TEi discovery, I ran ELITE and two additional state-

of-the-art TE detection tools, i.e., MELT and TEMP on simulated data. I inserted 100 AluY and

100 ERVB7 1-LTR MM into chromosome 1 of human and mouse reference genome respectively.

Location of these insertions is chosen randomly. Among the 100 TEis in mouse and human, 80

are inserted as homozygous and 30 are heterozygous to estimate ELITE’s zygosity prediction
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Figure 3.8: The absolute distance between predicted and actual position for each TEi at cover-
age 40x. On average, this distance for TEMP was around 100 and 50 bp in mouse and human
respectively. MELT’s predicted position was very close to the ground truth with few exceptions.
However, ELITE outperformed both by finding all the TEis within 6bp resolution.

rate. I used Samtools (Li et al., 2009) to simulate 150-bp paired-end reads at different coverages

ranging from 2x to 40x. For each set of simulated data, I built an msBWT index from paired-end

reads as required by ELITE. Additionally, as a preprocessing step for both MELT and TEMP, I

aligned all the short reads to the corresponding reference genome using BWA. I considered a TEi

is found if it’s within 500 bases of the ground truth location.

Figure 3.7 shows the precision and recall rate of ELITE, MELT and TEMP for different cov-

erages ranging from 2x to 40x. From this figure, we can see that, ELITE has no false positive

rate for either mouse or human genome. On the other hand, both MELT and TEMP’s precision

rate decreased with the increase in coverage. However, ELITE’s recall rate heavily depends

on the sample’s coverage. With low coverage, the majority of the heterozygous insertions are

missed by ELITE. However, as the coverage increases, recall rate for ELITE also increases and

becomes stable when the it is around 15x. This strongly indicates that having 15x coverage to get

higher recall rate is not random and using sequenced data with at least 15x coverage is enough for

ELITE to identify more than 90% of the TE insertions. However, for MELT, and TEMP, we can

get at most 60% of the insertions even with 40x coverage.
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Figure 3.9: This figure shows the accuracy of zygosity prediction by ELITE in mouse and human
respectively. Blue bars stand for homozygous TEi, and red bars stand for heterozygous TEi.
Similar to recall, zygosity prediction accuracy also increased with the increase of coverage. At
coverage 2x, ELITE failed to locate any heterozygous insertion. Other two tools do not have the
zygosity prediction feature.

I also examined the distance from predicted position to the ground truth for each 3 tools.

As we know TE insertion in a gene can disrupt or completely disable its functionality. It is also

known to have consequences if it get inserted in a promoter region (around 500 bases before the

start of a gene). That’s why it is important to identify the exact location of a TE insertion to see if

its around or inside e gene. Usually discordant-read-pair-based methods are not good at finding

the exact location of TE insertion. However MELT has additional steps that further analyzes the

discordant pairs once a TEi is found. It walks through all the discordant reads to find the exact

TE boundary or insertion site. That’s why MELT can predict almost accurately the location other

than few exceptions. On the other hand, ELITE focuses of finding TE boundary, and always find

the exact location with 100% reliability shown in figure 3.8.

Finally, I calculated ELITE’s zygosity prediction rate. All these results are shown in figure3.9.

Similar to recall rate, ELITE’s zygosity prediction rate depends on coverage. Since heterozygous

TEis have half of the coverage, it is more likely to be missclassified than a homozygous TEi. In

my experiment run, ELITE never declares a homozygous TEi as heterozygous. However, at low

coverage, it tends to missclassify some heterozygous TEis as homozygous.
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3.3.5 Validation via PCR

In conjunction with my biolocical collaborators, I validated the presence, absence, and zygos-

ity of the nine predicted TEis found in three of the sequenced samples for which I had available

DNA (A/JCr(f001), A/JOla(f015), and B6N-Tyrc−Brd/BrdCrCrl(m001)). Instead of choosing

a random TE insertion for validation, I followed the following criteria to effectively measure

ELITE’s performance while providing information that is most useful for biologists. For exam-

ple, I selected at least one TEi that is shared by everyone. I also selected one that is polymorphic

in AJ and one that is polymorphic in B6. Finally, I chose some private TEis that were present

only in one sample. To validate the zygosity predictions I chose four homozygous and five het-

erozygous TEis. Private TEis are biologically the most interesting because they indicate recent

TE activity since they are absent in other closely related samples. Private TEis can also lead us

to find the active copy of TE for further analysis. I also kept in mind that, insertions that are in

genes are more likely to have functional consequences. Thus I selected more TEis that are private,

and prioritized the ones that are within a gene. For the private TEis, I also made sure that each

sample in a population either has a TE presence or a TE absence probe. In addition to these, I

chose two one-sided TEis where my algorithm failed to find both proximal and distal ends. We

did not design PCR assays to specifically target the predicted false positives shown in 3.4.

Assay Design: The proximal and distal genomic context probes of each TEi were used to further

assemble the genomic sequence surrounding each TEi using the msBWT using the methods simi-

lar to those described in (Holt et al., 2016). For each TEi, a pair of primers flanking the TEi, one

internal to TE and two within the genomic context of the TEi were designed. Two PCR products

of different sizes (range 160-414 bp) can be synthesized from the primers. One using the two

genomic context, and a second from the TE primer sequence and the closer of the two context

primers. The presence or absence of these amplicons was used to determine the absence, pres-

ence and zygosity of the corresponding TEi predictions in a given sample. PCR reactions were

imaged after running on a 2% agarose gel with ethidium bromide at 120V for 40-50 minutes.
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Figure 3.10: (i) Assay Design: For each TEi, we created three primer sequences i.e. forward F,
reverse R, and LTR (ii) Representation of ideal DNA amplification results for each TEi zygosity:
an amplification band in F/R indicates absence of TEi, a band only in F/LTR indicates presence
of TEi in homozygous state, and a band both in F/R and F/LTR indicates presence of TEi in
heterozygous state, (iii) PCR amplification result: For each sample, the PCR products from 1)
Forward-Reverse and 2) Forward-LTR primers reactions are shown side by side. Reaction 1
detects the absence of the TEi and Reaction 2 detects the presence of the TEi. Sequenced sam-
ples: a) A/JCr(f001), b) A/JOlaHsd(f015), c) B6N-Tyrc−Brd/BrdCrCrl(m001). Additional test
samples: d) A/J(m93), e) A/JCrl(f002), f) A/JOlaHsd(m001), g) A/JOlaHsd(m002), h) A/JO-
laHsd(f003), i) B6N-Tyrc−Brd/BrdCrCrl(m001), j) C57BL/6J(m001), k) C57BL/6J(f002).TEi 1
is private and found only in A/JCr(f001) at Chromosome 2:58948253. Its presence is confirmed
in that sample (a), but it does not appear in any other test sample including a second A/JCr (e).
TEi 2 was found in A/JOlaHsd(f015), is also private, and was found in a heterozygous state
at Chromosome 4:98626789. The assay (b) confirms this, as well as it being present and het-
erozygous in 2 of 3 test samples from the same vendor (g,h). TEi 3 is private and was found in
B6N-Tyrc−Brd/BrdCrCrl(m001) at Chromosome 1:125336107, where it is confirmed (c). It does
not appear in the test sample from the same strain (i). TEi 4 was predicted to be shared among
all A/J samples at Chromosome 1:28791918. It was confirmed in the two sequenced samples
(a,b) and it also appears in all A/J test samples (d,e,f,g, and h). All four TEis were identified as
non-reference, and they are not found in any of the reference-like test samples (j,k).

PCR results: There was perfect concordance between ELITE’s predictions and PCR valida-

tion in all 27 assays (3 assays per TEi). I tested the presence, absence and zygosity for six of

these TEis in eight additional unsequenced samples (A/J(m93), A/JCrl(f002), A/JOlaHsd(m001),

A/JOlaHsd(m002), A/JOlaHsd(f003), B6N-Tyrc−Brd/BrdCrCrl(m001), C57BL/6J(m001), and

C57BL/6J F002)(see figure 3.10). In all 48 of those PCR results suggested genotypes that are

consistent with ELITE’s TEi findings. In two of our assays, I confirmed the presence of a TEi dis-

covered by ELITE, but it was not found by either MELT or TEMP. Thus, via another independent

method we have confirmed 100% of 9 of ELITE predicted TEis. This supports our claims that

ELITE has a low false-positive rate.
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3.3.6 ELITE TEi confirmation via an AJ genome assembly

Recently a new AJ-specific full-genome assembly was announced (Lilue et al., 2018). I

used this resource to test if any of the TEis predicted in any of our AJ samples, but absent in

the standard mouse reference genome, were included in this de novo assembly. While there was

no specific mention of any special assembly efforts for Transposable Elements, in a previous

publication the same authors reported on TE differences between mouse strains using the same

data(Keane et al., 2012). I first considered those TEis shared by all of our AJ samples. For each

TEi, I queried for the context discovered by ELITE in the assembled AJ genome, and verified

whether it was followed by the expected TE sequence (allowing for errors). More than 90% TEis

reported in all AJ samples by ELITE were also found in the AJ reference genome. For those

missing, the context itself was absent from the new genome, thus not allowing us to verify the

presence or absence of the predicted TEi. It was never the case that I found a predicted TEi con-

text in the new AJ reference, that was not adjacent to a TEi.

This full genome assembly, as mentioned previously, provides a means for estimating the

rate at which private TEis found by ELITE are, in fact, not private, but instead due to the false-

negatives. I considered only the new predicted TEis by ELITE (i.e. those not already in the ref-

erence) that appear in any AJ sample, 1544 of 2113 (73%) appear in the AJ genome. As before

those missing are due to missing genomic context sequence. Of these, 1440 of the 1789 (80%)

that ELITE found in every AJ sample appear in the AJ reference. Next, we considered the pre-

dicted false-negative cases from Table 3.4. Of the 75 predicted TEs that are shared by all but

one AJ sample, 53 (71%) appear in the AJ reference, and all of the 53 were missing from the

low coverage A/JOlaHsd(m001) sample. In a second set of 14 predicted false-negative TEis do

not appear in the reference but appear in 5 of the 6 strains we sequenced, 7 (50%) appear in the

AJ genome. Of those, 4 of the 8 missing from A/JOlaHsd(m001) were included. Overall, there

is substantial agreement between the TEi’s found by ELITE and those incorporated into the AJ

reference genome.
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3.3.7 Runtime Comparison

I measured the total time spent on each of the four AJ samples to discover TEis by ELITE,

MELT, and TEMP (Table3.5). At first, I constructed msBWT of each sample for running ELITE.

On the other hand, for running MELT and TEMP, I created bam files by aligning all the short

reads of each sample to the mouse reference genome using bwa-mem. Each bam file was then

sorted and indexed using samtools. I used 6 threads to run our msBWT construction pipeline

whereas 30 threads were used for running all the preprocessing steps of MELT and TEMP due

to its computational demand. These preprocessing steps for each tool were run on a machine

with the following specification: Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz, 6 cores, 256

GB memory. Running the actual TE searching tool after the preprocessing step does not require

heavy computational resources. Hence I ran the rest of the steps on an Intel(R) Xeon(R) E5420

CPU, 4 cores, 2.50 GHz with 32 GB RAM. ELITE, MELT, and TEMP are written in Python,

Java, and Perl, respectively.

Sample ELITE MELT TEMP BWT index Alignment

A/JCr(f001) 55 95 312 581 507
A/JOlaHsd(m001) 42 72 238 178 267
A/JOlaHsd(f015) 32 55 200 403 407

A/J(f321) 45 77 360 408 514

Table 3.5: Total time required for each tool to locate six classes of TE in four AJ samples (in
minutes). Data preprocessing time of each tool is shown in the last two columns, where the BWT
index corresponds to ELITE, and Alignment timing corresponds to both MELT and TEMP.

As we can see from table 3.5, ELITE is about 1.7 times faster than MELT. TEMP is signif-

icantly slower than both ELITE and MELT. It is also apparent that the preprocessing step for

each tool is the most computationally heavy step. However, even in this case, except for sample

A/JCr(f001), creating a BWT index is always faster than typical alignment. Other than providing

a faster way to detect TEi, msBWT is not biased to any reference genome and has many uses, in-

cluding data compression, fast kmer query, local assembly, local alignment, error correction, etc

(Simpson and Durbin, 2010)(Salikhov et al., 2013)(Greenstein et al., 2015)(Wang et al., 2018).
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Figure 3.11: These plots illustrate a range of hypotheses generated during the initial discovery
phase of ELITE. They show the read support for 5 out of more than 14000 TE-like sequence
paths found during a single discovery pass using a 25-base seed from ERVB7 LTR. Each se-
quence is shown along the x-axis. This seed is shown in gray and is a suffix of all 5 sequences.
Each TE sequence is shown in the same color as its plot, and its genomic context is the prefix
shown in black. The y-values of the plot indicate the number of reads supporting each suffix
extension of the seed for each TE-like sequence on a log scale. Generally, the number of reads
supporting each TE-path is high until the context is reached.

3.4 Algorithm Complexity Analysis

The ELITE algorithm for finding TEs and the corresponding genomic contexts is essentially

an exponential DFS algorithm. Given that a DNA sequence is consists of 4 bases, i.e., A, C, G,

and T, in the worst case scenario, it will traverse all 4r possible path to extend r bases before a

seed. Fortunately, the genome is finite, and it’s not possible for a genome to have all 4r sequences

when r is too large. In addition, msBWT allows us to look for any prefix of length r in O(r) time.

Finding seed k-mer and extending it (O(k) +O(r)) are the only two operations that I use in my

discovery phase.

The figure3.11 illustrates paths found during the discovery phase of ELITE. It follows five

out of the more than 14000 paths explored during a search starting from a single seed from a TE

called ERVB7 1-LTR MM. The number of supporting reads for each suffix of the five paths is

plotted. The DFS progresses from right-to-left in this plot. The support for the seed, shown in

gray, includes 5050 reads. As the suffix is extended to the left the number of supporting reads is
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reduced. When a variant is reached, the tree branches and the DFS follows each path separately.

Branching points near the root are illustrated in tree form under the right section of the plot. The

paths taken by the five examples are overlaid on the tree. A sudden drop in read coverage along

each of the five paths can be seen when a variant is found on the path. Typically, the read cov-

erage remains high until the genomic context of the insertion point is reached (shown in black).

Soon after that point, the read coverage falls into a typical range for the unique genomic sequence

(between 4 to 8 reads for a 75-bp subsequence of a 150-bp read on a single strand at 30x cover-

age). On some occasions, the TE path does not fall into the typical range, such as seen in the red

plot. These paths represent context adjacent to the TE’s Long Terminal Repeat (LTR) sequence

and cannot be uniquely mapped in the genome. There are other cases where a TE path cannot be

mapped, as illustrated by the light blue path. While the context and TE combination appears only

once in the genome, the context itself is repeated. Lastly, the purple path illustrates how ELITE

finds TEi’s that are significantly different than the TE template. Since ELITE does not attempt to

align any part of the read once a seed is established, it is free to follow any promising path. Thus,

it can find distantly related TEs that are highly diverged and perhaps unannotated. This distinc-

tion is one of ELITE’s advantages over reference-alignment or TE-catalog-alignment methods.

Also, this figure gives us an insight into using our approach to find any repeats by looking at the

sudden drop of coverage.

3.5 Summary

I have developed a tool ELITE, that uses a novel local-genome-assembly-based algorithm

to efficiently discover TE insertions. In addition to several independent validation methods, I

also proved the legitimacy of ELITE’s findings by showing its presence in real DNA. I showed

different pattern of TEi discovered by ELITE within a population is highly consistent with their

origin. Even though in this chapter I use a smaller population with only six samples, it is possible

to run the whole pipeline in a much larger one. In chapter 5, I applied ELITE on a population that

has more than a hundred samples. I discuss there in detail how ELITE is suitable for finding the

51



TEi segregation pattern. This helps to understand TE biology, the phylogeny of the population,

and the evolution of genomes. ELITE’s powerful feature of identifying TE presence and absence

probes is useful for biologists in many ways. First, the probes can be used for creating primers

for PCR validation, which I already showed in this chapter. Second, the polymorphic probes

can also be used for Quantitative Trait Loci (QTL) mapping in a given population. Results pro-

duced by ELITE also led to interesting biological findings i,e,. many private TEis segregating in a

closely related population is in the heterozygous state. They are thus providing stronger evidence

for recent activity and being de novo. Overall, the large number of TEis found by ELITE indi-

cate that TEs are a significant source of genetic variation that must be taken into consideration.

However, in this chapter, I mainly look for TEis using six TE templates, where all six belong

to a special class called Endogenous RetroVirus, ERV. As traditional TE database and literature

suggest, there are other types of TEs and some more subclasses of ERV. That’s why I extend

our ELITE algorithm further to systematically find all the different types of TEis in a sample.

Thus, in the next chapter 4, I describe a new pipeline Frontier, that can find any TE insertions

from a short-read dataset and does not require any TE template. This template-free pipeline can

potentially detect new TE subtypes that are still unknown and not annotated in any TE database.
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CHAPTER 4: THE BOUNDARIES OF NOVEL TRANSPOSABLE ELEMENT
INSERTIONS IN GENOMES, FRONTIER

In this chapter, I discuss a second pipeline Frontier for detecting and mapping transposable

elements in short-read sequence data. It extends ELITE (described in chapter 3) in its ability to

find novel TE types. ELITE and other split-read-based TE detection tools require templates to

detect a TE boundaries. However, the sequences of TE types vary significantly within TE classes

and between host species. Furthermore, the templates for TEs found in libraries like Repeat-

Masker, Dfam, Repbase are typically limited to TE sequences identified in a single reference

genome assembly. If an isolated population contains a novel TE, chances are very low that they

will be found in these libraries. That’s why I developed a template-free algorithm that automat-

ically identifies all the spanning boundaries of TE insertions using a more general TE model.

These boundary reads are similar to split-reads which contain both TE and non-TE segments.

This method takes advantage of the repetitive nature of TEs by finding all the sub-sequences that

are repeated more than a certain threshold in the genome and it uses two data structures, the ms-

BWT and the LCP. These repeated sub-sequences are then extended further to identify potential

candidates that contain the boundaries between highly repeated sequences and normal coverage,

which I call the Frontier. However, this pattern of high-coverage adjacent to normal coverage is

not unique to just TE repeats. To eliminate non-TE repeats, all candidates are then run through a

classifier. This classifier identifies those candidates where the repeated sequence is more TE-like

under the assumption that functional aspects of TE-like sequences are conserved. Finally, in a

separate classifier, I infer the likely TE class of the TE portion from each frontier candidate. My

experiments based on the mouse data reveal that a classifier that is trained on one type of mouse

strain can be applied to other types. In fact, species that share similar types of transposable ele-

ments do not need separate classifiers, thus making the whole TEi detection process faster than
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any other existing methods. My classifier-based approach can also be extended to find other types

of repeats like the boundaries of telomeres or DNA microsatellites.
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Figure 4.1: Frontier Pipeline: The Longest-Common Prefixes (LCPs) of the suffix array from a
full short-read sequencing dataset (represented as a multi-string Burrows-Wheeler Transform
(msBWT)) is used to extract all reads where a sizable substring is highly repeated, but, then drops
to normal genomic coverage when it is extended to one side. These Frontier candidate reads are
then fed to an initial Classifier-I to predict one of 4 different read classes, a true TEi boundary
(frontier), a small variant within a TE (full-TE), non-repetitive sequence (non-TE), and repetitive
sequences that are not TE (Other). Only the class type frontier i.e., reads with partial TE and non-
TE segments are kept. Then two subsequent filters are applied, the first keeps only the unique
contexts and the second identifies only the non-reference frontiers. Finally these non-reference
frontiers are fed to the Classifier-II to predict the TE type of each frontier read.

4.1 Challenges and Motivation

Detecting repeats and/or Transposable Elements in high-throughput short reads is a chal-

lenge. Usually, TEs are considerably longer than a read length. Thus, each read contains only

a fragment of a TE that can be mapped throughout the genome making it extremely difficult

to determine how many, and where the TEs are in the genome. Some existing tools focus on

identifying all the repeats/TE types in the genome while others focus on locating TE insertions.

RepDeonovo (Chu et al., 2016), RepARK (Koch et al., 2014) and others use a program like Jelly-

fish (Marçais and Kingsford, 2011) to initially obtain a list of most frequent k-mers, then extend

those that appear with high frequency to assemble potential TE subsequences, which are finally

clustered and aligned to obtain consensus repeat sequences. These tools only report the different

types of repeats present in a short read dataset and do not identify the insert location.

Other tools attempt to detect the location of TE insertions. Some, including MELT (Gard-

ner et al., 2017), TEMP (Zhuang et al., 2014), RetroSeq (Keane et al., 2012) use discordant
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read-pairs to find TEs. A discordant read-pair occurs when one the read maps uniquely to the

reference genome while its mate maps to multiple places. Since TEs are expected to be located

throughout the genome, discordant read-pair methods assume that a TE has been inserted some-

where near the uniquely mapped read. The insertion location reported by these methods can be

significantly off (0-300bp). Furthermore, alignment-based methods also tend to report a high

number of false positives. Moreover, these methods are heavily biased in favor of TE-templates

present in the reference, since the mate is expected to map to many locations.

A third class of TE detection methods are split-read-based. These methods can precisely

detect the insertion location to the basepair by finding a “break-point” where the TE sequence

is inserted. Since a short read cannot contain the whole TE, looking only at the sequence near

TE boundaries serves the purpose. To find these TE boundaries, split-read-based tools like

ELITE (Kashfeen et al., 2019), Relocate2 (Chen et al., 2017), T-lex2 (Fiston-Lavier et al., 2014),

ITIS (Jiang et al., 2015) rely on a known TE template provided in advance. Relocate2, ITIS, T-

lex2 aligns all the short read to the TE template. From the partially aligned reads, they clip the

segments that do not match with the TE template and map them to a reference genome to find the

insertion location. Often these clipped segments are not unique thus are ignored for the rest of the

pipeline. ELITE also finds split-read by adopting a local genome-assembly approach seeded by a

segment of a TE near its boundary. All methods for detecting TE insertions fail to find insertions

of novel or highly variant TEs because of their dependency on a known TE template.

The Frontier pipeline identifies repeated genomic sequence directly from short reads without

using templates based on the longest-common prefixes of adjacent entries of a suffix array. These

repeated suffix-prefixes are then extended further and then filtered to keep only those segments

that have a normal (i.e. non-repeated) coverage thus suggesting a single copy. This also ensures

a higher chance that the extended segment might be mapped uniquely. I call highly repeated

subsequences that, when extended in one direction, transition to a sequence typical of single

coverage frontier candidates. These candidates are then run through a classifier to predict if

they contain a TE and non-TE segment adjacent to each other – I call such sequences the actual

55



Frontier. Finally, in a separate classifier, I infer the likely TE class of the TE portion of each

frontier. Even though machine learning is widely used throughout bioinformatics, previous work

on transposable elements has focused primarily on this second stage of assigning sequence to

a TE class. Examples of such tools for classifying TE sequences include da Cruz et al. (2020),

Hoede et al. (2014) and Abrusán et al. (2009). Therefore it is important to have a pipeline like

Frontier that not only attempts to find new TE types but also attempts to identify the locations of

novel TE insertions.

4.2 Frontier Pipeline

In an attempt to find TE insertions my analysis pipeline considers reads from a given short-

read high-throughput sequenced dataset. Since TEs are repeated throughout the genome, the

analysis pipeline expects any TE sequence to have unusually high coverage when compared to

a regular genomic sequence. Therefore, I identify all the reads that contain a subsequence that

appears with a very high count (repeat), followed by an adjacent sequence that, when consid-

ered together, exhibit a normal count (context). I use two data structures, msBWT and LCP to

identify repeat intervals that occur in a high-throughput short-read sequencing dataset above a

given threshold. I then consider sub-intervals of the identified repeat intervals to find extended se-

quences with normal genomic coverage. I call these subsequences that are a mix of repeated and

unique sequence Frontier candidates. However, there are certain cases where a frontier candidate

might not be an actual TE insertion boundary. For example, any mutation in the TE sequence

might cause the high count of TE segment to drop into a normal coverage range. There also exist

boundaries of highly repeated sequences that are not part of any transposable element such as

microsatellites and telomeric sequences. Therefore, to find the True Frontier, I propose a deep

learning model which takes filtered short-reads, i.e. Frontier Candidates, as inputs.

I employ two classifiers, Classifier-I for predicting the true frontier and Classifier-II for pre-

dicting the TE type seen at the Frontier. Both classifiers use the same network structure with two

convolutional layers followed by two fully connected linear layers. I transform the sequence of a
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Frontier Candidate into a matrix similar to a one-hot vector and feed it directly to the Classifier-I.

I next take the predicted frontiers from this classifier and map their context (i.e., the sequence

on the side of the boundary where coverage drops to a normal level) to a reference genome to

identify the unique contexts. I then filter out all the frontiers that are already present in the refer-

ence. This provides a list of non-reference novel frontiers, which are then fed to the Classifier-II

to predict their TE type. In Classifier-II I included the 4 major classes of TEs present in mouse

reference genome (Nellåker et al., 2012). Those are (i) LINE (ii) SINE/Alu (iii) SINE/B2 and (iv)

ERV. The whole pipeline is illustrated in figure 4.1.

4.2.1 Identifying Frontier Candidates

At first, I build two data structures i.e., the msBWT and the LCP from a given whole-genome

high-throughput sequencing read dataset. The msBWT can be used as an index for recovering

entries of an implicit suffix-array and for performing k-mer searches within the collection of

reads. The LCP is an array that contains the longest common prefix between two consecutive

sorted read suffixes. The indices of msBWT and LCP array have a one-to-one correspondence.

That is the ith element of the LCP array will hold the length of prefix shared by ith and (i + 1)th

read suffix in the msBWT. Using this LCP, along with msBWT, it is possible to find all k-mers

that occur over given repeat threshold, m (typically 500 to 800 based on the read coverage).

A scan through the LCP can determine the intervals of any k-mer (prefix of the implicit suffix

array entry) that is repeated at least m times. I achieve it by finding at least m − 1 consecutive

rows with an LCP value greater than k. The algorithm builds a list of all repeat intervals. Initially,

if the value of LCP is less than k, then it goes to the next value until it finds one which is greater

than or equal to k. It saves the index corresponding with this value as low. Then it continues

sequentially until the LCP value is less than k. This index corresponds to the high end of the

repeat interval. If high − low ≥ m − 1 the (low,high+1) interval is saved to a list of genomic

repeat intervals. It continues to find intervals until the end of the LCP array. However, a short

read dataset can contain 100s of millions of reads depending on the organism and sequencing
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coverage. To overcome this problem, I break the LCP into smaller chunks and process each

chunk in parallel, and finally merge the results. This step outputs all the repeats where a subset

belongs to some TE classes.

Algorithm 2: Finding Frontier Candidate

FIND-Repeat(K,LCP,m)
repeat = ∅
Select n random indices i from LCP where LCP[i] > K
Divide LCP into chunks: LCP [i1 : i2], ....LCP [in−1, in)]
for each chunk do

count = 0
while chunk[i] < K do

i++
end
low = i
while chunk[i] ≥ K do

i++
count++

end
high = i
if count ≥ m− 1 then

repeat = repeat ∪ range(low, high+ 1)
end

. m = minimum frequency of repeat
. K = length of repeat segment

end

After finding all the genomic repeat intervals, our next goal is to identify all reads where the

repeat is adjacent to normal coverage. I use the same algorithm for finding repeat from LCP with

some minor changes. Previously, when finding the repeats, I only considered LCP values that

are greater than a certain threshold. However, when finding contexts, I keep only the LCP inter-

vals that have both upper and lower bounds indicative of normal read coverage for k-mers of that

length. Thus, for finding repeat’s context, the algorithm then proceeds to subdivide repeat inter-

vals into sub-intervals with normal coverage. Once again the LCP is scanned to find extended

prefixes contained within genomic repeat intervals of length k+k’ with normal coverage, typically

below a coverage-dependent high-count threshold (15-20) and above a noise threshold (2). Fi-
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nally, all the reads in these interval ranges are extracted using msBWT. I call these reads frontier

candidates.

4.2.1.1 Input Data Preparation

Each input to our model consists of a read and its corresponding overlapping-k-mer count.

However, to encode a read as an input we convert it to a numerical form. Since DNA can have

only 4 bases, (A, C, G, or T) each R-length read is mapped into a 4xR dimensional matrix. I

employ a so-called 1-hot encoding where for each A of the read’s sequence a 1 is placed in the

A’s row, and 0 in the others. Likewise for the other three bases. The second input encoding that

I use is the overlapping k-mer count. I first divide the sequence into R − k + 1 segments or k-

mers and count the occurrence of each k-mer across the entire dataset using the msBWT. Then I

replace the 1s of the 1-hot encoding with the log2 of the k-mer count. This trims k-1 bases from

the sequence as we can only get R − k + 1 k-mers from a read of length R. Thus, I choose a k

value large enough so that it is informative of actual coverage, but small enough so that the read

is adequately sampled at many base positions.

4.2.1.2 Model Description

I designed a 4-layer deep neural network and trained it to classify each frontier read. The

first two layers are convolutional network layers, followed by two fully-connected layers. This

architecture is shown in figure 4.3. The first convolutional layer in our model has 4 input chan-

nels, 9 output channels, and a kernel of size 15. Recall our input data representation which is a

4 ∗ (R− k + 1) matrix for each read, is now divided into 4 vectors. Each of these 4 vectors is fed

to each input channel independently. I use 1D convolution as I have 1D vectors as input instead

of matrix. The output of this layer is fed to a second CNN which has 9 input channels, 12 output

channels, and a kernel of size 5. The output of this layer is then fed to a fully connected linear

layer followed by another linear layer which predicts the class for each input. The dimension of

this layer’s output is the same as the number of classes and represents the probability of being
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Figure 4.2: Input data representation: I use a modified one-hot vector encoding to represent
input sequences of our classifiers where the one values are replaced by a log2(k-mer count) of a
sub-sequence centered around the represented base. This effectively trims the sequence by k − 1.
The k-mer counts used are the sum of the sub-sequence’s frequency in the reads of the NGS data
set in both the forward and reverse-complement direction. They are computed using an FM-index
of the msBWT. Since the k-mer is derived from an frontier candidate read from the dataset, it is
guaranteed to appear at least one time. This encodes sequence motifs in combination with their
genomic frequency.

Figure 4.3: Architecture of deep-learning neural network used: A 4-layer convolutional neural
network is used for classiying Frontier. First two layers are CNN, each of these are followed by
a maxpool and a RelU. The flattened output from CNN 2 is then fed to a fully connected linear
layer. Final layer’s output is 4D for predicting probability for 4 classes.

in that class. We have 4 output classes i.e., i) Frontier ii) Full-TE iii) non-TE iv) others. A candi-

date is a Frontier if it contains both a TE and a non-TE segment. It’s a Full-TE if all the bases are

part of a TE. It’s a non-TE if it contains no TE or any other kind of repetitive sequence. All other
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Figure 4.4: Different classes of our Frontier Classifier-I. class (i) is the true frontier, where high
coverage repeat is next to a normal coverage genome. class(ii) belongs to full-TE where a muta-
tion in TE resulted the drop in coverage from high to low. class(iii) belongs to non-TE where the
high coverage portion came from regular genome, most possibly is from a duplicated region or
from a gene family. class (iv) contains high coverage segments which came from nonTE repeat
like telomere or DNA microsatellite.

repeat types of uncategorized reads fall into the other class. 4 Different classes of Classifier-I

is shown in figure 4.4. Even though I am only interested in the frontier class, suggesting that a

binary classifier might work, in practice, I observed that modeling 4 biologically relevant classes

improves the classification accuracy for the frontier class. Also for a binary classifier, all of the

many types of non-frontier reads fall into a single class. Since there are many examples in this

class compared to frontier, it creates either an under-sampled set of negative examples or a hugely

imbalanced dataset, neither is ideal for a good classifier. Thus I propose a 4 class classifier for

predicting frontier. Three classes other than the true frontier, might be useful in future research if

someone wants to annotate other, non-TE, types of repeats in the genome.

4.2.2 Mapping Frontier Context

After finding all the true frontiers, I then identify their positions with respect to a reference

genome. Now, if a TE insertion is not present in the reference genome, then the frontier read will

not be there either. However, the context part of the frontier must be in the reference genome

unless other mutations happen exactly at the same place. Thus I map the position of the context

using bowtie2(Langmead et al., 2009) (which is also BWT based). I set the parameters such that

it allows 2 mutation in 30 bases. Mapping the Frontier’s context allows us to find the TE insertion
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location in terms of the reference genome’s chromosome and position. I only keep the frontiers

where the context maps uniquely. For each unique context, I consider the surrounding sequence

from reference and check if it contains any annotated repeat/TE. If no repeat is found, then I

annotate it as a Novel Transposable Element Insertion. However it is obviously reasonable if

someone wants to keep the frontiers that are also in reference. Sharing TEis with reference indi-

cates the sample is similar to it, and which might be useful in other genomic analysis. Moreover,

frontiers that don’t have uniquely mapped contexts can also be kept for other kind of experiments.

For example, it is possible that a context is duplicated in reference genome but not in a sample,

thus fails to map uniquely.

4.2.3 Identifying Frontier’s TE type

The final step of our pipeline is to classify each Novel frontier based on its TE type. I use

the same network structure as the Classifier-I. Only difference is that the input vectors for Clas-

sifier-II do not incorporate the overlapping k-mer count and use the whole frontier read as in-

put. I have 4 major TE types included in our model, those are LINE, SINE/Alu, SINE/B2, and

LTR/ERV. These are the most frequent types of TEs seen in mouse genome and annotated by Re-

peatMasker (Nellåker et al., 2012). Using this classifier for any species other than mouse might

require a to change in the number of output classes, which can be trivially done by changing

parameters in the network model. This will also require to retrain the model using desired TE

types.

Figure 4.5 shows the fraction of mouse and human genome masked by RepeatMasker. Back

arc represents the unmasked/non-repeated regions. As we can see, in both cases, almost half of

the genome (45% in mouse and 52.5% in human) are masked due to some repeated elements.

Majority of the repeats are from three different kinds of transposable element, SINE (shown in

blue), then ERV (shown in green), finally LINE (shown in purple). I broke down the larger class

SINE into two groups for making our annotation more accurate.
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Figure 4.5: Fraction of different types of repeats including transposable elements in mouse and
human genome. Majority of the repeats are from three different kinds of transposable element,
SINE (shown in blue), then ERV (shown in green), finally LINE (shown in purple).

Name Strain Sample Total reads Read length

AJ A/J f321 634,232,014 150
B6 C57BL/6J m03636A 1,045,633,612 125/151

129S1 129S1/SvlmJ m157 586,539,366 150
NOD NOD/ShiLtJ m146 837,204,388 150
NZO NZO/F111 m146 624,071,858 150

CAST CAST/EiJ m090 512,388,000 150
PWK PWK/PhJ f6114 481,626,592 150
WSB WSB/EiJ f111 429,564,492 150

Table 4.1: Eight samples were used for evaluating the performance of two Frontier classifiers.
These 8 samples represent 8 widely used mouse strains. B6 sample C57BL/6J is based on mouse
reference genome. It is also used for making training dataset. Trained models obtained from B6
were directly applied to other samples to find their frontiers and corresponding TE type.

4.3 Evaluation of Frontier Pipeline

I applied our Frontier pipeline to eight short-read sequencing datasets. This includes five clas-

sical inbred laboratory strains (AJ, B6, 129S1, NOD, NZO) and three wild-derived strains (CAST,

PWK, WSB). All samples were sequenced using either Illumina X10 or Illumina HiSeq4000

sequencers with paired-end reads. The Illumina sequencing data from each sample was used to
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construct an msBWT and corresponding LCP as described by (Holt and McMillan, 2014). The

details for each sample are shown in Table 4.1. Choosing these 8 strains were not random and

facilitates some of my later analyses. Together they represent three subspecific origin of mouse.

Those are: 1) M.m. domesticus (includes all the lab strains and WSB), 2) M.m. musculus (PWK),

and 3) M. m. Castenous (CAST). A small phylogenetic tree can be built based on their subspe-

cific origin where M. m. Castenous and M.m. musculus got separated from M.m. domesticus

a long time ago. The detail tree is shown in figure 5.2. These 8 strains are also the ancestors/-

founders of a large population called Collaborative Cross (Churchill et al., 2004). In the next

section, we will discuss about the transposable element insertions from these founders that were

passed on to their descendants CC samples.

4.3.1 Evaluation of Finding Frontier Candidate Algorithm

I applied our algorithm 2 on both simulated and real datasets. For each dataset, I first found

all the intervals in the msBWT that contain repeats. I divided the LCP array into multiple seg-

ments and sent each one to a different processor for finding repeats in parallel. I consider a sub-

sequence as a repeat if it’s present at least 10 times in the sample’s genome. For example, in

a sample with coverage 40x, I expect to see it around 10x40 = 400 times in short reads. After

finding the repeat intervals, I looked for intervals that are adjacent to a context with normal cov-

erage. I set the lengths of repeat and context to 45 and 30 base pairs respectively. Thus, each

Frontier candidate has a length of 75 bases. Using these parameters, I next applied our finding

frontier candidate algorithm 2 on both simulated and read data. I ran this step of our pipeline on

a machine with the following specification: Intel(R) Xeon(R) CPU E5-2643 v3 @ 3.40GHz, 6

cores, 256 GB memory. I also built msBWT and LCP on this machine. I later experimented with

different parameters and compared their performances. However, the sum of the lengths of the

repeated portion and context portion of a frontier read must be smaller than the total read size.

In fact it is better if I get multiple candidates for the same TE boundary otherwise I might miss
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Figure 4.6: Recall rate of algorithm 1 on simulated data. The X-axis shows reads coverage, and Y
axis shows the recall rate ranging from 0 to 1, Recall for homozygous and heterozygous frontier
discovery is shown in the blue and red bar respectively. For both chromosome 1 and 10, the
recall rate increases with increased coverage, specially for the cases where TEi was inserted
heterozygous. However, the recall rate stablizes (≈ .9) when the coverage is around 15x.

some completely. However, for all the real data, I do not have any coverage-based threshold to

determine if a segment is repeated. This needs to be done in case data has low coverage sample.

To estimate the recall rate of frontier candidate discovery, I ran algorithm 2 on simulated data

where ground truth is known. I inserted 50 TEs into chromosome 1 and chromosome 10 of the

mouse reference genome. For each insertion, I recorded the frontier sequence (last 45-mer of TE

+ first 30-mer of regular genomic context = 75-mer frontier candidate) as ground truth. For both

chromosomes, of the 50 inserted TEis, 30 were inserted as homozygous and 20 were inserted as

heterozygous. I used Samtools (Li et al., 2009) to simulate 150-bp reads at different coverages

ranging from 2x to 20x. I ran algorithm 2 on both chromosomes to get a list of frontier candi-

dates. To measure the recall rate, I checked if each ground truth frontier candidate is found by

running algorithm 2. Since there are many old existing TEis already in the mouse genome, the

algorithm found more candidates than the ones I inserted. That’s why I calculated only the re-

call rate and skipped precision. Recall rates for both chromosomes are shown in figure 4.6. As

we can see, for both chromosomes, recall rates for homozygous TEis are higher than the het-

erozygous ones when the coverage is low. When the coverage is only 2x, even the homozygous

insertions are hard to be found. However recall rate increases with the increase in coverage. For

chromosome 1, it became stable around 6x, which was not enough for chromosome 10. When the
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coverage was around 15x, my algorithm 4.6 was able to find 95% of the candidates irrespective

of the zygosity or the chromosome.

Similarly for the real data shown in table 4.1, I also ran the Finding Frontier Algorithm 2. In

this case, I do not have the ground truth, thus were not able to show the recall rate. However, B6

sample is identical to the mouse reference genome. Therefore, they should share all the TE inser-

tions unless B6 has any very recent ones that occurred after the reference genome was assembled.

I use the frontier candidates of B6 sample to further identify the true frontiers. I use a subset of

the frontier candidates that are present in the mouse reference genome. Then with the help of an

open source software RepeatMasker, I categorize each candidate if its true frontier.

Figure 4.7: This figure shows the steps to build training data for both classifiers. At first, I found
Frontier candidates in a B6 sample (The mouse reference genome is based on this strain). All
the candidate reads are then mapped using bowtie2 to find their location. Each of these locations
was cross checked with RepeatMasker’s verify if they had been annotated as a repeat element. If
nothing was found or annotated, then it was kept as a training example for the non-TE class of
Classifier-I. If it was annotated, then I again check if its a TE or some other kind of repeat. If its
not a TE, then it is used as a training example for others. If was a TE, then I checked how many
bases of these reads belong to TE. If more than 65 bases of a read contains TE, then it is used
as an example of the full-TE class, otherwise its kept as a training example for the True Frontier
class.

66



4.3.2 Training Dataset for Frontier

For each frontier candidate, I searched for its position in the reference and checked if it is

annotated as a TEi by RepeatMasker. I found a total of 33,331,533 candidates that either con-

tain partial or full repeat sequence. Candidates that contain partial TE sequences are in class

(i): Frontier. I only used the ones where the length of TE and non-TE segment in a candidate

are at least 25. Then candidates whose entire sequence is a part of a TE sequence are in class

(ii): Full-TE. Candidates with no TE/repeat segments are in class (iii): non-TE and all the other

kinds of candidates with different kinds of non-TE repeats are in class (iv): others. I had a to-

tal of 895,332 examples in class (i): frontier. There were many examples for class (ii),(iii), and

(iv). I randomly subsampled 895,332 examples to make my training dataset balanced. For each

read, I computed the k-mer frequency for overlapping 21-mers from that read using the msBWT

along with FM-index. These counts were used as a part of input in addition to the sequence as

described in 4.2.1.1. For my second classifier, I used RepeatMasker’s annotation to label the 4

different TE types present in each Frontier.

Model LCP-filter Precision Recall F1 score

Baseline No .493 .557 .53
Frontier Yes .884 .841 .862
Frontier* Yes .913 .906 .909

Table 4.2: Comparison between a baseline, described in section 4.3.3, and the proposed Fron-
tier classifiers. The Baseline performs poorly in general compared to a classifier that uses an
LCP-filter. Frontier* performs the best by using the overlapping k-mer count. However, for a
very large dataset, the overhead of counting all the overlapping k-mer is high. So I recommend
using Frontier for a large dataset as it can still predict more than 84% of the frontiers with high
precision (.884).

4.3.3 Performance of Classifier-I on B6

To evaluate the performance of the frontier classifier, Classifier-I, I compared it with a typi-

cal sequence-based classifier. Since there was no attempt made previously to classify Frontier, I
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built a baseline classifier that did not use LCP-filter. It takes the read sequence directly from the

short read dataset instead of the frontier candidate as input. Note that Frontier classifiers use the

frontier candidates obtained from LCP-filter where each read contains partial repeat and partial

normal coverage genomic sequence. Since baseline does not use this filter, it cannot be trained

with the same frontier candidates. Thus I made another training data for the baseline classifier.

Using RepeatMasker’s annotation of TEi in the reference genome, I identified random 50000

places of TEi. I made examples of the frontier class by adding 35 bases nonTE sequence after

a 45-mer TE segment. For the class full-TE, I made data by taking 75-mers entirely from a TE

sequence. For the class non-TE, I took 75-mers that were outside any annotated TEi. Then finally

for the last class (other), I chose random 75-mers that did not fall into any of the previously men-

tioned three classes. Using 90% examples from this dataset, I trained the baseline classifier and

tested its performance on the rest 10%.

To evaluate the result of the classifier, I used the dataset described in 4.3.2. Here I also used

90% of the examples for training and the rest 10% for testing. To see how the overlapping kmer

affects the performance of the classifier, I ran two separate models, where one used the over-

lapping kmer count (Frontier*) and the other did not (Frontier). However, all three models, in-

cluding the baseline have the same network structure with two CNNs and 2 Linear Layers. The

comparison of the three models is given in table 4.2 in terms of three metrics: precision, recall,

and F1 score. Since this is a multi-class classifier, I report the metrics values for the class Fron-

tier which is our main interest. We can see both classifiers that used frontier candidates as input

achieved high precision, recall, and F1 score when compared to the baseline. Overlapping kmer

count also helped to get better precision.

I also provide a confusion matrix to demonstrate the classifier’s performance in predicting

other classes. The matrix is shown in figure 4.8. Here I showed the result of Frontier* that used

overlapping k-mer count. A randomly sampled set of 1000 examples were used to create this

matrix. All 4 classes have approximately equal numbers of examples. As we can see, 127 (47%)

out of 267 Full-TEs are misclassified as others and 50 (18%) as non-TE. I investigated this small
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Figure 4.8: Confusion Matrix showing the result of running Classifier-I on 1000 randomly se-
lected candidates. Each row of this matrix shows the True labels, and each column shows the
predicted labels. There are 243 Frontiers, and my classifier misclassifed 24 examples in total. It
also misclassified many Full-TEs as others. The classification errors of Full TEs have no impact
since I only process further those reads identified as Frontier. Many of these appear to be older
and highly mutated TE insertions.

set of data and observed that most of the Full-TEs in those cases are very old and have many

mutations that diverge significantly from their original sequence. However, I achieve a recall rate

> 0.9 for the other classes and I care only for the candidates classified as Frontier in this step.

4.3.4 Effect of different parameters on the Performance of Classifier-I

There are three parameters in our pipeline that initially were chosen in an ad-hoc fashion.

First, the length of repeat in a frontier candidate (= 45), then the length of context in a frontier

candidate (= 30), and finally the length of overlapping kmer (= 21) for input sequence encoding.

In this section, I consider if varying the values of these parameters significantly impacts the

performance of Classifier-I.

4.3.4.1 Effect of Repeat Length

Recall that in the first step of our pipeline 4.2.1, I searched the msBWT and LCP to find all

the repeat segments where the length of repeat segment K = 45. To examine the effect of this
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Figure 4.9: Effect of different repeat length (ranging from 30 to 60) on classifier’s performance.
X-axis shows the repeat length and Y-axis shows the values of precision, recall and f1 score
which ranges from 0 to 1. Precision and F1 score of Frontier* increases with the increase in
repeat length and becomes stable when the length is around 50.

choice for repeat length, I varied it ranging from 30 to 60 base pairs and observed the classifier’s

performance. I ran our two separate models where one considered the overlapping k-mer count

and the other one did not. Figure 4.9 shows the effect of different repeat lengths on our classifier.

Other two parameters, the length of context and the length of overlapping k-mer were kept fixed

at 30 and 21 respectively. For different repeat lengths starting from 30 to 60, I ran both versions

of our Classifier-I and calculated their precision, recall, and F1 score. I did not see any significant

change in the performance of Frontier (without k-mer count) for different repeat lengths. But it

affects the precision and f1 score for Frontier*. In fact, for length of 30, Frontier*’s precision rate

drops lower than Frontier. Effect of repeat length almost gets nullified when its more than 50. It

is conceivable that increasing repeat length helps classifier to distinguish the nonTE repeat with

real TEs. However, I cannot make the repeat length too big because the whole repeat and context

must fit in a single short-read.

4.3.4.2 Effect of Context Length

Another parameter used while searching for frontier candidates was the context length. Ini-

tially, I set the context length to 30. But to see if the length of context affects the classifier’s per-
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Figure 4.10: Effect of different context lengths (ranging from 20 to 50) on classifier performance.
X-axis shows the length and Y-axis shows the values of precision, recall and f1 score which
ranges from 0 to 1. For the Frontier classifier without k-mer count, precision decreases with
the increase in context length as opposed to both recall and f1 score. On the other hand, for the
Frontier* classifier with k-mer count, there was a steady increase in the discovery rate.

formance, I ran the same model with different context lengths. The performance comparison is

shown in figure 4.10. The Frontier* classifier that uses overlapping k-mer count performed better

and recall rate increased with the increase in context length. For this experiment, I kept fixed the

length of overlapping kmer to 21 and repeat length to 45. From my experiment, I observed that,

frontier* discovered more true frontiers and achieved the best recall rate. I believe this due to in-

corporating the overlapping k-mer counts as a signal of the expected variable coverage expected

across a Frontier read.

4.3.4.3 Effect of Overlapping kmer

The last parameter I varied is the length of overlapping kmer. This only applies to Frontier*

(with overlapping kmer count). The idea behind including this count is to capture changes in

coverage for portions of the read. Sometimes, only the sequence itself is not sufficient enough

to say if it’s a TE nor a non-TE sequence. A mutation in a TE subsequence can drop its count

from high to normal. This may lead the classifier to miss-classify the TE as a Frontier. But if that

TE sequence is broken down into small overlapping k-mers, then the k-mers without the SNP

will still have a high count. That’s why I used overlapping kmer count as Classifier-I’s input in
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Figure 4.11: Effect of overlapping kmer length (ranging from 10 to 35) on classifier’s perfor-
mance. X-axis shows the kmer length and Y-axis shows the values of precision, recall and f1
score which ranges from 0 to 1. I ran this experiment twice for two different context lengths (35
and 50). For both cases, the classifier worked best when the overlapping kmer length is around
15-20 bases.

addition to the sequence. However, if the value of k is too low, then it will be all over the genome,

thus will lose its purpose. On the other hand, if the value is too high, I will lose more bases from

the sequence because the length of the input depends on k. To see how the value of k affects

the performance of our classifier, I vary its value ranging from 10 to 35 by keeping the context

length fixed. For each different k, I then ran the Classifier-I. The observed results are shown in

figure 4.11.

4.3.5 Performance of Classifier-I on Other non-B6 Datasets

I next used our trained model from Classifier-I to predict frontiers of 7 other non-B6 sam-

ples. At first, I used the LCP-filter to identify the frontier candidates by using algorithm 2. I

randomly selected 50000 candidates from each sample and ran Classifier-I. Here I applied Fron-

tier classifier that does not use overlapping kmer count. For validation, I obtained the class label

by querying the candidate in RepeatMasker because I cannot compare it with the reference. For

this experiment, I sub-sampled 50000 candidates as its expensive to get the repeatMasker’s an-

notation. If RepeatMasker identifies a TE in a candidate, then it can be either class(i): Frontier

or class(ii): Full-TE. If the length of a TE segment in a candidate is less than 50 and greater than
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25 then we label them as Frontier, otherwise, it’s a full-TE. If a candidate does not contain any

repeat-like sequence then I label it as the class(iii): non-TE. The rest of the reads are considered

as a class(iv): others, which includes non-TE like repeats and their boundaries. Even though my

training data used only frontier candidates from a B6 sample, I achieved a precision rate > 0.9

for the majority of the other samples with different strains. The f1 score is also more than 80%

except for the wild strain PWK. The details are listed in table 4.3.

4.3.6 Performance of Classifier-II

After identifying the frontiers, I applied several steps to identify non-reference Novel TE fron-

tiers in a sample. These frontiers were then classified based on their TE type. My current model

includes the 4 major TE families found in the mouse reference genome (LINE/L1, SINE/Alu,

SINE/B2, and LTR/ERV). More TE classes can be added based on the organism if required but

the classification performance tends to degrade if too many subclasses are included. To analyze

the performance of Classifier-II, I randomly selected 1000 frontiers from each sample. My TE

classification Classifier-II model was trained on examples from the mouse reference genome as

labelled by RepeatMasker. The landscape of TE insertions in the remaining 7 strains is expected

differ from the reference, although some sharing is also expected. In particular, the three wild-

derived mouse strains (CAST, PWK, and WSB) are expected to differ more significantly from the

reference than the four common laboratory strains (AJ, 129S1, NOD, NZO), as they likely share

more recent common ancestors.

In the confusion matrices shown in 4.12, I compared the result of our TE-type classifier (Clas-

sifier-II) to predictions made by RepeatMasker for the high-repeat 45-mer portion of the frontier.

Recall that the HMM used by Repeatmasker is based on TEs found in the mouse genome refer-

ence (mm10). Thus, for the sequenced sample B6 the predicted labels from RepeatMasker can

be considered ground truth, whereas for other samples they should be considered as yet another

classifier. In the case of B6 we selected a balanced set of 4 TE types based on RepeatMasker’s

classification. For other samples we selected 1000 frontier sequences at random. The resultant
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Name Precision Recall F1 Score

AJ 0.833 0.795 0.814
129S1 0.907 0.810 0.855
NOD 0.923 0.766 0.837
NZO 0.939 0.705 0.805

CAST 0.921 0.761 0.833
PWK 0.855 0.691 0.764
WSB 0.952 0.800 0.870

Table 4.3: Performance of Classifier-I on other non-B6 sample: average precision (≈ .9) is as
high as B6 but the f1-score (≈ .8) and recall rates (≈ .75) are lower than what we saw on B6.
Note that the test data here are from a completely different strain than the training data.

confusion matrices suggest that our TE-type classifier (Classifier-II) has high precision (> 98%)

in the B6 case, and is highly consistent (> 93%) with Repeatmasker for other cases. The most

common inconsistency is when our classifier calls SINE/B2 where RepeatMasker predicts an

LINE/L1. These inconsistencies are probably caused by the variable length polyadenylation

signal that is common at the 3’ insertion boundary of these two element TYPES.

Figure 4.12: Confusion matrices showing the result of running our TE classifier Classifier-II
on 1000 frontier sequences from samples representing 8 mouse strains. I compare our predicted
labels (columns) to those of RepeatMasker (rows). RepeatMasker annotates TE insertions in the
mouse reference genome (mm10) which is based on the mouse strain C57BL/6J for which the
sample B6 is an example. Thus, I considered Repeatmasker as ground truth for B6, a balanced set
of the four TE types. For all other 7 samples I merely compare my predictions with those made
by RepeatMasker for consistency. As we can see, the diagonal values are significantly larger than
the others indicating an overall consistency of more than 93%.
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Type Name Total Reads Frontier Candidates Unique Frontiers

Lab Strain AJ 634232014 51526031 5146368
Lab Strain 129S1 586539366 46433170 4327522
Lab Strain NOD 837204388 52153639 5639526
Lab Strain NZO 624071858 51263358 5086113
Wild Strain CAST 512388000 44730127 2217820
Wild Strain PWK 481626592 44633988 2254541
Wild Strain WSB 429564492 36597602 2825752

Table 4.4: The result of running the first two steps of Frontier pipeline. I ran both Frontier and
Frontier* on the candidates. To avoid mapping twice, I found the unique frontier candidates first,
then ran both versions of the Classifier-I to find the true unique frontiers. Overall I found more
candidates and unique frontiers for the lab strains compared to the wild strains.

4.3.7 Finding Novel Frontiers

I applied the Frontier pipeline to 7 common laboratory mouse strains sequenced at 30x cov-

erage with 150bp reads. I first constructed msBWTs and LCPs for a single sample of each strain.

Then using these two data structures, I identified frontier candidates. As before, I considered all

subsequences with 45-mer repeats appearing in more than 400 reads (more than 16 times the

expected coverage) that when extended by 30 bases appear as normal coverage (15 reads). Then

I ran Classifier-I (without overlapping kmer count) to predict the true frontiers from these can-

didates. Each sample generated more than 40 million frontier candidates. Wild strains (CAST,

PWK, WSB) have less candidates compared to the Lab strains (AJ, 129S1, NOD, NZO). Higher

coverage in NOD also resulted in higher number of candidates.

Even though the next step of our pipeline is to run Classifier-I, for this experiement, I swap

the Reference Mapping step with the Classifier-I. This will not affect our result, but help us to

save time as I ran both Frontier and Frontier* on the same candidates. For each frontier can-

didate, I then aligned the 30-base context to the mouse reference genome (mm10) to find the

location of TE insertion. I kept only those contexts that mapped uniquely in the genome. Around

10% of the contexts were mapped uniquely for the lab strains , 7% for the wild strains. The result

of running these two steps are shown in Table 4.4.
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Name True Frontier Total TEis Novel TEis LINE/L1 SINE/Alu SINE/B2 LTR/ERV

AJ
1168218
1269084

181912
364787

2200
2426

671
692

249
229

480
490

800
1015

129S1
1055816
1114146

165809
317637

2196
2439

621
643

265
244

519
494

791
1058

NOD
1456247
1467838

216913
390509

2938
3288

1030
1115

393
350

680
715

835
1108

NZO
1147893
1232494

179681
357466

2240
2425

730
754

227
199

519
516

764
956

CAST
521986
577882

92515
180417

4240
4536

1419
1605

595
556

922
902

1304
1473

PWK
516958
571320

92328
181673

4683
4903

1640
1797

614
518

1055
1032

1374
1516

WSB
639532
729109

107628
221525

2175
2243

647
659

208
196

433
421

877
976

Table 4.5: Results from running the last 3 steps of Frontier pipeline on 7 samples. These 7 sam-
ples represents 7 common mouse strains. For each sample, I ran two versions of Classifier-I,
Frontier and Frontier*. Two rows of each sample shows the result obtained from Frontier, and
Frontier* respectively. For each sample, Frontier* predicts more true frontiers than Frontier. This
leads to more total TEis, novel TEis. Novel TEis are further broken down according to their
predicted TE type. I observed more novel TEis in CAST and PWK as compared to the other
samples even though there were TEis that match the reference for TEis in these strains. The large
number of TEis in A/J 129S1, NOD, and NZO in contrast to the relatively smaller number of
novel TEis suggests that these laboratory strains share more TEis in common with the mouse
reference genome.

On the set of unique frontiers, I ran both versions of our Classifier-I: Frontier and Frontier*.

For each sample, around 22% unique candidates are classified as true frontier by frontier. On the

other hand, frontier* that uses coverage information predicts 24% of the unique candidates as

true frontier. I next merged all aligned contexts with consistent 45-mer prefixes within 100 bases

of each other. This gives us the total number of TE insertions in a sample. From table 4.5, we can

see that, in general, A/J, 129S1, NOD, NZO and WSB have more TEis than the two wild strains

(CAST, PWK). Frequently there are two nearby contexts that represent the two sides adjacent to

the insertion. If an insertion is also present in the reference genome, then it is possible that we

are double counting the TEis as the two sides of a TE can be 10,000 bases apart. However it does
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not matter as the next step of my pipeline will eventually filter all the reference TEis. For this

filtering, I checked if there was an annotated TE in the reference near each of the insert locations.

If no TEi was present nearby, I reported those as novel TE insertions. For each sample, I found

more than 2000 novel TEis that are not annotated in the reference genome. Even though, there

are less TEis in CAST and PWK, I saw more novel TEis in these samples. Finally, for these

novel insertions, I applied Classifier-II to predict the type of TE. For each sample, I found more

LINE and ERVs using Frontier* and more SINEs using Frontier.

These analyses suggest that there are a considerable number of non-reference TE insertions

(TEis) in these 7 common mouse strains. For each sample, LINEs and LTRs are the most com-

mon type of TE compared to SINEs. As expected the four laboratory strains (A/J, 129S1, NOD,

NZO) tend to share more TEis with the reference, which is based on a laboratory strain B6, than

the two wild-derived mouse strains (CAST, PWK). The degree of shared TEis with the reference

is indicated by the ratio of Novel TEis to the number of Total TEis. Even though, WSB is a wild-

derived strain, the number of reference TEis in WSB is similar to the other 4 lab strains. This

is due to their sub-specific origins, where all lab strains and WSB are from M.m. domesticus.

On the other hand, the primary sub-species of CAST and PWK are M.m. castenous and M.m.

musculus respectively.

Even though the total number of TEis in CAST and PWK is far less than the other 4 strains,

they tends to have more novel (non-reference) TEis. This is also consistent with the commonly

known mouse phylogeny based on Single Nucleotide Polymorphisms (SNPs). Both CAST and

PWK separated from the lab mouse strains about half a million years ago. Therefore, any TEi

that are inserted in CAST or PWK since their separation will not not be in the reference genome

and vice versa. Only exception is the NOD, which has more novel TEis compared to rest of the

lab strains. Again, this is due to its high coverage. To recover the TEis that Frontier missed due to

low coverage can be easily solved by adjusting the threshold in our LCP filter. For each sample, I

had a hard threshold of 400, which is the number of read that contains the repeat segment. There-
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fore, I recommend using a coverage-based threshold so that I can find majority of the frontiers as

coverage is sample-specific like the thresholds.

4.4 Runtime of Frontier Pipeline

The runtime of the Frontier TEi discovery pipeline is dominated by the first step of find-

ing Frontier candidates. This step uses msBWT and corresponding LCP to find all reads with

high-count 45 mers that when extended by 30 bases appear as normal coverage. For a short read

dataset with 30x coverage and 150 bp reads, it took approximately 3 hours to find all the fron-

tier candidates. The combined time required for building msBWT and LCP takes about 7 hours.

Overall my pipeline complets in approximately 10 hours. However, one could justifiably not con-

sider the construction time of msBWT and LCP as a fixed cost. Both of these data structures have

many uses other than finding repeats. Moreover, they are useful as a lossless data compression

that can be efficiently queried. And, the msBWT and LCP construction time is comparable to the

sequence alignments used by other algorithms.

4.5 Summary

I proposed a novel template-free approach for finding Transposable Element insertions by

identifying Frontier/split-reads and using machine learning. Unlike alignment-based methods,

my learned model can be applied to a sequenced short read dataset to quickly identify all the true

frontiers. As my model uses overlapping kmer counts in addition to sequence, it can find more

novel TE insertions than sequence-based classifiers. Identifying novel TE insertions can be used

to detect rare mutations in somatic cells that are often associated with tumorigenesis. Whereas,

identifying segregating TE insertions in the germline has the potential to uncover new classes

of genetic variants. In addition to finding TE insertions, our template-free method Frontier will

be useful to identify novel TE templates. Currently, most researchers depend on databases like

RepeatMasker, Dfam or RepBase for known TE templates. These databases only include the TEs
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that were once found active in a sample. Over the time, TEs can become dormant, and remain

permanently in the genome and become active after a long period. Some samples can also have

a different type of active TE which is not covered by these databases. Frontier becomes handy in

those cases by enabling us to find all the sample-specific TE templates.

The idea behind Frontier was to provide a comprehensive catalog of TE insertions in a short

read dataset. However, in comparison to ELITE 3, Frontier falls short, with regard to recall, when

a TE template is known in advance. This is because of my assumption behind the frontier find-

ing algorithm, which is, TE sequence has always high count/coverage. At present, I can only

search for repeats that occur more than a given threshold. Whenever TE insertions are mutated,

the mutated versions may not have a high count near the insertion point. Therefore, in the future,

I plan to modify our repeat searching algorithm to allow for some mutations from a highly re-

peated k-mer found elsewhere in the dataset. As discussed before, Frontier is still a better option

finding TE templates. That’s why, in my next chapter 5, I discuss how the combination of these

two pipelines can be used to comprehensively catalog TE insertions in a population. I mainly

focus on one type of TE which is called Endogenous RetroVirus (ERV). For this TE type, I col-

lect all the templates using Frontier, and feed it to ELITE as input. Finally, I catalog all the ERV

insertions in a population called Collaborative Cross (CC) which has more than 100 samples.
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CHAPTER 5: DIVERSITY OF TRANSPOSABLE ELEMENT INSERTIONS IN A
POPULATION

The goal of this chapter is to show how my algorithms for identifying Transposable Element

insertions (TEis) can be used to assess their diversity in a population. These algorithms ELITE

and Frontier, from chapters 3 and 4 respectively, alone can only be used to identify TEis in a

given sample. With respect to whether a detected TEi segregates (different than rest of the in-

dividuals in a population), they can, at best, determine whether a TEi is in the given reference

genome or not. However, collectively looking at the TE insertions in a larger population and their

patterns of sharing facilitates phylogenetic and genetic analysis. Typically, only simple muta-

tions such as Single Nucleotide Polymorphisms (SNPs) and Insertions/Deletions (INDELs) are

used in these types of analyses. On the other hand, the mutation rate of TE insertions can vary

significantly over time based on epochs of TE activity, how many active TEs are in the genome,

and their rate of suppression. In order to understand these important biological and evolutionary

processes, I applied ELITE with some additional features to the problem of population-based

genetic analysis. To understand the TE inheritance and diversity patterns, I used a genetic refer-

ence mouse population called the Collaborative Cross (CC). In the CC all the strains are derived

from 8 common ancestors. For each sample in this population, I ran ELITE using 9 TE templates

specific a particular type of TE i.e., Endogenous Retrovirus (ERV). ERVs contribute almost 30%

of the transposable elements in mouse and comprise about 10% of the reference genome. They

are also the most studied active TEs known to be present is mouse genome. Thus, focusing on

ERVs increases the chance of finding multiple recent insertion events, key for conduction genetic

analyses. I chose ELITE over Frontier because ELITE can comprehensively find all the TE in-

sertions when a template is already known. Another unique feature of ELITE is that it returns

probe sequences for detecting both the presence and the absence of an insertion, which can then
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be genetically mapped across a population. Therefore, I use CC population to validate where

TEis segregating in the founder are located in the genome and shared by subsets of descendants.

Further we can also classify whether each identified ERV is fixed (present in every sample), seg-

regating (present in a subset of samples) or de novo (present in a single strain, suggesting a new

or recent insertion).

5.1 Datasets For Analyzing TE Diversity

In this section, I describe the datasets used for analyzing TE diversity pattern in a population.

For this study, I used ELITE to identify TE insertions directly from high-coverage short-read

sequencing data. All the sequenced short reads correspond to a single samples from an inbred

genetic reference population. Since, ELITE is a template-based method, I also collected a set

of ERV TE templates based on Frontier-candidates classified as Frontier*/ERV repeats by Fron-

tier. In the following I describe details of the two data sets that were used in our analysis. First I

characterize the Collaborative Cross (CC) genetic-reference population, then I discuss the ERV

templates used. Both of these play a significant role in our analysis of TE diversity.

5.1.1 Population: Collaborative Cross

In this chapter, we characterize the ERV landscape in a population called Collaborative Cross

(CC). The CC is a large panel of recombinant inbred mouse strains derived from a common set

of 8 inbred laboratory mouse strains, which are A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ,

NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ, which are referred to as the CC founders. In

the remainder of this chapter I will use the following abbreviated names to distinguish these

strains respectively: AJ, B6, 129S1, NOD, NZO, CAST, PWK, and WSB. By convention, the

genotypes of genomic segments from these 8 strains are also often denoted by AA, BB, CC, DD,

EE, FF, GG, HH respectively. Among these founders, five are classical inbred strains (AJ, B6,

129S1, NOD, NZO), and 3 wild-derived inbred strains (CAST, PWK, WSB). Together, these

founders capture about 90% of the known genetic diversity present in laboratory mice (Roberts
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Figure 5.1: The funnel breeding scheme used to derive each CC strain from 8 common inbred
mouse strains. The 8 founder haplotypes are represented by A for A/J, B for B6, C for 129S1,
D for NOD, E for NZO, F for CAST, G for PWK, H for WSB. An independent breeding funnel
like the one shown above was set up for each extant CC strain. After 20+ generations of breeding,
they arrived at the current CC population. This figure is from Churchill et al. (2004)

et al., 2007). Three different subspecies of mouse are also represented in this set of founders.

Those are M. musculus Domesticus (The dominate subspecies of all the common lab strains and

WSB), M. musculus Casteneus (largely due to the wild-derived CAST strain), and M. muscu-

lus Musculus (largely due to the wild-derived PWK strain). However, both wild-derived and lab

strains have small intervals of introgression from other subspecies (Yang et al., 2007). The stan-

dard accepted mouse phylogeny between these founder strains, based on SNPs (single nucleotide

polymorphisms) is shown in 5.2.

An unique breeding scheme was adopted so that each CC sample in this population is inde-

pendent, meaning that there is no common ancestor more recent than the original 8 founders.
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Figure 5.2: Consensus mouse phylogeny of the 8 CC founders: Three subspecies are represented
(1) M.m. domesticus, (2) M.m.musculus and (3) M.m.casteneus. CAST, PWK, and WSB are
wild-derived mouse strains. Of these CAST and PWK are predominantly different subspecies
the other 6. Their wild caught founders had been separated from the other mouse lineages for
more than .5 million years ago. These two subspecies are M.m. musculus and M.m. castaneus
respectively. The genomes of the lab strains and WSB belong primarily to M.m. domesticus
subspecies. The 5 lab strains were derived from a small population of fancy pet mice in the
early 1900s and are primarily from the subspecies M.m. domesticus like the wild-derived strain
WSB. Furthermore, many of the inbred strains show signs of introgression from one of the other
subspecies.

This combination of a known founder set and a documented pedigree makes the CC uniquely

powerful for studying genetic drift due to recent mutations. There are several advantages of

choosing this particular population. Such as:

1. The CC is a genetic mapping population that is especially suitable to biomolecular traits.

This allows us to confirm the presence/absence and position of any segregating ERV inser-

tion.
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2. The presence of multiple biological and technical replicates helps to identify the false

positive and false negative rates. This is especially important in low coverage genomic

regions.

3. The genetic diversity and different subspecific origins of the CC founders allow us to place

our TEi findings within a phylogenetic context.

4. It is also possible to measure the mutation rates for different ERVs.

5. This population is already a popular resource widely used in research. The genomes of CC

are known, replicable, and stable(Consortium, 2012).

5.1.2 TE Templates: Endogenous RetroVirus (ERV)

I use ERV templates to identify TE insertion sharing patterns within the CC population. In

our lab, we initially found a CC strain (CC055M) who had observable phenotype that was dif-

ferent than other CC strains because of an ERV insertion. This motivated my interest in finding

more ERV insertions in-particular trying to determine if any TEs are active. In an initial pro-

totype of ELITE, I used the ERV template that was found in CC055M, which was ERVB7 1-

LTR MM according to a TE database called RepBase (Bao et al., 2015). Later I added 5 more

ERV templates from RepBase, those are: ERVB4 2B-LTR MM, IAPEY3C LTR, MERVL LTR,

RLTR1IAP MM, and RLTRETN MM. These 5 templates were chosen quite randomly to get

some initial understanding of ERV landscape in CC population.

However, after running Frontier 4 on the 8 founder sets, I discovered that there are many other

types of TEs other than those 6 ERVs initially considered. Therefore, a vast majority of those

TEs most likely be present in the CC too. For phylogeny analysis, this is an unique opportunity

to see how these TE insertions are passed on to the next generations including the recently de-

veloped CC. Therefore, I revisited the frontier pipeline to select a new set of templates to supple-

ment my initial set. As discussed before, Frontier automatically identifies TE insertions without

templates. After finding the insertions, it then classifies the TE type into 4 major categories: 1.
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LINE, 2. SINE, 3.Alu, 4. ERV. However most TE types, except for the ERV, do not have well-

structured and stable TE boundaries. LINE, SINE and ALUs have variable number of poly A at

their 3’ insertion site. Also, it is common for non-ERV TEs to have their 5’ sequence truncated,

which makes it even harder to identify the insertion location to the single base-pair level. This is

another reason why I focused on ERV insertions for this study. ERVs also represent almost 10%

of the mouse genome and are known to be the most active type of TE in mice.

To prepare TE templates, I collected all the TE sequences from Frontier’s output where the

inserted TE type is ERV. Then with the help of two available online TE libraries (Repbase and

RepeatMasker), I clustered all those TE into 9 different ERV consensuses. These 9 consensuses

are finally used as templates which represent all the ERVs in the founders of our CC population.

Even though there are many other types of ERV, from each template I chose seeds in a way that

automatically covers all the related ERV types. In fact, the proximal TE of ERVB7 1-LTR MM

and RLTRETN MM have a high level of sequence similarity that leads me to use a single proxi-

mal seed for both ERV types. Using one seed for both types also reduced the runtime of ELITE

pipeline. For all the other ERVs, I chose one seed from the proximal LTR sequence, and one from

the distal LTR sequence.

5.2 Building Probes For Genetic Mapping

Recall that, ELITE outputs two different types of probes for each insertion i.e., 1) TE pres-

ence probe, 2) TE absence probe. For each TEi, ideally there would be two presence probes, one

for the proximal end (context + proximal TE) and one for the distal end (distal TE + context).

However, contexts are not always unique, thus sometimes results in one-sided TEi. In One sided

TEis, only one context, either proximal or distal maps uniquely. In those cases, ELITE was un-

able to construct the TE probe on the unmapped end. But it is possible to identify the distal TE

probe when proximal TE probe is known or vice versa. Previously ELITE was also unable to find

TE absence probe when the TE is present in the reference genome. Finding the absence probes is

trivial in a sample if the insertion is heterozygous or TEi is not in the reference (because a single
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Figure 5.3: ERV templates used for running ELITE on Collaborative Cross population: There are
9 main ERV templates from I selected proximal and distal seed. However, after running Frontier
on CC founders, I saw around 20 different type of ERV insertions. To make our ELITE pipeline
efficient, I combined multiple templates into one. This combination is based on the sequence
similarities, and done by creating a phylogeny tree. This process reduced the ERV templates to 9
distinct ones.

sample has instaces of both sequences). It is also possible to identify absence probes using a large

population where TEi is absent in at least one sample. Therefore, I revisit the ELITE pipeline and

extended it further to get more probes which I later use for genetic mapping.

5.2.1 Finding TE present probes

If ELITE fails to identify both proximal and distal TE probes, I make a second attempt using

the expected genomic context obtained from the reference genome. This is possible only when

the TEi is not present in the reference. If a proximal TE present probe is missing, then I grab
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Figure 5.4: (a) TE present probe construction: this figure shown how I construct the distal TE
probe when the proximal probe is known and TEi is not in reference. At first, I use the reference
genome to see how a non-TE sequence look like. Then in all the samples with TEi, I look for
any sequence that looks like the distal context. After that, I extend the distal context towards
the TE. Finally the extended context which is consistent with the distal TE and TSD are used
as distal TE probe. (b) TE absent probe construction when TEi is present in reference. At first,
in all the samples without TEi, I look for any sequence that is similar to the proximal context. I
then extend the context, and keep only the one that does not contain TE and the distal context is
consistent with the distal TE probe.

the sequence (i.e., expected proximal context) right before the distal context from the reference.

Then I look for this expected proximal context in the given short read dataset using the samples’s

msBWT. I allowed for a maximum 2 mutation per 25 bases. Once the proximal context is found,

I extend it to the right to get the proximal TE sequence. If the context is not unique, there will be

multiple paths. However, I only keep the one that is consistent with the given TE template and

target site duplication (TSD).

5.2.2 Finding TE absent probes

Whereas a TE presence probe confirms the presence of an insertion, a TE absence probe con-

firms its absence. ELITE will not find a TE presence probe in a sample for two reasons (a) the

TEi is not actually present (b) algorithm has limitations. If a TE presence probe is missing be-

cause of the later one, then it’s not accurate to say that sample does not have TEi. Thus to say in

confidence that a TEi is absent, I need a TE absence for each sample who does not have it. Find-

ing TE absent probe is trivial if the reference genome does not have the same TEi. Samples who
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don’t have the same TEi may not have the same absent probe due to mutations (SNPs or INDELs)

in in the nearby genomic context. Therefore, I extract the absent probe from the reference and

look for that in our given short reads by allowing some mutations. Finding absent probe when the

TEi is present in reference is not as straight-forward. However in a population setting, if at least

one sample does not have the TEi, then it is possible to identify the absent probe. To do this, I

extend all the contexts (both proximal and distal) towards the TE sequence. Samples missing the

TEi, will have regular genomic context instead of TE. Thus I use that as the absent probe.

5.3 Combine TEis in a population

Since ELITE runs on individual samples, it is important to aggregate all the results from the

given population to understand the TEi diversity patterns. I, at first, consider all the different

locations where a TEi is found in any sample. We assign a unique TEi id for each location. I

have at least one TE present probe for each insertion. However there might be more than one.

Sometimes TEs or nearby contexts get mutated independent of the insertion, so the exact probe

might not work for all the samples who have the insertion at the same place. However, having

insertion in the same place corresponds to the same event. Thus, for one TEi id, it is possible

to have multiple TE probes. I also have implemented this unique feature which tells us how a

probe looks like in the absence of an insertion. Absence probe in any sample confirms that the

sample indeed lacks the TE insertion, and rejects the possibility of false negative with proof.

It is possible to have no absent probe for a TEi id if all the samples in a population have the

same corresponding TEi. Therefore, for each TEi id, unless it is possible to have more than one

probe. Using both TE present and absent probe, I produce a genotype-like call for each sample

for each TEi id annotating whether it has the insertion or not. For each location, I also provide

some additional information like the Strain Diversity Pattern (SDP) based on founder set, gene

annotation i.e. whether the insertion is intergenic or within a gene, etc. Below I provide a detailed

list of all the fields that are associated with each TE insertion:
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1. TEi id: An unique id for each independent insertion. If more than one sample has a TEi

exactly at the same place, then are not independent. If fact, it suggests that, this insertion

was inherited from a shared common founder. Thus we have a single TEi id based on the

insertion location.

2. chromosome, position, strand: The position in the genome where the insertion was found.

I use the location directly from ELITE’s output which can identify the exact location of the

insertion. Additionally, strand tells us the orientation of the ERV, whether it was inserted in

the forward or the reverse DNA strand.

3. ref te: A flag ref te indicating whether the insertion is also present in the reference genome.

This field allows us to quickly filter all the insertions that are already annotated in the ref-

erence. As discussed previously, the mouse reference genome is based on the B6 strain.

Therefore, if any B6 sample has a non-reference insertion, that probably indicates a recent

event.

4. before and after: Before and after is the 25-mer probe that is present before and after the

inserted TE sequence. These are potentially the proximal and distal contexts. However, one

single TEi can have multiple proximal or distal contexts. So I use only the contexts that are

from reference. This is consistent with the fact that our TEi’ location is also based on the

reference genome.

5. state: It represents the TEi’s state based on the sharing pattern. If an insertion is present in

every sample in a population, then I call it fixed. If it’s present in a subset of samples, then

I call it segregating. Finally if it is present only in one sample or a set of samples who are

biological replicates, then I call it de novo.

6. genotype call: Genotype calls are represented by one of the following bits: N,0,1,H. Our

calls are based on the TE present and absent probe. If a sample has both types of probes,

then I call it an H (H for heterozygous). If it only has a TE present probe, then it is homozy-
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gous for the TE and denoted by 1. If it only has a absent probe, then its denote by a 0. If a

sample is missing both TE present and absent probe, then I call it an N. A sample can have

N if the genomic sequence around that location is deleted in that sample. It can also be due

to low coverage or high mutation rate around that area.

7. SDP: SDP referes to Strain diversity pattern. I am showing the diversity patterns of TE

insertions in the 8 CC founders. So this is a 8 bit pattern for 8 CC founder strains AJ, B6,

129S1, NOD, NZO, CAST, PWK and WSB respectively. Each bit can be 0,1,N or H. This

is similar to the genotype calls as mentioned before.

5.4 ELITE in the Collaborative Cross

My goal was to identify all the ERV insertions in CC population. Using Frontier’s output, I

collected all the TE templates where the TE type is ERV/LTR. I found total of 9 different ERV

classes. From these classes I derived ERV templates for each end of the LTR. Using these tem-

plates, I ran ELITE on each sample of the CC population. I followed all the steps of ELITE

pipeline as described in 3. First I built an msBWT for each sample. Then I ran ELITE with some

adjustment to its parameters. Recall that, ELITE has two threshold parameters: t1 and t2 where

t1 is the minimum number of reads containing the TE probe, and t2 is the maximum edit distance

that is allowed in a TE sequence with the original TE template. While running it on CC, we set

t1 = 4, and t2 = 1 mutation per 10 bases. I then picked two seeds from each ERV template: one

seed from the proximal and one from the distal template. By extending all the seeds, I found all

the different versions of ERVs. Finally by extending the ERVs, I found their genomic contexts.

In this case, I only extended the ERVs by 25 base, i,e,. context length is set to 25. I then filtered

all of the sequences where the context does not uniquely map to reference genome. Using these

unique contexts, I annotated all the locations in terms of (chromosome and position) where at

least one sample has an ERV insertion. Then for each location, I found the alternate absent probe

for the samples who don’t have the ERV insertion. Some ERV insertions were present in all the
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samples and, thus, don’t have an ERV absent probe. There are also some cases where a sample

doesn’t have any ERV present or absences probes. This could be caused by either a genomic dele-

tion or a highly divergent variant. Finally, I merged all of the positions between samples based

on their location proximity. For each position, I annotate the presence or absence of ERV in each

sample.

Overall, we found a total 40,458 ERV insertions (ERVis) in 101 samples including CC sam-

ples and their founders. Among these ERVis, some were present in every sample. We call these

fixed ERVis in the CC population. Some of the ERVis are present in a subset of samples, which

are called segregating. Finally, I found some insertions that were private to only one sample or

shared by only biological or technical replicates, which we call de novo. Biological replicates

are the samples that were derived from the same founder, similar to monozygotic twins. On the

other hand, technical replicates are actually the same samples that was sequenced multiple times.

Technical replicates are useful for validating ELITE’s findings, because all the insertions in one

sample should be present in its technical replicates.

Table 5.1 shows the total number of ERV insertions we found in CC population using ELITE.

I used 9 different ERV templates that I obtained from Frontier. I further categorized the number

of insertions as fixed, segregating and de novo. Fixed ERVis are present in every CC strain in-

cluding its 8 founders. This indicates that fixed ERVis are old meaning that insertions took place

a long time ago when the founders had a common ancestor. Those insertions were passed on

to their descendants including the CC founders and the CC. Around 36% of the total ERVis are

fixed in CC. However, this also depends on the ERV type. MTA mm contributes to 70% of the

fixed ERVis whereas RLTR4 MM has none. For all ERVs other than MTA mm and ERVB4 2B-

LTR MM, there are more segregating ERVis than fixed ones for each template. More than 33%

of the segregating ERVis came from RLTR1IAP MM and 30% from MTA mm. The number of

de novo also depends on the ERV template. ERVB7 1-LTR MM contributes the majority of de

novo insertions. In fact, it has comparable number of fixed (204) and de novo (166) insertions.
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ERV Fixed Segregating de novo Total

ERVB4 2B-LTR MM 559 376 0 935
ERVB7 1-LTR MM 204 674 166 1,044
IAPEY3C LTR 631 1,304 0 1,935
MERVL LTR 1,650 2,833 35 4,518
MTA mm 10,375 7,723 153 18,251
RLTR10 514 3,110 19 3,643
RLTR1IAP MM 270 8,470 100 8,840
RLTR4 MM 0 307 16 323
RLTRETN MM 387 558 24 969

Table 5.1: Total number of ERV insertions in CC population found by ELITE. I broke down the
numbers based on 9 different ERV types that were used as templates. The number of ERV inser-
tions varies for different templates. MTA mm is the most common ERV type, which alone has
about 50% of the total ERV insertions. On the other hand, RLTR4 MM has only 323 ERVis. I
also categorized the total number of ERVis based on their sharing pattern. Majority of the ERVis
for ERVB4 2B-LTR MM and MTA mm are present in every sample thus are fixed in CC. On
the other hand, ERVB7 1-LTR MM, RLTR1IAP MM and RLTR4 MM have more segregating
ERVis which are shared by only a subset of samples. The most recent events or de novo also
varies depending on the ERV type. Almost 40% of the ERVB7 1-LTR MM insertions are de
novo. However, there are some ERVs like ERVB4 2B-LTR MM and IAPEY3C LTR, where I
found no de novo insertions, indicating that they have not been recently active.

This indicates ERVB7 1-LTR MM is the most active ERV in CC population because all of these

TE insertion events took place during or after the breeding of CC.

5.5 Segregating ERV insertions in CC

Segregating insertions are present only in a subset of samples. The sharing pattern of this

type of insertion allows us to assign a phylogeny to each insertion. Since all the samples of the

CC population came from 8 common founders, the segregation pattern of ERV insertions in the

CC should correlate with the SNP segregation pattern seen in the founders. The differences in

the lengths of tree branches might help to identify when (in time) and where (in what subspecies

branches) the ERV type was active. Therefore, to understand this sharing pattern, I build phylo-

genetic tree based on the sharing patterns of ERV insertions in each founder. I have already seen

that different ERVs have different sharing patterns. That’s why I chose two templates ERVB7 1-
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LTR MM and RLTRETN MM to see how they differ in terms of segregation. The first template,

ERVB7 1-LTR MM, has 1044 ERVis, and among them 674 are segregating. On the other hand,

RLTRETN MM has a total of 969 ERVis, and 558 of those are segregating.
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Figure 5.5: Phylogenetic tree based on the presence of ERVB7 1-LTR MM insertions in the 8
CC founder strains. This tree is constructed using maximum parsimony, which allows minimum
mutations. A total 204 ERVis are present in every founder, as shown by the root label, which is
not shown to scale. Among the 674 segregating ERVis, 476 are supported by this tree. As we
can see, CAST and PWK are well separated from the other 6 strains, which is consistent with
the separation of the subspecies. CAST and PWK share 10 ERVis suggesting that they branched
together from the Mus Musculus common lineage before separating into the M.m castaneous
and M.m. musculus subspecies. On the other side of the tree, WSB is also separated from the
common lab strains. Among the lab strains, we see longer leaf branches in A/J and NOD as com-
pared to B6, 129S1 and NZO. However, CAST and PWK both have even longer leaf branches,
suggesting they have many insertions that are not present in any other strains. The relatively
long leaf nodes of this ERV tree suggests that ERVB7 1-LTR MM has been, and continues to be
active in Mus Musculus. Indeed, if the branch lengths were corrected for time, it would appear
that the rate of activity has been increasing.

I show the segregation pattern of ERV insertions for ERVB7 1-LTR MM in figure 5.5. Here

sharing patterns are based on the ERV insertions in CC samples. Since they came from the 8 com-

mon founders, I use their founder/origin at the locus of insertion for understanding the diversity.

These founders represent 8 mouse strains (A/J, B6, 129S1, NOD, NZO, CAST, PWK, WSB).

This figure is consistent even if I use only the 8 founder strains, which is another validation of

ELITE’s findings. Other than the root, all the branches are drawn according to scale. There are

62 ERVis that are present in all the lab strains and WSB. Since WSB is also from the same sub-

specific origin (M.m. domesticus) as the lab strain (A/J, 129S1, B6, NOD, NZO), they have many
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common insertions as expected. On the other hand, CAST and PWK who got separated from the

rests about half a million year ago, share 10 common insertions. All the lab strains share 4 ERVis.

There are also some small branches under the lab strains, like there are 4 ERVis that are common

to A/J and 129S1, 5 ERVis are common to A/J, 129S2 and NOD, 2 ERVis are common to A/J,

129S2, NOD and NZO. The leaf branches show the ERVis that are present only in that founder.

Lab strains have less private ERVis compared to CAST, PWK and WSB. Among the lab strains,

A/J and NOD have more ERVis than B6, NZO and NOD.
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Figure 5.6: Phylogenetic tree based on the presence of RLTRETN MM insertion in 8 CC founder
strains. Tree is constructed using maximum parsimony, which allows minimum mutations. Total
387 ERVis are present in every founder, shows by the root. Among the 558 segregating ERVis,
296 are supported by the tree. As we can see, CAST and PWK are well separated from the other
6 strains. Together they share 34 ERVis. On the other side of the tree, WSB is also notably sep-
arated from the common lab strains. Among the lab strains, we see longer leaf branches in A/J
and NOD compared to B6, 129S1 and NZO. However, CAST and PWK both have far longer leaf
branches, suggesting they have many ERV insertions that are not present in any other strains.

Next I examine the segregation pattern of ERV insertions of RLTRETN MM as shown in

figure 5.6. Similar to the previous tree 5.5, the sharing patterns here are also based on the ERV

insertions in 8 CC founders that represent 8 different mouse strains. Even though the topology

of the tree looks similar to the previous one, the leaf branches here are considerably smaller.

CAST and PWK have 93 and 74 private ERVis respectively. On the other hand, all the strains

have less than 10 ERVis private to them. However, all the strains with M.m. domesticus sub-

specific origin (lab strains and WSB) shares 52 ERVis. Again CAST and PWK share 34 ERVis

which were likely inserted after the separation of M.m. domesticus some 500,000 years ago,
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but before the separation of the M.m castaneous and M.m. musculus. With the exception of the

internal branches among the common lab strains, both of the ERV-based phylogenetic trees are

topologically consistent. However, the RLTRETN MM branches are considerably shorter than

those of the ERVB7 1-LTR MM tree. This suggests that ERVB7 1-LTR MM has been more

recently active. Both ERV trees are consistent with the with the common mouse phylogeny based

on SNPs, and they aid in resolving details such as the shared ancestry of M.m castaneous and

M.m. musculus.

Figure 5.7: An example of QTL mapping for TEi id 14747. This TEi id has 3 probes, a proximal
TE probe, a distal TE probe and an absence probe. For all the probes, LOD scores got a pick at
the end of chromosome 13. This is also ELITE’s predicted insertion location. Three plots at the
bottom shows the allele frequency for those probes at that locus. Except for CC and HH, all the
other haplotypes have high allele frequency for both proximal and distal TE probes. On the other
hand, CC and HH both have high allele frequency for the absence probe, and the rests have zero.
This indicates, TEi is present in everyone except for CC and HH. Absence of TEi in CC and HH
is further confirmed by the QTL of the absence probe.
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5.6 Validating Segregating ERV insertions

Genetic mapping (i.e., quantitative trait loci (QTL) mapping) was used to verify ELITE’s

findings. QTL mapping allows us to identify genomic regions that are correlated to the genetic

segregation patterns of a trait. We mapped QTLs by detecting which genetic segregation pat-

tern (based on a set of SNP markers) correlated to the patterns of segregating TEis. For our CC

population, I used the SNP markers from a well-known, widely used genotyping array called

GigaMUGA (Morgan et al., 2016). Markers in this array are distributed throughout the genome,

and are capable of distinguishing the haplotypes of the 8 CC founder strains. In addition to con-

firming the location of TE insertion, QTL mapping also allows us to verify the list of samples

who should and should not have an insertion based on their founder haplotype at in the region of

the insertion. First, the insertion location of TE is expected to match a QTL peak. Second, the

allele effects observed in the region of the QTL peaks are expected to verify strains where the

ERV was detected or not as well as the predicted founder haplotypes.

I independently map the probe counts for each probe. Then I combined all the probes that

are from the same insertion event. However before doing QTL mapping, I applied several filters

on both TEi, TE probes. These filters are not mandatory and biologists can apply or remove

any filter based on their type of analysis. Here are post-processing steps applied to the output of

ELITE:

1. We perform QTL mapping for each probes of a segregating TEi. Similar to TEi, segregat-

ing probes are the ones where a subset of samples have the probe, and the rest don’t have

it. To be able to apply QTL, there has to be more than one group who are genetically dif-

ferent. Sometimes, it happens that a TEi is present in every sample, and it corresponds to

the same TE present probe. These fixed and non-segregating probes are filtered before QTL

mapping.

2. We normalized the probe counts for each sample based on its read coverage. These nor-

malized counts are used for QTL mapping instead of the absolute count. If the normalized
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count does not corresponds to a single copy, the ERV is removed from further considera-

tion. Note that this does not imply that the ERV insertion is a false prediction, but it sug-

gests that mapping will be ambiguous. Note that our selection of probes verifies that the

“context” portion is unique in the reference, but that might not be the case in other genomes.

To simplify our analysis, we did not considering any Copy Number Variations (CNVs) and

only focusing on the locations that is unique for each sample in the population.

3. Any TEi probe on chromosome Y was filtered. Since Y chromosome does not recombine,

we cannot map the exact location of a TEi. Additionally, chromosome Y is only present in

male samples, and only a fraction of our population is male. Therefore it was ignored in

this analysis.

4. We used normalized probe counts as the observed trait for QTL mapping. QTL returns

LOD scores (Log of Odds) for the whole genome (specifically at the markers’ position)

which indicates the chances of having a QTL at that position. If the LOD score at ELITE’s

predicted location is sufficiently high, the probe was kept. For our analysis, we considered

a QTL as likely if its LOD was greater than 8 and less than 200.

5. We removed any TEi id that does not have a TE probe. Because of all the previous filtering

steps mentioned above, it might happen that all the TE present probes of a particular TEi

got filtered and removed. Thus that TEi id no longer represents any insertion event.

Figure 5.7 shows an example of QTL mapping. ELITE found an ERV insertion of type

RLTR1IAP MM, denoted by TEi id 5098, at chromosome 13 position 108559536. For this

insertion, ELITE generated two TE present probes, one from the proximal side: TTGTTACTG-

GTTTGATAAGGATGATTGTTGGGAGCCGCGCCCACATTCGC (probe id 14748) and one

from the distal side: CGTGAGAACGCTATTAACAgatgatTATACATTCAATATCCACACCTTTC

(probe id 14749). For the same TEi one absent: TTGTTACTGGTTTGATAAGGATGAT TATA-

CATTCAATATCCACACCTTTC (probe id: 14747) is also predicted by ELITE. Two TE present

probes share a common target-site-duplication (TSD) from the genomic context, gatgat, which
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is adjacent to the TE’s LTR sequence. The distal TE probe’s TSD is shown in lowercase. Using

the normalized counts as traits, we performed QTL mapping on the samples of CC population.

Counts were normalized by their coverage as mentioned earlier. As we can see from the figure,

all the probes have a high LOD score at the end of chromosome 13 around 108 megabases, which

is consistent with ELITE’s prediction. Allele frequencies in both TE probe also suggest that,

ERVi is present in every founder haplotype except C and H. On the other hand, the allele fre-

quency of the absent probe shows that ERVi is absent in C and H. Therefore, all three probes

independently confirm the ERV insertion predicted by ELITE.

Total number of probes 112683
Segregating Probes 80900

Filter 1 Potential CNV -464
Filter 2 Duplicate probes -745
Filter 3 Chromosome Y -43

Probes left for validation 79648

QTL validated probes 74443

Table 5.2: Summary of ELITE’s probes validation: ELITE reported a total of 112683 probes.
However, QTL mapping is limited to validating only segregating traits, which left 80,900 probes.
After applying additional filters, we arrived at a total 79,648 probes and among these 74,443
(93.5 %) were validated by QTL mapping. The remaining 6,457 were removed for variety of
reasons, Some did not fall witihn the LOD confidence interval, others did not map to the location
predicted by ELITE, and others still did not segregate among founders as expected.

Figure 5.2 shows the summary of QTL mapping on ELITE’s probes. There are total 112,683

probes reported by ELITE. I eliminated some probes that are not segregating. First, probes that

became fixed in CC population. Second, probes that belongs to de novo insertions. Therefore, I

only keep only the segregating probes for QTL, which gives us 80,900 probes. Then I apply filter

1, which removed 464 probes that contain potential copy number variation (CNVs). Here nor-

malized probe counts are used to find CNVs where a sample has count higher than the expected

coverage. Then I remove 745 probes are duplicated which are left due to merging error. Next, I

apply filter 3 to remove 43 probes that are in Y chromosome. All the filters left me with 79,648

probes. QTL was run on these probes and 74,443 were consistent with ELITE’s findings. After
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that, I remove any singleton probe. These 74,443 probes represent 15,000 distinct ERV insertions

in CC. So overall among the 19,922 TEis made up by 74,443 probes, 15,000 are validated using

QTL. Moreover, allele frequencies are also consistent with the samples who are supposed to have

ERVi in that location according to ELITE.

5.7 De novo

So far I have talked about the insertions that are shared by some samples in the CC population

with a common founder. However, new mutations can occur in any CC line that are not inherited

by any founder. I call this new mutations de novo. In the context of CC, we can define de novo as

an insertion that is present only in one sample or shared by its biological replicates from the same

CC line. In CC population, de novo means either the insertion took place as recently as when the

sample was born or 10 years ago. Since its been 10 years since the breeding of CC, any de novo

in CC can not be older than that thus can be referred to as recent events.

ERV Total de novo

ERVB4 2B-LTR MM 935 0
ERVB7 1-LTR MM 1044 166
IAPEY3C LTR 1935 0
MERVL LTR 4518 35
MTA mm 18251 153
RLTR10 3643 19
RLTR1IAP MM 8840 100
RLTR4 MM 323 16
RLTRETN MM 969 24

Table 5.3: Total number of de novo ERV insertions in CC population found by ELITE. We broke
down the numbers based on 9 different ERV templates. The number of de novo varies for differ-
ent templates. Almost 40% of the ERVB7 1-LTR MM insertions are de novo. However, there are
some ERVs like ERVB4 2B-LTR MM and IAPEY3C LTR, I found no de novo insertion.

De novo insertion can take place in a germline or in a somatic cell. Here we are only inter-

ested in germline de novo because my analysis focuses on population genetic. Since somatic

insertions cannot take place in the reproductive cells, usually the count of TE probe reads for so-
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matic cell is far less than germline. This was taken care by setting a high threshold while running

ELITE. Somatic de novos are also highly likely to be heterozygous. Moreover, for a subset of

samples, I also have their “twins” or biological replicates from the same CC line. ERVis that are

only present in a single CC line and absent in everyone else are also considered as germline de

novo. It is also guaranteed that, these de novo, shared by replicates are in germline.

I found total 513 potential germline de novos in CC population. Number of de novos de-

pends both on ERV template and sample. Some ERVs tend to have more de novos (ERVB7 1-

LTR MM), where some have none (ERVB4 2B-LTR MM and IAPEY3C LTR). Figure 5.8

shows the total number of ERVB7 1-LTR MM de novos I found in CC population. Green bars

in the figure represents the homozygous de novo and red represents heterozygous de novo. The

samples sorted by the average number of de novos in their corresponding CC lines, and then by

the total de novos in that particular sample. We chose ERVB7 1-LTR MM becasue it has the

highest number of de novos (166) compared to all the ERVs we assesed. From the figure we can

see that, some CC lines (CC055, CC027, CC026) have more de novos than others. Both CC055,

CC055M3799 UNC NYGC and CC055F5017 UNC UNC has 9 de novos each. For example,

CC005M4714 UNC NYGC also has 9 de novos, and its replicate CC005F1000 JAX NYGC has

6. On the other hand, there are 32 samples that don’t have a single de novo. 19 samples has only

1 and 13 have only 2 de novos. Many of the de novos are found in heterozygous state (shown

in red), suggesting very recent insertions that are still segregating. The number of de novos can

also be used to calculate mutation rate in the population. Since the number of de novo events are

different for different ERV templates, we can also calculate how mutation rate varies with respect

to ERVs. It is also possible to find the underlying cause of having more de novos for certain ERV

types which we will discuss later.

5.8 Validating De novo Insertions

Validating de novo insertion in real sample where the ground truth is not known is not straight-

forward. It can be done using QTL mapping as the probes for de novos are not segregating. Be-
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Figure 5.8: Number of de novos per CC sample. Green and red represent homozygous
and heterozygous ERVis respectively. Almost one third of the samples have no de novo.
On the other hand ome samples have more de novo like CC055M3799 UNC NYGC and
CC027M2377 UNC UNC. Other samples from the same CC line CC055F5017 UNC UNC,
CC027M756 UNC NYGC also have high nunmber of de novo. Majority of the de novos are in
heterozygous state suggesting very recent insertion.
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cause de novo TE probes are present only in one sample, or multiple samples from the same CC

strain. However, I showed two different approaches for validating de novos. First one is based

on the available data I have, which is comparing de novos that are shared between biological

replicates. Second one is based on pure biological PCR-based method which is done by our col-

laborators at the Department of Genetics.

5.8.1 Validation using Replicates

The CC population provides a great opportunity to validate some of the de novo insertions.

Unlike the segregating ones, de novos are not shared between all the samples with the same geno-

type. However, samples that came from the same CC line may share some de novos. Because

breeding of CC started 10 years ago and I call any insertion as de novo if it is less than 10 years

old. Therefore, I compare de novo ERVB7 1-LTR MM insertions between biological replicates

to eliminate the chance of false positives. Since I run ELITE individually on each sample, it is

impossible to TE insertion exactly at the same position in two different dataset. Therefore, I use

the biological replicates to show how a subset of the TEis are consistent within each other.

There are total 15 CC lines for which we have technical replicates. In table 5.4, I show the

number of de novos in individual CC sample and the common de novos present in all biological

replicates. As we can see, around 50% of the de novos are common to two replicates. However,

CC003F1000 JAX NYGC is the only exception who shares only 1 out of 8 de novos with its

replicate. On the other hand, both samples from CC055 which have the highest number of de

novo, share 8 out of 9 insertions. There are two CC lines, CC006 and CC041, have no de novo

insertions at all. Overall in these 15 samples, there are 89 distinct de novo insertions and 36 are

shared between biological replicates. These 36 insertions, found independently in two samples

from the same CC lines proves that they were true insertions. Moreover, they are recent as their

founder does not have that TEi.

De novos, those are not shared between biological replicates do not necessarily mean that

they are false positive. Using only sequence data it is not possible to find the ground truth. Thus
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in later section, I, with the help of some biologists, validated a subset of de novo that are not

shared between biological replicates.

So far I have talked about the biological replicates only. However, I also have technical repli-

cates for 4 different CC strains. Technical replicates are basically the same sample but sequenced

twice in two different machines. Even though technical replicates have the same DNA, their cov-

erage is different. For example the coverage of CC074M495 UNC NYGC is 32 whereas its only

8 for CC074M495 UNC UNC. However, the total number of de novo in both dataset in 4, and

all 4 are common to each other. This is same for the 3 other samples. All these samples have the

exact same number of de novo as their technical replicates. This consistency proves ELITE’s high

true positive and true negative rate.

5.8.2 Validation using PCR-based method

I also validated all the de novos present in two samples from the CC027 strain. At first, we

ran ELITE on CC027M756 UNC NYGC. Due to high number of de novos found in this sample,

I added another sample CC027M2377 UNC UNC from the same strain. Both of the samples,

CC027M2377 UNC UNC and CC027M756 UNC NYGC has 19 total de novo insertions, and 8

of them are present in both. Overall there are 19+19−8 = 30 distinct de novo insertions combined

two CC027. Among the 19 in CC027M756 UNC NYGC, 7 are from ERVB7 1-LTR MM, 1 is

from MERVL LTR, 7 are from RLTR1IAP MM and 4 are from RLTRETN MM. On the other

hand, among the 19 in CC027M2377 UNC UNC, 8 are from ERVB7 1-LTR MM, 1 is from

MERVL LTR, 3 are from RLTR1IAP MM and 7 are from RLTRETN MM.

I had perfect concordance between ELITE’s predictions and PCR validation in all 90 assays.

Each TEi has 3 assays, forward (F), reverse (R) and (LTR-R). An amplification band only in F/R

indicates absence of TEi, a band only in F/LTR indicates presence of TEi in homozygous state,

and a band both in F/R and F/LTR indicates presence of TEi in heterozygous state. I tested the

presence, absence and zygosity for all 30 of these TEis in 75 additional unsequenced CC027

samples. All 90 of those PCR results suggest genotypes that are consistent with ELITE’s TEi
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findings. Though there are many TEis that were not present in any other CC027 except for the

one I used as de novo insertion varies between samples. Thus, I have confirmed 100% of 30 of

ELITE predicted de novo TEis. This supports our claims that ELITE has a low false-positive rate.

5.9 ERV insertion by Genomic Region

Even though genome is full of transposable elements, not all of them are active. Due to mu-

tation in the TE sequence or the genome’s own mechanism of suppression, majority of TEs in

mouse or human genome lost their ability to move. These inactive TEs have no functional con-

sequence thus are passed on to generation to generation and become fixed. However, active TEs

can still move, and depending on the insertion location, it can be highly deleterious. For, exam-

ple if a TE gets inserted into or near a gene, (which is the functional part of a genome), it can

completely disable the gene’s functionality. On the other hand, if a TE is not deleterious, most

probably it will stay in the genome, and over the time become fixed with in future generation.

Therefore, I annotate all the ERV insertion by their genomic region. I categorize genomic region

by the proximity with respect to a gene. There are 4 different kinds of genomic regions. They are

listed below:

1. Exon: Exon is the part of functional DNA. Even though we stated before, gene is the func-

tional part of a genome, some segments of genes does not really get translated into protein.

Sequence of genome that actually encodes protein is called Exon. Every gene starts and

ends with an Exon.

2. Promoter: Promoter is a sequence that is within 1000 bases of transcription binding site.

Simply put, its a sequence that is needed to turn a gene on or off. Even though its not inside

the gene, or does not encode protein, its ability to turning the gene off can result serious

consequences.

3. Intron: Intron is a part of a gene. However it does not get translated into protein. However,

it is an integral part of gene expression regulation which affects phenotype. A gene can
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contain several exons, with several introns in between them. Introns are also known as

intagenic region.

4. Intergenic: The region outside the gene is called intergenic. Neither do they encode pro-

tein, nor they regulate gene expression. Their functionality are still unknown and are often

referred to as “dark matter”. Intergenic region comprises round 50% of a human genome.

I annotate the genomic region of each ERV insertion as defined above. Genes can overlaps

with each other. Therefore it is possible to have a region which belongs to an exon of some gene

but intron or promoter to some other gene. In cases of multiple regions, I chose the one which

can have more deleterious effect. Based on the ERVi sharing pattern, I calculate the fraction of

insertions that are in each genomic region (shown in table 5.6.) As I can see from the table, Most

of the Fixed insertions are intergenic (81%). Intergenic regions are non-functional thus genome

most likely does not resists if an insertion takes place there. This is quite similar to the segregat-

ing ones, except that the number is little lower than fixed. Around 73% the segregating ERVis

are intergenic, 25% are in intron. In the case of de novo, 2.3% insertions are in exon which may

at first looks like a very small fraction. However, compared to the fixed (.3%), and segregating

(.2%) ERVis, de novo insertions are more likely to be found in exon.

5.10 Summary

I use our template-based tool ELITE for finding ERV insertions in each sample in the CC

population including the founders. To get the templates, I also use my template-free pipeline

Frontier. Frontier automatically classifies the TE types, and TE types that belong to ERV class

are used here. To analyze the result on a population basis, I added some new features to our orig-

inal pipeline. First, I build some additional probes for each TEi which I later use for genetic

mapping. Then, I provide a genome-wide TEi sharing pattern between all samples by combin-

ing the individual insertions. Based on the TEi sharing pattern, I annotate each insertion’s state

whether it’s fixed, still segregating or a de novo. I observed 36% ERVis are present in everyone
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and became fixed in the CC population. Moreover, 62% of ERVis are still segregating, and 75%

of those are verified by QTL mapping. Using this large CC population with known pedigree also

allowed me to identify the most recent events - de novos. And all the de novos in CC027 were

also verified using PCR method. Overall a large number of ELITE’s predictions are validated. I

have not specifically try to validate any fixed ERVis. Fixed ERVis are present in every sample and

their founders including B6. Now reference genome is based on B6, therefore I just verified if all

the fixed insertions are already annotated in reference genome. This way I have a list of curated

insertions in CC population.

Many researchers in the field of genetics and biology use the CC for various kind of anal-

ysis. Annotation of ERV insertions in this population will facilitated their research in a great

way. I, also in collaboration with the Genetics department of UNC Chapel Hill perform many

experiments. Most of these are purely biological. However, I describe some of the findings with

adequate background so that the impact of my algorithmic pipelines can be understood and val-

ued. Among the many interesting findings, I saw that, the ERV segregation or sharing pattern in

CC population is consistent with the commonly believed mouse phylogeny. I can also estimate

the age of ERV type. Some ERVs like ERVB4 are very old that most of the insertions became

fixed. On the other hand, some ERVs are still active in CC, contributing to many recent events

or de novo. Moreover, insertions that are not deleterious mostly found in intergenic (nonfunc-

tional) region and became fixed in CC. De novo has highest number of exonic ERVis. These

potential deleterious ERVs are usually purged quickly from a population. Overall I show that my

algorithms work on a large genetically diverse population like CC. Therefore, it can be used to

catalog and annotate ERVis in any other population. Moreover, I provide a complete database

of the ERVis that are found in CC which serves a great resource for the researchers who use this

population for various analyses.
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Strain Sample de novo Common

CC002
CC002F1000 JAX NYGC

CC002M4575 UNC NYGC
4
2

2

CC003
CC003F1000 JAX NYGC

CC003M4601 UNC NYGC
8
4

1

CC004
CC004M4292 UNC NYGC
CC004F1000 JAX NYGC

3
2

2

CC005
CC005F1000 JAX NYGC

CC005M4714 UNC NYGC
6
9

3

CC006
CC006M4698 UNC NYGC
CC006F1000 JAX NYGC

0
0

0

CC007
CC007M4153 UNC UNC

CC007M3406 UNC NYGC
7
8

5

CC010
CC010M3518 UNC NYGC

CC010F4396 UNC UNC
5
2

1

CC018
CC018F1000 JAX NYGC

CC018M1136 UNC NYGC
1
3

1

CC026
CC026M3004 UNC UNC
CC026M3385 UNC UNC

8
5

5

CC027
CC027M2377 UNC UNC
CC027M756 UNC NYGC

8
7

4

CC032
CC032F1000 JAX NYGC

CC032M1247 UNC NYGC
1
1

1

CC040
CC040M4198 UNC NYGC
CC040F1000 JAX NYGC

1
0

0

CC041
CC041F1000 JAX NYGC

CC041M5135 UNC NYGC
0
0

0

CC043
CC043M797 UNC NYGC
CC043F1840 UNC UNC

5
7

3

CC055
CC055M3799 UNC NYGC

CC055F5017 UNC UNC
9
9

8

Table 5.4: Comparing de novo ERVB7 1-LTR MM insertions between biological replicates
to eliminate the chance of false positives. Since I am calling any insertion that is less than 10
years old as de novo, in that sense insertions that are shared between biological replicates are
also de novo. For the strains I have replicates, around 50% of the de novos are shared. However,
CC003F1000 JAX NYGC is the exception who shares only 1 out of 8 de novos with its replicate.
On the other hand, both samples from CC055 which have the highest number of de novo, share 8
out of 9 insertions.
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Strain Sample de novo Common

CC008
CC008M983 UNC NYGC
CC008M983 UNC UNC

0
0

0

CC035
CC035M1489 UNC NYGC
CC035M1489 UNC UNC

2
2

2

CC053
CC053M907 UNC UNC

CC053M907 UNC NYGC
2
2

2

CC074
CC074M495 UNC UNC

CC074M495 UNC NYGC
4
4

4

Table 5.5: Comparing de novo ERVB7 1-LTR MM insertions between technical replicates.
Technical replicates are basically the same sample but sequenced in two different places. Here
all the 4 samples are sequenced twice, in UNC and in New York. Therefore, they must share all
the insertions whether de novo or not. As we can see, exactly the same number of de novos are
present in each technical replicate of the same CC line, and they share all of them.

Genomic region Total Fixed Segregating de novo

Intergenic 77% 81% 73% 55.4%
Intron 22% 18% 25.5% 41.5%
Promoter .9% .8% .9% .8%
Exon .3% .2% .3% 2.3%

Table 5.6: Genomic regions of ERVs classified by their segregation pattern in the CC population.
ERVs are classified into one of four genomic regions depending on their genomic positions. For
ERVs that potentially belong to multiple contexts, they were assigned to the most biologically sig-
nificant based in the following schema: exon > promoter > intron > intergenic. Percentages
are calculated within segregation groups.
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CHAPTER 6: TOOLS AND RESOURCES

In this chapter, I document all the TEi related tools and resources created as part of this re-

search for future use. Chapter 3 and 4 focus on describing the algorithms and their performances.

In this chapter I give step-by-step instructions for running these tools on short read data. I also

describe several web-tools for visualizing ERV insertions in the CC population. Finally, I provide

links to download all the resources including source codes, and ERVi annotations in CC.

6.1 ELITE

ELITE is a tool for efficiently locating insertions of transposable elements in the genome. It

is a template-based tool which uses a conserved k-mer as seed to locally assemble the insertion

boundary. After extracting the insertion context from the boundary, a third party tool, bowtie2 is

used to map it with respect to a reference genome. Therefore, to run my pipeline, there’s some

additional dependencies that I need to consider. In this section, I will briefly discuss how to run

ELITE on short read dataset.

Source: Source codes and sample data can be downloaded from github:

https://github.com/Anwica/ELITE.

Pre-requisite for running ELITE:

1. Install msBWT from here:

https://github.com/holtjma/msbwt

2. Install bowtie2 from here:

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml
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3. Install Levenshtein python package from here:

https://pypi.org/project/python-Levenshtein/

4. Build msBWT from short-read, follow instructions from here:

https://github.com/holtjma/msbwt

5. Build bowtie2 index from reference genome, follow instructions from here:

http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml

Prepare Input Data:

1. Create a .csv file with the following information for each sample: (a sample file sam-

ple list.csv is given in the sample data folder)

• sample name: name of you sample

• bwtfile: directory where the sample’s msBWT is located

• threshold: minimum number of supporting split-reads with TE

2. Create a .csv file containing the TE templates: (a sample file TEseq.csv is given in the

sample data folder)

• my id: name of the TE template

• TE: sequence of the TE

• start seed: seed kmer (lengths between 21-35) near the TE’s proximal boundary

[empty string if you want ELITE to find the optimal seed]

• end seed: seed kmer (lengths between 21-35) near the TE’s distal boundary [empty

string if you want ELITE to find the optimal seed]

3. Reference genome: (a sample genome Reference.fa is given in root folder)

• The reference genome of the sample species
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4. Required parameters for running ELITE:

• sample list: path to the .csv file containing the sample’s information

• te file: path to the .csv file containing the TE templates information

• reference: path to the reference genome file

• species: name of your bowtie index

• C: length of TE’s context which is the segment of non-TE sequence right next to a TE

sequence [C = 25 recommended]

• T: length of proximal and distal TE length which is the segment of TE sequence right

next to a context [C + T must be less than half of read length]

• K: length of seed [25 recommended]

a sample script runELITE.sh is given to run ELITE using the sample data. It will automati-

cally create bowtie index if not already built. You must use the same reference genome for build-

ing bowtie and running all the steps of ELITE. For running ELITE, simply modify runELITE.sh

with appropriate parameters and execute it.

6.2 Frontier

Frontier is pipeline that automatically detect the boundary of TE insertions without any tem-

plate. Frontier at first identifies all the repeats directly from a sequences dataset, assuming that

all TEs are repeated. Then it extends the repeat to find boundaries where repeat ends in a normal

genomic coverage. Using a deep-learning classifier, frontier further classifies each boundaries

where they are true frontier or not. For the true frontiers, there is a second classifier which further

predicts the TE type in the repeated segment.

Source: Source codes and trained models can be downloaded from github:

https://github.com/Anwica/Frontier.
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Pre-requisite for running Frontier:

1. Install msBWT from here:

https://github.com/holtjma/msbwt

2. Install pytorch from here:

https://pytorch.org/

3. Build msBWT and LCP from short-read Follow instructions from here:

https://github.com/holtjma/msbwt

Running Frontier.py

1. Required parameter for running Frontier:

• kmerSize: length of repeat, default is 45

• msBWTdir: path to the msBWT directory

• tmp: path to tmp directory

Running CreateCountMatrix.py

1. Required parameter for running CreateCountMatrix.py :

• frontierfile: List of frontier candidates obtained from Frontier.py

• bwtfile: Path to the bwt file

• countfile: Desired Path and Name of the countfile

Running RunFrontierClassifier1 .py

1. Required parameter for running RunFrontierClassifier1 .py :

• frontierfile: List of frontier candidates obtained from Frontier.py

• countfile: Path to the countfile obtained by running CreateCountMatrix.py

• trainedmodel: Path to the trained model for finding true frontier.

• truefrontier: Desired Path to the output that keeps only the true frontier sequences
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Running RunFrontierClassifier2.py

1. Required parameter for running RunFrontierClassifier2.py :

• truefrontier: Path to the output that keeps only the true frontier sequences

• trainedmodel: Path to the trained model for for classifier 2.

• truefrontier classified: Desired Path to the true frontiers with TE type classified

6.3 Web tools and resources

We have an website: http://csbio.unc.edu/TEs/index.py to make all the re-

sources easily accessible to anyone who is interested in ERV insertions in Collaborative Cross

Population. As described in chapter 5, I ran ELITE on CC population using 9 different ERV tem-

plates. I documented everything throughout the process and put them on our website. Three main

tabs we have are as follows:

6.3.1 Summary

This tab shows several summary statistics we found useful after running ELITE. The url is

http://csbio.unc.edu/TEs/index.py?run=Summary.index. Some of them are

briefly described below:

• Number of TEis per ERV templates. Those are also broken down into types like whether

they are present in reference genome, or still segregating.

• genomic region of each TEi based on their segregation pattern. Here segregation pattern

refers to fixed, segregating and de novo. For each, we list how many of these are intergenic,

and in gene’s exon, intron and promoter.

• Number of de novo ERV insertions per sample for each of the 6 used templates. We also

show how many of the de novos are homozygous and how many are heterozygous.
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• Phylogenetic trees for each ERV templates based on the insertion sharing pattern. Here I

only include the insertions that are either fixed or segregating.

6.3.2 TEiVewer

I developed an webtool, TEiViewer, for visualizing ERV insertions in CC population. It’s like

UCSC (Kuhn et al., 2013) or ensembl (Fernández and Birney, 2010) genome browser. In this

genome browser, user can select a CC sample and a range in a chromosome to view all the inser-

tions that are present in that CC. In addition to CC, I also show all the ERVis in 8 CC founders to

understand the inheritance pattern of the insertions. If a sample is NOD (DD) in a region, most

likely it will have all the TEis that are also in NOD unless a deletion event occurred at that DD.

The url to this viewer is http://csbio.unc.edu/TEs/index.py?run=TEiViewer.

index

Figure 6.1: TEiViewer: An webtool for visualizing TE insertions in a population. Here I show
the TEis that are present in CC027M2377 UNC UNC in chromosome 10 starting from 22M
to 26.5M. Around 22.45M, CC027 has an insertion which is present in all the other founders.
At around 24.7M, CC027 has a TEi, which is only present in B6 (BB) sample. This means
CC027 inherited this region along with the TEi from B6. Finally at around 26.05M, CC027 has
a TEi that is not present in any of the 8 founders. Therefore, that TEi was not inherited from the
ancestors and considered as a recent event or de novo.

Figure 6.1 shows a snapshot of our TEiViewer. As shown in the bottom, I have a dropdown

list from which one can choose one CC sample. Beside that, there’s another dropdown list for

choosing a chromosome. Then I have two text inputs, Start and End, which refers to the starting
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and ending position of the selected chromosome. When user hits the return button, I show that

particular samples genome by marking all the ERVis in that given range of that chromosome. I

also show the ERVis that are present in all the 8 founders. After selecting CC027M2377 UNC UNC

as a sample, we can see that there’s total 23 ERVis in that region. Founder AJ (AA) also has 23

ERVis, but those are not the ones that CC027 has. The first ERVi here which is around at 22.45M

is present in AA. This is shared with CC and DD, but not with CC027. The next ERVi (shown in

blue) is present in everyone and became fixed in CC population. The next one (shown in cyan),

is shared between CC027,BB, and HH. This tells us, CC027 is either BB or HH in that region

from which it inherited the insertion. It’s unclear whether CC027 is BB or HH until we look at

the ERVi at 24.7M. Here, CC027 has an insertion that is only present in CC027. Therefore, this

is a great way to track the inheritance using TEi sharing pattern. It also tells us the ERVis that are

very recent or de novo. For example, at around 26.05M, CC027 has an insertion, which is absent

in all the 8 founders. Thus, this insertion took place after the breeding of CC population.

6.3.3 TEiDisplay

I developed an webtool, TEiDisplay, for visualizing individual ERV insertions in CC pop-

ulation. We also include the UNC founders so that one can understand the segregation pattern

among the CC samples. My display tool takes a range in a chromosome as input. It then list all

the TEi id representing ERV insertions. For each TEi id, some additional information are pro-

vided so that user can pick a single TEi to look in detail. The link “view” takes user to a new

page where for each UNC founders and CC samples, I annotate whether it has TEi or not. I also

indicate if it’s in homozygous or heterozygous state. Homozygous TEis are shown by two dots,

while heterozygous are shown by one dot. Each founder is color coded like this: yellow in for

AJ, black is for B6, pink is for 129S1, dark blue is for NOD, light blue is for NZO, green is

for CAST, red is for PWK, and purple is for WSB. CC samples are also color coded like the

founders. Now I already know all CC samples genotype i.e., for a given position the founder
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from which they inherited the DNA sequence. Color for each CC is based on that inherited

founder. CC can have different founder at different places, thus different color code.

Figure 6.2: display
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6.3.4 Downloads

I made downloadable spread sheet available online annotating all the ERV insertions in CC.

These can be found here: http://csbio.unc.edu/TEs/index.py?run=Downloads.

index. I provide necessary glossary to understand the output spreadsheet, which can also be

downloaded from there.

6.4 Summary

This chapter is written mainly for the users who wish to use our pipelines. Easy step-by-step

instruction will also help future researchers who want to make any improvement to the algo-

rithms. I also provide the results of running our pipelines on collaborative cross population. I

include detail information for each insertion including all the probes (both TE present and ab-

sent) and their counts in each samples. Since many biologists use this CC population for many

different kind of analysis, I created several webtools to easily view the diversity pattern of ERV

insertions.
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CHAPTER 7: DISCUSSION AND CONCLUSION

As part of my research into the exploration of the variability of Transposable Elements in

intraspecific genomes I developed two different analysis algorithms and implemented pipelines

for using them. Both algorithms rely on local-genome-assembly to look for transposable element

insertions in the genome from short reads. Both pipelines assemble only the boundaries of in-

sertions locally and find the context of the insertion. Since short-reads are smaller than a full TE

sequence, it is possible to find the boundary unambiguously instead of a full inserted sequence

with context. Some other TEi detection tools, like split-read models also work like that. However,

their initial alignment with respect to the given TE templates is computationally expensive. On

the other hand, instead of alignments, both of our pipelines use msBWT to store and retrieve

short read data. Not only msBWT saves space, it also makes the local assembly much easier than

typical methods. The way msBWT works, that is searching by suffix is perfect for assembling

a genomic segment base by base. Even when a TE template is unknown, we show that msBWT

can be jointly used with another data structure the LCP, to identify any repeated segments in the

genome. Using deep learning classifier works great to finally filter the segments that are actually

the boundary of transposable element insertions along with their type.

Looking only the insertions boundary eliminates a lot of repeated segments that are inside

a TE. Those sequences do not help in finding insertion locations but create significant memory

overhead. We strongly believe that our pipelines can be used in any kind of large scale short

read data to identify TEis by mainly focusing on the insertion boundaries. However, there are

still scope of improvements. Therefore, in this final chapter, we briefly discuss the summary of

our results along with some existing limitations and potential improvements to our algorithms.
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We also discuss some possible future research directions that can be pursued by extending our

existing pipelines.

7.1 ELITE

Our first pipeline ELITE shows a promising result when compared to other template-based

TE searching tools. We compare our results with both discordant-pair-based models and split-

read-based models ( (Gardner et al., 2017), (Zhuang et al., 2014), (Chen et al., 2017)) and show

that ELITE’s precision and recall rate are more than 30% and 5% higher respectively given a

good coverage. Moreover, ELITE also outperforms those in predicting zygosity and the insertion

location to the base pair. ELITE is computationally far less expensive and 2x faster than typi-

cal TE searching tool. The msBWT data structure also makes it feasible to run ELITE multiple

times on a sample with different TE templates and across genome build versions. All these to-

gether makes ELITE a perfect choice for identifying diversity of TE insertions in a large scale

population.

7.1.1 Limitations of ELITE

• One drawback of ELITE is that it does not perform equally well for all types of TEs. For

example there are 3 main types of the TEs in human and mouse genome: LINEs, SINEs

and ERVs. Our experiments show that ELITE performs better for ERV type as it has a

more structured boundary. On the other hand, LINEs and SINEs are often truncated on

the 5’ end, and have variable length of poly A’s at 3’ end. Because of these wide range

of variations in both 5’ and 3’ ends, it becomes difficult to identify the exact insertion

boundary.

• Another limitation of ELITE is the requirement of TE template. Just like any other existing

TE searching tools, ELITE needs a TE template to find the insertions of that TE type. Even

though ELITE can identify TE insertions that are divergent to the given TE template, it
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needs a TE seed to start with. A seed is a sub-sequence from a known TE sequence that

is conserved (meaning repeated numerous times in the genome). Even though current

version of ELITE cannot automatically identify seeds from short reads, our second pipeline

Frontier 4 is specifically designed to do that.

7.2 Frontier

Our second pipeline Frontier introduces a novel idea of detecting transposable element inser-

tions directly from short reads without any given TE template. Frontier bypasses the need of a TE

template with the assumption that TE sequence is repeated throughout the genome. Therefore,

it uses a repeat finding algorithm at first to list all the candidate reads where repeated segments

end in a normal coverage. Then a deep learning classifier is used to finally identify the reads that

belong to TEi boundaries only. This makes it possible for Frontier to find TE types that are com-

pletely unknown. Moreover, it is not also biased towards any type of TE. Unlike ELITE, Frontier

is able to find all classes of TE, LINEs, SINEs, and ERVs. In comparison to template-based TE

searching tools, Frontier performs similar to ELITE as long as the TE segment is highly repeated

in the genome.

7.2.1 Limitations of Frontier

• Our current version of Frontier considers a segment as TE if its repeated more than a cer-

tain threshold in the genome. This is a hard threshold and the exact sequence needs to be

present over than threshold parameter. However, sometimes TE sequences get mutated and

the mutated version may not have very high count. Thus some TE sequences gets ignored

by Frontier as their count is below the hard threshold. This can be fixed by allowing some

edit distances in the repeated segment which may need some additional data structure along

with msBWT and LCP.
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• Frontier’s Classifier-II predicts only high level TE types like LINEs, SINEs and ERVs.

However, each TE type can further be classified into subtypes. For example there are sev-

eral types of ERVs in mouse like ERVB7 1-LTR MM, MTA mm, RLTR1IAP MM etc.

To correctly identify all the names of the subtype present in a given frontier, it is essen-

tial to revisit the design of the neural network. There are a couple of available deep neural

network-based classifiers that try to predict these subtypes which we can implement to

refine this process.

7.3 Future Research Ideas

In this section, I discuss future research directions that can be pursued. Some of the ideas

are related to improving the tools that I developed. I also discuss some other research problems

than might be easily solved by using my existing pipelines. These ideas are open for everyone.

Anyone interested in this topic are also welcome to further develop these ideas.

7.3.1 TEis as markers

Currently SNP-based markers are commonly used as markers in a genome that differenti-

ate samples from a reference genome of the same species. These markers can be used to map

inherited regions in the genome. Thus, we can use markers to identify the potential ancestor in

particular regions of genome. In chapter 5, we used markers for QTL mapping. QTL mapping

was able to tell us if TE insertions are consistent with the genotypes indicated by some previ-

ously verified markers at a specific locus. Those markers were extensively verified before being

make commercially available to public. However, to identify novel markers based on SNPs or

INDELs, it requires alignment of reads to a reference genome and finding the places where it has

some variants. Moreover, typical SNP or small INDEL based probes have smaller resolution (1-3

bases) compared to TEi.

Therefore, I propose a new type of markers TEis, which can be obtained just by running an

efficient computational tool, ELITE. TEis also have high resolution compared to SNPs since TE
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sequences are more than hundred basepairs long. Using TEi as marker can be done easily since

ELITE also outputs the TE present probe. We can identify the differences just by querying the

TE probes. The number of TEis found by ELITE is also richer than many arrays, or marker data

set. For example, recently developed microarray at our lab called MiniMUGA contains 11,000

markers, which is less than a quarter of the ERVis in CC. Recall that, I only looked at the ERV

insertions in CC, thus there’s still a lot of possibilities to identify more TEis using LINE and

SINE templates. Therefore a comprehensive list of all TEis can make a very rich marker data set.

I also discovered several cases in the CC population where TEis could differentiate between

founders when classical SNPs cannot. In some places of the genome, SNP markers cannot distin-

guish between closely related mouse strains. This problem is known as identity by descent (IBD).

However, ELITE discovered several ERV insertions within these regions, which can be used

unambiguously to resolve IBD. Figure 7.1 shows an example, where ELITE can be used to re-

solve an IBD. In this figure, a TEi is shown that is found in chromosome 9 at position 31071802.

Among the 8 CC founders, AJ and 129 have that insertion in homozygous condition shown by

two dots. All the CC samples are color-coded based on the sequence inherited from the founders.

Therefore, CC samples that are AJ in that region are shown in yellow, and 129 are shown in pink.

As you can see, all the yellow and pink ones have the insertion except for CC065 and CC080. I

investigated CC065 in particular and found that it’s actually B6 in that region, that’s why it did

not have any insertion. However, GigaMUGA microarray was unable to detect this difference.

Thus TEis are in some cases, more informative than typical arrays.

7.3.2 LINE-mediated Duplication

We can tweak our Frontier classifier to identify some other biological interesting phenomena.

One such example is called LINE mediated Duplications (LiMeD). It is a recently discovered

process which does not exactly follow the typical copy-paste mechanism of RNA transposon.

In the typical case, when a LINE moves, it makes a copy of itself and only the copied version

gets inserted to a new place. Sometimes whole thing cannot be copied to the new place and the
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Figure 7.1: Example of an IBD region: TEi is found in most of the samples with AJ (shown in
yellow) and 129 (shown in pink) in chromosome 9 at position 31071802. Homozygous TEis are
shown by two small black dots. However, CC065 even though is AJ at that region, does not have
a TEi. Several later investigates finally confirm that, there were not enough markers in the current
array to distinguish between AJ and B6. Thus in a small region, where CC065 transtioned from
AJ to B6 was not captured. However, it is clear from this TEi that CC065 is not AJ in that region.

copied version is clipped partially. However, recent research suggests that, , there are cases where

a LINE copies a small segment of genomic sequence near the 3” boundary of the new LINE from

elsewhere in the genome. That segment along with the LINE is inserted to a new place In our

original Frontier 4 pipeline, we first identified the sequence where read count goes from high to

normal. Here we need to find reads where count goes from high to normal then goes up to twice

the normal coverage. Learning this pattern of counts is perfect for classifiers like deep learning.

Thus we can add another class in the Frontier’s Classifier-I, to predict the reads that belong to

Line-mediated duplication.

7.3.3 Transfer Learning: Mouse to Human

Researchers mainly use the mouse as a model genome and research organism. One of our

pipelines, Frontier uses deep learning classifiers to predict TE insertions which is based on mouse

model too. However, given the current advancement in the field of deep learning, it might be
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Figure 7.2: Comparison between LiMed and typical LINE insertion. For both LiMed and typical
LINE insertion, we broke down the frontier read into consecutive 21-mers, and plotted their
counts in the msBWT. Here left and right figure shows the 21-mer counts for typical and LiMed
respectively. As you can see, in typical insertion, count drops from high to normal as the se-
quence goes from TE to normal coverage genome (shown in left). On the other hand, for LiMed
(shown in right) count drops from high to normal and then again goes up. Initially when 21-mers
are still from the LINE sequence, the count resembles many copies. Then when the count goes to
normal, it resembles one copy and finally when the count again goes up it resembles two copies.

possible to use transfer learning to pass the knowledge gained from mouse to human. Transfer

learning is a technique where an already trained network model helps to build a new trained

model where both models aim to solve a similar kind of problem with slight distinction. The

idea is to use completely or partially the parameters of a trained model in a different network.

Training is the most computationally expensive part of a deep learning network, thus reusing it

will accelerate the whole process.

In our frontier pipeline, the first classifier predicts the true frontiers from a list of potential

frontier candidates or TEi boundaries. We used the mouse reference genome to train our model.

There are three main reasons behind using mouse for this. First, mouse is highly similar to hu-

man genome. Similar to mouse, LINEs, SINEs and ERVs comprise majority of the transposable

elements in the human genome. Second, mice are easy to breed in a research setting and takes

only 2/3 years to get a new generation. Easy breeding facilitates population-based research which

was also our main objective. Third, the mouse reference genome is very well annotated in terms

of TEis. Researchers are mostly interested in mouse genome because of the first two reasons.

However, we took the full advantage of the CC population population as a resource available at
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UNC during my dissertation work. This also made us familiar with many additional resources

related to CC. Moreover, well annotated mouse genome is helpful to get a good trained model.

Therefore, a TEi boundary prediction model based on mouse genome seems perfect to be reused

in identifying TEis in human.

There are several works where transfer learning is used to transfer knowledge from mouse to

human successfully. For example, (Stumpf et al., 2020) shows that, trained model obtained from

mouse can be used to classify cell types in human genome with zero shot learning. Therefore,

we believe it is possible to use the trained model of Frontier’s Classifier-I to successfully predict

Transposable Element insertions in human.

7.3.4 TEi annotations in non B6 samples

RepeatMasker (Smit et al., 1996) currently annotates TEi that are in a reference genome.

However, for the mouse, the reference genome only represents one inbred sample (B6), and we

have discovered many TEis that are not in B6. Additionally there are also many TEis that are

only present in B6. Many existing tools (Keane et al., 2012),(Gardner et al., 2017) cannot even

find TEis that are in reference. These methods are useful if we only want to find new insertions.

However, for phylogeny analysis or tracking TEi sharing pattern or understanding TEi effects on

gene expression or function, we need to comprehensively find all the TEis irrespective of their

type.

In table 7.1, we show how other CC founders are different than B6. As we can see, AJ, 129,

NOD, NZO each have around 2000 ERVis that are not present in reference. In WSB, this number

is little bit higher (2715). In CAST and PWK, the number of non-reference ERVis is more than

4000. On the other hand, there are around 3000 ERVis that are present in reference but absent in

AJ, 129S1, NOD, NZO. In CAST and PWK, more than 9000 reference ERVis are absent.

Therefore, it is clear that, other mouse strains are different than the B6 reference. Even

though lab strains are quite similar to each other in a larger evolutionary context (Yang et al.,

2009), still a significant amount of ERVis in B6 are absent in others, also others have many non-
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Type Total ERVis non-reference ERVis absent reference ERVis

AJ 26146 1862 2928
129S1 26284 1972 2900
NOD 26122 1908 2998
NZO 26237 1944 2919

CAST 21921 4011 9302
PWK 21966 4016 9262
WSB 25404 2715 4523

Table 7.1: Lab strains AJ, 129, NOD, NZO are quite similar to reference, but still have around
2000 non-reference ERVis, whereas CAST, PWK has more than 4000. On the other hand, around
3000 reference ERVis are not present in all the lab strains, whereas this number is too high
(> 9000) for CAST and PWK.

reference ERVis. These numbers are even higher for the types that are not lab strains, that are not

classical lab strains, like WSB, CAST, and PWK. Thus, it is important to annotate ERVis in all

the commonly used mouse strains. We also believe that, it is possible to do that by extending our

current pipeline.

7.4 Conclusions and Final Remarks

Transposable elements (TEs) comprise a significant portion of any mammalian genome. Most

of the research done so far has focused on the TE insertions (TEis) that are in somatic cells as

they cause life-threatening diseases like cancer. However, germline TEis are also equally impor-

tant as they are passed on to the next generation leading to genetic polymorphism. The majority

of the TEis in the human and mouse genome are inactive, but still get inherited by the descen-

dants. Therefore, similar to other variants like Single Nucleotide Polymorphism (SNPs) or small

Insertion or Deletions (INDELs), it is possible to track the phylogeny in a population-based of

the TEi sharing pattern. Typical variants are sometimes less powerful than TEis as they avoid

repetitive regions. On the other hand, TEis are by default around repeats and have more bases to

support a single event.

During my Ph.D., I focus on analyzing the diversity of TEi sharing patterns in a popula-

tion. Even though there exist many algorithms for finding TEis, none of those are suitable for
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population-based analysis. All of those also use some sort of alignment either to a reference

genome or to a TE template. Discordant-read-based algorithms which use align reads to a ref-

erence genome typically have low true positive rates. On the other hand, split-read-based algo-

rithms which align reads to a TE template create huge computational overhead as they are not

usable for any other kind of genomic analysis. Moreover, none of these can identify TEis with-

out a given template. Template-dependent algorithms fail to find novel TE that are moving in a

genome. That’s why, I, at first focused on designing algorithms to eliminate several limitations of

existing approaches.

Unlike existing alignment-based algorithms, I use a novel local-genome-assembly-based

approach for finding the TE insertions. I showed that assembly can be performed locally starting

from a repetitive region to a region with normal coverage. My approach on looking only at the

TEi boundaries also avoids many irrelevant short reads which saves both time and space. I also

chose data structures such as msBWT and LCP that are well-suited for finding repeats/TE or

doing assembly. The cost of building these data structures are fixed and can be used in various

genomic analysis other than TEis.

Even though both of my algorithms (ELITE and Frontier) are based on local-genome-assembly,

ELITE is template-dependent and Frontier is template-free. Both ELITE and Frontier starts from

a high coverage genomic region and continues to assemble locally towards a normal coverage

one. I show that ELITE outperforms existing state-of-the-art template-dependent TEi detection

algorithms in terms of precision, recall and runtime. I also designed a second algorithm Frontier

which eliminates the need of any TE templates. To my knowledge, Frontier is the first algorithm

out there that is template-free which finds TE insertions directly from short reads. The novel

idea behind Frontier’s algorithm is to use TE’s well known characteristics of being repetitive to

identify all the repeat boundaries. Then I use a deep learning classifier to finally pinpoint only the

boundaries that belongs to TE insertions.

I also demonstrated how ELITE and Frontier together can be used to analyze the diversity

of TEi in a large population. I show that my algorithms are capable of finding the location of
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TE insertions almost to the basepair level. This avoids any ambiguity during merging TEis and

ensures correct annotation of TEi’s state no matter whether it is fixed, segregating, or de novo.

By using the segregating TEi, I was also able to build phylogenetic trees showing the similarities

and dissimilarities between 8 common mouse strains. All the trees I made using the TEi sharing

pattern, are consistent with the established mouse phylogeny. The majority of the segregating

TEis (more than 75%) are also validated using QTL mapping. The invalidated TEis are mostly

due to mapping errors which can be fixed using appropriate mapping parameters.

My population-based analysis also reveals many interesting biological phenomena. For ex-

ample, I found that, not all TEs are active in the Collaborative Cross population. While some of

them became dormant half a million year ago, some of them continue to be active within the last

10 years (the time-point at which individual CC strains were separated from each other). This

activity of TEis also varies between individual genome. Some samples tend to have more active

TEis than others. This opens a new research path for the biologists who wants to investigate the

underlying reason for a TE being active in an individual’s genome. Using my TEi annotations, a

group of geneticist already discovered that certain haplotype in chromosome 13 results in having

more active ERVB7 1-LTR MM.

I document all the TEi related tools and resources created as part of this research for future

use. All my codes are available on github. I provide necessary instructions for running both

ELITE and Frontier in github. This instructions can also be found in chapter 6 of this dissertation.

I also made sure at least one person other than my lab group can successfully run these codes.

I also created several web-tools for visualizing ERV insertions in the CC population. All these

tools can be viewed under the website I created: http://csbio.unc.edu/TEs/index.

py. Other than data visualization, I added the results of running ELITE Collaborative Cross

Population as a form of spreadsheet. These can be downloaded from the website too. I hope,

an easy access to these resources will benefit anyone who is interested in ERV insertions in CC

Population.
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I am certain that my algorithms will work better with the advancement of sequencing tech-

nology. Right now, I use short-reads, but in near future long-read sequencing will become more

affordable. It will help to find the TE insertions that are nested into another TEs which will re-

duce the false negatives. On the other hand, Discordant-read-based methods, who try to map the

whole read and its pair cannot possibly do any better if not worse. Because the longer the read,

the harder it becomes to map, as the mutation rate is unpredictable in real data. Longer read will

also help to identify different internal viral sequences that are enclosed by two long terminal

repeats (LTRs) of any ERVs. Using my ExtendKmer 1, one can find all the versions of viral se-

quence that are next to an LTR. Therefore, in future there are many areas where my algorithms

and pipelines can be used for better understanding of transposable elements in the genome.
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