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ABSTRACT 

Elise Hickman: Effects of Electronic Cigarettes on Respiratory Immune Homeostasis using Translational 
In Vitro and In Vivo Approaches 

(Under the direction of Ilona Jaspers) 

Millions of people are current e-cigarette users. E-cigarettes are commonly perceived to be safer 

than cigarettes, but their inhalation toxicity has not been fully described. Previous work in cells, rodents, 

and humans has demonstrated that e-liquids, e-liquid chemical components, and e-cigarette aerosols can 

be cytotoxic and modulate cellular and respiratory host defense function. However, with only a decade of 

research on e-cigarettes, many knowledge gaps remain, and the variety of e-cigarette devices and e-liquid 

formulations constantly being introduced to the market presents additional challenges when investigating 

the effects of e-cigarettes on respiratory health. The goal of this dissertation was to address specific 

knowledge gaps pertaining to the effects of e-cigarettes on respiratory host defense, including whether e-

cigarette flavoring chemicals affect neutrophil function, whether e-cigarette use is associated with 

respiratory microbiome dysbiosis, and whether different e-cigarette device types are associated with 

different central airway immune phenotypes using cells and clinical samples from human subjects. Our 

data demonstrate that aromatic aldehyde e-cigarette flavoring chemicals can impair neutrophil 

phagocytosis and oxidative burst. We also observed unique nasal microbiome dysbiosis in e-cigarette 

users relative to smokers and non-smokers, and this signature was associated with changes in proteins that 

are associated with the host-microbiome interaction. Furthermore, we found that users of newer 

generation e-cigarettes such as JUUL had significantly lower expression of soluble immune mediators in 

cell-free induced sputum in comparison with smokers, non-smokers, and users of older generation 

devices. Taken together, these findings demonstrate dysregulated immune homeostasis in association with 

e-cigarette use, with a trend toward impaired immune responses. Additional contributions of this 

dissertation include development and characterization of a human monocyte-derived macrophage cell 
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culture model for use in air-liquid interface exposures, assessment of sex differences in neutrophil 

function, and creation of tools (high school biology lessons, clinical vaping questionnaire) to disseminate 

e-cigarette science to youth and facilitate conversations about vaping. Overall, these findings highlight the 

need for continued investigation of the mechanisms underlying the effects of e-cigarettes and have direct 

implications for e-cigarette regulation, including the importance of device type in e-cigarette toxicity. 
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“You've got to jump off cliffs all the time and build your wings on the way down." – Ray Bradbury
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PREFACE 

Research is becoming increasingly interdisciplinary. The work presented in this dissertation was 

produced in collaboration with many other accomplished and talented scientists, and it is important to 

recognize their contributions. For each of the studies presented here, Dr. Ilona Jaspers was the principal 

investigator and provided guidance and feedback on project direction, experimental design, and 

manuscript preparation.  

Chapter 1 was written entirely by me with edits from Dr. Jaspers. Parts of Chapter 1 are adapted 

from previously published work with the following citation:  

Hickman, E. & Jaspers, I. (2020) Current E-Cigarette Research in the Context of Asthma. Current 
Allergy and Asthma Reports. 20(10): 62. DOI: 10.1007/s11882-020-00952-2 

For Chapter 2, I am grateful to Carolina Herrera for optimizing the neutrophil isolation and 

phagocytosis protocols and for performing phagocytosis assays with isoamyl acetate. All other data 

presented in Chapter 2 were collected by me. This chapter was written entirely by me with feedback from 

Dr. Jaspers and Ms. Herrera. This chapter was previously published as: 

Hickman, E., Herrera, C.A., & Jaspers, I. (2019) Common E-Cigarette Flavoring Chemicals Impair 
Neutrophil Phagocytosis and Oxidative Burst. Chemical Research in Toxicology. 
10.1021/acs.chemrestox.9b00171 

Chapter 3 was a highly collaborative project involving many contributors. Clinical sample 

collection for this study spanned many years and required assistance from a clinical study team to collect 

and process all samples. With oversight from Dr. Jaspers, I conceived and led the research described in 

this chapter. Sequencing of the 16S bacterial gene and sequence alignment to operational taxonomic units 

were provided by Bryan Zorn and Dr. Matthew Wolfgang. I measured the proteins in matching nasal 

lavage fluid and carried out preliminary analyses of the microbiome and protein data. Andrew Hinton and 

Dr. Peter Mucha provided additional bioinformatics expertise for integration of 16S sequencing data and 
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soluble mediator data and for application of the SelEnergyPerm method. Mr. Hinton and myself, under 

the mentorship of Dr. Jaspers and Dr. Mucha, coauthored a manuscript, which is currently under peer 

review  

 Chapter 4 describes unpublished primary research investigating differences in central airway 

phenotypes in users of different types of e-cigarettes. For Chapter 4, induced sputum was collected by the 

clinical study team in the Center for Environmental Medicine, Asthma, and Lung Biology and processed 

by the lab of Dr. Neil Alexis, under the supervision of Heather Wells. I measured soluble mediators with 

assistance from Stephanie Brocke, Aleah Bailey, and Dr. Meghan Rebuli. Rachel Church analyzed 

biomarkers of liver injury in serum samples. Alexis Payton and Dr. Julia Rager provided expertise and 

training on data selection and machine learning approaches.  

 The data in Chapter 5 were collected primarily by me. Catalina Cobos-Uribe and Dr. Meghan 

Rebuli performed the Mesoscale Discovery assay, and Dr. Robert Immormino and Dr. Timothy Moran 

performed the flow cytometry experiments. I led the analysis of the data and preparation of the 

manuscript with guidance from Dr. Neil Alexis and Dr. Ilona Jaspers. This study is currently under peer 

review. 

 Chapter 6 describes unpublished primary research assessing demographic associations with 

neutrophil function and the effects of newer generation e-cigarettes on sputum cell function. I am grateful 

to Carolina Herrera for her original observation of sex differences in neutrophil phagocytosis, which 

prompted continued investigation of these phenomena. As in Chapter 4, induced sputum was collected by 

the clinical study team in the Center for Environmental Medicine, Asthma, and Lung Biology and 

processed by the lab of Dr. Neil Alexis, under the supervision of Heather Wells. Dr. Parker Duffney 

assisted with optimization of sputum cell functional assays and shared the experimental load with me 

throughout the study. I analyzed the data and wrote the chapter with feedback from Dr. Ilona Jaspers.  

 Chapter 7 is unpublished and describes the outreach work I have completed in collaboration with 

the UNC Institute for the Environment and the Mountain Area Health Education Center (MAHEC). I co-

wrote the section of this chapter describing collaborative biology lesson development and teacher 
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professional development with Dana Haine, and feedback was provided by Dr. Ilona Jaspers. Noah Rice 

generated the nicotine equivalency data that was included on the back of the clinical vaping questionnaire, 

and the questionnaire was iteratively refined through feedback from MAHEC collaborators and focus 

groups. The section describing development of the clinical vaping questionnaire was written entirely by 

me with feedback from Dr. Ilona Jaspers. 

Chapter 8 represents a summary of the research presented in previous chapters, integration of 

these findings with the literature, limitations of this dissertation, and future directions. I wrote this 

chapter, and edits were provided by Dr. Ilona Jaspers. Parts of Chapter 8 were adapted from previously 

published work with the following citation: 

Hickman, E. & Jaspers, I. (2021) Evolving chemical landscape of e-cigarettes, 2021. Tobacco 
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CHAPTER 1: HISTORY, EVOLUTION, AND BIOLOGICAL EFFECTS OF E-CIGARETTES1 

E-cigarette Invention and Use 

Cigarette smoking and impetus for e-cigarettes 

Tobacco has a deep history around the world, and it has been used for centuries by many cultures 

(1). Cigarette smoking, one of the most popular forms of tobacco consumption in the modern era, peaked 

in the early 1950s in the United States, with approximately 47% of adults smoking cigarettes (2). It was 

not until 1964, when the report from the Surgeon General’s Advisory Committee describing the health 

effects associated with cigarette use was released (3), that public opinion surrounding cigarette use began 

to shift significantly. Over the past 60 years, cigarette smoking has declined substantially, reaching a low 

of 13.7% of U.S. adults in 2018 (4), a notable public health achievement. However, cigarette smoking is 

still responsible for over 7.5 million deaths per year worldwide and 480,000 deaths per year in the United 

States (5). Alternatives to cigarette smoking that reduce exposure to harmful chemicals and facilitate 

smoking cessation have been, and continue to be, critical to fighting this tobacco-associated morbidity 

and mortality. Electronic cigarettes, or e-cigarettes, were invented by Hon Lik (6), a Chinese pharmacist, 

who thought that these devices would aid in smoking cessation. Thus, when e-cigarettes were first 

introduced in the U.S. in 2007, they were touted as a safer alternative to smoking and as a product that 

could aid in smoking cessation. However, e-cigarettes entered the market without any regulatory 

oversight, data addressing potential health effects, or evidence supporting their efficacy for smoking 

cessation. Additionally, e-cigarettes were marketed to young never-smokers using tactics previously 

 
1 Parts of this chapter previously appeared as an article in Current Allergy and Asthma Reports with the citation: 
Hickman, E. and Jaspers, I. Current e-cigarette research in the context of asthma. Current Allergy and Asthma 
Reports 20(10):62. 2020. Content was adapted/updated to reflect additional research since publication. Reproduced 
with permission from Springer Nature. 
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employed by the tobacco industry to market cigarettes (7, 8). These factors have created complex 

regulatory, biomedical, and public health challenges over the past 15 years.  

 

Prevalence and patterns of e-cigarette use within the United States 

Prevalence of e-cigarette use in the United States is assessed separately in adults (aged 18 years 

and older) and youth (under 18 years of age). Two mechanisms used to collect information about adult e-

cigarette use in the United States are the National Health Interview Survey (NHIS) and the Behavioral 

Risk Factor Surveillance System (BRFSS), both administered by the U.S. Centers for Disease Control and 

Prevention. These mechanisms both aim to collect national estimates for health outcomes and risks but 

accomplish this using different approaches – data for the NHIS is collected via in-person household 

interviews, while data for the BRFSS is collected via telephone surveys (9). In 2018, The NHIS indicated 

that 3.2% of adults in the U.S. (8.1 million) were current e-cigarette users (10), and the BRFSS indicated 

that 5.4% of adults in the U.S. (13.7 million) were current e-cigarette users (11).  

For youth, the primary mechanism for assessing current e-cigarette use is the National Youth 

Tobacco Survey (NYTS), administered yearly by the CDC in schools. The 2021 NYTS data indicate that 

13.1% of middle and high school students (1.7 million) were current e-cigarette users, including 11.3% of 

high school and 2.8% of middle school students (12), representing a sharp decline from the 2020 use 

prevalence of 19.6% for high school students and 4.7% for middle school students (13). Importantly, the 

2021 NYTS was conducted in a different setting than previous years because of the COVID-19 pandemic. 

Some participants took the survey at home, while some took the survey at school, and youths who took 

the survey at school reported a higher prevalence of current e-cigarette use (15%) than youths who took 

the survey at home (8.1%)(12). Because of this observation, the authors caution against comparing 2021 

NYTS data to data collected in previous years (12). Altogether, these data suggest that there are 

approximately 9.8-17 million current e-cigarette users in the United States.  
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E-Cigarette Technology 

E-cigarette regulations and device evolution 

E-cigarettes are battery-powered devices that heat and aerosolize e-liquids containing nicotine 

and flavoring chemicals dissolved in a base liquid made up of propylene glycol and glycerin. The user 

then inhales the resulting aerosol, enabling nicotine and other chemicals to enter lungs and blood stream. 

The first generation of e-cigarettes were called “cig-a-likes” because they resembled cigarettes. These 

devices were disposable, low-powered, and typically tobacco or menthol flavored, similar to traditional 

combustible cigarettes (14, 15).  When e-cigarettes entered the market, tobacco products were not 

regulated by the government. In 2009, President Obama signed into law the Family Smoking Prevention 

and Tobacco Control Act, which gave the U.S. Food and Drug Administration (FDA) the power to 

regulate tobacco products (16). However, e-cigarettes were not covered under this law and continued to 

gain uncontrolled market strength (17) . Around this time, the first peer-reviewed publications on e-

cigarettes were published (18-20), and device types such as vape pens and box mods, also referred to as 

second and/or third generation devices, gained popularity (17). These devices allowed for increased 

customization of the vaping experience, including thousands of uniquely flavored e-liquids, control over 

aerosolization settings such as temperature and power, and in some cases, user choice over components 

such as the wick and coil (21-23). The e-cigarette devices themselves and the e-liquids used to fill them 

were also increasingly appealing, with bright colors, modern designs, and creative candy, pastry, and 

fruity flavors (21). As a result of this appeal and of successful marketing by tobacco companies (7, 17), e-

cigarette use surpassed cigarette use in high schoolers in 2014 (24).  

JUUL, a sleek, discreet, pod-based e-cigarette, was introduced in the U.S. 2015. JUUL was 

different than other e-cigarettes in its design, which looks like a USB computer accessory, and its nicotine 

formulation (25, 26), both of which likely contributed to the vaping epidemic in youth during the 

subsequent years (27, 28). Following JUUL’s skyrocketing popularity (29), especially among teenagers, a 

new wave of similar devices entered the market, and in 2020, pre-filled pods or cartridges (also known as 

fourth generation e-cigarettes) were still the most popular e-cigarette device type among U.S. high school 
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students (13, 30). Although in 2016 the “Deeming Rule” was signed into law, giving the FDA authority to 

regulate other products deemed tobacco products (31), including e-cigarettes, the FDA and state 

governments are still engaged in lawsuits with the tobacco industry over the regulation of e-cigarettes 

products and marketing (32). Meanwhile, e-cigarettes have largely gone unregulated, and e-cigarettes are 

not required to be tested for toxicity before they are sold to the public. Only recently has the FDA made 

strides to curb e-cigarette use in young adults by restricting the sale of flavored disposable pods (33), but 

these efforts have largely been circumvented by the creation of new e-cigarette device types (34). In 

response to these restrictions, disposable e-cigarettes gained popularity, with the percentage of youth 

vapers using disposables increasing from 2.5% in 2019 to 26.5% in 2020 (13, 35, 36). Thus, e-cigarette 

devices are constantly evolving in response to regulatory actions, which in turn means that e-cigarette 

researchers are typically behind the curve in investigating the health effects of these emerging devices 

(37). Notably, the FDA recently granted its first e-cigarette marking authorization to Vuse Solo (38), a 

nicotine-salt-containing fourth generation e-cigarette, with similar devices under review. A timeline 

representing the evolution of e-cigarette devices and pertinent regulatory events related to e-cigarettes is 

depicted in Figure 1-1. 

 
Figure 1-1. Timeline representing the evolution of e-cigarette devices and pertinent 

regulatory events related to e-cigarettes. 
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E-cigarette chemical components 

Although e-cigarette devices can vary widely in appearance and aerosolization settings, most e-

liquids used in these devices share common chemical components, including nicotine, flavoring 

chemicals, propylene glycol, and vegetable glycerin. 

 

Nicotine 

Nicotine is a stimulant and is the main psychoactive ingredient in e-liquids. Although nicotine-

free e-liquids exist, most e-cigarettes contain nicotine. Nicotine activates nicotinic acetylcholine receptors 

in the brain, resulting in the release of neurotransmitters such as dopamine and, over time, is highly 

addictive (39). Nicotine exists in three forms: freebase, monoprotonated, and diprotonated, and nicotine 

can transition between forms depending on the pH in the nicotine solution (40). Freebase nicotine is most 

commonly found in e-liquids used with earlier generations of e-cigarettes, such as vape pens and box 

mods, making it relatively harsh when inhaled (41, 42). Nicotine salts, which were first used in JUUL e-

cigarettes, are formulated by combining freebase nicotine with an organic acid, such as lactic acid, 

benzoic acid, or levulinic acid (43, 44). This combination results in the formation of monoprotonated 

nicotine and lowers the pH of the mixture and the inhaled aerosol in comparison with freebase-nicotine-

containing e-cigarettes (25, 26, 42). The proportion of nicotine in the aerosol in protonated and freebase 

forms impacts the user sensory experience, with nicotine-salt-containing e-cigarettes providing a 

“smoother” feeling and allowing for inhalation of higher concentrations of nicotine (45). Because of the 

relationship between nicotine form and sensory experience, e-liquids containing freebase nicotine 

typically contain 1-3% nicotine, while nicotine-salt containing e-liquids typically have a higher nicotine 

concentration of 5-7% (41, 46). 
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Flavoring Chemicals 

Flavoring chemicals in e-cigarettes provide the aerosol with an appealing aroma and taste. In 

2014, Zhu and colleagues reported that there were over 7,000 unique flavors of e-liquids (21). Each e-

liquid flavor is a proprietary blend of multiple flavoring chemicals (47-50). Previous studies suggest that 

there are approximately 100-200 unique flavoring chemicals used to create the flavors found in e-liquids 

and that these flavoring chemicals are present in a wide range of concentrations, many greater than 1 

mg/mL (47-49, 51). Most of these flavoring chemicals are Generally Recognized as Safe (GRAS) for 

consumption in food by the FDA but have not been tested for inhalational toxicity (52). These flavoring 

chemicals belong to many chemical classes, including esters, terpenes, ketones, alcohols, and aldehydes 

(48). Some of the most common flavoring chemicals in e-liquids include cinnamaldehyde (cinnamon), 

benzaldehyde (almond or cherry), vanillin (vanilla), ethyl vanillin (vanilla), menthol (mint or cooling), 

ethyl maltol (sweet), and maltol (sweet) (47-51, 53). Flavoring chemicals can also react with PG in the e-

liquid to generate flavorant PG acetals, which may have enhanced biological reactivity (54-56). 

 

Propylene glycol and vegetable glycerin 

Propylene glycol (PG) and vegetable glycerin (VG) comprise the “base liquid” of an e-liquid, in 

which the nicotine and flavoring chemicals are dissolved. Each contributes a unique quality to the 

resulting e-cigarette aerosol – PG provides the feeling of a “throat hit”, while VG contributes sweetness 

and a larger cloud (57). PG and VG are mixed at different ratios in e-liquids depending on the device 

being used and desired cloud. Popular ratios of PG/VG include 55/45 in higher-powered, freebase-

nicotine-containing devices and 30/60 in lower powered, nicotine-salt-containing devices such as JUUL.   

 

Effects of aerosolization on e-liquid chemical components 

The composition of e-cigarette aerosol is highly dependent on e-liquid composition, device type, 

wattage, puff topography, coil type, and coil resistance. In general, higher power aerosolization generates 
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more aerosol and results in more thermal decomposition of the e-liquid (26, 58-62). Some of the 

chemicals that have been detected as decomposition products of e-liquids in the aerosol include 

formaldehyde, acetaldehyde, propionaldehyde, glyoxal, methylglyoxal, diacetyl, and acrolein, though the 

concentration of these chemicals detected is highly variable (26, 59, 60, 62-67). While most of these 

decomposition products are attributed to decomposition of PG and VG in the e-liquid, it is also possible 

that flavoring chemicals could contribute to formation of aldehydes in the e-cigarette aerosol (68). 

Flavoring chemicals and their PG acetal derivatives do transfer from the e-liquid to the aerosol, with 

efficiency estimated to be 40-80% (46, 55, 67); however, the extent to which they break down upon 

aerosolization is still debated (69, 70). Metals, such as zinc, aluminum, copper, iron, tin, nickel, and lead, 

have also been detected in e-cigarette aerosol and are thought to originate from e-cigarette atomizers (14, 

71-74). Taken together, these studies demonstrate that inhaling aerosolized e-liquid exposes e-cigarette 

users to a complex chemical mixture that is highly variable depending on the vaping parameters.  

 

Other chemicals found in e-cigarettes 

Because e-liquid and e-cigarette manufacturers are not required to quantify and list all ingredients 

in their products, and there is little regulatory oversight of the manufacturing process, many e-liquids 

contain chemicals beyond nicotine, flavorings, propylene glycol, vegetable glycerin, and organic acids. 

For example, Holt and colleagues performed untargeted gas chromatography-mass spectrometry and 

detected additional additives such as caffeine and theobromine in JUUL pods (75), and contaminants such 

as pharmaceutical and industrial chemicals have also been detected in e-liquids (76, 77). 

E-cigarettes were first popularized for nicotine delivery, and nicotine-containing e-cigarettes are 

the focus of this dissertation, but it is important to recognize that e-cigarettes containing other biologically 

active compounds are now also available. For example, cannabis vaping is increasingly popular, and 

cannabis e-cigarettes can contain psychoactive chemicals such as ∆-9-tetrahydrocannabinol (∆-9-THC) 

and cannabidiol (∆-8-CBD or ∆-9-CBD) (78, 79). THC and CBD are typically dissolved in either 

medium-chain triglycerides or in a PG/VG mixture. Other vaping products feature compounds such as 
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melatonin, caffeine, and vitamins. Very little research has addressed potential benefits and risks of these 

types of e-cigarettes.   

 

Biological effects of e-cigarettes on the respiratory system 

Aerosol from e-cigarettes is inhaled, so the respiratory system is the most highly exposed organ 

system to the chemicals in e-cigarette aerosol. The respiratory system is responsible not only for gas 

exchange to oxygenate the blood but also for protecting the body from inhaled pathogens and pollutants. 

This innate respiratory host defense system is complex, consisting of an epithelial cell barrier with varied 

cellular composition along the respiratory tract, and immune cells, such as neutrophils and macrophages. 

The following sections detail current understanding of the effects of e-cigarettes on different components 

of the respiratory system. Reviewed studies for specific cell types are summarized in Table 1-1.   

 

Association of e-cigarette use with respiratory disease in population-based human studies 

The Population Assessment of Tobacco and Health (PATH) study is a longitudinal study of 

approximately 49,000 people ages 12 and over that evaluates how tobacco use affects health. Bhatta et al. 

found a significant association between former or current e-cigarette use at Wave 1 of the PATH study 

and having any respiratory disease (COPD, chronic bronchitis, emphysema, asthma) at Waves 2 or 3, 

controlling for factors such as smoking and other demographic and clinical variables (80). For asthma 

specifically, there was a significant association between current e-cigarette use at Wave 1 and newly 

reported asthma at Wave 2 (80). Dai and Khan also found an association between e-cigarette use and 

respiratory symptoms and linked these symptoms to biomarkers of tobacco exposure (81).  

Furthermore, e-cigarette use has been associated with increased odds ratio of self-reported asthma 

(82, 83), which was higher in daily as compared to occasional e-cigarette users (82). In a small pilot 

study, e-cigarette users had an increase in plasma IgE in comparison with nonsmokers (84), suggesting 

increased markers of atopy. In adolescents, e-cigarette use has been associated with having asthma, 

bronchitic symptoms, and days absent for asthmatic high schoolers due to severe asthma, controlling for 
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other substance use and demographic variables (85-88). Bayly et al demonstrated increased risk for 

asthma attacks following secondhand e-cigarette exposure in adolescents (89), but Chaffee et al. did not 

find an association with e-cigarette in study that examined four separate populations of adolescents and 

young adults (88). Another study did not find any association between bronchitic symptoms, wheeze, or 

shortness of breath in young adults when adjusting for cannabis vaping (90), suggesting that cannabis 

vaping may be a confounder in previous studies associating e-cigarette use with respiratory symptoms, 

and another study found no increase in odds of asthma with e-cigarette use (91). Cross-sectional studies 

have also found associations between e-cigarette use and COPD in never cigarette smokers (83, 92).  

Overall, this body of epidemiological research suggests that there is a link between e-cigarettes 

and respiratory diseases such as asthma and COPD, but additional longitudinal studies are needed to 

validate these findings, assess the strength of this association, and address additional factors such as 

cannabis vaping.  

 

Effects of e-cigarettes on inflammation, respiratory function, and airway hyperresponsiveness 

Studies assessing the overall inflammatory effects of e-cigarettes on the lungs have been 

conducted primarily in mouse models. Some studies have found that e-cigarettes induce pro-inflammatory 

changes in the lungs (93, 94), while other studies have found no induction of inflammation (95) or a 

mixture of pro- and anti-inflammatory changes (96, 97). Two studies have reported dysregulation in lung 

lipid homeostasis pathways following e-cigarette exposure in mice (95, 97). Divergent findings from 

mouse studies are likely the result of differing exposure lengths (ranging from days to months), e-

cigarette devices, sex of animals, e-cigarette device, and composition of e-liquid (presence or absence of 

nicotine and flavors, concentration of nicotine, flavor); however, overall, these studies suggest that e-

cigarettes disrupt immune homeostasis in the lungs.  

Additional evidence in human controlled exposure studies and case reports suggests that e-

cigarettes can alter airway function and inflammation and that asthmatics are more susceptible to the 

effects of e-cigarettes than healthy vapers. Lappas et al. found that both healthy smokers and those with 
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mild asthma experienced bronchoconstriction coupled with a decrease in FeNO following a session of 

vaping and that mild asthmatics took longer to recover from these effects (98). However, Boulay et al. 

found that vaping PG/VG alone does not have acute effects on respiratory function in asthmatics or non-

asthmatics (99). Two case reports of adolescent asthmatic vapers who had recently vaped and presented to 

the emergency room with life-threatening status asthmaticus, necessitating veno-venous extracorporeal 

membrane oxygenation have also been described (100). Interestingly, the prevalence of underlying 

asthma in patients who had EVALI was higher than the prevalence of asthma in the general population 

(101).  

Only one study has assessed airway hyperresponsiveness following e-cigarette exposure. 

Chapman et al. challenged BALB/c mice with either phosphate buffered saline or house dust mite and 

then exposed them to aerosols from different flavored e-cigarettes. These mice had varied responses 

depending on the flavor, with cinnamon-flavored aerosol increasing airway hyperresponsiveness and 

banana-flavored aerosol increasing lung collagen deposition, indicating that e-cigarettes can induce 

abnormal lung function in an animal model of allergic airway disease (102). Collectively, these pieces of 

evidence from human and animal studies, both controlled exposure and observational clinical studies, 

indicate that asthmatics may be a susceptible subpopulation for the effects of e-cigarettes, yet the 

mechanisms mediating these effects are unknown.  

 

Effects of e-cigarettes on respiratory epithelial cells 

The airway epithelial cell barrier is critical to maintaining respiratory health and immune 

homeostasis. Airway epithelial cells secrete mucus and cytokines and are part of the mucociliary 

escalator, which transports mucus and debris up and out of the airways. Dysregulation of epithelial cell 

function is associated with many airway diseases, including asthma, COPD, and fibrosis (103-108). E-

cigarettes and e-liquid components have been shown to alter mucin composition and mucociliary 

escalator function. E-cigarette users had increased levels of MUC5AC in induced sputum and 

bronchoalveolar lavage fluid (109, 110), and aerosolized PG/VG alone increased MUC5AC in primary 
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human bronchial epithelial cells exposed ex vivo and in mouse nasal epithelial cells from mice exposed in 

vivo (110). E-cigarette aerosols and e-liquid components can also impair mucociliary function in primary 

human bronchial epithelial cells and in sheep (111, 112). Transient Receptor Potential Cation Channel 

Subfamily A Member 1 (TRPA1), a calcium ion channel, was found to be responsible for initiating these 

effects in the study by Chung et al., and interestingly, flavoring chemicals and their propylene glycol 

acetals can also activate TRPA1 (55, 112). These findings are particularly notable given that MUC5AC is 

often increased in asthmatics and TRPA1 is hypothesized to play a role in asthmatic airway 

hyperresponsiveness (103, 113, 114). 

Expression of certain cytokines, chemokines, and signaling molecules by epithelial cells mediates 

the recruitment and activation of immune cells involved in the pathogenesis of airway diseases (115, 

116). E-cigarettes and e-liquid flavoring chemicals can alter cytokine expression in airway epithelial cells 

(58, 93, 117, 118). Gene expression studies have demonstrated that e-cigarette users have suppressed 

immune gene expression in the nasal epithelia (119), that flavoring chemicals alone can induce changes in 

cytoskeletal- and cilia-related gene expression in airway epithelial cells (120), that e-cigarette condensates 

can dysregulated ribosomal and protein synthesis pathways (67), and that flavored e-liquids can alter 

epithelial cell metabolism (121). Additionally, both unflavored e-cigarette aerosol, e-cigarette condensate, 

and e-cigarette flavoring chemicals have been shown to impair airway epithelial cell barrier function 

(117, 118, 122, 123).  Another important consideration is that almost all studies assessing the effects of e-

cigarettes on cellular function use cells from healthy, non-smoking donors. A recent study published by 

Escobar et al demonstrates that nasal epithelial cells from smokers and nonsmokers have differential 

responses to e-cigarette aerosol (124), highlighting the importance of assessing the effects of e-cigarettes 

in populations other than healthy non-smokers. Overall, these data convincingly show that epithelial cell 

function is altered by e-cigarettes; however, the mechanisms underlying these effects, the contributions of 

each e-cigarette chemical, and differential responses in individuals with increased susceptibility due to 

disease state or smoking status are active areas of research.  
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Effects of e-cigarettes on macrophages 

Macrophages are the most highly abundant immune cells in the airways, and they are responsible 

for a wide range of pro- and anti-inflammatory functions to maintain host defense and respiratory immune 

homeostasis. Studies on the effects of e-cigarettes and e-liquid components suggest that e-cigarettes can 

alter macrophage function. Multiple studies have shown that in vitro exposure of macrophages to e-

cigarette condensate, flavoring chemicals, and nicotine can modulate cytokine release. For example, IL-8 

release from macrophages is increased following exposure to flavored and unflavored condensate, as well 

as many e-cigarette flavoring chemicals alone, and one study found that this response was nicotine 

dependent (125-127). Other cytokines that have been shown to be modulated by e-cigarette exposure 

include IL-6 and TNF-a, though whether their release is increased or decreased in response to e-cigarette 

exposure is not consistent between studies (125, 127). Phagocytosis, another key macrophage function, is 

decreased following both in vitro and in vivo exposure to e-cigarettes and e-liquid components (127-129), 

and this impairment can be reversed or partially reversed by treatment with dithiothreitol or N-

acetylcysteine, suggesting that oxidant imbalance contributes to impaired phagocytic function (127, 129). 

E-cigarettes have also been shown to increase reactive oxygen species production, increase nitric oxide 

production, increase protease release, alter surface marker expression, and dysregulate lipid homeostasis 

and gene expression in macrophages (95, 118, 125, 127, 130). As macrophages are such central regulators 

of respiratory immunity, alterations of their function by e-cigarette use will likely impact overall 

respiratory health and potential pathologies associated with e-cigarette use.  

 

Effects of e-cigarettes on neutrophils 

Neutrophils are one of the respiratory system’s first lines of defense, and neutrophilic 

inflammation is associated with diseases such as asthma and COPD (131-135). E-cigarette users have 

significantly elevated markers of neutrophil activation in induced sputum and bronchoalveolar lavage 

fluid in comparison with nonsmokers, and peripheral blood neutrophils from e-cigarette users are more 

susceptible to PMA-induced NETosis (109, 130), indicating that chronic e-cigarettes use may cause 
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neutrophils to become even more reactive. However, exposure of human peripheral blood neutrophils 

from non-vaping subjects to e-cigarette aerosol condensate ex vivo decreases chemotaxis, reactive oxygen 

species production, NETosis, and phagocytosis (136). We have shown that exposure of human peripheral 

blood neutrophils to flavoring chemicals alone can suppress phagocytosis and oxidative burst, and that 

flavored e-liquids can modulate NETosis (56, 129) (Chapter 2). Though these in vivo and in vitro findings 

may seem to be contradictory, they are likely the result of different routes, lengths, and chemical 

compositions of exposure. Together, they indicate that e-cigarettes can dysregulate neutrophil function 

and that acute exposure to e-cigarette aerosol or specific flavorings could impair key neutrophil functions, 

resulting in decreased host defense. Interestingly, nicotine alone can elicit a dose-dependent increase in 

protease release (130), which could have implications for the development or exacerbation of airway 

diseases due to the connection between proteases and airway remodeling in airway diseases.  

 

Table 1-1. Summary of reviewed studies evaluating the effects of e-cigarettes on the function of 
epithelial cells, macrophages, and neutrophils.  

Cell Type Study Experimental System Results 

Epithelial 
Cells 

Chung et al. 
2019 (112) 

Primary human bronchial epithelial cells exposed in vitro 
to e-cigarette aerosol and nebulized nicotine  mucus viscosity 

Sheep exposed in vivo to e-cigarette aerosol and nebulized 
nicotine ¯ tracheal mucus velocity 

Clapp et al. 
2019 (111) 

Primary human bronchial epithelial cells and BEAS2Bs 
exposed in vitro to cinnamon-flavored e-liquids and 

aerosols and to cinnamaldehyde alone 

¯ cilia beat frequency 
¯ mitochondrial respiration 

Crotty 
Alexander et 

al. 2018 (122) 

Primary human bronchial epithelial cells exposed in vitro 
to e-cigarette aerosol ¯ barrier function 

Escobar et al. 
2020 (58) 

Primary human bronchial cells and 16HBEs exposed in 
vitro to e-cigarette aerosol  IL-6, IL-8, HMOX-1, NQO1 

Escobar et al. 
2021 (124) 

Primary human nasal epithelial cells from smokers and 
non-smokers exposed in vitro to e-cigarette aerosol 

 mucins, pro-inflammatory cytokines; 
dependent on smoking status and nicotine 

type 
Gerloff et al. 
2017 (117) 

BEAS-2Bs and 16HBEs exposed in vitro to flavoring 
chemicals 

 IL-8 release 
¯ barrier function 

Ghosh et al. 
2018 (110) 

Bronchial brush biopsies from nonsmokers, e-cigarette 
users, and smokers  MUC5AC expression 

Primary human bronchial epithelial cells exposed in vitro 
to e-cigarette aerosol with PG/VG only  MUC5AC expression 

Mice exposed in vivo to e-cigarette aerosol with PG/VG 
only  MUC5AC expression 

Ghosh et al. 
2020 (123) 

Human bronchial epithelial cells exposed to e-cigarette 
aerosol  ¯ barrier function 

Lerner et al. 
2015 (93) H292 cells exposed in vitro to e-cigarette aerosol   IL-8 and IL-8 release 
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C57BL/6J mice exposed in vivo to e-cigarette aerosol  IL-6 and MCP-1 in bronchoalveolar 
lavage fluid 

Martin et al. 
2016 (119) 

Human nasal epithelial cells from nonsmokers, e-cigarette 
users, and smokers ¯ expression of immune-related genes  

Park et al. 
2019 (120) 

Human bronchial epithelial cells exposed to flavoring 
chemicals diacetyl and 2,3-pentanedione 

¯ expression of cytoskeletal- and cilia-
related genes 

Park et al. 
2021 

Human bronchial epithelial cells exposed in vitro to 
vanilla e-cigarette condensate 

¯ expression of ribosomal and protein 
biogenesis genes 

Pinkston et al. 
2020 (118) 

H292 cells exposed in vitro to e-cigarette aerosol  ROS production 
Dysregulated gene expression 

BEAS-2Bs exposed in vitro to e-cigarette aerosol 
 ROS and NO production 

¯ barrier function 
Dysregulated gene expression 

Reidel et al. 
2017 (109) 

Induced sputum from nonsmokers, e-cigarette users, and 
smokers  MUC5AC expression 

Smith et al. 
2021 (121) 

BEAS-2Bs exposed in vitro to PG/VG or PG/VG with 
vanilla flavoring 

Dysregulation in metabolites associated 
with amino acid metabolism, antioxidant 

responses, and bioenergetic pathways  

Macrophages 

Clapp et al. 
2017 (129) 

Alveolar macrophages from healthy subjects exposed in 
vitro to flavored e-liquids and cinnamaldehyde 

¯ phagocytosis 
 ¯ IL-6, ¯ IL-8 

Ghosh et al. 
2019 (130) 

Alveolar macrophages from healthy subjects exposed in 
vitro to nicotine  protease release 

Madison et al. 
2019 (95) C57BL/6J mice exposed in vivo to e-cigarette aerosol 

 phospholipid 
¯ M1 polarization 

¯ interferon response to poly I:C 
Muthumalage 

et al. 2017 
(126) 

MM6 and U937 (monocytic) cells exposed in vitro to 
flavoring chemicals  IL-8 release 

Pinkston et al. 
2020 (118) RAW246.7 cells exposed in vitro to e-cigarette aerosols 

Altered cellular morphology 
 ROS and NO production 

Dysregulated gene expression 

Scott et al. 
2018 (127) 

Alveolar macrophages and THP-1 cells exposed in vitro 
to e-cigarette condensate 

 reactive oxygen species 
 proinflammatory cytokine release 

¯ phagocytosis 

Sussan et al. 
2015 (128) 

C57BL/6J mice were exposed in vivo to e-cigarette 
aerosol ¯ phagocytosis 

Ween et al. 
2017 (125) THP-1 cells exposed in vitro to e-cigarette condensate 

 IL-8 release 
¯ other proinflammatory cytokine release 

¯ phagocytosis 

Neutrophils 

Clapp et al. 
2017 (129) 

Peripheral blood neutrophils from healthy subjects 
exposed in vitro to flavored e-liquids and cinnamaldehyde 

¯ phagocytosis,  ¯ NETosis, 
 IL-8 release 

Ghosh et al. 
2019 (130) 

Peripheral blood neutrophils from healthy subjects 
exposed in vitro to nicotine  protease release 

Hickman et 
al. 2019 (56) 

Peripheral blood neutrophils from healthy subjects 
exposed in vitro to flavoring chemicals 

¯ phagocytosis 
¯ oxidative burst 

Hwang et al. 
2016 (136) 

Peripheral blood neutrophils from healthy subjects 
exposed in vitro to e-cigarette condensate 

¯ phagocytosis  
¯ oxidative burst 

¯ chemotaxis, ¯ NETosis 

Reidel et al. 
2017 (109) 

Peripheral blood neutrophils from nonsmokers, e-cigarette 
users, and smokers   NETosis in cells from e-cigarette users 

Induced sputum from nonsmokers, e-cigarette users, and 
smokers 

 markers of neutrophil activation in e-
cigarette users 
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Effects of e-cigarettes on responses to infection 

Two studies in mice have shown that exposure to e-cigarette aerosol impairs antiviral responses 

to influenza (95, 128), and as compared to nonsmokers, bronchial expression of toll-like receptor 3, which 

recognizes double-stranded RNA and is important for antiviral responses, was decreased in vapers (110). 

Additionally, e-cigarette users who were administered the live-attenuated influenza virus (nasal flu 

vaccine) had lower production of nasal LAIV-specific IgA and downregulated nasal immune gene and 

mediator expression in comparison with non-smokers following vaccination (137). These studies are all in 

agreement that e-cigarettes can suppress antiviral responses; therefore, e-cigarettes users may be at 

increased risk for viral infections.  

Consequently, whether e-cigarette users are at increased risk of infection by SARS-CoV-2 has 

been of great interest given the ongoing COVID-19 pandemic (138). Although vaping has been shown to 

increase coronavirus disease severity (139) and upregulate expression of ACE2 (96, 140), the receptor 

through which SARS-CoV-2 enters cells, in mouse models, epidemiological studies have yet to find an 

association between e-cigarette use and COVID-19 diagnosis or severity (141, 142).  

The respiratory microbiome is another important component in respiratory mucosal homeostasis, 

and respiratory microbiome dysbiosis has been associated with respiratory diseases such as cystic fibrosis, 

chronic obstructive pulmonary disease, asthma, and chronic rhinosinusitis (143-149). Although the 

respiratory microbiome in e-cigarette users has not yet been compared to that of nonsmokers, smoking 

has been shown to be associated with changes in the nasal microbiome (150), and e-cigarette use has been 

associated with changes in the oral microbiome (151-153), indicating that it is likely that the respiratory 

microbiome is also altered by e-cigarette use. Studies have shown that exposure to e-cigarettes can 

increase bacterial burden of Streptococcus pneumoniae in mice (128, 154) and decrease survival of mice 

infected with methicillin-resistant Staphylococcus aureus (MRSA) (136). Additionally, e-cigarette 

condensate can have direct effects on MRSA, including increasing cellular invasion, virulence gene 

expression, and resistance to killing by antimicrobial peptide LL-37 (136). These pieces of evidence 

suggest that e-cigarette use can both directly and indirectly modulate bacterial colonization in the 
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respiratory tract, and future studies seeking to understand how this affects respiratory microbial 

communities are needed. 

 

Ongoing Public Health Challenges and Needs 

E-cigarette research is still an emerging field, with many unknowns regarding e-cigarette toxicity, 

and hundreds of papers published each year (Figure 1-2), which makes communicating risks about e-

cigarettes to the public challenging. Notably, PubMed includes over 6,000 entries with “electronic 

cigarettes”, “electronic cigarette”, “e-cigarettes,” “e-cigarette,” “vaping,” “vape,” “vapes”, “electronic 

nicotine delivery system”, or “electronic nicotine delivery systems” in the title, with almost half of those 

published in the past two years (Figure 1-2). These publications include a wide range of topics, including 

health effects, smoking cessation, and risk perception (Table 1-2). However, as the number of e-cigarette 

publications has increased, the prevalence of youth vaping has also increased (Figure 1-2), demonstrating 

that these publications do not have immediate impact and that research findings are not reaching youth. 

Tobacco use often begins at an early age (17, 155), and vaping is associated with subsequent smoking 

initiation (156-158), so educating youth about e-cigarettes and engaging youth in e-cigarette science to 

prevent future tobacco-related morbidity and mortality is critically needed.  

Unfortunately, the emergent nature of e-cigarette research coupled with often unclear or little 

messaging to youth about e-cigarettes has contributed to the vaping epidemic due to misperceptions youth 

have about the safety and addictiveness of e-cigarettes (159, 160).  Early studies demonstrated that e-

cigarettes are often perceived by youth as less addictive and less harmful than cigarettes (159, 161). 

Recent studies show that although youths’ awareness of the potential for addiction and harm associated 

with e-cigarettes is increasing (162, 163), approximately 30% of youth still believe that it is very unlikely, 

somewhat unlikely, or neither likely nor unlikely that JUUL is addictive, and less than half of past 30-day 

JUUL users thought that JUUL always contains nicotine (163, 164). Other studies have demonstrated 

additional misperceptions, including that fruity flavors are less harmful than other flavors of e-cigarettes, 

that e-cigarette aerosol is water vapor, and that e-cigarettes are not a tobacco product (165-167). 
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Importantly, decreased perception of e-cigarette addictiveness and risk for adverse health effects is 

associated with an increased likelihood of trying e-cigarettes and being a current e-cigarette user (159, 

161, 163, 168), further underscoring the urgency of communicating about e-cigarettes to youth. 

Collectively, these studies highlight how findings about e-cigarettes published in the literature are not 

reaching youth. To address this challenge, it is necessary that biomedical scientists investigating the 

health effects of e-cigarettes engage with other sectors, such as medicine, government, education, and the 

public. Translating research findings is needed so that these findings can reach the true stakeholders in 

this research – those who use e-cigarettes or are likely to begin using e-cigarettes – and so that biomedical 

research remains relevant to needs in these other sectors (Figure 1-3). This approach has been termed 

convergence science – problem solving that crosses disciplinary boundaries to solve complex societal 

problems (169) – and it will be critical in addressing the complex challenges presented by the vaping 

epidemic.  

 

Figure 1-2. Number of e-cigarette publications and percentage of high school students who are 
current e-cigarette users overlaid. Number of publications was determined using the PubMed database 

(pubmed.ncbi.nlm.nih.gov) as of January 12, 2022, and percentage of high school students who are 
current e-cigarette users was based on NYTS data. Publications were included that contained any of the 
following words in the title: “electronic cigarette”, “electronic cigarettes”, “e-cigarettes,” “e-cigarette,” 

“vaping,” “vape,” “vapes,” “electronic nicotine delivery system”, or “electronic nicotine delivery 
systems” and were published after 2006. Data from the 2021 NYTS (11.3%) were not included because 

the authors caution against comparing these results with previous years due to differences in the 
administration of the survey (12). 
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Table 1-2. Number of PubMed database entries that contain “e-cigarette” or related phrase in the 
title and match additional search criteria based on topic or article type. 

Text Contains Count 
Health effects 393 
Respiratory 487 
Smoking cessation 1771 
Risk perception 46 
Harm perception 32 
Title Contains Count 
Case report 38 
Case series 28 
Meta-analysis 44 
Article Type Count 
Editorial 248 
Review or systematic review 567 

 

Figure 1-3. Convergence science approach to e-cigarette research. 
Figure created with biorender.com. 
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Purpose of this study and overall impact 

Previous work from our laboratory and from others has demonstrated the potential for e-cigarette 

toxicity and impairment of respiratory immune defense using in vitro and in vivo models as well as in 

samples from human subjects (95, 109, 111, 119, 129, 130). However, the effect of e-cigarettes on the 

respiratory microbiome, which interfaces with the host immune system and is associated with many 

respiratory diseases, (147, 149) has not been evaluated. Furthermore, pod-based e-cigarettes, such as 

JUUL, and disposable e-cigarettes, now represent the majority of the e-cigarette market (29, 36), but most 

published research has been conducted with model systems or subjects exposed to previous generation e-

cigs (vape pens & box mods) (95, 109, 111, 119, 129, 130), which differ from pod e-cigs in their 

aerosolization parameters, puff topography, and nicotine formulation (25, 46). Hence, whether and how 

exposure to pod-based devices, such as JUUL, differently affects respiratory mucosal immune responses 

also represents a critical knowledge gap.  

The overarching goal of this dissertation to is integrate data obtained from clinical human in vivo 

and macrophage and neutrophil in vitro studies to determine the effects of exposure to e-cigs on 

respiratory immune responses and fill critical knowledge gaps described above. My general hypotheses 

are that e-cigarette use is associated with nasal microbiome dysbiosis and altered nasal host-microbiota 

interactions; users of newer generation e-cigarettes have unique innate immune responses in the central 

airways in comparison with nonsmokers, smokers, and previous generation e-cig users; and that newer 

generation e-cigarette aerosols impair macrophage function. Chapter 2 represents a study conducted 

during my first-year rotation in the lab that demonstrates that e-liquid flavoring chemicals can impair 

neutrophil function. The findings of this study, in combination with studies from other lab, formed the 

basis for my investigation into the effects of e-cigarettes on the nasal microbiome, detailed in Chapter 3. 

The data presented in Chapter 3 demonstrate that e-cigarette use is associated with dysbiosis of the nasal 

microbiome and that these changes are unique from nasal microbiome dysbiosis observed in smokers. 

Importantly, these changes were linked with proteins that mediate the interaction between the nasal 

microbiome and host in matched samples. Chapter 4 is a clinical study that evaluates biomarkers of 
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respiratory immune homeostasis in users of different e-cigarette devices. The data presented in this 

chapter demonstrate that users of newer, pod-based or disposable e-cigarettes that contain nicotine salts 

have a unique immune mediator profile from previous generation device users, nonsmokers, and smokers. 

In this study, we also applied novel computational tools to understand differences in overall immune 

mediator profiles to complement a more traditional variable-by-variable analysis approach. To follow up 

on this human in vivo study, I next planned to assess the effects of newer generation e-cigarette aerosol on 

macrophage function in vitro. However, the COVID-19 pandemic limited my ability to access 

bronchoalveolar lavage macrophages, the intended cell type for these studies, so I developed a 

macrophage model using human monocyte-derived macrophages (hMDMs). Chapter 5 details the 

phenotypic characterization of my hMDMs and expands upon previous literature to include assessment of 

additional mediators secreted by M0, M1, and M2 hMDMs than are traditionally used to assess 

macrophage differentiation and polarization. Additionally, we assessed the bioenergetic profiles of the 

polarized hMDMs and found that they were similar to bioenergetic profiles of induced sputum and 

bronchoalveolar lavage macrophages. Chapter 6 contains unpublished preliminary data, including 

evaluation of sex differences in human neutrophil phagocytosis and oxidative burst and analysis of 

sputum macrophage function in newer generation e-cigarette users in comparison to nonsmokers/non-

vapers. Chapter 7 describes products I have helped develop to disseminate and translate e-cigarette 

science and tools to youth, through biology lessons, and clinicians, through a vaping questionnaire for 

primary care clinics. 

Taken together, research in this dissertation addresses critical knowledge gaps in the field of e-

cigarette toxicology, providing novel insights that will serve as the basis for future translational and 

mechanistic studies to improve understanding of the effects of e-cigarettes on the respiratory immune 

system. 
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CHAPTER 2: COMMON E-CIGARETTE FLAVORING CHEMICALS IMPAIR NEUTROPHIL 
PHAGOCYTOSIS AND OXIDATIVE BURST2 

Introduction 

The growing popularity of e-cigarettes has been linked to the public opinion and promotion of 

them as a safer alternative to tobacco cigarettes (1) and some studies suggesting e-cigarettes help in 

smoking cessation (2).  Of particular concern is adolescent use of e-cigarettes. Currently, 20.8% of high 

school students in the US are e-cigarette users (3). E-cigarettes heat and aerosolize e-liquids, which are 

typically composed of humectants (propylene glycol (PG) and vegetable glycerin), nicotine, and flavoring 

chemicals. The wide variety of e-liquid flavors is one of the primary reasons that using e-cigarettes is so 

appealing to adolescents (4, 5), yet many of these flavoring chemicals have not been evaluated for 

inhalational toxicity (6). Hence, understanding the potential toxicity of e-cigarette flavorings is necessary 

to inform regulation of e-liquid manufacturing and to educate the public about e-cigarette safety. 

Neutrophils, along with airway macrophages, are one of the body’s first lines of defense against 

inhaled pathogens (7), making them an important target for inhaled toxicants. There is emerging 

appreciation for the complex interplay between cellular metabolism and innate immune response as well 

as the concept that bioenergetic changes are at the center of innate immune dysfunction and immune cell 

phenotypes (8). However, bioenergetic characterization of the innate immune system has been limited 

primarily to macrophages while neutrophils have been largely ignored (9, 10). Furthermore, the ability of 

toxicants to alter neutrophil bioenergetics and downstream functions remains unclear. Our lab has 

demonstrated that the flavoring chemical cinnamaldehyde significantly affects cellular bioenergetics, 

which in turn causes impairment of key innate immune functions of respiratory epithelial cells (11). 

 
2 This chapter previously appeared as an article in Chemical Research in Toxicology. The original citation is as 
follows: Hickman E, Herrera CA, and Jaspers I. Common E-Cigarette Flavoring Chemicals Impair Neutrophil 
Phagocytosis and Oxidative Burst. Chemical research in toxicology 32: 982-985, 2019. Reproduced with permission 
from Chemical Research in Toxicology. Copyright 2020 American Chemical Society.  
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Hence, disruption of cellular bioenergetics could be a central mechanism mediating adverse effects of 

flavoring chemicals.  

In this study, we investigated the effects of four common flavoring chemicals – cinnamaldehyde 

(cinnamon), ethyl vanillin (vanilla), benzaldehyde (almond or cherry), and isoamyl acetate (banana) – on 

neutrophil oxidative burst and phagocytosis. Because we had previously observed impairment of airway 

and immune cell function by cinnamaldehyde (11, 12), we were interested in whether other common 

aromatic aldehydes found in e-cigarettes also impaired cellular function (13-15). We chose isoamyl 

acetate, an ester that is commonly detected in e-cigarettes (15), for comparison. We also assessed the 

effects of benzaldehyde PG acetal, which can form via the reaction of benzaldehyde and PG in e-liquids 

(16) and has been identified by multiple research groups in e-liquids and e-cigarette aerosols (13-15).  

 

Methods 

Blood Collection and Neutrophil Isolation  

We isolated neutrophils from venous blood of healthy human subjects as described previously 

(12). Venus blood was obtained from subjects (males and females between 21-56 years of age) for the 

isolation of peripheral blood neutrophils (Table 2-1). Subjects were self-reported healthy volunteers with 

no acute illness or allergy symptoms. Other exclusion criteria were current nicotine use, asthma, and/or 

pregnant and nursing women. Informed consent was obtained from all subjects and all studies were 

approved by the University of North Carolina at Chapel Hill School of Medicine Institutional Review 

Board (IRB #11-1363 and #97-0845). All studies were performed in accordance with The Code of Ethics 

of the World Medical Association. Venous blood was collected in EDTA-coated Vacutainer tubes (BD, 

Thermo Fisher Scientific, Waltham, MA) and neutrophils were isolated and resuspended as described 

previously (12). Cytotoxicty was determined by measuring lactate dehydrogenase (LDH) in supernatants, 

as described by us before (data not shown) (12).  
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Table 2-1. Overall study demographics.Data represents mean ± SEM 
 Male Female 
n 15 17 

Age 30.2 ± 2.1 28.4 ± 2.0 
BMI 25.9 ± 1.0 24.9 ± 1.2 
Race 

(White/African American/Asian) 11/3/1 15/1/1 

 

Flavoring Chemicals 

Cinnamaldehyde (99%, 7.79 M), benzaldehyde (³ 98%, 9.64 M), benzaldehyde propylene glycol 

acetal (³ 95%, 6.16 M), isoamyl acetate (³ 97%, 6.73 M), and ethyl vanillin (³ 98%, powdered) were 

acquired from Sigma-Aldrich (St. Louis, MO) and stored as indicated by the manufacturer. Ethyl vanillin 

was dissolved in dimethyl sulfoxide (DMSO) (Sigma Aldrich) at a concentration of 5 M. All other 

flavoring chemicals were diluted directly into cell culture media from the manufacturer stock solutions 

immediately prior to the experiment. The highest concentration of DMSO for the ethyl vanillin 

experiments was 0.1%.  

 

Seahorse Extracellular Flux Analysis 

We developed and optimized a Seahorse extracellular flux assay based on existing literature and 

manufacturer guidelines (17). Briefly, 24-well XF assay plates (Agilent Technologies, Santa Clara, CA) 

were coated with 0.672 µg Cell-Tak (Corning, Thermo Fisher Scientific, Waltham, MA) per well and 

stored at 4°C for no more than one week before use. Coated plates were allowed to warm to room 

temperature (approximately 21°C) before plating 1.5 x 105 isolated neutrophils per well in 100 µL of 

Seahorse media (Seahorse XF RPMI media without phenol red, 2 mM L-glutamine, 1 mM sodium 

pyruvate, 1 mM HEPES, and 10 mM glucose, pH 7.4). The plate was centrifuged at 300 x g for 1 minute, 

rotated 180 degrees, and centrifugation was repeated for 1 minute. Cells were allowed to rest in a non-

CO2 incubator at 37°C for approximately 20 minutes, followed by the addition of 400 µL Seahorse media 

and an additional 20 minutes of incubation before the start of the assay. The effect of flavoring agents on 

neutrophil oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) was measured via 
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sequential injection of a flavoring compound (0 – 5 mM final concentration) followed by injection of 

PKC agonist phorbol 12-myristate 13-acetate (PMA, 100 ng/mL final concentration) (Sigma Aldrich) on 

a Seahorse XFe24 Extracellular Flux Analyzer (Agilent Technologies, Santa Clara, CA) at 37°C. ). 0 – 5 

mM was used because this is approximately 2 orders of magnitude below maximum concentrations of 

these flavorings in e-liquids, and we have observed cellular effects on other cell types in this 

concentration range (12-15). Seahorse Extracellular Flux assays simultaneously measure oxygen 

consumption and extracellular acidification. Extracellular acidification can be used as an indicator of 

glycolytic activity because the protons produced by lactate dehydrogenase during glycolysis acidify the 

extracellular space. Neutrophils generate the energy and NADPH needed to perform oxidative burst 

almost exclusively through glycolysis and the pentose phosphate pathway. Three baseline readings were 

taken before injection of the flavoring compound, three readings were taken after injection of the 

flavoring compound, and 30 readings were taken after injection of PMA. The assay was run with 

mix/wait/measure cycles of 3 minutes/0 minutes/3 minutes. The total oxygen consumption during 

oxidative burst represents the amount of oxygen converted by the neutrophils to superoxide. This was 

quantified by calculating the area under the curve after PMA stimulation using OCR data (Figure 2-1A, 

Figure S2-1). 

 

Phagocytosis 

1x105 isolated neutrophils were plated in 100 µL neutrophil media in a black clear-bottom 96-

well plate. Cells were incubated (37°C, 5% CO2) for 30 minutes. Neutrophils were then challenged in 

triplicate with 0-5 mM of flavoring chemical for 1 hour at 37°C and phagocytosis was measured using 

pHrodo Red Staphylococcus aureus BioParticles (Thermo Fischer Scientific, Waltham, MA) as described 

by us before (12). Cinnamaldehyde (CA, 1 mM) was used as a positive control for inhibition of 

phagocytosis (12).  
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Statistics  

Each assay was performed with isolated neutrophils from at least n=3 male and n=3 female 

subjects. For the Seahorse experiments, data were analyzed using area under the curve analysis. Oxidative 

burst and phagocytosis data were normalized by calculating the percentage of response relative to the 

media or DMSO control for each subject. Normality of each data set was assessed using the Shapiro-Wilk 

test. Significance of normal dose-response data sets was assessed with a repeated-measures one-way 

ANOVA followed by Tukey’s HSD test. Significance of non-normal dose-response data sets was 

assessed with a Friedman test followed by Dunn’s post-test. We tested for but did not find significant sex 

differences in the effects of the flavoring chemicals on neutrophil oxidative burst or phagocytosis (data 

not shown).  

 

Results 

Cinnamaldehyde and ethyl vanillin decreased total oxygen consumption in a dose-dependent 

manner (Figures 2-1B, 2-1C, 2-2A, 2-2B), with a calculated IC50 of 0.39 +/- 0.04 mM and 0.42 +/- 0.1 

mM respectively. Benzaldehyde and benzaldehyde PG acetal significantly decreased oxygen consumption 

only at the highest dose, 5 mM (Figures 2-1D, 2-1E, 2-2C, 2-2D). Isoamyl acetate did not affect oxygen 

consumption during oxidative burst (Figures 2-1F).  

Using the area under the curve analysis, we also obtained the maximum OCR, time to the 

maximum OCR, and time to baseline OCR. The data for the maximum OCR followed similar trends to 

the total oxygen consumption data (Table S2-1). The highest doses of ethyl vanillin and benzaldehyde 

(5mM) significantly decreased the time to maximum OCR (p < 0.05, Table S2-2). There was no 

significant difference in the time it took to return to baseline for any of the doses of the flavoring 

chemicals (data not shown). The ECAR data mirror the OCR data, as expected (Figure S2-2, Table S2-3, 

Table S2-4).  

We have previously shown that cinnamaldehyde impairs neutrophil phagocytosis (12). Here, we 

show that other aromatic aldehydes are also capable of impairing neutrophil phagocytosis. Ethyl vanillin, 
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benzaldehyde, and benzaldehyde PG acetal significantly decreased neutrophil phagocytosis (Figure 2-2A, 

2-2B, 2-2C), while isoamyl acetate (Figure 2-2D) had no effect. The inhibition caused by benzaldehyde 

PG acetal was more potent than that observed with benzaldehyde, with IC50 values of 4.72 +/- 2.05 and 

1.89 +/- 0.66 mM for benzaldehyde and benzaldehyde PG acetal, respectively, suggesting that chemicals 

formed via the reaction of flavoring chemicals and e-liquid constituents under ambient conditions may 

exert stronger toxicological effects than those of the base favoring chemical. 

 

Figure 2-1. Neutrophil oxidative burst following exposure to e-cigarette flavoring chemicals.A 
Seahorse Extracellular Flux assay (A) was used to measure the effects of flavoring chemicals 

cinnamaldehyde (B), ethyl vanillin (C), benzaldehyde (D), benzaldehyde PG acetal (E), and isoamyl 
acetate (F) on PMA-stimulated neutrophil oxidative burst. Oxygen consumption rate (OCR, pmol/min) 

was used to determine total oxygen consumption by integrating the oxygen consumption rate (OCR, 
pmol/min) of PMA-stimulated neutrophils over time (area under the curve, AUC). Data represents mean 

+/- SEM with n = 6. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Figure 2-2. Neutrophil phagocytosis following exposure to e-cigarette flavoring chemicals. 

Effects of flavoring chemicals ethyl vanillin (A), benzaldehyde (B), benzaldehyde PG acetal (C), and 
isoamyl acetate (D) on neutrophil phagocytosis as assessed with pHrodo red S. aureus BioParticles. Data 
represents mean +/- SEM with n = 6, with the exception of n = 3 for 5 mM iso-amyl acetate. * p < 0.05, 

** p < 0.01. 
 

Discussion 

While there are thousands of different commercially available flavored e-liquids (18), they are 

created using a much smaller set of flavoring chemicals that are combined to create unique flavors (13-

15). Chemical analyses of flavored e-liquids and e-cigarette aerosols from separate studies reveal that 

many different flavored e-liquids share common flavoring chemicals and that these flavoring chemicals 

are present in e-liquids at up to molar concentrations (13-15). Interestingly, the flavoring chemicals we 

found to impair neutrophil function share a common chemical class – they are all aromatic aldehydes or 

their derivatives.   

Though they share a common chemical class, these flavorings have unique functional groups 

which may explain their differential activities.  For example, Cinnamaldehyde is an a,b-unsaturated 

aldehyde that can covalently bind and modify thiols, including interactions with cysteinyl groups on 

proteins (19), whereas vanillin (the sister compound to ethyl vanillin) has been shown to interact with 

proteins via formation of Schiff bases (20). Benzaldehyde shares structural similarity to cinnamaldehyde 

but lacks the reactive a,b-unsaturated moiety, which may explain why it inhibited neutrophil function to a 
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lesser extent than cinnamaldehyde. Potential mechanisms underlying decreased oxidative burst observed 

here could include direct inhibition of key proteins in glycolysis or the pentose phosphate pathway via 

thiol modification, alteration of glucose uptake, or interference with NADPH oxidase complex formation 

and activation. The bioenergetic effects of these chemicals could also have implications for assays such as 

the MTT assay, which relies on mitochondrial metabolism as an indicator of cytotoxicity. 

Erythropel et al. recently demonstrated that aldehydic flavoring chemicals such as 

cinnamaldehyde and benzaldehyde can react with PG under ambient conditions to form flavorant PG 

acetals (16), which have been reported in e-liquids and e-cigarette aerosols (13-15). Here, we 

demonstrated that benzaldehyde PG acetal can impair phagocytosis more potently than benzaldehyde 

(Figure 2-2B/C). However, benzaldehyde impaired oxidative burst slightly more potently than 

benzaldehyde PG acetal (Figure 2-1D, 2-1E). These results further support the previously published 

notion that flavoring chemicals present in e-liquids can also form secondary or tertiary reaction products 

through interactions with various components of the e-liquid, which alters their biological activities and 

toxicities. 

Among the most challenging components of in vitro experimental research models is estimating 

physiologically relevant doses of inhaled flavoring chemicals. The flavoring chemicals we studied have 

been reported in e-liquids in hundreds of millimolar to molar concentrations (12, 14, 15, 21), and these 

flavoring chemicals carry over to aerosol with high efficiency (16, 21). Our highest doses are two orders 

of magnitude below these ranges; however, because human in vivo exposure has not been precisely 

quantified, it is difficult to compare the doses at which we found effects to the level of exposure in e-

cigarette users.  

In addition, our results show differing potencies and effects of the flavoring chemicals on 

oxidative burst and phagocytosis (Table 2-2). This discrepancy may be due to the method of neutrophil 

activation used. Uptake of S. aureus BioParticles more accurately recapitulates neutrophil phagocytosis in 

vivo, while stimulation of neutrophils with PMA directly activates protein kinase C, in the absence of a 

relevant pathogen. 
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Table 2-2. IC50 values for neutrophil oxidative burst AUC and phagocytosis.Data represents mean ± 
SEM. No data = n.d., Not calculable = n.c. (confidence interval for IC50 included infinity). 

Flavoring Oxidative Burst IC50 (mM) Phagocytosis IC50 (mM) 

Cinnamaldehyde 0.3860 ± 0.0365 n.d. 
Ethyl Vanillin 0.4230 ± 0.0962 n.c. 
Benzaldehyde 29.92 ± 13.93 4.715 ± 2.051 

Benzaldehyde PG Acetal 36.39 ± 24.45 1.888 ± 0.6615 
Isoamyl Acetate n.c. n.c. 

 

Overall, our data demonstrate that flavoring chemicals present in e-liquids can impair neutrophil 

function at different levels (Figure 2-3). Impaired neutrophil function has been shown to play a role in 

decreased bacterial clearance, especially in vulnerable patients, such as those with chronic obstructive 

pulmonary disease (22). Thus, inhalation of e-cigarette flavorings, especially aldehydes, could 

significantly impair neutrophil function and consequently increase susceptibility to infection and 

respiratory disease. Since we found that chemicals from the same class (e.g. aromatic aldehydes) may 

affect immune cell function in a similar manner, assessing the toxicity of flavoring chemicals in e-

cigarettes could be done by chemical class rather than by individual compound. 

 
Figure 2-3. Summary of findings. 
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CHAPTER 3: E-CIGARETTE USE, CIGARETTE USE, AND SEX ARE ASSOCIATED WITH A 
MODIFIED NASAL MICROBIOME AND MARKERS OF NASAL HOST-MICROBIOTA 

INTERACTIONS 

Introduction 

Approximately 7 million adults and more than 3.5 million youth are current electronic cigarette 

(e-cigarette) users (1-3). E-cigarettes heat and aerosolize e-liquids containing nicotine and flavorings 

dissolved in humectants propylene glycol and glycerin. E-cigarette use has been steadily increasing over 

the past decade, especially among teenagers and young adults, reversing the previous decline in youth 

tobacco use (3, 4). Public health crises, such as the outbreak of e-cigarette and vaping-associated lung 

injury in 2019-2020 and the ongoing SARS-CoV-2 global pandemic, highlight the importance of research 

examining the effects of e-cigarettes on respiratory immune function (5, 6).  

There is emerging evidence that e-cigarettes disrupt respiratory innate immunity. Previous work 

has demonstrated the potential for e-cigarette toxicity and impairment of respiratory immune defense 

using in vitro and in vivo models as well as in samples from human subjects (7-12).  For example, e-

cigarette users have altered markers of innate immune responses in induced sputum and bronchoalveolar 

lavage fluid in comparison with smokers and nonsmokers (8, 12) and chronic e-cigarette exposure in mice 

can dysregulate endogenous lung lipid homeostasis and innate immunity (11, 13). In vitro studies have 

demonstrated that e-liquids, e-cigarette aerosols, and their components can impair the function of ciliated 

airway cells and respiratory immune cells (9, 14-18). Furthermore, e-cigarette exposure has been shown 

to enhance bacterial virulence and adhesion to airway cells (19, 20), suggesting that e-cigarette exposure 

may impact the respiratory microbiome. However, the effects of e-cigarette use on the respiratory 

microbiome in humans have not been evaluated.   

The respiratory microbiome includes distinct communities of microbiota along the length of the 

respiratory tract (21). Similar to microbial communities at other body sites, respiratory microbiota 
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interface with the host immune system, and dysbiosis of the respiratory tract microbiome has been 

associated with diseases, including cystic fibrosis, chronic obstructive pulmonary disease, asthma, and 

chronic rhinosinusitis, as well as with disease exacerbations and smoking cigarettes (21-24). Sampling the 

nasal microbiome is straightforward in contrast to the lower airway microbiome, which is easily 

contaminated with oral microbiota during specimen collection (25). In addition, the nose is an important 

gatekeeper in the respiratory tract, as potential pathogens must often colonize this region before 

progressing to the lower respiratory tract (21). This role has become even more clear and relevant with the 

emergence of SARS-CoV-2, with recent studies showing associations between the nasal microbiome and 

SARS-CoV-2 infection (26, 27). Of note is that dysbiosis of the nasal microbiome specifically has been 

associated with smoking cigarettes (23), and gene expression and histopathological changes due to 

smoking are similar in the nasal and lower airway epithelium (7), supporting the use of the nasal 

microbiome for studying the effects of environmental exposures on the respiratory microbiome. 

Mechanistic study of the human microbiota is an important focus when studying the human 

microbiome, where identifying microbes associated with disease is paramount (28). To uncover complex 

interactions in microbiome association studies changes to classical statistical methods are required (29). 

In addition, computational methods that robustly integrate disparate data types with 16S microbiome data 

for association testing have been limited (30). In particular, microbiome datasets have interspecies 

interactions, small sample sizes, high dimensionality (where the number of features greatly exceed the 

number of samples), are sparse (where the data matrix contains many zeroes), and when converted to 

relative abundance are compositional, meaning the total number of reads is not informative (31). 

Combined, these challenges significantly confound the multivariate integrative analysis required to 

improve our understanding of host-microbiome interactions. Thus, novel analytical tools are necessary to 

uncover true signals hidden within small sample size microbiome data. 

In this study, we sampled the nasal microbiomes of smokers, nonsmokers, and e-cigarette users 

using a non-invasive absorptive strip to collect nasal epithelial lining fluid. We then used high-throughput 

sequencing of the bacterial 16S rRNA gene from the strips to identify bacteria present and analyze the 
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bacterial composition of the nasal microbiome in our subjects. Because these microbial communities are 

composed of highly interdependent taxa that have complex interaction patterns, multivariate data analysis 

is critical to extract biologically relevant information.  

Here, we leverage Selection Energy Permutation (32)[pre-print], a novel multivariate association 

test that simultaneously tests associations while identifying robust subsets of pairwise log ratios in the 

setting of high-dimensional, low sample size data. These reduced subsets are then used to integratively 

analyze nasal microbiome and matched cell-free nasal lavage fluid mediator data to determine: 1) whether 

there were significant compositional differences in the nasal microbiomes of E-cigarette users, smokers, 

and nonsmokers, 2) whether levels of nasal lavage fluid (NLF) mediators are significantly different in e-

cigarette users and smokers in comparison with nonsmokers, and 3) whether changes in levels of these 

mediators correlate with nasal microbiome dysbiosis. Our data demonstrate nasal microbiome dysbiosis 

and unique networks of host-microbiota mediators in e-cigarette users and smokers in comparison with 

nonsmokers. This is indicative of disrupted respiratory mucosal immune responses in these groups and 

potentially increased susceptibility to infection by specific bacterial taxa. We also observed significant 

sex differences in the nasal microbiome, highlighting the importance of including sex as a biological 

variable in nasal microbiome studies. 

 

Methods 

Subject recruitment 

Nasal epithelial lining fluid (NELF) strips, nasal lavage fluid (NLF), and venous blood were 

obtained from healthy adult human e-cigarette users, smokers, and nonsmokers as described previously 

(Table 3-1) (33), forming our exposure groups. Inclusion criteria were healthy adults age 18-50 years who 

are either nonsmokers not routinely exposed to environmental tobacco smoke, active regular cigarette 

smokers, or active e-cigarette users. Active cigarette smoking and e-cigarette use were determined as 

described previously (7). Exclusion criteria were current symptoms of allergic rhinitis (deferred until 

symptoms resolve), asthma, fractional expiratory volume in one second (FEV1) less than 75% predicted at 
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screen, bleeding disorders, recent nasal surgery, immunodeficiency, current pregnancy, chronic 

obstructive pulmonary disease, cardiac disease, or any chronic cardiorespiratory condition. After the 

consent process was completed, a medical history and substance use questionnaire was obtained, and 

subjects were issued a diary to document smoking/vaping for up to 4 weeks, after which they returned for 

sample collection. E-cigarette users averaged less than 1.5 cigarettes/day in their smoking/vaping diaries, 

while cigarette users ranged from 4.93-20 cigarettes per day in their diaries. To compare demographic 

characteristics between subjects in the different exposure groups, age, BMI, and serum cotinine levels 

were tested for normality using the Shapiro-Wilk test, and groups were compared using the Kruskal-

Wallis test followed by the Steel-Dwass method for non-parametric multiple comparisons (analogous to a 

one-way ANOVA with Tukey’s Honestly Significantly Different Test (HSD) for parametric data). All 

samples were collected between 2014 – 2018 (prior to the COVID-19 pandemic).  

 

Table 3-1. Subject demographics.Reported values are mean ± standard error. Groups were compared 
using the Steel Dwass method for non-parametric multiple comparisons. AA = African American. # p 
<0.05 in comparison with nonsmokers and smokers. **** p < 0.0001 in comparison with nonsmokers. 

 Nonsmokers E-Cigarette Users Smokers 
n 20 28 19 

Sex (Male/Female) 8/12 19/9 10/9 
Race (White/AA/Asian/Other) 16/1/2/1 18/4/5/1 10/8/0/1 

Age 30.75 ± 1.32 26.39 ± 1.44# 31.89 ± 1.91 
BMI 27.11 ± 1.31 30.07 ± 1.51 27.65 ± 1.43 

Cigarettes/Day 0 ± 0 0.14 ± 0.07 12.68 ± 0.96 
mL E-Liquid/Day 0 ± 0 3.60 ± 0.70 0.015 ± 0.015 

E-Cigarette Puffs/Day 0 ± 0 53.90 ± 16.54 0.466 ± 0.414 
E-Liquid Nicotine (mg/mL) 0 ± 0 19.43 ± 4.92 0.158 ± 0.158 
Former Cigarette Smoker 

(Yes/No) 0/20 22/6 19/0 

Marijuana Use (Yes/No) 0/20 4/24 4/15 
Serum Cotinine (ng/mL) 0 ± 0 127.99 ± 15.42**** 170.16 ± 21.41**** 
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Serum Cotinine Measurement  

Venous blood was collected in BD Vacutainer serum-separating tubes (Fisher Scientific, 

Waltham, MA) and allowed to clot for a minimum of 15 minutes at room temperature. The blood was 

then centrifuged at 1200 x g for 10 minutes, and the serum layer was transferred to a fresh tube and stored 

at -80°C until samples were collected from all subjects. Serum was assayed for cotinine, a metabolite of 

nicotine that can be measured as a biomarker of nicotine consumption, using a commercially available 

ELISA kit (Calbiotech, Mannheim, Germany) per manufacturer’s instructions. Absorbance was read on a 

CLARIOstar plate reader (BMG Labtech, Ortenberg, Germany). The limit of quantification for serum 

cotinine was 5 ng/mL. For samples below the limit of detection, a value of zero was assigned. Serum was 

not available for one subject in the cohort. 

 

NELF Strip 16S rRNA Gene Sequencing 

DNA was extracted from whole NELF strips using Powersoil DNA Isolation Kit (MoBio 

Laboratories). Sequencing libraries were prepared as previously described.(34) Samples were sequenced 

on an Illumina MiSeq kit version V3 2x300 paired end over the V3-V4 bacterial 16S rRNA gene. Raw 

sequencing data were demultiplexed and processed to generate a table of operational taxonomic units 

(OTUs). Specific primer schema, qPCR data, and the OTU table (having at least 10 sequences per OTU 

across all samples) are provided in the supplement. Raw sequence data have been uploaded under the 

BioProject accession number PRJNA746950 within the Sequence Read Archive.  

 

NLF Processing and Soluble Mediator Measurement 

Cell-free nasal lavage fluid was obtained via processing of raw nasal lavage fluid as described 

previously.(35) Briefly, raw nasal lavage fluid from each nostril was pooled and centrifuged at 500x g 

through a 40 µm strainer for 10 minutes. Supernatant (cell-free NLF) was collected and stored at -80°C 

until samples were collected from all subjects. Due to limitations in sample volume, a targeted list of 
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soluble mediators was chosen for measurement in cell-free NLF. Cell-free NLF was assayed for 

mediators of host-microbiota interaction (neutrophil elastase, immunoglobulin A (IgA), lactoferrin, 

lysozyme, interleukin 8 (IL-8), alpha-defensin 1, beta-defensin 1, and beta-defensin 2 using commercially 

available ELISA kits per manufacturer’s instructions as described in Table S3-1. These mediators were 

chosen based on their previously described roles in respiratory mucosal host-microbiome interactions, 

association with respiratory disease and tobacco product exposure, and detectable concentrations in nasal 

lavage fluid, which is a relatively dilute sample. (21, 36-39) Absorbance was read on a CLARIOstar plate 

reader and concentrations (pg/mL) were interpolated using GraphPad Prism 9. For samples below the 

limit of detection, a value of ½ the lowest standard was assigned. Cell-free nasal lavage fluid was not 

available for one subject in the cohort (Figure S3-1).  

 

Sequencing Data Processing and Filtering 

Five samples were removed from the dataset due to a low number of reads (Figure S3-1). A 

spiked pseudomonas positive control was identified correctly as pseudomonas. To control for potential 

contamination on the NELF strips, the decontam R package was used to remove contaminants.(40) This 

package uses an algorithm that takes into account the relative abundance of operational taxonomic units 

(OTUs) in samples and controls to remove the most likely contaminants and has been shown useful for 

respiratory samples.(41)  This reduced the number of OTUs from 5346 to 4677. Alpha diversity measures 

(Observed, Chao1, ACE, Shannon, Simpson, Fisher) were calculated using the phyloseq R library before 

trimming OTU counts less than 5 for downstream analysis.  This brought the number of OTUs to 3059 for 

downstream analysis.  

 

Alpha diversity 

Shannon and Simpson diversity indices were computed for each sample. Diversity indices were 

tested for normality using the Shapiro-Wilk test and further statistical tests to compare groups were 
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carried out using the appropriate parametric (two-tailed t-test, ANOVA) or non-parametric (Kruskal-

Wallis, Steel Dwass) tests. These analyses were performed using JMP Pro 14 and GraphPad Prism 8.  

 

Nasal Microbiome Compositional Data Analysis 

To limit spurious findings and because absolute sequencing counts are uninformative (31, 42, 43), 

compositional data analysis (CoDA)(44) was carried out on the OTU count table after aggregating OTUs 

(O = 3059) by family (min. level assigned) and genera (max level assigned)  and removing taxa not 

present in at least 20% of samples. The 20% sparsity threshold was selected to maximize class-specific 

information (Sex, Exposure group) while ensuring the microbial signatures were robust and contained 

minimal noise due to excessive sparsity. After aggregating OTUs, we define the taxa count matrix, X∈

ℝ!"#, with n = 62 samples and p = 143 taxa. The closure operator, 𝐶[∙], was then used to map the count 

data of each element 𝑥$% of X onto its corresponding coordinate on the unit-sum simplex, defining X& =

𝐶[X] in terms of matrix elements as 

𝑥$%& = (𝐶[𝑿])$% =	
𝑥$%

∑ 𝑥$'(
')*

 

Because the presence of zeros is a major limitation of the log ratio transformation essential to 

CoDA, all zeroes must be robustly imputed to non-zero values. To overcome this we use the ratio-

preserving multiplicative replacement strategy which has been shown to have several theoretical 

advantages over simple additive replacement (45): we set the 𝛿 imputed values to a single constant equal 

to the smallest nonzero value encountered in X&. From this, we impute zeros and replace X& with Z defined 

in matrix elements as: 

𝑧$% =

⎩
⎪
⎨

⎪
⎧ 𝛿																									, 𝑥$%& = 0

81 − ; 𝛿
'|,!")-

<	𝑥$%& 			, 𝑥$%& > 0
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Partial redundancy analysis to remove variation due to Sex 

To remove the significant effect of Sex (which otherwise obscures the exposure group effect) on 

Z, partial Redundancy Analysis (pRDA)(46) was used. Here we encode the Sex variable into the design 

matrix S. Additionally, to ensure multiple regression computations used in pRDA are performed on 

symmetric vectors in real space that preserves the inter-sample Euclidean distances, a center log ratio (clr) 

transformation was applied(44) to Z, defining the clr values C for each sample as 𝒄$ =	 ?𝑐*, … , 𝑐#B such 

that: 

c./ 	= 	log G
z/.

G.
J 	where	𝐺$ = 8P𝑧$%

%

<

*
#

 

With C defined, pRDA was carried out in the vegan R package (47). Multivariate linear 

regression of C on S (i.e. computed as a series of multiple linear regression on individual features) was 

used to produce the fitted values C	Q . To remove the Sex effect as in pRDA, the adjusted values of C were 

computed by 𝐏 = 𝐂 −	C	Q 	where C	Q contains all variation attributable to Sex.  With 𝐏 defined in Euclidean 

coordinates which are not suitable for downstream pairwise log ratio transformations, an inverse clr 

transformation was applied to map the adjusted coordinates back to the unit-sum simplex. The Sex 

adjusted relative abundance matrix M with elements 𝑚$% is computed as: 

𝑚$% =
expW𝑝$%Y

∑ exp(𝑝$')
#
')*

	 

Nasal Microbial Signature identification using Selection Energy Permutation 

To identify microbial log ratio signatures in the setting of high-dimensional low sample size data 

we utilized the recently developed Selection Energy Permutation (SelEnergyPerm) method, which has 

been shown to have increased statistical power over several existing multivariate hypothesis testing 

methods under hypothesis testing settings like this (32). The SelEnergyPerm method simultaneously 

selects a reduced subset of log ratios while maximizing the association between groups. Let the group 
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distributions be defined as 𝑋 ∈ ℝ0	,	2	and	𝑌 ∈ ℝ3	,	2. In this work, we use SelEnergyPerm with the 

energy statistic (E-statistic)(48)  defined by 

ℇ0,3(𝑋, 𝑌) = 2𝐴 − 𝐵 − 𝐶, 

where A, B, and C are specified, in terms of the vectors of ℝ2 indexed by sample, by  

𝐴 =
1
𝑛𝑚

;;d𝒙$ − 𝒚%d
3

%)*

0

$)*

, 𝐵 =
1
𝑛5
;;d𝒙$ − 𝒙%d

0

%)*

0

$)*

, 𝐶 =
1
𝑚5;;d𝒚$ − 𝒚%d

3

%)*

3

$)*

 

From this, the pooled multi-class (#classes (c) > 2) E-statistic becomes 

𝑆 = 	; h
𝑛% + 𝑛'
2𝑁 k

*6%7'6'
l
𝑛%𝑛'
𝑛% + 𝑛'

	ℇ!#,0"(𝑋% , 𝑋')m 

The pooled E-statistic is then maximized using forward selection on a subset selected from the full set of 

pairwise log ratios to explain maximal variation when compared to the full set of pairwise log ratios. 

Similar to the approach in Greenacre et al. (49),  the reduced subset of log ratios are selected from the 

#(#9*) 2-dimensional feature space (all pairs). However, there are 𝑝#95 possible ways to select a subset of 

log ratios that explain the total log ratio variance. To overcome this, SelEnergyPerm scores each log ratio 

using the differential compositional variation scoring method and then iteratively computes acyclic 

subsets of log ratios (32), with permutation testing via Monte Carlo sampling(50) to assess the 

significance and prevent overfitting of the log ratio signature. Specifically, given a log ratio signature 

discovered with true labels, SelEnergyPerm tests if the observed pooled E-statistic (𝑆∗) is more extreme 

than E-statistics sampled from the permutation distribution of log ratio signatures selected under random 

labels (𝑆$, indexing different random-label samples). With 𝛾 such E-statistics randomly sampled from the 

permutation distribution the one-sided p-value becomes 

�̂� =
1 + ∑ 𝐼(𝑆$ >	𝑆∗	)

<
$)*
𝛾 + 1

 

As expected, we find that removing large numbers of uninformative features increases statistical power in 

the high-dimensional low-sample-size setting. To identify the Sex nasal microbial signatures in this study 

we utilized Z with labels = 𝑆𝑒𝑥 and for the Exposure group microbial signature we utilized M with 
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labels = 𝑆𝑢𝑏𝑗𝑒𝑐𝑡	𝐺𝑟𝑜𝑢𝑝. Using these data, we applied the SelEnergyPerm method with default settings 

using 200 permutations. Additionally, to reduce noise from sparse features, we further reduced taxa 

included in the analysis by first identifying the number of taxa to include in the microbial signature. We 

tested the following subset sizes:	[5,10,20,40,60,80,100]. Applying the SelEnergyPerm method on each 

subset and normalizing the energy statistic(48) we selected the subset that maximized the normalized 

pooled energy statistic (Figure S3-2) and then tested if the observed 𝑆∗ was more extreme than random. 

In this way, we increase the statistical power of our analysis and reduce the chance of overfitting. While 

this is good for identifying associations, it can come at the expense of reduced overall discriminatory 

potential.  

 

Network Visualization of Microbial signature 

To visualize the microbial log ratio signatures, we constructed undirected graphs connecting the 

key taxa (vertices/nodes) by edges representing the formation of a ratio between two taxa with edge 

weight corresponding to the between-group Kruskal-Wallis H-statistic. While the full log ratio structure is 

directed in distinguishing numerators from denominators, directedness in the visualizations used here 

does not fundamentally change our interpretation. Graphs were visualized using Gephi (51) and R-igraph 

(52). 

 

Multivariate statistical test for microbial signals 

To confirm associations between microbial log ratio signatures and Sex/Exposure group 

multivariate hypothesis testing was done using permutational multivariate analysis of variation(53) and 

implemented using the R vegan package (47). Unsupervised lower-dimensional projections of samples 

and group centroids were done using principal coordinate analysis (PCoA) and were implemented using 

the R stats package.  
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Partial Least Squares Discriminate Analysis 

We utilized partial least squares discriminate analysis (PLS-DA)(54, 55), a versatile multivariate 

statistical regression technique, to model and understand the relationship between Sex/Exposure group to 

their microbial signatures. Shown to have reliable performance on compositional and genomic datasets 

(56, 57), PLS-DA models perform classification, inference, and are inherently linear thus offering 

improved model interpretability.  We specified a priori the number of PLS-DA components (ncomp) as 

follows: for the between Sex nasal microbial signature, ncomp = 1; for the between Exposure group nasal 

microbial signature, ncomp = 2. Model fitting was done using the R caret (58) plsda function, with latent 

space projections and loadings extracted from the final models fit using all samples using R caret (58). 

PLS-DA biplots were created by scaling and superimposing the loading vectors onto the score coordinates 

extracted from the final fitted model. PLS-DA biplots were visualized using the R ggplot2 package (59). 

 

Receiver operating characteristic curve analysis and PLS-DA performance metric 

To understand how well the binary PLS-DA models discriminate between Sex using the nasal 

microbiome signature, we utilized the area under the receiver operating characteristic metric, AUC, which 

represents the probability that a randomly selected instance of class 1 will be ranked higher than a 

randomly selected instance of class 2 (60). Additionally, to understand the discriminatory potential of the 

ternary PLS-DA Exposure group models, the multi-class AUC metric was used. The multi-class AUC 

generalizes binary AUC through pairwise class AUC averaging and has the useful property of being 

independent of cost and priors as in AUC while having a similar interpretation to misclassification rate 

(61). AUC metrics were estimated using repeated k-fold cross-validation (62).  The R pROC package (63) 

was used to compute all AUC metrics. ROC curves, which graph the false positive and true positive rate 

of a classifier over a range of thresholds, were computed using the R pROC package (63) and visualized 

using the R ggplot2 package (59).  
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NLF mediator and microbiome data integration 

We define the nasal lavage data matrix, L	∈ ℝ!	"	=, where n = 66 samples and f = 7 mediators. 

Treating the data as relative such that sample-wise absolute concentrations in our study are considered 

unimportant (Figure S3-3A), zeroes were imputed after applying the closure operator to L as described in 

our compositional data analysis methods. From this, we define L′ ∈ ℝ!	"	>, with k = 21, to include all 

pairwise log ratios from L. To remove uninformative NLF mediators, we computed the differential 

compositional variation (DCV) score (32) and assigned each NLF mediator log ratio a score by averaging 

the within-fold DCV score using 20 repeats of 10-fold cross-validation. NLF log ratios with a DCV score 

< 0 were considered uninformative and were removed (Figure S3-3B). From this ' was reduced to LQ ∈

ℝ!	"	>	 where k=4 (Figure S3-3C) log ratios. To test for univariate associations between NLF mediator log 

ratios and Exposure group the Kruskal-Wallis test was applied followed by pairwise Wilcoxon rank-sum 

testing if	𝛼 < 0.05. The nasal microbiome signal was obtained by applying the SelEnergyPerm method to 

M to get MQ 	∈ ℝ!	"	? where n = 62 and r = 9 log ratios.  

Concatenating these data, we define the integrated NLF mediator and nasal microbiome matrix as 

D ∈ ℝ!	"	= where n = 61 (6 samples were removed due to either missing nasal microbiome or NLF data) 

and f = 13 (4-nasal lavage and 9 microbiome log-ratio features). Exposure group discrimination was 

estimated separately for each of LQ, MQ , and D using multi-class AUC from 50 repeats of 10-fold cross-

validation using 2-component PLS-DA models. Multi-class AUC estimates using LQ, MQ , and D were 

compared between groups using the non-parametric Wilcoxon rank-sum test.  

 

Nasal NLF mediator and microbiome association analysis  

A final 2-component PLS-DA model to discriminate between exposure groups was fit to MQ . 

Using dimensionality reduction inherent to PLS-DA, the first PLS-DA component (explaining the most 

variation) was extracted as a latent variable for further analysis. Pearson’s correlation coefficients (PCC) 

and subsequent p-values were computed between the first PLS-DA component and L’’ represent the 
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reduced nasal microbiome exposure group signature. PCC p-values, adjusted for multiple comparisons (q-

value) using the Benjamini-Hochberg (BH) correction,(64) were considered significant if q ≤ 0.10.  

These analyses were carried out using the R stats and caret packages.  

  

Between Exposure group correlation analysis 

Partitioning the samples of D into 3 matrices based on exposure group (nonsmokers, e-cig users, 

or smokers), we calculate all pairwise PCC and p-values between features for each group. We also report 

q-values after adjusting for multiple comparisons within each group using the BH method. Correlations 

were considered significant if 𝑞 ≤ 0.10. Significant PCC within each subject were then aggregated across 

all exposure groups and visualized as a graph using the R igraph package (52). 

 

Confidence Intervals and univariate statistical test for log ratio 

Log ratio 95% confidence interval estimates were calculated by 

 
𝐶𝐼$ = 𝑥@� ± 1.96	

𝑠$
√𝑛
	 

 
where for the ith log ratio, 𝑥@� =	sample mean, 𝑠$ = sample standard deviation and 𝑛 =number samples. 

Log ratios with confidence intervals bounds that do not include 0 are interpreted as enriched on average 

for the numerator if �̅� > 0 or denominator if �̅� < 0.  The Kruskal-Wallis and Wilcoxon rank-sum test 

were used for univariate comparisons of log ratios between Sex or Exposure groups. Moreover, p-values 

were adjusted for multiple comparisons using the BH correction using the R stats library and are reported 

as q-values.   
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Data Availability 

Raw sequencing data is available under the SRA BioProject accession number PRJNA746950. 

Processed OTU and NLF tables by exposure group and sex have been deposited in the github repository: 

https://github.com/andrew84830813/nasalMicrobiome_EcigSmoking/Data/  

 

Code accessibility 

All nasal microbiome analyses were done using version 4.0.0 of the R statistical programming 

language. All input data, R script, and functions used in the analysis presented here can be retrieved from 

the github repository:  https://github.com/andrew84830813/nasalMicrobiome_EcigSmoking.git 

 

Results 

Subject Demographics 

Demographic, questionnaire, and smoking/vaping diary data are summarized in Table 3-1. The 

study cohort was comprised of 30% nonsmokers (n = 20), 42% e-cigarette users (n = 28), and 28% 

smokers (n = 19) with at least n = 8 per sex within each exposure group. E-cigarette users were 

significantly younger (26.39 ± 1.44) than nonsmokers (30.75 ± 1.32) and smokers (31.89 ± 1.91) (p < 

0.05). BMI did not differ significantly between the exposure groups. Questionnaires and smoking/vaping 

diaries were completed for 95% (19/20) of nonsmokers and 100% of e-cigarette users and smokers. 

However, there was variability in the completeness of diaries filled out by e-cigarette users, particularly 

for the e-cigarette use parameters (mL/day, puffs/day, nicotine concentration, flavor, device). Cigarette 

users smoked an average of 12.68 ± 0.96 cigarettes per day, whereas 25% (7/28) of e-cigarette users 

smoked a cigarette during the diary period with an average of 0.14 ± 0.07 cigarettes per day, while 13 e-

cigarette users reported puffs per day and 16 reported mL e-liquid/day and e-liquid nicotine concentration 

in mg/mL. These e-cigarette users averaged 53.90 ± 16.54 puffs/day, 3.60 ± 0.70 mL of e-liquid, and 

19.43 ± 4.92 mg/mL nicotine in e-liquids. One smoker reported vaping on one day of the diary, which is 

the reason for the non-zero values for e-cigarette use parameters in the smoker category. Nonsmokers did 
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not report previous cigarette smoking or marijuana use, whereas 79% (22/28) of e-cigarette users were 

former cigarette smokers, while 14% (4/28) of e-cigarette users and 21% (4/19) of smokers reported 

marijuana use in their diaries. Cotinine, a metabolite of nicotine, was not detectable in the serum of 

nonsmokers and was significantly elevated in the serum of e-cigarette users (127.99 ± 15.42) and smokers 

(170.16 ± 21.41) in comparison with nonsmokers (p < 0.0001), as expected. 

 
Nasal Microbiome Characteristics 

The 4677 OTUs included in the dataset represented OTUs from 19 unique phyla and 225 unique 

genera. The top four most abundant phyla by average relative abundance across all samples were 

Actinobacteria (50.2%), Firmicutes (36%), Proteobacteria (12.0%), and Bacteroidetes (1.6%). The top 

six most abundant genera by average relative abundance across all samples were Corynebacterium 

(40.7%), Staphylococcus (19.9%), Propionibacterium (11.8%), Alliococcus (8.5%), Moraxella (5.3%), 

and Streptococcus (4.2%). This microbial composition is similar to previously reported studies of the 

nasal microbiome.(65, 66) These data are summarized in Figure 3-1, where relative abundances by 

exposure group and sex are plotted for the most highly abundant phyla and genera.  
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Figure 3-1. Average relative abundances of the top 4 phyla and top 10 genera plotted by exposure 
group, sex, and sex within exposure groups. NS = nonsmoker, EC = e-cigarette user, SM = smoker, M 

= male, F = female. 
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Alpha Diversity  

To determine whether there are differences in alpha diversity between the nasal microbiomes of 

smokers, nonsmokers, and e-cigarette users, we calculated alpha diversity indices (Observed, Chao1, 

ACE, Shannon, Simpson, Fisher) using phyloseq (67). We did not find any statistically significant 

differences between the exposure groups for any measure of alpha diversity; however, we did observe a 

non-significant trend of increased alpha diversity in smokers (Figures 3-2A and 3-2B). Because our group 

and others have previously observed sex differences in respiratory mucosal immune responses(68, 69) we 

also tested whether alpha diversity was significantly different between male and female subjects. We 

found that both the Shannon and Simpson indices were significantly higher in males than females (p = 

0.021 and p = 0.0078, respectively) (Figures 3-2C and 3-2D). We then tested for the interaction between 

sex and exposure group and found that sex was a significant source of observed variation (p = 0.0286 for 

Shannon; p = 0.0102 for Simpson), while exposure group was not. When the data were stratified by 

exposure group, the only male-female comparison that remained significant was in the e-cigarette user 

group (p = 0.0361 for Shannon; p = 0.0124 for Simpson) (Figures 3-2E and 3-2F). These results suggest 

that sex is an important biological variable to consider in studies of the nasal microbiome.  
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Figure 3-2. Shannon and Simpson indices of alpha diversity are significantly different between 

sexes, and this difference is most pronounced in e-cigarette users. The Shannon and Simpson indices 
for alpha diversity were calculated and plotted by exposure group (A, B), sex (C, D), and sex within 
exposure groups (E, F). NS = nonsmoker, EC = e-cigarette user, SM = smoker. Data are presented as 

mean ± standard error. * p < 0.05, ** p < 0.01 by t-test (C), Kruskal-Wallis test (D), or two-way ANOVA 
with Fisher’s LSD (E, F).    

 
 
Compositional Difference of the Nasal Microbiome by Sex  
 

Because we observed distinctions in alpha diversity between sexes, we next tested whether there 

were significant compositional differences between the sexes and to identify specific genera capable of 

explaining these dissimilarities. Given challenges presented by sparse, compositional 16S rRNA gene 

sequencing data combined with high-dimensionality (genera = 255) and small sample size (n=62), we 

leveraged the SelEnergyPerm (32) method to identify a robust signature of nasal microbiome taxa (among 

sparse noisy data) capable of explaining compositional differences between sexes.  

By applying this method, we discovered (beyond random noise) a subset of genera (g = 6) 

capable of maximizing the energy distance between male and female samples (p = 0.0123, Figure S3-2A). 

This microbial signature was comprised of four log ratios between Rhodococcus, Finegoldia, Sneathia, 

Abiotrophia, Tannerella, and Yaniella genera (Figure 3-3A). Using the identified log ratio signature, 

NS EC SM
0

2

4

6

S
ha

nn
on

 In
de

x

NS EC SM
0.0

0.5

1.0

1.5

S
im

ps
on

 In
de

x

Male Female
0

2

4

6

S
ha

nn
on

 In
de

x

*

Male Female
0.0

0.5

1.0

1.5
S

im
ps

on
 In

de
x

**

NS EC SM
0

2

4

6

S
ha

nn
on

n 
In

de
x *

Male
Female

NS EC SM
0.0

0.5

1.0

1.5

S
im

ps
on

 In
de

x *
Male
Female

A C E

B D F



 63 

PERMANOVA analysis (pseudo-F = 16.586, p =0.0002, Figure 3-3B) also confirmed the existence of 

differences in the nasal microbiome composition between sex. Analysis of individual taxa log ratios 

between sexes demonstrated important nasal microbiome compositional differences (Figure 3-3C). In 

female samples, Yaniella was more abundant on average than Rhodoccous and Tannerella, while the 

reverse was true for males. In male samples, Abiotrophia was more abundant on average than Sneathia, 

while the opposite was true for females. Finally, in both males and females, Finegoldia was observed to 

be more abundant than Yaniella, however, Finegoldia was significantly more enriched relative to Yaniella 

in males compared to females.  

Next, we analyzed the microbial signature as a whole using Partial Least Squares Discriminate 

Analysis (PLS-DA) with a single component to predict sex. Using 20 repeats of 10-fold cross-validation, 

the average area under the receiver operating characteristic curve (AUC) for predicting sex given the 

reduced microbial signature was 0.862 (95% CI 0.842 – 0.883, Figure 3-3D). With strong cross-validated 

predictive performance, a final PLS-DA model was trained on all samples (n=62). Scores from the single 

PLS-DA component indicated strong separation between sexes (Figure 3-3E). The PLS-DA loading plot 

(Figure 3-3F), which shows how each log ratio contributes to the final score, demonstrates key 

relationships between taxa log ratios. Increased abundance of Abiotrophia and Finegoldia (in log ratios 

where they appear) were characteristic of males, and increased abundance of Yaniella was associated with 

females. Overall, these findings indicate there exists a compositionally distinct taxa subset that differs 

strongly in the nasal microbiomes of males and females. Therefore, controlling for sex differences present 

in the nasal microbiome is important in further analysis.  
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Figure 3-3. Nasal microbiome differences between sexes. (Males: n=35; Females: n=27). (A) Network 
representation of SelEnergyPerm (p=0.0123) derived genus aggregated taxa log ratio signature of nasal 
microbiome differences between sexes (Node = genera; edge = log ratio between taxa, Edge-weight = 

Kruskal Wallis H-statistic between sexes, Size/Color = node strength). (B) Principal coordinate analysis 
plot of nasal microbiome log ratio signature between sex explaining 82.37% of the total variation. (C) 
Univariate analysis of log ratio signature showing average depletion or enrichment of specific taxa log 
ratios between sexes. Error bars reflect 95% confidence intervals of the mean log-ratio value for males 
and females. (D) Receiver operating characteristics (ROC) curve displaying the area under the curve 

(AUC) predictive performance (20x10-fold cross-validation) of 1-component partial least squares 
discriminant analysis (PLS-DA) models trained on nasal microbiome signature between sexes. (E) PLS-

DA scores plot of single discriminating component between sexes. Final PLS-DA model fit using all 
samples (n=62). (F) PLS-DA loadings plot showing contributions of each log ratio to final scores. 

 
Compositional Difference of the Nasal Microbiome by Exposure group  

We next examined whether there were distinct nasal microbiome compositions between exposure 

groups (e-cigarette users: n = 24; smokers: n=19; nonsmokers: n=19; See Methods and Table 3-1). Taking 

into account nasal microbiome sex differences and applying SelEnergyPerm, we identified a subset of 

genera (g = 12) important for explaining key nasal microbiome alterations between exposure groups (p = 

0.032). This microbial signature comprised nine log ratios (edges) between 12 key genera (nodes) (Figure 

3-4A). PERMANOVA analysis (pseudo-F = 8.4889, p =0.0002, Figure 3-4B) confirmed differences in 

nasal microbiome composition between exposure groups given the microbial signature of 9 log ratios.  
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Individual analyses of log ratios elucidated specific compositional differences between exposure 

groups (Figure 3-4C). In e-cigarette users, Lactobacillus taxa were significantly more abundant relative to 

Bacillus taxa, while in smokers and nonsmokers, these taxa presented in similar proportions, suggesting 

an enrichment of Lactobacillus among e-cigarette users. E-cigarette users’ nasal microbiomes also 

contained significantly more Staphylococcus relative to Bacillus than what was observed in nasal 

microbiomes of both smokers (q = 0.0097) and nonsmokers (q = 0.0031). In smokers, Maccrocus genera 

were significantly more abundant on average relative to Hymenobacter, Mycobacterium, Varibaculum, 

and Rhodococcus, suggesting that smoking may enrich Macrococcus taxa populations in the nasal 

passage. Additionally, smoker nasal microbiomes contained more Hymenobacter relative to Moryella, 

whereas the opposite was true for nonsmokers, both in contrast to e-cigarette users, which maintained on 

average equal amounts of both genera. In nonsmokers, Lautropia taxa were significantly more abundant 

relative to Bulleidia, but this was not observed in smokers and e-cigarette users.  

To understand how taxa log ratios work together to discriminate between exposure groups, PLS-

DA was used with 20 repeats of 10-fold cross-validation (Figure 3-4D). The estimated multi-classification 

AUC was 0.851 (95% CI 0.835 – 0.866) suggesting excellent exposure group discrimination. Pairwise 

examination of exposure group classifications shows strong differences between the nasal microbiomes of 

nonsmokers/e-cigarette users (AUC = 0.895: 95% CI 0.874 – 0.915) and smokers/e-cigarette users (AUC 

= 0.893: 95% CI 0.873 – 0.913), with weaker yet distinct differences between smokers/nonsmokers (AUC 

= 0.803: 95% CI 0.773 – 0.833) (Figure 3-4D). The relative importance of taxa log ratios for 

discriminating between exposure groups was computed using a final PLS-DA model fit using all samples 

(n=62). The log ratio between Macrococcus relative to Hymenobacter was found to be most important for 

classifying samples as smoker (least important for e-cigarette user classification), and the log ratio 

between Bacillus taxa relative to taxa from the Micrococcaceae family was most important for samples to 

be classified as e-cigarette users (least important to be classified as smokers) (Figure 3-4E). Interestingly, 

inspection of relative log ratio importance data failed to uncover log ratios disproportionately important 

for nonsmokers. This observation suggests smoking and e-cigarette use recognizably alter the nasal 
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microbiome in otherwise healthy adults. Overall, analysis of the taxa log ratios signature suggests 

alterations in Macrococcus and Bacillus genera are important for distinguishing between these exposure 

groups. 

 

 
Figure 3-4. Nasal microbiome differences between exposure groups. 

 (Ecig-users: n=24; Nonsmokers: n=19; and Smokers: n=19) adjusted for sex. (A) Network representation 
of SelEnergyPerm (p=0.032) derived genus aggregated taxa log ratio signature of nasal microbiome 
differences between exposure groups (Node = genera; edge = log ratio between taxa, Edge-weight = 

Kruskal Wallis H-statistic between sex, Size/Color = node strength). (B) Principal coordinate analysis 
plot of nasal microbiome log ratio signature between exposure groups explaining 62.63% of the total 
variation. (C) Univariate analysis of log ratio signature showing average depletion or enrichment of 

specific taxa log ratios between exposure groups. Error bars reflect 95% confidence intervals of the mean 
log-ratio value for each exposure group. (D) ROC curve displaying the multi-classification AUC for 
predicting exposure group (20x10-fold cross-validation) of 2-component PLS-DA models trained on 

nasal microbiome signature between exposure groups. (E) Relative importance of log ratios for 
distinguishing between exposure groups in PLS-DA model trained on all samples (n=62). 

 
Differences in NLF mediator Expression Patterns Between Exposure groups  
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Because smoking and e-cigarette use were associated with distinct changes in the nasal 

microbiome, we next explored if there was altered expression of innate immune response mediators in the 

exposure groups. Accounting for differences in absolute concentration (Figure S3-3A) and subsequently 

applying differential compositional variation scoring (32) (See Methods, Figure S3-3B), we identified 

four log ratios among NLF mediators that showed strong intergroup variability (Figure S3-3C). These 

ratios comprised the following NLF mediators:  IL-8, DEFB4A-2, neutrophil elastase, IgA, and 

lactoferrin. Kruskal-Wallis one-way testing (Figure S3-3D) of each log ratio suggest there exist 

intergroup differences in NLF mediator expression formed between the concentrations of neutrophil 

elastase relative to IL-8 (H = 6.4417; p = 0.0399; q = 0.0798) and lactoferrin relative to IL-8 (H = 8.2080; 

p = 0.0165; FDR = 0.0660). There were no significant differences between exposure groups among log 

ratios formed by IgA relative to IL-8 or DEFB4A-2 relative to neutrophil elastase. However, multivariate 

analysis with PERMANOVA (pseudo-F = 3.7678, p =0.0030) using the four key log ratios confirmed 

there were differences in NLF mediator expression patterns between exposure groups when considered 

together. To better understand which groups were different, we applied PLS-DA. Training a PLS-DA 

model with the NLF mediator expression patterns revealed the strongest between-subject-group 

discrimination to be among Smokers and Nonsmokers (AUROC = 0.8230, 95%CI 0.7920-0.8530, Figure 

S3-3E).  Notably, e-cigarette users’ NLF mediators were weakly distinguishable from nonsmokers 

(AUROC = 0.6720, 95%CI 0.6350-0.7100, Figure S3-3E) but more discernible from smokers (AUROC = 

0.7480, 95%CI 0.7130-0.7820, Figure S3-3E). Together, these results suggest that the expression of NLF 

mediators in smokers was distinct from that of e-cigarette users and healthy adults.  
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Integration of NLF mediators and nasal microbiome composition improves exposure group 
discrimination   

Finally, we aimed to understand if alterations in NLF mediator expression are associated with 

nasal microbiome dysbiosis resulting from smoking or e-cigarette use. To this end, we first estimated the 

discriminatory AUROC of a 2-component PLS-DA model fit on log ratios from NLF mediators (Figures 

S3-2C and S3-3), nasal microbiome (Figures 3-4A and S3-4A), or both nasal microbiome and NLF 

mediators (Figure 3-5A). When compared to individual signatures, improved discriminatory AUROC 

(Figure 3-5B) was observed when PLS-DA models were fit using the combined nasal microbiome and 

NLF mediator signatures. Therefore, with established synergy between mediator expression and nasal 

microbiome composition in discriminating between exposure groups, we next examined if correlations 

were present between the two.  

 

Association between altered NLF mediator expression and nasal microbiome dysbiosis  

Using the first PLS-DA component of the nasal microbiome signature, we found significant 

correlations with NLF mediator expression, showing an association between the nasal microbiome 

composition and NLF mediator expression (Figure 3-5C). Examination of the location of samples by 

exposure group projected along the first PLS-DA component show important projective distinctions 

between smokers (on average negative projections) and both e-cigarette users and nonsmokers (on 

average positive projections) (Figure S3-4B). Given this, these correlations suggest nasal microbiome 

dysbiosis caused by cigarette smoke exposure is associated with increased expression of IL-8 relative to 

neutrophil elastase, Total IgA, and lactoferrin (Figure 3-5C). Moreover, the loadings along the first PLS-

DA component (Figure S3-4C) show log ratios with higher abundance of Maccroccous as being the most 

important contributor to negative projections. Combined, these data propound an important link between 

dysbiosis in Macrococcus communities within the nasal microbiome and NLF IL-8 expression.  
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Microbial functional and mediator expression differences between exposure groups  

Correlation analysis of the combined NLF mediator expression and nasal microbiome signature 

reveal distinct correlation patterns within exposure groups suggesting distinct functional differences 

(Figures 3-5D).  Most notably, a significant negative correlation between log ratios formed by 

Hymenobacter/Moryella and Macrococcus/Hymenobacter was observed only in the nonsmoker group. 

This negative correlation highlights a possible role of Hymenobacter, in that it appears to be important for 

maintaining a healthy balance of Maccroocous and Moryella. In the e-cigarette and smoking groups, we 

observed a significant positive correlation between the log ratios formed by IgA/IL-8 and Lactoferrin/IL-

8. Analysis of this correlation pattern reveals that increased expression of IL-8 in these groups may come 

at the expense of decreased expression of IgA and lactoferrin or vice versa. We also observed a 

significant negative correlation between the log ratios formed by Neutrophil Elastase/IL-8 and DEFB4A-

2/Neutrophil Elastase in the e-cigarette and smoking groups. These strong negative correlations show that 

increased expression of IL-8 and DEFB4A-2 is strongly associated with decreased expression of 

neutrophil elastase. The final significant correlation pattern observed was in smokers only and consisted 

of four positively correlated log ratios formed by Macrococcus relative to Hymenobacter, 

Mycobacterium, Varibaculum, and Rhodococcus (Figure 3-5D). Relatively interpreting these correlations 

between log ratios suggests that as Macrococcus becomes more abundant (among these ratios) the 

abundance of Hymenobacter, Mycobacterium, Varibaculum, and Rhodococcus decreases. This suggests 

that cigarette smoke exposure may produce favorable colonization conditions for Maccroccous genera 

which subsequently reduces the abundance of Hymenobacter, Mycobacterium, Varibaculum, and 

Rhodococcus.   

From these analyses, our results demonstrate there exists a strong association between altered 

NLF mediator expression and nasal microbiome dysbiosis. Our findings indicate nasal microbiome 

dysbiosis from smoking is associated with simultaneous increase in IL-8 expression and Maccroccous 

abundance. Additionally, variations in the correlation networks among e-cigarette users and smokers, 
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while similar, were distinct from nonsmokers, suggesting functional differences at the microbial and 

mediator levels between exposure groups.  

 
Figure 3-5. Integrating data uncovers association between NLF mediators and nasal microbiome 
along with identifying distinct correlation patterns between exposure groups.(Ecig-users: n=23; 
Nonsmokers: n=19; and Smokers: n=19). (A) PLS-DA biplot of integrated NLF mediators and nasal 

microbiome (B) Box and whisker’s plot comparing area under the receiver operating characteristic curve 
performance of 2-component PLS-DA model (50x10-fold cross-validation) using each data type alone or 

integrated. (C) Scatter plot showing correlations between log ratios formed between 
concentrations(𝜇𝑔 𝑚𝐿⁄ ) of Lactoferrin, Neutrophil Elastase relative to IL-8 and the first PLS-DA 

component of the nasal microbiome. (D) Correlation heatmap showing Pearson’s correlation coefficients 
(PCC) between and within the microbiome and protein log ratio signatures. (∗

indicates	within	group	𝑞 ≤ 0.10) 
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Discussion 

Despite the growing body of research showing that e-cigarette use can disrupt the respiratory 

immune system, no studies to date have assessed the effects of e-cigarettes on the respiratory microbiome 

and host-microbiota interactions. In this study, after adjusting for sex differences, we found that e-

cigarette users, smokers, and nonsmokers have unique nasal microbiomes, with differences driven by the 

relationships between a subset of key taxa. We also found a subset of immune mediators that had distinct 

relationships between each other in the different exposure groups. Importantly, we found a link between 

nasal microbiome dysbiosis and soluble immune mediator networks.    

  A fundamental feature of our study is that we detected microbial signatures from the nasal 

microbiome that explained differences between sex and exposure groups using the novel SelEnergyPerm 

computational method. This method directly accounts for the sparse, high-dimensional and compositional 

nature of the 16S amplicon relative abundance data. Additionally, SelEnergyPerm identifies subsets of 

robust log ratios between taxa, as opposed to analyzing taxa relative abundance alone, yielding higher 

statistical power in the sparse association setting with low-sample-size compositional data (32). Most 

importantly, traditional statistical techniques such as PERMANOVA, ANOSIM, and ANCOM alone 

were unable to detect these sparse associations within the high-dimensional nasal microbiome feature 

space. Further, our parsimonious yet statistically significant signatures were then integrated with NLF 

mediators where we were then able to uncover novel interactions between a taxa subset within the nasal 

microbiome and the NLF mediators in response to exposure to cigarette or e-cigarette aerosol.  

We observed that there were relationships between a subset of taxa that were important in 

separating the microbial communities of smokers, nonsmokers, and e-cigarette users (Figure 3-4). Only a 

few studies have previously compared the nasal microbiome of smokers and nonsmokers.(23, 70) 

Charlson et al. found specific bacteria genera that were differentially abundant in smokers and that some 

genera belonging to the phylum Firmicutes were important in distinguishing smokers from nonsmokers 

(23). Other studies did not find any significant differences in diversity measures or relative taxa 

abundance between smokers and nonsmokers (70). In our study, which focused on the composition of the 
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nasal microbiome and ratios between taxa rather than relative abundance of individual taxa, we found that 

alterations in Macrococcus and Bacillus genera are important for distinguishing between exposure 

groups. Our data also suggest an enrichment of Lactobacillus and Staphylococcus relative to Bacillus in e-

cigarette users and enrichment of Macrococcus relative to Hymenobacter, Mycobacterium, Varibaculum, 

and Rhodococcus in smokers. A shift from Lactobacillus to Bacillus in the lung microbiome has been 

previously demonstrated in response to influenza A infection and increases in anaerobic bacteria, such as 

Lactobacillus, have been associated with chronic rhinosinusitis (65). Furthermore, Bacillus have been 

shown to produce antimicrobials against S. aureus (71), indicating that the patterns we have observed 

may be directly linked to specific interactions between taxa. An increase in Staphylococcus relative to 

Bacillus in e-cigarette users is also notable due to the role of species such as Staphylococcus aureus, 

which is carried normally by about 30% of people and is also considered to be a potential pathogen of the 

skin and mucosal surfaces (72, 73). Our data provide evidence that e-cigarette and smoker nasal 

microbiomes are distinctly shifted from nonsmokers. Importantly, we also observed that different subsets 

of taxa were important in separating e-cigarette users and smokers, rather than effects on a continuum 

from nonsmokers to e-cigarette users to smokers, highlighting the concept that the effects of e-cigarettes 

are likely unique from those of smokers, even though they are commonly directly compared.  

We also measured concentrations of mediators of host-microbiota interactions in nasal lavage 

fluid to determine whether the changes in the nasal microbiome in different exposure groups are 

potentially caused by direct effects on the microbiome, mediated by changes in the host immune system, 

or both. Our data indicate that the expression of immune mediators in nasal lavage fluid samples differed 

among exposure groups and was driven by shifts in neutrophil elastase and lactoferrin relative to IL-8. 

Neutrophil elastase and IL-8 are associated with inflammation and neutrophil recruitment, while 

lactoferrin is an antimicrobial protein primarily produced by epithelial cells and has a wide array of 

functions, including antioxidant and immune-modulating properties (74). Our results suggest that e-

cigarette users and smokers may have altered immune mediator milieu, indicating a shift away from 
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immune homeostasis and towards increased inflammation and neutrophil recruitment. This shift could be 

partially driving observed differences in the nasal microbiome.  

Our data indicate that both e-cigarette users and smokers have altered nasal microbial 

communities and relationships between markers of innate immune response, which could imply that they 

are at increased susceptibility to respiratory infections and/or that they exist in a state of inflammation and 

altered immune response. We also uncovered interactions of key immune mediators with the host and 

microbiota, such as IL-8, neutrophil elastase, and lactoferrin, that are also disrupted by e-cigarette and 

cigarette use. The microbial shifts we observed in association with e-cigarette and cigarette use could be 

driven by changes in the microenvironment, such as temperature, pH, free radical formation, and 

availability of metabolic substrates (e.g. sugars) that could then alter the fitness of different bacteria in the 

nasal microbial community. The shifts we observed could also be mediated through direct effects on 

respiratory host defense function, inflammation, and/or specific microbes. Multiple processes are likely at 

play, but our novel findings on the effects of e-cigarettes on the nasal microbiome add to the growing 

body of literature demonstrating that e-cigarettes are not without health effects and that they should be 

more thoroughly investigated for inhalational toxicity. 

Because sex differences in the human immune system and its response to respiratory disease and 

toxicant exposure have been observed previously (68, 75), we also investigated whether there were sex 

differences in the nasal microbiomes of our subjects. We observed that the relationships between six 

genera were important in separating the nasal microbiomes of males and females (Figure 3-4A). Increased 

abundance of Abiotrophia and Finegoldia (in log ratios where they appear) were characteristic of males, 

and increased abundance of Yaniella was associated with Females. Many of these genera have been 

detected in previous studies of skin, oral, and/or respiratory microbiomes (23, 65, 76-80), but detailed 

information on the functions of these bacteria as part of the microbial community, as well as their impact 

on host health, are not available for all taxa. Although some of these genera, such as Abiotrophia and 

Finegoldia have been associated with disease- and exposure-driven alterations in the respiratory 

microbiome (23, 65, 76, 77), we hypothesize that the observed sex difference is neither good nor bad; 
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rather, it is reflective of a different baseline composition in males and females or altered 

microenvironments in males and females due to differences in toxicant metabolism rates or mechanisms 

of immune regulation (81, 82). In other body sites, such as the gut, sex differences have been detected and 

have been attributed to a variety of factors, including sex hormone levels, pharmaceutical use, and diet 

(83, 84). In mice, sex-related differences in gut microbiota were shown to impact pulmonary responses to 

ozone (69). However, few studies have explored sex differences in the respiratory microbiome (85). In the 

studies that have analyzed data by sex, detection of sex differences is not consistent between studies and 

is typically not explored in-depth (66, 72, 86). Importantly for the data presented here, compositional 

differences in the nasal microbiomes of e-cigarette users, smokers, and nonsmokers were not apparent 

until sex was properly adjusted for, further underscoring the importance of considering sex as a biological 

variable which significantly modifies exposure effects and can substantially affect data interpretation.  

Though our study reveals important community shifts in nasal microbiota and immune mediators 

associated with e-cigarette and cigarette use as well as with sex, there are limitations to our study. Our 

novel analysis approach, while properly accounting for the compositional nature of the data, limits us in 

comparing our work to previous studies, which have been more focused on specific taxa rather than ratios 

across the microbial community as a whole. As with any study of human subjects, there is also inherent 

inter-subject variability that can interfere with detection of differences between groups. In our e-cigarette 

user group, there was considerable variability in factors that could impact the exposure subjects are 

receiving, including e-liquid flavor, device, nicotine content, and frequency of use. The e-cigarette user 

group also includes previous smokers and some marijuana use was reported in both smoker and e-

cigarette user questionnaires. These factors were included in our analysis and did not show a significant 

impact on our overall findings due to the nature of the computational models we used. Although our study 

had a similar number of subjects per cohort to previous comparable studies (23, 87, 88), future studies 

with larger cohort sizes coupled with more extensive questionnaires could improve the ability to detect 

which, if any, of these factors may be driving changes in microbiota composition. Larger cohort sizes 

would also increase power to detect overall changes and shifts in the nasal microbiomes of such subjects 
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given the compositional and sparse nature of 16S sequencing data. Finally, although 16S amplicon 

sequencing is a common and accessible method to study the composition of the human microbiome, 16S 

amplicon sequencing is not typically able to resolve taxa at the species or strain level, which, given that 

species and strains within the same genus can have different implications for health and disease, is a key 

methodological limitation (89). Future studies using sequencing approaches with higher biological 

resolution, such as shotgun metagenomic sequencing, will allow for improved understanding of the health 

implications associated with shifts in microbial communities associated with tobacco product use.  

As a whole, our results support and expand on the previously published notion that exposure to 

inhaled toxicants, including tobacco products, can influence the respiratory microbiome (23, 90, 91). The 

novel, robust computational approach in terms of pairwise log ratios that we applied allowed us to 

uncover both exposure- and sex-dependent effects on nasal mucosal host defense responses using 

straightforward, non-invasive sampling of the upper respiratory tract of human subjects. Importantly, we 

were able to integrate 16S amplicon sequencing data with expression of soluble immune mediators to 

understand interactions between the nasal microbiome and host milieu by appropriately handling the 

sparse, compositional data generated by 16S amplicon sequencing, accounting for inter-individual 

variability between subjects’ mediator levels, and selecting for features that were most important for 

separating classes, resulting in interpretable, biologically meaningful results. Conventional analysis 

pipelines would have limited our ability to integrate these two types of data and detect the exposure and 

sex-dependent effects we observed, highlighting the importance of applying innovative computational 

methods to address specific research questions and integrating multiple factors in understanding 

biological outcomes of exposure and disease.  
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CHAPTER 4: INDUCED SPUTUM BIOMARKERS OF AIRWAY IMMUNE HOMEOSTASIS: A 
COMPARATIVE ANALYSIS IN 3RD VERSUS 4TH GENERATION E-CIGARETTE USERS 

Introduction 

E-cigarettes continue to be of public health concern. In 2020, more than 3.5 million youth in the 

United States were e-cigarette users, including 19.6% of high schoolers (1). Additionally, an estimated 5-

8 million U.S. adults also use e-cigarettes (2, 3). (Note: the 2021 NYTS data collection was hampered by 

the COVID 19 pandemic (4)). Over the past decade, an increasing number of studies have demonstrated 

that e-cigarettes and their chemical constituents can affect the respiratory system, including respiratory 

immune homeostasis [reviewed in (5, 6)], but the extent of these effects, including their magnitudes, 

affected cell types, and biological implications for human health, is an active area of investigation.  

A major challenge in the field of e-cigarette toxicology is the constant evolution of e-cigarette devices and 

e-liquid formulations. The most notable example of this is the shift in the e-cigarette industry that started 

when JUUL, a discreet, pod-based e-cigarette formulated with nicotine salts, was introduced in the U.S. 

2015. Following JUUL’s skyrocketing popularity (7), a new wave of similar devices entered the market, 

and in 2020, pre-filled pods or cartridges were still the most popular e-cigarette device type among U.S. 

high school students (1, 8). In response to the FDA’s restrictions on flavored, cartridge-based e-cigarettes 

(9), disposable e-cigarettes have also gained popularity, with the percentage of youth vapers using 

disposables increasing from 2.5% in 2019 to 26.5% in 2020 (1, 10).  

This newer generation of e-cigarettes (sleek, low-power pod, cartridge, and disposable e-

cigarettes, also referred to as 4th generation e-cigarettes) is unique from previous generation e-cigarettes 

(vape pens and box mods, also referred to as 3rd generation e-cigarettes) in their aerosolization parameters 

and nicotine formulation (11-14). E-liquid found in 4th generation e-cigarettes typically contains nicotine 

salts, which are generated by combining freebase nicotine with an organic acid (15). This results in the 
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formation of monoprotonated nicotine and lowers the pH of the mixture and therefore also the resulting 

aerosol (12, 15, 16).  The proportion of nicotine in the aerosol in protonated and freebase forms impacts 

the user sensory experience, with nicotine-salt-containing e-cigarettes providing a “smoother” feeling and 

allowing for inhalation of higher concentrations of nicotine (8, 17). Importantly, the inhalation toxicity of 

organic acids commonly used in the formulation of nicotine-salt-containing e-liquids is poorly 

understood.  

Previous studies have shown increased proteinase levels, enhanced neutrophil activation, and 

altered mucin composition in airway samples from e-cig users (18, 19). However, the samples used in 

these studies were collected from subjects who used 3rd generation e-cigs, as 4th generation e-cigs such as 

JUUL had not yet gained popularity at the time of these studies. Because 4th generation e-cigarettes are 

now the most popular type of e-cigarette, particularly among young never-smokers, there is a need to 

assess the respiratory effects of these types of e-cigs in human subjects and determine whether these 

effects are unique from those observed in previous generation e-cig users. This research is also critical 

given the recent marketing authorization of Vuse Solo, a nicotine-salt-containing 4th generation e-

cigarette, by the FDA, with other similar devices still under review (20).  

In this study, we collected induced sputum samples from a cohort of non-smokers/non-vapers, 

smokers, 3rd generation and 4th generation e-cigarette users to determine whether 4th generation e-cigarette 

users exhibited unique central airways immune profiles. We evaluated cellular composition and soluble 

mediators associated with inflammation, host defense, and lung injury in sputum samples. We then 

applied both a standard variable-by-variable analysis and a multivariate predictive modeling analysis to 

enhance our resolution to distinguish inflammatory expression profiles between subject cohorts.  Our 

results demonstrate that there are significant differences between these markers of respiratory immune 

homeostasis between 4th generation e-cigarette users and other groups, underscoring the importance of 

considering device type when assessing the inhalation toxicity of e-cigarettes.   
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Methods 

Study cohort and sample collection 

Subject recruitment 

Healthy adult human nonsmokers, smokers, and e-cigarette users between 18-50 years old were 

recruited to participate in this study. Active cigarette smoking and vaping were determined as described 

previously (21). E-cigarette users were classified as 3rd generation e-cigarette users if they reported using 

primarily vape pens, box mods, or similar devices that contain freebase nicotine. E-cigarette users were 

classified as 4th generation e-cigarette users if they reported using primarily JUUL or other sleek, discreet, 

low-powered e-cigarettes that contain nicotine salts. Two subjects used both 3rd and 4th generation e-

cigarettes regularly and were excluded from the study. A flow chart showing inclusion and exclusion of 

clinical study subjects by device type is available in Figure S4-1. Exclusion criteria included current 

symptoms of allergic rhinitis, chronic cardiorespiratory disease, immunodeficiency, bleeding disorders, 

current pregnancy, and FEV1 less than 75% predicted during the screen visit. All studies were approved 

by the University of North Carolina at Chapel Hill School of Medicine Institutional Review Board (IRB 

#13-3454 and #17-2275).  

 

Sample collection and processing 

Induced sputum collection, processing, acquisition of fluid phase samples, and differential cell 

counts were performed as described previously (22, 23). To obtain serum, venous blood was collected in 

BD Vacutainer serum-separating tubes (Fisher Scientific, Waltham, MA), allowed to clot for a minimum 

of 15 minutes, and centrifuged at 1200 x g for 10 minutes. The serum layer was collected and stored at -

80°C until samples were collected from all subjects.  
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Experimental procedures 

Serum cotinine measurement 

Serum cotinine, a metabolite of nicotine, was measured using a commercially available ELISA 

kit (Calbiotech) to confirm smoking status. For samples below the limit of detection (5 ng/mL), a value of 

zero was assigned. Serum was not available for some subjects in each group. The number of subjects for 

which serum was available in each group is denoted in Table 4-1.  

 

Induced sputum soluble mediator measurement 

Soluble mediator concentrations in cell-free induced sputum supernatants were determined using 

commercially available single-plex ELISAs (R&D Systems) and Mesoscale Discovery multi-plex 

ELISAs. dsDNA concentrations were measured using the Quant-iT Picogreen assay (Thermo Fisher). To 

account for the presence of dithiothreitol (DTT, 3.25 mM) in sputum supernatant samples, ELISA 

standards were diluted in assay diluent with an equivalent concentration of DTT as was in the sputum 

supernatants for that assay, thus generating a DTT and non-DTT standard curve. During dilution 

optimization assays for samples, we compared both standard curves and found no significant interference 

of DTT at the concentrations equivalent to those in our diluted samples (data not shown). 

 

Liver Injury Analysis 

To determine whether there were any effects of cigarette and/or e-cigarette exposure on liver 

health, serum samples were analyzed for markers of liver injury. Although we observed biomarker levels 

above or below the normal limits in some individual subjects, overall, our data do not indicate clinically 

significant changes between groups (Table S4-1).  
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Data Analysis 

Data availability 

Data input files and code used for the analysis can be found at: 

https://github.com/ehickman0817/dissertation-ch4-devicecomparison . All analyses were conducted using 

R v4.1.1 using baseline statistical packages unless otherwise noted below (24). An overview of the 

analysis structure for soluble mediators is provided in Figure 4-1.  

 

Normality testing 

For all continuous variables, normality was tested prior to between-group comparative analyses 

using the Shapiro-Wilk test. Normally distributed data were analyzed using parametric tests, and non-

normally distributed data were analyzed using non-parametric tests, when possible. Normality was also 

assessed through examination of histograms and quantile-quantile plots through the ggplot2 package.  

 

Demographics 

To determine which covariates were significantly different between exposure groups, we 

performed either a Fisher’s exact test (categorical variables) or a Kruskal-Wallis test with Dunn’s test 

(continuous variables) for multiple comparisons. Covariates that were significantly different between 

groups were included in analyses as described below. Due to the small number of Black, Asian and 

Pacific Islander, and Mixed/Other subjects in each group, these groups were collapsed into “Non-White” 

for further analyses.  
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Figure 4-1. Flow chart depicting analysis workflow for investigating differences in soluble 

mediators between exposure groups. Figure created using biorender.com. 
 

 

Differences in Individual Sputum Differential Metrics and Soluble Mediators Between Exposure Groups 

We employed two different approaches to determine whether there were significant differences in 

individual sputum cell differential metrics or the expression soluble mediators between exposure groups. 

First, we carried out a Kruskal-Wallis test followed by a Dunn’s test for non-parametric multiple 

comparisons on the raw data for each cell metric and mediator value. Next, because there were significant 

differences between demographic variables across exposure groups, we also ran analysis of covariance 

(ANCOVA) tests, which allowed us to control for the differences in age, sex, and race in our exposure 

groups. Because post-hoc tests used by ANCOVA assume normality, prior to running ANCOVA, the data 

were pseudo log2 transformed by adding one and then taking the log of the metric or mediator 

concentration. This approach ensured that all values in the dataset were positive and moved the data 

closer to a normal distribution. For variables with significant (p < 0.05) overall associations with exposure 
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group status using ANCOVA, Dunnett’s post-hoc test was performed on the ANCOVA output to evaluate 

significant differences between controls and exposure groups. We were also interested in whether there 

were significant differences in these cell and mediator values specifically between 3rd and 4th generation 

e-cigarette users. For this, we employed Tukey’s post hoc test, which compares means between each pair 

of groups, and examined the unadjusted p-values for the specific comparison between 3rd and 4th 

generation e-cigarette users.  

 

Variable Selection and Predictive Modeling to Enhance Resolution of Between Group Differences in 
Sputum Soluble Mediators 

To determine whether these overall differences in soluble mediators were significant enough to 

separate subjects in each exposure group from the others, we employed machine learning models. Prior to 

applying machine learning models, data were pre-processed by removing mediators that were undetected 

in more than 75% of subjects. For remaining mediators, zeroes (undetected mediators below the LLD) 

were imputed using the square root of the lowest detected concentration for each mediator. When 

designing the machine learning models for soluble mediators, we considered mediator data as primary 

predictor data. Next, we considered covariates identified as significantly different between exposure 

groups, including age, sex, and race, for inclusion as predictor variables. We also considered induced 

sputum cell metrics for inclusion as predictors; however, given that these data were only available for a 

subset of subjects in the cohort (Figure S4-1) and that the scale and resolution of these data differs from 

the soluble mediator data, we decided to build models only with mediator data alone or mediator data in 

combination with covariates. The evaluated outcome variables were exposure group classifications: non-

smoker/non-vaper, smoker, 3rd generation e-cig user, 4th generation e-cig user.  We also applied the 

variable selection and data reduction method of Best Subsets Regression (through the leaps package, v3.1 

(25)) to address our study questions and optimize performance of the machine learning models.  We 

tested many methods for data reduction (e.g., PCA) and variable selection (e.g., Spearman’s correlation, 

Lasso regression, Best Subsets regression), and we found that Best Subsets regression, which tested all 
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linear combinations of variables and prioritized which variables best explained separation between 

exposure group classifications (26), was the best choice to address our study’s questions and optimize 

performance of machine learning models. Predictive models were built using both quadratic discriminant 

analysis (QDA) and multinomial logistic regression (MLR), as these machine learning methods allow for 

prediction of multiple categorical classes. Using the caret package (v6.0-90) (27), data were randomly 

split into training and test datasets (5-fold cross-validation) before application of machine learning models 

to the datasets. Similar to previously published work (28, 29), model performance parameters were 

calculated based on the resulting confusion matrix, which summarizes classification of subjects based on 

correct and incorrect identification of subjects as belonging to or not belonging to a specific exposure 

group.  

 

Results 

Subject Demographics 

Demographic data are summarized in Table 4-1. The study cohort was comprised of 27% non-

smokers/non-vapers (NS/NV; n = 28), 20% smokers (n = 21), 26% 3rd generation e-cigarette users (n = 

27), and 26% 4th generation e-cigarette users (n = 27). Each exposure group contained both males and 

females, with a minimum of n = 8 per sex per group. 4th generation e-cigarette users were significantly 

younger on average than all other groups, while smokers were significantly older. These age differences 

were expected given the rise in popularity of 4th generation e-cigarettes and decline in popularity of 

cigarettes among youth (30, 31). The distribution of subjects’ races was significantly different across 

exposure groups (p = 0.0095), which mirrors previous studies showing that e-cigarette users are more 

likely to be white (3, 32).  BMI was not significantly different between exposure groups. As expected, 

smokers, 3rd generation e-cig users, and 4th generation e-cigarette users had significantly elevated levels of 

serum cotinine, a metabolite of nicotine, in comparison with NS/NV. There were no significant 

differences in serum cotinine between the three tobacco user groups, indicating similar nicotine exposure 

at the time of sample collection.  
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Table 4-1. Study demographics.NS/NV = non-smokers/non-vapers. For continuous variables, groups 
were compared using the Kruskal-Wallis test with Dunn’s test for non-parametric multiple comparisons. 

For categorical variables, groups were compared using Fisher’s Exact Test. *** at least p < 0.001 in 
comparison with all other groups. ^ p < 0.05 in comparison with smokers.  

 NS/NV 
(N=28) 

Smoker 
(N=21) 

3rd Gen 
(N=27) 

4th Gen 
(N=27) 

  P-value 

Sex       0.004 

Male 9.00 (32.1%) 8.00 (38.1%) 19.0 (70.4%) 19.0 (70.4%)    

Female 19.0 (67.9%) 13.0 (61.9%) 8.00 (29.6%) 8.00 (29.6%)    

Race       0.0095 

White 21.0 (75.0%) 10.0 (47.6%) 18.0 (66.7%) 23.0 (85.2%)    

Black 5.00 (17.9%) 10.0 (47.6%) 3.00 (11.1%) 1.00 (3.7%)    

Asian/Pacific Islander 1.00 (3.6%) 0 (0%) 4.00 (14.8%) 2.00 (7.4%)    

Mixed/Other 1.00 (3.6%) 1.00 (4.8%) 2.00 (7.4%) 1.00 (3.7%)    

Hispanic       0.418 

No 24.0 (85.7%) 20.0 (95.2%) 26.0 (96.3%) 23.0 (85.2%)    

Yes 4.00 (14.3%) 1.00 (4.8%) 1.00 (3.7%) 4.00 (14.8%)    

Age       <0.001 

Mean (SD) 26.5 (5.29) ^ 32.1 (7.42) 27.2 (7.42) ^ 21.6 (3.17) ***    

BMI       0.133 

Mean (SD) 26.2 (5.61) 27.3 (5.98) 27.2 (5.94) 24.0 (4.04)    

Serum Cotinine (ng/mL)       <0.001 

Mean (SD) 0 (0) *** 188 (87.5) 143 (82.2) 110 (90.5)    

N measured  21 20 25 12    
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Induced sputum differential cell counts 

Induced sputum differential cell counts are summarized in Table 4-2.  Because ANCOVA 

performed on sputum differential metrics indicated no significant associations with sex and race and only 

one significant association with age (bronchial cells per mg, p = 0.011), Kruskal-Wallis p-values with 

Dunn’s test for multiple comparisons between exposure groups are reported for induced sputum cell 

differential data in Table 4-2. We observed that smokers’ induced sputum contained a significantly higher 

percentage of neutrophils in comparison with all other exposure groups, which is consistent previous 

reports of smoking-associated increases in inflammatory cell recruitment to the airways (33-35). We 

found that 3rd generation e-cigarette users had significantly more macrophages per mg of sputum, fewer 

lymphocytes per mg of sputum and a lower percentage of lymphocytes than smokers. Interestingly, 4th 

generation e-cigarette users had significantly greater absolute cells per mg and percent bronchial 

epithelial cells than both non-smokers/non-vapers and 3rd generation e-cigarette users.  

Table 4-2. Sputum differential data.Data are presented as mean (standard error). Groups were 
compared using the Kruskal-Wallis test with Dunn’s test for non-parametric multiple comparisons. * at 

least p < 0.05 in comparison with all other groups, ^^ p < 0.01 in comparison with smokers, # p < 0.05 and 
## p < 0.01 in comparison with 3rd gen, & p < 0.05 in comparison with NS/NV.  

 NS/NV 
(N=20) 

Smoker 
(N=19) 

3rd Gen 
(N=25) 

4th Gen 
(N=25) 

Overall 
P-value 

Total Cells/mg 766 (190) 727 (225) 976 (135) 780 (151) 0.0956 

Macrophages/mg 469 (122) 204 (54.5) 544 (89.4) ^^ 505 (132) 0.0119 

% Macrophage 67.2 (6.04) 36.5 (5.59) * 59.1 (5.09) 57.7 (5.12) 0.0032 

PMN/mg 259 (97.0) 505 (174) 421 (99.8) 256 (40.2) 0.102 

% PMN 26.5 (5.07) 61.3 (5.39) * 39.8 (5.12) 38.5 (5.29) <0.001 

Eosinophils/mg 1.15 (0.678) 6.26 (4.01) 5.92 (3.70) 2.48 (1.16) 0.394 

% Eosinophil 0.230 (0.135) 0.775 (0.278) 0.456 (0.224) 0.704 (0.505) 0.564 

Lymphocytes/mg 2.75 (1.73) 1.95 (1.42) 0.04 (0.04) & 1.12 (0.401) 0.0175 

% Lymphocyte 0.233 (0.092) 0.135 (0.084) 0.008 (0.008) & 0.094 (0.028) # 0.0133 

Bronchial Cells/mg 2.30 (0.927) 10.5 (7.69) 4.40 (1.74) 15.5 (5.06) &, ## 0.0041 

% Bronchial Cells 0.870 (0.355) 1.33 (0.460) 0.562 (0.203) 3.03 (1.24) ## 0.0138 
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Soluble mediators that were significantly different between exposure groups 

ANCOVA performed on soluble mediator data indicated that there were mediators that had 

significant associations with exposure group, age, sex, and race (Table S4-2). 12 soluble mediators were 

significantly affected by exposure group: CRP, Flt1, IFN-g, IL-6, MCP-1, MIP-1b, MMP-2, sICAM-1, 

sVCAM-1, Tie-2, uteroglobin, and VEGF (Figure 4-2). Of these, a majority included significant 

differences between 4th generation and 3rd generation e-cigarette users, and a majority were significantly 

decreased in 4th generation e-cigarette users in comparison with the other exposure groups. Specifically, 

levels of CRP, IFN-𝛾, MCP-1, uteroglobin, and VEGF were significantly lower in 4th vs 3rd generation e-

cigarette users. And, although these comparisons did not reach statistical significance, we observed 

reduced expression of CRP, IFN-𝛾, MCP-1, and uteroglobin in 4th generation e-cigarette users relative to 

non-smokers/non-vapers. The concentrations of sICAM1 and sVCAM1 were significantly lower in 4th vs 

3rd generation e-cigarette users and non-smokers/non-vapers. Additionally, IL-6 concentration was 

significantly increased in smokers in comparison with non-smokers/non-vapers, as expected (33, 36). 

Average concentrations stratified by exposure group with Kruskal-Wallis p-values (crude/unadjusted) for 

all mediators are summarized in Table S4-3. Overall, these results indicate suppression of soluble 

mediator levels in the airways in 4th generation e-cigarette users, which suggests dysregulated immune 

homeostasis in the form of overall immune suppression in these subjects.  

  



 94 

 
Figure 4-2. Soluble mediators that were significantly different between exposure groups after 

adjusting for age, sex, and race differences between exposure groups.  
Results are presented as mean ± standard error of log2 transformed mediator concentrations. * p < 0.05, ** 
p < 0.01, *** p < 0.001 using ANCOVA followed by Dunnett’s (comparisons with NS/NV) and Tukey’s 
(3rd v. 4th Gen) post-hoc tests. NS/NV = non-smoker/non-vaper, SM = smoker. N = 28 non-smokers/non-

vapers, 21 smokers, 27 3rd generation e-cig users, and 27 4th generation e-cig users.  
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Variable selection and predictive modeling to evaluate the separation between all four exposure groups. 

Although we found individual significant differences in induced sputum cell differential metrics 

and soluble mediators between exposure groups, we also wanted to understand whether there were 

significant overall differences in soluble mediator signatures between groups using predictive modeling. 

Given our cohort size and number of subjects per group, we determined that the maximum number of 

predictors our models would accept was nine. We applied best subsets regression to our soluble mediator 

data to determine the nine variables that best separated the exposure groups. The mediators that best 

separated the exposure groups were: eotaxin-3, IL-6, IL-10, MIP-1a, MMP-9, MPO, TARC, Tie2, and 

VEGFD (Figure 4-3). These mediators are associated with a number of different cell functions, including 

immune cell recruitment, type 2 inflammation, angiogenesis, and tissue remodeling. These mediators 

were then used as predictors to build models using either multinomial logistic regression or quadratic 

discriminant analysis, with or without covariates additionally included as predictors. Most of these 

variables were different from the variables determined to be significantly different between exposure 

groups by ANCOVA and ANOVA, indicating novel trends that are not captured by traditional group 

comparison approaches. Notably, trends that we observed in these mediators were: decreased expression 

of TARC and VEGF and increased expression of IL-10, MMP9, and eotaxin-3 in 4th generation e-

cigarette users, increased expression of Tie2 and MPO in 3rd generation e-cigarette users, and increased 

expression of IL-6 in smokers (Figure 4-3). Unsupervised hierarchical clustering of mean mediator 

expression by exposure group showed that the expression profile of 4th generation e-cigarette users was 

the most different from the other three exposure groups (Figure 4-3).  
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Figure 4-3. Heatmap showing mean relative expression (row-scaled) of soluble mediators selected 

by best subsets regression by exposure group. 
 
 

Overall and by class performance metrics for each model are summarized in Figure 4-4 and Table 

S4-4. Performance for all models followed similar trends, with specificity and negative predictive value 

relatively high, and accuracy, sensitivity, and positive predictive value lower, indicating that the models 

could better predict which subjects were not members of a specific group than predict which subjects 

were members of a specific group. Notably, for most of the models, performance metrics for 4th 

generation e-cigarette users were higher than for other groups, indicating higher predictivity for 

classification of 4th generation e-cigarette users based on soluble mediator concentrations.  
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Figure 4-4. Performance parameters for predictive models built using soluble mediators as 

predictor variables. QDA = Quadratic Discriminant Analysis; MLR = multinomial logistic regression; 
MLR + Cov = multinomial logistic regression with covariates included as additional predictors. 

 
 

Discussion 

In this study, we collected induced sputum from healthy human non-smokers/non-vapers, 

smokers, 3rd generation e-cigarette users, and 4th generation e-cigarette users and employed a multifaceted 

approach to understand differences in biomarkers of respiratory immune homeostasis between groups. 

Using both variable-by-variable analyses and predictive modeling, we demonstrated significant 

differences in both induced sputum cell differentials and soluble mediator milieu between exposure 

groups. Most notably, we observed significantly decreased expression of soluble mediators in 4th 

generation e-cigarette users, which could indicate airway immune dysfunction in these subjects.  To our 

knowledge, this is the first study directly comparing respiratory immune biomarkers in e-cigarette users 

who use different device types.  

Importantly, we observed significantly different expression profiles of soluble mediators in 4th 

generation e-cigarette users in comparison with non-smokers/non-vapers and 3rd generation e-cigarette 
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users. After adjusting for sex, age, and race, we found that expression of sICAM-1 and sVCAM-1 was 

significantly lower in 4th generation e-cigarette users in comparison with other groups. Increased levels of 

both sICAM-1 and sVCAM-1 have been associated with acute lung injury (37, 38), but decreased levels 

of these molecules in response to a disease state or toxicant exposure, particularly in airway fluid, have 

not been documented. Previous studies have demonstrated that sICAM-1 can be protective during 

rhinovirus infection, as sICAM-1 can bind the virus, thereby reducing the amount of virus binding 

mICAM-1 and entering epithelial cells (39-41). Therefore, the significantly reduced expression of 

sICAM-1 we observed in 4th generation e-cigarette users may indicate increased susceptibility to 

rhinovirus infection in 4th generation e-cigarette users. 

We also observed significantly decreased expression of CRP, IFN-𝛾, MCP-1, and uteroglobin in 

4th generation e-cigarette users compared with 3rd generation e-cigarette users, although not all these 

comparisons reached statistical significance with non-smokers/non-vapers. Each of these mediators are 

known to play important roles in respiratory host defense. On mucosal surfaces, such as in the respiratory 

tract, CRP acts as an antimicrobial and binds to specific residues on cell walls of bacteria that are 

prevalent in the respiratory tract (42, 43). As it is constitutively expressed, it is hypothesized to play a role 

in mediating host-microbe interactions in the respiratory tract, though more work is needed to 

characterize CRP in the respiratory mucosa in association with disrupted respiratory immune 

homeostasis.  IFN-𝛾 and MCP-1 are pleiotropic molecules that mediate activity of both the innate and 

adaptive immune systems, including priming of macrophages to respond to pro-inflammatory stimuli, 

chemotaxis, and maintenance of immune homeostasis (44-47). Uteroglobin, also known as club cell 

secretory protein, is regarded as anti-inflammatory, and decreases in uteroglobin have been observed 

previously in smokers and subjects with COPD (48). Therefore, decreased expression of these mediators 

demonstrates suppressed host defense in association with 4th generation e-cigarette use.  

Here, we also wanted to determine whether soluble mediator concentrations measured in induced 

sputum could be used to predict whether subjects were non-smokers/non-vapers, smokers, 3rd generation 

e-cigarette users, or 4th generation e-cigarette. Before applying predictive models, we used best subsets 
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regression to reduce the number of input variables, which allowed us to identify soluble mediators that 

were important in separating exposure groups. Unsupervised hierarchical clustering of the mean 

expression of the nine mediators identified by best subsets regression showed that expression patterns of 

these mediators in 4th generation e-cigarette users separated the most from the other three exposure 

groups. These soluble mediators spanned a wide range of general functions, including cytokine and 

chemokine signaling, host defense, and vasculature maintenance. We then applied multiclass machine 

learning models (multinomial logistic regression and quadratic discriminant analysis) and found that 4th 

generation e-cigarette users showed the highest predictivity in a majority of our models, suggesting that 

the soluble mediator milieu associated with 4th generation e-cigarette use is unique from the milieu 

observed in the other three exposure groups. This approach allowed us to detect shifts in the composition 

of soluble mediator expression that were not evident when examining mediators one-by-one and to 

consider the complexity underlying soluble mediator signaling that maintains immune homeostasis, 

which could provide the basis for more targeted studies assessing the respiratory effects of e-cigarette use. 

Future studies are needed to directly assess the relationship between e-cigarette use and the cellular 

processes highlighted in this analysis, particularly those beyond standard inflammatory pathways 

commonly interrogated in studies of e-cigarette effects.  

Furthermore, we observed that there were significant differences in induced sputum cell 

differentials between exposure groups, indicative of disrupted immune homeostasis from the baseline 

sputum cell composition observed in non-smokers/non-vapers. We found that 4th generation e-cigarette 

users had a significantly higher percentage of bronchial epithelial cells in their induced sputum than non-

smokers/non-vapers, which could indicate airway injury; however, few studies have established normal 

ranges for bronchial epithelial cells in induced sputum, making it difficult to assess if the magnitude of 

effect observed is biologically significant. This finding is also particularly interesting in the absence of 

significant increases in markers of airway injury in 4th generation e-cigarette users.  

We hypothesize that the differences we observed between 3rd and 4th generation e-cigarette users 

could be driven by the following mechanisms. First, 4th generation e-cigarettes contain nicotine salts, 
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which are formulated using organic acids such as benzoic acid, lactic acid, and levulinic acid (15). The 

effects of inhaling these organic acids are currently unknown and therefore could be driving some of the 

effects we observed. Second, 4th generation e-cigarettes contain a higher concentration of nicotine than 3rd 

generation e-cigarettes (11), and nicotine is known to be immunosuppressive (49, 50) . Although we 

observed similar serum cotinine levels across tobacco use groups, it is possible that serum cotinine is not 

an accurate reflection of nicotine concentrations in the respiratory mucosal microenvironment and that the 

high level of nicotine present in the aerosol of 4th generation e-cigarette users exerts immunosuppressive 

effects. Third, 4th generation e-cigarettes aerosolize the e-liquid at lower temperatures than 3rd generation 

e-cigarettes, thereby producing fewer free radicals and carbonyls (13, 14). This phenomenon likely 

explains the absence of overt acute inflammation observed in 4th generation e-cigarette users and our 

observation that increased expression of inflammatory biomarkers 3rd generation e-cigarette users was 

more frequent than in 4th generation e-cigarette users. Lastly, 4th generation e-cigarette users are 

significantly younger, less likely to be former smokers, and more likely to be dual users with marijuana. 

We did not assess inhalation of cannabinoids, which may be particularly relevant given that dual use of 

nicotine-containing e-cigarettes and marijuana (either smoked or vaped) is prevalent in young adult users 

(51-54) and that cannabinoids can modulate the immune system (55). These factors may also contribute to 

the different pattern of soluble mediator expression we observed in 4th versus 3rd generation e-cigarette 

users.  

Although our study provides novel insight into differences in airway biomarkers of immune 

homeostasis between exposure groups, there are limitations to our study that are important to consider and 

that warrant exploration in future studies. Beyond categorizing subjects as current e-cigarette users of a 

specific device type, we did not collect additional information about e-cigarette use parameters, such as 

flavor, number of puffs per day, previous smoking history, or length of e-cigarette use. These variations in 

e-cigarette use patterns may have contributed to the high variability we observed within each of our e-

cigarette groups. Future studies with larger cohort sizes and more detailed e-cigarette use questionnaires 

will be required to control for this variation and to more fully elucidate factors driving respiratory effects 
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observed in e-cigarette users. Furthermore, as a cross-sectional observational study, our results are 

primarily associative and hypothesis-generating. Prospective studies that collect and analyze samples 

from e-cigarette users over time will be required to more fully understand respiratory effects associated 

with e-cigarette use. And, because of the short length of time e-cigarettes have been on the market, and 

therefore the relatively short vaping histories of e-cigarette users, it is not yet possible to evaluate the 

long-term effects of vaping.    

Taken together, our data demonstrate that there are significant differences in biomarkers of 

respiratory immune homeostasis in 4th generation e-cigarette users in comparison with non-smokers/non-

vapers and with 3rd generation e-cigarette users (Figure 4-5). Our findings highlight the importance of 

considering device type in studies of e-cigarette inhalation toxicity, the utility of leveraging multiple 

analysis approaches to understand differences between exposure groups, and the need for continued 

investigation of the mechanisms underlying the effects of popular e-cigarette devices, including those that 

have recently been authorized for use by the FDA.   

 
Figure 4-5. Summary of findings. 
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CHAPTER 5: EXPANDED FUNCTIONAL CHARACTERIZATION OF M0, M1, AND M2 
HUMAN MONOCYTE-DERIVED MACROPHAGES SUPPORTS THEIR UTILITY AS A 

MODEL FOR RESPIRATORY MACROPHAGES 

Introduction 

Macrophages play vital roles in maintaining immune homeostasis in the large and distal airways.  

Key macrophage functions include phagocytosis of microbial pathogens, release of cell signaling 

molecules, and participation in tissue remodeling (1-3). It is well-established that macrophages exhibit 

functional and cell surface phenotype plasticity that can be altered depending on their location within the 

respiratory tract and in response to stimuli present in their microenvironment (3-5). As a result, it can be 

challenging to accurately recapitulate in vitro the macrophage characteristics observed in vivo including 

the distinct macrophage subpopulations found on the surfaces of the central airways and in the distal 

alveolar region.   

Many factors limit the routine experimental use of airway macrophages collected from human 

volunteers. Whether it is by induced sputum for central airways cells, or from bronchoalveolar lavage 

(BAL) for distal airway cells, both sampling techniques require specific expertise, are time consuming, 

involve a degree of subject risk, and, for BAL in particular, is costly (6-8). Accessing primary human 

airway macrophages for research purposes has become even more challenging, and at many institutions, 

impossible, during the COVID-19 pandemic due to the risk of aerosol transmission during sample 

collection (9-11). Therefore, in vitro models are necessary for macrophage experimentation and have 

been used extensively to model in vivo macrophage function and phenotype. Due to recent studies that 

have characterized the bioenergetic profile of sputum and BAL macrophages (12), more is known about 

the phenotype of these cells in vivo. Consequently, it is crucial to determine if these routinely used in vitro 

models of macrophages accurately reflect in vivo macrophage phenotypes, particularly from a 

bioenergetic cell metabolism perspective.   
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  One such model uses human monocyte-derived macrophages (hMDMs), which are isolated from 

the peripheral blood of human subjects and then differentiated into various macrophage subsets. This 

model is accessible, biologically relevant, and relatively easy to use. Across studies, there is considerable 

variability in the way that hMDMs are differentiated and polarized into subsets, including length of 

differentiation, differentiation stimulus, and polarization stimuli. Most commonly, hMDMs are 

differentiated over about one week with M-CSF or GM-CSF (M0) and then polarized into M1 and/or M2 

macrophages using stimuli such as IFN-g and lipopolysaccharide (LPS) (M1) or IL-4 and IL-13 (M2), and 

others, depending on the desired phenotype (4, 13-15).  

Most studies utilizing hMDMs as models rely on a narrow set of parameters to confirm successful 

differentiation and polarization. Previous studies have characterized the phenotypes of hMDMs 

differentiated into M1 and M2 macrophages, with a significant focus on transcriptional changes and to a 

lesser extent, on cell surface receptor expression and cell functions such as phagocytosis. (4, 14, 15). 

There is also emerging appreciation for the important role that cellular metabolism (bioenergetics) plays 

in mediating macrophage activation and polarization that drive subsequent innate immune responses (16, 

17). For example, when macrophages encounter pro-inflammatory stimuli, signal transduction cascades 

are initiated that shift cellular metabolism from mitochondrial-based oxidative phosphorylation pathways 

to glycolysis, thereby allowing the cell to more rapidly respond to increased energy demands during 

active infection or  inflammation (18-20). It has also been recently reported that the baseline bioenergetic 

profiles of airway macrophages recovered from healthy volunteers differs depending on their location 

within the respiratory tract (12). Our group observed that sputum macrophages from the surfaces of the 

central airways reflect an M1 glycolysis-dependent phenotype, whereas BAL macrophages recovered 

from the distal airways reflect an M2 oxidative phosphorylation-dependent phenotype.  Animal studies 

using MDMs have also demonstrated bioenergetic differences between subsets of polarized macrophages 

(21-23), but no studies to date have established complete bioenergetic profiles of polarized hMDMs to 

evaluate their congruence with human macrophages in vivo. Thus, further understanding of polarized 

hMDM phenotype and function is critically needed. In this study, our objective was to generate human 
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monocyte-derived macrophages polarized into M1- and M2-like states and to thoroughly integrate their 

phenotype profiles by measuring cell surface marker and gene expression, cytokine secretion, phagocytic 

capacity, and cellular bioenergetics.  

 

Methods 

Subjects 

Healthy non-smoking adult human subjects participated in a venous blood draw. Study exclusion 

criteria included current nicotine use, acute illness, allergy symptoms, asthma, and/or pregnant and 

nursing women. The sex of subjects in each experiment in reported in the figure legend. Informed consent 

was obtained from all subjects, and all studies were approved by the University of North Carolina at 

Chapel Hill School of Medicine Institutional Review Board (IRB #11-1363). 

 

Monocyte isolation 

Venous blood was collected in BD Vacutainer tubes with EDTA. Peripheral blood mononuclear 

cells were isolated using Ficoll-Paque Plus (Cytivia) density centrifugation and washed 3 times with 

DPBS. CD14+ monocytes were isolated using magnetic bead negative selection per the manufacturer’s 

protocol (EasySep Human Monocyte Isolation Kit, Stemcell Technologies). After negative selection, the 

purity of the resulting cell population was verified using flow cytometry, with an average of ~90% 

CD14+ monocytes (data not shown).  

 

Monocyte differentiation 

Immediately following isolation, CD14+ monocytes were seeded at a density of 187,500 

cells/cm2 in various sizes of tissue-culture treated multi-well plates or Transwell inserts appropriate for 

assays performed. Monocytes base media was RPMI-1640 media (Gibco) with 10% FBS (Millipore 

Sigma) and 1% penicillin/streptomycin (100 U/mL, Gibco). L-glutamine (Gibco) was added to the base 

media immediately before cell seeding and/or feeding (2 mM final concentration). Monocytes were 
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differentiated into naïve (M0) macrophages with base media + 40 ng/mL M-CSF. Four days after the 

isolation, the media was replaced. Six days after the isolation, differentiation media was removed, and 

cells were polarized into M1 hMDMs with 20 ng/mL IFN-g + 20 ng/mL LPS, M2 hMDMs with 20 

ng/mL IL-4, or M0 hMDMs with no stimulants added to the base media. Samples were collected and 

phenotype assays were performed approximately 24 hours after polarization.  

 

Gene expression 

24 hours after polarization, hMDMs were washed with DBPS and lysed in Ambion lysis buffer 

with 1% b-mercaptoethanol. Lysate was stored at -80°C until samples were collected from all subjects. 

Total RNA was isolated using the Ambion Pure Link RNA Mini Kit (Life Technologies). RNA was 

reverse transcribed into cDNA as described previously (24). Real-time quantitative PCR was performed 

with cDNA using Applied Biosystems TaqMan Universal Master Mix II with UNG (Thermo Fisher 

Scientific), TaqMan assays, and the QuantStudio3 Real-Time PCR System (Thermo Fisher Scientific). 

TaqMan assays were as follows: Hs00968979_m1 (ARG1), Hs00267207_m1 (MRC1), Hs01075529_m1 

(NOS2), Hs00153133_m1 (PTGS2). Gene expression differences were calculated using the 2-DDCt method 

with ACTB as the endogenous control and M0-like hMDMs as the reference phenotype.  

 

Cytokine secretion 

24 hours after polarization, media was collected and centrifuged at 1000 x g for 10 minutes to 

remove any cellular debris. Supernatant was transferred to a new tube and stored at -80°C until all 

samples were collected. Protein concentrations were measured using commercially available single- and 

multi-plex ELISAs (IL-6 and IL-8: BD Bioscience; TNF-a, CCL17, CCL18, MMP-2, MMP-9: R&D 

Systems; V-PLEX Human Cytokine 30-plex: Mesoscale Discovery). For single-plex ELISAs, absorbance 

was quantified using a CLARIOstar plate reader (BMG Labtech) per assay instructions. The V-PLEX 

Human Cytokine 30-plex was read on the MESO QuickPlex SQ 120 (Mesoscale Discovery).  
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Phagocytosis 

24 hours after polarization, hMDM phagocytosis of S. aureus and Zymosan A pHrodo Red 

Bioparticles (Thermo Fisher Scientific) was measured as described previously (25), with a Bioparticle 

incubation time of 2 hours. Fluorescence in each well was quantified using a CLARIOstar plate reader 

(BMG Labtech). 

 

Cellular bioenergetics 

24 hours following polarization, hMDMs were assayed for bioenergetic parameters using the 

Seahorse Extracellular Flux Modified Cell Mito Stress Test (Agilent) as described previously (12). 

Briefly, polarization media was replaced with Seahorse XF RPMI, pH 7.4, supplemented with 2 mM L-

glutamine. Then, hMDMs were incubated in a non-CO2 incubator for 30-40 minutes before the start of the 

assay. Injection order and final concentrations of treatments were as follows: Port A – 10 mM glucose; 

Port B – 1 µM oligomycin; Port C – 1.25 µM FCCP; Port D – 0.5 µM rotenone and 0.5 µM antimycin A. 

Mix-wait-measure times were 3 min – 2 min – 3 min, per manufacturer’s instructions. Mitochondrial and 

glycolytic parameters were calculated as described previously and as recommended by the manufacturer 

(12). Immediately following the assay, nuclei were stained using Hoechst 33342 (Thermo Fisher 

Scientific), and fluorescence in each well was quantified using a CLARIOstar plate reader (BMG 

Labtech). Data were normalized by dividing bioenergetic parameters by mean Hoechst 33342 

fluorescence intensity in each well.  

 

Flow cytometry 

24 hours after polarization, hMDMs were washed three times with DPBS and dissociated via 

incubation (37°C, 5% CO2) with Cellstripper (Corning) for 30 minutes, followed by thorough washing 

over the well with a micropipette to aid in cell detachment. Cells were pelleted (400 x g for 5 minutes) 

and counted with a hemocytometer. Prior to staining, 2-5x105 hMDMs were incubated with 
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human TruStain FcX (BioLegend) for 5 min to block Fc receptors. Live/dead cell discrimination was 

achieved using Zombie Aqua (BioLegend).  Direct fluorochrome-conjugated antibodies against CD64 

(clone 10.1; PerCP-Cy5.5), CD206 (15-2; FITC), HLA-DR (L243; PE-Cy7), CD86 (IT2.2; PE), CD14 

(HCD14; APC-Cy7) and CD163 (GHI/61; AF-647) were used for detection of hMDM surface 

markers.  Following staining cells were washed and then fixed with 4% PFA in PBS.  Flow cytometry 

data were acquired with a four-laser LSRII (BD Biosciences) and analyzed using FlowJo software. Only 

single cells were analyzed. All antibodies were purchased from BioLegend.  

 

Statistical analyses 

All statistical analyses were performed in GraphPad Prism 9. For each set of data, normality was 

assessed using the D’Agostino & Pearson test. Normally distributed data were analyzed using matched 

one-way ANOVA with Tukey’s multiple comparisons test. Non-normally distributed data were analyzed 

using the Friedman test with Dunn’s multiple comparisons test (if no values were missing) or the 

Friedman test with Holm-Sidak multiple comparisons test (which allows for missing values). When 

possible, we investigated sex differences in hMDM function. In the cohort of samples used for single-plex 

ELISAs, we tested for sex differences in the expression of proteins in each treatment group using a two-

way ANOVA with sex and polarization as factors. Except for MMP-9 (p = 0.0136 overall; p = 0.0639 

between males and females in the M1 group, with cells from females having higher expression than cells 

from males), sex was not a significant source of variation in our data. We also tested for but did not detect 

sex differences in phagocytosis or cellular bioenergetics. Multi-plex ELISA data are displayed using a 

row scaled heatmap, which was generated in R version 4.1.1 (26) using the pheatmap (27) and viridis (28) 

packages. Raw concentrations and additional statistical comparisons for multi-plex ELISA data are 

available in Table S5-1. To reduce dimensionality in our data and further explore differences in soluble 

mediator expression between subsets of polarized hMDMs, we performed Principal Component Analysis 

(PCA) using the R packages ggfortify (29, 30) and factoextra (31). Input data and R code used for these 

analyses are publicly available at https://github.com/ehickman0817/hMDM-phenotypes.  
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Results 

M0-, M1-, and M2-like hMDMs display significantly different cell surface markers.  

We measured the expression of cell surface markers that have been assessed previously in the 

context of macrophage phenotyping. Using flow cytometry, we found that M1 hMDMs had significantly 

higher expression of CD64 than M0 and M2 hMDMs and CD86 than M0 hMDMs (Figures 5-1A and 5-

1B). There was no significant difference in HLA-DR expression between the polarization states (Figure 

5-1C). As expected, M2 hMDMs expressed significantly more CD206 than M0 hMDMs (Figure 5-1D), 

and M1 hMDMs expressed less CD163 than M0 and M2 hMDMs, though this difference did not reach 

statistical significance (Figure 5-1E). Overall, our results are similar to previously published studies 

assessing cell surface marker expression following M1 and M2 hMDM polarization (13, 21, 32).  

 
Figure 5-1. Polarization of hMDMs induces changes in cell surface markers.M1 hMDMs express 

higher levels of CD64 (A) and CD86 (B) than M0 and M2 hMDMs. There were no significant differences 
in HLA-DR (C) across polarization states. CD206 expression (D) is significantly increased in M2 

hMDMs, and CD163 expression (E) is decreased in M1 hMDMs in comparison to M0- and M2 hMDMs.  
n = 3 (all males). Data are presented as mean ± SEM. * p < 0.05 by repeated measures one-way ANOVA 

with Tukey’s test for multiple comparisons. 
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Polarization of macrophages to M0-, M1-, and M2-like phenotypes significantly changes gene expression. 

 We measured the expression of four genes that have previously been shown to be modulated in 

response to M1 and M2 polarization (Figure 5-2) and found that M1 hMDMs had significantly higher 

expression of NOS2 in comparison with M0 and M2 hMDMs and significantly higher PTGS2 expression 

in comparison with M2 hMDMs (Figures 5-2A and 5-2B). We did not detect any significant differences 

in ARG1 between polarization conditions. Expression of MRC1, the gene that encodes CD206, was 

significantly increased in M2 hMDMs and significantly decreased in M1 hMDMs (Figure 5-2D). This 

increase in MRC1 gene expression in M2 hMDMs mirrors the increase in CD206 expression measured 

with flow cytometry. However, MRC1 expression in M0 and M1 like hMDMs did not follow the same 

pattern observed in CD206 surface expression. Overall, these findings agree with previous studies that 

evaluated gene expression changes in M1 and M2 polarized macrophages in vitro (13, 21).  

 
Figure 5-2. hMDM polarization-induced changes in gene expression.(A) NOS2, (B) PTGS2, (C) 
ARG1, and (D) MRC1. N = 5 (3 males, 2 females for M0 and M1; RNA extraction failed on one M2 

sample, resulting in 3 males and 1 female for the M2 group). Data are presented as mean ± SEM. * p < 
0.05 by Friedman test with Holm-Sidak multiple comparisons test (which allows for missing values). 
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also interested in whether these cells secreted matrix metalloproteinases, such as MMP2 and MMP9, due 

to their important roles in tissue remodeling in the lungs. All hMDMs secreted MMP-9, with M1 hMDMs 

secreting significantly less than M0 hMDMs (Figure 5-3F). MMP-2 was not secreted by the hMDMs. We 

also found that secretion patterns for these mediators across polarization states were similar when 

hMDMs were grown on Transwell inserts (Figure 5-4), indicating that these cells maintain their 

phenotype and can be used for brief exposures at air-liquid interface.  

 

 
Figure 5-3. hMDM polarization-induced changes in cytokine secretion.M1 hMDMs secrete 

significantly higher levels of (A) IL-6, (B) IL-8, and (C) TNF-a than M0 or M2 hMDMs, while M2 
hMDMs secrete significantly higher levels of (D) CCL17 than M0 or M1 hMDMs and (E) CCL18 than 
M0 hMDMs. All hMDMs secreted (F) MMP-9, with M1 hMDMs secreting significantly less than M0 

hMDMs. n =6 (3 males, 3 females). Data are presented as mean ± SEM. Normally distributed data were 
analyzed using matched one-way ANOVA with Tukey’s multiple comparisons test (B, C, F). Non-

normally distributed data were analyzed using the Friedman test with Dunn’s multiple comparisons test 
(A, D, E).  * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 5-4. hMDM polarization-induced changes in cytokine secretion for hMDMs grown on 

Transwell supports.M1 hMDMs secrete significantly higher levels of (A) IL-6, (B) IL-8, and (C) TNF-a 
than M0 or M2 hMDMs, while M2 hMDMs secrete significantly higher levels of (D) CCL17 and (E) 
CCL18 than M0 hMDMs. All hMDMs secreted (F) MMP-9, with no significant differences between 

groups. n = 6 (4 males, 2 females). Data are presented as mean ± SEM. Normally distributed data were 
analyzed using matched one-way ANOVA with Tukey’s multiple comparisons test (A, B, C, F). Non-

normally distributed data were analyzed using the Friedman test with Dunn’s multiple comparisons test 
(D, E).  * p < 0.05, ** p < 0.01, *** p < 0.001 
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mediators similar to those that were significantly different between groups using variable-by-variable 

analysis (Figure 5-5C). These data support the previously published paradigm that M1 hMDMs are more 

pro-secretory and provide additional data to establish baseline secretory states of polarized hMDMs (13, 

32).  

 
Figure 5-5. Expanded characterization of cytokines, chemokines, and soluble mediators expressed 

by hMDMs.(A) Row-scaled heatmap showing protein expression. * p < 0.05, ** p < 0.01, **** p < 
0.0001 in comparison with M0 hMDMs by either matched one-way ANOVA with Tukey’s multiple 
comparisons test or Friedman test with Dunn’s multiple comparisons test. Raw concentrations and 

significant comparisons between M1 and M2 hMDMs are reported in Table S1. (B) PCA plot showing 
clustering of cytokine secretion by polarized hMDMs. (C) Percentage contributions of each variable to 

the variation observed in the first two PCA dimensions. For all plots, n = 4 (1 male, 3 females). 
 
 

All hMDM polarization subsets are phagocytic. 

 We wanted to confirm that the polarized hMDMs we generated were phagocytic and determine if 

there were baseline differences in phagocytosis between polarization states. To determine phagocytic 

capacity of the polarized hMDMs we used pHrodo Red S. aureus and zymosan A BioParticles to test 

bacterial and fungal phagocytosis, respectively. We found that all polarization states had a similar 

phagocytic capacity for S. aureus (bacterial) BioParticles (Figure 5-6A). M1 hMDMs had significantly 

lower phagocytic capacity for zymosan A (fungal) BioParticles than M0- and M2 hMDMs (Figure 5-6B). 
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These data agree with previous studies demonstrating increased phagocytosis of zymosan and 

acidification of the phagolysosome in M2 macrophages (33, 34).  

 
Figure 5-6. Polarized hMDMs are phagocytic, and M1 hMDMs are significantly less phagocytic of 

Zymosan A pHrodo Red BioParticles than M0 or M2 hMDMs.hMDMs were assayed for 
phagocytosis of (A) S. aureus and (B) Zymosan A pHrodo Red BioParticles over two hours. n = 6 (3 

males, 3 females) for Figure 5A and n = 5 (2 males, 3 females) for Figure 5B.  Data are presented as mean 
± SEM. 

 
 

M0, M1, and M2 hMDMs have unique bioenergetic profiles that are similar to airway macrophages.  

  To determine bioenergetic differences between our polarized macrophages subsets, we 

performed Seahorse Extracellular Flux assays, which simultaneously measure the oxygen consumption 

rate (OCAR) and extracellular acidification rate (ECAR) in cell media following exposure of cells to 

mitochondrial and glycolytic inhibitors (Figures 5-7A and 5-7B). We found that M1 hMDMs had 

significantly higher proton leak and lower mitochondrial respiration, spare respiratory capacity, and 

coupling efficiency than M0 and M2 hMDMs (Figures 5-7C-F), indicating less efficient generation of 

energy/ATP via oxidative phosphorylation (OXPHOS) in the mitochondria. We also found that M1 

hMDMs were significantly more glycolytic than M0 and M2 hMDMs (Figure 5-7G). Interestingly, both 

M1 and M2 hMDMs had significantly higher glycolytic capacity than M0 hMDMs (Figure 5-7H), and 

M2 hMDMs had significantly higher glycolytic reserve than M0 and M1 hMDMs. Overall, these results 

support the notion that M1 hMDMs rely more on glycolysis and exist in a more high-energy, activated 

state at baseline, while M2 hMDMs rely more on oxidative phosphorylation for ATP generation and are 

better able to respond to increased demand for energy via OXPHOS and glycolysis.  
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Figure 5-7. hMDM polarization induces bioenergetic changes.hMDM OCR (A) and ECAR (B) were 

measured as proxies for mitochondrial and glycolytic function using Seahorse Extracellular Flux. M1 
MDMs had significantly higher proton leak (C) and significantly lower maximum respiration (D), spare 

respiratory capacity (E), and coupling efficiency (F) than M0 and M2 hMDMs. M1 MDMs were 
significantly more glycolytic (G) than other polarization states, and both M1 and M2 hMDMs had 

significantly higher glycolytic capacity (H) than M0 like hMDMs. M2 hMDMs had significantly more 
glycolytic reserve than M0 or M1 hMDMs (I). n = 7 (3 males, 4 females). Data are presented as mean ± 

SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 by matched one-way ANOVA with Tukey’s multiple 
comparisons test (C-H) or Friedman test with Dunn’s multiple comparisons test (I). 
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Figure 5-8. Summary of M1 and M2 hMDM phenotypes.Created with biorender.com. 

 
 

Discussion 

In this study, we thoroughly characterized cellular phenotypes and functions of human monocyte-

derived macrophages polarized into M1- and M2-like states (Figure 5-8). We observed significant 

changes in cell surface marker expression, gene expression, and cytokine secretion that were consistent 

with previous studies of hMDMs (13, 21, 32). To evaluate the potential for these cells to retain their 

phenotype when grown on Transwell inserts, allowing for short exposures at air-liquid interface, we also 

evaluated cytokine secretion of hMDMs differentiated and polarized on Transwells and found that 

cytokine secretion profiles could be recapitulated in the cells grown on Transwells. We further expanded 

characterization of polarized hMDMs from previous studies by demonstrating additional significant 

differences in soluble mediator expression and in cellular bioenergetics between the different polarization 

states. Importantly, the bioenergetic profiles we observed in vitro following polarization were similar to 

bioenergetic profiles previously observed in vivo from BAL-derived alveolar and sputum-derived central 

airway macrophages (12).  

Because cellular bioenergetics is thought to be a central regulator of macrophage function and 

downstream engagement of innate and acquired immune cells, and because most previous bioenergetic 

work has been performed using mouse bone-marrow-derived macrophages (mBMDMs) (21-23, 32), we 
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investigated the important question of how polarization shifts hMDM bioenergetic profiles using 

Seahorse Extracellular Flux assays. We found that our polarization protocol significantly shifted cellular 

bioenergetics of hMDMs, with M1-like hMDMs significantly more glycolytic than M0- and M2-like 

hMDMs. We also found that M1-like hMDMs were less able to respond to increased energy demand via 

mitochondrial respiration or glycolysis. These findings agree in part with data presented in studies using 

mBMDMs in that the M1-like hMDMs were more glycolytic than M0 or M2 (21, 23). However, unlike 

mBMDMs, our M1-like hMDMs were much more responsive to mitochondrial inhibitors  (21-23, 35), 

and our M0- and M2-like hMDMs exhibited more significantly reduced glycolytic parameters than 

previously reported in mBMDMs (21). These lines of evidence support the previously proposed concept 

that mechanisms regulating macrophage polarization and bioenergetics are divergent between species and 

that, while of immense utility, polarized hMDMs display unique features not observed in mBMDMs (32).  

Importantly, the bioenergetic profiles we observed in our polarized hMDMs were similar to the 

bioenergetic profiles of sputum and BAL-derived  macrophages (12). M1-like hMDMs shared a similar 

bioenergetic profile to induced sputum macrophages, with significantly lower maximal respiration and 

higher glycolytic capacity than M2-like hMDMs, which had a bioenergetic profile more similar to BAL 

macrophages (12). These divergent bioenergetic profiles in vivo suggest distinct functions of macrophage 

subsets in different anatomic locations in the respiratory tract, with M1-like, highly glycolytic 

macrophages on the surfaces of the large airways ready to quickly respond to the constant presence of 

inhaled pathogens, while M2-like macrophages remain more bioenergetically quiescent in the pathogen-

protected distal regions of the airways mediating homeostasis.   

In addition to expanding the phenotype characterization of hMDMs with bioenergetic analysis, 

we included measurement of soluble mediators to a larger panel than is typically used to assess 

macrophage differentiation and polarization. We found clear differences in mediator secretion in 

comparison with M0 hMDMs and revealed specific clustering of hMDM phenotypes via principal 

component analysis performed on mediator data (Figure 5-5). Our principal component analysis showed 

several novel findings that included expression levels of MDC, MCP4, and TARC/CCL17 contributed to 
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distinguishing the M2 phenotype, expression levels of IL-7, MIP-1⍺, and IL-5 together contributed to 

distinguishing the M0 phenotype, and expression levels of many pro-inflammatory mediators contributed 

to distinguishing the M1 phenotype. Understanding clustering of these mediators is a useful tool that 

could be applied to understanding shifts in macrophage populations associated with disease states or 

toxicant exposure.   

For other endpoints, comparisons between our hMDMs raised in culture and lung macrophages 

recovered from human volunteers are difficult given that there are few studies that have directly 

compared these specific endpoints in different subpopulations of human respiratory macrophages. Studies 

evaluating surface marker expression and gene expression of different human lung macrophage 

populations have revealed a high degree of complexity in expression patterns and have demonstrated that 

even within regions of the airways, distinct subpopulations exist (5, 36, 37). For example, although the 

mannose receptor CD206, which mediates endocytosis and phagocytosis of mannoglycoprotein-

expressing microorganisms and debris, has generally been considered a marker of M2 macrophages, 

CD206 is expressed on the surface of both alveolar and tissue resident macrophages and is co-expressed 

with markers associated with M1 polarization, such as HLA-DR (5, 38, 39).  

Overall, our findings represent a thorough characterization of differentiated and polarized 

hMDMs and suggest that polarized hMDMs may provide an acceptable in vitro model to study and 

extrapolate findings to human respiratory macrophages. Importantly, we confirmed cytokine secretion 

profiles in M0, M1, and M2 hMDMs differentiated on Transwell membranes to support the use of this 

macrophage model for inhalational exposure studies. However, it is critical to acknowledge that these in 

vitro models do not fully recapitulate the phenotypic diversity and plasticity of macrophages in vivo. 

Recent studies have demonstrated the generation of alveolar-macrophage-like cells in mice using novel 

differentiation techniques (40, 41), and there is a pressing need to build on the observations presented 

here and to develop more robust models of human lung macrophages to investigate how disease states and 

inhalational perturbations (e.g. microbes, toxicant exposures) alter human macrophage function.   
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CHAPTER 6: ADDITIONAL EXPERIMENTS 

Understanding the Relationship Between Neutrophil Function and Demographic Variables 

Introduction 

Neutrophils are the most abundant white blood cell in circulation, and the largest pool of systemic 

neutrophils resides in the vasculature surrounding the lungs (1). Neutrophils, along with airway 

macrophages, are one of the body’s first lines defense against inhaled pathogens (1-3). Additionally, 

neutrophilic inflammation and neutrophil dysfunction are associated with chronic airway diseases, such as 

cystic fibrosis, COPD, and asthma (4). These factors demonstrate the importance of understanding 

neutrophil biology in respiratory toxicology and disease, but neutrophils remain much less studied in vitro 

relative to other cells of innate respiratory host defense such as macrophages and airway epithelial cells. 

This is largely because primary neutrophils are difficult to maintain in culture, and few functionally and 

phenotypically accurate neutrophil cell lines exist (5). Primary neutrophils isolated from the peripheral 

blood of human subjects are considered the most translationally relevant way to study neutrophil function 

in vitro, but using cells from human subjects introduces the potential for functional variability between 

donors. Although some studies in mice have demonstrated sex- and age- dependent differences in 

neutrophil function (6, 7), and one study has demonstrated sex differences in baseline neutrophil 

transcriptional profiles, type 1 interferon responses, and bioenergetics (8), no studies have addressed 

demographic associations with phagocytosis and oxidative burst in human neutrophils. The objective of 

this study was to determine whether neutrophil oxidative burst and phagocytosis were significantly 

associated with donor age, BMI, or sex to inform clinical study design and provide the basis for future 

studies elucidating the role of demographic variables in neutrophil function.  
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Methods 

Subjects 

Venous blood was obtained from subjects (males and females between 19-62 years of age) for the 

isolation of peripheral blood neutrophils (Table 6-1). Subjects were self-reported healthy volunteers with 

no acute illness or allergy symptoms. Other exclusion criteria were current nicotine use, asthma, and/or 

pregnant and nursing women. Informed consent was obtained from all subjects and all studies were 

approved by the University of North Carolina at Chapel Hill School of Medicine Institutional Review 

Board (IRB #11-1363 and #97-0845). All studies were performed in accordance with The Code of Ethics 

of the World Medical Association.  

 

Neutrophil Isolation 

Venous blood was collected in EDTA-coated Vacutainer tubes (BD, Thermo Fisher Scientific, 

Waltham, MA). Neutrophils were isolated by density centrifugation of venous blood through Histopaque 

1119 (Sigma Aldrich) and a discontinuous Percoll (GE Healthcare Life Sciences, Marlborough, MA) 

gradient as described previously (9). Isolated neutrophils were resuspended in either Seahorse media or 

neutrophil media. Cell count and viability were determined using a hemocytometer and trypan blue 

(Sigma Aldrich) exclusion.  

 

Seahorse Extracellular Flux Analysis 

We developed and optimized a Seahorse extracellular flux assay based on existing literature and 

manufacturer guidelines (10, 11). To our knowledge, this is the first publication reporting neutrophil 

oxidative burst using this assay and analysis paradigm. 24-well XF assay plates (Agilent Technologies, 

Santa Clara, CA) were coated with 0.672 µg Cell-Tak (Corning, Thermo Fisher Scientific, Waltham, MA) 

per well, according to manufacturer instructions, and stored at 4°C for no more than one week before 

assay. Coated plates were allowed to warm to room temperature (approximately 21°C) before cell plating. 

1.5 x 105 isolated neutrophils were plated in 100 µL of Seahorse media. The plate was centrifuged at 300 
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x g for 1 minute, rotated 180 degrees, and centrifugation was repeated for 1 minute. Cells were allowed to 

rest in a non-CO2 incubator at 37°C for approximately 20 minutes, followed by the addition of 400 µL 

Seahorse media and an additional 20 minutes of incubation before the start of the assay. Neutrophil 

oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured following 

injection of PKC agonist phorbol 12-myristate 13-acetate (PMA, 100 ng/mL final concentration) (Sigma 

Aldrich) on a Seahorse XFe24 Extracellular Flux Analyzer (Agilent Technologies, Santa Clara, CA) at 

37°C. Seahorse Extracellular Flux assays simultaneously measure oxygen consumption and extracellular 

acidification. Extracellular acidification can be used as an indicator of glycolytic activity because the 

protons produced by lactate dehydrogenase during glycolysis acidify the extracellular space. Neutrophils 

generate the energy and NADPH needed to perform oxidative burst almost exclusively through glycolysis 

and the pentose phosphate pathway. Three baseline readings were taken before injection of the flavoring 

compound, three readings were taken after injection of the flavoring compound, and 30 readings were 

taken after injection of PMA. The assay was run with mix/wait/measure cycles of 3 minutes/0 minutes/3 

minutes. Data was analyzed using GraphPad Prism 8 area under the curve analysis. The area under the 

curve analysis generates: area under the curve, maximum OCR and ECAR, time to maximum OCR and 

ECAR, and time to baseline OCR and ECAR.  

 

Phagocytosis 

1x105 isolated neutrophils were plated in 100 µL neutrophil media in a black clear-bottom 96-

well plate. Cells were incubated (37°C, 5% CO2) for 30 minutes. Neutrophils were then challenged in 

triplicate with 0-5 mM of flavoring chemical for 1 hour at 37°C. Cinnamaldehyde (CA, 1 mM) was used 

as a positive control for inhibition of phagocytosis (9). pHrodo Red Staphylococcus aureus BioParticles 

(Thermo Fischer Scientific, Waltham, MA) were then opsonized and prepared according to manufacturer 

instructions and added to each well after a 1-hour incubation with the flavoring compounds. Neutrophils 

and BioParticles were incubated together at 37°C for 3 hours, and BioParticle phagocytosis was assessed 
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via quantification of mean fluorescence intensity (MFI) at a gain of 2500 using a CLARIOstar fluorescent 

microplate reader (BMG LABTECH, Ortenberg, Germany).  

 

Statistics 

To determine the influence of demographic variables on baseline phagocytic and oxidative burst 

capacity, analyses were conducted in R v4.1.1 using baseline statistical packages unless otherwise noted 

(12). For all continuous variables, normality was tested prior to further analyses using the Shapiro-Wilk 

test. Significant differences between males and females were tested with a two tailed t-test for parametric 

data or a Wilcoxon signed-rank test for nonparametric data.  Correlations were determined using 

Spearman’s rank correlation. Correlations were plotted using the corrplot package (13). Input data and R 

code used for these analyses are publicly available at https://github.com/ehickman0817/dissertation-

extradatachapter.  

 

Results 

Subject characteristics. 

Demographic composition of each data set is summarized in table 6-1. Each data set contained 

roughly equal proportions of males and females, with a majority of subjects being non-Hispanic and 

white. The mean age for each data set was between 26-29 years old, with a range of 19-62 years old. The 

mean BMI was 24-25, with a range of 18.3-38.4.  

 

Neutrophils from male subjects are more phagocytic of S. aureus BioParticles than neutrophils from 
female subjects.   

There were no significant associations between neutrophil bioenergetic parameters and BMI or 

age, and neutrophil bioenergetic parameters were not significantly different between males and females 

(Table 6-2). There were also no significant associations between S. aureus phagocytic capacity and age or 
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BMI (Table 6-2). However, the magnitude of neutrophil phagocytosis of S. aureus BioParticles in males 

was significantly higher than the magnitude in females (Table 6-2, Figure 6-1).  

Table 6-1. Subject demographics for the three sets of data analyzed. 

 
Bioenergetics 
(Seahorse XF) 

(N=29) 

 S. aureus Phagocytosis 
(N=20) 

 Bioenergetics  
& Phagocytosis  

(N=10) 

Sex      

Female 14 (48.3%)  10 (50.0%)  4 (40.0%) 

Male 15 (51.7%)  10 (50.0%)  6 (60.0%) 

Race      

White 21 (72.4%)  17 (85.0%)  8 (80.0%) 

Black 3 (10.3%)  1 (5.0%)  1 (10.0%) 

Asian 4 (13.8%)  1 (5.0%)  0 (0%) 

Mixed/Other 1 (3.4%)  1 (5.0%)  1 (10.0%) 

Hispanic      

No 25 (86.2%)  17 (85.0%)  8 (80.0%) 

Yes 4 (13.8%)  3 (15.0%)  2 (20.0%) 

Age      

Mean (SD) 28.2 (7.75)  29.0 (9.96)  26.6 (6.33) 

Median [Min, Max] 25.0 [19.0, 46.0]  24.5 [20.0, 62.0]  25.0 [22.0, 44.0] 

BMI      

Mean (SD) 24.9 (4.31)  24.2 (4.55)  24.0 (3.48) 

Median [Min, Max] 24.4 [18.3, 34.4]  24.0 [18.7, 38.4]  24.1 [18.7, 31.0] 

 

Table 6-2. P-values and Spearman correlation coefficients to assess whether sex, age, or BMI are 
associated with neutrophil bioenergetics or S. aureus phagocytosis.Significant differences between 

males and females were tested with a two tailed t-test for parametric data and a Wilcoxon signed-rank test 
for nonparametric data. Significant p-values are bolded. 

Metric Sex Age BMI 
 P-value Correlation P-value Correlation P-value 

OCR Maximum (pmol/min) 0.9962 -0.13 0.4857 0.10 0.6144 
OCR AUC (total pmol) 0.6579 -0.15 0.4348 -0.07 0.7124 

OCR Time to Maximum (minutes) 0.8613 -0.10 0.5925 -0.02 0.9059 
OCR Time to Baseline (minutes) 0.2196 -0.14 0.4610 0.01 0.9756 

ECAR Maximum (mpH/min) 0.6517 -0.11 0.5661 -0.05 0.7799 
ECAR AUC (total mpH) 0.4797 -0.20 0.2887 -0.22 0.2436 

ECAR Time to Maximum (minutes) 0.6783 -0.03 0.8862 -0.11 0.5761 
ECAR Time to Baseline (minutes) 0.4559 -0.20 0.2968 -0.06 0.7573 

Phagocytosis (MFI) 0.0374 -0.12 0.6217 0.20 0.3995 
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Figure 6-1. Sex differences in baseline neutrophil phagocytosis. Neutrophil phagocytosis of pHrodo 
red S. aureus BioParticles (n = 10 males, n = 10 females) was significantly different in cells collected 

from female and male subjects. * p < 0.05 by t-test. 
 

Correlations between neutrophil bioenergetic parameters and phagocytosis are sex-dependent 

To determine the relationship between phagocytic capacity of S. aureus BioParticles and 

bioenergetic parameters in neutrophils, we analyzed correlations between these measurements in subjects 

whose cells had been used for both types of experiments (Table 6-1). With data from all subjects 

combined, there were significant correlations between maximum OCR, OCR area under the curve, 

maximum ECAR, and ECAR area under the curve, demonstrating concurrent oxygen consumption and 

extracellular acidification following PMA stimulation (Figure 6-2A). This is logical given that the area 

under the curve is dependent on the peak pmol/min and mpH/min values, and the correlation between 

OCR and ECAR agrees with previously published literature demonstrating that PMA stimulation induces 

both oxidative burst and glycolysis in neutrophils (10, 14). However, there were no significant 

correlations between phagocytosis and bioenergetic parameters, indicating differences in the cellular 

pathways activated in each assay (Figure 6-2A).   

Because we observed significant sex differences in baseline neutrophil phagocytosis (Figure 6-1), 

we next wanted to determine whether the correlations were similar when the data were sex disaggregated. 

We found that phagocytic capacity of neutrophil collected from male subjects was significantly positively 

correlated with time to maximum OCR and ECAR, while this pattern was not observed in neutrophils 
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from female subjects (Figure 6-2B, 6-2C, 6-3A, 6-3B). Significant correlations between Seahorse 

parameters were also different in cells collected from male and female subjects (Figure 6-2B, 6-2C), 

potentially indicating sex differences in regulation of neutrophil bioenergetics following PMA 

stimulation.  

 
Figure 6-2. Correlation plot showing Spearman’s rank correlation coefficients between neutrophil 

bioenergetic parameters and phagocytic capacity. The size of the corresponding circle and the color of 
the circle indicate the magnitude of the correlation coefficient. Asterisks indicate correlations that were 

significant with p < 0.05. Correlations of particular interest (between phagocytosis and bioenergetic 
parameters) are outlined in green. (A) All subjects together (n = 10); (B) Males only (n = 6); (C) Females 

only (n = 4). 
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A B 

  
Figure 6-3. Significant correlations between phagocytosis capacity and time to maximum OCR and 
ECAR. Phagocytosis was significantly correlated with OCR and ECAR time to maximum in males but 

not in females. (A) Time to maximum OCR correlated with phagocytosis. R = 0.89 and p = 0.03 in males; 
R = -0.6 and p = 0.50 in females.  (B) Time to maximum ECAR correlated with phagocytosis. R = 0.83 

and p = 0.023 in males; R = -0.4 and p = 0.79 in females. n = 6 males, n = 4 females. Correlations 
calculated using Spearman’s rank correlation.  

 
Discussion 

The results of this study introduce a novel finding of sexual dimorphism in human neutrophil 

phagocytic capacity. We found that neutrophils from male subjects were more phagocytic than 

neutrophils from female subjects (Table 6-2, Figure 6-1). However, we did not find sexual dimorphism in 

PMA-stimulated oxidative burst bioenergetic parameters (Table 6-2). This discrepancy may be due to the 

method of neutrophil activation used. Phagocytosis of S. aureus BioParticles more accurately 

recapitulates neutrophil phagocytosis in vivo, while stimulation of neutrophils with PMA directly 

activates protein kinase C (14), which does not occur in vivo. Though studies in animal models report 

higher phagocytosis in females than in males (7), to our knowledge, this is the first study reporting sex 

difference in human neutrophil phagocytosis. Some mechanisms hypothesized to underlie sex differences 

in neutrophil number and function include hormonal regulation via the G-protein coupled estrogen 

receptor and nuclear estrogen receptors (7, 15-18), as well as X-chromosome mosaicism for immune 

genes (7, 19) and miRNAs (20, 21). Given these hypothesized mechanisms, another important 
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consideration is that culturing and assaying neutrophils ex vivo, in the absence of endogenous hormones, 

may result in discrepancies between sexual dimorphisms observed ex vivo and in vivo.  

Importantly, our observation of sexual dimorphism in phagocytosis is limited to phagocytosis of 

S. aureus BioParticles. Phagocytosis is mediated by complex cellular signaling pathways stimulated by 

binding of microbial ligands to cell surface receptors (22, 23); therefore, the cell signaling pathway 

activated by S. aureus BioParticles may be different from phagocytosis of other bacteria, yeast, or cellular 

debris and may be different from phagocytosis in vivo.  Another limitation of this study is that 

phagocytosis assays and Seahorse assays were conducted on two separate days, so within-subject 

correlations between phagocytic capacity and bioenergetic parameters as determined in this study may be 

weaker than if assays were performed on the same day. Additionally, although most subjects contributed 

samples to this study on their first visit, BMI was only collected at each subject’s first visit as part of a 

general sample collection protocol, so it is possible that recorded BMI differed from the BMI of the 

subject on the day that assays were performed if subjects returned for additional sample collection.  

We also observed that phagocytosis was significantly correlated with the amount of time that it 

took cells to achieve maximum OCR and ECAR following PMA stimulation in males but not in females 

(Figures 6-2 and 6-3). Although our sample size per sex is relatively small, and there is a lack of prior 

literature with which to compare these findings, this is a notable observation that supports sexual 

dimorphism in neutrophil activation and warrants future investigation. While addressing the mechanism 

underlying these observed sex differences is outside the scope of this study, our data provide cellular 

evidence to support clinical and animal model data suggesting sexual dimorphism in the immune system 

and underscore the importance of considering and reporting biological sex when colleting samples from 

human subjects. Future studies that investigate sex differences in additional neutrophil functional 

endpoints and the mechanisms underlying these differences are needed and will be highly applicable to 

translational research.  
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Effects of 4th Generation E-Cigarettes on Sputum Macrophage Function 

Introduction 

Macrophages are a critical cell type in maintenance of respiratory host defense. Macrophage 

dysfunction is associated with a wide array of respiratory diseases and pathologies (24), but the effects of 

e-cigarettes and e-liquid components on respiratory macrophages remain unclear. Previous literature on 

the effects of e-cigarettes on macrophages suggest that e-cigs can be cytotoxic, reduce phagocytosis, and 

modulate cytokine release in macrophages (25-28). However, the roles of nicotine and flavoring 

chemicals in mediating these effects are not consistent between studies, and data regarding whether e-

cigarettes induce or suppress cytokine release are also inconsistent. Furthermore, there are no studies that 

assess the effects of nicotine-salt-containing pod and disposable e-cigarettes, which are currently the 

current most popular e-cigarette type, on macrophages.  

It can be challenging to determine concentrations of e-liquids or condensates most appropriate to 

expose cell in vitro because the deposition of e-cigarette aerosol in the airways and therefore the 

concentrations of aerosol components that cells are exposed to are currently unknown. Thus, taking cells 

from e-cigarette users, which have already been exposed e-cigarette aerosol in vivo, and measuring their 

function represents a viable alternative to in vitro exposures and can be used to complement in vitro 

studies. In this study, we collected induced sputum cells from 4th generation e-cigarette users and non-

vapers, enriched the cells for macrophages, and measured mitochondrial membrane potential (as a proxy 

for cellular bioenergetics) and phagocytic capacity to determine whether e-cigarettes alter these key 

cellular functions.  
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Methods 

Subject recruitment 

Healthy adult human nonsmokers and e-cigarette users between 18-50 years old were recruited to 

participate in this study. Active vaping was determined as described previously (20). E-cigarette users 

were classified as 4th generation e-cigarette users if they reported using primarily JUUL or other sleek, 

discreet, low-powered e-cigarettes that contain nicotine salts. Exclusion criteria included current 

symptoms of allergic rhinitis, chronic cardiorespiratory disease, immunodeficiency, bleeding disorders, 

current pregnancy, and FEV1 less than 75% predicted during the screen visit. All studies were approved 

by the University of North Carolina at Chapel Hill School of Medicine Institutional Review Board (IRB # 

#17-2275). 

 

Sample collection and processing 

 Induced sputum collection, processing, acquisition of fluid phase samples, and differential cell 

counts were performed as described previously (29, 30). To obtain serum, venous blood was collected in 

BD Vacutainer serum-separating tubes (Fisher Scientific, Waltham, MA), allowed to clot for a minimum 

of 15 minutes, and centrifuged at 1200 x g for 10 minutes. The serum layer was collected and stored at -

80°C until samples were collected from all subjects.  

 

Sputum cell mitochondrial membrane potential assay 

3 x 105 sputum cells per well were seeded into a 96-well black-walled, clear bottomed plate. The 

plate was centrifuged at 300 x g for 2 minutes with low acceleration and braking. Cells were incubated for 

one hour (37 °C, 5% CO2) to allow settling. After one hour, a solution of JC-1 dye (Thermo Fisher) with 

or without carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a positive control for electron transport 

chain uncoupling, was added to the wells for final concentrations of 2 mM JC-1 and 50 mM CCCP. After 

a 30-minute incubation (37 °C, 5% CO2) with JC-1 or JC-1 + CCCP (Figure 6-4), staining solution and 

nonadherent cells were removed (to enrich for macrophages) and replaced with fresh media and cells 
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were incubated for ten minutes. The ratio of J-aggregate (red) to J-monomer (green) was obtained by 

measuring the fluorescent signal of each well using well scan mode on a CLARIOstar plate reader with 

excitation wavelength set at 488 nm and detection wavelengths set at 535 nm (green) and 595 nm (red).  

 
Figure 6-4. JC-1 red/green ratio of mean fluorescence intensity (MFI) is decreased by CCCP 

treatment. Induced sputum macrophages were stained using JC-1 following treatment with or 
without CCCP.Matched samples are connected with a line. **** p < 0.0001 by paired Wilcoxon test. n = 

16 
 

 

Sputum cell S. aureus phagocytosis assay 

2 x 105 sputum cells per well were seeded into a 96-well black-walled, clear bottomed plate. Cells 

were allowed to incubate (37 °C, 5% CO2) for one hour before media was replaced to remove all non-

adherent cells and enrich for macrophages. Then, phagocytosis was measured using pHrodo Red 

Staphylococcus aureus BioParticles (Thermo Fischer Scientific) as described previously (22), with an 

incubation time of three hours.  

 

Analysis 

All statistical analyses were conducted in R v4.1.1 using baseline statistical packages unless 

otherwise noted (12). For all continuous variables, normality was tested using the Shapiro-Wilk test. 

Differences between groups were tested with a two tailed t-test for parametric data or a Wilcoxon signed-

rank test for nonparametric data. The JC-1 normality test was on the borderline between significant and 

non-significant (p = 0.02), so both a t-test and Wilcoxon signed-rank test were carried out. Correlations 
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were determined using Spearman’s rank correlation. Input data and R code used for these analyses are 

publicly available at https://github.com/ehickman0817/dissertation-extradatachapter.  

 

Results 

Subject characteristics 

The demographic characteristics of the subjects from each group are summarized in Table 6-3. 

Each group contained both males and females and was majority non-Hispanic white. The mean age was 

slightly higher in non-vapers (26.7 years) than 4th generation e-cigarette users (21.4 years old) (p = 

0.0514). In the 4th generation e-cigarette user group, 8 subjects used only JUUL, 1 subject used a mixture 

of JUUL and disposables, and 2 subjects used only disposables. 
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Table 6-3. Subject demographics by group.Groups were compared using a Wilcoxon Test (for 
continuous variables) or Fisher’s Exact Test (categorical variables). 

 Non-vapers 
(N=6) 

4th Gen E-Cig Users 
(N=11) P-value 

Sex    

Female 4 (66.7%) 2 (18.2%) 0.109 

Male 2 (33.3%) 9 (81.8%)  

Race    

White 5 (83.3%) 9 (81.8%) 0.432 

Black 1 (16.7%) 0 (0%)  

Asian 0 (0%) 2 (18.2%)  

Hispanic    

No 6 (100%) 9 (81.8%) 0.515 

Yes 0 (0%) 2 (18.2%)  

Age    

Mean (SD) 26.7 (5.89) 21.4 (1.91) 0.0514 

Median [Min, Max] 26.5 [21.0, 37.0] 21.0 [19.0, 26.0]  

BMI    

Mean (SD) 24.5 (5.48) 23.6 (2.87) 0.961 

Median [Min, Max] 24.1 [18.8, 34.5] 22.9 [20.0, 29.3]  

Device    

JUUL 0 (0%) 8 (72.7%) <0.001 

JUUL/Disposable 0 (0%) 1 (9.1%)  

Disposable 0 (0%) 2 (18.2%)  

None 6 (100%) 0 (0%)  

 

Sputum cell differentials were not significantly different between non-vapers and 4th generation e-
cigarette users 

Cell differential data pertinent to cellular functional assays are reported in Table 6-4. There were 

no significant differences between select sample weight, total cell count, cells per milligram of sputum, 

percent neutrophils, percent macrophages, or percent viability between non-vapers and 4th generation e-

cigarette users.  
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Table 6-4. Sputum sample cell characteristics.Values are reported as mean (SEM). Groups were 
compared using a Wilcoxon Test. 

 Non-vapers 
(N=6) 

4th Gen E-Cig Users 
(N=11) P-value 

Select Sample Weight 2140 (704) 1670 (220) 0.884 

Total Cell Count 1640000 (733000) 5170000 (2420000) 0.191 

Cells/mg 680 (89.7) 2600 (923) 0.216 

% PMN 42.7 (12.6) 45.2 (8.82) 0.733 

% Macrophage 55.9 (12.9) 53.2 (8.61) 0.591 

% Viable 0.755 (0.0622) 0.832 (0.0306) 0.268 

 

4th generation e-cigarette users have high sputum macrophage mitochondrial membrane potential than 
non-vapers.  

 To understand whether 4th generation e-cigarette use was associated with alterations in sputum 

macrophage cellular function, we measured mitochondrial membrane potential and S. aureus 

phagocytosis in sputum macrophages from non-smokers/non-vapers and 4th generation e-cigarette users. 

We found that mitochondrial membrane potential was significantly higher in macrophages from 4th 

generation e-cigarette users in comparison with non-smokers/non-vapers (Figure 6-5A) potentially 

indicative of a more pro-inflammatory phenotype. We did not observe significant differences in 

phagocytosis between 4th generation e-cigarette users and non-smokers/non-vapers (Figure 6-5B).  
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Figure 6-5. 4th generation e-cigarette users have higher sputum macrophage mitochondrial 

membrane potential than non-vapers. Sputum macrophages were assayed for (A) mitochondrial 
membrane potential using JC-1 dye (n = 6 non-vapers; n = 10 4th generation e-cigarette users), * p < 0.05 

by unpaired t-test and p = 0.18 by Wilcox test; (B) phagocytic potential using pHrodo Red S. aureus 
BioParticles dye (n = 6 non-vapers; n = 11 4th generation e-cigarette users). 

 
Discussion 

In this study, we found that sputum macrophages from 4th generation e-cigarette users had 

significantly higher mitochondrial membrane potential than sputum macrophages from non-vapers 

(Figure 6-5A). This is notable because cellular bioenergetics is recognized to be a central regulator of 

macrophage function (31, 32). Macrophages polarized toward an inflammatory phenotype require large 

amounts of ATP generated through glycolysis to perform phagocytosis, and additionally, the 

mitochondria generate reactive oxygen species (31, 33). Previous studies have observed increased 

mitochondrial membrane potential as part of metabolic reprogramming that occurs in response to 

inflammatory stimuli (33). Therefore, the higher mitochondrial membrane potential in macrophages  from 

4th generation e-cigarette users in comparison with those from non-vapers may be reflective of a more 

pro-inflammatory phenotype. However, we did not observe a significant difference in phagocytic capacity 

in 4th generation e-cigarette users (Figure 6-5B), suggesting that these subjects’ macrophages have equal 

antimicrobial capacity towards S. aureus.  

The most significant limitation in this study was the unavoidable variability in sputum cell 

composition and cellular viability. Induced sputum contains a mixed cell population primarily consisting 

of macrophages and neutrophils, and although there were not significant differences in percentage of 
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macrophages and neutrophils between groups, and macrophages were selected for via centrifugation and 

adherence, the proportions of each cell type were different across subjects. Generally, this is difficult to 

address experimentally because cell differentials are not determined until after assays are performed with 

live cells. The JC-1 assay readout is ratiometric and thus controls well for differences in cell number and 

composition across assays. The phagocytosis assay is more susceptible to differences in cell populations 

because there is no normalizing component in the assay and because macrophages are generally more 

highly phagocytic of S. aureus BioParticles than neutrophils. And, although cells were seeded based on 

the number of viable cells, it is possible that low cell viability after sample processing could influence 

behavior of live cells remaining in the sample. Therefore, it is possible that the effects of e-cigarettes on 

cellular function were masked by these factors, particularly for the phagocytosis assay. Another 

significant limitation in this study was the number of subjects in each cohort, which was limited by the 

COVID-19 pandemic. Future studies including larger cohort sizes and additional experimental steps to 

ensure selection of only macrophages and an equal number of viable macrophages for each subject would 

provide more robust data and impactful conclusions about the effects of e-cigarettes on sputum 

macrophage function.  
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CHAPTER 7: OUTREACH 

Bridging The Gap Between E-Cigarette Research And High School Students Through 
Collaborative STEM Lesson Development 

Introduction 

  Especially among adolescents, e-cigarette use represents a significant public health concern, with 

3.6 million middle and high school students reporting use in 2020 (1-4) (Note: 2021 National Youth 

Tobacco Survey data cannot be compared to previous years due to differences in the administration of the 

survey as a result of COVID-19 (2)). E-cigarettes are battery-powered devices that heat and aerosolize an 

e-liquid containing nicotine, flavoring chemicals, and base liquids (propylene glycol and vegetable 

glycerin), allowing the user to inhale the resulting cloud. E-cigarettes have been proposed as a tool that 

could aid in smoking cessation and reduce exposure to harmful chemicals in cigarettes, but most youth 

users of e-cigarettes have never smoked, and studies reveal that these youth are also more likely to 

subsequently start smoking (5-8). The youth vaping epidemic, which was recognized by the United States 

Surgeon General in 2016 (9), has raised concern in public health circles about youth addiction to nicotine. 

And, with 85% of youth reporting they use flavored e-cigarettes (2), the unknown respiratory effects of e-

liquid constituents such as flavorings also elicit concern. The prevalence of e-cigarette use among youth 

highlights the need for education about the potential health effects of e-cigarettes.  

Preparing youth to make informed, health-protective decisions about e-cigarette use represents an 

opportunity to engage them in science, technology, engineering, and math (STEM) activities while also 

promoting biomedical research careers, like those in the field of toxicology. Well-informed STEM 

teachers are critical to the success of these endeavors. Building the capacity of STEM teachers to 

incorporate the evolving science of e-cigarette research into instruction is one avenue to communicate risk 
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to a vulnerable population while addressing curriculum standards. Table 7-1 shows the numerous 

curriculum connections that can be made when exploring the science of e-cigarettes.  

Table 7-1. Numerous curriculum connections can be made when exploring the science of e-
cigarettes. 

Science Discipline Curriculum connections 

Life sciences Anatomy & Physiology (Respiratory system; Immune system) 
Cell structure & function (Ciliated epithelial cells; cellular respiration) 
Gene expression 
Immunology  
Nicotine addiction  
Toxicology 

Physical sciences  Functional groups 
Solutions (solvent, solutes) 
Chemical reactions 
pH 
Temperature (heat) 
Aerosols 

Environmental 
sciences 

Single-use plastics; not recyclable 
Litter 
Leak heavy metals and residual nicotine into environment 
Secondhand aerosol 

 

E-cigarettes provide a timely and relevant context in which students can explore and refine their 

knowledge of fundamental anatomy and physiology, biology, and chemistry concepts. However, teachers 

may not have the relevant content knowledge to identify curriculum connections and successfully 

incorporate this topic into their instruction. A rapidly evolving biomedical research landscape coupled 

with curriculum constraints are additional challenges teachers face when trying to incorporate current 

scientific research into their teaching, and this challenge exists for both new and veteran teachers (10, 11). 

Furthermore, this disconnect between science curriculum standards and the cutting-edge biomedical 

research taking place in today’s laboratories has real implications for the future biomedical workforce, 

which is dependent upon K-12 teacher and student knowledge of current science and science careers. 

Therefore, providing teachers with curriculum-relevant content and STEM-based activities that showcase 

current science, technologies, and careers can promote science literacy while also cultivating the 

biomedical workforce.  
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In response to these challenges, and to the goal of bringing e-cigarette research findings from the 

laboratory to youth, researchers investigating the effects of e-cigarette solvents and flavorings on 

respiratory health at the University of North Carolina (UNC) at Chapel Hill partnered with science 

education experts at the UNC Center for Environmental Health and Susceptibility to bring e-cigarette 

research to high school life science classrooms. To address this goal, we 1) developed three unique data 

interpretation activities or “lessons” centered around e-cigarette research, and 2) provided content-rich 

teacher professional development, including modeling lesson implementation, to increase teacher 

knowledge of e-cigarettes and to increase teacher preparedness introducing this content in their 

classrooms.  

In this article, we describe our collaborative process for involving scientists in curriculum 

development and teacher professional development activities to convey the potential health effects of 

vaping that extend beyond those of nicotine, while simultaneously cultivating students’ data literacy and 

demonstrating the process by which emerging science unfolds in the laboratory.  

 

Methods 

Co-Design Team 

Dana Haine, MS and Elise Hickman, BS worked together to collaboratively develop lessons and 

execute teacher professional development activities. Ms. Haine is the K-12 Science Education Manager 

with the UNC Institute for the Environment’s Center for Public Engagement with Science and also 

conducts outreach for the UNC Center for Environmental Health and Susceptibility in the Gillings School 

of Global Public Health. Ms. Hickman is a PhD candidate in the Curriculum in Toxicology and 

Environmental Medicine at UNC Chapel Hill. Ms. Haine and Ms. Hickman were connected in 2018 by, 

Dr. Ilona Jaspers, and have been working together over the past four years to design curricula as well as 

develop and implement corresponding teacher professional development activities. As a biomedical 

scientist, Ms. Hickman’s contributions included explaining the context and relevance of current e-

cigarette research, providing access to data for use in the lesson, ensuring accurate representation of e-
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cigarette science, and modeling science practices. As a STEM education expert with a biomedical 

background, Ms. Haine’s contributions included aligning content to state and national science education 

standards, ensuring lessons were feasible given the realities of the science classroom, providing 

background information and classroom ready resources, and making sure data was presented in an 

accessible way for high school classrooms. Through a collaborative and iterative design process, Ms. 

Haine and Ms. Hickman developed three unique data interpretation activities and modeled these lessons 

during teacher professional development sessions at state and national practitioner conferences and during 

a four-part workshop series described in this article. 

 

Lesson Development Process 

Recognizing the relevance of e-cigarettes to students’ lives and health outcomes and the 

opportunity to use this content to reinforce curriculum standards, we sought to develop educational 

materials that would bring the e-cigarette research taking place in biomedical laboratories to secondary 

life science classrooms. We proceeded through the following steps to collaboratively develop research-

based lessons that would educate students about the potential harms of e-cigarettes while engaging them 

in the practices of science as described in the Framework for K-12 Science Education (12). 

 

Identify key concepts 

 Our collaboration began with dialogue to identify key concepts that could be conveyed through 

learning about e-cigarettes and the corresponding research to understand the respiratory health effects of 

e-liquids and aerosols. Examples of key concepts included: flavorings are chemicals, e-liquids are 

complex chemical mixtures, e-cigarettes produce an aerosol (not a vapor) when heated, and chemicals in 

e-cigarette liquids and aerosols can affect cellular function. We noted that e-cigarette research is 

particularly relevant to courses such as biology, anatomy and physiology, and biomedical science because 

understanding this research requires students to explore and refine what they know about cell structure 

and function, the immune system, and cellular respiration.  
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Identify relevant science and engineering practices 

As we discussed the research methods and the research findings, we identified relevant science 

and engineering practices that could be highlighted to create authentic learning experiences for students. 

By focusing on current biomedical science content, many of the Science and Engineering Practices 

outlined in the Next Generation Science Standards (13) and in the AP Biology Curriculum (14) are easily 

integrated. For example, in each lesson students observe and analyze data and evaluate evidence (NGSS 

Practice 4 and AP Biology Science Practice 5).  

 

Align to standards 

Next, we aligned content to state and national curriculum standards as shown in Tables 7-2 and 7-

3. Lesson content is relevant to NGSS Disciplinary Core Ideas in the Life Sciences (LS1 and LS3) and to 

AP Biology Big Ideas 2, 3, 4. While e-cigarettes and vaping are not explicitly mentioned in today’s 

curriculum standards, this content can be used to reinforce standards by providing up to date examples of 

biological phenomena (e.g., inflammation triggered by chemical exposure) or by providing opportunities 

to apply learning about a fundamental biological process like cellular respiration. For example, data 

featured in Lesson 2 demonstrates how a specific e-cigarette flavoring chemical, cinnamaldehyde, can 

impair mitochondrial function, resulting in decreased ATP production and decreased cilia beating in 

airway epithelial cells. Thus, this specific example could be used to reinforce what students learned about 

the role of mitochondria and ATP in cells. 
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Table 7-2. Curriculum alignment with Advanced Placement Biology. 
Advanced Placement Biology 

Science Practices Big Ideas 

This activity invites students to use all six science 
practices:  

• Concept Explanation  
• Visual Representations 
• Questions and Methods 
• Representing and Describing Data  
• Statistical Tests and Data Analysis  
• Argumentation 

BIG IDEA 2: ENERGETICS (ENE) 
• Enduring understanding 2.D, 2.E 
BIG IDEA 3: INFORMATION STORAGE 
AND TRANSMISSION (IST) 
• Enduring understanding 3.B 
BIG IDEA 4: SYSTEMS INTERACTIONS 
(SYI) 
• Enduring understanding 4.C 

Relevant Units: 
• Unit 1: Chemistry of Life (Biological Macromolecules (Proteins)) 
• Unit 2: Cell Structure and Function  
• Unit 3: Cellular Energetics (Enzymes) 

 

Table 7-3 Curriculum alignment with Next Generation Science Standards. 
Next Generation Science Standards 

Disciplinary Core Ideas Relevant Science & Engineering 
Practices 

Relevant Cross Cutting 
Concepts 

LS1: From Molecules to 
Organisms: Structures and 
Processes 
LS3: Heredity: Inheritance 
and Variation of Traits 

• Asking questions and 
defining problems 

• Analyzing and interpreting 
data 

• Developing and using 
models  

• Constructing explanations  
• Obtaining, evaluating, and 

communicating information  

• Patterns 
• Cause and effect: 

mechanism and explanation 
• Scale, proportion, and 

quantity 
• Systems and system models 
• Structure and Function 
• Stability and change  

Relevant Performance Expectation: HS-LS1-2. Develop and use a model to illustrate the hierarchical 
organization of interacting systems that provide specific functions within multicellular organisms. 

 

Promote data literacy 

Because of the emerging nature of research taking place to understand the health effects of e-

cigarettes, we felt it was important to ground our lessons in the literature. We proceeded to develop 

lessons that would enable students to interact directly with primary research data pertaining to the 

toxicological effects of e-cigarettes and draw their own conclusions about the health effects of vaping. 

Notably, this approach aligns with two evidence-based recommendations for effective vaping prevention 
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strategies outlined on the Vaping Prevention Resource website: 1) demonstrate to youth how chemicals 

they inhale when vaping can affect their health, and 2) emphasize how chemicals can have health effects 

on the respiratory and cardiovascular systems (15). 

Furthermore, research shows that data-enhanced learning experiences, especially those that 

include data relevant to students’ lives, are important for developing essential science skills (16, 17). 

Thus, by centering our lessons around student-led analysis of primary data, we sought to cultivate data 

literacy skills and promote student awareness about the process by which new scientific knowledge is 

obtained and communicated. For all lessons, we used recently published peer-reviewed publications from 

research groups at UNC-Chapel Hill due to the design team’s familiarity with this research and to 

maximize the ability for the design team to interact with the authors. From these papers, we selected data 

that would both support student learning about the key concepts we identified and be easily adapted for 

use in the classroom. 

In addition to offering data-enhanced learning experiences, another intention behind the 

development of these lessons was to offer teachers a critical thinking or “minds-on” activity that did not 

require the purchase of lab materials, use of fume hoods, or extensive preparation in an effort to make the 

lessons both accessible and adaptable for in person or virtual instruction. Our approach to incorporating 

scientific data into each lesson was to provide guiding questions and one or two corresponding data sets 

along with background information and questions to prompt student interaction with the data and to 

prepare them to communicate their findings to others. To verify that teachers would be responsive to this 

approach, we acquired teacher feedback about our conceptualizations from the beginning and throughout 

the lesson development process. For example, in hearing that AP Biology teachers cover standard error, 

we made sure to keep error bars in featured graphs and we offered guidance to students on interpreting 

error bars and evaluating statistical significance. These elements can easily be hidden on graphs to engage 

students not yet prepared to address these concepts. 
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Lessons 1 and 2 utilize the 5E instructional model, in which students explore a phenomenon by 

progressing through the following stages: engagement, exploration, explanation, elaboration, and 

evaluation (18). We designed these lessons to enable teachers to customize their approach to introducing 

students to one or more data sets. For each lesson we offer six guiding questions, with 1-2 graphs per 

question, and while we envisioned that teachers could conduct this as a jigsaw activity, the guiding 

questions and corresponding graphs could be adapted into worksheets, lecture based discussion, or placed 

at stations. Although these lessons were designed for in-person implementation, the materials are well 

suited for use in a virtual learning environment.  

For our third lesson, which we developed in response to the pandemic and the shift to remote 

learning, we incorporated a data analysis section into a digital interactive notebook (Google slide set). In 

this lesson, we provided one guiding question that was accompanied by three sets of data and teachers 

could conduct this as a jigsaw activity or have students examine all three data sets. 

A key feature of these lessons is that students summarize their answers to the questions paired 

with the graphs they were given and then communicate their findings to the class. To keep the class on 

task during presentations, students complete a summary table while they hear from other groups. After the 

data interpretation activity is complete, teachers then lead a discussion with the entire class to synthesize 

the findings presented and consider their broad impact as well as discuss future directions for research.  

 

Make data accessible 

With permission from the authors of the featured research papers, we worked to make the data 

presented in graphs more accessible to students by re-labeling axes and providing additional context for 

the experiments performed to collect the data (Figures 7-1 and 7-2). To encourage student interaction with 

the data, we also provided question prompts for each set of graphs that start with a review of key 

concepts, followed by specific questions about the data (Figure 7-3).  
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Figure 7-1. Example demonstrating modification of a graph from the primary literature to increase 

accessibility to students. Figure adapted from Clapp et al 2017 “Flavored e-cigarette liquids and 
cinnamaldehyde impair respiratory innate immune cell function” in the American Journal of Physiology 

Lung Cellular and Molecular Physiology (19). 
 

 
Figure 7-2. Slides from Lesson 2 demonstrate an additional example of context provided with 

graphs to aid in data interpretation and questions used to guide students through data analysis. 
Figures adapted from Clapp et al 2019 “Cinnamaldehyde in flavored e-cigarette liquids temporarily 

suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function” in the 
American Journal of Physiology Lung Cellular and Molecular Physiology (17). 

 

Develop supporting materials 

To support teachers in implementing each lesson, we created a facilitator guide to convey 

learning objectives, provide background information, describe the activity procedure and opportunities to 

extend learning, and offer an answer key. In addition, we created a companion slide set which includes 

slides that can be used to introduce pertinent background on e-cigarettes, including how e-cigarettes work, 

what chemicals are found in e-cigarette liquids, and why scientists are interested in studying e-cigarette 
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flavoring chemicals. The slides also cover the source of the cells used in the experiments and describe 

how the experiments were designed (e.g., control and experimental groups). Lastly, the slides cover how 

to read bar graphs, including interpretation of error bars and significance markers. In addition, we created 

a worksheet/data summary table to guide students in synthesizing information and drawing their own 

conclusions (Figure 7-3).  

A central component of developing these supporting materials was the creation and use of visual 

aids to depict experimental and cellular processes, which were developed using tools such as Adobe 

Illustrator and BioRender (biorender.com). Figure 7-4 shows a slide we developed using images from 

Biorender to enable students to build a model of a healthy respiratory epithelium in preparation for the 

data analysis activity.  

 
Figure 7-3. Student worksheet for facilitating the synthesis of data presented in Lesson 1. Cell 

images were generated in BioRender.  
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Figure 7-4. Interactive Google slide from Lesson 3 in which students click and drag cells to build a 

model of a healthy respiratory epithelium. Cell images were generated using biorender.com.  
 

 

Acquire expert review 

Once we had developed our lessons and ancillary materials, we solicited feedback from 

biomedical scientists, STEM outreach experts, and classroom teachers. The value of having a scientist 

involved from the beginning makes the scientific review process easier, and results in what we think is a 

more authentic and more robust educational activity. The value of having teachers involved in the expert 

review process as well is to ensure that the final lesson will be most useful to teachers, which will 

increase the likelihood of classroom adoption.  

 

Pilot and refine lessons 

In addition to acquiring expert review, we invited teachers to pilot the lessons and we piloted the 

lessons with students and teachers as well. Each time we received constructive feedback from teachers or 

students, we refined the lessons accordingly. Much of our refinements were related to guiding students 

through interpreting graphs.  
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Disseminate lessons 

The lessons developed as a result of this collaboration have been disseminated at practitioner 

conferences such as the National Science Teaching Association, the National Association of Biology 

Teachers and the North Carolina Science Teachers Association. It is through these presentations that we 

expanded our teacher network and acquired additional feedback to improve subsequent revisions to 

lessons. Furthermore, given that this project was partially funded by the National Institute for 

Environmental Health Sciences (NIEHS), these lessons have also been shared with the larger NIEHS 

community via the Partnerships for Environmental Public Health Resource Center. The lessons materials 

are publicly available at: https://ie.unc.edu/cpes/environmental-health-resources/  

 

Update lessons 

A notable challenge in developing lessons around the emerging field of e-cigarette toxicology is 

that there is new research being published consistently and an ever-changing landscape of e-cigarette 

regulations, both of which could impact the background information provided with the lessons and the 

relevancy of the lessons themselves. In consideration of this challenge, we revisit the lessons each year to 

update the background information, and lesson 3, as a Google Slides deck, is a “living document” that we 

can continuously update, ensuring that teachers have access to the most up to date information.  

 

The Lessons 

This work resulted in three data interpretation activities, which are summarized in Figure 7-5. All 

three lessons share a common theme in that students learn about the experimental models and 

technologies being used to investigate the health effects of e-cigarettes by interacting with published 

scientific data showing how e-liquids and e-cigarette aerosols influence biological responses such as 

phagocytosis, cellular respiration, and inflammation. Teachers can assess student learning through a 

variety of mechanisms, including but not limited to collecting completed worksheets/data summary 
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tables, asking students to summarize their responses to their data analysis in writing or through a 

presentation, or by asking students to propose a new research question based on what they learned.  

 
Figure 7-5. Three data interpretation lessons were developed as a result of this collaboration. 

 

In Lesson 1, “Evaluating the Effects of Flavored Electronic Cigarettes on the Respiratory 

Immune System”, students learn about the experimental models and technologies being used to investigate 

the health effects of flavored e-cigarettes by interacting with published scientific data showing how 

flavored e-liquids and inhaled aerosols derived from these liquids influence biological function (e.g., 

phagocytosis) of respiratory immune cells. 

In Lesson 2, “Evaluating the Bioenergetic Effects of Flavored Electronic Cigarettes on 

Respiratory Immune Cells”, students interact with data showing the effects of cinnamon flavored e-liquid 

(containing the chemical cinnamaldehyde) on cilia beating and cellular metabolism in airway epithelial 

cells and consider implications for human health. For example, after evaluating evidence that 

cinnamaldehyde impairs cilia beating, students consider what these experimental findings might mean for 

the lungs of vapers, particularly their ability to clear debris and pathogens like SARS-CoV-2.   

Lesson 3, “Biomedical research on e-cigarettes & vaping | Investigating the impact of e-

cigarettes on airway inflammation and asthma”, was designed with a virtual classroom in mind and 

features a three-part digital interactive notebook that students can work through either independently or in 

pairs/small groups. In Part 1, students learn about the respiratory tract and the cells that make up the 

respiratory epithelium and how these cells behave during inflammation through building models of 
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healthy and inflamed epithelia. Students are also introduced to biomarkers, which are evaluated in Part 2. 

In Part 2, students interpret data from a study in which biomarkers of neutrophil activation, mucus 

production, and chemical detoxification were measured in the airways of smokers, non-smokers, and e-

cigarette users to determine if e-cigarette use causes inflammation of the airway. In Part 3, students are 

introduced to an emerging research question that is relevant to many youth: Are asthmatics more 

susceptible to the respiratory health effects of e-cigarettes? Students learn about the features of asthma 

and are asked to design an experiment to determine whether e-cigarettes differently affect asthmatics. 

Similar to Lessons 1 and 2, teachers can customize which slides and/or parts of Lesson 3 they want to use 

based on their instructional goals.  

In response to hearing teachers’ requests for a wet-lab activity about vaping, we developed a data-

based, qualitative wet-lab simulation in collaboration with the University of Rochester where students test 

simulated “sputum” samples from smokers, vapers and non-smokers/non-vapers to detect levels of select 

protein biomarkers. This activity uses inexpensive non-toxic materials (e.g., buffers and pH strips) and 

requires minimal preparation and clean-up. By investigating how e-cigarette use influences levels of 

biomarkers associated with inflammation among nonsmokers, cigarette smokers and e-cigarette users, 

students get a glimpse into this emerging area of research as they learn how scientists are working to 

understand how e-cigarettes and the chemicals they contain influence respiratory health. 

 

Teacher Professional Development Series 

To disseminate these lessons and promote adoption by teachers, we collaborated to develop a 

teacher professional development experience. Due to the pandemic, we had to pivot from our original 

plan to offer an in-person workshop with lab tours to instead offering a four part (6 hours total) virtual 

teacher professional development (PD) series, titled Introducing students to the health effects of vaping on 

the respiratory system and to the multidisciplinary field of toxicology that ran in February 2021. By 

providing content-rich teacher professional development that included presentations by diverse 

researchers and modeling of lesson implementation, we sought to increase teacher knowledge of e-
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cigarettes and the research taking place to understand their health effects and to increase teacher 

preparedness to introduce this content in their classrooms. In addition, participating teachers were invited 

to pilot one or more lessons in spring 2021 and provide feedback to improve lessons for the 2021-2022 

academic year. Recordings of presentations that were part of the teacher professional development series 

are publicly available on YouTube. Table 7-4 shows the outline for each PD session.  

 

Table 7-4. Outline of virtual PD series. 

Session title  Title of featured lesson Titles of scientist “microtalks” 

Session 1:  
Vaping and adolescents: 
How did we get here? 

None “Introduction to E-Cigarettes” 
“The Flavor Story” 
“Effects of E-Cigarette Salts” 
“Marketing Electronic 
Cigarettes to Adolescents” 

Session 2:  
Cell, rodents, and 
humans: Experimental 
models for studying 
flavored e-cigarettes  

Lesson 1: Evaluating the effects 
of flavored e-cigarettes on the  
respiratory immune system  

“Cell Culture Models in 
Respiratory Toxicology” 
“Rodent Models in Respiratory 
Toxicology” 
“Human Subjects Research in 
Respiratory Toxicology” 

Session 3:  
Flavored e-cigarettes & 
cell bioenergetics  

Lesson 2: Evaluating the 
bioenergetic effects of flavored 
e-cigarettes   

“Vaping: Is it the flavor of the 
decade or the decade of 
flavors?” 

Session 4:  
E-cigarettes & lung 
health  

Lesson 3: Using biomarkers to 
investigate the impact of e-
cigarettes on airway 
inflammation and asthma | A 
digital interactive notebook and 
wet-lab simulation activity 
(extension) 

“Vaping and Health Effects” 
“E-Cigarettes and Respiratory 
Infections” 
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We want to call out a number of features that we think contributed to the series’ success for those 

wanting to integrate scientists and research findings into teacher PD activities:  

1. Provide teachers with direct access to researchers. Involving researchers in professional 

development activities is not only an avenue for delivering up to date science content to 

teachers but also fosters a sense of professionalism among teachers. Teachers appreciate 

learning science content from researchers and are especially receptive when they are viewed 

by researchers as being capable of learning the content being presented and provided with 

opportunities to interpret findings versus being told experimental results. Anecdotally, we 

know that these authentic learning experiences provide teachers with real stories they can 

then share with their students, with some teachers reporting that access to the scientific data 

and the resulting stories they bring to class results in their being seen as credible sources of 

information by students. 

2. Offer 12–15-minute researcher “microtalks.” We encouraged researchers to keep their 

presentations short and to tailor their presentations to a teacher audience where there would 

be a range of background knowledge. We asked researchers to avoid use of unnecessary 

jargon and unexplained acronyms, and to consider using highly visual slides and easy to 

read/interpret graphs that could be used with students. We also invited each researcher to 

consider incorporating opportunities to make their presentation interactive, through the use of 

question prompts, poll questions, or short videos describing research activities or 

experimental set-ups.  

3. Feature diverse biomedical researchers. Using a “microtalk” approach enabled us to offer 

more presentations in an effort to showcase the diverse biomedical research taking place to 

understand the health effects of vaping. By including toxicologists, geneticists, and air quality 

researchers in programming, we were able to emphasize not only the interdisciplinary 

research taking place to study the health effects of e-cigarettes but also the varying scopes of 
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research (cells, tissues, human subjects) to reinforce learning about research methods and 

experimental design.  

4. Model classroom activities. In sessions 2, 3, and 4 of the PS series, we modeled the lessons 

for teachers as a means of encouraging classroom adoption and prompting subsequent 

discussion of classroom integration strategies. We adapted the data interpretation activities in 

Lessons 1 and 2 to the virtual environment by moving teachers into Zoom breakout rooms to 

discuss one of six guiding questions. For Lesson 3, teachers worked in small groups to 

complete part I of the digital interactive notebook (building a model of a healthy respiratory 

epithelium) and then we walked through Parts 2 and 3 together since we had modeled an 

approach to data analysis in previous sessions. For all breakout sessions, we circulated among 

breakout rooms to answer questions and monitor each group’s progress.  

 

Program Evaluation 

Program evaluation was conducted to not only evaluate teacher satisfaction with each PD session 

and provide teachers with the opportunity to offer suggestions for improvement for each lesson but also to 

capture the extent to which participation in the series resulted in changes in teacher knowledge of e-

cigarette research and preparedness to incorporate this research into instruction.  

 

Teacher self-reported knowledge and preparedness regarding e-cigarettes prior to professional 
development series 

Teachers (n=83) applying to participate in the February 2021 PD series were asked to self-report 

their knowledge of the following: the chemical composition of e-cigarette liquids and inhaled aerosols; 

the experimental models and technologies being used to study the health effects of flavored e-cigarettes; 

and emerging findings on the health effects of e-cigarette use or vaping. Figure 7-6 reveals a knowledge 

gap that we set out to address through this PD series by connecting teachers with scientists studying the 

health effects of e-cigarettes and with the data arising from this research. 
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Figure 7-6. Teacher self-reported knowledge prior to participating in a 4-part professional 

development series. Teachers (n=83) applying to participate in the series were asked to rate their 
knowledge of the following items using a scale of 1 (“not knowledgeable”) to 10 (“extremely 

knowledgeable”). Values for the subset of teachers who participated in the series were similar and are 
reported in Figure 8. A) Mean and standard deviation reported by topic. B-D) Distribution of responses 

(n= 82, one teacher did not provide responses to these questions). 
 

80% of teachers reported they had incorporated e-cigarettes/vaping into life science instruction 

“to a little extent” or “not at all” (data not shown). 58% (n=83) reported that they were either “not at all” 

prepared or prepared “to a little extent” to facilitate classroom discussions about the health effects of 

vaping, and 81% indicated they were either “not at all” prepared or prepared “to a little extent” to speak 

authoritatively about the biomedical research taking place to study the health effects of vaping (Figure 7-

7).  
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Figure 7-7. Teacher preparedness. Applicants were asked to rate their preparedness to promote 

toxicology as a career, incorporate published data into instruction, speak about biomedical research, and 
facilitate discussions. Answers were collected using a Likert scale and converted to numeric values for 

analysis (1 - “not at all”, 2 - “to a little extent”, 3 - “to some extent”, 4 - “to a great extent”). A) Mean and 
standard deviation reported by topic. B-E) Distribution of responses (n = 82 except for “facilitate 

discussions” where n = 81).  
 

 

These data suggest that the majority of teachers applying to participate in this PD series had not 

had the opportunity to acquire relevant content knowledge that would enable them to identify curriculum 

connections and successfully incorporate this topic into their instruction. Thirty-two of these teachers 

were invited to participate in this four-part PD series and  26 opted to participate in the series, with 20 

(77%) attending all four sessions. With the exception of a high school chemistry teacher, all participants 

taught one or more life science courses ranging from biology to anatomy and physiology to biomedical 

science (e.g., Project Lead the Way). Twenty-three (88%) of teachers were high school teachers and the 

remaining three teachers taught biology courses at the college level. At the conclusion of each session, 

participants were asked to complete an online evaluation form. For each session, evaluation data revealed 

that the majority (95% or greater) of teachers reported the session increased their knowledge of featured 
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content, that the session was relevant to the content they teach, and that it gave them ideas for 

incorporating e-cigarette research into teaching (data not shown).  

 

Changes in teacher knowledge and preparedness 

On the session 4 evaluation, teachers were once again asked to rate their knowledge of e-

cigarettes and preparedness to discuss biomedical research in their classrooms. Figure 8 depicts self-

reported changes in knowledge and preparedness as a result of participating in this PD series. These 

results reveal that as a result of participating in this PD series teachers felt more knowledgeable about the 

chemical composition of e-cigarettes, experimental models being used to study e-cigarettes, and emerging 

findings in the field of e-cigarette toxicology (Figure 7-8A). Data also revealed that teachers felt more 

prepared to facilitate discussions about e-cigarettes and speak about current biomedical research as a 

result of participating in this PD series (Figure 7-8B). However, the series did not significantly increase 

the extent to which teachers’ felt prepared to incorporate published data into instruction or to promote 

toxicology as a career (Figure 7-8B). We hypothesize that these findings could be because teachers who 

registered for the series already had some level of comfort with and/or interest in published scientific data 

and toxicology, and a desire to learn more about e-cigarettes and current biomedical research attracted 

them to the professional development series.  
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Figure 7-8. Teacher self-reported changes in content knowledge and preparedness as a result of 

participating in the PD series. A) Teachers were asked to rate their knowledge on a scale from 1 (“not at 
all knowledgeable”) to 10 (“extremely knowledgeable”) and their B) preparedness on a scale from 1 (“not 

at all”) to 4 (“to a great extent”) as part of their program application (January 2021) and on the final 
program evaluation (session 4, February 2021). Mean and standard deviation are reported for matched 
pre/post responses (n=20). Pre-post data were compared using a matched two-way analysis of variance 

with Sidak’s multiple comparisons test (**** p < 0.0001). 
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Plans to implement activities in classrooms  

Following each session that featured a lesson, teachers were asked to indicate on the session 

evaluation whether they planned to incorporate the featured lesson. Interestingly, a much higher 

percentage of teachers planned to incorporate Lesson 2 (flavorings & bioenergetics) and Lesson 3 

(biomarkers & asthma) than Lesson 1 (flavorings & immune cell function) (Figure 7-9). This finding 

suggests that the material presented in lessons 2 and 3 may have been more directly aligned with teachers’ 

curricula. Alternatively, teachers may have become more comfortable with the content as the professional 

development series progressed, with this increased comfort contributing to an increased percentage who 

planned to incorporate the lessons into their classrooms.  

 

 
Figure 7-9. Teacher self-reported plans to incorporate featured lessons into instruction. At the 
conclusion of each session featuring a lesson (sessions 2-4), teachers were asked to indicate on their 

program evaluation if they planned to incorporate the featured lesson (Lesson 1, n=24; Lesson 2, n = 17; 
Lesson 3, n = 15). 

 
 

Additional feedback from professional development series attendees  

Additional comments submitted by teachers as part of the evaluation support the quantitative impact 

on knowledge and preparedness described above. These comments reflect that teachers found the series 

valuable, appreciated the way the series was organized, and thought the presentations were 

understandable and accessible: 
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1. “The whole series was fantastic. The lessons are relevant and accessible and the speakers 

were very interesting. I'm excited to use some or all of what I've learned and the lessons in 

my teaching!” 

2. “This has been one of the best professional development experiences. The information is 

relevant & up to date. The speakers were well-prepared and excited about sharing their 

research. They neither over-simplified their presentations, nor over-complicated them with 

specific technical language that only someone in that field would understand. There was a 

good mix of background knowledge & activities for the classroom which could be tailored to 

meet the needs of different courses at different levels of instruction.” 

3. “I greatly appreciate the level of expertise and professional content and delivery of this 

workshop. It's great to be challenged and learn new and relevant information to share with my 

students.” 

4. “Incredible series… Every talk and resource is incredibly meaningful and I can see it fitting 

nicely in many different versions of my curriculum. [It is] something students will find 

interesting and meaningful in their day to day which really increases engagement.” 

 

Despite overwhelmingly positive comments and evaluation results for the PD series, teachers also 

offered constructive criticism, including a desire for more hands-on lab activities and for data to be 

accessible to students in less-advanced courses. This feedback is incredibly valuable in considering how 

to build upon the team’s work thus far:  

1. “Would love to see more labs/activities to use with the students.” 
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2. “I found the research very interesting, and it was great to hear the talks… but most of the 

lessons provided are more appropriate for an advanced biology or AP bio course at the 

high school level and really wouldn't be appropriate… for general bio or middle school 

life science (the two courses I teach). Many of the graphs and information really need to 

be adjusted to different levels (differentiated for student reading and graphing analysis).” 

 

Discussion 

Taken together, this program description highlights the effectiveness of collaborative efforts to 

develop high school science lessons and accompanying teacher professional development focused on e-

cigarette research. Our work demonstrates how scientists can help to bridge the gap between current 

research and curriculum standards by partnering with science education experts and teachers to bring 

current science into the classroom. Feedback on the lessons from teachers and classrooms shows that 

these lessons are engaging for students and provide a mechanism for reinforcing key concepts and science 

practices through the lens of a topic that is highly relevant to their lives. Evaluation data demonstrate the 

effectiveness of combining delivery of science content with data interpretation activities to increase 

teacher knowledge about e-cigarettes and preparedness to incorporate e-cigarette science in their 

classrooms.  

However, these lessons were developed with data analysis and data literacy in mind, so they are 

very data-rich and are most appropriate for advanced learners, including honors, AP, and college-level 

courses. There is a critical need to develop similar lessons that are accessible to students at all levels 

through simplification of data presented and the messages conveyed in the lessons. In our lessons, we 

provide examples for how teachers can pare down the lessons themselves, but lessons that are “classroom 

ready” and do not require additional work to reframe at a lower level will increase adoption by teachers. 

Developing such lessons is incredibly challenging to do in a scientifically accurate way, particularly for a 

relatively new field such as e-cigarette toxicology, where health effects are not completely understood 

and are not as black-and-white as they are with an exposure like smoking. Careful consideration will be 
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needed when developing these more-accessible lessons to ensure they are understandable and that they 

accurately reflect the scientific literature.  

Though these lessons and professional development activities are specific to e-cigarette research, 

they serve as examples for how biomedical scientists in all fields can partner with science education 

experts to develop standards-aligned curricula. Partnerships with scientists and teachers during lesson 

development process are critical to the success of such curricula to provide educational content that is 

real, relevant, and robust. For science education experts, partnering with scientists results in educational 

materials and learning experiences that provide deeper engagement among science learners by providing 

authentic and relevant content. By interacting with published data and having the opportunity to use 

science and engineering practices, learners get a glimpse of the exciting research taking place in today’s 

biomedical laboratories.  

For scientists, partnering with science education experts, including teachers themselves, can 

enhance research endeavors and science communication skills. Scientists are accustomed to sharing their 

research with those in their specialized field, often through highly technical presentations and papers, but 

can find it challenging to explain their research to a non-expert audience and to communicate research 

impact clearly. Because of this, scientific research often does not reach the stakeholders impacted directly 

by the research findings. Engaging in outreach, including the collaborative lesson design process and 

teacher professional development activities described here, provides scientists with the opportunity to 

practice communicating their science and provides an avenue through which relevant stakeholders can be 

engaged and even contribute to the education of the scientist. For e-cigarettes in particular, visiting 

classrooms and interacting with students was useful for informing researchers about e-cigarette devices 

being used by adolescents, current vaping trends among adolescents, and questions that students and 

teachers have about vaping, which in turn can directly influence e-cigarette research. This was the 

experience of Dr. Ilona Jaspers, who accompanied the authors to a number of outreach events that 

entailed dialogue with students, teachers, and parents. “I gained a lot of insights into the actual public 

health problem through real life stories…….getting feedback from the community has informed our 
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research and made it truly translational,” says Jaspers when reflecting on the value of outreach to her 

research endeavors. Engaging in outreach can also cultivate science communication skills and positively 

affect scientists’ presentation skills and grant writing skills within their specialized fields.  

For co-author and design team member Ms. Hickman, this collaboration serves as an example for 

how others in biomedical science graduate programs could approach their research training not only from 

a scientific perspective but also with the goal of ensuring their research findings reaches populations that 

can benefit from this knowledge. The motivation driving this collaboration between a scientist and a 

science education expert is to cultivate a network of life science teachers better prepared to integrate e-

cigarette research into instruction in an effort to respond to the youth vaping epidemic. Through the 

development of engaging, science-based, and health-centered curricula and teacher professional 

development, this work brings a relevant topic and authentic learning opportunities to classrooms filled 

with members of a population highly vulnerable to the impacts of vaping: adolescents.  
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Development of a Vaping Questionnaire for Use in Clinical Settings 

Clinical assessment of e-cigarette use can be challenging due to the wide variety of e-cigarette 

devices and ways in which they are used, including frequency, nicotine strength, flavor, and potential for 

dual use with marijuana or cannabidiol vaping, as discussed in Chapters 3 and 4. Currently, few tools 

exist to facilitate discussions between clinicians and their patients about e-cigarette use (20), and 

inclusion of vaping history in patient screening and electronic health records is rare (21, 22). Importantly, 

language used by clinicians and patients to discuss e-cigarettes is often different – for example, clinicians 

may only ask patients about tobacco use, and patients may not consider vaping to be equivalent to tobacco 

use (21, 23). These discussions are particularly important for interactions with adolescents given that 

using e-cigarettes increases risk for subsequent smoking initiation (6-8). 

To address this need, I developed a visual questionnaire, which includes photos of different 

device types, sections to indicate vaping frequency, strength, flavor, and chemical components, and a 

nicotine equivalency chart so that e-cigarette and cigarette nicotine content can be compared (Figures 7-

10 and 7-11). The questionnaire was recently reviewed by a focus group of young adults, who 

overwhelmingly supported its use and reported that it was an engaging, effective way to prevent vaping. 

A co-author publication describing implementation of this vaping questionnaire is currently under peer 

review, and the questionnaire is publicly available for any clinician to use in their practice. Aside from 

utility in primary care clinics, this questionnaire also has potential for use in collection of more accurate 

vaping histories in clinical studies of e-cigarette users and as a model for fields to include as part of 

patients’ vaping histories in electronic health records.  
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Figure 7-10. Front of vaping questionnaire. 
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Figure 7-11. Back of vaping questionnaire. 
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CHAPTER 8: CONCLUSIONS, DISCUSSION, AND FUTURE DIRECTIONS3 

Framing the E-Cigarette Debate 

Key questions in the e-cigarette debate 

E-cigarettes have created a highly complex public health challenge. Their uncontrolled entry into 

the United States market and subsequent expansion to thousands of different products, alongside their 

popularity with young, never smokers, has raised many questions regarding their overall impact on 

society. This debate is further complicated by the political and financial power of the tobacco industry (1-

4), which, given the decrease in cigarette smoking over time (5), is highly motivated to see e-cigarettes 

succeed so that the industry can survive. Some of the central topics that are important to consider in 

determining whether e-cigarettes overall are “good” or “bad” are 1) can e-cigarettes be used as a tool for 

harm reduction and/or smoking cessation? 2) does using e-cigarettes result in adverse health effects? And 

3) how do e-cigarettes influence tobacco initiation and prevalence of tobacco use in the future?  

While the focus of this dissertation was to address whether e-cigarettes cause adverse health 

effects, it is important to acknowledge these other societal questions when considering e-cigarettes 

holistically and to put the research presented in this dissertation into societal context. E-cigarettes were 

originally marketed as a safer alternative to conventional cigarette smoking (6-8), and many proponents 

of e-cigarettes argue that the benefits of e-cigarettes in facilitating smoking cessation and in reducing 

exposure to harmful chemicals outweigh their negative health effects and tobacco product initiation in 

youth (9, 10).   

 

 
3 Parts of this chapter previously appeared as part of an article in Tobacco Control. Reproduced from “Evolving 
chemical landscape of e-cigarette, 2021” by Hickman, E. and Jaspers, I., Copyright 2021 with permission from the 
BMJ Publishing Group Ltd.  
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E-cigarettes as a tool for smoking cessation 

Studies assessing the association between e-cigarette use and smoking cessation have found 

mixed results. In a recently published longitudinal study using data from the U.S. Population Assessment 

of Tobacco and Health (PATH) study, smokers using e-cigarettes had an increased likelihood of quitting 

smoking in comparison with smokers who did not use e-cigarettes (11). However, this study did not 

compare e-cigarette use to other smoking cessation tools (nicotine replacement therapy (NRT), smoking 

cessation medication) and did not assess nicotine dependence or smoking relapse. Other longitudinal 

analyses of PATH data have demonstrated that smokers who switched to e-cigarettes or any other tobacco 

product when trying to quit smoking had higher relapse rates than those who did not use any tobacco 

products to quit (12), that smokers who used e-cigarettes did not have a higher rate of smoking abstinence 

than non-e-cigarette users (13), and that smokers who use e-cigarettes had significantly lower nicotine 

abstinence rates than those who did not use e-cigarettes (13). Additional longitudinal and cross-sectional 

studies within the U.S. support these data and demonstrate that using e-cigarettes to quit smoking is not 

associated with smoking reduction or cessation (14-16) and may be associated with higher nicotine 

consumption (16). Studies conducted in the United Kingdom suggest that e-cigarettes may be slightly 

more effective than NRT and less effective than smoking cessation medication for smoking cessation, but 

whether this improvement is significant varies across studies (17, 18).  

Randomized controlled trials in the United States, the United Kingdom, Australia, and New 

Zealand have shown that subjects who were assigned to nicotine vaping had increased smoking 

abstinence in comparison with NRT and/or non-nicotine vaping (19-22); however, the difference between 

nicotine vaping and nicotine patches was not statistically significant in one study (21), and a higher 

percentage of the nicotine vaping product group was still using the treatment at follow up compared with 

the NRT group (19). Notably, the randomized controlled trial that showed the greatest difference between 

smoking abstinence in the e-cigarette group in comparison with the NRT group provided all participants 

with weekly behavioral support for at least four weeks (22), suggesting that behavioral support is a key 

component in facilitating smoking cessation with e-cigarettes.  
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Overall, these studies show that e-cigarettes can aid in smoking cessation, but they are not 

significantly more effective than existing tools for smoking cessation, particularly in the United States, 

and their use for smoking cessation may result in continued nicotine dependence and smoking relapse. 

Therefore, the benefits of e-cigarette use for smoking cessation, in the context of already available 

treatments, may not outweigh the public health cost of youth tobacco product initiation.  

 

Comparing e-cigarettes with cigarettes 

E-cigarettes generally expose users to fewer cancer-causing chemicals than cigarettes (23-25). 

Because of this, the question “Do e-cigarettes cause adverse health effects?” is often presented in the 

context of asking “Are e-cigarettes safer than smoking?”. While this is a relevant perspective to consider 

when assessing harm reduction, it interferes with assessment of e-cigarettes in comparison with the 

healthiest alternative – not smoking or not using any tobacco/nicotine products. Chronic smoking is a 

highly toxic exposure associated with many pathologies, including cancer, reproductive effects, chronic 

obstructive pulmonary disease, and cardiovascular disease (26, 27), so determining whether vaping is 

safer than smoking is not a health-protective benchmark. It is also important to consider that the chemical 

exposure created by e-cigarettes is unique from the chemical exposure created by cigarettes (28-33). 

Thus, it is likely that the effects of e-cigarettes are unique from cigarettes, rather than on the same 

spectrum of effects, making it difficult to compare their inhalation toxicities. This concept is supported by 

our findings in Chapters 3 and 4, where we demonstrated that the respiratory microbiome and central 

airway biomarkers are shifted in e-cigarette users and cigarette smokers differently in comparison with 

non-smokers/non-vapers.  
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Effects of E-Cigarettes In Vitro on Human Neutrophils and Macrophages 

Contribution of this dissertation 

The respiratory tract and lungs represent biologically complex tissues comprised of many 

different cell types, including airway epithelial cells, connective tissue cells, and immune cells (34) . 

Determining the effects of e-cigarettes and their chemical component on the different cells in the 

respiratory tract and the immune cells that patrol the airways is of great interest because knowing how e-

cigarette chemicals affect these cell types is informative in understanding the pathologies that may arise 

from e-cigarette use. Cells of airway host defense, such as macrophages and neutrophils, are particularly 

important due to their roles in mediating the inflammatory state in the airways and in responding to 

inhaled pathogens (35).  

Prior to 2019, only two studies had directly assessed the effect of e-cigarettes on neutrophil 

function in vitro (36). Hwang et al. demonstrated nicotine-dependent impairment in human neutrophil 

antimicrobial activity against methicillin-resistant Staphylococcus aureus following e-cigarette 

condensate exposure (36), and Clapp et al. demonstrated cytotoxicity and impairment in human 

neutrophil phagocytosis and NETosis following exposure to flavored, non-nicotine e-liquids, particularly 

those containing the flavoring chemical cinnamaldehyde (37).  In Chapter 2, we expanded upon these 

studies to investigate whether specific flavoring chemicals commonly found in e-liquids affected 

neutrophil function (38). We found that benzaldehyde and benzaldehyde PG acetal impaired neutrophil 

phagocytosis of S. aureus and that cinnamaldehyde, ethyl vanillin, benzaldehyde, and benzaldehyde PG 

acetal impaired neutrophil oxidative burst at sub-cytotoxic doses (38). Importantly, all of the flavoring 

chemicals that impaired neutrophil function were aromatic aldehydes or their derivatives, suggesting that 

e-cigarette flavoring chemicals could be tested and regulated by chemical class. Since this study was 

published, additional studies have demonstrated the potential for e-cigarettes and their chemical 

components to adversely affect neutrophil function (39, 40), complementing the findings presented in 

Chapter 2.  
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Altogether, this body of research indicates that e-cigarettes can impair human neutrophil function, 

which could result in increased susceptibility to airway infections and altered airway immune 

homeostasis, both potential contributors to airway disease. However, additional research is needed to 

understand the mechanisms underlying these functional impairments and how the effects of individual 

chemical components (flavors, nicotine) synergize when cells are exposed to the complex chemical 

mixture found in e-liquids and e-cigarette aerosols. Furthermore, the data presented in Chapter 6 

demonstrating sex-dependent differences in neutrophil phagocytosis and correlation between 

phagocytosis and bioenergetic parameters emphasize the need for future studies. Additional investigations 

into sex-dependent differences in neutrophil responses to toxicants such as e-cigarette aerosol and 

investigations into mechanisms underlying these observed sex differences are warranted.  

Relative to neutrophils, the effects of e-cigarettes on macrophages in vitro have been studied 

more extensively, with many studies demonstrating altered cellular function following exposure to e-

liquid, e-liquid components, or e-cigarette condensate (37, 40-43). However, these studies used cell lines 

and/or murine cells, which do not always accurately recapitulate human macrophage phenotypes. These 

studies also used earlier generation e-cigarettes (vape pens, box mods), and none of these studies exposed 

cells to e-cigarette aerosol directly at air-liquid interface. Therefore, we set out to expose human 

bronchoalveolar lavage cells to e-cigarette aerosol from newer, nicotine-salt containing e-cigarettes and to 

assess cellular effects. The COVID-19 pandemic limited our ability to obtain cells for these experiments, 

necessitating the use of human monocyte-derived macrophages (hMDMs). However, in developing a 

protocol to culture hMDMs, we found a lack of standardized protocols and thorough baseline 

characterization of polarized hMDMs in the literature, with only one study evaluating a wide range of 

endpoints to assess polarization (44). In Chapter 5, we thoroughly characterized polarized hMDMs, 

including assessment of bioenergetic parameters, which allowed us to compare our polarized hMDMs to 

primary human bronchoalveolar lavage and induced sputum macrophages (45). Importantly, phenotypes 

were similar in hMDMs differentiated on Transwell membranes, confirming that these cells could be used 

for in vitro experiments with e-cigarette aerosol. Although our polarized hMDMs recapitulated many 
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phenotypes observed in primary human airway macrophages, they were not a perfect model. Two recent 

studies describe the development of culturing protocols for murine cells that more accurately recapitulate 

resident lung macrophages (46, 47), and there is a need to develop similar protocols for human cells.  

 

Limitations of this dissertation and future needs 

In vitro studies are an invaluable tool to understand the effects of e-cigarettes and their chemical 

components on different cell types because they allow for controlled investigation of dose-response and 

cause-and effect-relationships. Progress has been made in understanding the chemical composition of e-

liquids (31, 32, 48-50), whether these chemicals transfer to the aerosol (48, 51), and to what extent 

degradation products and new chemicals are generated through aerosolization (33, 52-60), which is highly 

useful when selecting exposures for in vitro studies. However, one of the most significant limitations in 

designing these studies and interpreting the data generated from them is that the dose of e-cigarette 

aerosol deposited in different regions of the respiratory system during vaping is poorly characterized. 

Without knowing what dose of e-cigarette aerosol or concentration of individual chemical components 

cells are exposed to in vivo, it is difficult to extrapolate findings demonstrated in vitro to human health 

effects in vivo. Thus, future studies are needed to establish the amount of e-cigarette aerosol deposited in 

human airways during a session of vaping. It is likely that deposition varies widely between users and is 

dependent on device, e-liquid composition, use frequency, and puffing topography; however, 

understanding biologically relevant doses, even if this includes a wide range of possible doses, will be 

critical to ensure maximal impact of future in vitro studies.  

The cell types used in this dissertation (primary human blood neutrophils and monocyte-derived 

macrophages) were chosen to mimic in vivo biology as closely as possible; however, following up on the 

study presented in Chapter 2 with human blood neutrophils primed as they would be before they 

extravasate into the airway from circulation (e.g., with a chemoattractant such as IL-8) would improve 

biological relevance. Similarly, exposing human bronchoalveolar lavage macrophages and induced 

sputum cells to e-cigarette aerosol at air-liquid interface would improve biological relevance in 
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comparison with monocyte-derived macrophages, though these primary airway cells can be difficult to 

obtain regularly and in sufficient numbers to perform controlled experiments.   

 

Effects of E-Cigarettes In Vivo on Human Respiratory Immune Homeostasis 

Contribution of this dissertation 

Previous studies demonstrated that e-cigarettes impair respiratory host defense and increase 

bacterial adherence in vitro and in vivo (37, 38, 61-64), but the effects of e-cigarette use on the respiratory 

microbiome and host-microbiota interactions had not been studied. In Chapter 3, we present the first 

study to determine whether e-cigarette use is associated with respiratory microbiome dysbiosis using 

samples from the nasal cavity. Our study is also unique in the analysis approach we took, which was 

designed with the high dimensional, sparse datasets characteristic of microbiome studies and our 

relatively small sample size in mind. We found that e-cigarette use is associated with a shift in the 

composition of the nasal microbiome and that this shift is unique from that observed in smokers. Some of 

the taxa that were enriched in e-cigarette users, such as Lactobacillus and Staphylococcus, have been 

previously associated with airway diseases (65-67), though studies of the nasal microbiome and direct 

influence of specific taxa on human health are limited. We then found that nasal microbial dysbiosis was 

associated with shifts in the balance of immune proteins involved in host-microbe interaction, such as 

lactoferrin, neutrophil elastase, and IL-8 in matched nasal lavage fluid. Notably, we also observed striking 

sex differences in the nasal microbiome, which have not been previously reported. Overall, these results 

provide evidence that e-cigarette use is associated with altered microbial communities in the respiratory 

tract; however, additional studies are needed to determine cause-and-effect relationships (e.g., do e-

cigarettes directly impact the microbiome, host, or both to result in our observed effects), to determine 

specific implications for human health (e.g., increased risk for infection or microbiome-mediated chronic 

disease), and to assess the lower airway microbiome in the context of e-cigarette exposure.  

Noting the heterogeneity in device types in our samples collected from e-cigarette users and the 

observation that previous studies on biomarkers of respiratory immune homeostasis included only 
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subjects who used 3rd generation e-cigarettes such as vape pens and box mods (40, 68), we next wanted to 

understand how currently popular devices such as JUUL and disposables (4th generation) may affect the 

respiratory immune system differently from previous generations of e-cigarettes. In Chapter 4, we 

demonstrated that users of 4th generation e-cigarettes have unique changes in induced sputum cell 

composition and soluble mediator milieu in comparison with 3rd generation e-cigarette users, non-

smokers/non-vapers, and smokers. These differences were the most pronounced in the comparison 

between 3rd and 4th generation e-cigarette users, and 4th generation e-cigarette users had significantly 

lower levels of many soluble mediators, including sICAM-1, CRP, IFN-𝛾, uteroglobin, and MCP-1, 

indicative of suppressed immune responses. These findings provide striking evidence that the respiratory 

effects of 4th generation e-cigarettes are unique from 3rd generation e-cigarettes, which has implications 

both for future studies of e-cigarette toxicity and for the regulation of e-cigarettes. Additionally, data in 

Chapter 6 demonstrate that central airway macrophages from 4th generation e-cigarette users have 

increased mitochondrial membrane potential in comparison with non-smokers/non-vapers ex vivo, 

potentially indicative of disrupted cellular function.  

A key characteristic of both human in vivo studies presented in this dissertation (Chapters 3 and 

4) is that the analyses approaches employed were carefully selected to answer the biological questions of 

interest while accounting for influence of demographic variables and ensuring appropriate statistical 

treatment of the large number of variables measured per sample. Traditional approaches that test 

significant differences between experimental groups for each endpoint one-by-one run the risk of missing 

important features in the data, such as sex differences or overall shifts in biomarker milieu, which may 

not be evident when using a traditional analysis approach. For example, in our study of the nasal 

microbiome (Chapter 3), exposure group differences were not apparent until sex differences were 

adjusted for. Had we not explored the impact of demographic variables on the nasal microbiome, we 

would have missed an important observation of sex differences (which are not frequently reported), and 

this effect would have confounded our assessment of the effects of e-cigarettes and cigarettes on the nasal 

microbiome. In this study, we also approach data analysis from a ratio perspective, in which ratios of 
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abundance of specific taxa to each other or concentrations of proteins are the primary variables of interest. 

This approach attempts to account for the compositional nature of microbiome data (in which all taxa are 

measured relative to other taxa) and reflect the complex interactions of signaling molecules within the 

mucosa. In Chapter 4, we included a machine learning approach alongside a variable-by-variable 

approach, which provided additional evidence that the overall soluble immune mediator milieu in 4th 

generation e-cigarette users was unique from all other groups. Machine learning models can detect 

patterns and structure in data that are not always immediately evident when manually inspecting data, and 

this can be particularly important when considering complex biological systems and datasets that contain 

a high amount of variability (69). Given the increasing ease and affordability of measuring many 

biological endpoints in a single sample, analyses such those described in this dissertation will become 

increasingly necessary to extract patterns from high-dimensional clinical datasets, consider novel 

hypotheses, and improve robustness of analyses.  

 

Limitations of this dissertation and future needs 

Clinical studies using samples from human subjects are incredibly powerful in understanding the 

effects of e-cigarettes, particularly due to challenges in accurately modeling e-cigarette exposures in vitro 

and with rodent models. However, clinical studies present unique challenges, including recruiting and 

retaining subjects, accurately characterizing e-cigarette and other substance use, and accounting for 

demographic differences between smoking, e-cigarette, and non-smoking/non-vaping populations. 

Interindividual variation is much higher in human clinical studies than in controlled in vitro and rodent in 

vivo studies, which can make it difficult to detect significant changes in endpoints of interest. There is 

also significant variation in device and flavor usage among e-cigarette users, making it difficult to assess 

associations between specific use parameters in the cohort sizes used in Chapters 3 and 4. Therefore, 

larger cohort studies are needed in the future to ensure statistical power and to elucidate the relationship 

between e-cigarette use history (e.g., flavor, frequency of use, length of use, prior smoking) and 

biological endpoints. Additionally, Chapters 3 and 4 are cross-sectional studies and are only able to 
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demonstrate associations. Therefore, longitudinal studies of e-cigarette users are needed to assess cause-

and-effect relationships between e-cigarette use and changes in biomarkers of host defense directly. It is 

entirely possible that, given the short period of time that e-cigarettes have been available and popular, 

most e-cigarette users have not used e-cigarettes for a sufficient length of time to begin experiencing overt 

pathologies associated with their e-cigarette use. Finally, dual use of cannabis (vaping or smoking) and e-

cigarettes is highly prevalent, particularly in younger populations (70-73), so future studies that both 

adjust for this additional exposure and explore the potential for augmented biological effects associated 

with dual cannabis and e-cigarette use are needed.  

 

Other Key Knowledge Gaps and Challenges in E-Cigarette Toxicology 

E-cigarettes and susceptible subpopulations 

Chapters 2, 3, and 4 used samples collected from healthy adult subjects. However, people with 

diseases such as asthma and COPD, which already involve disrupted respiratory immune homeostasis, 

may have different responses to e-cigarette aerosol in comparison with people who do not have a pre-

existing respiratory disease. Current e-cigarette research is largely focused on understanding the effects of 

e-cigarettes and the mechanisms underlying these effects in healthy adult populations, but there is a need 

to expand study populations to include those with pre-existing respiratory diseases and to younger 

populations, as these responses may be different from those observed in healthy adult cells or populations.  

 

E-cigarette toxicokinetics 

Additionally, little is known about the toxicokinetics and biotransformation of the chemicals in e-

cigarette aerosol once they are deposited in the airways. A large body of literature exists that characterizes 

nicotine pharmacokinetics (74, 75), but there are few studies evaluating absorption and detoxification of 

other chemicals found in e-cigarette aerosols, such as PG/VG, flavoring chemicals, and organic acids. 

Interestingly, one study demonstrated that CYP2A6, which metabolizes nicotine, is inhibited by aromatic 

aldehyde flavoring chemicals found in e-liquids (particularly benzaldehyde and cinnamaldehyde), 
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suggesting that nicotine metabolism could be impaired in e-cigarette users who vape e-liquids containing 

those flavoring chemicals (76). Understanding these toxicokinetics will be informative in predicting long-

term effects of e-cigarette exposure, selecting biologically relevant doses for in vitro studies using e-

cigarettes, understanding the interactions between e-liquid chemical components and detoxification 

enzymes, and assessing the potential for systemic effects of these chemicals. 

 

Emerging vaping products and chemical components 

The e-cigarette market is fast-moving, which presents challenges for researchers investigating 

health effects associated with vaping. Recently, cannabis vaping (both THC and CBD) has become 

increasingly popular, and little is known about the effects of cannabis vaping on respiratory health. 

Recent studies have shown that cannabinoids can modulate immune responses (77, 78), and additional 

studies that address the health effect associated with cannabis vaping are critically needed.  

Furthermore, the increased popularity of disposable e-cigarettes following the FDA’s restrictions 

on flavored pod-based e-cigarettes has also added complexity to assessing the respiratory toxicity of e-

cigarettes. A recent study by Omaiye et al. showed that both mint and menthol JUUL (pod) and Puff 

(disposable) e-cigarettes contain high concentrations of menthol; however, Puff e-cigarettes had higher 

levels of synthetic coolants and pulegone, a compound found in mint oil, suggesting that Puff products 

have the potential to be toxicologically “worse” than JUUL (31). These chemicals may contribute to the 

palatability of e-cigarettes and may augment their toxicity, so these chemicals, and others that may serve 

similar functions, will need to be included in any future e-cigarette toxicity testing and regulations.  

 

Overall Impact and Convergence Science Approach to Toxicology 

The research presented in this dissertation demonstrates that e-cigarettes can disrupt respiratory 

immune homeostasis and that e-cigarette device type is an important consideration when assessing the 

respiratory toxicity of e-cigarettes. This dissertation has yielded scholarly products relevant to 

computational biologists, toxicologists, immunologists, policy makers, clinicians, K-12 educators, and the 
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public. The research presented here is unique in that spanned the development of high school biology 

lessons and a vaping questionnaire (Chapter 7) to cutting-edge high dimensional data analysis to address 

the important public health challenges surrounding vaping. This dissertation serves as an example for how 

others in biomedical science can approach their research topics not only from a scientific perspective but 

also with the goal of ensuring their research reaches the groups that their research directly impacts. One 

way to do this is through an approach known as convergence (79). Convergence science is the expansion 

of collaborations beyond traditional multi- and inter-disciplinary interactions to achieve significant 

progress in a specific area of societal need (Figure 8-1). Convergence science will be integral to pushing 

toxicology and public health forward, and for addressing ongoing needs related to e-cigarettes. 

Researchers from fields such as biomedicine, sociology, and science communication must work together 

to ensure that e-cigarette research reaches key stakeholders and that progress is made in controlling the 

vaping epidemic by making health-protective decisions.   

 

 
Figure 8-1. Convergence approach to problem solving and knowledge development. Examples of the 
convergence approach in the context of e-cigarettes are provided in blue. Schematic developed by Ilona 

Jaspers with modifications by Elise Hickman. Created with biorender.com. 
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E-Cigarette Regulation: Where to go from here? 

An increasing number of studies, including those in this dissertation, support the notion that e-

cigarettes are not without health effects. In response to this body of scientific work and the youth vaping 

epidemic (80), the FDA has attempted to regulate e-cigarettes through bans on flavored e-cigarette pods 

(81). However, the complexity of e-liquid formulations and rapid evolution of different e-cigarette 

devices, coupled with regulations focused on narrowly defined e-cigarette products, has resulted in 

exploitation of regulatory loopholes and few substantive changes in overall e-cigarette product 

availability, appeal, and use. Future regulations governing e-cigarette devices, flavors, and chemical 

components will need to be rigorous and thorough, with careful consideration of ways in which 

companies may attempt to evade regulations by making small changes to their products. This foresight 

will be needed to prevent the constant emergence of new device types and formulations, which presents a 

significant challenge in assessing toxicity of e-cigarettes and understanding their public health impact. 

Ultimately, a paradigm shift in the way e-cigarettes are brought to the market is needed so that assessment 

of potential e-cigarette toxicity is not constantly lagging behind consumer behavior. Like most other 

consumer products brought to market, the chemical composition and potential toxicity of e-cigarettes 

should be evaluated prior to public sale of these devices, allowing the public to be informed about the 

risks of e-cigarette use and preventing newer, potentially more toxic products to gain traction.  
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APPENDIX 1: SUPPLEMENTAL FIGURES 

 

Figure S2-1. Rate graphs of neutrophil oxidative burst following exposure to flavoring 
chemicals.Effects of flavoring chemicals cinnamaldehyde (A), ethyl vanillin (B), benzaldehyde (C), 
benzaldehyde propylene glycol acetal (D), and isoamyl acetate (E) on PMA-stimulated neutrophil 

oxidative burst as measured by oxygen consumption rate (OCR, pmol/min). 
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Figure S2-1. Neutrophil glycolysis during oxidative burst following exposure to flavoring 
chemicals.Effects of flavoring chemicals cinnamaldehyde (A), ethyl vanillin (B), benzaldehyde (C), 

benzaldehyde PG acetal (D), and isoamyl acetate (E) on PMA-stimulated neutrophil glycolysis during 
oxidative burst as measured by extracellular acidification rate (ECAR, mpH/min). Total glycolysis was 

calculated by integrating the oxygen consumption rate (ECAR, mpH/min) of PMA-stimulated neutrophils 
over time. Data represents mean ± SEM with n = 6. * p < 0.05, ** p < 0.01 
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Figure S3-1. Flow chart showing inclusion and exclusion criteria for NELF microbiome component, 

NLF component, and integrative analysis. 
 
 
 
 

 
Figure S3-2. SelEnergyPerm taxa subset selection and significance results. (A)  Left - Selection of 

number of taxa (t = 10) by normalized energy maximization to test in the final by Sex microbial log ratio 
signature. Right – SelEnergyPerm by Sex microbial signature significance via permutation testing. (B)  
Left - Selection of number of taxa (t = 20) by normalized energy maximization to test in the final by 
Subject microbial log ratio signature. Right – SelEnergyPerm by Exposure group microbial signature 

significance results via permutation testing. 
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Figure S3-3. NLF Mediator Analysis. (A) Histogram of total NLF mediator concentrations by sample. 
(B) DCV scoring of NLF mediator log ratios. Grey: DCV < 0; Blue: DCV > 0 (C) Graph representation 
of DCV derived key NLF mediators. (D) Log ratio values of key NLF mediator log ratios by exposure 

group with subsequent Wilcoxon Rank-Sum test pairwise comparison displayed. (E) NLF mediator 
exposure group discrimination via ROC curve displaying the multi-class AUC results of 50 repeats of 10-

fold cross-validation using a 2-component PLS-DA model.    
 

  



 201 

 
Figure S3-4. By Exposure group Nasal Microbial Signature Latent Space Analysis. (A) 2-

Component PLS-DA Biplot (B) Violin plot with means showing the distribution of first PLS-DA 
component scores by exposure group (C) PLS-DA loadings on the first component. 
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Figure S4-1. Flow chart showing inclusion and exclusion of clinical study subjects by device type. 
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APPENDIX 2: SUPPLEMENTAL TABLES 

Table S2-1. Maximum oxygen consumption rate (OCR, pmol/min) for each flavoring chemical as 
determined via Seahorse assay, expressed as a percent of the media or vehicle control.n = 3 males 

and n = 3 females per chemical and dose. CA = cinnamaldehyde; EV = ethyl vanillin; BZ = 
benzaldehyde, BZPGA = benzaldehyde PG acetal, IA = isoamyl acetate. Data are presented as mean ± 

standard error. No data = n.d. * indicates statistical significance in comparison with the media or vehicle 
control group. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 

 Dose (mM) 
Flavoring 0 DMSO 0.05 0.25 0.5 2 5 

CA 100 ± 0.0  n.d. 93 ± 5.5       70 ± 2.7***               46 ± 2.0**** 4.2 ± 0.8**** n.d. 
EV 106 ± 4.1 100 ± 0.0 100 ± 6.1  n.d. 84 ± 4.7 n.d.   48 ± 3.9* 
BZ 100 ± 0.0 n.d. 103 ± 3.8  93 ± 5.3 98 ± 5.2 n.d. 90 ± 2.8 

BZPGA 100 ± 0.0 n.d. 98 ± 2.3      89 ± 1.8**      91 ± 1.3** n.d.   91 ± 1.8* 
IA 100 ± 0.0 n.d. 104 ± 3.1 97 ± 6.6 109 ± 4.2 n.d. 96 ± 6.0 

 
Table S2-2. Time to maximum oxygen consumption rate (pmol/min) as determined via Seahorse 
assay, expressed as time in minutes from the start of the assay.(t = 0 at the start of the assay). n = 3 

males and n = 3 females per chemical and dose. CA = cinnamaldehyde; EV = ethyl vanillin; BZ = 
benzaldehyde, BZPGA = benzaldehyde PG acetal, IA = isoamyl acetate. Data is presented as mean ± 

standard error. No data = n.d. * indicates statistical significance in comparison with the media or vehicle 
control group. * p < 0.05 

 Dose (mM) 
Flavoring 0 DMSO 0.05 0.25 0.5 2 5 

CA 57 ± 1.5 n.d. 58 ± 2.2 53 ± 1.2 49 ± 1.4 67 ± 30 n.d. 
EV 52 ± 1.4 51 ± 1.5 49 ± 2.2 n.d. 46 ± 1.0 n.d. 41 ± 0.1* 
BZ 59 ± 2.0  n.d. 58 ± 3.2 58 ± 2.2 56 ± 2.8 n.d. 48 ± 2.6* 

BZPGA 55 ± 2.0 n.d. 55 ± 2.0 53 ± 2.0 51 ± 2.2 n.d. 52 ± 1.4 
IA 57 ± 2.8 n.d. 58 ± 2.8 56 ± 2.8 55 ± 3.1 n.d. 55 ± 3.1 

 
Table S2-3. Maximum extracellular acidification rate (ECAR, mpH/min) for each flavoring 

chemical as determined via Seahorse assay, expressed as a percent of the media or vehicle control.n 
= 3 males and n = 3 females per chemical and dose. CA = cinnamaldehyde; EV = ethyl vanillin; BZ = 
benzaldehyde, BZPGA = benzaldehyde PG acetal, IA = isoamyl acetate. Data is presented as mean ± 

standard error. No data = n.d. * indicates statistical significance in comparison with the media or vehicle 
control group. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 

 Dose (mM) 
Flavoring 0 DMSO 0.05 0.25 0.5 2 5 

CA 100 ± 0.0  n.d. 98 ± 3.1   83 ± 1.6*** 58 ± 1.3**** 13 ± 0.7**** n.d. 
EV 104 ± 5.6 100 ± 0.0 102 ± 5.8  n.d. 84 ± 2.4** n.d.         32 ±1.8**** 
BZ 100 ± 0.0 n.d. 98 ± 2.7    99 ± 1.6   93 ± 3.4 n.d.  91 ± 2.2 

BZPGA 100 ± 0.0 n.d. 102 ± 4.3 101 ± 1.1 101 ± 3.3 n.d. 101 ± 1.7 
IA 100 ± 0.0 n.d. 105 ± 4.2 102 ± 1.3 100 ± 3.6 n.d. 103 ± 1.8  
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Table S2-4. Time to maximum extracellular acidification rate (ECAR, mpH/min) as determined via 
Seahorse assay, expressed as time in minutes from the start of the assay. (t = 0 at the start of the 

assay). n = 3 males and n = 3 females per chemical and dose. CA = cinnamaldehyde; EV = ethyl vanillin; 
BZ = benzaldehyde, BZPGA = benzaldehyde PG acetal, IA = isoamyl acetate. Data is presented as mean 

± standard error. No data = n.d. * indicates statistical significance in comparison with the media or 
vehicle control group. * p < 0.05 

 Dose (mM) 
Flavoring 0 DMSO 0.05 0.25 0.5 2 5 

CA 53 ± 1.1 n.d. 51 ± 2.2 47 ± 0.1 48 ± 1.1 45 ± 1.4* n.d. 
EV 49 ± 1.4 47 ± 1.6 47 ± 1.6 n.d. 45 ± 1.4 n.d. 41 ± 0.1 
BZ 53 ± 2.0  n.d. 51 ± 2.2 53 ± 1.1 51 ± 2.2 n.d. 45 ± 1.4 

BZPGA 48 ± 2.0 n.d. 50 ± 2.2 48 ± 2.0 46 ± 1.1 n.d. 46 ± 1.1 
IA 50 ± 2.8 n.d. 52 ± 2.8 49 ± 2.7 50 ± 2.2 n.d. 49 ± 2.7 

 

Table S3-1. Commercially available ELISA kits used to measure mediators of host-microbiota 
interaction. 

Mediator Limit of Detection Company Company Location 
Neutrophil Elastase 0.8 ng/mL Thermo Fisher Scientific (Invitrogen) Waltham, MA 

Total IgA 1.6 ng/mL Thermo Fisher Scientific (Invitrogen) Waltham, MA 
Lactoferrin 156.3 pg/mL Abcam Cambridge, UK 
Lysozyme 31.25 pg/mL Abcam Cambridge, UK 

IL-8 3.1 pg/mL BD Biosciences San Diego, CA 
Beta-Defensin 1 7.8125 pg/mL LifeSpan Biosciences Seattle, WA 
Beta-Defensin 2 7.8125 pg/mL LifeSpan Biosciences Seattle, WA 
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Table S4-1. Levels of serum biomarkers of liver injury by group.Data are presented as mean (SEM).   
 NS/NV 

(N=21) 
Smoker 
(N=21) 

3rd Gen 
(N=26) 

4th Gen 
(N=12) 

ALP (U/L)     

Mean (SEM) 75.7 (6.80) 78.9 (5.57) 73.8 (4.57) 87.2 (7.12) 

N > 147 U/L 1 (4.8%) 0 (0%) 0 (0%) 0 (0%) 

ALT (U/L)     

Mean (SEM) 19.2 (3.68) 15.5 (1.72) 29.8 (6.00) 21.2 (2.82) 

N > 30 U/L 2 (9.5%) 1 (4.8%) 6 (23%) 1 (8.3%) 

AST (U/L)     

Mean (SEM) 22.9 (1.82) 18.7 (0.986) 25.8 (3.31) 20.4 (1.51) 

N > 34 U/L 3 (14.3%) 0 (0%) 4 (15.4%) 0 (0%) 

GGT (U/L)     

Mean (SEM) 27.6 (11.5) 26.9 (4.17) 36.2 (6.95) 27.8 (4.05) 

N > 64 U/L 1 (4.8%) 2 (9.5%) 3 (11.5%) 1 (8.3%) 

DBIL (mg/dL)     

Mean (SEM) 0.244 (0.0164) 0.175 (0.0157) 0.230 (0.0297) 0.253 (0.0377) 

N > 0.2 mg/dL 16 (76.2%) 7 (33.3%) 8 (30.78%) 6 (50%) 

TBIL (mg/dL)     

Mean (SEM) 0.624 (0.0511) 0.457 (0.0362) 0.662 (0.102) 0.675 (0.103) 

N > 1 mg/dL 2 (9.5%) 0 (0%) 3 (11.5%) 2 (16.7%) 

ALB (g/L)     

Mean (SEM) 4.90 (0.130) 4.77 (0.121) 4.92 (0.108) 5.35 (0.154) 

N < 3.5 g/L 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
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Table S4-2. P-values output by ANCOVA for effects of device, sex, age, and race on expression of 
soluble mediators in induced sputum. 

 Device Sex Age Race 

Albumin 0.2082 0.03 0.1462 0.3214 

bFGF 0.0845 0.0402 0.7378 0.8089 
CRP 0.0367 0.2173 0.047 0.8506 

dsDNA 0.2503 0.6202 0.1294 0.3717 
Eotaxin 0.3628 0.9251 0.0027 0.8337 

Eotaxin-3 0.9277 0.0249 0.5807 0.7037 
Flt1 0.0138 0.3114 0.0514 0.6962 

GM-CSF 0.2602 0.7785 0.9186 0.347 
IFN-g 0.0266 0.8528 0.8552 0.6624 
IL-10 0.0877 0.657 0.1332 0.3651 

IL12p40 0.819 0.4636 0.1964 0.6435 
IL12p70 0.7122 0.5052 0.98 0.8067 

IL-13 0.1922 0.4041 0.0289 0.2269 
IL-15 0.7775 0.3013 0.1088 0.6615 
IL-16 0.1007 0.553 0.1285 0.1855 
IL-17 0.477 0.4003 0.8594 0.0978 
IL-1a 0.3385 0.0968 0.1722 0.0352 
IL-1b 0.3290 0.5362 0.2755 0.4424 
IL-2 0.1223 0.223 0.5227 0.496 
IL-4 0.2633 0.8331 0.2997 0.4732 
IL-5 0.5339 0.1543 0.6403 0.5193 
IL-6 0.0232 0.316 0.1334 0.4723 
IL-7 0.1333 0.2347 0.075 0.7845 
IL-8 0.4295 0.4568 0.1054 0.8938 
IP-10 0.1405 0.7454 0.0309 0.1902 

MCP-1 0.0057 0.0966 0.0037 0.867 
MIP-1a 0.9751 0.1657 0.019 0.6023 
MIP-1b 0.0183 0.2838 0.0274 0.4631 
MMP-2 0.0184 0.3625 0.1694 0.1418 
MMP-9 0.4125 0.6823 0.3035 0.5889 
MPO 0.7323 0.5668 0.1054 0.6872 
NE 0.1311 0.5209 0.1301 0.5846 

PIGF 0.0866 0.0401 0.3215 0.9739 
SAA 0.079 0.8876 0.3538 0.7345 

sICAM1 0.0008 0.1692 0.0153 0.5665 
sVCAM1 0.0023 0.0576 0.2387 0.6263 

TARC 0.2081 0.0898 0.0281 0.3016 
Tie2 0.0419 0.9833 0.537 0.9571 

TNF-a 0.4261 0.465 0.1538 0.4918 
Uteroglobin 0.02 0.1542 0.2425 0.2556 

VEGF 0.0213 0.2653 0.0491 0.6691 
VEGFC 0.301 0.9191 0.227 0.4324 
VEGFD 0.1089 0.5429 0.0559 0.463 
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Table S4-3. Soluble mediators measured in induced sputum in pg/mL.Data are presented as mean 

(standard error). Groups were compared using the Kruskal-Wallis test followed by Dunn’s test for non-
parametric multiple comparisons. Comparisons between NS/NV and all other exposure groups, and 

comparisons between 3rd and 4th gen e-cig users, are indicated with bolded font and symbols: * p < 0.05, 
** p < 0.01, *** p < 0.001, **** p < 0.0001 in comparison with NS/NV; # p < 0.05, ## p < 0.01, ### p < 
0.001, #### p < 0.0001 in comparison with 3rd gen e-cig users. Additional significant comparisons can be 

viewed using R code: https://github.com/ehickman0817/dissertation-ch4-devicecomparison.  
 NS/NV 

(N=28) 
Smoker 
(N=21) 

3rd Gen 
(N=27) 

4th Gen 
(N=27) 

P-
value 

Albumin 156000 (70700) 147000 (30300) 138000 (35100) 130000 (75800) # 0.003 

bFGF 14.9 (2.83) 30.8 (4.68) * 27.3 (5.71) 21.6 (6.13) 0.013 

CRP 1030 (622) 621 (152) 561 (129) 113 (41.8) *, ## <0.001 

dsDNA 3080000 (531000) 3730000 (515000) 4020000 (506000) 3430000 (549000) 0.185 

Eotaxin 60.2 (32.6) 73.2 (28.8) 100 (43.7) 87.3 (40.0) 0.556 

Eotaxin-3 3.71 (1.48) 4.00 (1.65) 6.84 (2.10) 10.3 (4.48) 0.61 

Flt1 180 (35.6) 329 (52.4) * 253 (41.6) 142 (48.3) <0.001 

GM-CSF 1.11 (0.219) 1.84 (0.353) 0.988 (0.270) 1.35 (0.914) 0.024 

IFN-g 31.4 (16.4) 154 (95.0) 164 (80.9) 0.776 (0.143) 0.277 

IL-10 0.636 (0.0709) 0.731 (0.0967) 0.656 (0.0620) 0.857 (0.0963) 0.203 

IL12p40 87.4 (58.6) 34.6 (8.93) 35.3 (5.55) 46.2 (13.5) 0.702 

IL12p70 0.690 (0.118) 1.20 (0.371) 1.06 (0.303) 0.715 (0.101) 0.735 

IL-13 133 (24.2) 191 (27.9) 154 (22.3) 155 (23.7) 0.264 

IL-15 0.882 (0.321) 1.15 (0.454) 0.890 (0.320) 0.364 (0.137) 0.446 

IL-16 911 (172) 807 (165) 1250 (150) 1220 (296) 0.106 

IL-17 5.40 (1.69) 9.58 (3.44) 3.99 (1.62) 9.85 (3.55) 0.562 

IL-1a 401 (65.0) 697 (122) * 609 (104) 414 (71.3) 0.012 

IL-1b 61.0 (10.4) 91.9 (14.9) 82.7 (13.9) 77.2 (18.2) 0.102 

IL-2 1.63 (0.249) 2.82 (0.521) 2.04 (0.289) 2.30 (0.275) 0.0924 

IL-4 0.376 (0.108) 4.78 (3.12) 4.63 (3.81) 0.156 (0.0313) # 0.030 

IL-5 1.00 (0.255) 1.47 (0.341) 1.25 (0.336) 0.758 (0.236) 0.371 

IL-6 27.5 (5.72) 127 (35.0) ** 61.4 (14.8) 47.6 (10.1) 0.007 

IL-7 13.7 (3.56) 12.8 (2.31) 15.4 (3.51) 7.12 (2.11) # 0.018 

IL-8 3550 (683) 3730 (702) 3930 (503) 4240 (957) 0.357 

IP-10 2190 (1500) 937 (253) 1200 (290) 875 (349) 0.128 

MCP-1 151 (32.4) 386 (119) * 231 (48.3) * 75.0 (18.9) ### <0.001 

MIP-1a 35.4 (6.96) 39.7 (10.3) 46.1 (9.01) 45.9 (17.5) 0.607 

MIP-1b 139 (42.7) 69.8 (35.8) 131 (31.1) 81.2 (36.1) # 0.009 

MMP-2 105000 (16900) 57300 (12500) 130000 (11400) 79900 (15500) # 0.002 

MMP-9 344000 (78700) 351000 (60900) 435000 (76200) 504000 (112000) 0.506 

MPO 1690000 (297000) 1950000 (260000) 2120000 (326000) 1800000 (379000) 0.272 

NE 358000 (93500) 525000 (79400) * 405000 (47800) 316000 (77600) # 0.005 

PIGF 0.759 (0.123) 1.30 (0.293) 0.630 (0.123) 0.750 (0.118) 0.136 

SAA 13400 (3140) 75400 (54800) * 70400 (50000) 19200 (4510) 0.026 
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 NS/NV 
(N=28) 

Smoker 
(N=21) 

3rd Gen 
(N=27) 

4th Gen 
(N=27) 

P-
value 

sICAM1 39400 (15800) 74600 (39800) 30900 (7100) 7230 (3020) *, #### <0.001 

sVCAM1 3880 (925) 5670 (932) 5080 (1240) 2030 (732) ## <0.001 

TARC 19.1 (4.47) 19.9 (4.79) 23.3 (4.91) 8.39 (2.21) # 0.038 

Tie2 156 (70.5) 157 (72.9) 466 (118) * 69.0 (27.1) # 0.028 

TNF-a 5.96 (0.955) 6.94 (0.993) 7.62 (0.854) 7.01 (1.53) 0.155 

Uteroglobin 39300000 
(11900000) 

20300000 
(5290000) 

36600000 
(6400000) 

21500000 
(6260000) # 0.031 

VEGF 1080 (223) 1500 (203) * 1220 (209) 663 (137) # <0.001 

VEGFC 155 (56.5) 150 (130) 151 (65.8) 348 (81.0) 0.018 

VEGFD 417 (111) 382 (94.4) 394 (76.4) 114 (48.6) # 0.018 

 

Table S4-4. By class and overall performance metrics for predictive modeling of separation 
between exposure groups. 

Model Predictors Included Accuracy Sensitivity Specificity 
Positive 

Predictive 
Value 

Negative 
Predictive 

Value 

Balanced 
Accuracy 

(A) Multinomial Logistic Regression 
Soluble mediators 
     Non-smokers/Non-vapers 0.5200 0.5200 0.6690 0.3617 0.7967 0.5945 

     Smokers 0.3200 0.3200 0.8822 NaN 0.8380 0.6011 
     3rd Generation E-Cig Users 0.2000 0.2000 0.8120 0.1757 0.7449 0.5060 
     4th Gen E-Cig Users 0.6200 0.6200 0.8577 0.5914 0.8708 0.7388 
     Overall 0.4206 0.4150 0.8052 0.3763 0.8126 0.6101 
Soluble mediators + covariates 
     Non-smokers/Non-vapers 0.4800 0.4800 0.8296 0.5676 0.8125 0.6548 
     Smokers 0.4200 0.4200 0.8925 0.5167 0.8581 0.6562 
     3rd Generation E-Cig Users 0.4200 0.4200 0.7479 0.3794 0.7895 0.5839 
     4th Gen E-Cig Users 0.7333 0.7333 0.8827 0.6829 0.9086 0.8080 
     Overall 0.5160 0.5133 0.8382 0.5366 0.8422 0.6757 
(B) Quadratic Discriminant Analysis 
Soluble mediators  

     Non-smokers/Non-vapers 0.3733 0.3733 0.7743 0.3829 0.7668 0.5738 
     Smokers 0.1400 0.1400 0.9159 0.2333 0.8064 0.5280 
     3rd Generation E-Cig Users 0.6067 0.6067 0.6825 0.4219 0.8284 0.6446 
     4th Gen E-Cig Users 0.6000 0.6000 0.8719 0.6410 0.8641 0.7359 
     Overall 0.4397 0.4300 0.8111 0.4198 0.8164 0.6206 
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Table S5-1. Concentrations of mediators secreted by hMDMs in pg/mL were measured using 
multiplex ELISA. Concentrations are reported as mean (standard error). n = 4 subjects (1 male, 3 
females). a at least p < 0.05 in comparison with M0; b at least p < 0.05 in comparison with M1; c at least p 
< 0.05 in comparison with M2 by either one-way ANOVA with Tukey’s multiple comparisons test or 
Friedman test with Dunn’s multiple comparisons test.  

 M0 M1 M2 

Eotaxin 94.5 (7.92)b 209 (14.7)a,c 110 (2.32)b 

Eotaxin-3 41.5 (3.27)b 207 (30.1)a 250 (78.6) 

GM-CSF 0.486 (0.152) 20.0 (6.74) 0.580 (0.229) 

IL-1a 0.180 (0.180)b 15.9 (9.19)a 0.825 (0.379) 

IL-1b 4.13 (0.274) 228 (159)c 2.72 (0.857)b 

IL-2 5.57 (0.139)b 16.6 (1.80)a,c 3.34 (1.19)b 

IL-5 0.119 (0.0824) 0.106 (0.0556) 0.0110 (0.00652) 

IL-6 12.5 (3.17)b 2430 (292)a,c 13.9 (3.43)b 

IL-7 0.436 (0.0850) 0.200 (0.0899) 0.423 (0.0193) 

IL-8 9770 (1390) 111000 (30000)c 7320 (2130)b 

IL-10 5.77 (1.12) 1300 (384) 4.62 (1.15) 

IL-12p40 0.306 (0.117)b 577 (184)a 1.09 (0.534) 

IL-12p70 2.67 (0.397)b 15.6 (2.32)a 4.61 (1.03) 

IL-13 60.2 (4.38)b 90.5 (6.29)a 46.7 (11.3) 

IL-15 0.517 (0.0853)b 5.33 (0.494)a,c 0.359 (0.0484)b 

IL-16 16.6 (4.31) 50.7 (17.0) 32.2 (15.5) 

IL-17 0 (0) 2.77 (1.38) 0.0152 (0.0152) 

IP-10 315 (153) 18700 (5360) 550 (231) 

MCP-1 4000 (70.0) 4100 (51.5) 4060 (76.1) 

MCP-4 54.4 (4.21)b,c 106 (9.04)a,c 3110 (334)a,b 

MDC 1330 (579) 1070 (214) 14900 (8490) 

MIP-1a 80.0 (6.44) 1830 (1830) 305 (100) 

MIP-1b 384 (207) 11700 (3200) 2010 (1070) 

TARC 22.0 (9.23)c 53.7 (5.69) 1070 (505)a 

TNF.a 14.0 (2.11)b 3260 (33.1)a,c 17.4 (6.49)b 

TNF.b 0.0300 (0.0300)b 4.84 (2.92)a 0.0912 (0.0372) 

VEGF 43.1 (17.7) 514 (129)c 5.40 (2.17)b 

 


