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ABSTRACT 

Hannah Janine Perrin: Chromatin accessibility context identifies regulatory mechanisms for 
cardiometabolic traits 

Under the direction of Karen L. Mohlke 

Cardiovascular diseases (CVD) and associated cardiovascular and metabolic 

(cardiometabolic) traits pose a significant global health burden. Identifying molecular 

mechanisms for cardiometabolic traits would improve diagnosis and treatment of disease. 

Genome-wide association studies (GWAS) have identified thousands of loci associated with 

cardiometabolic traits. However, the mechanisms of most remain unclear, especially at the large 

number of noncoding loci. One mechanism of noncoding loci is to regulate gene expression in 

cell- and context-dependent manners. Regulatory elements can be identified through chromatin 

accessibility. Therefore, chromatin accessibility in disease-relevant cell types and contexts can 

be integrated with gene expression and GWAS data to identify regulatory elements that affect 

gene expression to contribute to cardiometabolic traits. I profiled chromatin accessibility in 

adipose and liver tissue and in adipocytes exposed to disease-relevant contexts of differentiation, 

excess free fatty acids, hypoxia, and inflammation. I identified context-dependent regulatory 

elements that change after exposure to disease-relevant contexts in adipocytes and between sexes 

in liver tissue. I integrated context-dependent regulatory elements with multiple genomic datasets 

such as eQTL, Hi-C, and context-dependent gene expression to link elements to candidate genes. 

Additionally, I integrated context-dependent regulatory elements to GWAS to link elements to 

traits. Functional testing of candidate regulatory elements identified context- and allele- 

dependent transcriptional activity. While they require future functional testing, the work in this 



 iv 
 

 

dissertation identifies hundreds of candidate regulatory mechanisms for noncoding GWAS loci. 

Furthermore, these chromatin accessibility profiles provide a useful resource for future work on 

identifying regulatory mechanisms of GWAS loci that may improve diagnosis and treatment of 

disease.   
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CHAPTER 1: INTRODUCTION 

Overview of cardiometabolic traits 

Cardiovascular diseases (CVD), metabolic diseases such as Type 2 Diabetes (T2D), and 

associated cardiovascular and metabolic (cardiometabolic) traits are a significant global health 

burden. CVD remains the leading cause of death worldwide, at a rate of 18.6 million deaths per 

year1,2. In the United States, CVD is estimated to affect 126.9 million adults and cost $363.4 

billion per year in healthcare2. Metabolic diseases are also a leading cause of mortality3 and 

increase the risk of CVD1,2,4. T2D is the 8th leading cause of death in the United States in 2020, 

at a rate of 24.8 deaths per 100,0003. Associated prevalent cardiometabolic traits are additional 

risk factors for both CVD and T2D2 and include obesity and high cholesterol5 which, 

respectively, affect 96.5 million and 28 million adults in the United States2. Central obesity, or 

increased distribution of fat around the abdomen, increases risk of CVD, T2D, and related 

cardiometabolic traits more than obesity alone and is measured by traits such as waist-hip ratio 

(WHR)5,6. Obesity can lead to dyslipidemia, or an imbalance of lipids such as cholesterol and 

triglycerides2,5. High low-density lipoprotein cholesterol (LDL-C) increases risk of CVD through 

accumulation of plaques in the bloodstream7. Low high-density lipoprotein cholesterol (HDL-C) 

increases risk of CVD because HDL-C has beneficial properties including clearing LDL-C 

plaques to be metabolized in the liver and roles in endothelial cell repair7. Increased 

understanding of mechanisms of CVD and metabolic disease would improve diagnosis and 

treatment, therefore improving health outcomes. 
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Biological processes of cardiometabolic traits 

Cardiometabolic traits are complex and involve processes in multiple tissues including 

adipose, liver, skeletal muscle, and pancreas8. One example of a cardiometabolic trait involving 

multiple tissues is insulin resistance. Insulin resistance is a complex process that is caused by 

traits such as central obesity5 and causes additional cardiometabolic traits including T2D8. 

Insulin resistance occurs when adipose, liver, and muscle become less responsive to insulin 

which reduces their ability to uptake glucose from the blood. Beta cells in the pancreas 

compensate by producing more insulin but, without interventions such as lifestyle changes or 

pharmacological treatment, insulin resistance eventually leads to elevated blood glucose and 

T2D8. While many tissues are involved in cardiometabolic traits, in this dissertation I focus on 

adipose and liver. 

 

Adipose and cardiometabolic traits 

Adipose tissue affects cardiometabolic traits such as body fat distribution, blood 

cholesterol levels, and insulin resistance through lipid storage and hormone secretion 

processes9,10. Adipose tissue is heterogeneous and contains multiple cell types, including 

adipocytes, preadipocytes, immune cells, and vascular cells11. Adipocytes are a cell type within 

adipose tissue that store excess lipids through hyperplasia, during which preadipocytes 

differentiate into adipocytes to increase storage, or hypertrophy, during which adipocytes expand 

to increase storage12. Hypertrophy of adipocytes is associated with hypoxia caused by the 

increased size and inflammation caused by tissue fibrosis and necrosis12. Dysfunctional, 

hypertrophic adipocytes have limited ability to store excess nutrients resulting in elevated blood 
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levels of glucose and lipids12. Excess lipids in the blood can lead to insulin resistance and storage 

of lipids in visceral fat deposits and organs such as liver and skeletal muscle12. 

Adipose and cell models for component adipose cell types are useful to study adipose 

biology. Obesity is a leading cause of CVD and metabolic disease, however the body fat 

distribution of the excess adipose can predict disease risk better than total body fat5,10. An 

increased WHR, a measure of body fat distribution and central obesity, is associated with an 

increased risk of disease10. Body mass index (BMI) is an easily measured trait that is often used 

to capture estimates of total body fat5. Visceral adipose, which is accumulation of fat around 

internal organs and associated with central obesity, occurs during processes such as insulin 

resistance12,13, has also been shown to increase risk of CVD more than subcutaneous adipose10. 

However, enlarged adipocytes from both visceral and subcutaneous adipose have been associated 

with inflammation and metabolic dysfunction14. Compared to other cardiometabolic trait-

relevant tissues, subcutaneous adipose can be easy to collect through a needle biopsy or minor 

outpatient surgical biopsy. In Chapter 2 of this dissertation, I study samples of subcutaneous 

abdominal adipose from individuals in the METabolic Syndrome In Men (METSIM) study15. 

The METSIM study consists of ~10,000 Finnish men with dense genotype, gene expression, and 

cardiometabolic trait phenotype data15. The ability to integrate and identify associations between 

datasets makes the METSIM study a useful resource for additional studies.  

Cell models of component cell types of adipose such as adipocytes are useful for studies 

of adipose biology. Adipocyte cell models can be exposed to cardiometabolic trait relevant 

environments such as excess lipids in the form of free fatty acids, inflammation, and hypoxia to 

study effects in a controlled environment. Mouse 3T3-L1 adipocytes are a common cell model16–

19, however, it is also useful to study human cell models because species-specific differences 
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have been identified20. In Chapters 2 and 3 of this dissertation I use Simpson-Golabi-Behmel 

Syndrome (SGBS) cells, a well-characterized human, diploid preadipocyte cell model that can be 

differentiated into mature adipocytes21,22. 

 

Liver and cardiometabolic traits 

Liver tissue is important to cardiometabolic traits through regulation of lipids, glucose, 

and cholesterol23. Dysfunctional adipose leads to excess lipids accumulating in the blood which 

are taken up by the liver12. Dysfunctional liver tissue can contribute to cardiometabolic traits 

such as insulin resistance through decreased storage of glucose and increased accumulation of 

lipids23. Accumulation of lipids in liver through insulin resistance is a risk factor cardiometabolic 

traits such as non-alcoholic fatty liver disease (NAFLD)23. Like many cardiometabolic traits24–26, 

NAFLD demonstrates sex differences in prevalence with a higher risk for men than pre-

menopausal women25. Sex differences can also contribute to differences in drug metabolism that 

could inform treatment options27. Sex differences in cardiometabolic disease can be caused by 

genetic factors from the sex chromosomes, epigenetics such as chromatin accessibility, gene 

regulation, environmental factors, and endogenous factors such as hormones27. Studying sex 

differences in disease relevant tissues could aid identification of sex-specific mechanisms of 

disease. Compared to adipose tissue, liver tissue collection is more invasive. In Chapter 4 of this 

dissertation, I study liver samples from male and female deceased organ donors without known 

disease28.  

Multiple tissues and processes contribute to cardiometabolic traits and many of the 

molecular mechanisms of these complex processes remain poorly understood. Studying 
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cardiometabolic trait-relevant tissues and cell types in relevant contexts will improve 

understanding of the molecular mechanisms of disease.  

 

Identifying candidate mechanisms at cardiometabolic trait loci 

Cardiometabolic traits develop from both genetic and environmental causes that can 

interact. Environmental factors that contribute to cardiometabolic traits includes nutrition, 

physical activity, and smoking2. Lifestyle interventions such as diet and increased physical 

activity have been shown to improve cardiometabolic traits and decrease risk of disease2,29–31. 

However, there is strong evidence for genetic factors contributing to cardiometabolic traits.  

 

Genetics of cardiometabolic traits 

Genetic factors can contribute to risk of developing cardiometabolic disease. Using 

methods such as family and twin studies, heritability estimates range from 30-70% for T2D32,33, 

40-60% for coronary artery disease34–36, 36-61% for WHR37, and 22-91% for LDL-C38,39. 

Genetic factors can also interact with other risk factors like sex, age, and environment to increase 

risk in an additive manner40,41. These interactions can explain some of the large variations in 

heritability estimates40. For example, gene-age interactions have been identified for weight, 

where heritability estimates are low for infants (5-9%) and increased to 74-87% by age 1942. 

Gene-sex interactions have also been identified for traits such as BMI and triglycerides40. 

Heritability estimates show that genetic variation can contribute to cardiometabolic traits. 

Genome-wide association studies (GWAS) identify associations between genetic variants 

and traits. GWAS have identified thousands of loci associated with cardiometabolic traits43,44 

including over 300 for T2D45–47, over 100 for measure of body fat distribution such as WHR48,49 
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with seven loci demonstrating sexual dimorphism49, and over 400 for blood lipid traits50,51 with 

64 demonstrating sexual dimorphism51. Although some GWAS loci are in protein coding regions 

of the genome and can be directly linked to genes with predicted functional effects, as many as 

90% of identified GWAS loci are located in noncoding regions of the genome52,53. It is difficult 

to identify mechanisms of noncoding GWAS loci because there are often multiple candidate 

variants, genes, cell types, and relevant cellular contexts53–55. Noncoding regions can represent 

regulatory elements that alter gene expression in cell type and context-dependent manners53.  

 

Context-dependent gene expression 

A single change in cellular context can trigger gene expression changes in a large number 

of genes in order to adapt an organism to the environment. Dynamic gene regulation in response 

to cellular context is regulated through transcription factors, proteins that bind to regulatory 

elements to alter transcription56. Transcription factor activity can be regulated by altering the 

activity or abundance of the transcription factor or altering chromatin to make binding more 

effective56,57. Transcription factor activity also can be altered through post translational 

modifications, such as phosphorylation, which can switch a transcription factor between active 

and inactive states56. Chromatin remodeling that changes accessibility can expose transcription 

factor binding sites, allowing an active transcription factor to bind to a DNA regulatory element 

and affect gene expression56,58.  

Transcription factors bind to specific DNA sequences, called transcription factor binding 

motifs56. DNA variants within a region of chromatin accessibility can change binding affinity for 

a transcription factor, therefore changing the response to a cellular context. Key transcription 

factors that play a role in adipocyte differentiation include PPARγ and C/EBPα59. A transcription 
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factor responsible for many sex-dependent differences in liver gene expression is STAT5b60. 

Identifying context-dependent chromatin accessibility can reveal regulatory elements that alter 

gene expression, and variants within these regulatory elements could alter transcription factor 

binding to produce genetic differences in response to a cellular context. 

 

Identifying regulatory elements 

While noncoding GWAS loci remain difficult to understand, many are predicted to have 

regulatory mechanisms that alter gene expression to affect a trait1. Gene regulation has been 

studied using gene expression quantitative trait loci (eQTL) studies. eQTL studies identify 

variants associated with changes in gene expression and have been performed in many tissues 

including adipose and liver61,62. Noncoding GWAS loci are enriched for colocalized eQTL 

associations63, suggesting a regulatory mechanism at these loci. Some GWAS loci colocalize 

with eQTL in trait-relevant tissues including adipose and liver61–67, while other GWAS loci 

colocalize with eQTL found in specific contexts, such as stimulated, but not naïve, immune 

cells68. Despite eQTL localization identifying potential candidate genes, mechanisms of GWAS 

loci can remain unclear due to a large number of candidate variants at many loci53. Therefore, 

regulatory element and gene expression profiles in cardiometabolic trait-relevant contexts can be 

used to identify molecular mechanisms at noncoding GWAS loci.  

Regulatory elements such as enhancers, silencers, or promoters can be detected by a 

variety of epigenomic assays including histone modifications and chromatin accessibility 

profiling58. Chromatin accessibility is a known feature of active regulatory elements58 and can be 

profiled using sequencing methods such as the Assay for Transposase Accessible Chromatin 

(ATAC-seq)69. ATAC-seq requires less material and time compared to other methods of 
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chromatin accessibility profiling such as DNase hypersensitivity (DNase-seq) and formaldehyde-

assisted isolation of regulatory elements (FAIRE-seq)69. ATAC-seq is typically performed with 

50,000 cells, compared to millions required for other protocols69. ATAC-seq can also be 

performed in a day using a Tn5 transposase enzyme that targets accessible regions to cut and 

ligate sequencing adaptors in a single step while other protocols often require multiple days69. 

Chromatin immunoprecipitation (ChIP-seq) is another method that can identify genome-wide 

changes contributing to gene regulation by detecting protein-DNA interactions70. ChIP-seq can 

identify sites where transcription factor proteins directly bind to DNA, however, each 

transcription factor must be assayed individually and requires a high-quality antibody70. ChIP-

seq data has been generated for specific transcription factors in adipocytes71–74 and liver74,75. 

Compared to ChIP-seq, ATAC-seq can capture changes from all transcription factors at once, 

however ATAC-seq does not identify which transcription factor is acting at a regulatory 

element69. Additional computational methods such as identification of transcription factor 

binding motifs and experimental methods such as electrophoretic mobility shift assays can 

identify specific transcription factors involved in a regulatory element identified by chromatin 

accessibility53.  

Large consortiums such as the Encyclopedia of DNA Elements (ENCODE)76 and 

Roadmap Epigenomics Project77 have identified regulatory maps for many cell types and 

contexts. ENCODE profiled histone modifications, transcription factor binding, and chromatin 

accessibility in hundreds of cell and tissue types76. Roadmap Epigenomics Project profiled 

histone modifications, DNA methylation, and chromatin accessibility in 111 cell and tissue 

types77. These profiles are valuable resources for studying regulation, however some cell types 

and many cell contexts that are relevant to disease remain under-annotated. Annotation of 
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chromatin accessibility, a known feature of active elements58, in additional disease-relevant 

contexts can be integrated with other genomic datasets such as eQTL and GWAS to identify 

regulatory elements that alter gene expression to affect cardiometabolic traits.  

 

Identifying candidate genes for regulatory elements 

Linking regulatory elements to genes in disease-relevant contexts can identify targets for 

drugs that could increase or decrease their function. Regulatory elements can be linked to genes 

through integration with other genomic data such as eQTL, chromosome conformation capture, 

and context-dependent gene expression78. Each type of genomic data has advantages and 

disadvantages; therefore, it is useful to use multiple methods. Analyses such as eQTL identify 

variants associated with differences in gene expression between individuals or contexts68,79. 

Identifying active regulatory elements through chromatin accessibility profiles in 

cardiometabolic trait-relevant tissues, cell types, and contexts that overlap eQTL associated 

variants can identify candidate variants and link them to candidate genes28,53. However, eQTL 

can be underpowered to detect associations due to small sample size or missing relevant cell 

types or contexts78. Chromosome conformation capture techniques such as promoter capture Hi-

C identify regions of the genome in close contact with each other, including active regulatory 

elements and promoters80. However, chromatin conformation capture can identify large regions 

that interact resulting in difficulty identifying the active regulatory element80. Identifying active 

regulatory elements through chromatin accessibility profiles in cardiometabolic trait-relevant 

tissues, cell types, and contexts that overlap chromosome conformation capture regions can link 

a smaller candidate regulatory element to a candidate gene28. Gene regulation can vary by cell 

type and cell context53,68, therefore paired differential chromatin accessibility and gene 
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expression profiles in the same conditions can be used as an additional line of evidence to link 

regulatory elements to differential gene expression. However, there are not well-established 

methods to link differential chromatin accessibility to differential gene expression even in paired 

data other than proximity which is indirect.  

Each genomic dataset can be used to link regulatory elements to genes. Due to the 

advantages and disadvantages of different data types, it is useful to use multiple methods. 

Linking a regulatory element to the same gene through multiple methods increases confidence in 

the prediction. However, a regulatory element linked to a gene by only one method can merit 

further investigation. Integrating chromatin accessibility with gene expression and GWAS data 

can identify candidate regulatory elements and variants that alter gene expression and contribute 

to a cardiometabolic trait, however functional testing is necessary. 

 

Functional testing of regulatory variants 

Variants in regulatory elements that can be linked to a gene and disease trait can be 

experimentally manipulated to validate predicted genetic mechanisms of disease53. There are 

many approaches to functionally test a candidate regulatory mechanism53,81. The primary goal of 

functional validation such as transcriptional reporter assays, electrophoretic mobility shift assays, 

or allelic imbalance testing is to identify allelic differences in transcriptional activity. 

Transcriptional reporter assays such as a luciferase assay test variant alleles in a candidate 

regulatory region for differences in transcriptional activity of a reporter gene such as luciferase53. 

Allelic imbalance can be tested for with sequencing data such as ATAC-seq chromatin 

accessibility profiles. An allelic imbalance test can be used at heterozygous sites and tests for 

disproportionate representation of one allele compared to the other53.  
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Identification of variants that contribute to disease could improve prediction of 

individuals at risk of disease and determine which individuals may respond better to a specific 

drug treatment53. For example, a variant associated with myocardial infarction was found to 

create a C/EBP transcription factor binding site in a liver regulatory element that affected 

expression of SORT1, a gene that alters low-density lipoprotein cholesterol82. Identification of 

this functional variant could be used to identify individuals at risk of myocardial infarction and 

individuals who may respond better to treatments for high low-density lipoprotein cholesterol 

specific to the SORT1 pathway82.  

 

Aims and overview 

In this dissertation, I contribute to defining the impact of genetic variation and cellular 

context on chromatin accessibility and cardiometabolic traits. I hypothesize based on previous 

research that variants in context-dependent regions of chromatin accessibility affect gene 

regulation to contribute to disease traits. In Chapter 2, I identify chromatin accessibility and gene 

expression that change with adipocyte differentiation.  I link context-dependent chromatin 

accessibility to candidate genes using three approaches. I link context-dependent chromatin 

accessibility to variants associated with cardiometabolic traits. I also identify a consensus map of 

chromatin accessibility in 11 adipose tissue samples.  In Chapter 3, I describe investigations into 

adipocyte chromatin accessibility in other cardiometabolic trait-relevant contexts such as free 

fatty acids, hypoxia, and inflammation.  In Chapter 4, I identify sex-biased chromatin 

accessibility regions that change between males and females in human liver tissue. I link sex-

biased chromatin accessibility to variants associated with differential expression in liver and to 

disease traits. In Chapter 5, I summarize my results, reflect on my research, discuss limitations, 
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and consider future directions. In this dissertation, I identify hundreds of candidate variants in 

disease-relevant contexts that could help define mechanisms responsible for variation in 

cardiometabolic traits.
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CHAPTER 2: CHROMATIN ACCESSIBILITY AND GENE EXPRESSION DURING 
ADIPOCYTE DIFFERENTIATION IDENTIFY CONTEXT-DEPENDENT EFFECTS AT 

CARDIOMETABOLIC GWAS LOCI1,2 

Introduction 

Genome-wide association studies (GWAS) have identified thousands of loci associated 

with cardiometabolic traits, yet most mechanisms remain unclear due to unknown functional 

variants, genes, cell types, and relevant contexts, especially at the large number of noncoding 

loci54. Noncoding loci can regulate gene expression in cell type and context-dependent 

manners53. Some GWAS loci colocalize with gene expression quantitative trait loci (eQTL) in 

trait-relevant tissues61,62,64–67, although other GWAS loci colocalize with eQTL found only in one 

context, such as stimulated, but not naïve, immune cells68. Therefore, mapping transcriptional 

regulatory elements and gene expression in disease-relevant contexts can be used to characterize 

molecular mechanisms of GWAS loci. Enhancers and other regulatory elements can be detected 

by identifying regions of chromatin accessibility58 using sequencing methods such as the Assay 

for Transposase Accessible Chromatin (ATAC-seq)69. Chromatin accessibility in 

cardiometabolic-relevant cell types and contexts can be integrated with GWAS and eQTL data to 

 
1 The work in this chapter has been previously published and adapted for this dissertation chapter83. The citation is: 
Perrin HJ, Currin KW, Vadlamudi S, Pandey GK, Ng KK, Wabitsch M, Laakso M, Love MI, Mohlke KL. 
Chromatin accessibility and gene expression during adipocyte differentiation identify context-dependent effects at 
cardiometabolic GWAS loci. PLoS Genet. 2021 Oct 26;17(10):e1009865. doi: 10.1371/journal.pgen.1009865. 
PMID: 34699533; PMCID: PMC8570510. 
 
2 Hannah Perrin performed chromatin accessibility assays, analyzed data, generated figures, and wrote and edited 
the manuscript and the response to reviewers. 
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identify regulatory elements and variants that alter gene expression to affect cardiometabolic 

traits.  

Adipose tissue influences cardiometabolic traits such as body fat distribution, insulin 

sensitivity, blood cholesterol levels, and inflammation through its roles in lipid storage and 

hormone secretion9,10. Hundreds of GWAS loci for cardiometabolic traits are colocalized with 

eQTL in adipose tissue61,64,65, and variants at GWAS loci for some cardiometabolic traits, such as 

waist-to-hip ratio adjusted for body mass index (BMI) and high-density lipoprotein (HDL) 

cholesterol, are overrepresented in transcriptional regulatory elements in adipose tissue84,85. At a 

subset of colocalized GWAS-eQTL signals, adipose tissue gene expression may mediate the 

effect of the genetic variant on GWAS traits61. Adipose is a heterogeneous tissue that contains 

multiple cell types, including adipocytes, preadipocytes, immune cells, and vascular cells11. 

Adipose tissue stores lipids through either hyperplasia, during which preadipocytes differentiate 

into mature adipocytes to store excess energy, or hypertrophy, during which existing adipocytes 

expand to store excess energy12. Thus, identifying variants with regulatory effects at specific 

stages of adipocyte differentiation may uncover additional mechanisms at GWAS loci for 

cardiometabolic traits.  

Genetic and environmental variation between individuals can contribute to differences in 

chromatin accessibility76. Chromatin accessibility maps generated from multiple individuals can 

capture accessible regions that reflect genetic effects and diverse environmental contexts. 

Existing human adipose tissue chromatin accessibility maps are comprised of data from one to 

six individuals and differ by tissue donor characteristics (e.g. BMI, age, sex), adipose depot, 

tissue extraction site, and storage conditions76,84,86. Given the cell type heterogeneity of tissue 

samples, it is also useful to characterize the component cell types in controlled environments. 
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Chromatin accessibility during adipogenesis has been studied in models such as mouse 3T3-L1 

cells87, however additional studies in human models could improve interpretation of human non-

coding genetic variants. Simpson-Golabi-Behmel Syndrome (SGBS) cells are a well-

characterized diploid preadipocyte cell model that can be differentiated into mature adipocytes 

and is useful for studying adipocyte differentiation21,22.  

In this study, we identified differences in chromatin accessibility and gene expression 

between preadipocytes, immature adipocytes, and mature adipocytes in SGBS cells. In addition, 

we generated a consensus map of subcutaneous adipose tissue chromatin accessibility using 11 

samples obtained from METabolic Syndrome in Men (METSIM) participants15. We used three 

methods to link differentially accessible regulatory elements to candidate genes and identified 

variants at cardiometabolic GWAS loci that resided in elements more accessible in preadipocytes 

or adipocytes. Finally, we identified variants at the SCD and EYA2 loci that showed context-

dependent and/or allelic effects on transcriptional activity, detecting potential mechanisms by 

which specific variants alter gene expression to affect cardiometabolic traits. 

 

Results 

Changes in chromatin accessibility across adipocyte differentiation timepoints identify context-

dependent regulatory elements      

We profiled chromatin accessibility during adipocyte differentiation with ATAC-seq in 

SGBS cells69,88. We analyzed a final set of ten replicates of preadipocytes (D0), ten replicates of 

immature adipocytes differentiated for four days (D4), and five replicates of mature adipocytes 

differentiated for fourteen days (D14) (Figure 2.1A and Table 2-1). Our libraries had ~33-156 

million filtered reads each, and showed high quality, with an average transcription start site 
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(TSS) enrichment of 6.8, and an average fraction of reads in peaks (FRiP) of 48.5%. To test for 

differences in chromatin accessibility between timepoints, we generated a set of 147,587 

accessible chromatin regions (ATAC-seq peaks) at any time point (Table 2-2) by merging the top 

100,000 consensus peaks for each time point (ranked by median peak p-value across replicates, 

see Methods). Principal component analysis (PCA) showed that replicates clustered by 

differentiation timepoint, with preadipocytes and adipocytes separated by the first principal 

component, which explained 74% of the variance.  

To predict regulatory elements involved in adipocyte differentiation, we identified 

differentially accessible peaks, hereafter called ‘context-dependent peaks’, between each 

pairwise comparison of the three timepoints (log2 fold change (LFC)>1; false discovery rate 

(FDR)<5%; Table 2-3). Based on the 10,000 context-dependent peaks with the most significant 

difference in any comparison, a heatmap showed that replicates clustered by timepoint (Figure 

2.1B). Most (86%) of the changes in chromatin accessibility between D0 and D14 were observed 

by D4, and only 233 peaks were specifically more accessible in mature adipocytes (D14>D0 and 

D14>D4), suggesting that chromatin accessibility changes early after the initiation of 

differentiation and remains largely stable between D4 and D14. To characterize the major 

differences, we identified context-dependent peaks more accessible in preadipocytes in both 

comparisons (D0>D4 and D0>D14; 18,244 peaks), hereafter called ‘preadipocyte-dependent 

peaks’, and context-dependent peaks more accessible in immature and mature adipocytes 

(D4>D0 and D14>D0; 15,919 peaks), hereafter called ‘adipocyte-dependent peaks’. In analyses 

described below, we used the preadipocyte-dependent and adipocyte-dependent peaks for 

enrichment analyses and general comparisons between preadipocytes and adipocytes, and we 
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used context-dependent peaks from all pairwise comparisons to identify regulatory elements 

linked to genes and GWAS loci. 

We evaluated the relevance of context-dependent peaks for biological processes and 

transcription factors known to be involved in adipocyte differentiation. Preadipocyte-dependent 

peaks were enriched (P<1x10-10) near genes associated with roles in several cell cycle 

processes, including positive regulation of DNA replication. Mature adipocyte-dependent peaks 

were enriched near genes with roles in cardiovascular development. Adipocyte-dependent peaks 

were enriched near genes with roles in several metabolic processes, including response to 

insulin, regulation of fatty acid oxidation, and intracellular lipid transport. In addition, 

preadipocyte-dependent peaks were enriched (P<1x10-5) for transcription factor motifs for 

TEAD and GATA, which inhibit adipocyte differentiation89,90, while adipocyte-dependent peaks 

were enriched for motifs of transcription factors that promote adipogenesis, such as CEBP, 

PPAR, and LXR12,91 and transcription factors involved in glucose metabolism such as GRE92. 

Thus, adipocyte- and preadipocyte-dependent peaks are found near genes and contain 

transcription factor motifs relevant to their cell contexts, increasing confidence that these peaks 

capture relevant biology. Although genomic proximity between regulatory elements and genes is 

a strong predictor of a regulatory relationship93, regulatory elements may not always affect the 

nearest genes. 

To compare these SGBS peaks to adipose tissue peaks, we expanded our previous set of 

adipose tissue ATAC-seq profiles84 from 3 to 17 samples that fulfilled sequencing quality 

thresholds (Methods, Table 2-4 and Figure 2.6). In the 17 tissue samples, we identified 79,598 

consensus adipose tissue peaks present in three or more samples. After removing 6 outlier 

samples identified using PCA, overlap with adipose regulatory elements, and other factors, we 
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also identified 51,855 consensus adipose tissue peaks using 11 adipose tissue samples. The 11-

sample peak set had a higher percentage of peaks within the Roadmap Epigenomics Project77 

adipose nuclei enhancers and promoters (45% enhancer, 39% promoter) compared to the 17-

sample peak set (34% enhancer, 28% promoter), and a similar percentage compared to our 

previous 3-sample peak set84 (49% enhancer, 39% promoter) (Figure 2.1D). We proceeded with 

the 11-sample consensus adipose peak set for further analyses because it provides higher 

consistency with Roadmap adipose enhancers and promoters relative to the 17-sample set and 

may capture more genetic and environmental variation in chromatin accessibility than the 3-

sample set.  

To determine if context-dependent SGBS peaks marked previously annotated adipose 

regulatory elements, we compared the SGBS peaks to Roadmap Epigenomics Project adipose 

nuclei chromatin states77 and to the 11-sample adipose tissue peaks. A higher percentage of 

adipocyte-dependent peaks were found within Roadmap adipose nuclei enhancers and promoters 

(60% enhancer, 3.9% promoter) compared to preadipocyte-dependent peaks (12% enhancer, 

0.73% promoter) (Figure 2.1E). Similarly, 36% of adipocyte-dependent peaks overlapped 

(shared at least 1 base) adipose tissue peaks, while only 1.8% of preadipocyte-dependent peaks 

overlapped adipose tissue peaks, consistent with adipose tissue containing more adipocytes than 

preadipocytes11,94. Peaks found in SGBS and adipose tissue may have more relevance to adipose 

biology than peaks found in SGBS cells alone. These results show that our adipocyte-dependent 

and consensus adipose tissue peaks demonstrate strong similarity with existing adipocyte 

promoters and enhancers. 
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Changes in gene expression across adipocyte differentiation  

We generated RNA-seq data from six replicates of SGBS preadipocytes (D0), six 

replicates of immature adipocytes differentiated for four days (D4), and four replicates of mature 

adipocytes differentiated for fourteen days (D14) (Figure 2.1A). We generated ~36-56 million 

filtered reads overlapping transcripts per replicate (Table 2-5) and identified 18,299 expressed 

genes (median normalized count >=1 across libraries). PCA showed that replicates clustered by 

differentiation timepoint, with preadipocytes and adipocytes separated by the first principal 

component, which explained 54% of the variance.  

To identify changes in gene expression during adipocyte differentiation, we identified 

genes differentially expressed between each pairwise comparison of the three timepoints 

(LFC>1; FDR<5%; Table 2-3). A heatmap of these ‘context-dependent genes’ showed that 

replicates clustered by timepoint (Figure 2.1C). In addition, we identified context-dependent 

genes that were observed in multiple timepoint comparisons. In contrast to context-dependent 

chromatin accessibility, for which 86% of changes between D0 and D14 were observed already 

by D4, only 1,282 of 2,107 (61%) context-dependent genes between D0 and D14 were observed 

already by D4. Although further analysis is needed, this result is consistent with previous studies 

that identified changes in chromatin accessibility that occurred earlier during adipocyte 

differentiation and remained more stable than changes in gene expression87,95.  

We tested context-dependent genes for enrichment of biological processes known to be 

involved in adipocyte differentiation. Genes expressed more strongly in preadipocytes than 

adipocytes were enriched (P<1x10-10) for several cell cycle processes including cell cycle 

regulation and nuclear division. Genes expressed more strongly in adipocytes than preadipocytes 

showed enrichment (P<1x10-10) for several differentiation and metabolic processes such as 
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response to insulin, glucose homeostasis, fatty acid metabolic processes, and lipid biosynthetic 

processes. We also identified context-dependent transcription factors whose binding motifs were 

enriched in context-dependent peaks, including preadipocyte-dependent GATA family members 

that had motifs enriched in preadipocyte-dependent peaks, and the adipocyte-dependent gene 

PPARG whose motifs were enriched in adipocyte-dependent peaks. Adipocyte-dependent genes 

also included known adipocyte-dependent genes such as ADIPOQ96. These results indicate that 

the context-dependent genes have functions relevant to the corresponding cell types. 

 

Three approaches to link genes to context-dependent peaks  

Linking context-dependent peaks to genes remains challenging because most peaks are 

located in non-coding regions with multiple genes nearby. Approaches to predict genes affected 

by a peak have varied sensitivity and specificity53, thus we used three approaches to identify 

additional genes and to gain confidence in genes identified by more than one method. The three 

approaches used to link context-dependent peaks to genes were: overlap with adipocyte promoter 

capture Hi-C97,98, overlap with adipose eQTL variants61, and context-dependent expression of 

genes linked by either of the first two approaches (Figure 2.2A-C). 

In the first approach, we identified context-dependent peaks that overlapped adipocyte 

promoter capture Hi-C regions97,98 (overlap>=1 base pair, Figure 2.2A). We identified 14,080 

peaks linked to 9,080 genes (28,696 peak-gene pairs). We investigated the extent to which 

increasing the overlap threshold between peaks and Hi-C fragments would change our results. Of 

the 14,594 peak-Hi-C fragment overlapping pairs (some peaks overlap more than one Hi-C 

fragment and vice versa), 12,380 (85%) have over 50% of peak bases within the Hi-C fragment 

and 10,329 (71%) have the entire peak within the Hi-C fragment, suggesting that we would 
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obtain similar results using more strict overlap thresholds. Of the 14,080 peaks, 3,436 were 

preadipocyte-dependent and 4,873 were adipocyte-dependent (5,771 were context-dependent but 

not preadipocyte- or adipocyte-dependent, hereafter called ‘other context-dependent peaks’). We 

identified more links for adipocyte peaks than for preadipocyte peaks, consistent with our use of 

Hi-C data only from mature adipocytes, not preadipocytes. Most distances from peaks to gene 

TSS linked by Hi-C (85%) were within 500 kb, and 97% were within 1.2 Mb (Figure 2.2D). 

In the second approach, we identified context-dependent peaks that overlapped adipose 

eQTL signals61, defining each signal as all variants in high linkage disequilibrium with a lead 

eQTL variant (r2>0.8, Figure 2.2B). Of 3,002 peaks linked to 2,369 genes (3,794 peak-gene 

pairs), 805 linked from preadipocyte-dependent peaks and 996 from adipocyte-dependent peaks 

(1,201 linked from other context-dependent peaks). The larger number of links from adipocyte 

peaks than preadipocyte peaks is consistent with use of eQTL from adipose tissue, which 

contains more adipocytes than preadipocytes11,94. We identified 4,549 adipose eQTL variants 

within the context-dependent peaks; these variants could be part of the mechanisms regulating 

expression level of the corresponding genes. Most distances from peaks to gene TSS linked by 

eQTL (87%) were within 200 kb, and all were within 1 Mb, the distance threshold used for the 

eQTL study (Figure 2.2D). 

In the third approach, we identified context-dependent peaks linked to a gene by Hi-C or 

eQTL overlap for which the gene also showed context-dependent expression between any 

timepoint comparison (Figure 2.2C). Of the 14,080 peaks identified by Hi-C, 4,462 peaks also 

linked to a context-dependent gene (1,000 linked from preadipocyte-dependent peaks and 1,681 

linked from adipocyte-dependent peaks, 1,781 linked from other context-dependent peaks). Of 

the 3,002 peaks identified by eQTL, 720 contained a context-dependent gene (134 linked from 
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preadipocyte-dependent peaks, 298 linked from adipocyte-dependent peaks, 288 linked from 

context-dependent but not preadipocyte- or adipocyte-dependent peaks). 

Each approach to link regulatory peaks to genes can add an additional level of evidence 

to support the predicted gene target. We next identified peaks linked to the same gene through 

more than one approach. Of 16,076 total peaks linked to a gene through at least one of the three 

approaches, 78 peaks were linked to the same gene through all three approaches and 5,145 peaks 

were linked to the same gene through two or more approaches (Figure 2.2E). Of the 78 peaks 

linked to 59 genes through all three approaches, interesting candidate regulatory elements 

include four peaks linked to CDKN2B, whose gene product has known roles in cell cycle control 

and whose regulation has been linked to coronary artery disease99,100. Of the 5,145 peaks linked 

to 1,670 genes through at least two approaches, 1,143 linked from preadipocyte-dependent peaks 

and 1,945 linked from adipocyte-dependent peaks (2,057 linked from other context-dependent 

peaks). Although peaks linked by all three approaches have the most supporting evidence, to 

prevent overlooking interesting candidates we considered peaks linked by two or more methods 

when evaluating candidates for functional evaluation. 

 

Trait heritability enrichment within context-dependent peaks  

We used stratified LD score regression101 to compare heritability enrichment for selected 

cardiometabolic traits in preadipocyte-dependent peaks, adipocyte-dependent peaks, and bulk 

adipose tissue peaks. Given that preadipocyte-dependent and adipocyte-dependent peaks cover a 

small portion of the genome (~0.45%), we also ran stratified LD score regression on the top 

100,000 consensus peaks (ranked by median peak p-value across replicates) in each SGBS 
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differentiation day. For comparison, we also ran stratified LD score regression using the adipose 

tissue peaks. 

Different traits were enriched in adipocyte-dependent and preadipocyte-dependent peaks. 

For waist-hip ratio adjusted for BMI (WHRadjBMI), we observed significant enrichment for 

adipocyte-dependent peaks (z-score=4.7, P<1.2x10-6) and adipose tissue peaks (z-score=5.2, 

P<1.0x10-7) but not for preadipocyte-dependent peaks (z-score=-1.1, P<0.86) (Figure 2.3A). 

Results were consistent for the top 100,000 consensus peaks in each SGBS differentiation day; 

the modest enrichment in D0 peaks could be partly due to peaks shared between timepoints. We 

also observed nominal enrichment for HDL heritability in adipocyte-dependent and adipose 

tissue peaks. In contrast, we observed significant enrichment for coronary artery disease (CAD) 

heritability in SGBS D0 (z-score=2.8, P<2.9x10-3) and adipose tissue (z-score=3.3, P<5.4x10-

4), with weaker and still nominally significant enrichment in D4 (z-score=2.4, P<9.0x10-3) and 

D14 (z-score=2.3, P<0.01); the lack of enrichment in preadipocyte-dependent and adipocyte-

dependent peaks may be due to their low genomic coverage. All peak sets showed less 

heritability enrichment relative to baseline for rheumatoid arthritis, a negative control, except for 

adipocyte-dependent peaks, which showed nominal enrichment (z-score=1.8, P<0.04), 

suggesting that adipocytes may have moderate relevance for this trait. We did not observe 

enrichment of BMI heritability in any peak set, consistent with our previous finding that BMI 

GWAS loci were not enriched in adipose tissue or SGBS peaks84 and with findings from other 

studies that BMI loci are enriched in central nervous system cell types and pathways101,102. A 

complementary approach using all traits in the GWAS catalog44 grouped by Experimental Factor 

Ontology terms showed similar results (Figure 2.3B). The most enriched terms for adipocytes 

included waist-hip ratio, cholesterol, inflammatory traits, and birthweight, whereas the most 
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enriched terms for preadipocytes included atrial fibrillation and inflammatory traits. We also 

observed enrichments for traits with less apparent, but established connections to 

cardiometabolic traits, including forced expiratory volume, a measure of lung function that has 

been shown to be lower in individuals with metabolic syndrome and high body fat 

percentage103,104, and intraocular pressure, which has been shown to be higher in individuals with 

metabolic syndrome and markers of obesity105,106. Taken together, we found that peaks in 

adipocytes contribute more to heritability of WHRadjBMI, whereas preadipocytes may 

contribute more to heritability of CAD, though to a lesser degree. 

 

Fine-mapping of GWAS variants using context-dependent peaks and allelic imbalance  

To identify genetic variants that may have context-dependent effects on disease-relevant 

traits, we identified distinct signals from the GWAS catalog44 (see Methods) for which a proxy 

variant (LD r2>0.8) is located within a context-dependent peak. Of 4,954 context-dependent 

peaks that overlapped GWAS signals, 1,448 were preadipocyte-dependent and 1,461 were 

adipocyte-dependent.  

At some GWAS loci, these context-dependent peaks can be linked to genes. We observed 

4,284 peak-gene pairs that overlapped GWAS variants, and 799 of these pairs, representing 659 

unique peaks, were supported by two or more approaches (Figure 2.3C). Of these 659 peaks, 265 

were adipocyte-dependent, 143 were preadipocyte-dependent, and 251 were other context-

dependent peaks. Of these 659 peaks, 191 (29%) overlapped adipose tissue peaks, which 

generally had weaker signals than the SGBS peaks. At one locus, we identified two peaks more 

accessible in adipocytes that overlap adipose eQTL variants for ADIPOQ (peak96641: 

rs76071583; peak96640: rs143257534), which also showed adipocyte-dependent expression. 
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These peaks also overlap adipose consensus peaks and GWAS variants associated with 

adiponectin levels107, including rs76071583, previously shown to exhibit allelic differences in 

binding of the transcription factor CEPB-a and transcriptional activity in adipocytes108. CEBPA 

has higher expression in adipocytes than preadipocytes (D4>D0 LFC=8.6, D14>D0 LFC=9.2), 

consistent with the context-dependent regulatory effect.   

To identify GWAS variants that may alter chromatin accessibility at different stages of 

differentiation, we also identified variants exhibiting allelic imbalance (AI) in ATAC-seq reads 

across SGBS technical replicates. Because SGBS cells originate from one individual, we could 

only test for AI at heterozygous variants in one individual. We identified 574, 996, and 489 

variants showing significant AI (FDR<5%) on D0, D4, and D14, respectively, and 582 AI 

variants in 454 context-dependent peaks, including 90 peaks that harbored more than one AI 

variant. Of the 454 context-dependent peaks, 64 were linked to a target gene by two approaches, 

55 contained GWAS variants that exhibited AI, and 13 linked to both a target gene and GWAS 

variant. At an example with both types of data, a variant (rs11039149) that showed significant AI 

in days 4 and 14 was found within a peak more accessible in D4 compared to D0 (peak23801) 

and is an eQTL variant for the adipocyte-dependent gene NR1H3. The more accessible allele 

rs11039149-G is associated with lower NR1H3 expression. rs11039149 is a GWAS variant for 

HDL cholesterol50 and proinsulin109. NR1H3 has previously been shown to be involved in lipid 

transport110, and one or more of these variants could alter NR1H3 expression and affect 

associated metabolic traits. Combining ATAC-seq AI, context-dependent peaks, and target genes 

helps connect variants to regulatory elements and genes and can identify variants with context-

dependent effects on gene regulation. 
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Functional evaluation of candidate regulatory elements reveals context- and allele-dependent 

mechanisms  

Of the 659 context-dependent peaks that we linked to target genes and GWAS signals, 

we tested two for allele-dependent effects on transcriptional activity using reporter gene assays 

in SGBS preadipocytes and 12-day differentiated adipocytes. At a first GWAS locus for 

palmitoleic acid111, we identified an adipocyte-dependent peak (Figure 2.4A, peak19405; 

D4>D0: LFC=3.8; D14>D0: LFC=2.8) that we linked to the gene SCD, encoding Stearoyl-CoA 

Desaturase, through two approaches, overlap of the peak with an adipose eQTL variant 

(rs603424, P=1.6x10-9) associated with SCD61 and adipocyte-dependent expression of SCD 

(D4>D0: LFC=6.3; D14>D0: LFC=8.2) (Figure 2.4A). SCD codes for an enzyme involved in 

fatty acid synthesis112. Peak19405 also overlaps a consensus adipose tissue peak and contains 

rs603424, the G allele of which is associated with higher SCD expression61 and higher 

palmitoleic acid111. We tested a 592-bp region spanning the majority of peak19405 for allele-

dependent functional effects. In adipocytes, the construct containing the rs603424-G allele 

demonstrated significantly increased transcriptional activity compared to the construct 

containing the rs603424-A allele (forward P=0.003, reverse P=0.0001; Figure 2.4B), consistent 

with the direction of effect observed in the adipose eQTL. Together, these results suggest that in 

adipocytes but not preadipocytes, rs603424-G increases transcriptional activity of SCD to 

increase palmitoleic acid levels.  

At a second GWAS locus for type 2 diabetes113, we identified two candidate regulatory 

elements and tested both for allele-dependent effects on transcriptional activity. One candidate is 

an adipocyte-dependent peak (Figure 2.5A, peak81750, containing rs55966194, D4>D0: 

LFC=4.2 and D14>D0: LFC=3.1) that we linked to EYA2, encoding Eyes Absent Transcriptional 
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Coactivator and Phosphatase 2, through colocalization with an adipose eQTL (rs55966194, 

P=6.0x10-10)61 and adipocyte-dependent expression of the linked gene (D4>D0: LFC=1.7; 

D14>D0: LFC=1.4) (Figure 2.5A). EYA2 codes for a protein that has been linked to adipocyte 

lipolysis114. Also, at this locus, a second candidate regulatory element is an adipose-specific peak 

not detected in SGBS and which contains variant rs59791349, which is a proxy variant for an 

adipose eQTL for EYA261 and GWAS locus for type 2 diabetes113. The C alleles for both 

rs55966194 and rs59791349 are associated with higher EYA2 expression and increased risk of 

type 2 diabetes. We tested regions spanning the majority of each peak for allele-dependent 

transcriptional activity. The 419-bp region for adipocyte-dependent peak81750 containing the 

rs55966194-C allele demonstrated modest allelic differences only in the reverse orientation 

(P=0.06, Figure 2.5B), whereas the 288-bp region for the adipose peak containing rs59791349-C 

demonstrated significantly higher transcriptional activity than the rs59791349-T allele in both 

orientations and both cell types (adipocytes forward P=0.0029, adipocytes reverse P=0.0058; 

preadipocytes forward P=0.0008, preadipocytes reverse P=0.0015; Figure 2.5C). The allelic 

differences in transcriptional activity were consistent with the direction of effect of the adipose 

eQTL. These results suggest that in both preadipocytes and adipocytes, rs59791349-C increases 

transcriptional activity of EYA2 to increase risk of diabetes. Altogether, the experiments at these 

two loci demonstrate that context-dependent peaks can, but do not always, predict allele-

dependent transcriptional activity, as other mechanisms may be involved. These results also 

suggest the value of using both cell type-specific and tissue-derived regulatory elements to 

identify functional regulatory variants. 
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Discussion 

In this study, we generated chromatin accessibility and gene expression profiles for 

preadipocytes, immature adipocytes, and mature adipocytes and identified context-dependent 

peaks during adipocyte differentiation as candidate regulatory elements. We linked these 

regulatory elements to candidate genes using three approaches and identified context-dependent 

regulatory elements at GWAS loci. Our consensus subcutaneous adipose tissue peak map based 

on profiles from 11 individuals provided a resource to expand on existing human adipose peak 

maps86,115,116 and to prioritize among peaks from the SGBS cell model. Finally, we identified 659 

context-dependent regulatory elements at GWAS loci that were linked to genes and showed 

through functional tests that elements can exhibit context-dependent allelic differences in 

transcriptional activity, identifying plausible disease mechanisms.  

Chromatin accessibility profiles differ between samples for biological and technical 

reasons. Biological reasons can include cell type and cell context. A technical source of variation 

between our profiles could be due to heterogenous sequencing protocols with a mix of paired-

end, single-end, and variable read lengths. We addressed the heterogenous sequencing protocols 

in our analyses as described in Methods, but it could contribute to differences between libraries. 

Reassuringly, our SGBS ATAC-seq libraries cluster by day despite differences in sequencing 

parameters. Additionally, while SGBS cells are a useful human adipocyte model, some aspects 

of the chromatin accessibility profile could be due to the cells growing in culture or the 

overgrowth syndrome disease state that allows the cells to grow without being transformed. To 

address these limitations, we identified SGBS peaks that overlapped adipose tissue peaks, 

including the peak we tested at the SCD locus. Although it remains challenging to compare 

between species, we observed enrichment of motifs for well-known adipogenesis transcription 
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factors CEBP, PPAR, and RXR within adipocyte-dependent peaks, consistent with a study of 

changes during adipogenesis in a 3T3-L1 mouse line87.  

Our differential analyses of peaks and gene expression profiles between timepoints 

suggest that most peak changes occur between D0 and D4 and remain stable between D4 and 

D14, while a larger proportion of gene expression changes occur between D4 and D14. The 

observation that peak changes occur early and remain largely stable is consistent with a previous 

study that found a majority of chromatin accessibility changes in a 3T3-L1 mouse-derived 

adipocyte cell line occurred between two and four hours after the initiation of differentiation87. 

The observation that gene expression may continue to change throughout later stages of 

differentiation is consistent with a study that showed gene expression changing between 7-day 

intervals up to day 21 in human adipose-derived stromal cells95. After initial analyses suggested 

that few context-dependent peaks arose between D4 and D14, we investigated chromatin 

accessibility at an earlier timepoint of immature adipocytes differentiated for two days (D2). 

Preliminary analysis of D2 also showed that no peaks were differential between D2 and D4, so 

we did not generate further D2 data. Similarities between D4 and D14 also led us to focus on the 

subsets of context-dependent peaks that were specific to preadipocytes (D0>D4 and D0>D14) or 

adipocytes (D4>D0 and D14>D0), rather than the limited number that were specific to mature 

adipocytes (D14>D0 and D14>D4). 

We used two approaches to link context-dependent peaks to genes: overlap with existing 

adipocyte promoter capture Hi-C regions and with known adipose eQTL variants, and we 

determined which of these linked genes also showed expression differences between 

differentiation timepoints. Promoter capture Hi-C has the advantage of identifying direct 

connections between regulatory elements and genes, even over large distances. However, 
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physical proximity does not necessarily imply a regulatory relationship, and the data we used 

was for adipocytes, not preadipocytes, and therefore could have detected connections for the D4 

and D14 timepoints better than for D0. While most promoter capture Hi-C fragments have high 

resolution (median ~3 kb in the analyzed dataset), the location of restriction sites in the genome 

limits resolution for some fragments (~10% of fragments had >10 kb resolution). Our second 

approach based on overlap with adipose eQTL variants has the advantage that the identified 

variants are associated with differences in gene expression. Two disadvantages of the eQTL 

approach are that eQTL studies may be underpowered, so not all associations are discovered, and 

that the adipose tissue used in the eQTL study is comprised of multiple cell types, not only 

adipocytes. Although adipose tissue is heterogenous, it is known to contain more adipocytes than 

preadipocytes11,94. Therefore, the eQTL method also could have detected connections for the D4 

and D14 timepoints better than for D0. Peaks linked to genes by eQTL tended to be closer to the 

TSS of the linked gene compared to Hi-C, partially due to the shorter distance window used in 

the eQTL data than the Hi-C data. To incorporate differential gene expression into the 

identification of peak-to-gene links, we initially considered using proximity between context-

dependent peaks and context-dependent genes. However, proximity is indirect and requires 

selecting an arbitrary threshold for maximum distance between peak and gene. Thus, we used 

context-dependent gene expression as additional supporting evidence for links made by other 

methods. Although indirect, context-dependent genes have the advantage of being observed in 

the same cell model and at the same timepoints, and can help determine if a regulatory element 

has a positive or negative effect on gene expression. Due to the advantages and disadvantages of 

the different approaches, the largely different peak-to-gene links detected were not surprising. 

Using multiple approaches to link regulatory elements to candidate genes can overcome the 
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limitations of each approach, and genes identified by multiple methods can increase confidence, 

although genes linked by even a single method merit further investigation. 

We used AI in SGBS ATAC-seq reads to provide suggestive evidence that GWAS 

variants may alter chromatin accessibility at different stages of adipocyte differentiation. 

Although we only tested AI at heterozygous variants from one individual, which limits 

heterozygous sites available for testing, we identified 55 peaks containing GWAS variants that 

exhibited AI, 13 of which were linked to genes. ATAC-seq in additional cell lines with diverse 

genotypes would improve the ability to detect AI. Previous studies have mapped AI and 

chromatin accessibility QTL in different contexts68,117,118, which allowed for testing of more 

variants and identification of more robust context-dependent genetic effects on gene regulation. 

Our results demonstrate that AI in ATAC-seq reads from one individual can be used to predict 

regulatory variants, although identifying AI in larger sample sizes would lead to more 

comprehensive and robust results and more genetic variants. 

We followed up context-dependent regulatory elements at two GWAS loci by testing 

variants for effects on context-dependent transcriptional reporter gene activity. Due to the bias 

towards adipocytes of our methods to link peaks to genes, we focused on regulatory elements 

more accessible in adipocytes. At SCD, we observed consistent evidence of context- and allele-

dependent transcriptional activity among technical replicates. The regulatory element that was 

more accessible in adipocytes contained an allele associated with increased adipose tissue 

expression of SCD61 and increased palmitoleic acid111. SCD codes for an enzyme involved in 

fatty acid synthesis112, therefore increased SCD expression is a likely mechanism to increase 

palmitoleic acid levels. In reporter assays, the element showed higher transcriptional activity in 

adipocytes than preadipocytes, and the allele associated with higher adipose SCD expression 
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showed higher transcriptional activity, only in adipocytes. These data suggest that the regulatory 

element we identified increases SCD expression to increase palmitoleic acid levels in adipocytes.  

At the second locus we examined, EYA2, the results are more complex. We identified two 

candidate regulatory elements, one that was adipocyte-dependent and one that was present in the 

consensus adipose tissue map. Both regulatory elements contained variants associated with 

adipose tissue expression of EYA261 and type 2 diabetes113. Both regulatory elements 

demonstrated higher expression of the reporter gene in adipocytes than preadipocytes, consistent 

with the context in which one element was more accessible and with the large proportion of 

adipocytes in adipose tissue11,94. However, only the consensus adipose element demonstrated 

clear allele-dependent transcriptional activity. This result demonstrates that, while identifying 

loci with context-dependent peaks linked to genes and traits still is useful for identifying 

candidates, it does not mean the identified variant is responsible. However, the variant within the 

adipocyte-dependent peak at this locus may still exhibit allelic effects on regulatory activity that 

are not detectible in in vitro transcriptional reporter assays. For the EYA2 locus, our adipose 

consensus map guided us to investigate an additional candidate regulatory element that 

demonstrated an allele-dependent effect on transcriptional activity. EYA2 codes for a 

transcriptional coactivator that has been linked to many developmental processes and adipocyte 

lipolysis, consistent with a role in adipocyte biology and metabolic traits114,119. Our reporter 

assays demonstrate allelic differences in transcriptional activity for elements at two loci, 

however, additional experiments are needed to validate specific regulatory elements within these 

peaks in the context of chromatin accessibility and the effect on regulation on the predicted gene.  

This study extends our previous study that reported ATAC-seq peaks in SGBS cells and 

adipose tissue from three individuals84. Genetic variation contributes to differences in peaks, so 
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we profiled adipose tissue in additional individuals to capture peaks that could have been missed 

in fewer samples due to genetic variants or environmental/physiological differences between 

individuals. In general, ATAC-seq data from frozen adipose tissue demonstrated lower quality 

than our SGBS preadipocytes and other frozen tissues88,120,121, despite our efforts to optimize 

library preparation with different buffers, detergents, and ratios of transposase to nuclei. Freezing 

has been shown to affect ATAC-seq library quality and comparisons of ATAC-seq profiles in 

samples using various freezing methods suggest cryopreserved tissue demonstrated higher 

quality than flash-frozen tissue120. High lipid content could also have affected adipose tissue 

profile quality, as adipose tissue has a high ratio of adipocyte cells11,94 and lipid content 

somewhat affected ATAC-seq in cultured SGBS cells, as fewer D14 adipocyte samples met QC 

thresholds compared to D0 and D4 cells, despite being cultured and processed in parallel. The 

consensus map of adipose peaks based on the 11 samples of at least moderate quality showed 

similar overlap with adipocyte nuclei promoters and enhancers as our previous map based on 

three samples, but the inclusion of additional samples should make the 11-sample consensus map 

more robust.  

Overall, we demonstrated that context-dependent chromatin accessibility identifies 

context-dependent regulatory elements that can aid understanding of mechanisms behind 

cardiometabolic traits. By identifying adipocyte differentiation context-dependent regulatory 

elements and linking them to genes and GWAS traits, we filtered from 58,387 context-dependent 

regulatory elements to 659 elements with a candidate mechanism. Additional study of these 

regulatory elements could lead to a better understanding of the role of adipocytes and adipocyte 

differentiation in cardiometabolic disease traits as well as other relevant traits we identified 
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through enrichment analyses such as lung function. This could also be applied to other adipocyte 

contexts to identify additional context-dependent mechanisms. 

 

Methods 

Ethics statement: 

The Ethics Committee of the University of Eastern Finland in Kuopio and the Kuopio 

University Hospital approved the METSIM study and it was carried out in accordance with the 

Helsinki Declaration. Formal written consent was obtained from METSIM participants. 

 

Cell culture: 

SGBS cells21 were generously provided by Dr. Martin Wabitsch (University of Ulm) and 

cultured as previously described122. Briefly, we cultured SGBS preadipocytes in serum-

containing basal medium (DMEM:F12 + 33uM biotin + 17uM pantothenate) with 10% FBS until 

confluent, then rinsed in phosphate-buffered-saline (PBS) and differentiated for four days in 

medium supplemented with 0.01 mg/mL transferrin, 20 nM insulin, 200 nM cortisol, 0.4 nM 

triiodothyronine, 50 nM dexamethasone, 500 uM IBMX, and 2 uM rosiglitazone. After four 

days, we maintained differentiated SGBS cells in basal medium supplemented with 0.01 mg/mL 

transferrin, 20 nM insulin, 200 nM cortisol, 0.4 nM triiodothyronine until harvested. HEK293T 

cells (ATCC, Manassas, VA) were grown in DMEM supplemented with 10% FBS. 

 

Adipose tissue: 

Human subcutaneous abdominal adipose tissue biopsies were obtained from METabolic 

Syndrome in Men (METSIM)15 participants as previously described65. Adipose tissue was 
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obtained through either a needle or surgical biopsy and flash frozen and stored at -80oC until 

use. 

 

ATAC-seq library preparation: 

We profiled chromatin accessibility in SGBS cells at D0, D4, and D14 of adipocyte 

differentiation following the omni-ATAC-seq protocol88 using unique, dual-barcoded indices. 

We isolated nuclei and used a cell countess to aliquot 50,000 nuclei per library. After initial 

optimization of Tn5:nuclei ratios, we proceeded with 5 uL of Tn5 per library, some early 

libraries were prepared with 2.5 uL of Tn5 as indicated. For adipose tissue samples we used the 

original or omni-ATAC-seq protocol69,88 as indicated. We cleaned the transposase reaction and 

final library with Zymo DNA Clean and Concentrator (D4029). We visualized and quantified 

libraries using a TapeStation, and sequenced with paired-end or single-end reads on a Highseq or 

Novaseq as indicated (S1 and S7 Tables). 

 

ATAC-seq read alignment and peak calling: 

For METSIM samples, ATAC-seq read lengths ranged from 50-150 bp, depending on 

sequencing center, so all libraries were trimmed to a uniform length of 50 bp before processing. 

Three METSIM ATAC-seq libraries were single-end and were processed with a single-end 

version of the following pipeline. All other libraries were paired-end. SGBS ATAC-seq reads 

were not length-trimmed before processing, although some libraries had 50bp reads and others 

had 150bp reads. We trimmed sequencing adapters and low quality base calls from the 3’ ends of 

reads using cutadapt123 with parameters -q 20 –minimum-length 36. We aligned trimmed reads to 

the hg19 human genome124 using bowtie2125 with parameters –minins 36 –maxins 1000 –no-
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mixed –no-discordant –no-unal and selected nuclear chromosomal alignments with mapq>20 

using samtools125. We removed alignments overlapping high-signal regions (Duke excluded and 

ENCODE/DAC exclusion list regions)126 using BEDTools pairToBed127 with the parameter -

type notospan. We removed duplicate alignments using Picard MarkDuplicates 

(https://github.com/broadinstitute/picard) and generated ATAC-seq quality metrics using 

ataqv.128 Ataqv is only designed for paired-end reads, so we used a customized approach to 

calculate TSS enrichment for the single-end METSIM libraries. To calculate TSS enrichment, 

we generated 2,001-bp windows containing the TSS and 1 kb flanking regions on either end for 

the set of 5,307 RefSeq housekeeping TSSs used by ataqv for TSS enrichment. We then 

calculated the number of ATAC-seq reads overlapping each base within these 2,001 bp windows 

for each METSIM sample using BEDTools coverage with the -d option and made a matrix of 

coverage for these windows using python. Finally, we summed the coverage across each TSS 

window within the same sample and calculated TSS enrichment by dividing the summed 

coverage at the TSS by the mean summed coverage of the 100 bases at the leftmost and 

rightmost ends of the windows using R. 

Prior to peak calling, we trimmed alignments so their 5’ ends corresponded to the Tn5 

binding site (+4 for + strand alignments and -5 for – strand alignments)69 and smoothed signal by 

extending alignments 100 bp on either side of the Tn5 binding sites using BEDTools slop127. We 

called peaks (FDR<5%) with MACS2129 with parameters -q 0.05 –nomodel –bdg and generated 

ATAC-seq signal bigwig files from MACS2 bedGraph files using the bedGraphToBigWig tool 

from ucsctools130. For SGBS libraries, we proceeded with analyses on a final set of libraries that 

met our signal-to-noise quality thresholds with a fraction of reads in peaks (FRiP) greater than 

20% and a transcription start site enrichment greater than 576. For METSIM libraries, we selected 
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libraries that had TSS enrichment >= 4 calculated from our customized script that works on 

single-end and paired-end reads. TSS enrichment values produced by our script are generally 

higher than those calculated by ataqv, and TSS enrichment of 4 from our script corresponds 

roughly to TSS enrichment of 3 from ataqv. 

For each analyzed day of SGBS differentiation, we generated a set of consensus ATAC-

seq peaks using the following method. First, we merged peak genomic coordinates across 

replicates for a given day using BEDTools merge127. Second, we defined consensus peaks as 

merged peaks that overlapped individual replicate peaks in greater than 50% of replicates (at 

least 3 out of 5 replicates for D14 and 6 out of 10 replicates for D0 and D4). 

 

Identification of differentially accessible peaks: 

We generated a set of merged peaks to test for differential chromatin accessibility by 

merging the top 100,000 consensus peaks in each day (ranked by median peak p-value across 

replicates). We quantified the accessibility of these merged peaks in each library using 

featureCounts131. We computed the GC percent of each peak using BEDTools nuc127 and 

generated within-library GC bias normalization factors using full quantile normalization with 

EDASeq132. We then used EDASeq GC bias normalization factors within DESeq2133 and used 

DESeq2 size factors to control for differences in sequencing depth between libraries. We tested 

for differential chromatin accessibility using DESeq2133 and classified peaks with FDR<5% and 

log fold change (LFC)>1 as significantly differential. 
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Enrichment of transcription factor motifs in differential peaks: 

We tested for enrichment of 319 transcription factor (TF) motifs in adipocyte or 

preadipocyte-dependent peaks using the findMotifsGenome tool from HOMER134 with the -size 

200 option. We used peaks that were not differential in any pairwise day comparison 

(FDR>50%, absolute value of LFC<1) as background in the enrichment analyses. We classified 

motifs with a p-value less than the Bonferroni-corrected threshold of 1.6x10-4 (0.05/319 motifs) 

as significant. 

 

Gene ontology enrichment of genes near differential peaks: 

We tested if genes near adipocyte and preadipocyte-dependent peaks were enriched for 

specific biological processes using the Genomic Regions Enrichment of Annotations Tool 

(GREAT) web tool (http://great.stanford.edu/public/html/)135 with the GO Biological Process 

ontology135,136. We ran GREAT version 4.0.4 with the default parameters of basal plus extension, 

proximal 5 kb upstream to 1 kb downstream, distal 1000 kb (1 Mb), and a whole genome 

background. We classified ontology terms with Minimum Region-based Fold Enrichment>=2 

and FDR<5% as significantly enriched.  

 

Identification of adipose tissue consensus peaks 

We constructed an initial set of adipose tissue consensus peaks using the 17 METSIM 

libraries with TSS enrichment>=4 (our customized TSS enrichment script). To construct 

consensus peaks, we took the union of peaks across all 17 samples and selected union peaks that 

overlapped (shared at least one base) with a peak in 3 samples. To identify outlier samples, we 

computed PCA of ATAC-seq read counts within consensus peaks and performed hierarchical 
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clustering of the top 10 PCs (Fig 2.6). We identified 6 outlier samples: four samples were 

generated with the omni-ATAC-seq protocol88 (whereas all other samples were generated using 

the original ATAC-seq protocol69), one sample had a much higher percentage of mitochondrial 

reads compared to other samples, and one sample had substantially fewer peaks compared to 

other samples. Adipose tissue peaks from the 11-sample peak set showed stronger overlap with 

Roadmap Epigenomics adipose nuclei enhancers (Figs 2.1D and 2.6D) and stronger enrichment 

for all tested traits except BMI (Figs 2.3 and 2.6E) compared to the 17-sample set. Therefore, we 

removed these 6 samples and generated consensus peaks with 11 samples, using the same 

approach as for 17 samples. 

 

RNA-seq library preparation, read alignment, and identification of differentially expressed 

genes: 

We isolated total RNA from SGBS cells at D0, D4, and D14 of differentiation using the 

Total RNA Purification Kit (product #17200) from Norgen Biotek (Ontario, Canada). Novogene 

(Beijing, China) generated poly-A RNA libraries and performed paired-end RNA sequencing 

(RNA-seq, read length 150 bp) using a NovaSeq 6000 (Illumina, California, USA). We trimmed 

sequencing adapters and low quality base calls from the 3’ ends of RNA-seq reads using 

cutadapt123 with parameters -q 20 –minimum-length 36. We aligned reads to the hg19 human 

genome124 using STAR137 with parameters --sjdbOverhang 149 --twopassMode Basic --

quantMode TranscriptomeSAM --outFilterMultimapNmax 20 --alignSJoverhangMin  8 --

alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 

0.04 --alignIntronMin  20 --alignIntronMax 1000000 --alignMatesGapMax 1000000. We 

quantified expression of genes from GENCODE v29 lift37138 and corrected for GC bias using 
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salmon44 with parameters –seqBias –gcBias –gencode. We generated RNA-seq quality metrics 

using the CollectRnaSeqMetrics tool from Picard (https://github.com/broadinstitute/picard). We 

used PCA to determine which replicates clustered. Within timepoint clusters, we observed 

additional clustering by batch that we corrected for in downstream analysis. 

To identify differentially expressed genes, we imported salmon transcript quantifications 

and collapsed to the gene level using tximport139. We retained 18,299 genes with median 

DESeq2-normalized count >= 1 across all libraries. We tested for differential gene expression 

using DESeq2133 and classified genes with FDR<5% and LFC>1 as significantly different across 

pairs of timepoints. 

 

Gene ontology enrichment of differential genes: 

We tested if differentially expressed genes were enriched for specific biological 

processes using the PANTHER statistical overrepresentation test140 with the GO-Slim Biological 

Process ontology136,141. We ran PANTHER using Fisher’s exact test for calculating enrichment 

and used all 18,299 genes examined in the differential expression analysis as background for the 

enrichment tests. We classified ontology terms with fold enrichment>=2 and FDR<5% as 

significantly enriched.  

 

Identification of genes linked to context-dependent peaks: 

Hi-C: We identified context-dependent peaks that intersect (overlap>=1 base pair) with 

the “other-end” fragments of “bait-other” Hi-C loops and either end of “bait-bait” loops from 

previously published adipocyte promoter capture Hi-C data97,98 using BedTools127. We linked 

peaks to genes that were on the opposite end of the Hi-C “bait-bait” loops. We categorized Hi-C 
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interaction types as “bait-bait” if the “other-end” fragment also covered a bait fragment and 

“bait-other” if the “other-end” fragment did not cover a bait fragment.  

eQTL: We identified context-dependent peaks that overlapped eQTL proxy variants 

(r2>0.8 with the eQTL lead, 1000G phase 3 EUR LD calculated using PLINK v1.9142) using 

previously published primary and conditional eQTL mapped in METSIM adipose tissue61,65 

using BedTools127. We identified the best eQTL proxy within the peak as the variant with the 

strongest LD with the lead variant at the signal. If a peak contained proxy variants from both 

primary and conditional signals with equally strong LD, we selected the primary signal proxy as 

the best proxy. We also listed all eQTL variants that intersected a peak.  

Differential Expression: To provide additional evidence for peak-gene links identified by 

Hi-C or eQTL, we identified if the linked gene was also differentially expressed (FDR<5% and 

LFC>1) between any timepoint comparisons. We investigated linking context-dependent peaks 

to differentially expressed genes based on proximity between the peak and gene TSS, but 

proximity is indirect and based on the even distribution of peaks from TSS as distance increased, 

any threshold would have been arbitrary so we concluded that proximity alone was not strong 

evidence to link a peak and gene (S9 Fig). 

 

SGBS genotyping and imputation: 

We genotyped two SGBS DNA samples with 335 samples from a separate study using 

the Infinium Multi-Ethnic Global array (Illumina, San Diego, CA, USA), which contains over 

1.7 million variants. The additional 335 samples were used to calculate genotyping call rates, but 

all subsequent analyses were performed using only SGBS genotypes. We removed variants with 

call rate <95%, performed multiple quality checks with the checkVCF.py tool 
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(https://genome.sph.umich.edu/wiki/CheckVCF.py), and oriented alleles relative to the hg19 

reference genome124 using PLINK.142 We restricted to variants that had the same genotype call in 

both SGBS samples for downstream analyses. We phased autosomal variants using Eagle v2.4143 

and imputed missing variants using Minimac3144 with the 1000 Genomes (1000G) phase 3 

reference panel145. The imputation r2 statistic used to assess imputation quality is not meaningful 

when imputation is performed on a single sample. Therefore, we retained variants with genotype 

probability (GP) > 0.9. In our batch of SGBS cells, a subset of cells showed loss of 

heterozygosity on regions of chromosomes 7 and 10 (chr7:1-31,000,000 and chr10:131,000,000-

135,534,747); variants overlapping these regions were removed prior to downstream analyses. 

 

ATAC-seq allelic imbalance: 

To identify heterozygous variants exhibiting allelic imbalance (AI) in SGBS ATAC-seq 

reads, we first removed reads exhibiting allelic mapping bias and duplicated reads using 

WASP146. We counted reads aligning to each allele of biallelic heterozygous single nucleotide 

variants using ASEReadCounter147 with the option –min-base-quality 30 and removed variants 

that had aligned bases other than the two genotyped alleles. For each SGBS differentiation day, 

we selected a set of variants to test for AI that had at least 20 total reads combined across both 

alleles and at least 3 reads on each allele in greater than 50% of replicates for the given day (3 

replicates for D14 and 6 replicates for D0 and D4). We tested for AI separately by day using 

DESeq2133 with the design formula ~0+sample+allele, where ‘sample’ represents an individual 

ATAC-seq replicate. Using DESeq2, we tested if the ratio of alternate allele counts to reference 

allele counts was greater than log2(55/45) using a Wald test, estimated dispersions of allelic 

ratios using maximum likelihood, and adjusted for multiple testing using the BH procedure. We 
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used an LFC threshold of log2(55/45) rather than log2(50/50), to preferentially select variants 

showing strong AI, especially given high variability in allelic ratios. We considered variants with 

FDR<5% to show significant AI. 

 

Overlap of GWAS signals with context-dependent peaks: 

We downloaded the NHGRI-EBI GWAS catalog44 on January 17, 2020 and lifted variant 

positions from hg38 to hg19 using pyliftover (https://github.com/konstantint/pyliftover), a 

python implementation of the UCSC liftOver tool148; We rescued a subset of variants that did not 

successfully lift over using variant rsIDs to convert between hg38 and hg19 coordinates. We 

restricted to significant associations (p<5x10-8) for single nucleotide variants (haplotype 

associations and variant-variant interactions were removed) that were biallelic in the dbSNP149 

build 151 common variant set. To generate a set of LD-distinct association signals, we performed 

LD-clumping using swiss (https://github.com/statgen/swiss) in a trait-agnostic manner61; the 

most significant p-value per variant was selected, regardless of trait, and variants within strong 

LD (r2>0.8, 1000G phase 3 EURs) and within 1 Mb of another variant with a more significant p-

value (not necessarily for the same trait) were removed. However, we retained all variants and 

associated traits at each signal for reference in supplemental tables.  

To map GWAS catalog trait terms to standardized ontology terms, we downloaded the 

GWAS to Experimental Factor Ontology (EFO) mappings file from the GWAS catalog on May 

13, 2021 and extracted the EFO term corresponding to each trait. We identified GWAS signals 

that had at least one proxy variant (LD r2>0.8 with the signal lead variant, 1000G phase 3 EURs, 

calculated with PLINK v1.9142) found within context-dependent peaks using BEDTools127. For 

each specific EFO term, we counted the number of signals containing that EFO term, including 
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all variant-trait associations at a signal, not just the strongest association; we only counted each 

term once per signal. We performed this counting procedure for both the entire LD-clumped 

GWAS catalog and the subset of the catalog that overlapped the ATAC-seq peak set of interest. 

Because our goal in using EFO terms is to reduce the complexity of the GWAS catalog traits, we 

removed any GWAS traits that mapped to 5 or more EFO terms for our analyses that count EFO 

terms, which only removed <1% of GWAS traits. However, we retained all GWAS traits and 

EFO terms in S15 Table for reference. To normalize for the overall frequency of an EFO term in 

the clumped catalog, we divided the number of ATAC-seq counts by the number of total counts 

for each EFO term and multiplied by 100 to express as a percentage. When ranking by 

normalized ATAC-seq count to get the top 10 EFO terms for preadipocyte-dependent and 

adipocyte-dependent peaks, we restricted to terms that had total count >=100. 

 

Enrichment of heritability in ATAC-seq peaks: 

We used stratified LD score regression as implemented in LDSC v1.0.1101 to test if 

ATAC-seq peaks were enriched for heritability of 9 GWAS traits: 8 cardiometabolic traits 

BMI150, HDL cholesterol151, LDL cholesterol151, triglycerides151, total cholesterol151, coronary 

artery disease152, WHRadjBMI150, T2D45, and rheumatoid arthritis153 as a negative control. We 

tested for heritability enrichment separately in 7 different ATAC-seq peak sets: preadipocyte-

dependent peaks, adipocyte-dependent peaks, the top 100,000 consensus peaks for SGBS D0, 

D4, and D14, and consensus peaks mapped in 17 adipose tissue samples and 11 adipose tissue 

samples. Using LDSC, we calculated LD scores for ATAC-seq peaks using HapMap3 SNPs154 

and LD calculated from 1000G phase 3 EURs145. We computed partitioned heritability 

separately for each ATAC-seq peak set using LDSC correcting for the baseline v1.2 model, 
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which consists of 52 genic and functional annotations101. We used the regression coefficient z-

score reported by LDSC to assess the importance of each ATAC-seq peak set for each trait 

relative to the baseline model, where a positive z-score means that SNP heritability is increased 

in a given ATAC-seq peak set relative to the baseline model and a negative z-score means that 

heritability is decreased in the peak set relative to the baseline155. We calculated p-values by 

testing if the coefficient z-score was greater than 0, assuming a standard normal distribution. We 

classify results with a p-value threshold of 0.05 as nominally significant and 0.0056 (0.05/9 

traits) as significant. We compare the relative importance of each ATAC-seq peak set to 

heritability for a given trait by comparing coefficient z-scores. 

 

Prioritization of candidate regulatory elements for functional testing: 

We identified context-dependent peaks linked to a candidate gene by two or more of our 

three methods to predict target genes. We identified a further subset of these context-dependent 

peaks that overlapped a cardiometabolic GWAS signal and an adipose peak. We used further 

lines of evidence to prioritize these candidate regulatory elements for functional testing 

including: location of variants closer to the summit of a peak as opposed to the shoulder and 

literature review of linked gene’s relevance to adipose biology. 

 

Transcriptional reporter luciferase assays: 

SGBS preadipocytes and adipocytes were maintained and transcriptional reporter 

luciferase assays were performed as previously described122 with the following changes. Primers 

were designed to amplify the entire chromatin accessibility region containing variants of interest. 

Amplified regions containing variant reference and alternate alleles were cloned individually into 
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the XbaI-SbfI restriction sites of the pLS-mP-Luc lentiviral luciferase vectors (a gift from Nadav 

Ahituv, Addgene plasmid # 106253) or pGL4.23 firefly luciferase reporter vector (Promega) in 

‘forward’ and ‘reverse’ orientations (named with respect to the genome reference). The variants 

were cloned upstream of the minimal promoter and verified by Sanger DNA Sequencing. For 

lentivirus production, HEK293T cells were grown to 70-80% confluency in 100 mm plates and 

co-transfected with 9.5 µg of a pLS-MP-Luc construct, 8 µg of packaging plasmid (psPAX2, a 

gift from Didier Trono, Addgene plasmid # 12260), and 2.5 µg of an envelope plasmid 

(pMD2.G, a gift from Didier Trono, Addgene plasmid # 12259) using Lipofectamine 2000 

transfection reagent (Invitrogen). Media was replaced with fresh growth media 18 hours after 

transfection. Viral supernatant was harvested 48 and 72 hours after transfection and concentrated 

using 4X Lenti-X concentrator (Clontech). Lentiviral titer was measured using Lenti-X qRT-

PCR Titration Kit (Takara Bio), and functional titers were represented as transduction units. For 

data normalization, empty pLS-MP-Luc and Renilla luciferase vector pLS-SV40-mp-Rluc 

viruses (a gift from Nadav Ahituv, Addgene plasmid # 106292) were prepared and quantified in 

a similar manner.  

For preadipocytes, 25,000 SGBS cells were plated the day before transduction, and 

35,000 SGBS cells were plated and differentiated for adipocytes into 24 well plates and spin-

infected with appropriate titer of construct and Renilla virus in the presence of 10 ug/ml 

polybrene media. For viral based transcriptional luciferase assays, two independent construct 

viruses were used for each allele in each orientation and were transduced in tetraplicate wells.  

After 8 hrs of transduction, media was replaced with fresh growth media, and luciferase and 

Renilla activity was measured 48 - 72 hours post transduction using Dual Luciferase Reporter 

Assay System (Promega).  For plasmid based transcriptional luciferase assays, we used primers 
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to amplify the regions of interest and we cloned the constructs containing the variants into 

pGL4.23 firefly luciferase reporter vector (Promega).  Five independent clones for each allele in 

each orientation were cotransfected with Renilla luciferase vector in triplicate wells using 

Lipofectamine 3000 (Lifetechnologies).  Luciferase and Renilla activity were measured after 

28hrs of transfection. 

For both viral- and plasmid-based assays, luciferase activity of experimental clones was 

normalized to Renilla luciferase as well as empty vector activity to control for differences in 

transfection efficiency. All transcriptional reporter assays were repeated on different days. Data 

are reported as fold change in activity relative to an empty vector. We used a Student’s t-test to 

compare luciferase activity between alleles and between contexts. 
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Figure 2.1: Genome-wide profiles of chromatin accessibility and gene expression at three 

timepoints of adipocyte differentiation.  

(A) Schematic of experimental design. SGBS cells were harvested as preadipocytes (D0), 

immature adipocytes (D4), and adipocytes (D14). Chromatin accessibility (blue) and gene 

expression (green) profiles were generated on replicates from each timepoint. Context-dependent 

peaks are shown as black bars. Chromatin accessibility profiles also were generated from 

subcutaneous adipose tissue (purple) of 17 individuals and an optimized consensus CA map was 

developed from a subset of 11 individuals. (B) Heatmap of the top 10,000 context-dependent 

peaks (from S4 Table) colored by z-score. (C) Heatmap of expression level of all 3,090 context-

dependent genes (from S9 Table) colored by z-score. Library numbers correspond to quality 

metrics in S8 Table. (D-E) Values in S9 Table. (D) Adipose peak overlap with chromatin states 

of Roadmap Epigenomics Project adipose nuclei for three sets of adipose consensus peaks. (E) 

Preadipocyte- and adipocyte-dependent peak overlap with chromatin states of Roadmap adipose 

nuclei. 
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Figure 2.2: Linking context-dependent chromatin accessibility to candidate genes.  

(A-C) Schematic of three approaches to link peaks to genes. Day 0 (light blue) and day 14 (dark 

blue) context-dependent peaks are represented. (A) Context-dependent peaks that overlap 

elements connected to gene promoters using adipocyte promoter capture Hi-C (orange). (B) 

Context-dependent peaks that overlap adipose gene eQTL variants (r2>.8 with lead, red). (C) 

Context-dependent peaks linked to a gene through Hi-C or eQTL for which the linked gene was 

also differentially expressed between any timepoints (green). (D) Histogram of distances from 

edges of peaks to the transcription start site of a linked gene within 1.2 Mb. Values in S12 Table. 

(E) Numbers of context-dependent peaks linked to genes by each method and by two or more 

methods. Values summarize full results in S12 Table. 
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Figure 2.3: Linking peaks to GWAS signals.  

(A) Heatmap of cardiometabolic trait GWAS locus enrichment; rheumatoid arthritis was selected 

for comparison. Peak sets include 100,000 peaks from individual days, preadipocyte- and 

adipocyte-dependent peaks derived from pairs of timepoints, and adipose tissue peaks. Values in 

S13 Table. **, P < 0.0056; *, P < 0.05 (B) Barplots of normalized counts of specific 

experimental factor ontology (EFO) terms for GWAS signals with a variant in a context-

dependent peak. Barplots show the top ten EFO terms ranked by normalized count for either 

preadipocyte-dependent peaks, or adipocyte-dependent peaks. Total number of signals for each 

term used in the overlap is noted in parentheses in the axis label. Total number of signals for 

each term overlapping a context-dependent peak is noted to the right of the “All Context-

dependent” bar. Values in S14 Table. (C) Flowchart identifying context-dependent peaks 

overlapping GWAS signals and linked to genes through 2 or more methods. 
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Figure 2.4: Allelic differences in transcriptional activity for a context-dependent regulatory 

variant in a context-dependent element at the SCD locus.  

(A) Peak19405 (red) is more accessible in D4 and D14 adipocytes than D0 preadipocytes, 

overlaps an adipose tissue consensus peak (dark purple), and overlaps variant rs603424, which is 

associated with blood plasma levels of palmitoleic acid and adipose SCD expression. SCD is also 

more highly expressed at D4 and D14 compared to D0. Additional tracks show adipose tissue 

ATAC-seq from ENCODE (light purple) and adipose nuclei histone mark ChIP-seq from the 

Roadmap Epigenomics project (blue and green). (B) A 592-bp genomic region surrounding 

peak19405 containing the rs603424-G allele shows increased transcriptional activity compared 

to the rs603424-A allele in the forward and reverse orientations only in adipocytes (tested at day 
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12), the context in which chromatin was more accessible compared to preadipocytes. Dots 

represent two independent constructs assayed from four replicates each. Luciferase activity was 

normalized relative to an empty vector (EV). Values in S18 Table.  
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Figure 2.5: Allelic differences in transcriptional activity for variants in two regulatory 

elements at the EYA2 locus.  

(A) Peak81750 (red) is more accessible in D4 and D14 adipocytes and overlaps variant 

rs559066194, which is associated with increased risk of type 2 diabetes and increased EYA2 

expression. EYA2 is more highly expressed at D4 and D14, compared to D0. A second variant at 

this locus, rs59791349, intersects a consensus adipose peak (dark purple) but not a context-

dependent peak. Additional tracks as in Fig 4. (B-C) Values in S18 Table. (B) A 419-bp genomic 

region surrounding peak81750 containing the rs555966194-C allele shows modestly-increased 

transcriptional activity compared to the rs555966194-G allele in the reverse orientation, but not 

the forward, in adipocytes (tested at day 9), the context in which chromatin was more accessible 

compared to preadipocytes. Dots represent two independent constructs assayed from four 

replicates each. Luciferase activity was normalized relative to an empty vector (EV). (C) A 288-
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bp genomic region containing the rs59791349-C allele shows increased transcriptional activity 

compared to the rs59791349-T allele in both orientations and in both preadipocytes and 

adipocytes (tested at day 9). Dots represent two independent constructs assayed from four 

replicates each. Luciferase activity was normalized relative to an EV. 
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Figure 2.6: Comparison of adipose tissue for three subsets of samples. 

(A) PCA for PC1 (principal component) vs PC2 for all 17 samples that met quality thresholds. 

Solid light purple arrows indicate samples that are unique to the 17-sample set (excluded from 

the 11-sample set). Dashed light purple arrows indicate three previously published samples that 

have been included in the 11- and 17- sample sets. (B) Hierarchical clustering using the top 10 

PCs from PCA. The red dashed line indicates the cutoff used to exclude six samples from the 11-

sample set. Dark purple indicates samples in the 11-sample set. Dashed light purple indicates 

samples in the 3-sample set. Sample numbers correspond to library quality metrics in Table S10. 

(C) PCA for PC1 vs PC2 for the 11-sample set. Dashed light purple arrows indicate three 

previously published samples that have been included. (D) Adipose peak overlap with chromatin 

states of Roadmap Epigenomics adipose nuclei for the three different sample subsets of adipose 

consensus peaks using the top 50k peaks for each set. (E) Heatmap of cardiometabolic trait 

GWAS locus enrichment; rheumatoid arthritis was selected for comparison. Peak sets include 

two sets of adipose tissue peaks.  **, P < 0.005; *, P < 0.05. 
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Tables 
 

Timepoint 
Sample ID 

(identified in 
Fig 1B) 

Batch I
D Final Reads Number of 

Peaks 

Percent 
Reads In 

Peaks 

TSS 
Enrichment 

D00 1 B1 57,474,834 147,944 64.27 5.9 
D00 2 B1 45,276,054 133,522 51.68 5.9 
D00 3 B4 102,126,542 162,246 48.14 5.4 
D00 4 B4 97,154,896 191,773 49.03 7.2 
D00 5 B2 43,365,932 116,318 38.47 5.8 
D00 6 B2 40,894,284 118,621 43.37 6.2 
D00 7 B2 33,634,560 155,237 55.52 9.6 
D00 8 B2 50,964,904 132,142 48.36 6.5 
D00 9 B2 77,285,432 157,596 57.87 5.9 
D00 10 B2 97,528,124 150,754 49.25 5.9 
D04 11 B3 80,807,596 163,193 50.2 6.7 
D04 12 B3 72,362,194 154,669 49.1 5.8 
D04 13 B4 112,892,568 172,115 53.33 5.9 
D04 14 B4 34,294,124 124,029 48.95 5.9 
D04 15 B2 37,724,142 156,758 52.16 11.3 
D04 16 B2 67,860,150 141,195 45.16 7.1 
D04 17 B2 62,275,188 144,845 47.73 6.8 
D04 18 B2 67,595,282 154,912 49.61 6.3 
D04 19 B2 79,694,554 165,682 51.96 6.4 
D04 20 B2 106,937,716 164,104 49.2 7.4 
D14 21 B1 137,878,360 167,758 44.66 8.5 
D14 22 B1 152,136,306 170,636 47.64 6.8 
D14 23 B1 156,493,884 171,050 51.5 8.4 
D14 24 B3 62,563,568 144,757 43.27 6.2 
D14 25 B3 45,696,682 106,454 23.08 5.1 
D02 n/a B3 77,897,392 164,274 52.01 6.3 
D02 n/a B3 47,221,196 113,441 26.23 5.5 

 

Table 2-1: ATAC-seq library metrics for SGBS libraries.  

ATAC-seq libraries of SGBS preadipocytes (D00), immature adipocytes (D02: not included in 

final analyses, and D04), and adipocytes (D14) with batch, sequencing, and alignment metrics. 
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 Total Consensus 

Differentiation Timepoint Peaks Genes 

D00 127,297 13,513 

D04 137,602 13,598 

D14 144,052 13,323 

 

Table 2-2: Summary of chromatin accessibility consensus peaks and genes for SGBS 

differentiation timepoints. 

Consensus peaks were defined as the union of chromatin accessibility region accessible in 

majority of replicates for timepoint, overlapping by 1 or more base pairs and consensus genes 

were defined as those expressed in majority of replicates for timepoint (see methods for more 

information). 
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Differentiation 

Timepoints 
Early > Late Early < Late 

Early Late 

Context-

dependent 

Peaks* 

Context-

dependent 

Genes 

Context-

dependent 

Peaks* 

Context-

dependent 

Genes 

D00 D04 26,435 1,043 26,218 1,128 

D00 D14 21,192 788 18,529 1,319 

D04 D14 519 173 599 449 

*Of top 100k consensus peaks from each day, merged 

 

Table 2-3: Summary of context-dependent peaks and genes. 

Total context-dependent peaks and genes (DESeq2, LFC>1, FDR<5%) identified for each 

timepoint comparison. 
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Sample 
ID  

Sample 
included in 

sets 
Protocol  

Final 
Filtered 
Reads 

Number 
of 

Peaks 

Percent 
Reads 

In 
Peaks 

TSS 
Enrichment 

1 17-sample omni 81,206,302 35,912 2.58 4.04 
2 17-sample original 45,260,382 10,488 1.14 4.2 

3 17-sample, 
11-Sample original 70,794,776 47,516 5.06 6.7 

4 17-sample, 
11-Sample original 196,497,894 38,687 4.41 5.55 

5 17-sample, 
11-Sample original 99,661,796 27,089 2.53 4.43 

6 17-sample, 
11-Sample original 123,610,224 27,418 1.92 4.07 

7 17-sample, 
11-Sample original 168,248,638 51,269 4.71 6.17 

8 17-sample, 
11-Sample original 199,017,548 89,593 6.59 5.44 

9 17-sample omni 93,739,658 73,642 6.24 4.99 
10 17-sample omni 135,803,892 120,452 8.59 4.74 
11 17-sample omni 218,598,392 131,192 6.7 4 
12 17-sample original 66,562,322 34,196 6.26 7.14 

13 17-sample, 
11-Sample original 50,367,150 35,367 4.55 6.08 

14 17-sample, 
11-Sample original 46,965,542 43,063 6.76 7.26 

15 
17-sample, 
11-Sample, 
3-sample 

original 95,600,037 41,351 4.56 4.93 

16 
17-sample, 
11-Sample, 
3-sample 

original 90,614,097 58,340 6.88 5.54 

17 
17-sample, 
11-Sample, 
3-sample 

original 104,977,421 65,312 7.38 5.23 

 

Table 2-4: ATAC-seq library metrics for adipose tissue libraries. 

Adipose tissue ATAC-seq library metrics with batch, sequencing and alignment metrics. 

  



 62 
 

 

Differentiation 
Timepoint 

Sample ID 
(as identified 

in Fig 1C) 
Batch ID Total Raw 

Reads 

Reads 
Remaining 

After Adapter 
Trim 

D0 1 B1 69,092,222 69,049,144 
D0 2 B1 65,988,010 65,941,792 
D0 3 B2 58,948,614 58,906,356 
D0 4 B2 60,061,888 60,009,960 
D0 5 B3 57,513,988 57,450,212 
D0 6 B3 50,184,610 50,139,772 
D4 7 B1 53,157,272 53,125,366 
D4 8 B1 58,649,698 58,612,282 
D4 9 B2 65,518,564 65,474,032 
D4 10 B2 61,406,176 61,366,088 
D4 11 B3 49,456,572 49,399,692 
D4 12 B3 58,091,326 58,034,570 
D14 13 B1 51,205,096 51,174,272 
D14 14 B1 52,623,944 52,584,402 
D14 15 B3 56,558,106 56,514,086 
D14 16 B3 53,964,460 53,904,422 
D2 n/a B1 50,444,676 50,407,890 
D2 n/a B1 60,688,848 60,647,172 

 

Table 2-5: RNA-seq library metrics for SGBS libraries. 

RNA-seq libraries of SGBS preadipocytes (D00), immature adipocytes (D02: not included in 

final analyses, and D04), and adipocytes (D14) with batch, sequencing, and alignment metrics. 
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CHAPTER 3: CONTEXT-DEPENDENT CHROMATIN ACCESSIBILITY IN 
ADIPOCYTES UNDER DISEASE-RELEVANT CONDITIONS OF FREE FATTY 

ACIDS, HYPOXIA, AND INFLAMMATION 

Introduction 

Genome-wide association studies have identified thousands of loci associated with 

cardiometabolic traits43,44; however, the mechanisms of most loci remain unclear53–55. Factors 

such as colocalization of eQTL variants with GWAS loci suggest a regulatory mechanism at 

many of these noncoding loci61–67. Regulatory mechanisms can be cell type- and context-

dependent53, therefore, testing in disease relevant cell types and contexts can aid identification of 

mechanisms.  

Adipose tissue is relevant to cardiometabolic traits through its roles in lipid storage9,10. 

Adipose tissue is heterogenous and composed of many cell types including preadipocytes, 

adipocytes, macrophages, and endothelial cells, among others11. Adipocytes are an important cell 

type within adipose tissue that are responsible for storing lipids11. During periods of excess 

nutrition, adipocytes store lipids through two primary pathways; hyperplasia, during which 

preadipocytes differentiate into mature adipocytes to store excess energy, or hypertrophy, during 

which existing adipocytes expand to store excess energy12. Adipocyte hypertrophy can be 

modeled by exposing adipocytes to stimuli such as excess free fatty acids which results in excess 

lipid accumulation within adipocytes156. Saturated free fatty acids such as palmitic acid and 

monounsaturated free fatty acids such as oleic acids have been shown to activate different 

transcriptional networks in mouse 3T3-L1 adipocyte cells157. Therefore, studying the contexts of 

hypertrophy during exposure to saturated free fatty acids or monounsaturated free fatty acids 
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could identify different regulatory elements. Enlarged adipocytes experience hypoxia and 

inflammation, which are markers of dysfunctional adipocytes and metabolic disease12. Enlarged 

adipocytes have been shown to experience dysfunction such as insulin resistance independent of 

markers of inflammation in mouse 3T3-L1 adipocyte cells156. Therefore, we investigated 

regulatory mechanisms in the presence of excess free fatty acids in the Simpson-Golabi-Behmel 

Syndrome (SGBS) human adipocyte model21,22. SGBS cells are a human diploid preadipocyte 

cell model that can be differentiated into adipocytes to study adipocytes in disease-relevant 

contexts21,22. Comparison of gene expression changes in models of adipose dysfunction suggest 

that a combination of hypoxia and inflammation in in vitro mouse 3T3-L1 models most closely 

captures changes observed in diet induced obesity mouse models, compared to hypoxia or 

inflammation alone158. Therefore, we investigated regulatory mechanisms in the presence of 

hypoxia, inflammation, and combined hypoxia and inflammation in the SGBS human adipocyte 

model.  

Identifying variants with regulatory effects after stimulation with excess free fatty acids 

or markers of metabolic disease, such as hypoxia and inflammation, may uncover additional 

mechanisms at GWAS loci for cardiometabolic traits. In this study, we profiled chromatin 

accessibility in the context of excess free fatty acids and produced high-quality profiles of 

accessibility. We also profiled chromatin accessibility and gene expression in the context of 

hypoxia, inflammation, and combined hypoxia and inflammation and produced quality profiles 

of gene expression changes. 
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Results 

Chromatin accessibility in the context of free fatty acids 

We profiled chromatin accessibility using ATAC-seq69,88 in the context of excess free 

fatty acids, oleic acid or palmitic acid, and untreated controls in SGBS adipocytes22 (Fig 3.1). 

We analyzed a final set of four replicates of day 20 (D20) adipocytes treated with 500 uM of 

oleic acid or 500 uM of palmitic acid for six days, compared to four replicates of an untreated 

control. These conditions were chosen based on previous studies of free fatty acid challenges in a 

3T3-L1 mouse adipocyte model157. Final reads after quality filtering for our libraries ranged from 

~16.9-86.8 million reads with an average of 44.8 million reads (Table 3.1). We identified ~105-

191 thousand chromatin accessibility regions, hereafter referred to as peaks, per library and our 

libraries showed high quality, with an average transcription start site enrichment (TSS) of 5 and 

an average of 49% reads in peaks, in line with ENCODE standards for quality ATAC-seq 

libraries74,76. 

To identify a set of 111,996 peaks to test for differentially accessible peaks, we generated 

a set of consensus peaks present in a majority of each treatment (three out of four replicates) and 

merged the top 100,000 peaks from each consensus peak set. Principal component analysis 

(PCA) showed strong correlation with the technical quality measure of percent reads in peaks (r2 

= 0.85) on the first principal component, which explained 24% of the variance (Fig 3.2). When 

we corrected for percent reads in peaks, the first principal component reduced to explaining 16% 

of the variance, and libraries separated by treatment on the second principal component, which 

explained 15% of the variance (Fig 3.2). Based on these results, we proceeded with correcting 

for percent reads in peaks in downstream analyses. 
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To identify candidate regulatory elements, we tested for differentially accessible peaks 

between each treatment condition and the untreated control (log2 fold change (LFC) > 0; false 

discovery rate (FDR)<5%; Table 3.2). After correcting for percent reads in peaks, we identified 

only 37 significant peaks between oleic acid and the untreated control and 525 significant peaks 

between palmitic acid and the untreated control (Table 3.2). While these results could include 

interesting candidate regulatory elements, we did not proceed with further analyses due to the 

small numbers and an inability to rule out that the choices of treatment conditions resulted in few 

significant differences. However, these high-quality human adipocyte chromatin accessibility 

libraries could be a useful resource for future studies such as changes in chromatin accessibility 

at later timepoints of adipocyte maturity.  

 

Optimizing treatment conditions of hypoxia and inflammation 

To optimize treatment conditions for identifying regulatory elements that change with 

hypoxia and inflammation, we treated SGBS adipocytes at day five (D5) of differentiation and 

used a quantitative PCR (qPCR) array to measure changes in expression of genes relevant to 

hypoxia and inflammation. First, we treated adipocytes with exposure to 1% oxygen, 1% oxygen 

and 10 ng/mL of TNF-a, or 1% oxygen and 25 ng/mL of TNF-a and measured the expression 

levels of 42 hypoxia-relevant genes and four housekeeping control genes (Fig 3.3 and Table 3.7). 

For adipocytes treated for 24 hours with 1% oxygen alone, an expression level was measurable 

in 35 hypoxia-relevant genes, and 17 of those genes showed a LFC > 1 (Table 3.7). These results 

showed that exposure to 1% hypoxia affected hypoxia-relevant gene expression and we chose to 

proceed with this treatment. Next, we treated adipocytes for 24 hours with 10 ng/mL, 25 ng/mL, 

or 50 ng/mL of TNF-a and measured the expression levels of 92 inflammatory genes and four 
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housekeeping control genes (Fig 3.3 and Table 3.8). For adipocytes treated with 10 ng/mL of 

TNF-a, an expression level was measurable for 60 inflammation-relevant genes, and 28 of those 

genes showed a LFC > 1 (Table 3.8). These results showed that treatment with TNF-a affected 

inflammatory-relevant genes. Due to similar changes in expression for cells treated with 10 

ng/mL, 25 ng/mL, or 50 ng/mL of TNF-a, we proceeded with 10 ng/mL as the lowest 

concentration of TNF-a tested.  

 

Identifying changes in chromatin accessibility due to hypoxia and inflammation 

We profiled chromatin accessibility using ATAC-seq69,88 in the context of hypoxia, 

inflammation, or hypoxia and inflammation, and untreated controls in SGBS adipocytes22 (Fig 

3.4). We analyzed replicates of day six (D6) adipocytes treated with 1% oxygen, 10 ng/mL TNF-

a, or 1% oxygen and 10 ng/mL TNF-a for 24 hours, compared to replicates of untreated controls. 

After quality filtering, our libraries ranged from ~62.7 to 111.4 million reads, with an average of 

85.7 million reads (Table 3.3), and we identified ~6.7 to 188.8 thousand peaks per library. To 

identify a final set of replicates to use for analysis, we filtered for quality control metrics of 

signal to noise (TSS enrichment > 2.5) and eliminated sample 4 from the control set as an outlier 

on PCA. Our final set of replicates showed improved quality metrics, with a range of ~62.7 to 

111.4 million reads, with an average of 86.7 million reads (Table 3.3), and ~45.4 to 188.8 

thousand peaks per library (Table 3.3). These libraries showed an average transcription start site 

enrichment (TSS) of 4 and an average of 11% reads in peaks. Despite the low signal-to-noise 

indicated by the low percentage of reads in peaks, we proceeded with analysis of differentially 

accessible peaks because we observed high (> 84%) overlap of the top 25,000 peaks with 

Roadmap Epigenomics77 adipose nuclei enhancer and promoter regions (Table 3.3).  
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To identify a set of 64,830 peaks to test for differentially accessible peaks, we generated 

a set of consensus peaks present in a majority of each treatment (> 50%; 3/5 replicates for 

control and inflammation, 2/3 for hypoxia, and 2/2 for hypoxia and inflammation combined) and 

merged the top 40,000 peaks from each consensus peak set. PCA showed strong correlation with 

batch on the first principal component, which explained 42% of the variance (Fig 3.5). After 

batch correction, the first principal component reduced to explaining 35% of the variance with 

libraries separating by treatment with inflammation (Fig 3.5). Based on these results, we 

proceeded to correct for batch in downstream analyses. 

To identify candidate regulatory elements, we tested for differentially accessible peaks 

between each treatment condition and the untreated control (LFC > 0; FDR < 5%; Table 3.4).  

After correcting for batch, we identified only 5,233 significant peaks that differ between 

inflammation and the untreated control, 17,610 significant peaks between combined hypoxia and 

inflammation and the untreated control, and no significant peaks between hypoxia and the 

untreated control (Table 3.4). These results could include interesting candidate regulatory 

elements, but we did not proceed with further analyses due to relatively poor quality of the 

ATAC-seq libraries as demonstrated by low TSS enrichment and percent reads in peaks. 

 

Identifying changes in gene expression due to hypoxia and inflammation 

We profiled gene expression using RNA-seq in the context of hypoxia, inflammation, or 

hypoxia and inflammation, and untreated controls in SGBS adipocytes22 (Fig 3.4). We analyzed 

six replicates of each condition at day six (D6) of adipocyte differentiation treated with 1% 

oxygen, 10 ng/mL TNF-a, or 1% oxygen and 10 ng/mL TNF-a for 24 hours, compared to 

replicates of untreated controls. Final reads after quality filtering for all our libraries ranged from 
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~42.1 to 67.0 million reads, with an average of 54.6 million reads (Table 3.5). We identified 

18,259 expressed genes (median normalized count >= 1 across all libraries). PCA showed strong 

correlation with batch (Fig 3.5). After batch correction, the first principal component separated 

by inflammation and explained 45% of the variance, while the second principal component 

separated by hypoxia and explained 13% of the variance (Fig 3.5). These results led us to correct 

for batch in downstream analyses. 

 To identify genes that change expression with exposure to hypoxia, inflammation, or 

hypoxia and inflammation, we identified genes differentially expressed between each treatment 

condition and the untreated controls (LFC > 1, FDR < 5%). With a higher threshold for 

significance than used for chromatin accessibility, we identified 573 differentially expressed 

genes between inflammation treatment and controls and 613 differentially expressed genes 

between the combined hypoxia and inflammation treatment and controls. Similar to the lack of 

significant results between hypoxia treatments and controls in chromatin accessibility, we only 

identified 4 genes that significantly differed between these conditions. 

 
Discussion 

In this study, we profiled chromatin accessibility and gene expression in a human 

adipocyte cell model treated with several contexts relevant to cardiovascular and metabolic 

disease. We produced high quality chromatin accessibility in adipocytes treated with oleic acid 

or palmitic acid, however, even using a lenient LFC threshold of LFC>0 we identified few 

changes between treatments and controls. We profiled chromatin accessibility in adipocytes 

treated with hypoxia, inflammation, or combined hypoxia and inflammation and we identified 

changes in gene expression between inflammation treatments and controls, however, our 

chromatin accessibility profiles showed low complexity, which complicated analysis. I will 
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discuss some of the technical and biological factors that could have caused these results. Despite 

the lack of many context-dependent regulatory differences, these studies produced some high-

quality chromatin accessibility and gene expression libraries that can be used for future studies. 

In our study of regulatory elements that change with adipocyte exposure to oleic acid or 

palmitic acid, which should cause increased lipid storage, we produced high-quality profiles but 

identified few significant differences between treatments and untreated controls. One biological 

explanation for this outcome could be that mechanisms other than changes in chromatin 

accessibility, such as changes in transcription factor expression159, could drive changes in cells. 

If we were to repeat this study, we could also perform RNA-seq to test for changes in gene 

expression including transcription factors during exposure to excess free fatty acids. We did 

identify changes in gene expression for other stimuli tested, including exposure to hypoxia and 

inflammation. One technical explanation for this outcome could be failure of uptake of the free 

fatty acids into the adipocytes, resulting in few differences between treatments and controls. If 

we were to repeat this study, we would test different concentrations and methods or sources of 

free fatty acid treatment and confirm enlargement of lipids within cells using assays such as oil 

red O staining. Despite the few significant results, these high-quality chromatin accessibility 

profiles identified consensus peaks in a mature human adipocyte cell model and could be used 

for future studies of adipocytes. 

In our study of regulatory elements that change with adipocyte exposure to hypoxia, 

inflammation, and combined hypoxia and inflammation, which are markers of dysfunctional 

adipocytes, we were unable to produce high-quality chromatin accessibility profiles, but we did 

produce quality RNA-seq profiles and identified changes in gene expression between treatments 

and controls. One technical explanation for our low-quality chromatin accessibility profiles is the 
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use of a hypoxia chamber in another building, which delayed time between nuclei isolation and 

library generation. In our experience with ATAC-seq, minimizing time between nuclei isolation 

and library generation has produced the highest quality libraries, possibly due to the quality of 

chromatin fixation. Despite the low quality of the ATAC-seq libraries, we proceeded with 

analyses due to high overlap with Roadmap Epigenomics77 enhancer and promoter regions. 

However, with low quality, we could not be confident that the identified differentially accessible 

regions were representative of the treatment. We did produce high quality RNA-seq libraries 

between treatments that could be used in future studies of gene regulation under conditions of 

hypoxia and inflammation, however, we did not pursue further study without paired chromatin 

accessibility data due to limited novelty, as gene expression data exists for TNF-a treated 

adipocytes160. We also attempted to compare LFC of gene expression measured by qPCR and 

gene expression measured by RNA-seq, however, there were cases of disagreement in gene 

expression changes between methods. These differences could be caused by the qPCR and RNA-

seq being measured in independent experiments. It is also possible that the primers used to assay 

gene expression by qPCR could affect the results and lead to differences compared to RNA-seq.  

Although these studies did not produce significant results, they aided optimization of 

critical points in design of chromatin accessibility and gene regulation profiling of cells exposed 

to disease relevant contexts for future studies in our lab83.  

 

Methods 

Cell culture: 

For all treatments, SGBS cells21 were generously provided by Dr. Martin Wabitsch 

(University of Ulm) and cultured as previously described122. Briefly, we cultured SGBS 
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preadipocytes in serum-containing basal medium (DMEM:F12 + 33 uM biotin + 17 uM 

pantothenate) with 10% FBS until confluent, then rinsed in phosphate-buffered-saline (PBS) and 

differentiated for four days in medium supplemented with 0.01 mg/mL transferrin, 20 nM 

insulin, 200 nM cortisol, 0.4 nM triiodothyronine, 50 nM dexamethasone, 500 uM IBMX, and 2 

uM rosiglitazone. After four days, we maintained differentiated SGBS cells in basal medium 

supplemented with 0.01 mg/mL transferrin, 20 nM insulin, 200 nM cortisol, 0.4 nM 

triiodothyronine until harvested.  

 

Free fatty acid treatment: 

Cells were treated with free fatty acids as previously described156. Briefly, oleic acid or 

palmitic acid (Sigma-Aldrich) were dissolved in ethanol and diluted in basal medium 

(DMEM:F12 + 33 uM biotin + 17 uM pantothenate) containing 1% FBS and 2% (wt/vol) BSA 

for 10 min at 55°C. Cells were maintained with BSA-conjugated free fatty acid containing media 

at 500 uM concentrations between D14 and D20.  

 

Hypoxia and inflammation treatment: 

Cells were treated with hypoxia by exposure to 1% oxygen for 24 hours in a controlled 

cell culture chamber. Cells were exposed to inflammation by final treatment with 10 ng/mL of 

TNF-a (Sigma-Aldrich) for 24 hours. 10 ng/mL, 25 ng/mL, and 50 ng/mL of TNF-a were used 

during optimization.  
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qPCR assessment of cells treated with hypoxia and inflammation: 

Hypoxia and inflammation treatment conditions were optimized by testing treated cells 

for changes in expression using qPCR arrays for hypoxia (ThermoFisher, catalog: 4414090) and 

inflammation (ThermoFisher, catalog: 4414074). In brief, cells were treated with hypoxia and 

inflammation conditions, RNA was isolated using the Total RNA Purification Kit (product 

#17200) from Norgen Biotek (Ontario, Canada), cDNA was prepared using SuperScript 

(ThermoFisher, catalog: 11917010), and cDNA was added to each well of the array and cycled 

according to the conditions below. The ΔΔCt quantification method was used to analyze 

results161. 

Step Temperature Time Cycles 

UNG incubation 50°C 2 minutes 1 

Enzyme activation 95°C 20 seconds 1 

Denature 95°C 1 second 
40 

Anneal / Extend 60°C 20 seconds 

 

ATAC-seq Library Preparation: 

For all treatments, we profiled chromatin accessibility in SGBS cells following the omni-

ATAC-seq protocol88 using unique, dual-barcoded indices. In brief, we isolated nuclei and used a 

cell countess to aliquot 50,000 nuclei per library and 5 uL of Tn5 per library. We cleaned the 

transposase reaction and final library with Zymo DNA Clean and Concentrator (D4029). We 

visualized and quantified libraries using a TapeStation, and sequenced with paired-end reads on 

Novaseq. 
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ATAC-seq Analysis: 

We trimmed sequencing adapters and low quality base calls from the 3’ ends of SGBS 

paired-end ATAC-seq reads using cutadapt123 with parameters -q 20 –minimum-length 36. We 

aligned trimmed reads to the hg19 human genome124 using bowtie2125 with parameters –minins 

36 –maxins 1000 –no-mixed –no-discordant –no-unal and selected nuclear chromosomal 

alignments with mapq>20 using samtools125. We removed alignments overlapping high-signal 

regions (Duke excluded and ENCODE/DAC exclusion list regions)126 using BEDTools 

pairToBed127 with the parameter -type notospan. We removed duplicate alignments using Picard 

MarkDuplicates (https://github.com/broadinstitute/picard) and generated ATAC-seq quality 

metrics using ataqv.128  

We trimmed alignments so their 5’ ends corresponded to the Tn5 binding site (+4 for + 

strand alignments and -5 for – strand alignments)69 and smoothed signal by extending alignments 

100 bp on either side of the Tn5 binding sites using BEDTools slop127. We called peaks 

(FDR<5%) with MACS2129 with parameters -q 0.05 –nomodel –bdg and generated ATAC-seq 

signal bigwig files from MACS2 bedGraph files using the bedGraphToBigWig tool from 

ucsctools130. For free fatty acid treatments, we proceeded with analyses on a final set of libraries 

that met our signal-to-noise quality thresholds with a fraction of reads in peaks (FRiP) greater 

than 30% and a transcription start site enrichment greater than 476. For hypoxia and inflammation 

treatments, we proceeded with analyses on a final set of libraries that met our signal-to-noise 

quality thresholds with a transcription start site enrichment greater than 2.576, and we 

additionally excluded sample 4 from the hypoxia and inflammation treatment controls as an 

outlier after PCA. For each analyzed treatment condition, we generated a set of consensus 

ATAC-seq peaks by merging peak genomic coordinates across replicates for a given treatment 
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using BEDTools merge127. Then, we defined consensus peaks as merged peaks that overlapped 

individual replicate peaks in greater than 50% of replicates. 

 

Identification of differentially accessible peaks: 

We generated a set of merged peaks to test for differential chromatin accessibility for 

each treatment by merging the top 100,000 peaks for free fatty acid treatments and the top 

40,000 consensus peaks for hypoxia and inflammation treatments (ranked by median peak p-

value across replicates). We quantified the accessibility of these merged peaks in each library 

using featureCounts131. We computed the GC percent of each peak using BEDTools nuc127 and 

generated within-library GC bias normalization factors using full quantile normalization with 

EDASeq132. We then used EDASeq GC bias normalization factors within DESeq2133 and used 

DESeq2 size factors to control for differences in sequencing depth between libraries. We tested 

for differential chromatin accessibility using DESeq2133 and classified significantly differential 

peaks with FDR < 5% and log fold change (LFC) > 1 or LFC > 0 as indicated between each 

treatment and the untreated control. 

 

RNA-seq library preparation, read alignment, and identification of differentially expressed 

genes: 

We isolated total RNA from SGBS cells exposed to hypoxia, inflammation, hypoxia and 

inflammation, or untreated controls using the Total RNA Purification Kit (product #17200) from 

Norgen Biotek (Ontario, Canada). Novogene (Beijing, China) generated poly-A RNA libraries 

and performed paired-end RNA sequencing (RNA-seq, read length 150 bp) using a NovaSeq 

6000 (Illumina, California, USA). We trimmed sequencing adapters and low-quality base calls 
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from the 3’ ends of RNA-seq reads using cutadapt123 with parameters -q 20 –minimum-length 

36. We aligned reads to the hg19 human genome124 using STAR137 with parameters --

sjdbOverhang 149 --twopassMode Basic --quantMode TranscriptomeSAM --

outFilterMultimapNmax 20 --alignSJoverhangMin  8 --alignSJDBoverhangMin 1 --

outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 --alignIntronMin  20 --

alignIntronMax 1000000 --alignMatesGapMax 1000000. We quantified expression of genes 

from GENCODE v29 lift37138 and corrected for GC bias using salmon140 with parameters –

seqBias –gcBias –gencode. We generated RNA-seq quality metrics using the 

CollectRnaSeqMetrics tool from Picard (https://github.com/broadinstitute/picard). We used PCA 

to determine which replicates clustered. Within timepoint clusters, we observed additional 

clustering by batch that we corrected for in downstream analysis. To identify differentially 

expressed genes, we imported salmon transcript quantifications and collapsed to the gene level 

using tximport139. We retained genes with median DESeq2-normalized count >= 1 across all 

libraries. We tested for differential gene expression using DESeq2133 and classified significantly 

different genes with FDR < 5% and LFC > 1 or LFC > 0 as indicated between each treatment 

and the untreated control.  
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Figures 

 
 
Figure 3.1: Genome-wide profiles of chromatin accessibility and gene expression in 

untreated controls and adipocytes treated with oleic or palmitic acid. 

A. Schematic of experimental design. SGBS cells were started as preadipocytes (D0) and treated 

according to standard protocol with a differentiation medium for four days (D4) into immature 

adipocytes, and an adipocyte maintenance medium until harvested at day 5 (D20). At day 14 

(D14) adipocytes were maintained untreated or treated with either 500 uM oleic acid or palmitic 

acid for six days. B. Chromatin accessibility (dark blue) and gene expression (green) profiles 

were generated on replicates from each treatment. Context-dependent peaks are shown as black 

bars. Chromatin accessibility and gene expression profiles were compared between each 

treatment and the untreated control.  
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Figure 3.2: PCA of ATAC-seq read count within peaks for free fatty acid treated and 

control adipocytes. 

A. Plot of PCA of uncorrected ATAC-seq read counts within peaks for adipocytes for untreated 

controls (red), oleic acid treated (green), and palmitic acid treated (blue). Symbols are indicated 

in the legend for sequencing lane. B. Plot of Pearson’s correlation for top six measured variables 

with principal component 1, showing a high correlation with percent reads in peaks. C. Plot of 

PCA of ATAC-seq read counts within peaks corrected for percent reads in peaks for adipocytes 

for untreated controls (red), oleic acid treated (green), and palmitic acid treated (blue). Symbols 

are indicated in the legend for sequencing lane.  
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Figure 3.3: Gene expression measurements for inflammation and hypoxia treated 

adipocytes. 

Bar plot of selected genes with the highest fold change (FC) compared to housekeeping genes for 

two qPCR arrays. Genes “18S, “GAPDH”, “HPRT1”, and “GUSB” are housekeeping genes. Full 

results are provided in Tables 3.7 and 3.8. A. Fold change for selected inflammation genes 

measured from a full set of 96 genes in an inflammation qPCR array. Three concentrations of 

TNF-a were tested, 10 ng/mL (black), 25 ng/mL (light grey), and 50 ng/mL (dark grey). B. Fold 

change for selected hypoxia genes measured from a full set of 46 genes in a hypoxia qPCR array. 

Three treatments were tested; hypoxia alone (black), hypoxia with 10 ng/mL of TNF-a (light 

grey), and hypoxia with 25 ng/mL of TNF-a (dark grey). 



 80 
 

 

 

Figure 3.4: Genome-wide profiles of chromatin accessibility and gene expression in 

untreated controls and immature adipocytes treated with hypoxia and inflammation. 

A. Schematic of experimental design. SGBS cells were started as preadipocytes (D0) and treated 

according to standard protocol with a differentiation medium for four days (D4) into immature 

adipocytes, and an adipocyte maintenance medium until harvested at day five (D5). At D4 

immature adipocytes were maintained untreated or treated with either 1% oxygen, 10 ng/mL 

TNF-a, or 1% oxygen and 10 ng/mL TNF-a. B. Chromatin accessibility (dark blue) and gene 

expression (green) profiles were generated on replicates from each treatment. Context-dependent 

peaks are shown as black bars. Chromatin accessibility and gene expression profiles were 

compared between each treatment and the untreated control.  
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Figure 3.5: PCA of ATAC-seq read count within peaks for hypoxia and inflammation 

treated and control adipocytes. 

Plots of PCA for ATAC-seq read counts within peaks for adipocytes for untreated controls 

(grey), 1% hypoxia treated (red), 10 ng/mL TNF-a treated (blue), and combined 1% hypoxia and 

10 ng/mL treated (black). Symbols are indicated in the legend for batch 1 and batch 2. A. PCA 

for uncorrected ATAC-seq reads in peaks. B. PCA for ATAC-seq reads in peaks corrected for 

batch.  
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Figure 3.6: PCA of RNA-seq reads for hypoxia and inflammation treated and control 

adipocytes. 

Plots of PCA for RNA-seq reads for adipocytes for untreated controls (grey), 1% hypoxia treated 

(red), 10 ng/mL TNF-a treated (blue), and combined 1% hypoxia and 10 ng/mL treated (black). 

Symbols are indicated in the legend for batch 1 and batch 2. A. PCA for uncorrected RNA-seq 

reads. B. PCA for RNA-seq reads corrected for batch.  
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Tables 
 

Treatment 
Condition 

Sample 
ID Final Reads Peaks % Reads in 

Peaks 
TSS 

Enrichment 

Untreated 

1 31,703,420  144,910  49.5 5.1 

2 66,230,646  165,895  54.6 4.8 

3 34,472,260  118,264  36.3 5.4 

4 16,869,394  105,182  44.6 4.8 

Oleic Acid 

5 51,581,504  155,558  49.1 5.1 

6 38,459,362  145,520  51.5 5.3 

7 86,765,094  184,391  55.6 5.5 

8 17,132,254  113,875  46.8 4.8 

Palmitic Acid 

9 49,187,804  149,274  40.9 5.9 

10 58,339,158  179,432  53.4 5.9 

11 22,614,914  125,490  47.5 6.2 

12 64,763,242  191,561  52.9 6.3 

 

Table 3-1: Sequencing and alignment quality metrics for free fatty acid treatments ATAC-

seq libraries. 

Summary of sequencing and alignment quality metrics for libraries used in free fatty acid 

treatment analysis. “Final Reads” indicated the final number of reads used to call peaks for each 

library after quality filtering as described in methods.   
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Correction FFA Significant Peaks 

Uncorrected 
Oleic Acid      15 

Palmitic Acid 8,982 

Corrected for % 
Reads in Peaks 

Oleic Acid      37 

Palmitic Acid    525 

 

Table 3-2: Summary of context-dependent peaks for free fatty acid treatments. 

Counts of the number of significant peaks (DESeq2, log2 fold change (LFC) > 0, FDR < 5%) for 

each free fatty acid treatment compared to the untreated control from the top 100,000 peaks.  
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Treatment 
Condition ID Batch  Final Reads  Peaks %Reads in 

Peaks 
TSS 

Enrichment 
Roadmap 
Overlap 

Untreated 

1 B1 62,656,480  61,422  5.1  3.1* 85.4 
2 B1 79,784,622  64,120  5.3  2.6* 90.8 
3 B1 76,472,046  131,772  10.6  3.8* 90.2 
4 B2 84,355,260  71,736  6.2 2.9 92.1 
5 B2 89,770,430   142,695  15.3  4.5* 92.8 
6 B2 94,145,918  169,431  16.5  4.4* 92.7 

Hypoxia 

7 B1 73,309,456  7,705  0.4 1.5 25.1 
8 B1 86,753,708  18,842  1.0 1.5 17.8 
9 B1 107,592,474  31,228  1.5 1.5 21.0 
10 B2 107,661,688  165,153  17.5  4.6* 92.6 
11 B2 95,030,782  188,758  17.1  4.7* 92.8 
12 B2 71,285,678  127,338  14.7  4.0* 93.2 

Inflammation 

13 B1 111,421,020  145,157  9.7  2.9* 84.5 
14 B1 91,061,910  66,646  5.5 2.5* 89.8 
15 B1 79,946,116  45,441  3.6  2.6* 85.0 
16 B2 82,649,692  139,183  13.6  4.0* 92.1 
17 B2 73,420,880  70,893  4.5 2.1 61.2 
18 B2 73,567,024  106,153  11.0   3.9* 92.3 

Hypoxia and 
Inflammation 

19 B2 81,776,294  6,678  0.4 1.4 18.8 
20 B2 96,598,812  36,508  1.9 1.6 22.8 
21 B2 66,864,866  26,333  1.6 1.8 32.3 
22 B2 97,223,278  90,429  6.0   2.8* 84.4 
23 B2 88,565,750  107,004  8.5   3.2* 91.3 

 

Table 3-3: Sequencing and alignment quality metrics for hypoxia and inflammation 

treatments ATAC-seq libraries. 

Summary of sequencing and alignment quality metrics for libraries sequenced in hypoxia and 

inflammation treatments. “ID” indicates an ID for each library prepped. “Batch” indicates 

libraries that were prepared in batch 1 (B1) and batch 2 (B2). “Final Reads” indicated the final 

number of reads used to call peaks for each library after quality filtering as described in methods. 

All sequenced libraries are summarized, but only samples with an “*” in the “TSS Enrichment” 

column were used in analysis, as a TSS enrichment greater than 2.5 was used as a primary 
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quality filter to select final libraries (sample ID 2 was excluded as a PCA outlier despite a TSS 

enrichment of 2.6). “Roadmap Overlap” indicated the percent of the top 25,000 peaks in the 

library that overlap a Roadmap adipocyte nuclei promoter or enhancer region. 
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  Peaks (LFC>1) Peaks (LFC>0) 

Hypoxia 0 0 

Inflammation 14   5,233 

Hypoxia and Inflammation   1 17,610 

 

Table 3-4: Summary of context-dependent peaks for hypoxia and inflammation treatments. 

Counts of the number of significant peaks (DESeq2, log2 fold change (LFC) > 0 of LFC > 1 as 

indicated, FDR < 5%) for each treatment compared to the untreated control.  
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Treatment Sample Total reads  Transcript reads  

Untreated 

1       41,496,230  36,107,570  
2       63,920,376  54,033,844  
3       64,406,330  47,965,522  
4       48,126,922  42,040,006  
5       67,042,866  58,163,240  
6       58,771,696  51,334,066  

Hypoxia 

7       56,255,264  48,294,026  
8       51,517,296  44,485,496  
9       42,080,716  36,183,506  
10       53,883,260  46,210,452  
11       51,870,658  44,555,260  
12       45,454,808  39,237,142  

Inflammation 

13       57,220,416  49,058,066  
14       58,819,082  51,307,148  
15       55,527,252  48,196,454  
16       55,318,696  48,240,304  
17       61,436,916  53,307,336  
18       44,938,146  38,228,458  

Hypoxia and 
Inflammation 

19       53,467,730  46,199,886  
20        53,843,152  45,577,320  
21       51,263,922  43,916,036  
22       55,982,774  48,175,134  
23       60,837,418  52,327,780  
24       43,787,248  37,832,012  

 

Table 3-5: RNA sequencing and alignment quality metrics for hypoxia and inflammation 

treatments. 

Summary of total final sequencing and transcript reads used for each RNA-seq library after 

quality filtering.  
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  Genes 

Hypoxia    4 

Inflammation 573 

Hypoxia and Inflammation 613 

 

Table 3-6: Summary of context-dependent genes for hypoxia and inflammation treatments. 

Counts of the number of significant genes (DESeq2, log2 fold change (LFC) > 1, FDR < 5%) for 

each treatment compared to the untreated control.  
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  qPCR LFC RNA-seq LFC 

  Hypoxia 

Hypoxia + 
Inf. 

 (10 ng/mL 
TNF-a) 

Hypoxia + 
Inf. 

 (25 ng/mL 
TNF-a) Hypoxia 

Inf. 
 (10 ng/mL 

TNF-a) 

Hypoxia + 
Inf. 

 (10 ng/mL 
TNF-a) 

GAPDH 0.34 0.49 0.36 0.59 0.32 0.86 
HPRT1 0.38 0.77 1.12 0.23 -0.05 0.33 
GUSB -0.34 -0.49 -0.36 -0.25 0.03 -0.17 
ADM -0.22 1.01 1.19 0.64 1.18 1.60 
ANGPTL4 0.89 1.22 1.19 0.78 0.02 1.01 
ARNT -0.30 -0.31 -0.04 0.09 0.48 0.39 
ARNT2 0.72 2.32 2.48 -0.11 -0.13 -0.61 
ATP1B1 -1.31 -4.23 -3.91 -0.55 -2.26 -2.62 
BHLHE40 0.93 1.28 1.46 0.92 0.16 1.07 
CASP1 -0.09 -0.20 -0.13 -0.27 -0.11 -0.60 
CREBBP -1.71 -1.41 -11.03 0.18 0.18 0.27 
DDIT4 -0.23 -0.79 -0.24 0.39 -0.27 0.32 
DDIT4L -1.68 -2.19 -1.97 0.96 -0.24 0.66 
EDN1 -1.71 0.75 1.00 1.46 2.49 2.29 
EGLN1 1.33 2.12 2.17 0.82 0.79 1.38 
EGLN2 -2.15 -1.78 -1.91 0.12 -0.01 0.04 
EGLN3 -0.39 1.94 1.80 -0.24 -0.67 NA 
EP300 0.33 0.39 -0.11 0.33 0.30 0.59 
EPAS1 -1.83 -2.56 -2.01 -0.40 -0.55 -1.02 
EPO NA NA NA 0.00 NA NA 
FRAP1 -1.56 -1.27 -0.93 NA NA NA 
HIF1A -1.22 -0.06 0.49 0.25 0.94 0.62 
HIF1AN -1.19 -1.08 -0.69 -0.26 -0.13 -0.39 
HIF3A -0.98 -1.70 -1.05 -1.44 0.38 -0.62 
HIG2 -0.54 0.12 0.42 NA NA NA 
HMOX1 -0.38 -0.30 -0.32 0.57 0.09 0.66 
HYOU1 -1.91 -1.31 -0.73 -0.19 0.01 0.12 
IGFBP1 NA NA NA 2.12 NA NA 
ING4 -1.39 -1.69 -1.39 -0.15 0.29 0.07 
MB 3.97 7.56 7.36 -1.12 3.61 3.24 
MT3 NA NA NA 0.94 0.98 3.00 
NOS1 NA NA NA 0.00 NA NA 
NOS2 NA NA NA -0.33 NA NA 
NOS3 NA NA NA -0.24 -0.12 -0.29 
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NOTCH1 -1.94 -1.97 -1.58 -0.39 -0.33 -0.56 
PIK3CA -0.77 -1.02 -0.66 -0.17 -0.68 -0.74 
PRKAA1 -0.85 -0.46 -0.30 0.29 0.28 0.55 
PRKAA2 2.35 1.02 0.92 0.28 -0.48 -0.06 
PTEN -0.77 -1.37 -0.99 -0.16 0.49 0.17 
SLC2A8 NA NA NA -1.59 0.19 -1.54 
SOD3 NA NA NA -0.14 0.91 0.89 
TGFBR2 -1.08 -1.07 -0.57 -0.13 -0.01 -0.10 
TP53 -0.80 0.74 0.67 0.05 1.02 1.07 
VEGFA 0.67 1.45 1.31 0.59 0.39 0.78 
VHL 0.01 -0.38 0.11 0.06 0.25 0.34 
CUL2 -1.49 -1.12 -0.85 -0.08 -0.11 -0.06 
RBX1 -0.21 0.10 0.63 0.20 0.20 0.39 

 

Table 3-7: LFC of treatments analyzed by hypoxia qPCR array and context-dependent 

RNA-seq analysis. 

Three combinations of hypoxia and inflammation (“Inf.”) were tested for expression of 46 genes 

in a hypoxia qPCR array. qPCR LFC reports the LFC measured for three treatments by the qPCR 

array. A negative LFC indicates a decrease in expression compared to the housekeeping controls 

and a positive LFC indicates an increase in expression compared to the housekeeping controls. 

RNA-seq LFC reports the LFC for the three treatment conditions compared to the untreated 

controls for genes also measured by qPCR array. A negative LFC indicates a decrease in 

expression compared to the untreated controls and a positive LFC indicates an increase in 

expression compared to the untreated controls. “NA” indicates that expression was not 

accurately measured for that condition. 

 

 

  



 92 
 

 

  qPCR LFC RNAseq LFC 

Gene 

Inf. 
 (10 ng/mL 

TNF-a) 

Inf. 
 (25 ng/mL 

TNF-a) 

Inf. 
 (50 ng/mL 

TNF-a) Hypoxia 

Inf. 
 (10 ng/mL 

TNF-a) 

Hypoxia + 
Inf. 

 (10 ng/mL 
TNF-a) 

GAPDH 0.46 0.30 0.38 0.59 0.32 0.86 
HPRT1 -0.48 -0.36 -0.40 0.23 -0.05 0.33 
GUSB -0.10 0.17 -0.05 -0.25 0.03 -0.17 
A2M -1.52 -0.88 -1.29 -0.30 0.15 0.06 
ADRB1 NA NA NA -0.39 -1.30 -0.35 
ADRB2 -1.94 -1.57 -1.63 -0.58 -1.48 -1.81 
ALOX12 NA NA NA 0.39 0.26 -1.50 
ALOX5 NA NA NA NA NA NA 
ANXA1 -0.13 -0.20 -0.04 0.40 -0.04 0.30 
ANXA3 1.28 1.15 0.83 0.60 0.98 0.69 
ANXA5 0.96 0.94 0.93 0.13 0.26 0.47 
KLK3 NA NA NA NA NA NA 
BDKRB1 3.96 4.22 4.15 -0.06 4.48 4.81 
BDKRB2 3.44 3.60 2.83 0.71 3.66 3.57 
CACNA1C 0.76 0.51 0.38 0.20 0.19 -0.20 
CACNA1D NA NA NA -0.85 -3.07 NA 
CACNA2D1 -0.32 -0.10 -0.70 -0.73 -0.59 -0.81 
CACNB2 -2.28 NA -1.56 -1.20 0.08 -0.71 
CACNB4 -1.63 0.04 0.95 -0.24 -0.06 0.45 
CASP1 -0.83 -0.85 -0.58 -0.27 -0.11 -0.60 
CD40 4.40 4.63 4.67 -0.26 2.44 2.05 
CD40LG NA NA NA -0.32 NA NA 
CES1 0.09 -0.06 0.04 -0.50 -0.13 -0.18 
LTB4R 0.15 0.77 0.27 -0.56 -1.04 -0.92 
MAPK14 -0.09 -0.18 -0.13 -0.05 -0.13 -0.08 
NR3C1 -0.44 -0.27 -0.43 0.03 0.05 -0.08 
HPGD -2.00 -2.63 -2.47 0.30 -1.90 -1.53 
HRH1 -0.13 -0.02 0.47 0.78 1.17 0.77 
HRH2 NA NA NA 0.45 0.06 NA 
HTR3A NA NA NA 0.76 NA NA 
ICAM1 7.53 7.74 7.52 0.74 7.27 7.11 
IL1R1 -0.10 -0.27 -0.25 -0.20 -0.30 -0.50 
IL2RA NA NA NA NA NA NA 
IL2RB NA NA NA -1.11 2.11 3.17 
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IL2RG NA NA NA -0.84 NA NA 
IL13 NA NA NA 1.36 NA NA 
ITGAL NA NA NA 0.09 2.02 -0.45 
ITGAM NA NA NA 0.00 NA NA 
ITGB1 0.36 0.06 0.26 -0.13 -0.07 -0.23 
ITGB2 -0.68 -0.19 0.34 -0.07 0.31 0.88 
KLK1 NA NA NA 0.65 NA NA 
KLK2 NA NA NA -2.04 NA NA 
KLKB1 NA NA 0.57 0.18 -0.46 NA 
KNG1 1.30 NA NA -0.32 NA NA 
LTA4H -0.16 -0.56 -0.36 -0.38 0.02 -0.38 
LTC4S 0.31 1.27 0.35 1.66 1.41 1.95 
MC2R NA NA NA NA NA NA 
NFKB1 1.69 1.61 1.44 0.13 1.42 1.52 
NOS2 NA NA NA -0.33 NA NA 
PDE4A 0.99 1.16 0.92 0.14 0.27 0.18 
PDE4B 2.71 2.30 2.53 -0.22 2.16 1.52 
PDE4C NA NA NA 1.76 -0.65 1.80 
PDE4D -1.15 -1.14 -0.68 0.40 -0.05 0.55 
PLA2G1B 0.08 2.56 0.30 -1.26 0.06 NA 
PLA2G2A 0.17 -0.03 -0.52 -0.15 -0.45 -0.68 
PLA2G5 -1.34 NA 0.60 -0.74 -1.60 -3.51 
PLCB2 NA NA NA -0.30 -2.29 -0.31 
PLCB3 -0.42 -0.82 -0.53 -0.21 0.03 -0.24 
PLCB4 2.33 1.55 2.19 1.81 1.98 2.53 
PLCD1 -0.62 -0.45 -0.59 -0.20 0.10 -0.18 
PLCG1 -0.45 -0.67 -0.69 -0.03 -0.17 -0.23 
PLCG2 0.28 -0.75 -1.33 -0.58 0.56 0.48 
MAPK1 0.05 0.07 -0.02 0.12 0.14 0.17 
MAPK3 0.89 0.31 0.71 -0.10 0.50 0.44 
MAPK8 -0.62 -0.56 -0.39 0.41 -0.08 -0.03 
PTAFR NA NA -1.29 -0.76 -1.52 -1.06 
PTGDR NA NA NA -0.33 3.93 4.36 
PTGER2 1.56 1.67 1.78 0.35 1.71 2.25 
PTGER3 -1.34 -1.46 -1.33 -0.05 -0.17 -0.17 
PTGFR 2.06 1.85 1.64 -0.57 2.15 1.61 
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PTGIR 0.35 0.94 1.29 2.43 4.20 4.74 
PTGIS 0.28 1.09 0.35 -0.46 0.62 0.00 
PTGS1 -0.46 -0.44 -1.08 -0.51 -0.74 -1.20 
PTGS2 -0.75 -0.79 -0.70 0.64 -0.65 -0.13 
TBXA2R -1.16 1.38 -1.03 -0.25 1.68 1.18 
TBXAS1 -0.56 0.25 -0.47 0.15 -0.21 -0.73 
TNF 1.18 2.31 1.56 1.10 1.91 NA 
TNFRSF1A 0.19 0.01 -0.13 -0.03 0.47 0.41 
TNFRSF1B 3.11 2.79 3.16 -0.45 3.37 2.79 
VCAM1 9.03 9.25 9.37 -1.22 7.28 6.17 
IL1R2 2.61 3.10 0.58 0.26 -0.08 -0.22 
PLA2G7 NA NA NA NA NA NA 
PLA2G10 NA NA NA -0.32 NA NA 
PLA2G4C 3.33 2.98 2.88 -1.51 2.22 1.16 
IL1RL1 0.34 2.29 0.01 -0.30 2.20 1.64 
HTR3B NA NA NA -2.11 NA NA 
TNFSF13B 4.34 4.40 4.68 -0.48 2.92 2.59 
CYSLTR1 NA NA NA 0.00 NA NA 
HRH3 NA NA NA NA NA NA 
PLA2G2D NA NA NA NA NA NA 
IL1RAPL2 1.94 1.96 0.63 1.36 3.61 NA 
KLK14 -1.01 NA 0.69 -0.09 -1.26 NA 
PLCE1 0.25 0.19 0.03 -0.25 0.17 -0.18 
KLK15 NA NA NA NA NA NA 
LTB4R2 NA NA -0.64 -0.43 -0.42 -0.56 

 

Table 3-8: LFC of treatments analyzed by inflammation qPCR array and context-

dependent RNA-seq analysis. 

Three concentrations of inflammation (“Inf.”) were tested for expression of 96 genes in an 

inflammation qPCR array. qPCR LFC reports the LFC measured for three treatments by the 

qPCR array. A negative LFC indicates a decrease in expression compared to the housekeeping 

controls and a positive LFC indicates an increase in expression compared to the housekeeping 

controls. RNA-seq LFC reports the LFC for the three treatment conditions compared to the 

untreated controls for genes also measured by qPCR array. A negative LFC indicates a decrease 
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in expression compared to the untreated controls and a positive LFC indicates an increase in 

expression compared to the untreated controls. “NA” indicates that expression was not 

accurately measured for that condition. 
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CHAPTER 4: SEX-BIASED CHROMATIN ACCESSIBILITY IN LIVER 

Introduction 

Genome-wide association studies (GWAS) have identified thousands of loci associated 

with cardiometabolic traits, including loci with differential effects by sex51,162–166, however 

identifying the mechanisms at these loci remains challenging54. The mechanisms remain 

particularly challenging due to the large number of noncoding loci53. Many noncoding 

cardiometabolic GWAS loci colocalize with expression quantitative trait (eQTL) loci in disease-

relevant tissues, suggesting a regulatory mechanism61,62,64,65. Active regulatory elements are 

found in accessible regions of the genome58, therefore chromatin accessibility profiles in disease-

relevant tissues and contexts will aid identification of regulatory elements that alter gene 

expression to affect cardiometabolic traits. 

Liver plays an important role in cardiometabolic traits through biological processes such 

as lipid metabolism, drug metabolism, and glucose storage23. Liver eQTL have been identified in 

multiple studies, and a subset of liver eQTL colocalize with cardiometabolic trait loci62,67,167. 

Liver QTL have been identified for histone markers of active regulatory regions such as 

H3K27ac and H3K4me3167 as well as for chromatin accessibility28 and a subset of QTL 

colocalize with cardiometabolic trait loci. While some GWAS loci colocalize with QTL in 

disease-relevant tissues, others only colocalize in disease-relevant contexts68. Therefore, further 

study of chromatin accessibility in disease-relevant contexts could identify additional regulatory 

mechanisms. 
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Sex is a disease-relevant context for cardiometabolic traits24–26. Many cardiometabolic 

diseases display sex differences in prevalence, including those in liver such as non-alcoholic 

fatty liver disease (NAFLD), which is significantly more prevalent in men than in pre-

menopausal women25. Furthermore, sex differences in drug metabolism can impact treatment 

and health outcomes for many cardiometabolic diseases25,168,169. Sex-stratified GWAS analyses 

have identified traits demonstrating sexual dimorphism including seven loci for measures of 

body fat distribution49 and 64 for blood lipids51. Sex-biased gene expression has also been 

identified in many tissues, including liver62,170. Sex-biased chromatin accessibility has been 

identified in cell types such as peripheral blood mononuclear cells171. Analyses of sex-biased 

chromatin accessibility compared to chromatin accessibility at the promoters of sex-biased genes 

suggests that sex-biased genes are likely altered by distal regulatory elements172. Therefore, 

identification of sex-biased chromatin accessibility may identify candidate regulatory elements 

and those associated with cardiometabolic traits could reveal key mechanisms and improve 

health outcomes.  

Genetic and environmental factors can affect gene regulation and disease risk173. 

Identification of chromatin accessibility in a large number of samples can capture more genetic 

and environmental variation that contributes to disease risk. Environmental factors that can 

introduce variability between samples includes age, drug use, disease, cause of death, and 

hormonal statuses such as puberty and menopause. In this study, I used samples of liver tissue 

from deceased organ donors not selected for any known disease. Only limited data was available 

on environmental factors that could contribute to variability between samples.  
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In this study we identified consensus chromatin accessibility in 139 human liver samples 

and identified chromatin accessibility regions that differ between males and females.  We linked 

these regions of sex-biased chromatin accessibility to eQTL62 in liver and to GWAS traits44. 

 

Results 

Sex-biased liver chromatin accessibility identified candidate regulatory elements 

We profiled chromatin accessibility using the Assay for Transposase Accessible 

Chromatin (ATAC-seq) in human liver tissue samples from 93 male and 46 female organ donors 

aged 2-81 years (Fig 4.1, Table 4.1) for which ATAC-seq data met sequencing quality thresholds 

(Tables 4.2 and 4.3; Methods: TSS enrichment >= 4, percent reads in peaks >= 10). Each sample 

was prepared in triplicate or quadruplicate libraries, and the best library, determined by highest 

TSS enrichment, was used for analyses. The libraries had an average of ~54.5 million filtered 

reads and demonstrated high quality in line with ENCODE standards74,76 with an average TSS 

enrichment of 8.0 and an average percent reads in peaks of 30.0% (Table 4.1). Sex of genotype 

data from the same samples was verified to match reported sex using PLINK142, all genotype 

samples were found to correctly match to ATAC-seq profiles using verifyBamID174175, and sex 

of ATAC-seq profiles was further verified through inspection of Y chromosome signals (Fig 

4.2). In the 139 samples, we identified 231,736 autosomal consensus liver tissue peaks by 

merging genomic coordinates for peaks present in a liberal definition of at least 5% or more of 

the samples (n>7). We also considered a more stringent set of 172,813 autosomal consensus liver 

tissue peaks present in 10% or more of the samples (n>14) (Fig 4.1).  

Principal component analysis (PCA) of the 5% consensus peak set showed that 19% of 

variance was explained by PC1, which demonstrated moderate correlation with the data quality 
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metric percent reads in peaks (Fig 4.3A, Pearson’s r2 = 0.65). After adjusting for percent reads in 

peaks, PC1 explained 11% of the variance and PC1’s highest, but modest correlation was with 

TSS enrichment (Fig 4.3B, Pearson’s r2 = 0.25). Based on these results, we decided to adjust for 

percent reads in peaks in downstream analyses. Despite evidence that chromatin accessibility 

differences can increase with age176, we did not observe correlation with age and any of the top 

five PCs (Pearson’s r2 < 0.1, Fig 4.4B-F), therefore we decided not to adjust for age in 

downstream analyses. Additionally, none of the top five PCs were highly corelated with reported 

ancestry (Pearson’s r2 < 0.1), therefore we decided not to adjust for ethnicity in downstream 

analyses. 

To predict regulatory elements in liver tissue that contribute to sex differences, hereafter 

referred to as sex-biased peaks, we identified differentially accessible peaks between males and 

females (log2 fold change (LFC)>0; false discovery rate (FDR) < 5%; Table 4.4). We defined 

male-biased peaks as peaks that are significantly more accessible in males compared to females 

and female-biased peaks as peaks that are significantly more accessible in females compared to 

males. Using the 10% consensus peaks adjusted for percent reads in peaks, we identified 774 

sex-biased peaks (0.45% of 172,813 total peaks), including 384 male-biased and 390 female-

biased (Table 4.4, Fig 4.5). These 774 sex-biased peaks spanned all 22 autosomal chromosomes 

(Table 4.5). We considered alternate thresholds of LFC and FDR. At a more stringent LFC 

threshold (LFC > 1, FDR < 5%) we did not observe any significant results. Our maximum 

significant LFC observed using the threshold LFC > 0 was 1.7, with an average significant LFC 

of 0.5. These results indicate that these sex-biased peaks do not represent strong differences in 

accessibility between sexes. Next, for comparison with a study on sex-biased chromatin 

accessibility in peripheral blood mononuclear cells that identified 577 sex-biased regions (0.69% 
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of tested regions)171, we applied a less stringent threshold (LFC > 0, FDR < 10%), and identified 

a more comparable percent of tested peaks as sex biased (1300 autosomal sex-biased regions, 

which represents 0.75% of our 172,813 tested regions). However, we proceeded with analyses 

using the more stringent threshold (FDR < 5%) due to the weak effects at sex-biased peaks. We 

observed similar numbers of significant results with the more liberal definition of consensus 

peaks (5% consensus = 741, 10% consensus = 774; Table 4.4), 89% (662) of which overlapped 

between analyses. Therefore, we used the 774 sex-biased peaks from the stringent definition of 

consensus peaks adjusted for percent reads in peaks in our downstream analyses.  

    

Linking sex-biased liver chromatin accessibility to genes 

To link sex-biased peaks to genes, we identified sex-biased regions that overlap liver 

eQTL signals62, with a signal defined as all variants in high linkage disequilibrium with a lead 

eQTL variant (methods, r2 > 0.8). Of 774 sex-biased liver peaks, 71 overlapped a liver eQTL 

signal linked to 81 unique genes (Table 4.5, Figure 4.6). These 71 peaks spanned an average 

width of 1304 base pairs each, compared to an average of 998 base pairs each for the full set of 

774 sex-biased peaks. An increase in average width of peaks overlapping a liver tissue eQTL 

variant compared to the average width of sex-biased peaks could indicate increased risk of 

variants overlapping a peak by chance.  

 

Linking sex-biased liver chromatin accessibility to GWAS traits 

To identify genetic variants that may have a sex-biased mechanism on disease traits, we 

identified GWAS variants in high linkage disequilibrium with a lead GWAS variant (methods, r2 

> 0.8) that overlap a sex-biased peak. Of 774 sex-biased liver peaks, 71 overlapped a GWAS 
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variant (Table 4.6, Figure 4.6). Of the 71 sex-biased peaks linked to a GWAS signal, 48 were 

female-biased and 23 were male-biased. Of the 71 sex-biased peaks linked to a GWAS signal, 30 

overlapped variants for cardiometabolic trait including 3 associated with diabetes, 5 associated 

with body mass index, 3 associated with liver enzyme levels, and 5 associated with cholesterol. 

Some of the sex-biased peaks were also associated with less obviously cardiometabolic but 

potentially relevant traits such as lung function, that has been shown to be decreased in 

individuals with metabolic syndrome103,104. Of the 71 sex-biased peaks linked to a GWAS signal, 

20 were also linked to 28 genes by liver eQTL. These 71 peaks spanned an average width of 

1281 base pairs each, compared to an average of 998 base pairs each for the full set of 774 sex-

biased peaks and 992 base pairs for the full testing set of 172,813 consensus peaks. An increase 

in average width of peaks overlapping a GWAS variant compared to the average width of sex-

biased peaks could indicate increased risk of variants overlapping a peak by chance. 

At one sex-biased peak (peak1441) a female-biased peak overlapped variants 

rs12562207, rs12057175, and rs12057222 which are linked to differential expression of protein 

kinase receptor EPHA262 and gamma glutamyl transferase levels177, an important marker for 

liver function (Figure 4.7). EPHA2 has been linked to NAFLD178,179. A nearby peak at this locus 

was also identified as a caQTL in liver tissue28.  

 

Discussion 

Sex differences are known to influence disease risk and drug metabolism25–27. Identifying 

mechanisms behind these sex differences could aid diagnosis and treatment to improve 

healthcare. In this project, we profiled chromatin accessibility in 139 human liver samples and 

among 172,813 consensus liver chromatin accessibility regions identified 774 regions of sex-
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biased chromatin accessibility between males and females. Of the 774 sex-biased regions we 

identified, 390 were female-biased and 384 were male-biased, suggesting an even representation 

of sex-biased traits in each direction. We linked these 774 sex-biased chromatin accessibility 

regions to gene expression using eQTL and/or GWAS traits, including 24 regions linked to both 

a gene and a trait. Of 71 sex-biased regions linked to GWAS traits, 30 peaks linked to 

cardiometabolic traits including diabetes, cholesterol, and liver enzyme levels. Sex-biased gene 

expression has been identified in liver tissue62 and we observed a sex-biased chromatin 

accessibility region (peak19490) that overlapped a variant associated with sex-biased expression 

(Table 4-6). This variant is associated with expression of HKDC1, a hexokinase protein with 

known roles in glucose metabolism180, and glycemic traits during pregnancy181. These sex-biased 

chromatin accessibility regions are a resource that can guide future studies into the mechanism of 

relevant cardiometabolic traits in liver.  

Some limitations in the current study design can be addressed in future analyses. A larger 

sample size would increase power to detect sex-biased chromatin accessibility. The subset of 

liver samples for this study were chosen based on criteria of existing genotype and gene 

expression data. However, the liver bank includes hundreds of additional tissue samples which 

could be analyzed. The majority of samples in the current study were also of European ancestry, 

and analyses did not consider ancestry, so sex-differential peaks that differ by ancestry may have 

been missed. Samples selected in this study were also biased towards males (67%, Table 4-3), 

which could limit our ability to detect differences (Table 4-4). Analyses also did not consider 

differences due to disease status or body mass, for which data was missing for most samples. 

Additionally, our samples ranged in age from 2-81 and age can play a role in chromatin 

accessibility176 through several mechanisms including changes in hormones25. Therefore, future 
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studies could include age as a covariate or be performed on a subset of samples from a narrower 

age range. Accounting for the effect of age could aid identification of sex-biased chromatin 

accessibility due to hormonal changes. Also, while environmental variables such as age, drug 

use, disease, cause of death, and hormonal status could affect chromatin accessibility, limited 

data were available about these liver samples and organ donors used in this study. Due to this 

limitation, we were not able to adjust for potential environmental sources of variation. We 

recently obtained some additional data on known variables, such as known drug use which could 

be used to adjust for or exclude individuals. Finally, liver tissue is heterogenous, and we would 

have missed cell type-dependent differences in chromatin accessibility.  

Although we identified a similar number of sex-biased peaks compared to other studies 

of sex-biased chromatin accessibility171, we identified few sex-biased peaks, and our sex-biased 

peaks demonstrated small differences in LFC between sexes, which suggest weak sex-biased 

chromatin accessibility differences. Weak identification of sex-biased regions could be due to 

technical or biological reasons. Technical reasons that could lead to weak identification of sex-

biased regions are low power due to small sample size or insufficient sequencing depth. We have 

additional samples available to increase sample size and additional libraries prepared that could 

be combined to increase sequencing depth. I produced chromatin accessibility profiles in 

triplicate for each liver sample but only used one library per sample for these initial analyses. 

Future studies that combine reads from replicate libraries would improve sequencing depth and 

power to detect sex-biased regions or other features such as chromatin accessibility QTL182. 

Some biological mechanisms of sex differences in traits include genetic differences due to sex 

chromosomes, epigenetic differences, differences in gene regulation, differences in 

environmental exposures, and differences in endogenous factors such as hormones27. Sex-biased 
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gene expression has been identified in liver tissue62 but we observed only one sex-biased 

chromatin accessibility region (peak19490) that overlapped a variant associated with sex-biased 

expression. It is possible that our sample set did not include individuals with environmental 

exposures that cause differences in expression. Another possibility is that the age range and lack 

of relevant phenotype data that could affect hormones such as pregnancy status for females could 

have affected our power to detect differences due to hormonal factors.  

The liver chromatin accessibility profiles and candidate sex-biased regulatory regions 

identified in this study will be a useful resource for future studies in regulatory mechanisms of 

disease in liver. Sex-biased chromatin accessibility regions could be tested for differences in 

transcription factor binding site enrichment134, which could help identify mechanisms of sex 

differences. They can be used to identify regulatory elements that correspond to sex-specific 

liver eQTL variants62. Sex-biased chromatin accessibility could also more thoroughly be linked 

to genes using additional datasets such as chromosome conformation capture profiles183. Linking 

regulatory elements to candidate genes remains challenging due to distances between noncoding 

elements and genes53, therefore linking a gene by multiple methods can increase confidence in 

the association.  

Due to the heterogeneity of liver tissue, these accessible chromatin regions reflect a 

mixture of liver cell types184. Single nucleus chromatin accessibility and gene expression 

profiling would also allow us to identify cell-type-specific regulatory elements and more 

generally differentiate between regulatory mechanisms in different cell types within the tissue. I 

have re-optimized nucleus isolation and we have started single nucleus multiomic chromatin 

accessibility and gene expression profiling on a subset of 40 samples from the 139 samples 

described in this study. Analyses of these data may identify additional cell-type-specific sex 
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differences. In addition, the single nucleus data may prove useful as a reference for 

deconvolution of cell type in other bulk liver tissue chromatin and gene expression studies.   

Overall, these analyses show some promising initial results. They identify hundreds of 

sex-biased regions that may help explain regulatory effects on gene expression. Future analyses 

of these sex-biased regions could focus on genes that have shown sex-biased gene expression or 

are known to be involved in response to sex hormones. Furthermore, these libraries can be used 

to identify genetic variants that influence chromatin accessibility in a larger sample size than 

previous studies28. These liver chromatin accessibility profiles will be a valuable resource for 

future studies on gene regulation in liver.  

 

Methods 

Liver tissue: 

Human liver tissue was collected as previously described28. Briefly tissue was collected 

from deceased organ donors without known disease through the National Institutes of Health 

Liver Tissue Cell Distribution System (LTCDS). Tissue was obtained from LTCDS and 

approved for use in this study as non-human subjects research by the Institutional Review Boards 

(IRBs) at St Jude Children’s Research Hospital (Memphis, TN) and the University of North 

Carolina (Chapel Hill, NC). Tissue was flash frozen and stored at -80°C until use. 

Ethnicity for samples was reported as “Black” or “White” at time of sample collection. 

“Black” is here reported as African Ancestry (AFR) and “White” as European Ancestry (EUR). 
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Nuclei isolation: 

We isolated human liver tissue nuclei as previously described28.  All steps were 

performed on ice unless otherwise stated. Briefly, we crushed 50-mg pieces of frozen sample in 

liquid nitrogen using a Cell Crusher (CellCrusher, Cork Island), homogenized the sample in a 1 

mL dounce for 40 strokes in nuclei isolation buffer (NIB: 20 mM Tris-HCl, 50 mM EDTA, 5 

mM spermidine, 0.15 mM spermine, 0.1% mercaptoethanol, 40% glycerol, pH 7.5) and rotated 

for 5 minutes at 4°C. We filtered the solution through a Miracloth (Calbiochem, San Diego, Ca 

USA), centrifuged at 1100g for 10 minutes at 4°C, resuspended the pellet in 250 uL NIB 

containing 0.5% Triton-X, centrifuged at 500g for 5 minutes at 4°C, and finally resuspended the 

pellet in 250 uL of resuspension buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, pH 7.4). 

We quantified nuclei concentration using a cell countess to aliquot 50,000 nuclei for each library 

preparation. 

 

ATAC-seq library preparation: 

We profiled chromatin accessibility as previously described28 following the ATAC-seq 

protocol69. An ATAC-seq library was prepared in triplicate or quadruplicate for each nuclei 

isolation prep for a sample. Briefly, we used Nextera (Illumina) kits with 5uL of Tn5 per library 

and unique, dual-barcoded indices. We cleaned the Tn5 transposase reaction and final library 

after PCR with Zymo DNA Clean and Concentrator (D4029). We visualized and quantified 

libraries using TapeStation, and sequenced with paired-end reads on a Novaseq. 
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ATAC-seq read alignment and peak calling: 

We aligned ATAC-seq reads and called peaks as previously described83. Briefly, we 

trimmed sequencing adapters using cutadapt123. We aligned trimmed reads to the hg19 human 

genome124 using bowtie2125 and selected nuclear chromosomal alignments with mapq>20 using 

samtools125. We removed alignments overlapping high-signal regions (Duke excluded and 

ENCODE/DAC exclusion list regions)126 using BEDTools pairToBed127. We removed duplicate 

alignments using Picard MarkDuplicates (https://github.com/broadinstitute/picard) and generated 

ATAC-seq quality metrics using ataqv.128 After filtering libraries retained 54.6 million reads on 

average (Table 4.2). We trimmed alignments so their 5’ ends corresponded to the Tn5 binding 

site (+4 for + strand alignments and -5 for – strand alignments)69 and smoothed signal by 

extending alignments 100 bp on either side of the Tn5 binding sites using BEDTools slop127. 

We called peaks (FDR<5%) with MACS2129 and generated ATAC-seq signal bigwig 

files from MACS2 bedGraph files using the bedGraphToBigWig tool from ucsctools130. We 

verified that ATAC-seq libraries matched genotypes with verifyBamID174 and verified that sex 

based on genotype data matched reported sex with PLINK sex check142. We proceeded with 

analysis on libraries that had TSS enrichment >= 4 and percent reads in peaks >= 10. The best 

replicate, determined by highest TSS enrichment, was used for downstream analyses.  

 

Identification of liver consensus and sex-biased peaks: 

We generated a set of consensus liver peaks by merging peak genomic coordinates across 

libraries using BEDTools merge127. We defined consensus peaks as merged peaks that 

overlapped peaks in 5% or more of individual liver samples (at least 7 out of 139 samples). We 

used all of the consensus peaks to test for sex-biased peaks. We quantified accessibility of 
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consensus peaks using featureCounts131. We tested for differential chromatin accessibility using 

DESeq2133 and defined peaks with FDR < 5% and log fold change (LFC) > 0 as differentially 

accessible or sex-biased. 

 

Identification of genes linked to sex-biased peaks: 

We linked sex-biased chromatin accessibility to genes using overlap with liver eQTL 

variants. We identified sex-biased peaks that overlapped eQTL proxy variants (r2>0.8 with the 

eQTL lead, 1000G phase 3 EUR LD calculated using SniPA185) using previously published liver 

(n = 2.3 million) and sex-biased liver (n = 1,683) eQTL62 using BedTools127. We listed all eQTL 

variants that intersected a peak. 

 

Overlap of GWAS signals with sex-biased peaks: 

We performed overlap of GWAS signals with sex-biased peaks as previously described83. 

Briefly, we downloaded the NHGRI-EBI GWAS catalog44 on January 17, 2020 and lifted variant 

positions from hg38 to hg19 using pyliftover (https://github.com/konstantint/pyliftover), a 

python implementation of the UCSC liftOver tool148. We performed LD-clumping using swiss 

(https://github.com/statgen/swiss)61. We identified sex-biased peaks that overlapped GWAS 

proxy variants (LD r2>0.8 with the signal lead variant, 1000G phase 3 EUR, calculated with 

PLINK v1.9142) using BedTools127. 
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Figures 

 

Figure 4.1: Genome-wide profiles of chromatin accessibility in human liver samples to 

identify sex-biased peaks. 

A. Schematic of experimental design. Human liver samples were obtained and ATAC-seq 

profiles were generated. Consensus peaks (blue) were called in two sets; the first for peaks 

present in 5% of total samples and a second for peaks present in 10% of total samples. We 

identified sex-biased peaks (black bars) as differential peaks between male and female samples 

(DeSEQ2, LFC > 0, FDR < 5%). Male-biased peaks were more accessible in males and female-

biased peaks were more accessible in females. B. Histogram plotting distribution of ages for 139 

liver samples. The average age was 43 with a range of 2 to 81. Females are indicated in red and 

males are indicated in blue. 
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Figure 4.2: Peaks in sex chromosomes correspond with reported sex. 

A. Chromatin accessibility profiles for two male samples and two female samples on the y 

chromosome, showing lack of signal for the female samples. B. Chromatin accessibility profiles 

for two male samples and two female samples on an autosome, showing comparable signal 

between sexes.   
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Figure 4.3: PCA of ATAC-seq read count within peaks for 139 liver samples. 

A-D. Plot of PCA of ATAC-seq read counts within peaks for two sets of consensus peaks 

showing variance between female (grey) and male (black) samples. European ancestry samples 

(EUR) are represented by squares and African ancestry (AFR) samples are represented by 

circles. A. PCA for unadjusted read counts for the 5% consensus peak set. B. PCA for read 

counts within peaks adjusted for percent reads in peaks for the 5% consensus peak set. C. PCA 

for unadjusted read counts for the 10% consensus peak set. D. PCA for read counts adjusted for 

percent reads in peaks for the 10% consensus peak set. While there is not a clear separation by 

sex, adjusting for percent reads in peaks reduced variance of PC1. 

  



 113 
 

 

 

Figure 4.4: Distribution of ages for 139 liver samples and correlation with first five 

principal components. 

B-F. Plot of age compared to principal components one through five with the Pearson’s 

correlation (r2) with age for each. Females are indicated in red and males are indicated in blue. 
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Figure 4.5: Distribution of LFC for female-biased and male-biased peaks. 

Histogram of LFC showing the distribution of the 774 sex-biased peaks from the 10% consensus 

peak set adjusted for percent reads in peaks for 93 male and 46 female samples. Female-biased 

results “F” are shown in red and male-biased results “M” are shown in blue.   
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Figure 4.6: Summary of sex-biased liver peaks linked to GWAS traits and differential gene 

expression. 

Flowchart identifying sex-biased peaks overlapping GWAS signals and linked to genes through 

overlap with liver eQTL signals for the 10% consensus peak set.  
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Figure 4.7: Sex-biased peak identified with variant associated with expression of EPHA2 

and levels of gamma glutamyl transferase levels. 

Variants rs12562207, rs12057175, and rs12057222 overlap female-biased peak1441 (red) and 

are linked to expression of protein kinase receptor EPHA2 and gamma glutamyl transferase 

levels, an important marker for liver function. The blue consensus peak indicates a peak 

identified as a chromatin accessibility QTL. H3K4me1 adult liver histone modifications (green) 

from the Roadmap Epigenomics Consortium77.    
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Tables 
 

  Male Female Total 

EUR 84 37 121 

AFR 9 9 18 

Total 93 46 139 

 

Table 4-1: Sex and ethnicity demographics for 139 liver samples. 

Counts of samples by sex and ancestry of the 139 liver samples donor. “AFR” indicates African 

ancestry, “EUR” indicates European ancestry. 
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Final Reads 

(million) 
Peaks 

% Reads in 

Peaks 

TSS 

Enrichment 
BMI* 

Average   54.6  109,295  30.0    8.0 28 

Std Dev ±23.5 ± 24,727 ± 9.1 ± 2.4 ± 7.3 

Minimum      3.4    38,442  10.6    4.0  13.1 

Maximum   132.9   204,881  49.6  16.4  62.9 

 

Table 4-2: Summary of ATAC-seq library and sample metrics for 139 samples. 

Selected metrics summarizing 139 ATAC-seq libraries including the average, standard deviation 

(Std Dev), minimum value, and maximum value. Final reads are the total reads used for peak 

calling after quality filtering as described in the methods. *BMI metrics are calculated from 108 

samples with a reported height and weight.  
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Sample 
ID 

Reads After 
Filtering Peaks % Reads 

in Peaks 
TSS 

Enrichment Ethnicity* Sex Age BMI 

1 83,110,670  143,225  49.6 9.6 AFR M 2 NA 
39 3,659,042  45,628  26.3 16.4 EUR M 56 NA 
122 35,316,708  81,426  14.4 6.3 EUR M 67 NA 
151 27,317,546  70,865  24.5 6.4 AFR M 32 23.6 
152 61,118,334  115,926  35.8 7.3 EUR F 40 29.7 
156 47,993,186  93,845  33.0 5.7 EUR M 20 NA 
162 46,322,516  128,372  32.9 10.6 EUR M 18 NA 
172 40,462,484  100,430  30.6 8.3 EUR M 16 22.9 
174 60,712,830  155,400  44.7 11.6 EUR F 23 19.1 
175 92,798,678  129,402  46.6 9.2 EUR M 32 NA 
177 36,506,984  104,321  45.8 14.9 AFR M 39 NA 
200 19,007,920  92,879  33.9 11.0 EUR F 2 NA 
201 35,895,952  116,545  41.2 15.0 EUR M 6 14.7 
204 42,132,022  84,934  26.6 8.5 EUR F 8 13.1 
217 90,646,340  144,347  44.5 7.2 EUR M 20 26.5 
221 41,361,276  101,750  26.2 6.9 EUR M 16 25.0 
223 34,396,472  101,259  30.5 10.0 EUR M 14 20.0 
238 57,252,620  120,800  47.0 10.7 AFR F 4 NA 
253 50,314,904  106,720  10.6 7.2 AFR F 45 29.9 
323 79,198,844  119,175  16.6 6.0 EUR M 43 41.1 
325 22,614,520  78,468  19.2 5.8 EUR M 60 22.8 
331 34,464,376  80,345  27.0 6.7 EUR F 62 26.4 
332 63,360,300  115,477  32.7 6.0 EUR F 65 30.0 
333 46,138,582  98,274  34.8 6.7 EUR M 59 22.6 
334 84,483,840  126,616  36.9 5.7 EUR M 63 34.7 
335 57,827,568  111,423  32.6 5.5 EUR M 36 28.3 
336 57,705,794  89,233  18.5 5.2 EUR M 70 37.9 
337 34,809,246  75,511  15.3 5.2 EUR M 34 30.8 
340 28,935,678  101,961  25.5 10.8 EUR M 52 32.3 
342 23,837,186  89,849  29.4 6.2 EUR M 43 30.7 
343 36,775,276  88,069  14.8 8.9 EUR M 35 20.8 
344 62,041,426  136,413  37.6 7.1 EUR M 63 32.2 
345 28,652,532  84,098  33.3 8.6 EUR M 60 34.4 
346 33,009,090  106,232  41.3 9.0 EUR M 24 29.8 
347 61,150,678  116,838  36.4 9.4 EUR F 4 15.3 
348 70,080,502  119,641  30.2 6.8 EUR M 43 22.5 
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350 82,638,414  138,344  38.2 7.6 EUR F 75 29.5 
351 37,103,670  109,534  22.1 9.2 EUR M 49 31.3 
352 81,592,510  137,131  38.6 10.4 EUR M 72 27.6 
356 22,682,876  74,796  22.7 6.2 EUR M 37 22.4 
357 132,882,982  166,751  44.8 8.2 EUR M 62 36.5 
358 41,839,902  101,712  30.5 6.9 EUR M 53 30.9 
360 53,392,272  109,214  30.1 8.9 EUR M 54 28.3 
363 56,303,886  105,272  28.1 6.4 EUR M 46 NA 
365 66,023,240  108,552  36.3 5.3 EUR M 28 23.3 
366 51,754,096  114,465  36.6 7.7 EUR F 60 32.0 
368 44,607,564  90,015  33.7 5.6 EUR F 23 22.1 
369 51,491,458  98,725  25.9 6.9 EUR F 66 27.5 
372 48,285,422  55,946  10.8 4.0 EUR M 37 28.5 
374 3,379,040  38,442  16.4 9.5 EUR M 72 26.9 
378 75,803,202  133,963  46.3 6.6 EUR M 81 24.3 
381 29,042,412  92,597  12.3 7.7 EUR M 14 16.4 
382 45,904,450  123,506  47.6 11.3 EUR M 56 25.8 
383 67,613,438  141,478  31.9 9.3 EUR M 61 NA 
387 31,334,274  123,808  37.7 13.6 EUR M 66 NA 
390 69,212,094  119,608  21.4 6.3 EUR F 59 NA 
399 56,580,292  100,640  26.2 6.6 EUR F 22 NA 
401 106,697,692  133,718  41.4 6.9 EUR F 38 NA 
403 28,404,136  83,751  21.1 6.6 EUR M 73 20.6 
414 62,360,206  89,341  14.4 7.5 EUR M 29 13.5 
418 44,828,962  131,689  41.3 8.5 EUR F 16 22.7 
421 103,135,120  143,810  11.2 6.5 EUR M 18 21.7 
431 18,985,096  63,207  17.5 6.1 EUR M 56 NA 
433 45,933,202  107,404  25.9 8.2 EUR M 46 26.1 
434 31,829,762  80,248  28.1 6.8 EUR M 64 16.8 
435 68,748,300  135,056  31.6 11.0 AFR F 58 34.4 
436 42,572,884  123,802  27.3 12.2 EUR F 49 39.0 
437 47,958,298  102,377  30.2 9.6 EUR F 62 26.2 
438 41,912,874  107,956  33.8 10.7 EUR F 7 15.9 
439 58,914,314  117,278  32.1 7.2 EUR M 48 36.1 
440 34,128,294  78,069  15.5 6.9 AFR M 29 42.2 
444 61,146,302  78,739  12.7 5.6 EUR M 12 18.1 
450 76,951,990  140,264  34.8 8.2 EUR M 40 35.4 
457 63,917,430  119,942  36.3 7.8 AFR M 13 34.4 
458 49,174,114  101,455  18.6 6.6 AFR F 27 NA 
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459 114,019,114  161,133  45.7 9.7 EUR F 17 22.7 
465 34,431,392  95,559  18.4 9.8 EUR F 61 33.1 
469 82,834,156  112,936  36.7 6.1 EUR M 28 26.6 
470 51,107,544  102,920  25.1 7.4 EUR F 68 29.1 
476 72,139,166  135,136  31.8 8.2 EUR F 66 30.3 
479 50,608,338  106,898  33.5 8.6 AFR F 57 22.0 
480 82,639,252  117,893  44.9 7.9 AFR F 51 23.3 
484 76,648,838  122,164  40.5 6.8 EUR F 34 32.9 
485 74,296,956  146,982  43.9 10.6 EUR F 50 27.5 
489 105,903,992  115,920  21.4 5.1 EUR M 28 24.4 
492 57,221,890  90,513  20.9 5.3 AFR F 63 23.3 
493 73,027,038  122,655  19.3 6.7 EUR M 63 25.8 
617 53,948,340  120,890  35.9 6.5 EUR M 16 23.0 
618 20,483,848  90,432  34.8 14.1 EUR M 56 25.1 
619 33,611,144  80,894  21.3 5.9 EUR M 55 31.2 
620 60,269,378  115,560  38.6 7.6 AFR M 43 15.5 
623 34,551,396  121,255  34.6 12.0 EUR M 13 32.2 
627 31,016,478  92,507  28.9 8.0 EUR F 74 22.7 
629 28,399,842  91,515  30.5 7.8 EUR F 50 NA 
630 45,074,214  131,871  33.4 10.6 EUR M 45 34.8 
631 37,282,718  87,286  31.1 5.6 EUR M 65 27.8 
632 47,378,534  119,922  29.4 9.1 EUR M 54 26.8 
633 27,736,278  73,166  22.8 5.6 EUR M 15 NA 
634 48,409,990  98,097  20.1 7.8 EUR M 60 25.8 
636 44,239,748  103,233  23.8 6.5 EUR M 47 33.4 
639 63,864,848  124,149  35.2 8.4 EUR M 60 26.1 
644 54,209,058  107,970  46.5 12.2 EUR F 60 NA 
649 31,203,188  104,351  27.9 5.6 EUR M 22 NA 
657 63,241,484  123,262  36.1 9.7 EUR F 15 NA 
659 36,366,080  97,192  26.1 7.8 AFR M 52 24.5 
662 57,174,968  145,129  38.7 12.1 EUR F 35 40.5 
669 42,854,316  107,642  41.1 10.3 EUR F 66 NA 
671 58,514,812  128,182  35.5 11.2 EUR F 3 NA 
687 35,389,742  97,656  27.4 8.5 EUR M 52 NA 
711 74,307,346  153,560  38.0 10.2 EUR M 73 NA 
713 64,835,824  90,023  18.4 5.1 EUR M 20 26.6 
720 35,124,838  110,430  32.8 9.2 EUR M 51 29.5 
724 95,761,940  151,693  27.4 6.4 EUR M 61 27.4 
730 91,558,200  149,470  26.3 8.1 EUR M 57 33.4 
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733 67,290,698  109,691  34.9 6.2 EUR M 49 38.0 
741 114,020,806  138,741  28.7 5.8 EUR M 68 22.1 
744 30,070,406  96,191  22.9 6.6 EUR M 22 22.0 
750 68,163,608  105,316  29.2 7.2 EUR M 50 23.9 
751 46,770,746  86,383  26.8 4.5 EUR M 19 27.1 
753 82,061,212  134,963  40.7 9.6 EUR F 16 NA 
755 65,233,570  89,688  19.6 4.6 EUR F 75 22.5 
765 29,763,754  88,226  32.7 6.0 EUR M 69 28.1 
767 45,660,222  118,355  32.8 7.5 EUR F 30 40.2 
770 72,558,668  103,002  20.6 5.3 AFR M 79 26.5 
773 86,253,288  101,096  41.7 6.0 EUR F 47 NA 
775 36,679,348  81,085  24.9 5.7 EUR M 53 23.7 
778 27,404,944  97,425  42.0 15.8 EUR M 56 NA 
779 87,406,220  111,478  34.3 6.5 EUR F 47 62.9 
780 76,582,292  122,535  39.1 7.0 EUR M 70 33.0 
783 34,996,376  109,249  31.1 12.1 EUR M 25 23.0 
786 89,681,118  204,881  28.0 8.2 EUR M 16 23.0 
791 83,122,894  120,656  28.1 6.6 AFR F 55 26.6 
793 24,780,878  61,291  15.9 7.4 EUR F 36 40.4 
794 48,280,568  143,965  31.3 11.4 EUR M 16 39.0 
795 50,035,908  84,827  26.8 5.0 EUR M 50 NA 
796 79,771,748  102,458  30.4 6.5 AFR M 57 NA 
798 41,205,566  97,062  35.8 6.9 EUR M 64 NA 
800 80,848,314  127,812  31.1 8.2 AFR F 56 NA 

 

Table 4-3: ATAC-seq library metrics for 139 liver samples. 

ATAC-seq libraries of 139 human liver samples used in these analyses with sequencing and 

alignment metrics and sex, ethnicity, age, and BMI where known. In the Sex column “M” 

indicates a male sample and “F” indicated a female sample. In the BMI column “NA” indicates 

height and weight were not reported at sample collection.   
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% Consensus Model Male-Biased Female-Biased Total Sex-Biased 

5 
Unadjusted           1,396  1,379  2,775  

Adjusted for PRiP       361     380    741  

10 
Unadjusted    1,386  1,391  2,777  

Adjusted for PRiP        384     390     774  

 

Table 4-4: Summary of identified sex-biased liver peaks. 

Counts summarizing sex-biased peaks (DeSEQ2, LFC > 0, FDR < 5%), separated by male-

biased and female-biased for the liberal and stringent consensus peak sets that required a peak to 

be present in 5% (n>7) or 10% (n>14) individuals, respectively. “PrIP” indicates percent reads in 

peaks, a quality metric. 
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Chromosome # Count 
chr1 58 
chr2 69 
chr3 56 
chr4 56 
chr5 47 
chr6 50 
chr7 43 
chr8 42 
chr9 29 
chr10 34 
chr11 35 
chr12 45 
chr13 23 
chr14 35 
chr15 22 
chr16 23 
chr17 12 
chr18 37 
chr19 15 
chr20 23 
chr21 11 
chr22 9 

 
Table 4-5: Summary of counts of sex-biased liver peaks by chromosome. 

Counts summarizing sex-biased peaks, separated by chromosome.  “Chromosome #” indicates 

the chromosome being counted. “Count” indicates the total number of significant peaks located 

on that chromosome. 
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Table 4-6: Liver eQTL overlap with sex-biased peaks. 

List of liver eQTL variants overlapping a sex-biased liver peak. 71 unique sex-biased peaks link 

to 81 unique genes. “Sex-Biased Peak ID” is a unique peak identifier. An “*” after the peak ID 

indicates that the eQTL signal was sex-biased. “Chr”, “Start position”, and “Stop position” 

identify the chromosome coordinates of the peak. “LFC” reports the log fold change for the sex-

biased peak. “Sex-bias” identifies direction of the sex-biased peak where “M>F” indicates male-

biased peaks and “F>M” indicates female-biased peaks. “Q-Value” reports the FDR-adjusted p-

value. “Proxy rsID” reports the eQTL variant located within the peak. “r2” reports the linkage 

disequilibrium between the proxy and lead variant at the eQTL signal, based on 1000 Genomes 

European reference. “Allele” reports the allele at the proxy variant in the format “major/minor”. 

“Gene” reports the differentially expressed gene corresponding to the eQTL signal. “GWAS 

Overlap” reports whether the peak also overlaps a variant associated with a GWAS trait from 

Table 4-7.  
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Table 4-7: GWAS variants overlapping sex-biased peaks. 

List of GWAS variants overlapping a sex-biased liver peak. 71 sex-biased peaks overlap a 

GWAS signal. “Sex-Biased Peak ID” is a unique peak identifier. “Chr”, “Start position”, and 

“Stop position” identify the hg19 chromosome coordinates of the peak. “Sex-bias” identifies 

direction of the sex-biased peak where “M>F” indicates male-biased peaks and “F>M” indicates 

female-biased peaks. “LFC” reports the log fold change for the sex-biased peak. “Q-Value” 

reports the FDR adjusted p-value. “Proxy rsID” reports the variant within the peak. “Proxy 

Variant Allele” reports the allele at the lead and proxy variant in the format “Lead major Proxy 

major/Lead minor Proxy minor”. “r2” reports the linkage disequilibrium between the proxy and 

lead variants. “Significant Traits” reports the traits associated with the signal. “eQTL Overlap” 

reports the gene(s) associated if a liver eQTL variant was also identified within the indicated 

peak. “NA” indicates no eQTL overlap at the indicated peak
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CHAPTER 5: DISCUSSION 

 GWAS have identified thousands of loci associated with cardiometabolic traits44. 

However, GWAS associations do not identify the mechanisms at these largely noncoding loci, 

including which variants and genes are involved, which cell types and contexts they are active in, 

and the molecular mechanisms of the functional variants53. Noncoding GWAS loci can have 

regulatory mechanisms that can be studied by profiling chromatin accessibility and linking 

accessible regions to genes58. These regulatory mechanisms can be cell type- and context-

dependent58,68,76,118. Therefore, identification of regulatory elements in disease-relevant cell types 

and contexts can aid identification of the regulatory mechanisms. Furthermore, identification of 

cell type- and context-dependent genetic effects can inform treatment for cardiometabolic traits.    

In this dissertation, I identified and described regulatory mechanisms in cardiometabolic 

disease-relevant tissues, cell types, and contexts. I profiled chromatin accessibility in adipose 

tissue, adipocytes under several cardiometabolic disease-relevant contexts, and liver tissue. 

Despite many challenges of working with high lipid adipose tissue, Chapter 2 describes a 

consensus human adipose chromatin accessibility map from 11 individuals, one of the largest 

human adipose sample sizes to date. In the SGBS adipocyte cell model, Chapter 2 describes 

regions of context-dependent chromatin accessibility during adipocyte differentiation, links of 

these candidate regulatory elements to genes and traits, and allele- and context-dependent effects 

of elements on transcriptional activity. I also investigated context-dependent chromatin 

accessibility of other disease-relevant contexts: exposure to excess lipids, hypoxia, and 

inflammation, described in Chapter 3. Finally, in Chapter 4, I described sex-biased chromatin 
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accessibility in 139 human liver tissue samples. The work in this dissertation identifies hundreds 

of candidate regulatory mechanisms for noncoding GWAS loci. Furthermore, these chromatin 

accessibility profiles in disease-relevant tissues, cell types, and contexts will be an excellent 

resource for future work on elucidating regulatory mechanisms of disease. 

I studied chromatin accessibility and regulatory mechanisms in both human adipose 

tissues and a human adipocyte cell model. There are advantages and disadvantages to each 

approach. While adipocytes are a major component cell type of adipose tissue, chromatin 

accessibility from adipose tissue may better capture regulatory elements relevant to adipose 

biology and disease compared to adipocytes from a cell model. This can be seen in our 

enrichment analyses in Chapter 2 (Fig 2.3), where adipose peaks are enriched for additional traits 

such as triglycerides and HDL-cholesterol compared to preadipocyte and adipocyte context-

dependent peaks. Furthermore, chromatin accessibility in adipose tissue can be assayed across 

many individuals to capture more genetic and environmental variation.  

Obtaining quality chromatin accessibility in adipose tissue across many individuals 

proved challenging. I planned to profile chromatin accessibility in ~400 adipose samples 

available from the METSIM study15. An advantage of the METSIM study is that individuals 

have genotype, gene expression, and cardiometabolic trait phenotyping15,61,6515,61,65, however the 

individuals are all Finnish males, which limits genetic diversity. When initial chromatin 

accessibility profiles demonstrated inconsistent quality, I tested many factors to optimize nuclei 

isolation and ATAC-seq library preparation from frozen adipose tissue including buffers, 

detergents, filtering steps, transposase Tn5-to-nuclei ratio, and the Omni ATAC-seq protocol88. 

After optimization, we produced a consensus map of human adipose chromatin accessibility 

from 11 individuals, however the quality remained inconsistent enough to proceed with the 
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larger sample set. Based on my experience with optimizing chromatin accessibility profiling in 

frozen adipose tissue, I suspect that the lipid content adversely affects the nuclei isolation and/or 

library preparation or that the freezing protocol adversely affected the chromatin structure. 

Evidence to support the lipid content adversely affecting the library preparation includes that 

data from mature adipocytes of the cell model were less consistent in quality than data from 

preadipocytes and that adipose tissue samples from a separate source with a different freezing 

protocol also showed inconsistent quality. Inconsistent quality of chromatin accessibility 

libraries in our mature adipocytes contributed to difficulties in identifying context-dependent 

regulatory elements due to additional disease-relevant contexts such as free fatty acids, hypoxia, 

and inflammation described in Chapter 3. Future testing of fresh adipose tissue or adipocytes 

could help identify the cause of the inconsistent quality. While chromatin accessibility profiling 

in adipose tissue proved challenging, producing maps in larger sample sizes will capture 

additional genetic and environmental variation. The 11-sample consensus map we developed 

represents more genetic diversity than any existing adipose dataset.  

Adipocyte cell models are also useful for studying regulatory mechanisms of disease 

because they can provide a consistent genetic background to compare changes due to 

environmental perturbation. Adipose tissue is heterogenous and composed of many cell types, 

including preadipocytes and adipocytes11, but regulatory mechanisms can act in cell type- and 

context-dependent manners58,68,118. Therefore, profiling chromatin accessibility in relevant cell 

types and contexts can identify context-dependent regulatory mechanisms that could be missed 

in heterogenous tissue samples that may lack relevant context. Chapter 2 described regulatory 

mechanisms of disease in adipocyte-dependent regions. Our functional tests of variants at two 

loci (SCD and EYA2) showed context-dependent regulatory mechanisms and identified allele- 
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and context-dependent transcriptional effects at the SCD locus. The results at EYA2 were more 

complex, as we identified both a context-dependent regulatory element and an element only 

present in adipose tissue. We tested both elements and only identified allele-dependent 

transcriptional effects at the adipose tissue element. This result demonstrates that, while context-

dependent regulatory elements can identify molecular mechanisms at GWAS loci, the identified 

variant may not be causal and other mechanisms or contexts may be involved. Another 

possibility is that allelic effects on transcriptional activity for the context-dependent region were 

not detectable in our in vitro reporter assay. Additionally, this result demonstrates the utility of 

our consensus adipose map, which may better represent biologically-relevant regulatory 

elements.  

Future work on elucidating the molecular mechanisms at these and other loci we 

identified in Chapter 2 could include performing additional assays in adipocytes, such as 

electrophoretic mobility shift assays to detect differential binding of alleles to nuclear proteins 

and transcription factors53,84, ChIP-seq to identify which transcription factors bind to context-

dependent regulatory elements or allelic differences in transcription factor binding53,186, or 

CRISPR-Cas9 to delete or inactivate the regulatory region or create an alternate allele53,187–189. In 

Chapter 2, we used HOMER190 to identify transcription factor binding motifs enriched in 

context-dependent regulatory elements, a computational method that could also be applied to 

other contexts such as sex-biased chromatin accessibility in liver. Finally, while individually 

functionally testing candidate regulatory mechanisms allows for accurate evaluation, assays such 

as massively parallel reporter assays would allow high-throughput testing of many candidate 

regulatory elements in a single experiment53,191,192. Together, these assays can be used to test 
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additional predictions from our analyses to identify many more regulatory mechanisms of 

disease. 

 While cell models are useful for studying effects against a consistent genetic background 

in a controlled environment, cell models have some disadvantages. The consistent genetic 

background that simplifies many studies hinders the ability to identify interactions between 

genetic variation and environment. For example, in Chapter 2 we identified allelic imbalance in 

adipocyte chromatin accessibility. One limitation of allelic imbalance in our adipocyte cell 

model is that we could only test for allelic imbalance at heterozygous sites within the one 

individual with SGBS from whom the cells were derived. Allelic imbalance testing in a larger 

sample size would likely identify additional significant imbalances because more heterozygous 

sites are available to test, more sequencing reads exist at any given site, and imbalances can be 

validated across individuals. One approach to overcome the disadvantages of using a single cell 

model would be to use multiple cell lines in a model such as induced pluripotent stem cells 

derived from multiple individuals, which would allow diverse genetic backgrounds to be 

tested68,117,118. Another approach to study different cell types against diverse genetic backgrounds 

is to perform single nucleus sequencing strategies on tissue from multiple samples. Single 

nucleus ATAC-seq and RNA-seq can be performed tissue to resolve issues with heterogeneity 

and study the cell type-specific regulatory landscape193–195. Another disadvantage is that aspects 

of cell models are not biologically relevant. For example, I used SGBS adipocytes because they 

are mostly diploid, however, they grow in cell culture because they were derived from an 

individual with a disease state that causes adipocyte overgrowth22. Additionally, growing cells in 

culture can introduce changes due to the artificial environment. For these reasons, it is important 

to build resources such as our consensus map of adipose tissue chromatin accessibility, which 
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can help identify regions that are more likely to be biologically relevant. We mitigated the 

limitation of using an adipocyte cell model with one genetic background by identifying 

consensus adipose chromatin accessibility from 11 individuals. 

  In addition to studies of adipose and adipocytes in a disease-relevant context, I studied 

regulatory elements in human liver tissue that are biased between males and females. Sex is a 

relevant context to cardiometabolic disease that contributes to differences in disease risk and 

response to treatment24–26. In Chapter 4, we profiled chromatin accessibility in 139 human liver 

samples and identified 774 autosomal sex-biased regions (LFC > 0, FDR < 5%) that 

demonstrated significant differences between males and females. The average LFC of these sex-

biased regions is 0.5, suggesting that these are modest differences between males and females. 

When we applied a less stringent threshold (LFC > 0, FDR < 10%), selected to match a sex-

biased chromatin accessibility study in peripheral blood mononuclear cells that had identified 

577 sex-biased regions (0.69% of tested regions)171, we identified a comparable number of 1300 

autosomal sex-biased regions, which represents 0.75% of tested regions. We linked the sex-

biased regions to genes using existing liver eQTL data62 and to disease traits using the GWAS 

catalog44. Additional lines of evidence could be used to link sex-biased regulatory elements to 

genes in future work, including chromosome conformation capture profiles. Future work would 

also include functional testing of candidate regulatory elements using methods such as those 

discussed in Chapter 253. While our liver samples have existing genotype and gene expression 

data62 and represent a mix of sexes and ancestries that can capture additional genetic and 

environmental variation, we have limited phenotype data on the donor individuals, which could 

limit identifying associations between regulatory elements and traits. However, these liver 

chromatin accessibility profiles represent a valuable resource that can be used for future studies 
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such as identifying genetic variants that alter chromatin accessibility through colocalization of 

eQTL and GWAS data28. 

 Identifying molecular mechanisms at GWAS loci remains complex. The work presented 

in this dissertation contributes to the understanding of how genetic variation and cellular context 

contribute to cardiometabolic traits. I produced chromatin accessibility maps for a variety of 

tissues and adipocytes in multiple cellular contexts. I used these chromatin accessibility maps to 

predict candidate functional variants and regulatory mechanisms. At specific loci, we used these 

predictions to identify allelic differences in transcriptional activity. Furthermore, these chromatin 

accessibility profiles will be a useful resource for future work on identifying regulatory 

mechanisms of GWAS loci. Identifying genetic variants that alter gene expression to contribute 

to disease can identify drug targets and the direction of effect to increase or lower activity to treat 

disease. Although functional testing is needed, some of the candidate variants identified in these 

studies could identify individuals at higher risk of cardiometabolic disease or individuals who 

may respond better to specific treatments. 
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