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ABSTRACT
Hannah Janine Perrin: Chromatin accessibility context identifies regulatory mechanisms for
cardiometabolic traits
Under the direction of Karen L. Mohlke
Cardiovascular diseases (CVD) and associated cardiovascular and metabolic

(cardiometabolic) traits pose a significant global health burden. Identifying molecular
mechanisms for cardiometabolic traits would improve diagnosis and treatment of disease.
Genome-wide association studies (GWAS) have identified thousands of loci associated with
cardiometabolic traits. However, the mechanisms of most remain unclear, especially at the large
number of noncoding loci. One mechanism of noncoding loci is to regulate gene expression in
cell- and context-dependent manners. Regulatory elements can be identified through chromatin
accessibility. Therefore, chromatin accessibility in disease-relevant cell types and contexts can
be integrated with gene expression and GWAS data to identify regulatory elements that affect
gene expression to contribute to cardiometabolic traits. I profiled chromatin accessibility in
adipose and liver tissue and in adipocytes exposed to disease-relevant contexts of differentiation,
excess free fatty acids, hypoxia, and inflammation. I identified context-dependent regulatory
elements that change after exposure to disease-relevant contexts in adipocytes and between sexes
in liver tissue. I integrated context-dependent regulatory elements with multiple genomic datasets
such as eQTL, Hi-C, and context-dependent gene expression to link elements to candidate genes.
Additionally, I integrated context-dependent regulatory elements to GWAS to link elements to

traits. Functional testing of candidate regulatory elements identified context- and allele-

dependent transcriptional activity. While they require future functional testing, the work in this

il



dissertation identifies hundreds of candidate regulatory mechanisms for noncoding GWAS loci.
Furthermore, these chromatin accessibility profiles provide a useful resource for future work on
identifying regulatory mechanisms of GWAS loci that may improve diagnosis and treatment of

disease.
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CHAPTER 1: INTRODUCTION

Overview of cardiometabolic traits

Cardiovascular diseases (CVD), metabolic diseases such as Type 2 Diabetes (T2D), and
associated cardiovascular and metabolic (cardiometabolic) traits are a significant global health
burden. CVD remains the leading cause of death worldwide, at a rate of 18.6 million deaths per
year'2, In the United States, CVD is estimated to affect 126.9 million adults and cost $363.4
billion per year in healthcare?. Metabolic diseases are also a leading cause of mortality® and
increase the risk of CVD!>#, T2D is the 8" leading cause of death in the United States in 2020,
at a rate of 24.8 deaths per 100,000°. Associated prevalent cardiometabolic traits are additional
risk factors for both CVD and T2D? and include obesity and high cholesterol® which,
respectively, affect 96.5 million and 28 million adults in the United States?. Central obesity, or
increased distribution of fat around the abdomen, increases risk of CVD, T2D, and related
cardiometabolic traits more than obesity alone and is measured by traits such as waist-hip ratio
(WHR)>S. Obesity can lead to dyslipidemia, or an imbalance of lipids such as cholesterol and
triglycerides®>. High low-density lipoprotein cholesterol (LDL-C) increases risk of CVD through
accumulation of plaques in the bloodstream’. Low high-density lipoprotein cholesterol (HDL-C)
increases risk of CVD because HDL-C has beneficial properties including clearing LDL-C
plaques to be metabolized in the liver and roles in endothelial cell repair’. Increased
understanding of mechanisms of CVD and metabolic disease would improve diagnosis and

treatment, therefore improving health outcomes.



Biological processes of cardiometabolic traits

Cardiometabolic traits are complex and involve processes in multiple tissues including
adipose, liver, skeletal muscle, and pancreas®. One example of a cardiometabolic trait involving
multiple tissues is insulin resistance. Insulin resistance is a complex process that is caused by
traits such as central obesity” and causes additional cardiometabolic traits including T2D?.
Insulin resistance occurs when adipose, liver, and muscle become less responsive to insulin
which reduces their ability to uptake glucose from the blood. Beta cells in the pancreas
compensate by producing more insulin but, without interventions such as lifestyle changes or
pharmacological treatment, insulin resistance eventually leads to elevated blood glucose and
T2D?. While many tissues are involved in cardiometabolic traits, in this dissertation I focus on

adipose and liver.

Adipose and cardiometabolic traits

Adipose tissue affects cardiometabolic traits such as body fat distribution, blood
cholesterol levels, and insulin resistance through lipid storage and hormone secretion
processes®!?. Adipose tissue is heterogeneous and contains multiple cell types, including
adipocytes, preadipocytes, immune cells, and vascular cells!!'. Adipocytes are a cell type within
adipose tissue that store excess lipids through hyperplasia, during which preadipocytes
differentiate into adipocytes to increase storage, or hypertrophy, during which adipocytes expand
to increase storage'2. Hypertrophy of adipocytes is associated with hypoxia caused by the
increased size and inflammation caused by tissue fibrosis and necrosis!2. Dysfunctional,

hypertrophic adipocytes have limited ability to store excess nutrients resulting in elevated blood



levels of glucose and lipids'?. Excess lipids in the blood can lead to insulin resistance and storage
of lipids in visceral fat deposits and organs such as liver and skeletal muscle!2.

Adipose and cell models for component adipose cell types are useful to study adipose
biology. Obesity is a leading cause of CVD and metabolic disease, however the body fat
distribution of the excess adipose can predict disease risk better than total body fat>!°. An
increased WHR, a measure of body fat distribution and central obesity, is associated with an
increased risk of disease!®. Body mass index (BMI) is an easily measured trait that is often used
to capture estimates of total body fat®. Visceral adipose, which is accumulation of fat around
internal organs and associated with central obesity, occurs during processes such as insulin
resistance!>!?, has also been shown to increase risk of CVD more than subcutaneous adipose!®.
However, enlarged adipocytes from both visceral and subcutaneous adipose have been associated
with inflammation and metabolic dysfunction'#. Compared to other cardiometabolic trait-
relevant tissues, subcutaneous adipose can be easy to collect through a needle biopsy or minor
outpatient surgical biopsy. In Chapter 2 of this dissertation, I study samples of subcutaneous
abdominal adipose from individuals in the METabolic Syndrome In Men (METSIM) study'>.
The METSIM study consists of ~10,000 Finnish men with dense genotype, gene expression, and
cardiometabolic trait phenotype data'®. The ability to integrate and identify associations between
datasets makes the METSIM study a useful resource for additional studies.

Cell models of component cell types of adipose such as adipocytes are useful for studies
of adipose biology. Adipocyte cell models can be exposed to cardiometabolic trait relevant
environments such as excess lipids in the form of free fatty acids, inflammation, and hypoxia to
study effects in a controlled environment. Mouse 3T3-L1 adipocytes are a common cell model'®-

9 however, it is also useful to study human cell models because species-specific differences



have been identified?’. In Chapters 2 and 3 of this dissertation I use Simpson-Golabi-Behmel
Syndrome (SGBS) cells, a well-characterized human, diploid preadipocyte cell model that can be

differentiated into mature adipocytes?!-?2,

Liver and cardiometabolic traits

Liver tissue is important to cardiometabolic traits through regulation of lipids, glucose,
and cholesterol®*. Dysfunctional adipose leads to excess lipids accumulating in the blood which
are taken up by the liver!?. Dysfunctional liver tissue can contribute to cardiometabolic traits
such as insulin resistance through decreased storage of glucose and increased accumulation of
lipids?. Accumulation of lipids in liver through insulin resistance is a risk factor cardiometabolic
traits such as non-alcoholic fatty liver disease (NAFLD)?. Like many cardiometabolic traits*26,
NAFLD demonstrates sex differences in prevalence with a higher risk for men than pre-
menopausal women?®. Sex differences can also contribute to differences in drug metabolism that
could inform treatment options?’. Sex differences in cardiometabolic disease can be caused by
genetic factors from the sex chromosomes, epigenetics such as chromatin accessibility, gene
regulation, environmental factors, and endogenous factors such as hormones?’. Studying sex
differences in disease relevant tissues could aid identification of sex-specific mechanisms of
disease. Compared to adipose tissue, liver tissue collection is more invasive. In Chapter 4 of this
dissertation, I study liver samples from male and female deceased organ donors without known
disease?®.

Multiple tissues and processes contribute to cardiometabolic traits and many of the

molecular mechanisms of these complex processes remain poorly understood. Studying



cardiometabolic trait-relevant tissues and cell types in relevant contexts will improve

understanding of the molecular mechanisms of disease.

Identifying candidate mechanisms at cardiometabolic trait loci

Cardiometabolic traits develop from both genetic and environmental causes that can
interact. Environmental factors that contribute to cardiometabolic traits includes nutrition,
physical activity, and smoking?. Lifestyle interventions such as diet and increased physical
2,29-31

activity have been shown to improve cardiometabolic traits and decrease risk of disease

However, there is strong evidence for genetic factors contributing to cardiometabolic traits.

Genetics of cardiometabolic traits

Genetic factors can contribute to risk of developing cardiometabolic disease. Using
methods such as family and twin studies, heritability estimates range from 30-70% for T2D3233,
40-60% for coronary artery disease**3¢, 36-61% for WHR?’, and 22-91% for LDL-C3°,
Genetic factors can also interact with other risk factors like sex, age, and environment to increase
risk in an additive manner*®#!, These interactions can explain some of the large variations in
heritability estimates*. For example, gene-age interactions have been identified for weight,
where heritability estimates are low for infants (5-9%) and increased to 74-87% by age 19%2.
Gene-sex interactions have also been identified for traits such as BMI and triglycerides®.
Heritability estimates show that genetic variation can contribute to cardiometabolic traits.

Genome-wide association studies (GWAS) identify associations between genetic variants

and traits. GWAS have identified thousands of loci associated with cardiometabolic traits***

D*5-47 R48:49

including over 300 for T2 , over 100 for measure of body fat distribution such as WH



with seven loci demonstrating sexual dimorphism*®, and over 400 for blood lipid traits>®>! with
64 demonstrating sexual dimorphism?!. Although some GWAS loci are in protein coding regions
of the genome and can be directly linked to genes with predicted functional effects, as many as
90% of identified GWAS loci are located in noncoding regions of the genome®>>3, 1t is difficult
to identify mechanisms of noncoding GWAS loci because there are often multiple candidate
variants, genes, cell types, and relevant cellular contexts®*~>°, Noncoding regions can represent

regulatory elements that alter gene expression in cell type and context-dependent manners™.

Context-dependent gene expression

A single change in cellular context can trigger gene expression changes in a large number
of genes in order to adapt an organism to the environment. Dynamic gene regulation in response
to cellular context is regulated through transcription factors, proteins that bind to regulatory
elements to alter transcription®®. Transcription factor activity can be regulated by altering the
activity or abundance of the transcription factor or altering chromatin to make binding more

effective’>’

. Transcription factor activity also can be altered through post translational
modifications, such as phosphorylation, which can switch a transcription factor between active
and inactive states>®. Chromatin remodeling that changes accessibility can expose transcription
factor binding sites, allowing an active transcription factor to bind to a DNA regulatory element
and affect gene expression®6-8,

Transcription factors bind to specific DNA sequences, called transcription factor binding
motifs>®. DNA variants within a region of chromatin accessibility can change binding affinity for

a transcription factor, therefore changing the response to a cellular context. Key transcription

factors that play a role in adipocyte differentiation include PPARy and C/EBPa*. A transcription



factor responsible for many sex-dependent differences in liver gene expression is STAT5H%.
Identifying context-dependent chromatin accessibility can reveal regulatory elements that alter
gene expression, and variants within these regulatory elements could alter transcription factor

binding to produce genetic differences in response to a cellular context.

Identifying regulatory elements

While noncoding GWAS loci remain difficult to understand, many are predicted to have
regulatory mechanisms that alter gene expression to affect a trait!. Gene regulation has been
studied using gene expression quantitative trait loci (eQTL) studies. eQTL studies identify
variants associated with changes in gene expression and have been performed in many tissues
including adipose and liver®'%2, Noncoding GWAS loci are enriched for colocalized eQTL
associations®, suggesting a regulatory mechanism at these loci. Some GWAS loci colocalize
with eQTL in trait-relevant tissues including adipose and liver® %7, while other GWAS loci
colocalize with eQTL found in specific contexts, such as stimulated, but not naive, immune
cells®®. Despite eQTL localization identifying potential candidate genes, mechanisms of GWAS
loci can remain unclear due to a large number of candidate variants at many loci>. Therefore,
regulatory element and gene expression profiles in cardiometabolic trait-relevant contexts can be
used to identify molecular mechanisms at noncoding GWAS loci.

Regulatory elements such as enhancers, silencers, or promoters can be detected by a
variety of epigenomic assays including histone modifications and chromatin accessibility
profiling®8. Chromatin accessibility is a known feature of active regulatory elements® and can be
profiled using sequencing methods such as the Assay for Transposase Accessible Chromatin

(ATAC-seq)®. ATAC-seq requires less material and time compared to other methods of



chromatin accessibility profiling such as DNase hypersensitivity (DNase-seq) and formaldehyde-
assisted isolation of regulatory elements (FAIRE-seq)®’. ATAC-seq is typically performed with
50,000 cells, compared to millions required for other protocols®®. ATAC-seq can also be
performed in a day using a Tn5 transposase enzyme that targets accessible regions to cut and
ligate sequencing adaptors in a single step while other protocols often require multiple days®.
Chromatin immunoprecipitation (ChIP-seq) is another method that can identify genome-wide
changes contributing to gene regulation by detecting protein-DNA interactions’®. ChIP-seq can
identify sites where transcription factor proteins directly bind to DNA, however, each

transcription factor must be assayed individually and requires a high-quality antibody’®. ChIP-
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seq data has been generated for specific transcription factors in adipocytes and live
Compared to ChIP-seq, ATAC-seq can capture changes from all transcription factors at once,
however ATAC-seq does not identify which transcription factor is acting at a regulatory
element®. Additional computational methods such as identification of transcription factor
binding motifs and experimental methods such as electrophoretic mobility shift assays can
identify specific transcription factors involved in a regulatory element identified by chromatin
accessibility.

Large consortiums such as the Encyclopedia of DNA Elements (ENCODE)’® and
Roadmap Epigenomics Project’” have identified regulatory maps for many cell types and
contexts. ENCODE profiled histone modifications, transcription factor binding, and chromatin
accessibility in hundreds of cell and tissue types’®. Roadmap Epigenomics Project profiled
histone modifications, DNA methylation, and chromatin accessibility in 111 cell and tissue

types’’. These profiles are valuable resources for studying regulation, however some cell types

and many cell contexts that are relevant to disease remain under-annotated. Annotation of



chromatin accessibility, a known feature of active elements®®, in additional disease-relevant
contexts can be integrated with other genomic datasets such as eQTL and GWAS to identify

regulatory elements that alter gene expression to affect cardiometabolic traits.

Identifying candidate genes for regulatory elements

Linking regulatory elements to genes in disease-relevant contexts can identify targets for
drugs that could increase or decrease their function. Regulatory elements can be linked to genes
through integration with other genomic data such as eQTL, chromosome conformation capture,
and context-dependent gene expression’®. Each type of genomic data has advantages and
disadvantages; therefore, it is useful to use multiple methods. Analyses such as eQTL identify
variants associated with differences in gene expression between individuals or contexts®”.
Identifying active regulatory elements through chromatin accessibility profiles in
cardiometabolic trait-relevant tissues, cell types, and contexts that overlap eQTL associated
variants can identify candidate variants and link them to candidate genes?®->3. However, eQTL
can be underpowered to detect associations due to small sample size or missing relevant cell
types or contexts’®. Chromosome conformation capture techniques such as promoter capture Hi-
C identify regions of the genome in close contact with each other, including active regulatory
elements and promoters®. However, chromatin conformation capture can identify large regions
that interact resulting in difficulty identifying the active regulatory element®. Identifying active
regulatory elements through chromatin accessibility profiles in cardiometabolic trait-relevant
tissues, cell types, and contexts that overlap chromosome conformation capture regions can link
a smaller candidate regulatory element to a candidate gene?®. Gene regulation can vary by cell

type and cell context>*%8, therefore paired differential chromatin accessibility and gene



expression profiles in the same conditions can be used as an additional line of evidence to link
regulatory elements to differential gene expression. However, there are not well-established
methods to link differential chromatin accessibility to differential gene expression even in paired
data other than proximity which is indirect.

Each genomic dataset can be used to link regulatory elements to genes. Due to the
advantages and disadvantages of different data types, it is useful to use multiple methods.
Linking a regulatory element to the same gene through multiple methods increases confidence in
the prediction. However, a regulatory element linked to a gene by only one method can merit
further investigation. Integrating chromatin accessibility with gene expression and GWAS data
can identify candidate regulatory elements and variants that alter gene expression and contribute

to a cardiometabolic trait, however functional testing is necessary.

Functional testing of regulatory variants

Variants in regulatory elements that can be linked to a gene and disease trait can be
experimentally manipulated to validate predicted genetic mechanisms of disease®®. There are
many approaches to functionally test a candidate regulatory mechanism#!, The primary goal of
functional validation such as transcriptional reporter assays, electrophoretic mobility shift assays,
or allelic imbalance testing is to identify allelic differences in transcriptional activity.
Transcriptional reporter assays such as a luciferase assay test variant alleles in a candidate
regulatory region for differences in transcriptional activity of a reporter gene such as luciferase®.
Allelic imbalance can be tested for with sequencing data such as ATAC-seq chromatin
accessibility profiles. An allelic imbalance test can be used at heterozygous sites and tests for

disproportionate representation of one allele compared to the other®*.
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Identification of variants that contribute to disease could improve prediction of
individuals at risk of disease and determine which individuals may respond better to a specific

drug treatment™?

. For example, a variant associated with myocardial infarction was found to
create a C/EBP transcription factor binding site in a liver regulatory element that affected
expression of SORT1, a gene that alters low-density lipoprotein cholesterol®2, Identification of
this functional variant could be used to identify individuals at risk of myocardial infarction and

individuals who may respond better to treatments for high low-density lipoprotein cholesterol

specific to the SORTI pathway®2.

Aims and overview

In this dissertation, I contribute to defining the impact of genetic variation and cellular
context on chromatin accessibility and cardiometabolic traits. I hypothesize based on previous
research that variants in context-dependent regions of chromatin accessibility affect gene
regulation to contribute to disease traits. In Chapter 2, I identify chromatin accessibility and gene
expression that change with adipocyte differentiation. I link context-dependent chromatin
accessibility to candidate genes using three approaches. I link context-dependent chromatin
accessibility to variants associated with cardiometabolic traits. I also identify a consensus map of
chromatin accessibility in 11 adipose tissue samples. In Chapter 3, I describe investigations into
adipocyte chromatin accessibility in other cardiometabolic trait-relevant contexts such as free
fatty acids, hypoxia, and inflammation. In Chapter 4, I identify sex-biased chromatin
accessibility regions that change between males and females in human liver tissue. I link sex-
biased chromatin accessibility to variants associated with differential expression in liver and to

disease traits. In Chapter 5, I summarize my results, reflect on my research, discuss limitations,
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and consider future directions. In this dissertation, I identify hundreds of candidate variants in
disease-relevant contexts that could help define mechanisms responsible for variation in

cardiometabolic traits.
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CHAPTER 2: CHROMATIN ACCESSIBILITY AND GENE EXPRESSION DURING
ADIPOCYTE DIFFERENTIATION IDENTIFY CONTEXT-DEPENDENT EFFECTS AT

CARDIOMETABOLIC GWAS LOCI™’

Introduction

Genome-wide association studies (GWAS) have identified thousands of loci associated
with cardiometabolic traits, yet most mechanisms remain unclear due to unknown functional
variants, genes, cell types, and relevant contexts, especially at the large number of noncoding
loci®*. Noncoding loci can regulate gene expression in cell type and context-dependent
manners>. Some GWAS loci colocalize with gene expression quantitative trait loci (eQTL) in
trait-relevant tissues®!-6264-67_although other GWAS loci colocalize with eQTL found only in one
context, such as stimulated, but not naive, immune cells®®. Therefore, mapping transcriptional
regulatory elements and gene expression in disease-relevant contexts can be used to characterize
molecular mechanisms of GWAS loci. Enhancers and other regulatory elements can be detected
by identifying regions of chromatin accessibility>® using sequencing methods such as the Assay
for Transposase Accessible Chromatin (ATAC-seq)®°. Chromatin accessibility in

cardiometabolic-relevant cell types and contexts can be integrated with GWAS and eQTL data to

! The work in this chapter has been previously published and adapted for this dissertation chapter®®. The citation is:
Perrin HJ, Currin KW, Vadlamudi S, Pandey GK, Ng KK, Wabitsch M, Laakso M, Love MI, Mohlke KL.
Chromatin accessibility and gene expression during adipocyte differentiation identify context-dependent effects at
cardiometabolic GWAS loci. PLoS Genet. 2021 Oct 26;17(10):e1009865. doi: 10.1371/journal.pgen.1009865.
PMID: 34699533; PMCID: PMC8570510.

2 Hannah Perrin performed chromatin accessibility assays, analyzed data, generated figures, and wrote and edited
the manuscript and the response to reviewers.
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identify regulatory elements and variants that alter gene expression to affect cardiometabolic
traits.

Adipose tissue influences cardiometabolic traits such as body fat distribution, insulin
sensitivity, blood cholesterol levels, and inflammation through its roles in lipid storage and
hormone secretion’!°. Hundreds of GWAS loci for cardiometabolic traits are colocalized with

61,6465 and variants at GWAS loci for some cardiometabolic traits, such as

eQTL in adipose tissue
waist-to-hip ratio adjusted for body mass index (BMI) and high-density lipoprotein (HDL)
cholesterol, are overrepresented in transcriptional regulatory elements in adipose tissue®*%>. At a
subset of colocalized GWAS-eQTL signals, adipose tissue gene expression may mediate the
effect of the genetic variant on GWAS traits®!. Adipose is a heterogeneous tissue that contains
multiple cell types, including adipocytes, preadipocytes, immune cells, and vascular cells!!.
Adipose tissue stores lipids through either hyperplasia, during which preadipocytes differentiate
into mature adipocytes to store excess energy, or hypertrophy, during which existing adipocytes
expand to store excess energy'?. Thus, identifying variants with regulatory effects at specific
stages of adipocyte differentiation may uncover additional mechanisms at GWAS loci for
cardiometabolic traits.

Genetic and environmental variation between individuals can contribute to differences in
chromatin accessibility’®. Chromatin accessibility maps generated from multiple individuals can
capture accessible regions that reflect genetic effects and diverse environmental contexts.
Existing human adipose tissue chromatin accessibility maps are comprised of data from one to
six individuals and differ by tissue donor characteristics (e.g. BMI, age, sex), adipose depot,

tissue extraction site, and storage conditions’®34+86, Given the cell type heterogeneity of tissue

samples, it is also useful to characterize the component cell types in controlled environments.
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Chromatin accessibility during adipogenesis has been studied in models such as mouse 3T3-L1
cells®’, however additional studies in human models could improve interpretation of human non-
coding genetic variants. Simpson-Golabi-Behmel Syndrome (SGBS) cells are a well-
characterized diploid preadipocyte cell model that can be differentiated into mature adipocytes
and is useful for studying adipocyte differentiation®!-22,

In this study, we identified differences in chromatin accessibility and gene expression
between preadipocytes, immature adipocytes, and mature adipocytes in SGBS cells. In addition,
we generated a consensus map of subcutaneous adipose tissue chromatin accessibility using 11
samples obtained from METabolic Syndrome in Men (METSIM) participants'>. We used three
methods to link differentially accessible regulatory elements to candidate genes and identified
variants at cardiometabolic GWAS loci that resided in elements more accessible in preadipocytes
or adipocytes. Finally, we identified variants at the SCD and EYA2 loci that showed context-

dependent and/or allelic effects on transcriptional activity, detecting potential mechanisms by

which specific variants alter gene expression to affect cardiometabolic traits.

Results

Changes in chromatin accessibility across adipocyte differentiation timepoints identify context-

dependent regulatory elements

We profiled chromatin accessibility during adipocyte differentiation with ATAC-seq in
SGBS cells®-#8, We analyzed a final set of ten replicates of preadipocytes (D0), ten replicates of
immature adipocytes differentiated for four days (D4), and five replicates of mature adipocytes
differentiated for fourteen days (D14) (Figure 2.1A and Table 2-1). Our libraries had ~33-156

million filtered reads each, and showed high quality, with an average transcription start site
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(TSS) enrichment of 6.8, and an average fraction of reads in peaks (FRiP) of 48.5%. To test for
differences in chromatin accessibility between timepoints, we generated a set of 147,587
accessible chromatin regions (ATAC-seq peaks) at any time point (Table 2-2) by merging the top
100,000 consensus peaks for each time point (ranked by median peak p-value across replicates,
see Methods). Principal component analysis (PCA) showed that replicates clustered by
differentiation timepoint, with preadipocytes and adipocytes separated by the first principal
component, which explained 74% of the variance.

To predict regulatory elements involved in adipocyte differentiation, we identified
differentially accessible peaks, hereafter called ‘context-dependent peaks’, between each
pairwise comparison of the three timepoints (log> fold change (LFC)>1; false discovery rate
(FDR)<5%; Table 2-3). Based on the 10,000 context-dependent peaks with the most significant
difference in any comparison, a heatmap showed that replicates clustered by timepoint (Figure
2.1B). Most (86%) of the changes in chromatin accessibility between DO and D14 were observed
by D4, and only 233 peaks were specifically more accessible in mature adipocytes (D14>D0 and
D14>D4), suggesting that chromatin accessibility changes early after the initiation of
differentiation and remains largely stable between D4 and D14. To characterize the major
differences, we identified context-dependent peaks more accessible in preadipocytes in both
comparisons (D0>D4 and D0>D14; 18,244 peaks), hereafter called ‘preadipocyte-dependent
peaks’, and context-dependent peaks more accessible in immature and mature adipocytes
(D4>D0 and D14>D0; 15,919 peaks), hereafter called ‘adipocyte-dependent peaks’. In analyses
described below, we used the preadipocyte-dependent and adipocyte-dependent peaks for

enrichment analyses and general comparisons between preadipocytes and adipocytes, and we

16



used context-dependent peaks from all pairwise comparisons to identify regulatory elements
linked to genes and GWAS loci.

We evaluated the relevance of context-dependent peaks for biological processes and
transcription factors known to be involved in adipocyte differentiation. Preadipocyte-dependent
peaks were enriched (P<1x10-10) near genes associated with roles in several cell cycle
processes, including positive regulation of DNA replication. Mature adipocyte-dependent peaks
were enriched near genes with roles in cardiovascular development. Adipocyte-dependent peaks
were enriched near genes with roles in several metabolic processes, including response to
insulin, regulation of fatty acid oxidation, and intracellular lipid transport. In addition,
preadipocyte-dependent peaks were enriched (P<1x10-5) for transcription factor motifs for
TEAD and GATA, which inhibit adipocyte differentiation®-*°, while adipocyte-dependent peaks
were enriched for motifs of transcription factors that promote adipogenesis, such as CEBP,
PPAR, and LXR!2°! and transcription factors involved in glucose metabolism such as GRE*2,
Thus, adipocyte- and preadipocyte-dependent peaks are found near genes and contain
transcription factor motifs relevant to their cell contexts, increasing confidence that these peaks
capture relevant biology. Although genomic proximity between regulatory elements and genes is
a strong predictor of a regulatory relationship®?, regulatory elements may not always affect the
nearest genes.

To compare these SGBS peaks to adipose tissue peaks, we expanded our previous set of
adipose tissue ATAC-seq profiles®* from 3 to 17 samples that fulfilled sequencing quality
thresholds (Methods, Table 2-4 and Figure 2.6). In the 17 tissue samples, we identified 79,598
consensus adipose tissue peaks present in three or more samples. After removing 6 outlier

samples identified using PCA, overlap with adipose regulatory elements, and other factors, we
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also identified 51,855 consensus adipose tissue peaks using 11 adipose tissue samples. The 11-
sample peak set had a higher percentage of peaks within the Roadmap Epigenomics Project’’
adipose nuclei enhancers and promoters (45% enhancer, 39% promoter) compared to the 17-
sample peak set (34% enhancer, 28% promoter), and a similar percentage compared to our
previous 3-sample peak set®* (49% enhancer, 39% promoter) (Figure 2.1D). We proceeded with
the 11-sample consensus adipose peak set for further analyses because it provides higher
consistency with Roadmap adipose enhancers and promoters relative to the 17-sample set and
may capture more genetic and environmental variation in chromatin accessibility than the 3-
sample set.

To determine if context-dependent SGBS peaks marked previously annotated adipose
regulatory elements, we compared the SGBS peaks to Roadmap Epigenomics Project adipose
nuclei chromatin states’” and to the 11-sample adipose tissue peaks. A higher percentage of
adipocyte-dependent peaks were found within Roadmap adipose nuclei enhancers and promoters
(60% enhancer, 3.9% promoter) compared to preadipocyte-dependent peaks (12% enhancer,
0.73% promoter) (Figure 2.1E). Similarly, 36% of adipocyte-dependent peaks overlapped
(shared at least 1 base) adipose tissue peaks, while only 1.8% of preadipocyte-dependent peaks
overlapped adipose tissue peaks, consistent with adipose tissue containing more adipocytes than

1194 Peaks found in SGBS and adipose tissue may have more relevance to adipose

preadipocytes
biology than peaks found in SGBS cells alone. These results show that our adipocyte-dependent

and consensus adipose tissue peaks demonstrate strong similarity with existing adipocyte

promoters and enhancers.
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Changes in gene expression across adipocyte differentiation

We generated RNA-seq data from six replicates of SGBS preadipocytes (DO0), six
replicates of immature adipocytes differentiated for four days (D4), and four replicates of mature
adipocytes differentiated for fourteen days (D14) (Figure 2.1A). We generated ~36-56 million
filtered reads overlapping transcripts per replicate (Table 2-5) and identified 18,299 expressed
genes (median normalized count >=1 across libraries). PCA showed that replicates clustered by
differentiation timepoint, with preadipocytes and adipocytes separated by the first principal
component, which explained 54% of the variance.

To identify changes in gene expression during adipocyte differentiation, we identified
genes differentially expressed between each pairwise comparison of the three timepoints
(LFC>1; FDR<5%; Table 2-3). A heatmap of these ‘context-dependent genes’ showed that
replicates clustered by timepoint (Figure 2.1C). In addition, we identified context-dependent
genes that were observed in multiple timepoint comparisons. In contrast to context-dependent
chromatin accessibility, for which 86% of changes between DO and D14 were observed already
by D4, only 1,282 of 2,107 (61%) context-dependent genes between DO and D14 were observed
already by D4. Although further analysis is needed, this result is consistent with previous studies
that identified changes in chromatin accessibility that occurred earlier during adipocyte
differentiation and remained more stable than changes in gene expression®”%>.

We tested context-dependent genes for enrichment of biological processes known to be
involved in adipocyte differentiation. Genes expressed more strongly in preadipocytes than
adipocytes were enriched (P<1x10-10) for several cell cycle processes including cell cycle
regulation and nuclear division. Genes expressed more strongly in adipocytes than preadipocytes

showed enrichment (P<1x10-10) for several differentiation and metabolic processes such as
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response to insulin, glucose homeostasis, fatty acid metabolic processes, and lipid biosynthetic
processes. We also identified context-dependent transcription factors whose binding motifs were
enriched in context-dependent peaks, including preadipocyte-dependent GATA family members
that had motifs enriched in preadipocyte-dependent peaks, and the adipocyte-dependent gene
PPARG whose motifs were enriched in adipocyte-dependent peaks. Adipocyte-dependent genes
also included known adipocyte-dependent genes such as ADIPOQ®®. These results indicate that

the context-dependent genes have functions relevant to the corresponding cell types.

Three approaches to link genes to context-dependent peaks

Linking context-dependent peaks to genes remains challenging because most peaks are
located in non-coding regions with multiple genes nearby. Approaches to predict genes affected
by a peak have varied sensitivity and specificity”, thus we used three approaches to identify
additional genes and to gain confidence in genes identified by more than one method. The three
approaches used to link context-dependent peaks to genes were: overlap with adipocyte promoter
capture Hi-C°7%8, overlap with adipose eQTL variants®!, and context-dependent expression of
genes linked by either of the first two approaches (Figure 2.2A-C).

In the first approach, we identified context-dependent peaks that overlapped adipocyte
promoter capture Hi-C regions®”?® (overlap>=1 base pair, Figure 2.2A). We identified 14,080
peaks linked to 9,080 genes (28,696 peak-gene pairs). We investigated the extent to which
increasing the overlap threshold between peaks and Hi-C fragments would change our results. Of
the 14,594 peak-Hi-C fragment overlapping pairs (some peaks overlap more than one Hi-C
fragment and vice versa), 12,380 (85%) have over 50% of peak bases within the Hi-C fragment

and 10,329 (71%) have the entire peak within the Hi-C fragment, suggesting that we would
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obtain similar results using more strict overlap thresholds. Of the 14,080 peaks, 3,436 were
preadipocyte-dependent and 4,873 were adipocyte-dependent (5,771 were context-dependent but
not preadipocyte- or adipocyte-dependent, hereafter called ‘other context-dependent peaks’). We
identified more links for adipocyte peaks than for preadipocyte peaks, consistent with our use of
Hi-C data only from mature adipocytes, not preadipocytes. Most distances from peaks to gene
TSS linked by Hi-C (85%) were within 500 kb, and 97% were within 1.2 Mb (Figure 2.2D).

In the second approach, we identified context-dependent peaks that overlapped adipose
eQTL signals®!, defining each signal as all variants in high linkage disequilibrium with a lead
eQTL variant (r2>0.8, Figure 2.2B). Of 3,002 peaks linked to 2,369 genes (3,794 peak-gene
pairs), 805 linked from preadipocyte-dependent peaks and 996 from adipocyte-dependent peaks
(1,201 linked from other context-dependent peaks). The larger number of links from adipocyte
peaks than preadipocyte peaks is consistent with use of eQTL from adipose tissue, which
contains more adipocytes than preadipocytes!'!**, We identified 4,549 adipose eQTL variants
within the context-dependent peaks; these variants could be part of the mechanisms regulating
expression level of the corresponding genes. Most distances from peaks to gene TSS linked by
eQTL (87%) were within 200 kb, and all were within 1 Mb, the distance threshold used for the
eQTL study (Figure 2.2D).

In the third approach, we identified context-dependent peaks linked to a gene by Hi-C or
eQTL overlap for which the gene also showed context-dependent expression between any
timepoint comparison (Figure 2.2C). Of the 14,080 peaks identified by Hi-C, 4,462 peaks also
linked to a context-dependent gene (1,000 linked from preadipocyte-dependent peaks and 1,681
linked from adipocyte-dependent peaks, 1,781 linked from other context-dependent peaks). Of

the 3,002 peaks identified by eQTL, 720 contained a context-dependent gene (134 linked from

21



preadipocyte-dependent peaks, 298 linked from adipocyte-dependent peaks, 288 linked from
context-dependent but not preadipocyte- or adipocyte-dependent peaks).

Each approach to link regulatory peaks to genes can add an additional level of evidence
to support the predicted gene target. We next identified peaks linked to the same gene through
more than one approach. Of 16,076 total peaks linked to a gene through at least one of the three
approaches, 78 peaks were linked to the same gene through all three approaches and 5,145 peaks
were linked to the same gene through two or more approaches (Figure 2.2E). Of the 78 peaks
linked to 59 genes through all three approaches, interesting candidate regulatory elements
include four peaks linked to CDKN2B, whose gene product has known roles in cell cycle control
and whose regulation has been linked to coronary artery disease®'%°, Of the 5,145 peaks linked
to 1,670 genes through at least two approaches, 1,143 linked from preadipocyte-dependent peaks
and 1,945 linked from adipocyte-dependent peaks (2,057 linked from other context-dependent
peaks). Although peaks linked by all three approaches have the most supporting evidence, to
prevent overlooking interesting candidates we considered peaks linked by two or more methods

when evaluating candidates for functional evaluation.

Trait heritability enrichment within context-dependent peaks

We used stratified LD score regression'®! to compare heritability enrichment for selected
cardiometabolic traits in preadipocyte-dependent peaks, adipocyte-dependent peaks, and bulk
adipose tissue peaks. Given that preadipocyte-dependent and adipocyte-dependent peaks cover a
small portion of the genome (~0.45%), we also ran stratified LD score regression on the top

100,000 consensus peaks (ranked by median peak p-value across replicates) in each SGBS
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differentiation day. For comparison, we also ran stratified LD score regression using the adipose
tissue peaks.

Different traits were enriched in adipocyte-dependent and preadipocyte-dependent peaks.
For waist-hip ratio adjusted for BMI (WHRadjBMI), we observed significant enrichment for
adipocyte-dependent peaks (z-score=4.7, P<1.2x10-6) and adipose tissue peaks (z-score=5.2,
P<1.0x10-7) but not for preadipocyte-dependent peaks (z-score=-1.1, P<0.86) (Figure 2.3A).
Results were consistent for the top 100,000 consensus peaks in each SGBS differentiation day;
the modest enrichment in DO peaks could be partly due to peaks shared between timepoints. We
also observed nominal enrichment for HDL heritability in adipocyte-dependent and adipose
tissue peaks. In contrast, we observed significant enrichment for coronary artery disease (CAD)
heritability in SGBS DO (z-score=2.8, P<2.9x10-3) and adipose tissue (z-score=3.3, P<5.4x10-
4), with weaker and still nominally significant enrichment in D4 (z-score=2.4, P<9.0x10-3) and
D14 (z-score=2.3, P<0.01); the lack of enrichment in preadipocyte-dependent and adipocyte-
dependent peaks may be due to their low genomic coverage. All peak sets showed less
heritability enrichment relative to baseline for rheumatoid arthritis, a negative control, except for
adipocyte-dependent peaks, which showed nominal enrichment (z-score=1.8, P<0.04),
suggesting that adipocytes may have moderate relevance for this trait. We did not observe
enrichment of BMI heritability in any peak set, consistent with our previous finding that BMI
GWAS loci were not enriched in adipose tissue or SGBS peaks®* and with findings from other
studies that BMI loci are enriched in central nervous system cell types and pathways!'!-192, A
complementary approach using all traits in the GWAS catalog** grouped by Experimental Factor
Ontology terms showed similar results (Figure 2.3B). The most enriched terms for adipocytes

included waist-hip ratio, cholesterol, inflammatory traits, and birthweight, whereas the most
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enriched terms for preadipocytes included atrial fibrillation and inflammatory traits. We also
observed enrichments for traits with less apparent, but established connections to
cardiometabolic traits, including forced expiratory volume, a measure of lung function that has
been shown to be lower in individuals with metabolic syndrome and high body fat

percentage!03-104

, and intraocular pressure, which has been shown to be higher in individuals with
metabolic syndrome and markers of obesity!?>:1%, Taken together, we found that peaks in

adipocytes contribute more to heritability of WHRadjBMI, whereas preadipocytes may

contribute more to heritability of CAD, though to a lesser degree.

Fine-mapping of GWAS variants using context-dependent peaks and allelic imbalance

To identify genetic variants that may have context-dependent effects on disease-relevant
traits, we identified distinct signals from the GWAS catalog** (see Methods) for which a proxy
variant (LD 1r2>0.8) is located within a context-dependent peak. Of 4,954 context-dependent
peaks that overlapped GWAS signals, 1,448 were preadipocyte-dependent and 1,461 were
adipocyte-dependent.

At some GWAS loci, these context-dependent peaks can be linked to genes. We observed
4,284 peak-gene pairs that overlapped GWAS variants, and 799 of these pairs, representing 659
unique peaks, were supported by two or more approaches (Figure 2.3C). Of these 659 peaks, 265
were adipocyte-dependent, 143 were preadipocyte-dependent, and 251 were other context-
dependent peaks. Of these 659 peaks, 191 (29%) overlapped adipose tissue peaks, which
generally had weaker signals than the SGBS peaks. At one locus, we identified two peaks more
accessible in adipocytes that overlap adipose eQTL variants for ADIPOQ (peak96641:

1s76071583; peak96640: rs143257534), which also showed adipocyte-dependent expression.
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These peaks also overlap adipose consensus peaks and GWAS variants associated with
adiponectin levels!?, including rs76071583, previously shown to exhibit allelic differences in
binding of the transcription factor CEPB-a and transcriptional activity in adipocytes'®. CEBPA
has higher expression in adipocytes than preadipocytes (D4>D0 LFC=8.6, D14>D0 LFC=9.2),
consistent with the context-dependent regulatory effect.

To identify GWAS variants that may alter chromatin accessibility at different stages of
differentiation, we also identified variants exhibiting allelic imbalance (AI) in ATAC-seq reads
across SGBS technical replicates. Because SGBS cells originate from one individual, we could
only test for Al at heterozygous variants in one individual. We identified 574, 996, and 489
variants showing significant Al (FDR<5%) on D0, D4, and D14, respectively, and 582 Al
variants in 454 context-dependent peaks, including 90 peaks that harbored more than one Al
variant. Of the 454 context-dependent peaks, 64 were linked to a target gene by two approaches,
55 contained GWAS variants that exhibited Al, and 13 linked to both a target gene and GWAS
variant. At an example with both types of data, a variant (rs11039149) that showed significant Al
in days 4 and 14 was found within a peak more accessible in D4 compared to DO (peak23801)
and is an eQTL variant for the adipocyte-dependent gene NR1H3. The more accessible allele
rs11039149-G is associated with lower NR1H3 expression. rs11039149 is a GWAS variant for
HDL cholesterol®® and proinsulin!®. NR1H3 has previously been shown to be involved in lipid
transport!!?, and one or more of these variants could alter NR1H3 expression and affect
associated metabolic traits. Combining ATAC-seq Al, context-dependent peaks, and target genes
helps connect variants to regulatory elements and genes and can identify variants with context-

dependent effects on gene regulation.
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Functional evaluation of candidate regulatory elements reveals context- and allele-dependent

mechanisms

Of the 659 context-dependent peaks that we linked to target genes and GWAS signals,
we tested two for allele-dependent effects on transcriptional activity using reporter gene assays
in SGBS preadipocytes and 12-day differentiated adipocytes. At a first GWAS locus for
palmitoleic acid'!!, we identified an adipocyte-dependent peak (Figure 2.4A, peak19405;
D4>D0: LFC=3.8; D14>D0: LFC=2.8) that we linked to the gene SCD, encoding Stearoyl-CoA
Desaturase, through two approaches, overlap of the peak with an adipose eQTL variant
(rs603424, P=1.6x10-9) associated with SCD®! and adipocyte-dependent expression of SCD
(D4>D0: LFC=6.3; D14>D0: LFC=8.2) (Figure 2.4A). SCD codes for an enzyme involved in
fatty acid synthesis!'2. Peak19405 also overlaps a consensus adipose tissue peak and contains
1s603424, the G allele of which is associated with higher SCD expression® and higher
palmitoleic acid!'!!. We tested a 592-bp region spanning the majority of peak 19405 for allele-
dependent functional effects. In adipocytes, the construct containing the rs603424-G allele
demonstrated significantly increased transcriptional activity compared to the construct
containing the rs603424-A allele (forward P=0.003, reverse P=0.0001; Figure 2.4B), consistent
with the direction of effect observed in the adipose eQTL. Together, these results suggest that in
adipocytes but not preadipocytes, rs603424-G increases transcriptional activity of SCD to
increase palmitoleic acid levels.

At a second GWAS locus for type 2 diabetes!!?, we identified two candidate regulatory
elements and tested both for allele-dependent effects on transcriptional activity. One candidate is
an adipocyte-dependent peak (Figure 2.5A, peak81750, containing rs55966194, D4>DO0:

LFC=4.2 and D14>D0: LFC=3.1) that we linked to EYA2, encoding Eyes Absent Transcriptional
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Coactivator and Phosphatase 2, through colocalization with an adipose eQTL (1rs55966194,
P=6.0x10-10)°! and adipocyte-dependent expression of the linked gene (D4>D0: LFC=1.7;
D14>D0: LFC=1.4) (Figure 2.5A). EYA2 codes for a protein that has been linked to adipocyte
lipolysis!!4. Also, at this locus, a second candidate regulatory element is an adipose-specific peak
not detected in SGBS and which contains variant rs59791349, which is a proxy variant for an
adipose eQTL for EYA2%' and GWAS locus for type 2 diabetes!!3. The C alleles for both
1s55966194 and rs59791349 are associated with higher £YA2 expression and increased risk of
type 2 diabetes. We tested regions spanning the majority of each peak for allele-dependent
transcriptional activity. The 419-bp region for adipocyte-dependent peak81750 containing the
1s55966194-C allele demonstrated modest allelic differences only in the reverse orientation
(P=0.06, Figure 2.5B), whereas the 288-bp region for the adipose peak containing rs59791349-C
demonstrated significantly higher transcriptional activity than the rs59791349-T allele in both
orientations and both cell types (adipocytes forward P=0.0029, adipocytes reverse P=0.0058;
preadipocytes forward P=0.0008, preadipocytes reverse P=0.0015; Figure 2.5C). The allelic
differences in transcriptional activity were consistent with the direction of effect of the adipose
eQTL. These results suggest that in both preadipocytes and adipocytes, rs59791349-C increases
transcriptional activity of EYA2 to increase risk of diabetes. Altogether, the experiments at these
two loci demonstrate that context-dependent peaks can, but do not always, predict allele-
dependent transcriptional activity, as other mechanisms may be involved. These results also
suggest the value of using both cell type-specific and tissue-derived regulatory elements to

identify functional regulatory variants.
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Discussion

In this study, we generated chromatin accessibility and gene expression profiles for
preadipocytes, immature adipocytes, and mature adipocytes and identified context-dependent
peaks during adipocyte differentiation as candidate regulatory elements. We linked these
regulatory elements to candidate genes using three approaches and identified context-dependent
regulatory elements at GWAS loci. Our consensus subcutaneous adipose tissue peak map based
on profiles from 11 individuals provided a resource to expand on existing human adipose peak
maps®®!115:116 and to prioritize among peaks from the SGBS cell model. Finally, we identified 659
context-dependent regulatory elements at GWAS loci that were linked to genes and showed
through functional tests that elements can exhibit context-dependent allelic differences in
transcriptional activity, identifying plausible disease mechanisms.

Chromatin accessibility profiles differ between samples for biological and technical
reasons. Biological reasons can include cell type and cell context. A technical source of variation
between our profiles could be due to heterogenous sequencing protocols with a mix of paired-
end, single-end, and variable read lengths. We addressed the heterogenous sequencing protocols
in our analyses as described in Methods, but it could contribute to differences between libraries.
Reassuringly, our SGBS ATAC-seq libraries cluster by day despite differences in sequencing
parameters. Additionally, while SGBS cells are a useful human adipocyte model, some aspects
of the chromatin accessibility profile could be due to the cells growing in culture or the
overgrowth syndrome disease state that allows the cells to grow without being transformed. To
address these limitations, we identified SGBS peaks that overlapped adipose tissue peaks,

including the peak we tested at the SCD locus. Although it remains challenging to compare

between species, we observed enrichment of motifs for well-known adipogenesis transcription
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factors CEBP, PPAR, and RXR within adipocyte-dependent peaks, consistent with a study of
changes during adipogenesis in a 3T3-L1 mouse line®’.

Our differential analyses of peaks and gene expression profiles between timepoints
suggest that most peak changes occur between DO and D4 and remain stable between D4 and
D14, while a larger proportion of gene expression changes occur between D4 and D14. The
observation that peak changes occur early and remain largely stable is consistent with a previous
study that found a majority of chromatin accessibility changes in a 3T3-L1 mouse-derived
adipocyte cell line occurred between two and four hours after the initiation of differentiation®’.
The observation that gene expression may continue to change throughout later stages of
differentiation is consistent with a study that showed gene expression changing between 7-day
intervals up to day 21 in human adipose-derived stromal cells®. After initial analyses suggested
that few context-dependent peaks arose between D4 and D14, we investigated chromatin
accessibility at an earlier timepoint of immature adipocytes differentiated for two days (D2).
Preliminary analysis of D2 also showed that no peaks were differential between D2 and D4, so
we did not generate further D2 data. Similarities between D4 and D14 also led us to focus on the
subsets of context-dependent peaks that were specific to preadipocytes (D0>D4 and D0O>D14) or
adipocytes (D4>D0 and D14>D0), rather than the limited number that were specific to mature
adipocytes (D14>D0 and D14>D4).

We used two approaches to link context-dependent peaks to genes: overlap with existing
adipocyte promoter capture Hi-C regions and with known adipose eQTL variants, and we
determined which of these linked genes also showed expression differences between
differentiation timepoints. Promoter capture Hi-C has the advantage of identifying direct

connections between regulatory elements and genes, even over large distances. However,
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physical proximity does not necessarily imply a regulatory relationship, and the data we used
was for adipocytes, not preadipocytes, and therefore could have detected connections for the D4
and D14 timepoints better than for DO. While most promoter capture Hi-C fragments have high
resolution (median ~3 kb in the analyzed dataset), the location of restriction sites in the genome
limits resolution for some fragments (~10% of fragments had >10 kb resolution). Our second
approach based on overlap with adipose eQTL variants has the advantage that the identified
variants are associated with differences in gene expression. Two disadvantages of the eQTL
approach are that eQTL studies may be underpowered, so not all associations are discovered, and
that the adipose tissue used in the eQTL study is comprised of multiple cell types, not only
adipocytes. Although adipose tissue is heterogenous, it is known to contain more adipocytes than
preadipocytes!!?*. Therefore, the eQTL method also could have detected connections for the D4
and D14 timepoints better than for D0. Peaks linked to genes by eQTL tended to be closer to the
TSS of the linked gene compared to Hi-C, partially due to the shorter distance window used in
the eQTL data than the Hi-C data. To incorporate differential gene expression into the
identification of peak-to-gene links, we initially considered using proximity between context-
dependent peaks and context-dependent genes. However, proximity is indirect and requires
selecting an arbitrary threshold for maximum distance between peak and gene. Thus, we used
context-dependent gene expression as additional supporting evidence for links made by other
methods. Although indirect, context-dependent genes have the advantage of being observed in
the same cell model and at the same timepoints, and can help determine if a regulatory element
has a positive or negative effect on gene expression. Due to the advantages and disadvantages of
the different approaches, the largely different peak-to-gene links detected were not surprising.

Using multiple approaches to link regulatory elements to candidate genes can overcome the
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limitations of each approach, and genes identified by multiple methods can increase confidence,
although genes linked by even a single method merit further investigation.

We used Al in SGBS ATAC-seq reads to provide suggestive evidence that GWAS
variants may alter chromatin accessibility at different stages of adipocyte differentiation.
Although we only tested Al at heterozygous variants from one individual, which limits
heterozygous sites available for testing, we identified 55 peaks containing GWAS variants that
exhibited Al, 13 of which were linked to genes. ATAC-seq in additional cell lines with diverse
genotypes would improve the ability to detect Al. Previous studies have mapped Al and
chromatin accessibility QTL in different contexts®®!17:118 which allowed for testing of more
variants and identification of more robust context-dependent genetic effects on gene regulation.
Our results demonstrate that Al in ATAC-seq reads from one individual can be used to predict
regulatory variants, although identifying Al in larger sample sizes would lead to more
comprehensive and robust results and more genetic variants.

We followed up context-dependent regulatory elements at two GWAS loci by testing
variants for effects on context-dependent transcriptional reporter gene activity. Due to the bias
towards adipocytes of our methods to link peaks to genes, we focused on regulatory elements
more accessible in adipocytes. At SCD, we observed consistent evidence of context- and allele-
dependent transcriptional activity among technical replicates. The regulatory element that was
more accessible in adipocytes contained an allele associated with increased adipose tissue
expression of SCD%! and increased palmitoleic acid'!!. SCD codes for an enzyme involved in
fatty acid synthesis!!?, therefore increased SCD expression is a likely mechanism to increase
palmitoleic acid levels. In reporter assays, the element showed higher transcriptional activity in

adipocytes than preadipocytes, and the allele associated with higher adipose SCD expression
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showed higher transcriptional activity, only in adipocytes. These data suggest that the regulatory
element we identified increases SCD expression to increase palmitoleic acid levels in adipocytes.
At the second locus we examined, EYA2, the results are more complex. We identified two
candidate regulatory elements, one that was adipocyte-dependent and one that was present in the
consensus adipose tissue map. Both regulatory elements contained variants associated with

adipose tissue expression of EYA2%! and type 2 diabetes!!3

. Both regulatory elements
demonstrated higher expression of the reporter gene in adipocytes than preadipocytes, consistent
with the context in which one element was more accessible and with the large proportion of
adipocytes in adipose tissue!'**, However, only the consensus adipose element demonstrated
clear allele-dependent transcriptional activity. This result demonstrates that, while identifying
loci with context-dependent peaks linked to genes and traits still is useful for identifying
candidates, it does not mean the identified variant is responsible. However, the variant within the
adipocyte-dependent peak at this locus may still exhibit allelic effects on regulatory activity that
are not detectible in in vitro transcriptional reporter assays. For the £YA2 locus, our adipose
consensus map guided us to investigate an additional candidate regulatory element that
demonstrated an allele-dependent effect on transcriptional activity. EYA2 codes for a
transcriptional coactivator that has been linked to many developmental processes and adipocyte
lipolysis, consistent with a role in adipocyte biology and metabolic traits!!*!!, Our reporter
assays demonstrate allelic differences in transcriptional activity for elements at two loci,
however, additional experiments are needed to validate specific regulatory elements within these
peaks in the context of chromatin accessibility and the effect on regulation on the predicted gene.

This study extends our previous study that reported ATAC-seq peaks in SGBS cells and

adipose tissue from three individuals®*. Genetic variation contributes to differences in peaks, so
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we profiled adipose tissue in additional individuals to capture peaks that could have been missed
in fewer samples due to genetic variants or environmental/physiological differences between
individuals. In general, ATAC-seq data from frozen adipose tissue demonstrated lower quality
than our SGBS preadipocytes and other frozen tissues®®!2%:12! despite our efforts to optimize
library preparation with different buffers, detergents, and ratios of transposase to nuclei. Freezing
has been shown to affect ATAC-seq library quality and comparisons of ATAC-seq profiles in
samples using various freezing methods suggest cryopreserved tissue demonstrated higher
quality than flash-frozen tissue!'?°. High lipid content could also have affected adipose tissue

profile quality, as adipose tissue has a high ratio of adipocyte cells!'!**

and lipid content
somewhat affected ATAC-seq in cultured SGBS cells, as fewer D14 adipocyte samples met QC
thresholds compared to DO and D4 cells, despite being cultured and processed in parallel. The
consensus map of adipose peaks based on the 11 samples of at least moderate quality showed
similar overlap with adipocyte nuclei promoters and enhancers as our previous map based on
three samples, but the inclusion of additional samples should make the 11-sample consensus map
more robust.

Overall, we demonstrated that context-dependent chromatin accessibility identifies
context-dependent regulatory elements that can aid understanding of mechanisms behind
cardiometabolic traits. By identifying adipocyte differentiation context-dependent regulatory
elements and linking them to genes and GWAS traits, we filtered from 58,387 context-dependent
regulatory elements to 659 elements with a candidate mechanism. Additional study of these

regulatory elements could lead to a better understanding of the role of adipocytes and adipocyte

differentiation in cardiometabolic disease traits as well as other relevant traits we identified
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through enrichment analyses such as lung function. This could also be applied to other adipocyte

contexts to identify additional context-dependent mechanisms.

Methods

Ethics statement:

The Ethics Committee of the University of Eastern Finland in Kuopio and the Kuopio
University Hospital approved the METSIM study and it was carried out in accordance with the

Helsinki Declaration. Formal written consent was obtained from METSIM participants.

Cell culture:

SGBS cells?!' were generously provided by Dr. Martin Wabitsch (University of Ulm) and
cultured as previously described!??. Briefly, we cultured SGBS preadipocytes in serum-
containing basal medium (DMEM:F12 + 33uM biotin + 17uM pantothenate) with 10% FBS until
confluent, then rinsed in phosphate-buffered-saline (PBS) and differentiated for four days in
medium supplemented with 0.01 mg/mL transferrin, 20 nM insulin, 200 nM cortisol, 0.4 nM
trilodothyronine, 50 nM dexamethasone, 500 uM IBMX, and 2 uM rosiglitazone. After four
days, we maintained differentiated SGBS cells in basal medium supplemented with 0.01 mg/mL
transferrin, 20 nM insulin, 200 nM cortisol, 0.4 nM triiodothyronine until harvested. HEK293T

cells (ATCC, Manassas, VA) were grown in DMEM supplemented with 10% FBS.

Adipose tissue:

Human subcutaneous abdominal adipose tissue biopsies were obtained from METabolic

Syndrome in Men (METSIM)'> participants as previously described®®. Adipose tissue was
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obtained through either a needle or surgical biopsy and flash frozen and stored at -800C until

use.

ATAC-seq library preparation:

We profiled chromatin accessibility in SGBS cells at DO, D4, and D14 of adipocyte
differentiation following the omni-ATAC-seq protocol®® using unique, dual-barcoded indices.
We isolated nuclei and used a cell countess to aliquot 50,000 nuclei per library. After initial
optimization of Tn5:nuclei ratios, we proceeded with 5 uL of Tn5 per library, some early
libraries were prepared with 2.5 uL of TnS5 as indicated. For adipose tissue samples we used the
original or omni-ATAC-seq protocol®®#® as indicated. We cleaned the transposase reaction and
final library with Zymo DNA Clean and Concentrator (D4029). We visualized and quantified
libraries using a TapeStation, and sequenced with paired-end or single-end reads on a Highseq or

Novaseq as indicated (S1 and S7 Tables).

ATAC-seq read alignment and peak calling:

For METSIM samples, ATAC-seq read lengths ranged from 50-150 bp, depending on
sequencing center, so all libraries were trimmed to a uniform length of 50 bp before processing.
Three METSIM ATAC-seq libraries were single-end and were processed with a single-end
version of the following pipeline. All other libraries were paired-end. SGBS ATAC-seq reads
were not length-trimmed before processing, although some libraries had 50bp reads and others
had 150bp reads. We trimmed sequencing adapters and low quality base calls from the 3’ ends of
reads using cutadapt!?® with parameters -q 20 —minimum-length 36. We aligned trimmed reads to

the hgl9 human genome!?* using bowtie2!?*> with parameters —minins 36 —maxins 1000 —no-
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mixed —no-discordant —no-unal and selected nuclear chromosomal alignments with mapg>20

using samtools'?

. We removed alignments overlapping high-signal regions (Duke excluded and
ENCODE/DAC exclusion list regions)!?® using BEDTools pairToBed!?” with the parameter -
type notospan. We removed duplicate alignments using Picard MarkDuplicates
(https://github.com/broadinstitute/picard) and generated ATAC-seq quality metrics using
ataqv.'?® Ataqv is only designed for paired-end reads, so we used a customized approach to
calculate TSS enrichment for the single-end METSIM libraries. To calculate TSS enrichment,
we generated 2,001-bp windows containing the TSS and 1 kb flanking regions on either end for
the set of 5,307 RefSeq housekeeping TSSs used by ataqv for TSS enrichment. We then
calculated the number of ATAC-seq reads overlapping each base within these 2,001 bp windows
for each METSIM sample using BEDTools coverage with the -d option and made a matrix of
coverage for these windows using python. Finally, we summed the coverage across each TSS
window within the same sample and calculated TSS enrichment by dividing the summed
coverage at the TSS by the mean summed coverage of the 100 bases at the leftmost and
rightmost ends of the windows using R.

Prior to peak calling, we trimmed alignments so their 5° ends corresponded to the Tn5
binding site (+4 for + strand alignments and -5 for — strand alignments)® and smoothed signal by
extending alignments 100 bp on either side of the Tn5 binding sites using BEDTools slop'?’. We
called peaks (FDR<5%) with MACS2!?° with parameters -q 0.05 —-nomodel —bdg and generated
ATAC-seq signal bigwig files from MACS2 bedGraph files using the bedGraphToBigWig tool
from ucsctools!*’. For SGBS libraries, we proceeded with analyses on a final set of libraries that
met our signal-to-noise quality thresholds with a fraction of reads in peaks (FRiP) greater than

20% and a transcription start site enrichment greater than 576, For METSIM libraries, we selected
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libraries that had TSS enrichment >= 4 calculated from our customized script that works on
single-end and paired-end reads. TSS enrichment values produced by our script are generally
higher than those calculated by ataqv, and TSS enrichment of 4 from our script corresponds
roughly to TSS enrichment of 3 from ataqv.

For each analyzed day of SGBS differentiation, we generated a set of consensus ATAC-
seq peaks using the following method. First, we merged peak genomic coordinates across

127 Second, we defined consensus peaks as

replicates for a given day using BEDTools merge
merged peaks that overlapped individual replicate peaks in greater than 50% of replicates (at

least 3 out of 5 replicates for D14 and 6 out of 10 replicates for DO and D4).

Identification of differentially accessible peaks:

We generated a set of merged peaks to test for differential chromatin accessibility by
merging the top 100,000 consensus peaks in each day (ranked by median peak p-value across
replicates). We quantified the accessibility of these merged peaks in each library using

131 We computed the GC percent of each peak using BEDTools nuc'?” and

featureCounts
generated within-library GC bias normalization factors using full quantile normalization with
EDASeq!32. We then used EDASeq GC bias normalization factors within DESeq2!3* and used
DESeq? size factors to control for differences in sequencing depth between libraries. We tested

for differential chromatin accessibility using DESeq2!* and classified peaks with FDR<5% and

log fold change (LFC)>1 as significantly differential.
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Enrichment of transcription factor motifs in differential peaks:

We tested for enrichment of 319 transcription factor (TF) motifs in adipocyte or
preadipocyte-dependent peaks using the findMotifsGenome tool from HOMER!** with the -size
200 option. We used peaks that were not differential in any pairwise day comparison
(FDR>50%, absolute value of LFC<1) as background in the enrichment analyses. We classified
motifs with a p-value less than the Bonferroni-corrected threshold of 1.6x10-4 (0.05/319 motifs)

as significant.

Gene ontology enrichment of genes near differential peaks:

We tested if genes near adipocyte and preadipocyte-dependent peaks were enriched for
specific biological processes using the Genomic Regions Enrichment of Annotations Tool
(GREAT) web tool (http://great.stanford.edu/public/html/)!3> with the GO Biological Process
ontology!3>136, We ran GREAT version 4.0.4 with the default parameters of basal plus extension,
proximal 5 kb upstream to 1 kb downstream, distal 1000 kb (1 Mb), and a whole genome
background. We classified ontology terms with Minimum Region-based Fold Enrichment>=2

and FDR<5% as significantly enriched.

Identification of adipose tissue consensus peaks

We constructed an initial set of adipose tissue consensus peaks using the 17 METSIM
libraries with TSS enrichment>=4 (our customized TSS enrichment script). To construct
consensus peaks, we took the union of peaks across all 17 samples and selected union peaks that
overlapped (shared at least one base) with a peak in 3 samples. To identify outlier samples, we

computed PCA of ATAC-seq read counts within consensus peaks and performed hierarchical
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clustering of the top 10 PCs (Fig 2.6). We identified 6 outlier samples: four samples were

generated with the omni-ATAC-seq protocol®®

(whereas all other samples were generated using
the original ATAC-seq protocol®), one sample had a much higher percentage of mitochondrial
reads compared to other samples, and one sample had substantially fewer peaks compared to
other samples. Adipose tissue peaks from the 11-sample peak set showed stronger overlap with
Roadmap Epigenomics adipose nuclei enhancers (Figs 2.1D and 2.6D) and stronger enrichment
for all tested traits except BMI (Figs 2.3 and 2.6E) compared to the 17-sample set. Therefore, we

removed these 6 samples and generated consensus peaks with 11 samples, using the same

approach as for 17 samples.

RNA-seq library preparation, read alignment, and identification of differentially expressed

gences:

We isolated total RNA from SGBS cells at DO, D4, and D14 of differentiation using the
Total RNA Purification Kit (product #17200) from Norgen Biotek (Ontario, Canada). Novogene
(Beijing, China) generated poly-A RNA libraries and performed paired-end RNA sequencing
(RNA-seq, read length 150 bp) using a NovaSeq 6000 (Illumina, California, USA). We trimmed
sequencing adapters and low quality base calls from the 3’ ends of RNA-seq reads using
cutadapt!?® with parameters -q 20 —minimum-length 36. We aligned reads to the hg19 human
genome!'?* using STAR'37 with parameters --sjdbOverhang 149 --twopassMode Basic --
quantMode TranscriptomeSAM --outFilterMultimapNmax 20 --alignSJoverhangMin 8 --
alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax
0.04 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000. We

quantified expression of genes from GENCODE v29 1ift37!*® and corrected for GC bias using
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salmon44 with parameters —seqBias —gcBias —gencode. We generated RNA-seq quality metrics
using the CollectRnaSeqMetrics tool from Picard (https://github.com/broadinstitute/picard). We
used PCA to determine which replicates clustered. Within timepoint clusters, we observed
additional clustering by batch that we corrected for in downstream analysis.

To identify differentially expressed genes, we imported salmon transcript quantifications
and collapsed to the gene level using tximport!*®. We retained 18,299 genes with median
DESeq2-normalized count >= 1 across all libraries. We tested for differential gene expression
using DESeq2!%3 and classified genes with FDR<5% and LFC>1 as significantly different across

pairs of timepoints.

Gene ontology enrichment of differential genes:

We tested if differentially expressed genes were enriched for specific biological
processes using the PANTHER statistical overrepresentation test!*’ with the GO-Slim Biological
Process ontology!3¢!4!. We ran PANTHER using Fisher’s exact test for calculating enrichment
and used all 18,299 genes examined in the differential expression analysis as background for the
enrichment tests. We classified ontology terms with fold enrichment>=2 and FDR<5% as

significantly enriched.

Identification of genes linked to context-dependent peaks:

Hi-C: We identified context-dependent peaks that intersect (overlap>=1 base pair) with
the “other-end” fragments of “bait-other”” Hi-C loops and either end of “bait-bait” loops from
previously published adipocyte promoter capture Hi-C data®”*® using BedTools!?’. We linked

peaks to genes that were on the opposite end of the Hi-C “bait-bait” loops. We categorized Hi-C
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interaction types as “bait-bait” if the “other-end” fragment also covered a bait fragment and
“bait-other” if the “other-end” fragment did not cover a bait fragment.

eQTL: We identified context-dependent peaks that overlapped eQTL proxy variants
(r2>0.8 with the eQTL lead, 1000G phase 3 EUR LD calculated using PLINK v1.9'%?) using
previously published primary and conditional eQTL mapped in METSIM adipose tissue®!:5
using BedTools!'?’”. We identified the best eQTL proxy within the peak as the variant with the
strongest LD with the lead variant at the signal. If a peak contained proxy variants from both
primary and conditional signals with equally strong LD, we selected the primary signal proxy as
the best proxy. We also listed all eQTL variants that intersected a peak.

Differential Expression: To provide additional evidence for peak-gene links identified by
Hi-C or eQTL, we identified if the linked gene was also differentially expressed (FDR<5% and
LFC>1) between any timepoint comparisons. We investigated linking context-dependent peaks
to differentially expressed genes based on proximity between the peak and gene TSS, but
proximity is indirect and based on the even distribution of peaks from TSS as distance increased,

any threshold would have been arbitrary so we concluded that proximity alone was not strong

evidence to link a peak and gene (S9 Fig).

SGBS genotyping and imputation:

We genotyped two SGBS DNA samples with 335 samples from a separate study using
the Infinium Multi-Ethnic Global array (Illumina, San Diego, CA, USA), which contains over
1.7 million variants. The additional 335 samples were used to calculate genotyping call rates, but
all subsequent analyses were performed using only SGBS genotypes. We removed variants with

call rate <95%, performed multiple quality checks with the checkVCF.py tool
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(https://genome.sph.umich.edu/wiki/CheckVCF.py), and oriented alleles relative to the hg19
reference genome!?* using PLINK.!%? We restricted to variants that had the same genotype call in
both SGBS samples for downstream analyses. We phased autosomal variants using Eagle v2.4!43
and imputed missing variants using Minimac3'# with the 1000 Genomes (1000G) phase 3
reference panel'*. The imputation r2 statistic used to assess imputation quality is not meaningful
when imputation is performed on a single sample. Therefore, we retained variants with genotype
probability (GP) > 0.9. In our batch of SGBS cells, a subset of cells showed loss of
heterozygosity on regions of chromosomes 7 and 10 (chr7:1-31,000,000 and chr10:131,000,000-

135,534,747); variants overlapping these regions were removed prior to downstream analyses.

ATAC-seq allelic imbalance:

To identify heterozygous variants exhibiting allelic imbalance (AI) in SGBS ATAC-seq
reads, we first removed reads exhibiting allelic mapping bias and duplicated reads using
WASP!46. We counted reads aligning to each allele of biallelic heterozygous single nucleotide
variants using ASEReadCounter!'*” with the option —min-base-quality 30 and removed variants
that had aligned bases other than the two genotyped alleles. For each SGBS differentiation day,
we selected a set of variants to test for Al that had at least 20 total reads combined across both
alleles and at least 3 reads on each allele in greater than 50% of replicates for the given day (3
replicates for D14 and 6 replicates for DO and D4). We tested for Al separately by day using
DESeq2!*? with the design formula ~0+sample-+allele, where ‘sample’ represents an individual
ATAC-seq replicate. Using DESeq?2, we tested if the ratio of alternate allele counts to reference
allele counts was greater than logx(55/45) using a Wald test, estimated dispersions of allelic

ratios using maximum likelihood, and adjusted for multiple testing using the BH procedure. We
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used an LFC threshold of log>(55/45) rather than log2(50/50), to preferentially select variants
showing strong Al, especially given high variability in allelic ratios. We considered variants with

FDR<5% to show significant Al.

Overlap of GWAS signals with context-dependent peaks:

We downloaded the NHGRI-EBI GWAS catalog* on January 17, 2020 and lifted variant
positions from hg38 to hg19 using pyliftover (https://github.com/konstantint/pyliftover), a
python implementation of the UCSC liftOver tool'*¥; We rescued a subset of variants that did not
successfully lift over using variant rsIDs to convert between hg38 and hgl19 coordinates. We
restricted to significant associations (p<5x10-8) for single nucleotide variants (haplotype
associations and variant-variant interactions were removed) that were biallelic in the dbSNP!#
build 151 common variant set. To generate a set of LD-distinct association signals, we performed
LD-clumping using swiss (https://github.com/statgen/swiss) in a trait-agnostic manner®!; the
most significant p-value per variant was selected, regardless of trait, and variants within strong
LD (r2>0.8, 1000G phase 3 EURs) and within 1 Mb of another variant with a more significant p-
value (not necessarily for the same trait) were removed. However, we retained all variants and
associated traits at each signal for reference in supplemental tables.

To map GWAS catalog trait terms to standardized ontology terms, we downloaded the
GWAS to Experimental Factor Ontology (EFO) mappings file from the GWAS catalog on May
13, 2021 and extracted the EFO term corresponding to each trait. We identified GWAS signals
that had at least one proxy variant (LD r2>0.8 with the signal lead variant, 1000G phase 3 EURs,
calculated with PLINK v1.9'%?) found within context-dependent peaks using BEDTools!?’. For

each specific EFO term, we counted the number of signals containing that EFO term, including
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all variant-trait associations at a signal, not just the strongest association; we only counted each
term once per signal. We performed this counting procedure for both the entire LD-clumped
GWAS catalog and the subset of the catalog that overlapped the ATAC-seq peak set of interest.
Because our goal in using EFO terms is to reduce the complexity of the GWAS catalog traits, we
removed any GWAS traits that mapped to 5 or more EFO terms for our analyses that count EFO
terms, which only removed <1% of GWAS traits. However, we retained all GWAS traits and
EFO terms in S15 Table for reference. To normalize for the overall frequency of an EFO term in
the clumped catalog, we divided the number of ATAC-seq counts by the number of total counts
for each EFO term and multiplied by 100 to express as a percentage. When ranking by
normalized ATAC-seq count to get the top 10 EFO terms for preadipocyte-dependent and

adipocyte-dependent peaks, we restricted to terms that had total count >=100.

Enrichment of heritability in ATAC-seq peaks:

We used stratified LD score regression as implemented in LDSC v1.0.1!%! to test if
ATAC-seq peaks were enriched for heritability of 9 GWAS traits: 8 cardiometabolic traits
BMI'*°, HDL cholesterol'>!, LDL cholesterol'>!, triglycerides'>!, total cholesterol!!, coronary
artery disease'>2, WHRadjBMI'>°, T2D*, and rheumatoid arthritis'>* as a negative control. We
tested for heritability enrichment separately in 7 different ATAC-seq peak sets: preadipocyte-
dependent peaks, adipocyte-dependent peaks, the top 100,000 consensus peaks for SGBS DO,
D4, and D14, and consensus peaks mapped in 17 adipose tissue samples and 11 adipose tissue
samples. Using LDSC, we calculated LD scores for ATAC-seq peaks using HapMap3 SNPs!>*

and LD calculated from 1000G phase 3 EURs!%. We computed partitioned heritability

separately for each ATAC-seq peak set using LDSC correcting for the baseline v1.2 model,
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which consists of 52 genic and functional annotations!?!

. We used the regression coefficient z-
score reported by LDSC to assess the importance of each ATAC-seq peak set for each trait
relative to the baseline model, where a positive z-score means that SNP heritability is increased
in a given ATAC-seq peak set relative to the baseline model and a negative z-score means that

heritability is decreased in the peak set relative to the baseline!>

. We calculated p-values by
testing if the coefficient z-score was greater than 0, assuming a standard normal distribution. We
classify results with a p-value threshold of 0.05 as nominally significant and 0.0056 (0.05/9

traits) as significant. We compare the relative importance of each ATAC-seq peak set to

heritability for a given trait by comparing coefficient z-scores.

Prioritization of candidate regulatory elements for functional testing:

We identified context-dependent peaks linked to a candidate gene by two or more of our
three methods to predict target genes. We identified a further subset of these context-dependent
peaks that overlapped a cardiometabolic GWAS signal and an adipose peak. We used further
lines of evidence to prioritize these candidate regulatory elements for functional testing
including: location of variants closer to the summit of a peak as opposed to the shoulder and

literature review of linked gene’s relevance to adipose biology.

Transcriptional reporter luciferase assays:

SGBS preadipocytes and adipocytes were maintained and transcriptional reporter
luciferase assays were performed as previously described!?? with the following changes. Primers
were designed to amplify the entire chromatin accessibility region containing variants of interest.

Amplified regions containing variant reference and alternate alleles were cloned individually into
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the Xbal-Sbfl restriction sites of the pLS-mP-Luc lentiviral luciferase vectors (a gift from Nadav
Ahituv, Addgene plasmid # 106253) or pGL4.23 firefly luciferase reporter vector (Promega) in
‘forward’ and ‘reverse’ orientations (named with respect to the genome reference). The variants
were cloned upstream of the minimal promoter and verified by Sanger DNA Sequencing. For
lentivirus production, HEK293T cells were grown to 70-80% confluency in 100 mm plates and
co-transfected with 9.5 pg of a pLS-MP-Luc construct, 8 ug of packaging plasmid (psPAX2, a
gift from Didier Trono, Addgene plasmid # 12260), and 2.5 pg of an envelope plasmid
(pMD2.G, a gift from Didier Trono, Addgene plasmid # 12259) using Lipofectamine 2000
transfection reagent (Invitrogen). Media was replaced with fresh growth media 18 hours after
transfection. Viral supernatant was harvested 48 and 72 hours after transfection and concentrated
using 4X Lenti-X concentrator (Clontech). Lentiviral titer was measured using Lenti-X qRT-
PCR Titration Kit (Takara Bio), and functional titers were represented as transduction units. For
data normalization, empty pLS-MP-Luc and Renilla luciferase vector pLS-SV40-mp-Rluc
viruses (a gift from Nadav Ahituv, Addgene plasmid # 106292) were prepared and quantified in
a similar manner.

For preadipocytes, 25,000 SGBS cells were plated the day before transduction, and
35,000 SGBS cells were plated and differentiated for adipocytes into 24 well plates and spin-
infected with appropriate titer of construct and Renilla virus in the presence of 10 ug/ml
polybrene media. For viral based transcriptional luciferase assays, two independent construct
viruses were used for each allele in each orientation and were transduced in tetraplicate wells.
After 8 hrs of transduction, media was replaced with fresh growth media, and luciferase and
Renilla activity was measured 48 - 72 hours post transduction using Dual Luciferase Reporter

Assay System (Promega). For plasmid based transcriptional luciferase assays, we used primers
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to amplify the regions of interest and we cloned the constructs containing the variants into
pGL4.23 firefly luciferase reporter vector (Promega). Five independent clones for each allele in
each orientation were cotransfected with Renilla luciferase vector in triplicate wells using
Lipofectamine 3000 (Lifetechnologies). Luciferase and Renilla activity were measured after
28hrs of transfection.

For both viral- and plasmid-based assays, luciferase activity of experimental clones was
normalized to Renilla luciferase as well as empty vector activity to control for differences in
transfection efficiency. All transcriptional reporter assays were repeated on different days. Data
are reported as fold change in activity relative to an empty vector. We used a Student’s t-test to

compare luciferase activity between alleles and between contexts.
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Figure 2.1: Genome-wide profiles of chromatin accessibility and gene expression at three
timepoints of adipocyte differentiation.

(A) Schematic of experimental design. SGBS cells were harvested as preadipocytes (DO0),
immature adipocytes (D4), and adipocytes (D14). Chromatin accessibility (blue) and gene
expression (green) profiles were generated on replicates from each timepoint. Context-dependent
peaks are shown as black bars. Chromatin accessibility profiles also were generated from
subcutaneous adipose tissue (purple) of 17 individuals and an optimized consensus CA map was
developed from a subset of 11 individuals. (B) Heatmap of the top 10,000 context-dependent
peaks (from S4 Table) colored by z-score. (C) Heatmap of expression level of all 3,090 context-
dependent genes (from S9 Table) colored by z-score. Library numbers correspond to quality
metrics in S8 Table. (D-E) Values in S9 Table. (D) Adipose peak overlap with chromatin states
of Roadmap Epigenomics Project adipose nuclei for three sets of adipose consensus peaks. (E)
Preadipocyte- and adipocyte-dependent peak overlap with chromatin states of Roadmap adipose

nuclei.
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Figure 2.2: Linking context-dependent chromatin accessibility to candidate genes.

(A-C) Schematic of three approaches to link peaks to genes. Day 0 (light blue) and day 14 (dark
blue) context-dependent peaks are represented. (A) Context-dependent peaks that overlap
elements connected to gene promoters using adipocyte promoter capture Hi-C (orange). (B)
Context-dependent peaks that overlap adipose gene eQTL variants (r2>.8 with lead, red). (C)
Context-dependent peaks linked to a gene through Hi-C or eQTL for which the linked gene was
also differentially expressed between any timepoints (green). (D) Histogram of distances from
edges of peaks to the transcription start site of a linked gene within 1.2 Mb. Values in S12 Table.
(E) Numbers of context-dependent peaks linked to genes by each method and by two or more

methods. Values summarize full results in S12 Table.
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Figure 2.3: Linking peaks to GWAS signals.

(A) Heatmap of cardiometabolic trait GWAS locus enrichment; rheumatoid arthritis was selected
for comparison. Peak sets include 100,000 peaks from individual days, preadipocyte- and
adipocyte-dependent peaks derived from pairs of timepoints, and adipose tissue peaks. Values in
S13 Table. **, P < 0.0056; *, P < 0.05 (B) Barplots of normalized counts of specific
experimental factor ontology (EFO) terms for GWAS signals with a variant in a context-
dependent peak. Barplots show the top ten EFO terms ranked by normalized count for either
preadipocyte-dependent peaks, or adipocyte-dependent peaks. Total number of signals for each
term used in the overlap is noted in parentheses in the axis label. Total number of signals for
each term overlapping a context-dependent peak is noted to the right of the “All Context-
dependent” bar. Values in S14 Table. (C) Flowchart identifying context-dependent peaks

overlapping GWAS signals and linked to genes through 2 or more methods.
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Figure 2.4: Allelic differences in transcriptional activity for a context-dependent regulatory

variant in a context-dependent element at the SCD locus.

(A) Peak19405 (red) is more accessible in D4 and D14 adipocytes than DO preadipocytes,

overlaps an adipose tissue consensus peak (dark purple), and overlaps variant rs603424, which is

associated with blood plasma levels of palmitoleic acid and adipose SCD expression. SCD is also

more highly expressed at D4 and D14 compared to D0. Additional tracks show adipose tissue

ATAC-seq from ENCODE (light purple) and adipose nuclei histone mark ChIP-seq from the

Roadmap Epigenomics project (blue and green). (B) A 592-bp genomic region surrounding

peak19405 containing the rs603424-G allele shows increased transcriptional activity compared

to the rs603424-A allele in the forward and reverse orientations only in adipocytes (tested at day
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12), the context in which chromatin was more accessible compared to preadipocytes. Dots
represent two independent constructs assayed from four replicates each. Luciferase activity was

normalized relative to an empty vector (EV). Values in S18 Table.
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Figure 2.5: Allelic differences in transcriptional activity for variants in two regulatory
elements at the EYA2 locus.

(A) Peak81750 (red) is more accessible in D4 and D14 adipocytes and overlaps variant
1s559066194, which is associated with increased risk of type 2 diabetes and increased EYA2
expression. £YA2 is more highly expressed at D4 and D14, compared to D0. A second variant at
this locus, rs59791349, intersects a consensus adipose peak (dark purple) but not a context-
dependent peak. Additional tracks as in Fig 4. (B-C) Values in S18 Table. (B) A 419-bp genomic
region surrounding peak81750 containing the rs555966194-C allele shows modestly-increased
transcriptional activity compared to the rs555966194-G allele in the reverse orientation, but not
the forward, in adipocytes (tested at day 9), the context in which chromatin was more accessible
compared to preadipocytes. Dots represent two independent constructs assayed from four

replicates each. Luciferase activity was normalized relative to an empty vector (EV). (C) A 288-
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bp genomic region containing the rs59791349-C allele shows increased transcriptional activity
compared to the rs59791349-T allele in both orientations and in both preadipocytes and
adipocytes (tested at day 9). Dots represent two independent constructs assayed from four

replicates each. Luciferase activity was normalized relative to an EV.
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Figure 2.6: Comparison of adipose tissue for three subsets of samples.

(A) PCA for PC1 (principal component) vs PC2 for all 17 samples that met quality thresholds.
Solid light purple arrows indicate samples that are unique to the 17-sample set (excluded from
the 11-sample set). Dashed light purple arrows indicate three previously published samples that
have been included in the 11- and 17- sample sets. (B) Hierarchical clustering using the top 10
PCs from PCA. The red dashed line indicates the cutoff used to exclude six samples from the 11-
sample set. Dark purple indicates samples in the 11-sample set. Dashed light purple indicates
samples in the 3-sample set. Sample numbers correspond to library quality metrics in Table S10.
(C) PCA for PC1 vs PC2 for the 11-sample set. Dashed light purple arrows indicate three
previously published samples that have been included. (D) Adipose peak overlap with chromatin
states of Roadmap Epigenomics adipose nuclei for the three different sample subsets of adipose
consensus peaks using the top 50k peaks for each set. (E) Heatmap of cardiometabolic trait
GWAS locus enrichment; rheumatoid arthritis was selected for comparison. Peak sets include

two sets of adipose tissue peaks. ** P <0.005; *, P <0.05.
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Tables

Timepoint (iiltlll;tli)iliee(lllzn Bat];h I Final Reads Nu;; :le(l; of If::cclgli; EnriTclslfnen "
Fig 1B) Peaks
D00 1 B1 57,474,834 147,944 64.27 5.9
D00 2 B1 45,276,054 133,522 51.68 5.9
D00 3 B4 102,126,542 162,246 48.14 54
D00 4 B4 97,154,896 191,773 49.03 7.2
D00 5 B2 43,365,932 116,318 38.47 5.8
D00 6 B2 40,894,284 118,621 43.37 6.2
D00 7 B2 33,634,560 155,237 55.52 9.6
D00 8 B2 50,964,904 132,142 48.36 6.5
D00 9 B2 77,285,432 157,596 57.87 5.9
D00 10 B2 97,528,124 150,754 49.25 5.9
D04 11 B3 80,807,596 163,193 50.2 6.7
D04 12 B3 72,362,194 154,669 49.1 5.8
D04 13 B4 112,892,568 172,115 53.33 5.9
D04 14 B4 34,294,124 124,029 48.95 5.9
D04 15 B2 37,724,142 156,758 52.16 11.3
D04 16 B2 67,860,150 141,195 45.16 7.1
D04 17 B2 62,275,188 144,845 47.73 6.8
D04 18 B2 67,595,282 154,912 49.61 6.3
D04 19 B2 79,694,554 165,682 51.96 6.4
D04 20 B2 106,937,716 164,104 49.2 7.4
D14 21 B1 137,878,360 167,758 44.66 8.5
D14 22 B1 152,136,306 170,636 47.64 6.8
D14 23 B1 156,493,884 171,050 51.5 8.4
D14 24 B3 62,563,568 144,757 43.27 6.2
D14 25 B3 45,696,682 106,454 23.08 5.1
D02 n/a B3 77,897,392 164,274 52.01 6.3
D02 n/a B3 47,221,196 113,441 26.23 5.5

Table 2-1: ATAC-seq library metrics for SGBS libraries.

ATAC-seq libraries of SGBS preadipocytes (D00), immature adipocytes (D02: not included in

final analyses, and D04), and adipocytes (D14) with batch, sequencing, and alignment metrics.
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Total Consensus
Differentiation Timepoint Peaks Genes
D00 127,297 13,513
D04 137,602 13,598
D14 144,052 13,323

Table 2-2: Summary of chromatin accessibility consensus peaks and genes for SGBS

differentiation timepoints.

Consensus peaks were defined as the union of chromatin accessibility region accessible in
majority of replicates for timepoint, overlapping by 1 or more base pairs and consensus genes
were defined as those expressed in majority of replicates for timepoint (see methods for more

information).
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Differentiation
Early > Late Early < Late
Timepoints
Context- Context- Context- Context-
Early Late dependent | dependent | dependent | dependent
Peaks* Genes Peaks* Genes
D00 D04 26,435 1,043 26,218 1,128
D00 D14 21,192 788 18,529 1,319
D04 D14 519 173 599 449
*Of top 100k consensus peaks from each day, merged

Table 2-3: Summary of context-dependent peaks and genes.

Total context-dependent peaks and genes (DESeq2, LFC>1, FDR<5%) identified for each

timepoint comparison.
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Sample

Final

Number

Percent

Sample included in | Protocol | Filtered of Reads TSS
ID In Enrichment
sets Reads Peaks
Peaks

1 17-sample omni 81,206,302 | 35,912 2.58 4.04

2 17-sample | original | 45,260,382 10,488 1.14 4.2

3 | L7-sample, | oinal | 70794776 | 47.516 | 5.06 6.7
11-Sample

4 I7-sample, | Loinal | 196,497,804 | 38,687 | 4.41 5.55
11-Sample

5 17-sample, | o inal | 99,661,796 | 27,080 | 2.53 443
11-Sample

6 17-sample, | . oinal | 123,610,224 | 27418 | 1.92 4.07
11-Sample

7 17-sample, | . inal | 168,248,638 | 51269 | 4.71 6.17
11-Sample

8 17-sample, | oinal | 199,017,548 | 89,503 | 6.59 5.44
11-Sample

9 17-sample omni 93,739,658 | 73,642 6.24 4.99

10 17-sample omni | 135,803,892 | 120,452 8.59 4.74

11 17-sample omni 218,598,392 | 131,192 6.7 4

12 17-sample | original | 66,562,322 | 34,196 6.26 7.14

13| L7-sample, | il | 50,367,150 | 35367 | 4.55 6.08
11-Sample

14 | L7-sample, | o inal | 46.965.542 | 43.063 | 6.76 7.26
11-Sample
17-sample,

15 11-Sample, | original | 95,600,037 | 41,351 4.56 4.93
3-sample
17-sample,

16 11-Sample, | original | 90,614,097 | 58,340 6.88 5.54
3-sample
17-sample,

17 11-Sample, | original | 104,977,421 | 65,312 7.38 5.23
3-sample

Table 2-4: ATAC-seq library metrics for adipose tissue libraries.

Adipose tissue ATAC-seq library metrics with batch, sequencing and alignment metrics.
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. .. Sample ID Rea.d§
Differentiation | g0 ified | Batchp | 1ol Raw Remaining
Timepoint N Reads After Adapter
in Fig 1C) .
Trim
DO 1 B1 69,092,222 69,049,144
DO 2 Bl 65,988,010 65,941,792
DO 3 B2 58,948,614 58,906,356
DO 4 B2 60,061,888 60,009,960
DO 5 B3 57,513,988 57,450,212
DO 6 B3 50,184,610 50,139,772
D4 7 B1 53,157,272 53,125,366
D4 8 Bl 58,649,698 58,612,282
D4 9 B2 65,518,564 65,474,032
D4 10 B2 61,406,176 61,366,088
D4 11 B3 49,456,572 49,399,692
D4 12 B3 58,091,326 58,034,570
D14 13 B1 51,205,096 51,174,272
D14 14 B1 52,623,944 52,584,402
D14 15 B3 56,558,106 56,514,086
D14 16 B3 53,964,460 53,904,422
D2 n/a B1 50,444,676 50,407,890
D2 n/a B1 60,688,848 60,647,172

Table 2-5: RNA-seq library metrics for SGBS libraries.

RNA-seq libraries of SGBS preadipocytes (D00), immature adipocytes (D02: not included in

final analyses, and D04), and adipocytes (D14) with batch, sequencing, and alignment metrics.
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CHAPTER 3: CONTEXT-DEPENDENT CHROMATIN ACCESSIBILITY IN
ADIPOCYTES UNDER DISEASE-RELEVANT CONDITIONS OF FREE FATTY
ACIDS, HYPOXIA, AND INFLAMMATION

Introduction

Genome-wide association studies have identified thousands of loci associated with
cardiometabolic traits****; however, the mechanisms of most loci remain unclear>>—3. Factors
such as colocalization of eQTL variants with GWAS loci suggest a regulatory mechanism at

many of these noncoding loci®!~¢7

. Regulatory mechanisms can be cell type- and context-
dependent>?, therefore, testing in disease relevant cell types and contexts can aid identification of
mechanisms.

Adipose tissue is relevant to cardiometabolic traits through its roles in lipid storage®'°.
Adipose tissue is heterogenous and composed of many cell types including preadipocytes,
adipocytes, macrophages, and endothelial cells, among others!!. Adipocytes are an important cell
type within adipose tissue that are responsible for storing lipids'!. During periods of excess
nutrition, adipocytes store lipids through two primary pathways; hyperplasia, during which
preadipocytes differentiate into mature adipocytes to store excess energy, or hypertrophy, during
which existing adipocytes expand to store excess energy'2. Adipocyte hypertrophy can be
modeled by exposing adipocytes to stimuli such as excess free fatty acids which results in excess
lipid accumulation within adipocytes!'>®. Saturated free fatty acids such as palmitic acid and
monounsaturated free fatty acids such as oleic acids have been shown to activate different

157

transcriptional networks in mouse 3T3-L1 adipocyte cells'>’. Therefore, studying the contexts of

hypertrophy during exposure to saturated free fatty acids or monounsaturated free fatty acids
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could identify different regulatory elements. Enlarged adipocytes experience hypoxia and
inflammation, which are markers of dysfunctional adipocytes and metabolic disease!'?. Enlarged
adipocytes have been shown to experience dysfunction such as insulin resistance independent of
markers of inflammation in mouse 3T3-L1 adipocyte cells'*S. Therefore, we investigated
regulatory mechanisms in the presence of excess free fatty acids in the Simpson-Golabi-Behmel
Syndrome (SGBS) human adipocyte model?!*2. SGBS cells are a human diploid preadipocyte
cell model that can be differentiated into adipocytes to study adipocytes in disease-relevant
contexts?!?2, Comparison of gene expression changes in models of adipose dysfunction suggest
that a combination of hypoxia and inflammation in in vitro mouse 3T3-L1 models most closely
captures changes observed in diet induced obesity mouse models, compared to hypoxia or

158 Therefore, we investigated regulatory mechanisms in the presence of

inflammation alone
hypoxia, inflammation, and combined hypoxia and inflammation in the SGBS human adipocyte
model.

Identifying variants with regulatory effects after stimulation with excess free fatty acids
or markers of metabolic disease, such as hypoxia and inflammation, may uncover additional
mechanisms at GWAS loci for cardiometabolic traits. In this study, we profiled chromatin
accessibility in the context of excess free fatty acids and produced high-quality profiles of
accessibility. We also profiled chromatin accessibility and gene expression in the context of

hypoxia, inflammation, and combined hypoxia and inflammation and produced quality profiles

of gene expression changes.
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Results

Chromatin accessibility in the context of free fatty acids

We profiled chromatin accessibility using ATAC-seq®-%® in the context of excess free
fatty acids, oleic acid or palmitic acid, and untreated controls in SGBS adipocytes?* (Fig 3.1).
We analyzed a final set of four replicates of day 20 (D20) adipocytes treated with 500 uM of
oleic acid or 500 uM of palmitic acid for six days, compared to four replicates of an untreated
control. These conditions were chosen based on previous studies of free fatty acid challenges in a
3T3-L1 mouse adipocyte model'’. Final reads after quality filtering for our libraries ranged from
~16.9-86.8 million reads with an average of 44.8 million reads (Table 3.1). We identified ~105-
191 thousand chromatin accessibility regions, hereafter referred to as peaks, per library and our
libraries showed high quality, with an average transcription start site enrichment (TSS) of 5 and
an average of 49% reads in peaks, in line with ENCODE standards for quality ATAC-seq
libraries’7®,

To identify a set of 111,996 peaks to test for differentially accessible peaks, we generated
a set of consensus peaks present in a majority of each treatment (three out of four replicates) and
merged the top 100,000 peaks from each consensus peak set. Principal component analysis
(PCA) showed strong correlation with the technical quality measure of percent reads in peaks (r?
= 0.85) on the first principal component, which explained 24% of the variance (Fig 3.2). When
we corrected for percent reads in peaks, the first principal component reduced to explaining 16%
of the variance, and libraries separated by treatment on the second principal component, which
explained 15% of the variance (Fig 3.2). Based on these results, we proceeded with correcting

for percent reads in peaks in downstream analyses.
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To identify candidate regulatory elements, we tested for differentially accessible peaks
between each treatment condition and the untreated control (log> fold change (LFC) > 0; false
discovery rate (FDR)<5%; Table 3.2). After correcting for percent reads in peaks, we identified
only 37 significant peaks between oleic acid and the untreated control and 525 significant peaks
between palmitic acid and the untreated control (Table 3.2). While these results could include
interesting candidate regulatory elements, we did not proceed with further analyses due to the
small numbers and an inability to rule out that the choices of treatment conditions resulted in few
significant differences. However, these high-quality human adipocyte chromatin accessibility
libraries could be a useful resource for future studies such as changes in chromatin accessibility

at later timepoints of adipocyte maturity.

Onptimizing treatment conditions of hypoxia and inflammation

To optimize treatment conditions for identifying regulatory elements that change with
hypoxia and inflammation, we treated SGBS adipocytes at day five (D5) of differentiation and
used a quantitative PCR (qPCR) array to measure changes in expression of genes relevant to
hypoxia and inflammation. First, we treated adipocytes with exposure to 1% oxygen, 1% oxygen
and 10 ng/mL of TNF-a, or 1% oxygen and 25 ng/mL of TNF-a and measured the expression
levels of 42 hypoxia-relevant genes and four housekeeping control genes (Fig 3.3 and Table 3.7).
For adipocytes treated for 24 hours with 1% oxygen alone, an expression level was measurable
in 35 hypoxia-relevant genes, and 17 of those genes showed a LFC > 1 (Table 3.7). These results
showed that exposure to 1% hypoxia affected hypoxia-relevant gene expression and we chose to
proceed with this treatment. Next, we treated adipocytes for 24 hours with 10 ng/mL, 25 ng/mL,

or 50 ng/mL of TNF-a and measured the expression levels of 92 inflammatory genes and four
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housekeeping control genes (Fig 3.3 and Table 3.8). For adipocytes treated with 10 ng/mL of
TNF-a, an expression level was measurable for 60 inflammation-relevant genes, and 28 of those
genes showed a LFC > 1 (Table 3.8). These results showed that treatment with TNF-a affected
inflammatory-relevant genes. Due to similar changes in expression for cells treated with 10
ng/mL, 25 ng/mL, or 50 ng/mL of TNF-a, we proceeded with 10 ng/mL as the lowest

concentration of TNF-a tested.

Identifying changes in chromatin accessibility due to hypoxia and inflammation

69,88

We profiled chromatin accessibility using ATAC-seq®°°® in the context of hypoxia,
inflammation, or hypoxia and inflammation, and untreated controls in SGBS adipocytes®? (Fig
3.4). We analyzed replicates of day six (D6) adipocytes treated with 1% oxygen, 10 ng/mL TNF-
a, or 1% oxygen and 10 ng/mL TNF-a for 24 hours, compared to replicates of untreated controls.
After quality filtering, our libraries ranged from ~62.7 to 111.4 million reads, with an average of
85.7 million reads (Table 3.3), and we identified ~6.7 to 188.8 thousand peaks per library. To
identify a final set of replicates to use for analysis, we filtered for quality control metrics of
signal to noise (TSS enrichment > 2.5) and eliminated sample 4 from the control set as an outlier
on PCA. Our final set of replicates showed improved quality metrics, with a range of ~62.7 to
111.4 million reads, with an average of 86.7 million reads (Table 3.3), and ~45.4 to 188.8
thousand peaks per library (Table 3.3). These libraries showed an average transcription start site
enrichment (TSS) of 4 and an average of 11% reads in peaks. Despite the low signal-to-noise
indicated by the low percentage of reads in peaks, we proceeded with analysis of differentially

accessible peaks because we observed high (> 84%) overlap of the top 25,000 peaks with

Roadmap Epigenomics’’ adipose nuclei enhancer and promoter regions (Table 3.3).

67



To identify a set of 64,830 peaks to test for differentially accessible peaks, we generated
a set of consensus peaks present in a majority of each treatment (> 50%; 3/5 replicates for
control and inflammation, 2/3 for hypoxia, and 2/2 for hypoxia and inflammation combined) and
merged the top 40,000 peaks from each consensus peak set. PCA showed strong correlation with
batch on the first principal component, which explained 42% of the variance (Fig 3.5). After
batch correction, the first principal component reduced to explaining 35% of the variance with
libraries separating by treatment with inflammation (Fig 3.5). Based on these results, we
proceeded to correct for batch in downstream analyses.

To identify candidate regulatory elements, we tested for differentially accessible peaks
between each treatment condition and the untreated control (LFC > 0; FDR < 5%; Table 3.4).
After correcting for batch, we identified only 5,233 significant peaks that differ between
inflammation and the untreated control, 17,610 significant peaks between combined hypoxia and
inflammation and the untreated control, and no significant peaks between hypoxia and the
untreated control (Table 3.4). These results could include interesting candidate regulatory
elements, but we did not proceed with further analyses due to relatively poor quality of the

ATAC-seq libraries as demonstrated by low TSS enrichment and percent reads in peaks.

Identifying changes in gene expression due to hypoxia and inflammation

We profiled gene expression using RNA-seq in the context of hypoxia, inflammation, or
hypoxia and inflammation, and untreated controls in SGBS adipocytes?? (Fig 3.4). We analyzed
six replicates of each condition at day six (D6) of adipocyte differentiation treated with 1%
oxygen, 10 ng/mL TNF-a, or 1% oxygen and 10 ng/mL TNF-a for 24 hours, compared to

replicates of untreated controls. Final reads after quality filtering for all our libraries ranged from
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~42.1 to 67.0 million reads, with an average of 54.6 million reads (Table 3.5). We identified
18,259 expressed genes (median normalized count >= 1 across all libraries). PCA showed strong
correlation with batch (Fig 3.5). After batch correction, the first principal component separated
by inflammation and explained 45% of the variance, while the second principal component
separated by hypoxia and explained 13% of the variance (Fig 3.5). These results led us to correct
for batch in downstream analyses.

To identify genes that change expression with exposure to hypoxia, inflammation, or
hypoxia and inflammation, we identified genes differentially expressed between each treatment
condition and the untreated controls (LFC > 1, FDR < 5%). With a higher threshold for
significance than used for chromatin accessibility, we identified 573 differentially expressed
genes between inflammation treatment and controls and 613 differentially expressed genes
between the combined hypoxia and inflammation treatment and controls. Similar to the lack of
significant results between hypoxia treatments and controls in chromatin accessibility, we only

identified 4 genes that significantly differed between these conditions.

Discussion

In this study, we profiled chromatin accessibility and gene expression in a human
adipocyte cell model treated with several contexts relevant to cardiovascular and metabolic
disease. We produced high quality chromatin accessibility in adipocytes treated with oleic acid
or palmitic acid, however, even using a lenient LFC threshold of LFC>0 we identified few
changes between treatments and controls. We profiled chromatin accessibility in adipocytes
treated with hypoxia, inflammation, or combined hypoxia and inflammation and we identified
changes in gene expression between inflammation treatments and controls, however, our

chromatin accessibility profiles showed low complexity, which complicated analysis. I will
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discuss some of the technical and biological factors that could have caused these results. Despite
the lack of many context-dependent regulatory differences, these studies produced some high-
quality chromatin accessibility and gene expression libraries that can be used for future studies.

In our study of regulatory elements that change with adipocyte exposure to oleic acid or
palmitic acid, which should cause increased lipid storage, we produced high-quality profiles but
identified few significant differences between treatments and untreated controls. One biological
explanation for this outcome could be that mechanisms other than changes in chromatin
accessibility, such as changes in transcription factor expression!*, could drive changes in cells.
If we were to repeat this study, we could also perform RNA-seq to test for changes in gene
expression including transcription factors during exposure to excess free fatty acids. We did
identify changes in gene expression for other stimuli tested, including exposure to hypoxia and
inflammation. One technical explanation for this outcome could be failure of uptake of the free
fatty acids into the adipocytes, resulting in few differences between treatments and controls. If
we were to repeat this study, we would test different concentrations and methods or sources of
free fatty acid treatment and confirm enlargement of lipids within cells using assays such as oil
red O staining. Despite the few significant results, these high-quality chromatin accessibility
profiles identified consensus peaks in a mature human adipocyte cell model and could be used
for future studies of adipocytes.

In our study of regulatory elements that change with adipocyte exposure to hypoxia,
inflammation, and combined hypoxia and inflammation, which are markers of dysfunctional
adipocytes, we were unable to produce high-quality chromatin accessibility profiles, but we did
produce quality RNA-seq profiles and identified changes in gene expression between treatments

and controls. One technical explanation for our low-quality chromatin accessibility profiles is the
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use of a hypoxia chamber in another building, which delayed time between nuclei isolation and
library generation. In our experience with ATAC-seq, minimizing time between nuclei isolation
and library generation has produced the highest quality libraries, possibly due to the quality of
chromatin fixation. Despite the low quality of the ATAC-seq libraries, we proceeded with
analyses due to high overlap with Roadmap Epigenomics’’ enhancer and promoter regions.
However, with low quality, we could not be confident that the identified differentially accessible
regions were representative of the treatment. We did produce high quality RNA-seq libraries
between treatments that could be used in future studies of gene regulation under conditions of
hypoxia and inflammation, however, we did not pursue further study without paired chromatin
accessibility data due to limited novelty, as gene expression data exists for TNF-a treated

160, We also attempted to compare LFC of gene expression measured by gPCR and

adipocytes
gene expression measured by RNA-seq, however, there were cases of disagreement in gene
expression changes between methods. These differences could be caused by the qPCR and RNA-
seq being measured in independent experiments. It is also possible that the primers used to assay
gene expression by qPCR could affect the results and lead to differences compared to RNA-seq.
Although these studies did not produce significant results, they aided optimization of

critical points in design of chromatin accessibility and gene regulation profiling of cells exposed

to disease relevant contexts for future studies in our lab®.

Methods
Cell culture:
For all treatments, SGBS cells?! were generously provided by Dr. Martin Wabitsch

(University of Ulm) and cultured as previously described!??. Briefly, we cultured SGBS
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preadipocytes in serum-containing basal medium (DMEM:F12 + 33 uM biotin + 17 uM
pantothenate) with 10% FBS until confluent, then rinsed in phosphate-buffered-saline (PBS) and
differentiated for four days in medium supplemented with 0.01 mg/mL transferrin, 20 nM
insulin, 200 nM cortisol, 0.4 nM triiodothyronine, 50 nM dexamethasone, 500 uM IBMX, and 2
uM rosiglitazone. After four days, we maintained differentiated SGBS cells in basal medium
supplemented with 0.01 mg/mL transferrin, 20 nM insulin, 200 nM cortisol, 0.4 nM

triiodothyronine until harvested.

Free fatty acid treatment:

Cells were treated with free fatty acids as previously described!®. Briefly, oleic acid or
palmitic acid (Sigma-Aldrich) were dissolved in ethanol and diluted in basal medium
(DMEM:F12 + 33 uM biotin + 17 uM pantothenate) containing 1% FBS and 2% (wt/vol) BSA
for 10 min at 55°C. Cells were maintained with BSA-conjugated free fatty acid containing media

at 500 uM concentrations between D14 and D20.

Hypoxia and inflammation treatment:

Cells were treated with hypoxia by exposure to 1% oxygen for 24 hours in a controlled
cell culture chamber. Cells were exposed to inflammation by final treatment with 10 ng/mL of
TNF-a (Sigma-Aldrich) for 24 hours. 10 ng/mL, 25 ng/mL, and 50 ng/mL of TNF-a were used

during optimization.
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gPCR assessment of cells treated with hypoxia and inflammation:

Hypoxia and inflammation treatment conditions were optimized by testing treated cells
for changes in expression using qPCR arrays for hypoxia (ThermoFisher, catalog: 4414090) and
inflammation (ThermoFisher, catalog: 4414074). In brief, cells were treated with hypoxia and
inflammation conditions, RNA was isolated using the Total RNA Purification Kit (product
#17200) from Norgen Biotek (Ontario, Canada), cDNA was prepared using SuperScript
(ThermoFisher, catalog: 11917010), and cDNA was added to each well of the array and cycled
according to the conditions below. The AACt quantification method was used to analyze

results'®!.

Step Temperature| Time Cycles

UNG incubation 50°C 2 minutes 1

Enzyme activation| 95°C 20 seconds 1

Denature 95°C 1 second

40
Anneal / Extend 60°C 20 seconds

ATAC-seq Library Preparation:

For all treatments, we profiled chromatin accessibility in SGBS cells following the omni-

138 using unique, dual-barcoded indices. In brief, we isolated nuclei and used a

ATAC-seq protoco
cell countess to aliquot 50,000 nuclei per library and 5 uL of Tn5 per library. We cleaned the
transposase reaction and final library with Zymo DNA Clean and Concentrator (D4029). We

visualized and quantified libraries using a TapeStation, and sequenced with paired-end reads on

Novaseq.
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ATAC-seq Analysis:

We trimmed sequencing adapters and low quality base calls from the 3’ ends of SGBS
paired-end ATAC-seq reads using cutadapt'?* with parameters -q 20 —minimum-length 36. We
aligned trimmed reads to the hg19 human genome!?* using bowtie2!?* with parameters —minins
36 —maxins 1000 —no-mixed —no-discordant —no-unal and selected nuclear chromosomal

alignments with mapg>20 using samtools!?®

. We removed alignments overlapping high-signal
regions (Duke excluded and ENCODE/DAC exclusion list regions)!?¢ using BEDTools
pairToBed!?” with the parameter -type notospan. We removed duplicate alignments using Picard
MarkDuplicates (https://github.com/broadinstitute/picard) and generated ATAC-seq quality
metrics using ataqv.'?8

We trimmed alignments so their 5’ ends corresponded to the Tn5 binding site (+4 for +
strand alignments and -5 for — strand alignments)®® and smoothed signal by extending alignments
100 bp on either side of the Tn5 binding sites using BEDTools slop'?’. We called peaks
(FDR<5%) with MACS2'?° with parameters -q 0.05 —nomodel —bdg and generated ATAC-seq
signal bigwig files from MACS2 bedGraph files using the bedGraphToBigWig tool from
ucsctools!?. For free fatty acid treatments, we proceeded with analyses on a final set of libraries
that met our signal-to-noise quality thresholds with a fraction of reads in peaks (FRiP) greater
than 30% and a transcription start site enrichment greater than 47°. For hypoxia and inflammation
treatments, we proceeded with analyses on a final set of libraries that met our signal-to-noise
quality thresholds with a transcription start site enrichment greater than 2.57¢, and we
additionally excluded sample 4 from the hypoxia and inflammation treatment controls as an

outlier after PCA. For each analyzed treatment condition, we generated a set of consensus

ATAC-seq peaks by merging peak genomic coordinates across replicates for a given treatment
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using BEDTools merge'?’. Then, we defined consensus peaks as merged peaks that overlapped

individual replicate peaks in greater than 50% of replicates.

Identification of differentially accessible peaks:

We generated a set of merged peaks to test for differential chromatin accessibility for
each treatment by merging the top 100,000 peaks for free fatty acid treatments and the top
40,000 consensus peaks for hypoxia and inflammation treatments (ranked by median peak p-
value across replicates). We quantified the accessibility of these merged peaks in each library

131 We computed the GC percent of each peak using BEDTools nuc!?” and

using featureCounts
generated within-library GC bias normalization factors using full quantile normalization with
EDASeq!32. We then used EDASeq GC bias normalization factors within DESeq2!3* and used
DESeq? size factors to control for differences in sequencing depth between libraries. We tested
for differential chromatin accessibility using DESeq2!* and classified significantly differential

peaks with FDR < 5% and log fold change (LFC) > 1 or LFC > 0 as indicated between each

treatment and the untreated control.

RNA-seq library preparation, read alignment, and identification of differentially expressed

gences:

We isolated total RNA from SGBS cells exposed to hypoxia, inflammation, hypoxia and
inflammation, or untreated controls using the Total RNA Purification Kit (product #17200) from
Norgen Biotek (Ontario, Canada). Novogene (Beijing, China) generated poly-A RNA libraries
and performed paired-end RNA sequencing (RNA-seq, read length 150 bp) using a NovaSeq

6000 (Illumina, California, USA). We trimmed sequencing adapters and low-quality base calls
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from the 3” ends of RNA-seq reads using cutadapt'?* with parameters -q 20 —minimum-length
36. We aligned reads to the hg19 human genome!?* using STAR!7 with parameters --
sjdbOverhang 149 --twopassMode Basic --quantMode TranscriptomeSAM --
outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --
outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --
alignIntronMax 1000000 --alignMatesGapMax 1000000. We quantified expression of genes
from GENCODE v29 1ift37'3 and corrected for GC bias using salmon'#’ with parameters —
seqBias —gcBias —gencode. We generated RNA-seq quality metrics using the
CollectRnaSeqMetrics tool from Picard (https://github.com/broadinstitute/picard). We used PCA
to determine which replicates clustered. Within timepoint clusters, we observed additional
clustering by batch that we corrected for in downstream analysis. To identify differentially
expressed genes, we imported salmon transcript quantifications and collapsed to the gene level
using tximport!*®. We retained genes with median DESeq2-normalized count >= 1 across all
libraries. We tested for differential gene expression using DESeq2!*? and classified significantly
different genes with FDR < 5% and LFC > 1 or LFC > 0 as indicated between each treatment

and the untreated control.
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Figure 3.1: Genome-wide profiles of chromatin accessibility and gene expression in

untreated controls and adipocytes treated with oleic or palmitic acid.

A. Schematic of experimental design. SGBS cells were started as preadipocytes (D0) and treated
according to standard protocol with a differentiation medium for four days (D4) into immature
adipocytes, and an adipocyte maintenance medium until harvested at day 5 (D20). At day 14
(D14) adipocytes were maintained untreated or treated with either 500 uM oleic acid or palmitic
acid for six days. B. Chromatin accessibility (dark blue) and gene expression (green) profiles
were generated on replicates from each treatment. Context-dependent peaks are shown as black
bars. Chromatin accessibility and gene expression profiles were compared between each

treatment and the untreated control.
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Figure 3.2: PCA of ATAC-seq read count within peaks for free fatty acid treated and
control adipocytes.

A. Plot of PCA of uncorrected ATAC-seq read counts within peaks for adipocytes for untreated
controls (red), oleic acid treated (green), and palmitic acid treated (blue). Symbols are indicated
in the legend for sequencing lane. B. Plot of Pearson’s correlation for top six measured variables
with principal component 1, showing a high correlation with percent reads in peaks. C. Plot of
PCA of ATAC-seq read counts within peaks corrected for percent reads in peaks for adipocytes
for untreated controls (red), oleic acid treated (green), and palmitic acid treated (blue). Symbols

are indicated in the legend for sequencing lane.
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Figure 3.3: Gene expression measurements for inflammation and hypoxia treated

adipocytes.

Bar plot of selected genes with the highest fold change (FC) compared to housekeeping genes for
two qPCR arrays. Genes “18S, “GAPDH”, “HPRT1”, and “GUSB” are housekeeping genes. Full
results are provided in Tables 3.7 and 3.8. A. Fold change for selected inflammation genes
measured from a full set of 96 genes in an inflammation qPCR array. Three concentrations of
TNF-a were tested, 10 ng/mL (black), 25 ng/mL (light grey), and 50 ng/mL (dark grey). B. Fold
change for selected hypoxia genes measured from a full set of 46 genes in a hypoxia qPCR array.
Three treatments were tested; hypoxia alone (black), hypoxia with 10 ng/mL of TNF-a (light

grey), and hypoxia with 25 ng/mL of TNF-a (dark grey).
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Figure 3.4: Genome-wide profiles of chromatin accessibility and gene expression in

0

b

untreated controls and immature adipocytes treated with hypoxia and inflammation.

A. Schematic of experimental design. SGBS cells were started as preadipocytes (D0) and treated
according to standard protocol with a differentiation medium for four days (D4) into immature
adipocytes, and an adipocyte maintenance medium until harvested at day five (D5). At D4
immature adipocytes were maintained untreated or treated with either 1% oxygen, 10 ng/mL
TNF-a, or 1% oxygen and 10 ng/mL TNF-a. B. Chromatin accessibility (dark blue) and gene
expression (green) profiles were generated on replicates from each treatment. Context-dependent
peaks are shown as black bars. Chromatin accessibility and gene expression profiles were

compared between each treatment and the untreated control.

80



A. ATAC-seq PCA Uncorrected
201
[
e
& 101
fe @
> of" .
2 °
= =
Rl =
(&)
o —20- Treatment and batch
]
. _ g . . Untreated B1
-20 0 20 40 Untreated B2
B. PC1: 42% variance ® Hypoxia B2
B |nflammation B1
ATAC-seq PCA Corrected for Batch ® |nflammation B2
2ol 2 ® Hypoxia and
8 Inflammation B2
: r
.g 10 e
©
S [ ]
o\o 0 O ®
=
& —107 .
(&)
o
—20 .. |
-25 0 25

PC1: 35% variance
Figure 3.5: PCA of ATAC-seq read count within peaks for hypoxia and inflammation
treated and control adipocytes.
Plots of PCA for ATAC-seq read counts within peaks for adipocytes for untreated controls
(grey), 1% hypoxia treated (red), 10 ng/mL TNF-a treated (blue), and combined 1% hypoxia and
10 ng/mL treated (black). Symbols are indicated in the legend for batch 1 and batch 2. A. PCA
for uncorrected ATAC-seq reads in peaks. B. PCA for ATAC-seq reads in peaks corrected for

batch.
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A. RNA-seq PCA Uncorrected
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Figure 3.6: PCA of RNA-seq reads for hypoxia and inflammation treated and control

adipocytes.
Plots of PCA for RNA-seq reads for adipocytes for untreated controls (grey), 1% hypoxia treated
(red), 10 ng/mL TNF-a treated (blue), and combined 1% hypoxia and 10 ng/mL treated (black).

Symbols are indicated in the legend for batch 1 and batch 2. A. PCA for uncorrected RNA-seq

reads. B. PCA for RNA-seq reads corrected for batch.
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Tables

Treatment Sample . % Reads in TSS
Condition 1D Final Reads Peaks Peaks Enrichment
1 31,703,420 144,910 49.5 5.1
2 66,230,646 165,895 54.6 4.8
Untreated
3 34,472,260 118,264 36.3 54
4 16,869,394 105,182 44.6 4.8
5 51,581,504 155,558 49.1 5.1
6 38,459,362 145,520 51.5 53
Oleic Acid
7 86,765,094 184,391 55.6 5.5
8 17,132,254 113,875 46.8 4.8
9 49,187,804 149,274 40.9 59
10 58,339,158 179,432 534 59
Palmitic Acid
11 22,614,914 125,490 47.5 6.2
12 64,763,242 191,561 52.9 6.3

Table 3-1: Sequencing and alignment quality metrics for free fatty acid treatments ATAC-
seq libraries.

Summary of sequencing and alignment quality metrics for libraries used in free fatty acid
treatment analysis. “Final Reads” indicated the final number of reads used to call peaks for each

library after quality filtering as described in methods.
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Correction FFA Significant Peaks
Oleic Acid 15
Uncorrected
Palmitic Acid 8,982
Corrected for % Oleic Acid 37
Readsin Peaks | po1oitic Acid 525

Table 3-2: Summary of context-dependent peaks for free fatty acid treatments.
Counts of the number of significant peaks (DESeq2, log> fold change (LFC) > 0, FDR < 5%) for

each free fatty acid treatment compared to the untreated control from the top 100,000 peaks.
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Treatment X %Reads in TSS Roadma

Condition ID | Batch | Final Reads | - Peaks Peaks Enrichment Overlapp

1 | BI | 62,656,480 | 61,422 5.1 3.1 85.4

2 | Bl | 79.784.622 | 64,120 53 2.6% 90.8

3 | Bl | 76,472,046 | 131,772 | 10.6 3.8% 90.2

Untreated I 04355260 | 71,736 6.2 29 92.1

5 | B2 | 89,770,430 | 142,695 153 4.5% 92.8

6 | B2 | 94145918 | 169,431 16.5 4.4% 92.7

7 | Bl | 73,309,456 | 7,705 0.4 15 251

8 | Bl | 86,753,708 | 18,842 1.0 15 17.8

Hypoxia || BL [ 107.592474 | 31,228 15 15 21.0

10 | B2 | 107,661,688 | 165,153 175 4.6% 926

11| B2 | 95,030,782 | 188,758 17.1 4.7% 92.8

12| B2 | 71285678 | 127,338 147 4.0% 93.2

13| Bl | 111421020 | 145,157 9.7 2.9% 84.5

14| Bl | 91,061,910 | 66,646 55 2.5% 89.8

C 15[ BT | 79,946,116 | 45441 3.6 2.6% 85.0

Inflammation e $49.602 | 139.183 13.6 4.0% 92.1

17 | B2 | 73,420,880 | 70,893 45 21 61.2

18 | B2 | 73,567,024 | 106,153 11.0 3.9% 923

19 | B2 | 81,776294 | 6,678 0.4 1.4 18.8

, 20 | B2 | 96,598.812 | 36,508 1.9 16 2238

Hypoxia and 1= 64,866 | 26,333 16 18 323
Inflammation

22 | B2 | 97,223278 | 90,429 6.0 2.8 84.4

23 | B2 | 88,565,750 | 107,004 8.5 3.2 91.3

Table 3-3: Sequencing and alignment quality metrics for hypoxia and inflammation

treatments ATAC-seq libraries.

Summary of sequencing and alignment quality metrics for libraries sequenced in hypoxia and

inflammation treatments. “ID” indicates an ID for each library prepped. “Batch” indicates

libraries that were prepared in batch 1 (B1) and batch 2 (B2). “Final Reads” indicated the final

number of reads used to call peaks for each library after quality filtering as described in methods.

All sequenced libraries are summarized, but only samples with an “*” in the “TSS Enrichment”

column were used in analysis, as a TSS enrichment greater than 2.5 was used as a primary
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quality filter to select final libraries (sample ID 2 was excluded as a PCA outlier despite a TSS
enrichment of 2.6). “Roadmap Overlap” indicated the percent of the top 25,000 peaks in the

library that overlap a Roadmap adipocyte nuclei promoter or enhancer region.
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Peaks (LFC>1) Peaks (LFC>0)
Hypoxia 0 0
Inflammation 14 5,233
Hypoxia and Inflammation 1 17,610

Table 3-4: Summary of context-dependent peaks for hypoxia and inflammation treatments.
Counts of the number of significant peaks (DESeq2, log> fold change (LFC) > 0 of LFC > 1 as

indicated, FDR < 5%) for each treatment compared to the untreated control.
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Treatment Sample Total reads Transcript reads
1 41,496,230 36,107,570
2 63,920,376 54,033,844
Untreated 3 64,406,330 47,965,522
4 48,126,922 42,040,006
5 67,042,866 58,163,240
6 58,771,696 51,334,066
7 56,255,264 48,294,026
8 51,517,296 44,485,496
. 9 42,080,716 36,183,506
Hypoxia
10 53,883,260 46,210,452
11 51,870,658 44,555,260
12 45,454,808 39,237,142
13 57,220,416 49,058,066
14 58,819,082 51,307,148
Inflammation 15 55,527,252 48,196,454
16 55,318,696 48,240,304
17 61,436,916 53,307,336
18 44,938,146 38,228,458
19 53,467,730 46,199,886
20 53,843,152 45,577,320
Hypoxia and 21 51,263,922 43,916,036
Inflammation 22 55,982,774 48,175,134
23 60,837,418 52,327,780
24 43,787,248 37,832,012

Table 3-5: RNA sequencing and alignment quality metrics for hypoxia and inflammation

treatments.

Summary of total final sequencing and transcript reads used for each RNA-seq library after

quality filtering.
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Genes

Hypoxia 4
Inflammation 573
Hypoxia and Inflammation 613

Table 3-6: Summary of context-dependent genes for hypoxia and inflammation treatments.
Counts of the number of significant genes (DESeq2, log> fold change (LFC) > 1, FDR < 5%) for

each treatment compared to the untreated control.
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qPCR LFC RNA-seq LFC
Hypoxia + | Hypoxia + Hypoxia +
Inf. Inf. Inf. Inf.
(10 ng/mL | (25 ng/mL (10 ng/mL | (10 ng/mL
Hypoxia TNF-a) TNF-a) Hypoxia TNF-a) TNF-a)
GAPDH 0.34 0.49 0.36 0.59 0.32 0.86
HPRTI 0.38 0.77 1.12 0.23 -0.05 0.33
GUSB -0.34 -0.49 -0.36 -0.25 0.03 -0.17
ADM -0.22 1.01 1.19 0.64 1.18 1.60
ANGPTL4 0.89 1.22 1.19 0.78 0.02 1.01
ARNT -0.30 -0.31 -0.04 0.09 0.48 0.39
ARNT?2 0.72 232 2.48 -0.11 -0.13 -0.61
ATPIBI -1.31 -4.23 -3.91 -0.55 -2.26 -2.62
BHLHEA40 0.93 1.28 1.46 0.92 0.16 1.07
CASPI -0.09 -0.20 -0.13 -0.27 -0.11 -0.60
CREBBP -1.71 -1.41 -11.03 0.18 0.18 0.27
DDIT4 -0.23 -0.79 -0.24 0.39 -0.27 0.32
DDIT4L -1.68 -2.19 -1.97 0.96 -0.24 0.66
EDNI -1.71 0.75 1.00 1.46 2.49 2.29
EGLNI 1.33 2.12 2.17 0.82 0.79 1.38
EGLN2 -2.15 -1.78 -1.91 0.12 -0.01 0.04
EGLN3 -0.39 1.94 1.80 -0.24 -0.67 NA
EP300 0.33 0.39 -0.11 0.33 0.30 0.59
EPASI -1.83 -2.56 -2.01 -0.40 -0.55 -1.02
EPO NA NA NA 0.00 NA NA
FRAPI -1.56 -1.27 -0.93 NA NA NA
HIFIA -1.22 -0.06 0.49 0.25 0.94 0.62
HIFIAN -1.19 -1.08 -0.69 -0.26 -0.13 -0.39
HIF3A4 -0.98 -1.70 -1.05 -1.44 0.38 -0.62
HIG2 -0.54 0.12 0.42 NA NA NA
HMOXI1 -0.38 -0.30 -0.32 0.57 0.09 0.66
HYOUI -1.91 -1.31 -0.73 -0.19 0.01 0.12
IGFBPI NA NA NA 2.12 NA NA
ING4 -1.39 -1.69 -1.39 -0.15 0.29 0.07
MB 3.97 7.56 7.36 -1.12 3.61 3.24
MT3 NA NA NA 0.94 0.98 3.00
NOSI NA NA NA 0.00 NA NA
NOS2 NA NA NA -0.33 NA NA
NOS3 NA NA NA -0.24 -0.12 -0.29
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NOTCHI -1.94 -1.97 -1.58 -0.39 -0.33 -0.56
PIK3CA -0.77 -1.02 -0.66 -0.17 -0.68 -0.74
PRKAAI -0.85 -0.46 -0.30 0.29 0.28 0.55
PRKAA2 2.35 1.02 0.92 0.28 -0.48 -0.06
PTEN -0.77 -1.37 -0.99 -0.16 0.49 0.17
SLC248 NA NA NA -1.59 0.19 -1.54
SOD3 NA NA NA -0.14 0.91 0.89
TGFBR2 -1.08 -1.07 -0.57 -0.13 -0.01 -0.10
P53 -0.80 0.74 0.67 0.05 1.02 1.07
VEGFA 0.67 1.45 1.31 0.59 0.39 0.78
VHL 0.01 -0.38 0.11 0.06 0.25 0.34
CUL2 -1.49 -1.12 -0.85 -0.08 -0.11 -0.06
RBX1 -0.21 0.10 0.63 0.20 0.20 0.39

Table 3-7: LFC of treatments analyzed by hypoxia qPCR array and context-dependent
RNA-seq analysis.

Three combinations of hypoxia and inflammation (“Inf.””) were tested for expression of 46 genes
in a hypoxia qPCR array. qPCR LFC reports the LFC measured for three treatments by the qPCR
array. A negative LFC indicates a decrease in expression compared to the housekeeping controls
and a positive LFC indicates an increase in expression compared to the housekeeping controls.
RNA-seq LFC reports the LFC for the three treatment conditions compared to the untreated
controls for genes also measured by qPCR array. A negative LFC indicates a decrease in
expression compared to the untreated controls and a positive LFC indicates an increase in
expression compared to the untreated controls. “NA” indicates that expression was not

accurately measured for that condition.
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qPCR LFC RNAseq LFC
Hypoxia +
Inf. Inf. Inf. Inf. Inf.
(10 ng/mL | (25 ng/mL | (50 ng/mL (10 ng/mL | (10 ng/mL

Gene TNF-a) TNF-a) TNF-a) Hypoxia TNF-a) TNF-a)
GAPDH 0.46 0.30 0.38 0.59 0.32 0.86
HPRTI -0.48 -0.36 -0.40 0.23 -0.05 0.33
GUSB -0.10 0.17 -0.05 -0.25 0.03 -0.17
A2M -1.52 -0.88 -1.29 -0.30 0.15 0.06
ADRBI NA NA NA -0.39 -1.30 -0.35
ADRB? -1.94 -1.57 -1.63 -0.58 -1.48 -1.81
ALOXI?2 NA NA NA 0.39 0.26 -1.50
ALOXS NA NA NA NA NA NA
ANXAI -0.13 -0.20 -0.04 0.40 -0.04 0.30
ANXA3 1.28 1.15 0.83 0.60 0.98 0.69
ANXAS 0.96 0.94 0.93 0.13 0.26 0.47
KLK3 NA NA NA NA NA NA
BDKRBI 3.96 4.22 4.15 -0.06 4.48 4.81
BDKRB?2 3.44 3.60 2.83 0.71 3.66 3.57
CACNAIC 0.76 0.51 0.38 0.20 0.19 -0.20
CACNAID NA NA NA -0.85 -3.07 NA
CACNA2D1 -0.32 -0.10 -0.70 -0.73 -0.59 -0.81
CACNB2 -2.28 NA -1.56 -1.20 0.08 -0.71
CACNB4 -1.63 0.04 0.95 -0.24 -0.06 0.45
CASPI -0.83 -0.85 -0.58 -0.27 -0.11 -0.60
CD40 4.40 4.63 4.67 -0.26 2.44 2.05
CD40LG NA NA NA -0.32 NA NA
CESI 0.09 -0.06 0.04 -0.50 -0.13 -0.18
LTB4R 0.15 0.77 0.27 -0.56 -1.04 -0.92
MAPK14 -0.09 -0.18 -0.13 -0.05 -0.13 -0.08
NR3C1 -0.44 -0.27 -0.43 0.03 0.05 -0.08
HPGD -2.00 -2.63 -2.47 0.30 -1.90 -1.53
HRH1 -0.13 -0.02 0.47 0.78 1.17 0.77
HRH2 NA NA NA 0.45 0.06 NA
HTR3A4 NA NA NA 0.76 NA NA
ICAM1 7.53 7.74 7.52 0.74 7.27 7.11
ILIRI -0.10 -0.27 -0.25 -0.20 -0.30 -0.50
IL2RA NA NA NA NA NA NA
IL2RB NA NA NA -1.11 2.11 3.17
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IL2RG NA NA NA -0.84 NA NA
IL13 NA NA NA 1.36 NA NA
ITGAL NA NA NA 0.09 2.02 -0.45
ITGAM NA NA NA 0.00 NA NA
ITGBI 0.36 0.06 0.26 -0.13 -0.07 -0.23
ITGB2 -0.68 -0.19 0.34 -0.07 0.31 0.88
KLKI NA NA NA 0.65 NA NA
KLK2 NA NA NA .04 NA NA
KLKBI NA NA 0.57 0.18 -0.46 NA
KNGI 1.30 NA NA 20.32 NA NA
LTA4H -0.16 -0.56 -0.36 -0.38 0.02 -0.38
LTC4S 0.31 1.27 0.35 1.66 1.41 1.95
MC2R NA NA NA NA NA NA
NFKBI 1.69 1.61 1.44 0.13 1.42 1.52
NOS2 NA NA NA -0.33 NA NA
PDE4A4 0.99 1.16 0.92 0.14 0.27 0.18
PDE4B 2.71 2.30 2.53 -0.22 2.16 1.52
PDEA4C NA NA NA 1.76 -0.65 1.80
PDE4D “1.15 -1.14 -0.68 0.40 -0.05 0.55
PLA2GIB 0.08 2.56 0.30 -1.26 0.06 NA
PLA2G24 0.17 -0.03 -0.52 -0.15 -0.45 -0.68
PLA2GS 134 NA 0.60 -0.74 -1.60 -3.51
PLCB? NA NA NA -0.30 229 -0.31
PLCB3 -0.42 -0.82 -0.53 -0.21 0.03 -0.24
PLCBA4 2.33 1.55 2.19 1.81 1.98 2.53
PLCDI -0.62 -0.45 -0.59 -0.20 0.10 -0.18
PLCGI -0.45 -0.67 -0.69 -0.03 -0.17 -0.23
PLCG? 0.28 -0.75 -1.33 -0.58 0.56 0.48
MAPKI 0.05 0.07 -0.02 0.12 0.14 0.17
MAPK3 0.89 0.31 0.71 -0.10 0.50 0.4
MAPKS -0.62 -0.56 -0.39 0.41 -0.08 -0.03
PTAFR NA NA “1.29 -0.76 -1.52 -1.06
PTGDR NA NA NA -0.33 3.93 436
PTGER? 1.56 1.67 1.78 0.35 1.71 2.25
PTGER3 134 -1.46 -1.33 -0.05 -0.17 -0.17
PTGFR 2.06 1.85 1.64 -0.57 2.15 1.61
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PTGIR 0.35 0.94 1.29 243 4.20 4.74
PTGIS 0.28 1.09 0.35 -0.46 0.62 0.00
PTGS1 -0.46 -0.44 -1.08 -0.51 -0.74 -1.20
PTGS2 -0.75 -0.79 -0.70 0.64 -0.65 -0.13
TBXA2R -1.16 1.38 -1.03 -0.25 1.68 1.18
TBXASI -0.56 0.25 -0.47 0.15 -0.21 -0.73
INF 1.18 231 1.56 1.10 1.91 NA
INFRSFI4 0.19 0.01 -0.13 -0.03 0.47 0.41
TNFRSF1B 3.11 2.79 3.16 -0.45 3.37 2.79
VCAM1I 9.03 9.25 9.37 -1.22 7.28 6.17
ILIR? 2.61 3.10 0.58 0.26 -0.08 -0.22
PLA2G7 NA NA NA NA NA NA
PLA2G10 NA NA NA -0.32 NA NA
PLA2G4C 3.33 2.98 2.88 -1.51 2.22 1.16
ILIRLI 0.34 2.29 0.01 -0.30 2.20 1.64
HTR3B NA NA NA -2.11 NA NA
INFSF13B 4.34 4.40 4.68 -0.48 2.92 2.59
CYSLTRI NA NA NA 0.00 NA NA
HRH3 NA NA NA NA NA NA
PLA2G2D NA NA NA NA NA NA
ILIRAPL2 1.94 1.96 0.63 1.36 3.61 NA
KLKI14 -1.01 NA 0.69 -0.09 -1.26 NA
PLCEI 0.25 0.19 0.03 -0.25 0.17 -0.18
KLKI15 NA NA NA NA NA NA
LTB4R2 NA NA -0.64 -0.43 -0.42 -0.56

Table 3-8: LFC of treatments analyzed by inflammation qPCR array and context-
dependent RNA-seq analysis.

Three concentrations of inflammation (“Inf.””) were tested for expression of 96 genes in an
inflammation qPCR array. qPCR LFC reports the LFC measured for three treatments by the
qPCR array. A negative LFC indicates a decrease in expression compared to the housekeeping
controls and a positive LFC indicates an increase in expression compared to the housekeeping
controls. RNA-seq LFC reports the LFC for the three treatment conditions compared to the

untreated controls for genes also measured by qPCR array. A negative LFC indicates a decrease
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in expression compared to the untreated controls and a positive LFC indicates an increase in
expression compared to the untreated controls. “NA” indicates that expression was not

accurately measured for that condition.
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CHAPTER 4: SEX-BIASED CHROMATIN ACCESSIBILITY IN LIVER

Introduction

Genome-wide association studies (GWAS) have identified thousands of loci associated
with cardiometabolic traits, including loci with differential effects by sex>!:162-166 however
identifying the mechanisms at these loci remains challenging®*. The mechanisms remain
particularly challenging due to the large number of noncoding loci**. Many noncoding
cardiometabolic GWAS loci colocalize with expression quantitative trait (eQTL) loci in disease-
relevant tissues, suggesting a regulatory mechanism®!-62:6465 Active regulatory elements are
found in accessible regions of the genome?8, therefore chromatin accessibility profiles in disease-
relevant tissues and contexts will aid identification of regulatory elements that alter gene
expression to affect cardiometabolic traits.

Liver plays an important role in cardiometabolic traits through biological processes such
as lipid metabolism, drug metabolism, and glucose storage?®. Liver eQTL have been identified in
multiple studies, and a subset of liver eQTL colocalize with cardiometabolic trait loci®>¢7:167,
Liver QTL have been identified for histone markers of active regulatory regions such as
H3K27ac and H3K4me3!67 as well as for chromatin accessibility?® and a subset of QTL
colocalize with cardiometabolic trait loci. While some GWAS loci colocalize with QTL in
disease-relevant tissues, others only colocalize in disease-relevant contexts®®. Therefore, further
study of chromatin accessibility in disease-relevant contexts could identify additional regulatory

mechanisms.
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Sex is a disease-relevant context for cardiometabolic traits**26. Many cardiometabolic
diseases display sex differences in prevalence, including those in liver such as non-alcoholic
fatty liver disease (NAFLD), which is significantly more prevalent in men than in pre-
menopausal women?. Furthermore, sex differences in drug metabolism can impact treatment
and health outcomes for many cardiometabolic diseases?>16%16% Sex-stratified GWAS analyses
have identified traits demonstrating sexual dimorphism including seven loci for measures of
body fat distribution*” and 64 for blood lipids>!. Sex-biased gene expression has also been
identified in many tissues, including liver®>!7°, Sex-biased chromatin accessibility has been
identified in cell types such as peripheral blood mononuclear cells!”!. Analyses of sex-biased
chromatin accessibility compared to chromatin accessibility at the promoters of sex-biased genes
suggests that sex-biased genes are likely altered by distal regulatory elements!”?. Therefore,
identification of sex-biased chromatin accessibility may identify candidate regulatory elements
and those associated with cardiometabolic traits could reveal key mechanisms and improve
health outcomes.

Genetic and environmental factors can affect gene regulation and disease risk!”>.
Identification of chromatin accessibility in a large number of samples can capture more genetic
and environmental variation that contributes to disease risk. Environmental factors that can
introduce variability between samples includes age, drug use, disease, cause of death, and
hormonal statuses such as puberty and menopause. In this study, I used samples of liver tissue
from deceased organ donors not selected for any known disease. Only limited data was available

on environmental factors that could contribute to variability between samples.
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In this study we identified consensus chromatin accessibility in 139 human liver samples
and identified chromatin accessibility regions that differ between males and females. We linked

these regions of sex-biased chromatin accessibility to eQTL®? in liver and to GWAS traits**.

Results

Sex-biased liver chromatin accessibility identified candidate regulatory elements

We profiled chromatin accessibility using the Assay for Transposase Accessible
Chromatin (ATAC-seq) in human liver tissue samples from 93 male and 46 female organ donors
aged 2-81 years (Fig 4.1, Table 4.1) for which ATAC-seq data met sequencing quality thresholds
(Tables 4.2 and 4.3; Methods: TSS enrichment >= 4, percent reads in peaks >= 10). Each sample
was prepared in triplicate or quadruplicate libraries, and the best library, determined by highest
TSS enrichment, was used for analyses. The libraries had an average of ~54.5 million filtered
reads and demonstrated high quality in line with ENCODE standards’*7® with an average TSS
enrichment of 8.0 and an average percent reads in peaks of 30.0% (Table 4.1). Sex of genotype
data from the same samples was verified to match reported sex using PLINK!#2, all genotype
samples were found to correctly match to ATAC-seq profiles using verifyBamID!'7417° | and sex
of ATAC-seq profiles was further verified through inspection of Y chromosome signals (Fig
4.2). In the 139 samples, we identified 231,736 autosomal consensus liver tissue peaks by
merging genomic coordinates for peaks present in a liberal definition of at least 5% or more of
the samples (n>7). We also considered a more stringent set of 172,813 autosomal consensus liver
tissue peaks present in 10% or more of the samples (n>14) (Fig 4.1).

Principal component analysis (PCA) of the 5% consensus peak set showed that 19% of

variance was explained by PC1, which demonstrated moderate correlation with the data quality
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metric percent reads in peaks (Fig 4.3A, Pearson’s r= = 0.65). After adjusting for percent reads in
peaks, PC1 explained 11% of the variance and PC1’s highest, but modest correlation was with
TSS enrichment (Fig 4.3B, Pearson’s r* = (0.25). Based on these results, we decided to adjust for
percent reads in peaks in downstream analyses. Despite evidence that chromatin accessibility
differences can increase with age!’, we did not observe correlation with age and any of the top
five PCs (Pearson’s r* < 0.1, Fig 4.4B-F), therefore we decided not to adjust for age in
downstream analyses. Additionally, none of the top five PCs were highly corelated with reported
ancestry (Pearson’s r> < 0.1), therefore we decided not to adjust for ethnicity in downstream
analyses.

To predict regulatory elements in liver tissue that contribute to sex differences, hereafter
referred to as sex-biased peaks, we identified differentially accessible peaks between males and
females (log> fold change (LFC)>0; false discovery rate (FDR) < 5%; Table 4.4). We defined
male-biased peaks as peaks that are significantly more accessible in males compared to females
and female-biased peaks as peaks that are significantly more accessible in females compared to
males. Using the 10% consensus peaks adjusted for percent reads in peaks, we identified 774
sex-biased peaks (0.45% of 172,813 total peaks), including 384 male-biased and 390 female-
biased (Table 4.4, Fig 4.5). These 774 sex-biased peaks spanned all 22 autosomal chromosomes
(Table 4.5). We considered alternate thresholds of LFC and FDR. At a more stringent LFC
threshold (LFC > 1, FDR < 5%) we did not observe any significant results. Our maximum
significant LFC observed using the threshold LFC > 0 was 1.7, with an average significant LFC
of 0.5. These results indicate that these sex-biased peaks do not represent strong differences in
accessibility between sexes. Next, for comparison with a study on sex-biased chromatin

accessibility in peripheral blood mononuclear cells that identified 577 sex-biased regions (0.69%
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of tested regions)!”!, we applied a less stringent threshold (LFC > 0, FDR < 10%), and identified
a more comparable percent of tested peaks as sex biased (1300 autosomal sex-biased regions,
which represents 0.75% of our 172,813 tested regions). However, we proceeded with analyses
using the more stringent threshold (FDR < 5%) due to the weak effects at sex-biased peaks. We
observed similar numbers of significant results with the more liberal definition of consensus
peaks (5% consensus = 741, 10% consensus = 774; Table 4.4), 89% (662) of which overlapped
between analyses. Therefore, we used the 774 sex-biased peaks from the stringent definition of

consensus peaks adjusted for percent reads in peaks in our downstream analyses.

Linking sex-biased liver chromatin accessibility to genes

To link sex-biased peaks to genes, we identified sex-biased regions that overlap liver
eQTL signals®?, with a signal defined as all variants in high linkage disequilibrium with a lead
eQTL variant (methods, r* > 0.8). Of 774 sex-biased liver peaks, 71 overlapped a liver eQTL
signal linked to 81 unique genes (Table 4.5, Figure 4.6). These 71 peaks spanned an average
width of 1304 base pairs each, compared to an average of 998 base pairs each for the full set of
774 sex-biased peaks. An increase in average width of peaks overlapping a liver tissue eQTL
variant compared to the average width of sex-biased peaks could indicate increased risk of

variants overlapping a peak by chance.

Linking sex-biased liver chromatin accessibility to GWAS traits

To identify genetic variants that may have a sex-biased mechanism on disease traits, we
identified GWAS variants in high linkage disequilibrium with a lead GWAS variant (methods, r*

> (.8) that overlap a sex-biased peak. Of 774 sex-biased liver peaks, 71 overlapped a GWAS
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variant (Table 4.6, Figure 4.6). Of the 71 sex-biased peaks linked to a GWAS signal, 48 were
female-biased and 23 were male-biased. Of the 71 sex-biased peaks linked to a GWAS signal, 30
overlapped variants for cardiometabolic trait including 3 associated with diabetes, 5 associated
with body mass index, 3 associated with liver enzyme levels, and 5 associated with cholesterol.
Some of the sex-biased peaks were also associated with less obviously cardiometabolic but
potentially relevant traits such as lung function, that has been shown to be decreased in
individuals with metabolic syndrome!%*1%4, Of the 71 sex-biased peaks linked to a GWAS signal,
20 were also linked to 28 genes by liver eQTL. These 71 peaks spanned an average width of
1281 base pairs each, compared to an average of 998 base pairs each for the full set of 774 sex-
biased peaks and 992 base pairs for the full testing set of 172,813 consensus peaks. An increase
in average width of peaks overlapping a GWAS variant compared to the average width of sex-
biased peaks could indicate increased risk of variants overlapping a peak by chance.

At one sex-biased peak (peak1441) a female-biased peak overlapped variants
1512562207, rs12057175, and rs12057222 which are linked to differential expression of protein
kinase receptor EPHA2%% and gamma glutamyl transferase levels!”’, an important marker for
liver function (Figure 4.7). EPHA?2 has been linked to NAFLD!7®17°, A nearby peak at this locus

was also identified as a caQTL in liver tissue?.

Discussion

25-27 Tdentifying

Sex differences are known to influence disease risk and drug metabolism
mechanisms behind these sex differences could aid diagnosis and treatment to improve

healthcare. In this project, we profiled chromatin accessibility in 139 human liver samples and

among 172,813 consensus liver chromatin accessibility regions identified 774 regions of sex-
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biased chromatin accessibility between males and females. Of the 774 sex-biased regions we
identified, 390 were female-biased and 384 were male-biased, suggesting an even representation
of sex-biased traits in each direction. We linked these 774 sex-biased chromatin accessibility
regions to gene expression using eQTL and/or GWAS traits, including 24 regions linked to both
a gene and a trait. Of 71 sex-biased regions linked to GWAS traits, 30 peaks linked to
cardiometabolic traits including diabetes, cholesterol, and liver enzyme levels. Sex-biased gene
expression has been identified in liver tissue®? and we observed a sex-biased chromatin
accessibility region (peak19490) that overlapped a variant associated with sex-biased expression
(Table 4-6). This variant is associated with expression of HKDC1, a hexokinase protein with
known roles in glucose metabolism!®, and glycemic traits during pregnancy'®!. These sex-biased
chromatin accessibility regions are a resource that can guide future studies into the mechanism of
relevant cardiometabolic traits in liver.

Some limitations in the current study design can be addressed in future analyses. A larger
sample size would increase power to detect sex-biased chromatin accessibility. The subset of
liver samples for this study were chosen based on criteria of existing genotype and gene
expression data. However, the liver bank includes hundreds of additional tissue samples which
could be analyzed. The majority of samples in the current study were also of European ancestry,
and analyses did not consider ancestry, so sex-differential peaks that differ by ancestry may have
been missed. Samples selected in this study were also biased towards males (67%, Table 4-3),
which could limit our ability to detect differences (Table 4-4). Analyses also did not consider
differences due to disease status or body mass, for which data was missing for most samples.
Additionally, our samples ranged in age from 2-81 and age can play a role in chromatin

accessibility!’® through several mechanisms including changes in hormones?. Therefore, future
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studies could include age as a covariate or be performed on a subset of samples from a narrower
age range. Accounting for the effect of age could aid identification of sex-biased chromatin
accessibility due to hormonal changes. Also, while environmental variables such as age, drug
use, disease, cause of death, and hormonal status could affect chromatin accessibility, limited
data were available about these liver samples and organ donors used in this study. Due to this
limitation, we were not able to adjust for potential environmental sources of variation. We
recently obtained some additional data on known variables, such as known drug use which could
be used to adjust for or exclude individuals. Finally, liver tissue is heterogenous, and we would
have missed cell type-dependent differences in chromatin accessibility.

Although we identified a similar number of sex-biased peaks compared to other studies

of sex-biased chromatin accessibility!”!

, we identified few sex-biased peaks, and our sex-biased
peaks demonstrated small differences in LFC between sexes, which suggest weak sex-biased
chromatin accessibility differences. Weak identification of sex-biased regions could be due to
technical or biological reasons. Technical reasons that could lead to weak identification of sex-
biased regions are low power due to small sample size or insufficient sequencing depth. We have
additional samples available to increase sample size and additional libraries prepared that could
be combined to increase sequencing depth. I produced chromatin accessibility profiles in
triplicate for each liver sample but only used one library per sample for these initial analyses.
Future studies that combine reads from replicate libraries would improve sequencing depth and
power to detect sex-biased regions or other features such as chromatin accessibility QTL!32.
Some biological mechanisms of sex differences in traits include genetic differences due to sex

chromosomes, epigenetic differences, differences in gene regulation, differences in

environmental exposures, and differences in endogenous factors such as hormones?’. Sex-biased
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gene expression has been identified in liver tissue®? but we observed only one sex-biased
chromatin accessibility region (peak19490) that overlapped a variant associated with sex-biased
expression. It is possible that our sample set did not include individuals with environmental
exposures that cause differences in expression. Another possibility is that the age range and lack
of relevant phenotype data that could affect hormones such as pregnancy status for females could
have affected our power to detect differences due to hormonal factors.

The liver chromatin accessibility profiles and candidate sex-biased regulatory regions
identified in this study will be a useful resource for future studies in regulatory mechanisms of
disease in liver. Sex-biased chromatin accessibility regions could be tested for differences in
transcription factor binding site enrichment!**, which could help identify mechanisms of sex
differences. They can be used to identify regulatory elements that correspond to sex-specific
liver eQTL variants®?. Sex-biased chromatin accessibility could also more thoroughly be linked
to genes using additional datasets such as chromosome conformation capture profiles!83. Linking
regulatory elements to candidate genes remains challenging due to distances between noncoding
elements and genes>?, therefore linking a gene by multiple methods can increase confidence in
the association.

Due to the heterogeneity of liver tissue, these accessible chromatin regions reflect a
mixture of liver cell types!®4. Single nucleus chromatin accessibility and gene expression
profiling would also allow us to identify cell-type-specific regulatory elements and more
generally differentiate between regulatory mechanisms in different cell types within the tissue. I
have re-optimized nucleus isolation and we have started single nucleus multiomic chromatin
accessibility and gene expression profiling on a subset of 40 samples from the 139 samples

described in this study. Analyses of these data may identify additional cell-type-specific sex
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differences. In addition, the single nucleus data may prove useful as a reference for
deconvolution of cell type in other bulk liver tissue chromatin and gene expression studies.
Overall, these analyses show some promising initial results. They identify hundreds of
sex-biased regions that may help explain regulatory effects on gene expression. Future analyses
of these sex-biased regions could focus on genes that have shown sex-biased gene expression or
are known to be involved in response to sex hormones. Furthermore, these libraries can be used
to identify genetic variants that influence chromatin accessibility in a larger sample size than
previous studies?®. These liver chromatin accessibility profiles will be a valuable resource for

future studies on gene regulation in liver.

Methods
Liver tissue:

Human liver tissue was collected as previously described?®. Briefly tissue was collected
from deceased organ donors without known disease through the National Institutes of Health
Liver Tissue Cell Distribution System (LTCDS). Tissue was obtained from LTCDS and
approved for use in this study as non-human subjects research by the Institutional Review Boards
(IRBs) at St Jude Children’s Research Hospital (Memphis, TN) and the University of North
Carolina (Chapel Hill, NC). Tissue was flash frozen and stored at -80°C until use.

Ethnicity for samples was reported as “Black” or “White” at time of sample collection.

“Black” is here reported as African Ancestry (AFR) and “White” as European Ancestry (EUR).
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Nucleli isolation:

We isolated human liver tissue nuclei as previously described?®. All steps were
performed on ice unless otherwise stated. Briefly, we crushed 50-mg pieces of frozen sample in
liquid nitrogen using a Cell Crusher (CellCrusher, Cork Island), homogenized the sample in a 1
mL dounce for 40 strokes in nuclei isolation buffer (NIB: 20 mM Tris-HCI, 50 mM EDTA, 5
mM spermidine, 0.15 mM spermine, 0.1% mercaptoethanol, 40% glycerol, pH 7.5) and rotated
for 5 minutes at 4°C. We filtered the solution through a Miracloth (Calbiochem, San Diego, Ca

USA), centrifuged at 1100g for 10 minutes at 4°C, resuspended the pellet in 250 uL NIB

containing 0.5% Triton-X, centrifuged at 500g for 5 minutes at 4°C, and finally resuspended the
pellet in 250 uL of resuspension buffer (10 mM Tris-HCI, 10 mM NaCl, 3 mM MgCI2, pH 7.4).
We quantified nuclei concentration using a cell countess to aliquot 50,000 nuclei for each library

preparation.

ATAC-seq library preparation:

We profiled chromatin accessibility as previously described?® following the ATAC-seq
protocol®. An ATAC-seq library was prepared in triplicate or quadruplicate for each nuclei
isolation prep for a sample. Briefly, we used Nextera (Illumina) kits with SulL of Tn5 per library
and unique, dual-barcoded indices. We cleaned the Tn5 transposase reaction and final library
after PCR with Zymo DNA Clean and Concentrator (D4029). We visualized and quantified

libraries using TapeStation, and sequenced with paired-end reads on a Novaseq.
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ATAC-seq read alignment and peak calling:

We aligned ATAC-seq reads and called peaks as previously described®®. Briefly, we

t123

trimmed sequencing adapters using cutadapt'=’. We aligned trimmed reads to the hg19 human

genome!'?* using bowtie2!? and selected nuclear chromosomal alignments with mapg>20 using

samtools!'®

. We removed alignments overlapping high-signal regions (Duke excluded and
ENCODE/DAC exclusion list regions)!?¢ using BEDTools pairToBed!?’. We removed duplicate
alignments using Picard MarkDuplicates (https://github.com/broadinstitute/picard) and generated
ATAC-seq quality metrics using ataqv.!?® After filtering libraries retained 54.6 million reads on
average (Table 4.2). We trimmed alignments so their 5’ ends corresponded to the Tn5 binding
site (+4 for + strand alignments and -5 for — strand alignments)® and smoothed signal by
extending alignments 100 bp on either side of the Tn5 binding sites using BEDTools slop'?’.
We called peaks (FDR<5%) with MACS2!?° and generated ATAC-seq signal bigwig
files from MACS?2 bedGraph files using the bedGraphToBigWig tool from ucsctools'*?. We
verified that ATAC-seq libraries matched genotypes with verifyBamID!™* and verified that sex
based on genotype data matched reported sex with PLINK sex check!#?. We proceeded with

analysis on libraries that had TSS enrichment >= 4 and percent reads in peaks >= 10. The best

replicate, determined by highest TSS enrichment, was used for downstream analyses.

Identification of liver consensus and sex-biased peaks:

We generated a set of consensus liver peaks by merging peak genomic coordinates across
libraries using BEDTools merge!?’. We defined consensus peaks as merged peaks that
overlapped peaks in 5% or more of individual liver samples (at least 7 out of 139 samples). We

used all of the consensus peaks to test for sex-biased peaks. We quantified accessibility of
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consensus peaks using featureCounts'>'. We tested for differential chromatin accessibility using

DESeq2'*? and defined peaks with FDR < 5% and log fold change (LFC) > 0 as differentially

accessible or sex-biased.

Identification of genes linked to sex-biased peaks:

We linked sex-biased chromatin accessibility to genes using overlap with liver eQTL
variants. We identified sex-biased peaks that overlapped eQTL proxy variants (r>>0.8 with the
eQTL lead, 1000G phase 3 EUR LD calculated using SniPA!%%) using previously published liver
(n= 2.3 million) and sex-biased liver (n = 1,683) eQTL®? using BedTools'?’. We listed all eQTL

variants that intersected a peak.

Overlap of GWAS signals with sex-biased peaks:

We performed overlap of GWAS signals with sex-biased peaks as previously described®3.
Briefly, we downloaded the NHGRI-EBI GWAS catalog** on January 17, 2020 and lifted variant
positions from hg38 to hgl19 using pyliftover (https://github.com/konstantint/pyliftover), a
python implementation of the UCSC liftOver tool'*. We performed LD-clumping using swiss
(https://github.com/statgen/swiss)®!. We identified sex-biased peaks that overlapped GWAS
proxy variants (LD r>>0.8 with the signal lead variant, 1000G phase 3 EUR, calculated with

PLINK v1.9'%?) using BedTools!'?’.
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Figure 4.1: Genome-wide profiles of chromatin accessibility in human liver samples to
identify sex-biased peaks.

A. Schematic of experimental design. Human liver samples were obtained and ATAC-seq
profiles were generated. Consensus peaks (blue) were called in two sets; the first for peaks
present in 5% of total samples and a second for peaks present in 10% of total samples. We
identified sex-biased peaks (black bars) as differential peaks between male and female samples
(DeSEQ2, LFC > 0, FDR < 5%). Male-biased peaks were more accessible in males and female-
biased peaks were more accessible in females. B. Histogram plotting distribution of ages for 139
liver samples. The average age was 43 with a range of 2 to 81. Females are indicated in red and

males are indicated in blue.
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Figure 4.2: Peaks in sex chromosomes correspond with reported sex.

A. Chromatin accessibility profiles for two male samples and two female samples on the y
chromosome, showing lack of signal for the female samples. B. Chromatin accessibility profiles
for two male samples and two female samples on an autosome, showing comparable signal

between sexes.
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Figure 4.3: PCA of ATAC-seq read count within peaks for 139 liver samples.

A-D. Plot of PCA of ATAC-seq read counts within peaks for two sets of consensus peaks

showing variance between female (grey) and male (black) samples. European ancestry samples

(EUR) are represented by squares and African ancestry (AFR) samples are represented by

circles. A. PCA for unadjusted read counts for the 5% consensus peak set. B. PCA for read

counts within peaks adjusted for percent reads in peaks for the 5% consensus peak set. C. PCA

for unadjusted read counts for the 10% consensus peak set. D. PCA for read counts adjusted for

percent reads in peaks for the 10% consensus peak set. While there is not a clear separation by

sex, adjusting for percent reads in peaks reduced variance of PC1.
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Figure 4.4: Distribution of ages for 139 liver samples and correlation with first five
principal components.
B-F. Plot of age compared to principal components one through five with the Pearson’s

correlation (r?) with age for each. Females are indicated in red and males are indicated in blue.
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Figure 4.5: Distribution of LFC for female-biased and male-biased peaks.
Histogram of LFC showing the distribution of the 774 sex-biased peaks from the 10% consensus

peak set adjusted for percent reads in peaks for 93 male and 46 female samples. Female-biased

results “F” are shown in red and male-biased results “M” are shown in blue.
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Figure 4.6: Summary of sex-biased liver peaks linked to GWAS traits and differential gene
expression.
Flowchart identifying sex-biased peaks overlapping GWAS signals and linked to genes through

overlap with liver eQTL signals for the 10% consensus peak set.
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Figure 4.7: Sex-biased peak identified with variant associated with expression of EPHA?2
and levels of gamma glutamyl transferase levels.

Variants rs12562207, rs12057175, and rs12057222 overlap female-biased peak1441 (red) and
are linked to expression of protein kinase receptor EPHA2 and gamma glutamyl transferase
levels, an important marker for liver function. The blue consensus peak indicates a peak
identified as a chromatin accessibility QTL. H3K4me1 adult liver histone modifications (green)

from the Roadmap Epigenomics Consortium’’.
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Tables

Male Female Total
EUR 84 37 121
AFR 9 9 18
Total 93 46 139

Table 4-1: Sex and ethnicity demographics for 139 liver samples.
Counts of samples by sex and ancestry of the 139 liver samples donor. “AFR” indicates African

ancestry, “EUR” indicates European ancestry.
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Final Reads % Reads in TSS
Peaks BMI*
(million) Peaks Enrichment
Average 54.6 109,295 30.0 8.0 28
Std Dev +23.5 +24,727 +9.1 +24 +7.3
Minimum 34 38,442 10.6 4.0 13.1
Maximum 132.9 204,881 49.6 16.4 62.9

Table 4-2: Summary of ATAC-seq library and sample metrics for 139 samples.

Selected metrics summarizing 139 ATAC-seq libraries including the average, standard deviation
(Std Dev), minimum value, and maximum value. Final reads are the total reads used for peak
calling after quality filtering as described in the methods. *BMI metrics are calculated from 108

samples with a reported height and weight.
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Sample | Reads After % Reads TSS .

IDp Filtering Peaks in Peaks | Enrichment Ethnicity™ | Sex | Age | BMI

1 83,110,670 | 143,225 49.6 9.6 AFR M| 2 | NA
39 3,659,042 | 45,628 26.3 16.4 EUR M | 56 | NA
122 35,316,708 | 81,426 14.4 6.3 EUR M | 67 | NA
151 27,317,546 | 70,865 245 6.4 AFR M | 32 | 236
152 61,118,334 | 115,926 35.8 7.3 EUR F | 40 | 29.7
156 47,993,186 | 93,845 33.0 5.7 EUR M | 20 | NA
162 46,322,516 | 128,372 32.9 10.6 EUR M | 18 | NA
172 40,462,484 | 100,430 30.6 8.3 EUR M | 16 | 229
174 60,712,830 | 155,400 44.7 11.6 EUR F | 23 | 19.1
175 92,798,678 | 129,402 46.6 9.2 EUR M | 32 | NA
177 36,506,984 | 104,321 45.8 14.9 AFR M | 39 | NA
200 19,007,920 | 92,879 33.9 11.0 EUR F 2 | NA
201 35,895,952 | 116,545 41.2 15.0 EUR M| 6 | 147
204 42,132,022 | 84,934 26.6 8.5 EUR F 8 | 13.1
217 90,646,340 | 144,347 44.5 7.2 EUR M | 20 | 26.5
221 41,361,276 | 101,750 26.2 6.9 EUR M | 16 | 25.0
223 34,396,472 | 101,259 30.5 10.0 EUR M | 14 | 20.0
238 57,252,620 | 120,800 47.0 10.7 AFR F 4 | NA
253 50,314,904 | 106,720 10.6 7.2 AFR F | 45 | 299
323 79,198,844 | 119,175 16.6 6.0 EUR M | 43 | 41.1
325 22,614,520 | 78,468 19.2 5.8 EUR M | 60 | 22.8
331 34,464,376 | 80,345 27.0 6.7 EUR F | 62 | 264
332 63,360,300 | 115,477 32.7 6.0 EUR F | 65 | 30.0
333 46,138,582 | 98,274 34.8 6.7 EUR M | 59 | 22,6
334 84,483,840 | 126,616 36.9 5.7 EUR M | 63 | 347
335 57,827,568 | 111,423 32.6 5.5 EUR M | 36 | 283
336 57,705,794 | 89,233 18.5 5.2 EUR M | 70 | 37.9
337 34,809,246 | 75,511 15.3 5.2 EUR M | 34 | 308
340 28,935,678 | 101,961 25.5 10.8 EUR M | 52 | 323
342 23,837,186 | 89,849 29.4 6.2 EUR M | 43 | 30.7
343 36,775,276 | 88,069 14.8 8.9 EUR M | 35 | 20.8
344 62,041,426 | 136,413 37.6 7.1 EUR M | 63 | 322
345 28,652,532 | 84,098 333 8.6 EUR M | 60 | 344
346 33,009,090 | 106,232 41.3 9.0 EUR M | 24 | 29.8
347 61,150,678 | 116,838 36.4 94 EUR F 4 1153
348 70,080,502 | 119,641 30.2 6.8 EUR M | 43 | 225
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350 82,638,414 | 138,344 38.2 7.6 EUR F | 75 | 295
351 37,103,670 | 109,534 22.1 9.2 EUR M | 49 | 313
352 81,592,510 | 137,131 38.6 10.4 EUR M | 72 | 27.6
356 22,682,876 | 74,796 22.7 6.2 EUR M | 37 | 224
357 | 132,882,982 | 166,751 44.8 8.2 EUR M | 62 | 365
358 41,839,902 | 101,712 30.5 6.9 EUR M | 53 | 309
360 53,392,272 | 109,214 30.1 8.9 EUR M | 54 | 283
363 56,303,886 | 105,272 28.1 6.4 EUR M | 46 | NA
365 66,023,240 | 108,552 36.3 5.3 EUR M | 28 | 233
366 51,754,096 | 114,465 36.6 7.7 EUR F | 60 | 32.0
368 44,607,564 | 90,015 33.7 5.6 EUR F | 23 | 2211
369 51,491,458 | 98,725 259 6.9 EUR F | 66 | 27.5
372 48,285,422 | 55,946 10.8 4.0 EUR M | 37 | 285
374 3,379,040 | 38,442 16.4 9.5 EUR M| 72 | 269
378 75,803,202 | 133,963 46.3 6.6 EUR M | 81 | 243
381 29,042,412 | 92,597 12.3 7.7 EUR M| 14 | 164
382 45,904,450 | 123,506 47.6 11.3 EUR M | 56 | 25.8
383 67,613,438 | 141,478 31.9 9.3 EUR M | 61 | NA
387 31,334,274 | 123,808 37.7 13.6 EUR M | 66 | NA
390 69,212,094 | 119,608 21.4 6.3 EUR F | 59 | NA
399 56,580,292 | 100,640 26.2 6.6 EUR F | 22 | NA
401 106,697,692 | 133,718 41.4 6.9 EUR F | 33 | NA
403 28,404,136 | 83,751 21.1 6.6 EUR M | 73 | 20.6
414 62,360,206 | 89,341 14.4 7.5 EUR M | 29 | 135
418 44,828,962 | 131,689 41.3 8.5 EUR F 16 | 22.7
421 103,135,120 | 143,810 11.2 6.5 EUR M | 18 | 21.7
431 18,985,096 | 63,207 17.5 6.1 EUR M | 56 | NA
433 45,933,202 | 107,404 259 8.2 EUR M | 46 | 26.1
434 31,829,762 | 80,248 28.1 6.8 EUR M | 64 | 16.8
435 68,748,300 | 135,056 31.6 11.0 AFR F | 58 | 344
436 42,572,884 | 123,802 27.3 12.2 EUR F | 49 | 39.0
437 47,958,298 | 102,377 30.2 9.6 EUR F | 62 | 262
438 41,912,874 | 107,956 33.8 10.7 EUR F 7 | 159
439 58,914,314 | 117,278 32.1 7.2 EUR M | 48 | 36.1
440 34,128,294 | 78,069 15.5 6.9 AFR M | 29 | 422
444 61,146,302 | 78,739 12.7 5.6 EUR M | 12 | 18.1
450 76,951,990 | 140,264 34.8 8.2 EUR M | 40 | 354
457 63,917,430 | 119,942 36.3 7.8 AFR M | 13 | 344
458 49,174,114 | 101,455 18.6 6.6 AFR F | 27 | NA
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459 | 114,019,114 | 161,133 45.7 9.7 EUR F 17 | 22.7
465 34,431,392 | 95,559 18.4 9.8 EUR F | 61 | 33.1
469 82,834,156 | 112,936 36.7 6.1 EUR M | 28 | 26.6
470 51,107,544 | 102,920 25.1 7.4 EUR F | 68 | 29.1
476 72,139,166 | 135,136 31.8 8.2 EUR F | 66 | 303
479 50,608,338 | 106,898 335 8.6 AFR F | 57 | 22.0
480 82,639,252 | 117,893 44.9 7.9 AFR F | 51 | 233
484 76,648,838 | 122,164 40.5 6.8 EUR F | 34 | 329
485 74,296,956 | 146,982 43.9 10.6 EUR F | 50 | 27.5
489 | 105,903,992 | 115,920 21.4 5.1 EUR M | 28 | 244
492 57,221,890 | 90,513 20.9 5.3 AFR F | 63 | 233
493 73,027,038 | 122,655 19.3 6.7 EUR M | 63 | 258
617 53,948,340 | 120,890 35.9 6.5 EUR M | 16 | 23.0
618 20,483,848 | 90,432 34.8 14.1 EUR M | 56 | 25.1
619 33,611,144 | 80,894 21.3 5.9 EUR M | 55 | 312
620 60,269,378 | 115,560 38.6 7.6 AFR M | 43 | 155
623 34,551,396 | 121,255 34.6 12.0 EUR M | 13 | 322
627 31,016,478 | 92,507 28.9 8.0 EUR F | 74 | 22.7
629 28,399,842 | 91,515 30.5 7.8 EUR F | 50 | NA
630 45,074,214 | 131,871 334 10.6 EUR M | 45 | 348
631 37,282,718 | 87,286 31.1 5.6 EUR M | 65 | 27.8
632 47,378,534 | 119,922 29.4 9.1 EUR M | 54 | 26.8
633 27,736,278 | 73,166 22.8 5.6 EUR M | 15 | NA
634 48,409,990 | 98,097 20.1 7.8 EUR M | 60 | 25.8
636 44,239,748 | 103,233 23.8 6.5 EUR M | 47 | 334
639 63,864,848 | 124,149 35.2 8.4 EUR M | 60 | 26.1
644 54,209,058 | 107,970 46.5 12.2 EUR F | 60 | NA
649 31,203,188 | 104,351 27.9 5.6 EUR M | 22 | NA
657 63,241,484 | 123,262 36.1 9.7 EUR F 15 | NA
659 36,366,080 | 97,192 26.1 7.8 AFR M | 52 | 245
662 57,174,968 | 145,129 38.7 12.1 EUR F | 35 | 405
669 42,854,316 | 107,642 41.1 10.3 EUR F | 66 | NA
671 58,514,812 | 128,182 35.5 11.2 EUR F 3 NA
687 35,389,742 | 97,656 27.4 8.5 EUR M | 52 | NA
711 74,307,346 | 153,560 38.0 10.2 EUR M | 73 | NA
713 64,835,824 | 90,023 18.4 5.1 EUR M | 20 | 26.6
720 35,124,838 | 110,430 32.8 9.2 EUR M | 51 | 295
724 95,761,940 | 151,693 27.4 6.4 EUR M | 61 | 274
730 91,558,200 | 149,470 26.3 8.1 EUR M | 57 | 334
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733 67,290,698 | 109,691 34.9 6.2 EUR M | 49 | 38.0
741 114,020,806 | 138,741 28.7 5.8 EUR M | 68 | 221
744 30,070,406 | 96,191 22.9 6.6 EUR M | 22 | 22.0
750 68,163,608 | 105,316 29.2 7.2 EUR M | 50 | 239
751 46,770,746 | 86,383 26.8 4.5 EUR M| 19 | 271
753 82,061,212 | 134,963 40.7 9.6 EUR F 16 | NA
755 65,233,570 | 89,688 19.6 4.6 EUR F | 75 | 225
765 29,763,754 | 88,226 32.7 6.0 EUR M | 69 | 28.1
767 45,660,222 | 118,355 32.8 7.5 EUR F | 30 | 40.2
770 72,558,668 | 103,002 20.6 5.3 AFR M | 79 | 265
773 86,253,288 | 101,096 41.7 6.0 EUR F | 47 | NA
775 36,679,348 | 81,085 24.9 5.7 EUR M | 53 | 237
778 27,404,944 | 97,425 42.0 15.8 EUR M | 56 | NA
779 87,406,220 | 111,478 343 6.5 EUR F | 47 | 62.9
780 76,582,292 | 122,535 39.1 7.0 EUR M | 70 | 33.0
783 34,996,376 | 109,249 31.1 12.1 EUR M | 25 | 23.0
786 89,681,118 | 204,881 28.0 8.2 EUR M | 16 | 23.0
791 83,122,894 | 120,656 28.1 6.6 AFR F | 55 | 26.6
793 24,780,878 | 61,291 15.9 7.4 EUR F | 36 | 404
794 48,280,568 | 143,965 31.3 11.4 EUR M | 16 | 39.0
795 50,035,908 | 84,827 26.8 5.0 EUR M | 50 | NA
796 79,771,748 | 102,458 30.4 6.5 AFR M | 57 | NA
798 41,205,566 | 97,062 35.8 6.9 EUR M | 64 | NA
800 80,848,314 | 127,812 31.1 8.2 AFR F | 56 | NA

Table 4-3: ATAC-seq library metrics for 139 liver samples.

ATAC-seq libraries of 139 human liver samples used in these analyses with sequencing and
alignment metrics and sex, ethnicity, age, and BMI where known. In the Sex column “M”
indicates a male sample and “F” indicated a female sample. In the BMI column “NA” indicates

height and weight were not reported at sample collection.
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% Consensus Model Male-Biased Female-Biased | Total Sex-Biased
Unadjusted 1,396 1,379 2,775
5
Adjusted for PRiP 361 380 741
Unadjusted 1,386 1,391 2,777
10
Adjusted for PRiP 384 390 774

Table 4-4: Summary of identified sex-biased liver peaks.

Counts summarizing sex-biased peaks (DeSEQ2, LFC > 0, FDR < 5%), separated by male-
biased and female-biased for the liberal and stringent consensus peak sets that required a peak to
be present in 5% (n>7) or 10% (n>14) individuals, respectively. “PrIP” indicates percent reads in

peaks, a quality metric.
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Chromosome # Count
chrl 58
chr2 69
chr3 56
chr4 56
chr5 47
chr6 50
chr7 43
chr8 42
chr9 29

chr10 34
chrll 35
chrl2 45
chrl3 23
chrl4 35
chrl5 22
chrl6 23
chrl7 12
chrl8 37
chrl9 15
chr20 23
chr21 11
chr22 9

Table 4-5: Summary of counts of sex-biased liver peaks by chromosome.
Counts summarizing sex-biased peaks, separated by chromosome. “Chromosome #” indicates
the chromosome being counted. “Count” indicates the total number of significant peaks located

on that chromosome.
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Table 4-6: Liver eQTL overlap with sex-biased peaks.

List of liver eQTL variants overlapping a sex-biased liver peak. 71 unique sex-biased peaks link
to 81 unique genes. “Sex-Biased Peak ID” is a unique peak identifier. An “*” after the peak ID
indicates that the eQTL signal was sex-biased. “Chr”, “Start position”, and “Stop position”
identify the chromosome coordinates of the peak. “LFC” reports the log fold change for the sex-
biased peak. “Sex-bias” identifies direction of the sex-biased peak where “M>F" indicates male-
biased peaks and “F>M” indicates female-biased peaks. “Q-Value” reports the FDR-adjusted p-
value. “Proxy rsID” reports the eQTL variant located within the peak. “r?” reports the linkage
disequilibrium between the proxy and lead variant at the eQTL signal, based on 1000 Genomes
European reference. “Allele” reports the allele at the proxy variant in the format “major/minor”.
“Gene” reports the differentially expressed gene corresponding to the eQTL signal. “GWAS
Overlap” reports whether the peak also overlaps a variant associated with a GWAS trait from

Table 4-7.
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Table 4-7: GWAS variants overlapping sex-biased peaks.

List of GWAS variants overlapping a sex-biased liver peak. 71 sex-biased peaks overlap a
GWAS signal. “Sex-Biased Peak ID” is a unique peak identifier. “Chr”, “Start position”, and
“Stop position” identify the hg19 chromosome coordinates of the peak. “Sex-bias” identifies
direction of the sex-biased peak where “M>F" indicates male-biased peaks and “F>M” indicates
female-biased peaks. “LFC” reports the log fold change for the sex-biased peak. “Q-Value”
reports the FDR adjusted p-value. “Proxy rsID” reports the variant within the peak. “Proxy
Variant Allele” reports the allele at the lead and proxy variant in the format “Lead major Proxy
major/Lead minor Proxy minor”. “r*” reports the linkage disequilibrium between the proxy and
lead variants. “Significant Traits” reports the traits associated with the signal. “eQTL Overlap”

reports the gene(s) associated if a liver eQTL variant was also identified within the indicated

peak. “NA” indicates no eQTL overlap at the indicated peak
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CHAPTER 5: DISCUSSION
GWAS have identified thousands of loci associated with cardiometabolic traits**.
However, GWAS associations do not identify the mechanisms at these largely noncoding loci,
including which variants and genes are involved, which cell types and contexts they are active in,
and the molecular mechanisms of the functional variants®®. Noncoding GWAS loci can have
regulatory mechanisms that can be studied by profiling chromatin accessibility and linking
accessible regions to genes>®. These regulatory mechanisms can be cell type- and context-

dependent58,68,76,l 18

. Therefore, identification of regulatory elements in disease-relevant cell types
and contexts can aid identification of the regulatory mechanisms. Furthermore, identification of
cell type- and context-dependent genetic effects can inform treatment for cardiometabolic traits.

In this dissertation, I identified and described regulatory mechanisms in cardiometabolic
disease-relevant tissues, cell types, and contexts. I profiled chromatin accessibility in adipose
tissue, adipocytes under several cardiometabolic disease-relevant contexts, and liver tissue.
Despite many challenges of working with high lipid adipose tissue, Chapter 2 describes a
consensus human adipose chromatin accessibility map from 11 individuals, one of the largest
human adipose sample sizes to date. In the SGBS adipocyte cell model, Chapter 2 describes
regions of context-dependent chromatin accessibility during adipocyte differentiation, links of
these candidate regulatory elements to genes and traits, and allele- and context-dependent effects
of elements on transcriptional activity. I also investigated context-dependent chromatin

accessibility of other disease-relevant contexts: exposure to excess lipids, hypoxia, and

inflammation, described in Chapter 3. Finally, in Chapter 4, I described sex-biased chromatin
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accessibility in 139 human liver tissue samples. The work in this dissertation identifies hundreds
of candidate regulatory mechanisms for noncoding GWAS loci. Furthermore, these chromatin
accessibility profiles in disease-relevant tissues, cell types, and contexts will be an excellent
resource for future work on elucidating regulatory mechanisms of disease.

I studied chromatin accessibility and regulatory mechanisms in both human adipose
tissues and a human adipocyte cell model. There are advantages and disadvantages to each
approach. While adipocytes are a major component cell type of adipose tissue, chromatin
accessibility from adipose tissue may better capture regulatory elements relevant to adipose
biology and disease compared to adipocytes from a cell model. This can be seen in our
enrichment analyses in Chapter 2 (Fig 2.3), where adipose peaks are enriched for additional traits
such as triglycerides and HDL-cholesterol compared to preadipocyte and adipocyte context-
dependent peaks. Furthermore, chromatin accessibility in adipose tissue can be assayed across
many individuals to capture more genetic and environmental variation.

Obtaining quality chromatin accessibility in adipose tissue across many individuals
proved challenging. I planned to profile chromatin accessibility in ~400 adipose samples
available from the METSIM study'>. An advantage of the METSIM study is that individuals
have genotype, gene expression, and cardiometabolic trait phenotyping!>-61:631561.65 "however the
individuals are all Finnish males, which limits genetic diversity. When initial chromatin
accessibility profiles demonstrated inconsistent quality, I tested many factors to optimize nuclei
isolation and ATAC-seq library preparation from frozen adipose tissue including buffers,
detergents, filtering steps, transposase Tn5-to-nuclei ratio, and the Omni ATAC-seq protocol®.
After optimization, we produced a consensus map of human adipose chromatin accessibility

from 11 individuals, however the quality remained inconsistent enough to proceed with the
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larger sample set. Based on my experience with optimizing chromatin accessibility profiling in
frozen adipose tissue, I suspect that the lipid content adversely affects the nuclei isolation and/or
library preparation or that the freezing protocol adversely affected the chromatin structure.
Evidence to support the lipid content adversely affecting the library preparation includes that
data from mature adipocytes of the cell model were less consistent in quality than data from
preadipocytes and that adipose tissue samples from a separate source with a different freezing
protocol also showed inconsistent quality. Inconsistent quality of chromatin accessibility
libraries in our mature adipocytes contributed to difficulties in identifying context-dependent
regulatory elements due to additional disease-relevant contexts such as free fatty acids, hypoxia,
and inflammation described in Chapter 3. Future testing of fresh adipose tissue or adipocytes
could help identify the cause of the inconsistent quality. While chromatin accessibility profiling
in adipose tissue proved challenging, producing maps in larger sample sizes will capture
additional genetic and environmental variation. The 11-sample consensus map we developed
represents more genetic diversity than any existing adipose dataset.

Adipocyte cell models are also useful for studying regulatory mechanisms of disease
because they can provide a consistent genetic background to compare changes due to
environmental perturbation. Adipose tissue is heterogenous and composed of many cell types,
including preadipocytes and adipocytes'!, but regulatory mechanisms can act in cell type- and
context-dependent manners®®%118, Therefore, profiling chromatin accessibility in relevant cell
types and contexts can identify context-dependent regulatory mechanisms that could be missed
in heterogenous tissue samples that may lack relevant context. Chapter 2 described regulatory
mechanisms of disease in adipocyte-dependent regions. Our functional tests of variants at two

loci (SCD and EYA2) showed context-dependent regulatory mechanisms and identified allele-
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and context-dependent transcriptional effects at the SCD locus. The results at EYA2 were more
complex, as we identified both a context-dependent regulatory element and an element only
present in adipose tissue. We tested both elements and only identified allele-dependent
transcriptional effects at the adipose tissue element. This result demonstrates that, while context-
dependent regulatory elements can identify molecular mechanisms at GWAS loci, the identified
variant may not be causal and other mechanisms or contexts may be involved. Another
possibility is that allelic effects on transcriptional activity for the context-dependent region were
not detectable in our in vitro reporter assay. Additionally, this result demonstrates the utility of
our consensus adipose map, which may better represent biologically-relevant regulatory
elements.

Future work on elucidating the molecular mechanisms at these and other loci we
identified in Chapter 2 could include performing additional assays in adipocytes, such as
electrophoretic mobility shift assays to detect differential binding of alleles to nuclear proteins
and transcription factors>*%4, ChIP-seq to identify which transcription factors bind to context-

53,186
3

dependent regulatory elements or allelic differences in transcription factor binding or

CRISPR-Cas9 to delete or inactivate the regulatory region or create an alternate allele>*!37-189 n
Chapter 2, we used HOMER! to identify transcription factor binding motifs enriched in
context-dependent regulatory elements, a computational method that could also be applied to
other contexts such as sex-biased chromatin accessibility in liver. Finally, while individually
functionally testing candidate regulatory mechanisms allows for accurate evaluation, assays such

as massively parallel reporter assays would allow high-throughput testing of many candidate

regulatory elements in a single experiment>*!1:192, Together, these assays can be used to test
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additional predictions from our analyses to identify many more regulatory mechanisms of
disease.

While cell models are useful for studying effects against a consistent genetic background
in a controlled environment, cell models have some disadvantages. The consistent genetic
background that simplifies many studies hinders the ability to identify interactions between
genetic variation and environment. For example, in Chapter 2 we identified allelic imbalance in
adipocyte chromatin accessibility. One limitation of allelic imbalance in our adipocyte cell
model is that we could only test for allelic imbalance at heterozygous sites within the one
individual with SGBS from whom the cells were derived. Allelic imbalance testing in a larger
sample size would likely identify additional significant imbalances because more heterozygous
sites are available to test, more sequencing reads exist at any given site, and imbalances can be
validated across individuals. One approach to overcome the disadvantages of using a single cell
model would be to use multiple cell lines in a model such as induced pluripotent stem cells
derived from multiple individuals, which would allow diverse genetic backgrounds to be
tested®® 117118 Another approach to study different cell types against diverse genetic backgrounds
is to perform single nucleus sequencing strategies on tissue from multiple samples. Single
nucleus ATAC-seq and RNA-seq can be performed tissue to resolve issues with heterogeneity
and study the cell type-specific regulatory landscape!®*~13, Another disadvantage is that aspects
of cell models are not biologically relevant. For example, I used SGBS adipocytes because they
are mostly diploid, however, they grow in cell culture because they were derived from an
individual with a disease state that causes adipocyte overgrowth??. Additionally, growing cells in
culture can introduce changes due to the artificial environment. For these reasons, it is important

to build resources such as our consensus map of adipose tissue chromatin accessibility, which
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can help identify regions that are more likely to be biologically relevant. We mitigated the
limitation of using an adipocyte cell model with one genetic background by identifying
consensus adipose chromatin accessibility from 11 individuals.

In addition to studies of adipose and adipocytes in a disease-relevant context, I studied
regulatory elements in human liver tissue that are biased between males and females. Sex is a
relevant context to cardiometabolic disease that contributes to differences in disease risk and
response to treatment?>*26, In Chapter 4, we profiled chromatin accessibility in 139 human liver
samples and identified 774 autosomal sex-biased regions (LFC > 0, FDR < 5%) that
demonstrated significant differences between males and females. The average LFC of these sex-
biased regions is 0.5, suggesting that these are modest differences between males and females.
When we applied a less stringent threshold (LFC > 0, FDR < 10%), selected to match a sex-
biased chromatin accessibility study in peripheral blood mononuclear cells that had identified
577 sex-biased regions (0.69% of tested regions)!’!, we identified a comparable number of 1300
autosomal sex-biased regions, which represents 0.75% of tested regions. We linked the sex-
biased regions to genes using existing liver eQTL data®? and to disease traits using the GWAS
catalog*. Additional lines of evidence could be used to link sex-biased regulatory elements to
genes in future work, including chromosome conformation capture profiles. Future work would
also include functional testing of candidate regulatory elements using methods such as those
discussed in Chapter 2°3. While our liver samples have existing genotype and gene expression
data®? and represent a mix of sexes and ancestries that can capture additional genetic and
environmental variation, we have limited phenotype data on the donor individuals, which could
limit identifying associations between regulatory elements and traits. However, these liver

chromatin accessibility profiles represent a valuable resource that can be used for future studies
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such as identifying genetic variants that alter chromatin accessibility through colocalization of
eQTL and GWAS data?8,

Identifying molecular mechanisms at GWAS loci remains complex. The work presented
in this dissertation contributes to the understanding of how genetic variation and cellular context
contribute to cardiometabolic traits. I produced chromatin accessibility maps for a variety of
tissues and adipocytes in multiple cellular contexts. I used these chromatin accessibility maps to
predict candidate functional variants and regulatory mechanisms. At specific loci, we used these
predictions to identify allelic differences in transcriptional activity. Furthermore, these chromatin
accessibility profiles will be a useful resource for future work on identifying regulatory
mechanisms of GWAS loci. Identifying genetic variants that alter gene expression to contribute
to disease can identify drug targets and the direction of effect to increase or lower activity to treat
disease. Although functional testing is needed, some of the candidate variants identified in these
studies could identify individuals at higher risk of cardiometabolic disease or individuals who

may respond better to specific treatments.
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