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ABSTRACT

Ai Ye: Can We Distinguish Between Different Longitudinal Models for
Estimating Nonlinear Trajectories?

(Under the direction of Kenneth A. Bollen)

Substantive theory rarely provides specific enough information to guide our selection of the

optimal model for longitudinal data. Instead, researchers are more likely to rely on models common

to their field, even if it is not appropriate. The purpose of our study is to assess whether researchers

can use overall goodness of fit measures from structural equation models to correctly find the data

generating model (DGM) from among a broad set of different longitudinal models. I use four

different DGM adapted from published empirical studies. We compare goodness-of-fit statistics (e.g.,

p-value, CFI, RMSEA, etc.) of the DGM with those of six alternative models. Overall, the BIC

performed best in selecting the DGM, though no fit statistic was flawless. In the absence of

substantive theory, I recommend that researchers begin with the most general longitudinal model

and test whether it can be simplified by eliminating parameters.
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CHAPTER 1

INTRODUCTION

Longitudinal panel data consists of repeated measures for the same variables on the same cases

over time. Such data have been widely used in many research areas across education, psychology,

behavioral and social sciences. A primary interest of researchers when analyzing longitudinal data

are the characteristics of change in the repeatedly measured variables. The shape, rate, or pattern

of such change indicates the nature of the developmental processes in the outcome of interest. In the

longitudinal data analysis, many studies have aimed to optimally model the overall shape of the

growth trajectories for all subjects based on the hypothesized model (Blozis, 2007; Duncan et al.,

1994; Hancock & Lawrence, 2006). Model choice is indeed crucial, because the fitted model with the

corresponding set of parameter estimates recovers the growth pattern, which in turn represent the

substantive theory that is initially ambiguous. However, the conundrum lies in the fact that there

usually is a lack of substantive theory to dictate a particular form of growth model that can guide

the selection of the optimal statistical model to fit the data. When this is the case, researchers may

use exploratory approach to search for the optimal growth shape informed by their data. However,

this data-driven approach poses many challenges to researchers and it often requires both advanced

training in the statistical methodology and knowledge in the substantive area of interest. In

addition, we do not know whether different longitudinal models can be distinguished from each

other. If a wrong model is chosen, the model-implied trajectory could be misleading. Given its

importance, the purpose of the present study is to investigate to what extent the optimal

longitudinal model can be distinguished from alternative ones in the absent of theoretical

hypotheses by using goodness-of-fit statistics and parameter estimates. The present study examines

several longitudinal models with different ways of capturing nonlinear trends. Towards this

overarching goal, the study is structured as below. This section is followed by a brief review of the

longitudinal models under investigation. Following this are sections on current practice and the

challenges of selecting optimal longitudinal models, and previous examinations of longitudinal
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models. The next sections present the goals of the study, the simulation design, and the analytical

procedures. Finally, descriptions of three empirical studies used for data generation are provided.

1.1 Review of Longitudinal Models

In psychology, two common approaches are considered to analyze panel data. The first is the

quasi-simplex model or the autoregressive model (AR). AR model has deep roots in both the social

science literature and in econometrics research (Anderson, 1960; Duncan, 1969; Humphreys, 1960;

Kessler & Greenberg, 1981; Rogosa & Willett, 1985). It can be easily extended to a broader family

of time series models called the Autoregressive Integrated Moving Average models (ARIMA;

Hamilton, 1994). A second approach is the latent growth curve or latent trajectory model (LGCM).

Though these models have a long history, my focus is on LGCM as developed in social and

behavioral sciences under the latent variable framework

There are of course other model choices for longitudinal data which overlap with these two basic

forms or have some combined features thereof. Just to list a few, latent curve model with structured

residuals (Curran et al., 2014), latent dual change score models (Ghisletta & McArdle, 2001;

McArdle, 2001; McArdle, 2009), latent state trait models with or without autoregressive

components (Cole et al., 2005; Kenny & Zautra, 2001; Steyer et al., 1992; Steyer & Schmitt, 1994),

a general panel model that combines fixed effects and random effects models with autoregressive

outcome variables (Bollen & Brand, 2010; Wooldridge, 2002), and growth curve models with

autoregressive disturbances (Azzalini, 1987; Chi & Reinsel, 1989; Goldstein et al., 1994), etc. Many

of these models are proposed under different scenarios, some fully or partially nested within others.

This became clear with the development of the Autoregressive Latent Trajectory (ALT) that

directly synthesize AR and LGCM, and demonstrated that many of these models are special cases

(i.e., restricted forms) of the ALT model (Bollen & Curran, 1999, 2004; Curran & Bollen, 1999,

2001). In what follows, I provide the equations and path diagrams for each of these three

longitudinal models, autoregressive, together with its multivariate case autoregressive cross-lagged

model, latent growth curve model, and autoregressive latent trajectory model.

1.1.1 Autoregressive Cross-Lagged Model (AR-CL)

A defining feature of the AR model is that current observation yit for person i at time t is

determined by the previous values of the same variable yi,t−1 also known as the âlaggedâ effect. The
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Figure 1.1: Path Diagram of An AR(1) Model over Five Waves

lagged effect is weaker among observations with increasing time lapse because the correlation

between two observations typically becomes smaller as they get further apart in time (Guttman,

1954). Usually, a lag-1 assumption is imposed, in which only the first order of lagged effect (i.e., the

effect from the adjacent time point) is considered, the score can be partially determined given the

previous score. The lagged variable can be easily generalized to latent variables with multiple

indicators. Alternatively, a univariate AR model can also be extended to a multivariable case in

which one variable might have a lagged effect on other variable(s) net of the AR process within

itself, called âcrossed-lagged (CL)â effects. In other words, an AR-CL model allows us to

deliberately consider potential bidirectional relationships between two constructs over multiple time

points. It does so by a simultaneous examination of longitudinal influences of one variable over

another variable and vice versa, while also controlling for concurrent correlations between variables

along with the stability of each variable over time (Bollen & Curran, 2006; Selig & Little, 2012).

Figure 1.1 shows an example of AR(1) model of repeated measures over five waves with

order-one lagged effect ρt,t−1. Note that this AR(1) lagged coefficient can vary across time (i.e.,

time-specific) but there is no subscript of person i, indicating homogeneous effect across individuals.

The fact that either the AR or CL effects are invariant across individuals in the sample suggests

that lagged relations focus exclusively on within-person changes over time. It is the observed score

for each individual in conjunction with the AR or CL coefficient that predicts the next value for

that individual. Comparisons across individuals can occur by knowing the different AR and CL

values of different individuals. In addition, since AR model does not use any time metric to explain

the longitudinal dependency, no individual trajectory with an explicit form or shape is modeled. In

other words, the patterns of change and shape of trajectory, whether linear or nonlinear, is inherent

within the AR process. Trajectories are predicted by knowing the coefficients and the values of the

variables for an individual.

Suppose yit is a repeated measure for person i at time j, where i = 1, ..., N ; t = 2, ..T , the
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Equation for the simplex AR(1) model is

yit = αt + ρt,t−1yi,t−1 + ϵit (1.1)

in which ρt,t−1 is the first-order or lag-1 autoregressive coefficient at time t, αt is the time-specific

intercept term and ϵit is the residual term for person i at time t. Assumptions in this equation are:

for ∀i and ∀t, E(ϵit) = 0, Cov(ϵit, yi,t−1) = 0; Cov(ϵit, ϵjt) = 0∀t and i ̸= j, and Cov(ϵit, ϵjt) = σ2
ϵt

for ∀t and i = j; and nonautocorrelated disturbance Cov(ϵit, ϵj,t+k) = 0 for ∀k ̸= 0.

1.1.2 Latent Growth Curve Model (LGCM)

In contrast to AR-CL model where the change over time is modeled as each variable depending

uniformly on its prior observation rather than having an explicit form of time variable, the LGCM

focuses on individual trajectories as a function of time for repeated measures (Bollen & Curran,

2004, 2006; Meredith, 1984; Meredith & Tisak, 1990). Each case in the sample is modeled as an

individual trend of change dictated by latent growth factors such as an intercept and a slope in a

linear case. The LGCM has been increasingly popular in longitudinal studies because it has

attractive property that it shows the inter-individual differences in their intra-individual trajectories

over time (Duncan et al., 2013; Meredith & Tisak, 1990; Preacher et al., 2008). Three major types

of parameters are estimated to realize that goal: the mean parameters of growth factors dictate the

averaged shape of trajectory from the sample, the variance parameters of growth factors represent

the variability of individual trajectories around that mean curve, and finally, the covariance

parameters of the growth factors reveal the relationship between growth factors. An added

advantage of LGCM is the capability to easily incorporate covariates that might explain

between-person variabilities in their growth trajectories. Readers interested in fitting an

unconditional and conditional LGCM may refer to Bollen and Curran (2006) for more illustrations.

In a univariate unconditional linear LGCM Latent Growth Curve Model

yit = αi + Λt2βi + ϵit (1.2)

where αi is the random intercept for person i (different from the intercept term αt in the previous
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Figure 1.2: Path Diagram of A Linear LGCM over Five Waves

AR model), and βi is the random slope for person i, so that

αi = µα + ζαi

βi = µβ + ζβi

where µα and µβ are the mean intercept and slope across all cases. The ζαi and ζβi are residuals

with means of zero and uncorrelated with ϵit.

We assume that E(ϵit) = 0 for ∀i and ∀t, Cov(ϵit, βi) = 0 and Cov(ϵit, αi) = 0 for ∀i and

t = 2, 3, ..., T ; Cov(ϵit, ϵjt) = 0 for ∀t and i ̸= j, and Cov(ϵit, ϵjt) = σ2
ϵt for ∀t and i = j; and

nonautocorrelated disturbance Cov(ϵit, ϵi,t+k) = 0 for ∀k ̸= 0.

Under the framework of structural equation models (SEM), a LGCM can be specified as a

polynomial function of repeatedly measured outcome regressed on a time variable. With the initial

level and the rate of change (i.e., the intercept and slope of the growth line, respectively) being the

latent factor of the SEM, the factor loadings with fixed values represent the value of time (see

Figure 1.2). Such linear LGCM can be easily extended to a nonlinear LGCM by incorporating

higher-order power functions (e.g., cubic) to represent the nonlinear characteristic of the trajectory

over time. For example, in a quadratic term, a curvilinear trend is modeled as a product of a

quadratic latent factor and a second-order time metric as its factor loading (see Figure 1.3).

In a univariate unconditional LGCM with a Quadratic term

yit = αi + Λt2βi + Λt3β
2
i + ϵit (1.3)
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Figure 1.3: Path Diagram of An LGCM with A Quadratic Term over Five Waves

Figure 1.4: Path Diagram of An LGCM with Freed Loading over Five Waves

where Λtp is the factor loading for each moment of latent variable, the values in Λtp allow the

incorporation of the shape (linear or nonlinear) of trajectories, αi is the random intercept for person

i, βi is the random slope for person i, and β2
i is the random quadratic term for person i, and that

αi = µα + ζαi

βi = µβ + ζβi

β2
i = µβ2 + ζβ2i

Note that the trajectory model can be extended in several ways to allow for alternative form of

nonlinear patterns of change. For example, Meredith and Tisak (1984, 1990) proposed the

latent-basis (“freed loading") LGC model where the curvilinear trajectories modeled by freeing one

or more factor loadings. This way, nonlinear patterns are accommodated by retaining the basic form

of the model above but estimating all but two of the factor loadings for the slope factor (typically
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the first two or the first and last), rather than fixing these to linearly or nonlinearly increasing

values (see Figure 1.4). The freed loadings allows for flexible forms as a type of nonlinear âsplineâ

that best fits the data between any two time points. A more general form of using the concept of

âsplineâ is what is known as piecewise linear growth models using two or more linear piecewise

splines, developed under the mixed modeling framework (Raudenbush & Bryk, 2002). The general

idea is to break the full range of the time period into a number of pieces using deterministic knots,

and fit a regular linear LGCM to each piece of trajectory. The selection of knots often carry

subjective, transitional meaning and can sometimes vary randomly across individuals. Yet there

exists other functional forms of nonlinear curves, such as random curve models with complex error

structures (e.g., Cudeck & Harring, 2007; Diggle et al., 1994). But these are less commonly used due

to the difficulty to incorporate in SEM (McArdle, 2001), and hence these are not included in the

current investigation.

1.1.3 Autoregressive Latent Trajectory Model (ALT)

In earlier literature, AR-CL and the LGCM were considered competing techniques for the

analysis of panel data (Mandys et al., 1994; Rogosa & Willett, 1985), but an increasing number of

studies have suggested that this is not necessarily the case (Bollen & Curran, 2004; Curran &

Bollen, 1999; Ou et al., 2017). Instead of being mutually exclusive, these two models simply uses

different functional forms relying on their corresponding assumptions to capture developmental

processes of distinct yet perhaps overlapping nature. A hybrid model that synthesizes these two

models is first proposed by Bollen and Curran (Bollen & Curran, 1999, 2004; Curran & Bollen, 1999,

2001), and the authors later formally introduced it in published journal (Bollen & Curran, 2004)

and book (Bollen & Curran, 2006), calling it the Autoregressive Latent Trajectory (ALT) model.

Bollen and Curran (2004) demonstrated that the AR-CL model and the LGCM are special cases of

the ALT model, but the latter inherits the appealing characteristics of both more restrictive models.

Specifically, the ALT model processes the AR modelâs ability to include the prediction from the

prior knowledge of a variable to its current value (and previous knowledge of another measure in a

multivariate case, i.e., AR-CL model), it also shares the property with the LGCM that individual

variability is allowed via the random coefficients governing the trajectory process (rather than

assuming that all are governed by the same process in the same manner). By incorporating AR

process and LGCM, the ALT model leads to a flexible, hybrid model. As such, researchers can
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Figure 1.5: Path Diagram of A Linear ALT over Five Waves

compare the ALT model to alternative models or reduced it to more restricted forms in the

evaluation of the optimal model that describes a data set (Bollen & Curran, 2004). To overcome

complications or avoid nonlinear constraints to the model to estimate for the first wave of data, the

simplest is to consider the first repeated measure as predetermined (or "exogenous"). Because ALT

is a synthesized model of AR and LGCM, nonlinearity trend could be modeled in the same way as it

is in LGCM, that is, either as a quadratic term of a polynomial function, or in a freed loading form

(Bauldry & Bollen, 2018).

In a Linear ALT

yit = αi + Λt2βi + ρt,t−1yi,t−1 + ϵit (1.4)

All assumptions made for the AR(1) and LGCM model apply to the ALT model. The random

intercept and slope factors can be expressed the same, but they are net the lagged time-specific

effects in an ALT model.

We usually treat yi1 as predetermined, and thus:

yi1 = ν1 + ϵi1

where the predetermined yi1 correlates with αi and βi.

The ALT model can not be identified if the first measure is treated the same way as it is in a

LGCM, after the AR is incorporated in the model. The variable measured at the first time point is

predetermined, the model needs to be âstarted upâ. There are different ways to start up the model,

one way illustrated by Bollen and Curran (2004) is the predetermined ALT in which the first
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Figure 1.6: Path Diagram of An ALT with Quadratic Term over Five Waves

measure is treated as predetermined ("exogenous") and correlated with the LGC growth factors.

Other specifications such as adding nonlinear constraints on the first measure are available (Bollen

& Curran, 2004). Studies have explicitly examined what they call the âinitial condition specification

(ICS)â under a variety of contexts, such as the ALT (Ou et al., 2017), space-state (Harvey, 1991;

Jong, 1991), as well as time series models in SEM (du Toit & Browne, 2007). To keep the scope

simple and be consistent with the majority of the literature, the current investigation uses the

predetermined ALT.

In a Quadratic ALT

yit = αi + Λt2βi + Λt3β
2
i + ρt,t−1yi,t−1 + ϵit (1.5)

Recent work has also extended ALT to nonlinear ALT (NL-ALT; Bauldry & Bollen, 2018) and

to a yet more general framework of what is called the latent variable ALT (LV-ALT; Bianconcini,

2012). The NL-ALT incorporates nonlinear functions within the LCM component, i.e., as

polynomial term or latent basis (freed loadings for slope factor). The LV-ALT is a generalization of

the traditional ALT that models the two components of change on repeated latent factors instead of

observed variables directly, and the inclusion of a measurement structure to allow for multiple

indicators of the latent factors. This permits researchers to evaluate a wide variety of longitudinal

models from statistical and psychometric literature, as well as their restrictive forms, as special cases

of LV-ALT. It is thus recommended by the authors as a starting model to fit general longitudinal

data, especially when there is little theoretical guidance. The current investigation focuses on ALT

with observed variables, but our simulation study will involve a restrictive form of LV-ALT to
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demonstrate a nesting relation of two models (see the next section below). Future study shall extend

the current study to a more in-depth investigation of longitudinal models with latent variables.

1.2 Nesting Relations between the Longitudinal Models

Previous studies have demonstrated the relations between these longitudinal models, and

showed model specification to achieve one from the other when they have nesting relations. We say

that models are nested when the parameters for one model are a subset or a restricted version of the

parameters of another (Bollen & Curran, 2004). The most common form of a nested, restricted

model is when a subset of the parameters of the more general model are set to zero. For instance,

the linear LGCM is equivalent to the quadratic LGCM when parameters related to the quadratic

terms are fixed at zero, i.e., µβ2 = V ar(ζβ2) = Cov(ζα, ζβ2) = Cov(ζβ, ζβ2) = 0. A similar relation

applies to the linear ALT and the quadratic ALT. As a hybrid representation, the ALT is more

general framework than the LGCM or the AR, but the LGCM models are not directly nested within

the ALT. In theory, we can obtain a model roughly equivalent to the LGCM from the ALT model

with the same type of trajectory (i.e., linear, quadratic, or freed loadings) by setting all

autoregressive coefficients ρt,t−1’s to zero. The main difference is that the ALT treats the first wave

of data as predetermined while this first wave is treated like other repeated measures in the

corresponding LGCM. In our evaluation on a LGCM and an ALT with nesting relations, we

followed the simple procedure recommended by Bollen and Curran (2004, page 349), that is, to

obtain a LGCM with predetermined first measure as does in a traditional ALT.

The nesting relations between an AR model and an ALT model in theory should be

straightforward, that is, an AR model in Equ (1) is obtained when the growth-related terms (αi and

βi) are omitted from Equ (4). However, the difference comes from the wave-specific intercept term

for all individuals in the AR model, i.e., αt in Equ (1), while the intercept term is typically set to

zero in traditional ALT to correspond to what is done in LGCM. One can still obtain an AR from

an ALT model following Bollen and Curran (2004), in which they specified a restricted version of

the ALT where the intercept factor αi = 0 for all cases, µβ = 1 and V ar(βi) = 0 so that the freely

estimated factor loadings function as the intercepts of the AR model. Although it reveals an

equivalent relation between the AR and this restricted ALT, they do not fall under models with

nesting relations. The complexity for the AR and the ALT models is that the time-specific

intercepts are freed parameters in the AR, yet are typically set to zero in the ALT for the purpose of
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identification. In order to test an AR model nested within an ALT, we will perform estimation on a

set of more general ALT models, i.e., a LV-ALT without latent factors but one that include the

intercepts as free estimates. If the LV-ALT models have convergence issues, we will adopt strategies

like using the true population estimates as starting values for the free parameters. After we obtain

these special forms of models with nesting relations, we can perform Likelihood Ratio Test (LRT) to

evaluate 1) whether a more general model would return equal fit to data as does the data generating

model, and 2) whether the fit would be poor if a simpler model than the true is chosen instead.

Note that scenario 2) is more problematic than scenario 1), because a failure of 2) leads to a

selection of a misspecified model, while a failure of 1) only suggests that a more general (or an

unnecessarily complex) model might be chosen. For example, if the true model is AR, the LRT

between the AR and the ALT with freely estimated intercepts would evaluate if the growth related

parameters in the latter are indeed not significantly different from zero; vice versa, if the ALT is the

true model, would the AR model return poor fit.

With the aforementioned model specification and special treatments, we have the following set

of nesting models to evaluate (note that the special settings of the linear LGCM and the linear ALT

are only used in LRT in each corresponding case. Results of other fit statistics in our simulation

study are drawn from the models with the regular specification, respectively):

1. A linear LGCM is nested within a quadratic LGCM; similarly, a linear ALT is nested within a

quadratic ALT.

2. A linear LGCM with predetermined first repeated measure is nested in a linear and quadratic

ALT, and a quadratic LGCM with predetermined first repeated measure is nested in a

quadratic ALT.

3. An AR is nested in a ALT (linear, quadratic, or freed loading) where time-specific intercepts

are included as free parameters.

1.3 Selecting the Optimal Longitudinal Model: Current Practice and Challenges

Along with the development of longitudinal modeling techniques comes the challenge to choose

the optimal model when fitting empirical data. In longitudinal data analysis, the model is selected

to fulfill the goal of a study under the guidance of prior knowledge. Ideally, the hypothesized model
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should optimally capture the overall shape of the growth trajectories across subjects in the sample

(Blozis, 2007; Duncan et al., 1994; Hancock & Lawrence, 2006). For example, if the goal to study

infant body weight gain (say, in their first year of birth) is to understand between-person variability

in their individual trajectory of body weight gain over a course of time, a practice is to collect

repeated measure of body weight on a sample of infants and to fit the data with a growth curve

model. Since we know from previous theory that the growth in weight is the fastest in the first few

months after a baby is born which is yet followed by a decreasing trend in the rate of weight gain, a

researcher might thus consider a nonlinear growth curve by including in a quadratic term in the

model to capture that change in growth rate.

However, two complications face the theory-driven approach. First, a theory that specific often

is missing in the literature. Second, even if there are available theories, the existing ones might be

controversial. In the previous example, a researcher might hypothesize that the best indicator of a

babyâs current weight is the weight of the previous week, which would be represented better as an

AR(1) model that is very different from an individual trajectory over time. Or there might be a

third group of research who claim that the actual growth pattern is the combination of the two

processes, so a hybrid model like ALT is the more reasonable model to fit. The lack of consistent

knowledge on the nature of change is part of the knowledge researchers hope to gain from the

information provided by the data, besides the estimated of the parameters that uniquely define the

magnitude of pre-characterized change pattern.

As a consequence, researchers may use partially exploratory approach to search for the optimal

model recovering the shape of growth that fit the data. Practically, an exploration can start with

visual inspection of plotting individual raw scores over time. However, there are caveats about

taking this approach. First, visualization is only suitable for a handful of data points, or with a

subset of individuals from the sample. When the number of waves or the sample size gets larger, the

observed shape of an individual curve is hardly interpretable and the variability between individuals

is too massive to be informative. Second, some types of developmental process are hardly

interpretable by plotting. It is very difficult to know what model to fit by plotting the means of the

repeated measures or by visual observations of individual trajectories. A good example is the AR

process, in which the lagged-effect does not have a consistent visual representation as in most case

of other time series models. Part of the issue is that even the AR linear model can capture what
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appear to be nonlinear patterns in the plots.

Additionally, visualization on raw score plotting might not be informative in the cases when

multiple developmental processes coexist within a construct. Because when this is the case, the plot

of individual raw scores or the mean score of a sample over time depicts an aggregated pattern that

may not represent individual processes. Ideally, each trajectory needs to be modeled by a particular

functional form simultaneously, the parameters of which recover the characteristics of that

corresponding process. It also is worth noting that the interpretation of the parameters will depend

of the set of parameters in that model. For instance, in the ALT model, we cannot interpret the

random slope and random intercept in the same way that we would in the usual LGCM. The slope

mean in LGCM depicts the mean rate of linear change while the slope in an ALT model refers to

the mean rate of linear change above and beyond the AR process. Take the infantâs weight example

again, when there exists both a rate of change and a lagged effect underlying the within-person

weight growth process, the observed raw weights show the aggregate within-person weight change

(ideally modeled as a hybrid model) that will not represent either the rate of change (ideally be

modeled as growth curve factors) or the magnitude in lagged relation (ideally be captured by AR

parameters). In fact, Bauldry and Bollen (2018) found that the ALT model was a better choice than

was traditional LGCM in the weight gain example. The same value of the slopes from the two

models represent vastly different linear shape, after controlling the AR values. Any effort to

interpret the aggregate within-person change from a hybrid model in a comparable fashion with

separate within-person change from a simpler model is misleading (e.g., Jongerling & Hamaker,

2011). Indeed, one needs to be cautious about using visual observations on the plotting of the

means of the repeated measures or individual trajectories to inform what model to fit.

1.4 Selecting the Optimal Longitudinal Model: Recommendation

So what is a plausible practice of searching for the optimal model? Such practice might involve a

great deal of speculation on the nature of change based on the substantive knowledge, understanding

of the purpose of study, together with years of training and experience in applying the methodology.

One way to proceed is to start with the most general longitudinal model (assumedly identifiable).

The general form can be reduced to more parsimonious (restricted) form by adding constraints to

the model and eliminate some parameters in a stepwise fashion. For example, Minjung and

colleagues (2018) examined the performance of different conditional LGC starting models in terms
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of the complexity of the mean and within-person variance-covariance structures in the presence of

time-invariant covariates and found that only the fully saturated model (i.e., the most complex

mean and within-person variance-covariance structures) recovers best the true growth trajectory

using BIC and AIC fit statistics. Bianconncini and Bollen (2018) also stated that âif theory or prior

work dictate the model, the LV-ALT is capable of specializing to many other simpler models and to

comparing the simpler longitudinal model to other more general models. Alternatively, if there is

little guidance on the best model to be selected, LV-ALT provides a way to empirically compare a

wide variety of models to determine which is the most appropriate for the data (pp. 792)â.

Failing to use a general model as a starting model might result in a false model with misleading

conclusion. This is particular of concern if researchers rely solely on fit statistics to pick the right

model, that is, to stop the model search once observing a good model fit. A misspecified model

might fit the data well under particular scenarios, when the model-implied statistics given the wrong

set of parameters approximates the sample statistics. Neither fit statistics or likelihood ratio tests

will be useful to identify such issues when the starting model is not general enough to include all

necessary components (or a saturated model with all parameters as recommended by Minjung et al.,

2018). An example of this problematic practice is given in Voelkle (2008), in which the true model is

a growth curve with a quadratic term with unusual parameter values (e.g., very weak factor

correlation). The model search started with one that omits the nonlinear component at the presence

of a nonlinear trajectory. Although misspecified, the author found a linear ALT model, with

additional (false) AR parameters accounting for omitted quadratic shape, achieved a sufficient fit.

Of course the AR parameters would be misleading and the correct parameters are biased, as the

consequence of not starting the model search with a general model (in this case, a nonlinear ALT

with a quadratic component in the growth curve component). Though not mentioned by Voelkle

(2008), the reverse situation also could be true, that is, the ALT could be the true generating model

and a researcher might mistakenly fit a quadratic model to it.

Examples such as these raise the issue of whether starting with the most general model would

be able to recover the true model that is more restrictive. If the general model permits us to

distinguish between similarly appearing structures, then this encourages us to check our results with

the general model. Alternatively, if we cannot easily distinguish between models, it suggests that we

take a more cautious stance when presenting our longitudinal models.
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Limited analytic research has provided examples of special cases where the models are

statistically equivalent. For example, Hamaker (2005) showed that when the AR parameter lies

between â1 and 1 and is invariant over time, the ALT model and the LGC model with AR

relationships between the disturbances are algebraically equivalent. The equivalency no longer holds

when the AR parameters in the ALT model vary over time. More recently, Bianconcini (2012)

provided conditions under which a quadratic LGC could be made equivalent to an ALT model.

However, the equivalency assumes regression coefficients of one and some mean and variance

parameters set to zero, conditions that would be rare in practice. As interesting as these special

cases are, statistical equivalence is not the same as substantive equivalence. These different models

imply different processes that would have implications for theory testing or policy interventions. On

the other hand, if the purpose is to just approximate the trajectories, either model with a good fit

would be sufficient. Or they might be equally qualified for predicting future trends. However, model

selection is hardly justifiable when the purpose is to draw substantive inference and to inform

theory, as is common in social science research.

Beyond these special cases of equivalence, little is known about the ease of empirically

distinguishing between the different longitudinal models. A limitation of past research is that the

typical argument has generated data with say, Model A the true model and found that Model B

provided a close approximation. But they did not take the other step of generating data with Model

B to see whether Model A was a close approximation. What is missing in literature is a symmetric

comparison on the consequences of fitting the data with different longitudinal models under a range

of realistic conditions to see whether empirical methods can help us to determine the model that

underlies the data.
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CHAPTER 2

THE CURRENT STUDY

2.1 Goal of Study

Considering the existing ambiguity, the purpose of the present study is to investigate to what

extent these different longitudinal models can distinguish the optimal model from competing

alternative ones, that is, the degree to which researchers can trust model fit in finding the optimal

model for the data. Relatedly, which fit indexes, if any, are most useful to accomplish this goal. We

used a simulation approach so that the ground truth is known, the goodness-of-fit of models under

investigation can be compared to that of the true data generating model. The research also will

determine those conditions where it is most and least difficult to correctly empirically select the

model.

2.2 Simulation Design and Simulation Factors

The goal of this simulation is to assess whether empirical tests and indexes can help distinguish

the true data generating model from false longitudinal models. We propose that the investigation be

performed via an empirical simulation design. We consider the following models: first-order

autoregressive model, linear latent growth curve, latent growth curve with a quadratic term, latent

growth curve with freed loadings, linear autoregressive latent trajectory, autoregressive latent

trajectory with a quadratic term, and autoregressive latent trajectory with freed loadings.

Specifically, we will use three data generating models: an AR, a nonlinear LGCM with a

quadratic term, and a linear ALT. All seven models discussed in the introduction, including a linear

LGCM, a nonlinear LGCM with freed loadings as well as nonlinear ALT (either with quadratic term

or freed loadings), will be used to fit the data. To keep the simulation of a manageable size, we will

not use the last four models to generate the data.

To make the simulation conditions more realistic, we use as population parameters the

parameter estimates from empirical studies that used the same type of longitudinal models

(descriptions given in the next section). In order to introduce some randomness to the model and
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increase generalizability, we also tested another set of the data generating model (DGM) with half

sized original parameter values (except for residual variances). Three sample sizes are considered,

with N = 300, 500, and 2000, to match the range of sample sizes from the three empirical studies

(303, 536, and 2,061, respectively). The levels of the sample sizes also represent a moderate,

medium, and large samples of longitudinal studies in practice. Each of the six DGMs will be

evaluated with 1,000 replications. To best reflect difficult yet common missing data situation in

longitudinal studies, we simulated each dataset with a moderate proportion of missingness (i.e.,15%)

that is following the missing-at-random (MAR) mechanism, i.e., the missingness depends on the

values of the observed variables or the variables that remain complete. We adopted the multivariate

amputation procedure to relate the missingness on one variable to the missingness on another

variable, as implemented in the function âamputeâ built in âmiceâ package mice. Under the MAR,

the probability of becoming incomplete for each candidate is a weighted sum score that is calculated

from a linear combination of the variables (Schouten, Lugtig, & Vink, 2018).

2.2.1 Analytical Procedure

Next, we fit each simulated data set with the seven models previously discussed. To select the

model, we compared the goodness-of-fit statistics of the seven models, and perform likelihood ratio

test statistics between the nested models. Additionally, we examined the implied growth form for

each model (with their estimated parameters), the goal is to find how far off the predicted shape of

growth trend is for each false model. Relatedly, we observed potential consequences of fitting the

data by a false model. Lastly, we made recommendations for model selection and testing procedures.

All simulation and analysis are conducted in Mplus Version 7, data and simulation management is

done in R studio, and the package âMplusAutomationâ is used to automate the simulation runs.

The code for the DGM is avaiable on Open Science Framework (OSF).

2.2.2 Outcome Measures

We will be using standard fit statistics in SEM literature to compare the goodness-of-fit of all

the models fitted to the three sets of DGMs. In addition, we evaluate the recovery rate of the DGM

as the best fitting model by each fit measure. For goodness of fit as well as the recovery of the DGM

as the best fitting model, we compare performance across the fit statistics. The fit statistics we

include in the current investigation are: chi square statistic, BIC (Schwarz et al., 1978), AIC

(Akaike, 1987), CFI (Bentler, 1990), TLI (Bentler & Bonett, 1980), RMSEA (Steiger, 1990), and
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SRMR (JÃ¶reskog & SÃ¶rbom, 1981).

We know that goodness-of-fit statistics are a measure of how well the model fit the data by

evaluating the model implied covariance against the sample covariance (Bollen, 1989). However,

there are different ways of calculating the residuals, hence the different format of fit statistics. First,

the likelihood ratio chi square is a test of whether the hypothesized model fits as well as the

saturated model to the data. Let F be the estimation object function, we know that T = (N − 1)F

follows an asymptotic chi square distribution with degree of freedom df (Bollen, 1989). The p value

reflects the statistical significance of the discrepancy between the model implied covariance matrix

and the population covariance matrix, hence, smaller p values indicate a larger discrepancy hence a

poorer fit. The chi square test might be easily subject to false positive results with large samples,

that is, even a very small discrepancy will be identified as significant when the sample size is

sufficiently large. However, if the model is true and the distributional assumptions hold, then the

chi square test statistics will follow a chi square distribution regardless of sample size.

In comparison, CFI and TLI are baseline comparison indices. The formulas are derived by Equ

2.1 and Equ 2.2, respectively.

CFI = 1−max[
χ2
t − dft

χ2
i − dfi

, 0]. (2.1)

where χ2
i is the chi square corresponding to the baseline model, or independence model, and χ2

t

is the chi square corresponding to the fitted model.

TLI =
(χ2

i /dfi)− (χ2
t /dft)

(χ2
i /dfi)− 1

. (2.2)

For both CFI and TLI, a value 1 is an ideal fit. A value larger than 1 might indicate overfit or

just sampling fluactuations, so they are forced to a max of 1. We follow the general guideline where

a value larger than .90 indicates an acceptable fit and one larger than .95 an excellent fit (Bentler,

1990; Tucker & Lewis, 1973).

The RMSEA is a stand alone index defined by the square root of the discrepancy per degree of

freedom:
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RMSEA =

√
max[

T − df

df(N − 1)
, 0]. (2.3)

The SRMR is given by:

SRMR =

√∑p
i=1

∑i
j=1[(sij − σ̂ij)]2

m(m+ 1)/2
. (2.4)

where sij is an element of the sample covariance matrix, σ̂ij is an element of the model-implied

covariance matrix, m is twice the number of observed variables.

For RMSEA and SRMR, a small, close to zero value indicates a good fit, a value less than .08 is

generally considered an acceptable fit and one less than .05 an excellent fit (Browne & Cudeck, 1993;

Hu & Bentler, 1999). However, one needs to be more cautious on the interpretation of these fit

indices. For example, the cutoffs for some indexes such as RMSEA do not work consistently with

small samples and are too forgiving for large samples.

We also include information criteria typically used for model selection in practice. BIC and AIC

are measures for the relative amount of information lost based on an LRT when data are

represented by a given hypothesized model compared to the saturated model. Hence, less

information lost (i.e., smaller value) indicates a higher quality model (i.e., better fit). Note that we

used BIC expressed by the chi square test statistic, the degrees of freedom and sample size, that is

easy to interpret (see Equ 2.5). The interpretation of the value of this BIC is straightforward: a

value greater than zero favors the saturated model over the estimated (hypothesized) model while a

negative value favors the latter model (Raftery, 1995). Similar to BIC, AIC rewards goodness of fit

as assessed by the likelihood function, with a penalty that is an increasing function of the number of

estimated parameters. The difference between BIC and AIC when used for model selection is that

BIC also penalize the incorrect model more with increased sample size, although the model’s

absolute fit looks better with a bigger the sample size is (other things equal). Sometimes the penalty

on large sample is too strict so that BIC tends to favor the simplest model when candidate models

present satisfying, comparable fits. Given a set of candidate models for the data, the preferred

model is the one with the minimum BIC or AIC value.
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Table 2.1: Population Parameters In The Three DGMs
Model Estimates AR(1) Quadratic LCM Linear ALT

Hansen et al. (2017) Sterba (2014) Zyphur et al. (2008)
Mean(α) n/a 3.216 104.098
Mean(β1) n/a 9.923 10.492
Mean(β2) n/a -5.384 n/a
Var(α) n/a .107 217.997
Var(β1) n/a 4.221 8.326
Var(β2) n/a 2.288 n/a
Cov(α, β1) n/a .258 32.034
Cov(α, β2) n/a -.211 n/a
Cov(β1, β2) n/a -2.821 n/a
ρ21 .833 n/a .363
ρ32 .808 n/a .287
ρ43 .861 n/a .274
ρ54 .714 n/a .249
ρ65 n/a n/a .203
ρ76 n/a n/a .166
ρ87 n/a n/a .119
σ2
1 .489 .194 172.98

σ2
2 .258 .132 219.71

σ2
3 .346 .121 218.67

σ2
4 .306 .052 217.83

σ2
5 n/a .102 223.58

σ2
6 n/a .089 230.65

σ2
7 n/a .155 268.62

Note: ân/aâ suggests that parameter not estimated in the corresponding model

BIC = χ2
t − dft ∗ log(N). (2.5)

AIC = χ2
t − 2dft. (2.6)

2.3 Empirical Studies for Data Generation

In this section, we briefly introduce the background of the three empirical studies that we

selected to be used in our empirical simulation.

2.3.1 Study I: Hansen et al. (2017) Fraction Magnitude Understanding using AR(1)

This study examined the co-development of early fraction magnitude understanding and

mathematical achievement, as part of a larger longitudinal study aimed at understanding
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mathematical development among elementary students. Third-graders (N = 746) in nine public

schools from two adjacent districts initially participated in the study, 536 of which stayed

throughout the entire assessment from their fourth to sixth grades. The outcome measure being

repeatedly measured is fraction number line estimation, in which students estimated the location of

28 fractions and mixed numbers on 0-1 and 0-2 number lines. To score the measure, the percent

absolute error (PAE) was calculated by dividing the absolute difference between the estimated and

actual magnitudes by the numerical range of the number line (1 or 2), and then multiplying by one

hundred for each estimate. Each student was assigned a single score that represented his or her

mean PAE on the task. Scores were then multiplied by -1 so that higher scores indicated higher

achievement. As an intermediate step toward the ultimate multivariate model of the cross-lagged

effects between FNLE and a general mathematical outcome, the authors fit a AR(1) model of the

FNLE. The AR(1) model indicates that development of FNLE follows an autoregressive process,

specifically, a unit increase in FNLE score at one semester is expected to be associated with a .714 -

.861 increase in the following semester from the fourth to sixth grades (see the first column in Table

2.1 for the lagged coefficients).

2.3.2 Study II: Sterba (2014) Infantâs Weight Growth using Nonlinear LGCM

This example uses panel data from the Longitudinal Health and Nutrition Survey (N = 2,631,

of which 2,061 infants had complete data to track the functional form of infant growth in the

Philippines. The purpose is to identify heterogeneity in growth that is associated with social and

health behaviors. Pregnant mothers in one province in the Philippines were enrolled in 1983 and

1984. As a starting point, a linear LGM is fit, followed by quadratic, shape-factor, piecewise linear,

piecewise quadratic, and exponential LGMs. Variances were estimated for all growth coefficients,

and heteroscedastic residual variances across time were observed. The intercept was coded at birth

(0 years) and the unit change in time was coded to be 1 year. The quadratic LGM implies that, on

average, infants weigh 3.22 kg at birth, with an instantaneous velocity of 9.92 kg per year, that

decelerates by 2 x â5.38 kg/year; there is significant individual variability in all aspects of change.

Parameter estimates of the nonlinear LGCM are given in the second column of Table 2.1.

2.3.3 Study III: Zyphur et al. (2008) Job Performance using Linear ALT

This study aims to understand the longitudinal processes in job performance. The authors

hypothesized both within-person and between-person change in job performance. They adopted the
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ALT model to address job performance over time as a process such that past performance can

determine future performance directly (AR component) and that individuals often have distinct

latent performance trajectories due to individual-difference factors (i.e., LGC component). They

used existing longitudinal data from Ployhart and Hakel (1998), who investigated the performance

of 303 securities brokers. Performance was operationalized as the square root of gross sales

commissions averaged across a 3-month period, making each performance observation equivalent to

an annual quarter over eight quarters (i.e., 24 total months).

To test their hypothesis, the authors followed a stepwise model selection procedure to validate

the co-existence of an autoregressive process and a linear growth curve (and excluded the quadratic

shape), and thus obtained a final model of a linear ALT model. They concluded that the growth of

job performance follows a moderate AR process and a linear, significant increase trend net of the

AR process. This sample showed large variance in terms of their initial status (large intercept

variance), and a moderate amount of variability in the rate of change net of AR process. There is

also a positive relation between the intercept and slope factors, that is, those who start with a

better status also tend to show a slightly faster improvement in their job performance. The final

parameter estimates are presented in the third column of Table 2.1. We use these three models as

data generating models in the simulation study, and the corresponding parameter estimates as the

population parameters, respectively.
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CHAPTER 3

RESULTS

In this section, we report our simulation results for the three data generating models (DGM)

described above. The results have three components: rate of convergence, goodness of fit, and the

recovery of the DGM as the best fitting model. For rate of convergence, we present the percent of

converged models for the seven candidate models when fitting to the three DGM, respectively. For

goodness of fit as well as the recovery of the DGM as the best fitting model, we compare

performance across the fit statistics. In addition, we performed likelihood ratio chi square test

(LRT) on models that have nesting relations with the DGM to evaluate whether they were

statistically distinguishable.

3.1 Convergence Results

In our simulation, models such as the latent basis (or freed loadings) had difficulty reaching a

final solution, a phenomenon called nonconvergence in the SEM literature (e.g., Anderson &

Gerbing, 1984). Nonconvergence occurs when the estimation algorithm fails to arrive at values

which meet prescribed minimum criteria within a set number of iterations (Anderson & Gerbing,

1984). It means that the set of parameter estimates in these models cannot meet the criteria under

the default setting of Mplus (i.e., the value of the derivative convergence criterion used in the

Quasi-Newton algorithm for ML estimator of continuous outcomes is set at .00005, with the

maximum number of iterations at 1,000). Research has found that a nonconvergent solution is often

associated with sampling fluctuation or model misspecification (Anderson & Gerbing, 1984). The

corresponding guidance from Mplus is that âconvergence problems are often related to variables in

the model being measured on very different scales, poor starting values, and/or a model being

estimated that is not appropriate for the data. In addition, certain models are more likely to have

convergence problems (Mplus Userâs Guide, pp. 415). Following their recommendation that

âconvergence may be reached by increasing the number of iterations or using the preliminary

parameter estimates as starting valuesâ, we implemented these three remedies: increased the number
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Table 3.1: Rate of Convergence (%)
Simulation Factors Large Parameter Small Parameter

10TP 6TP 10TP 6TP
300 500 2000 300 500 2000 300 500 2000 300 500 2000

DGM = Quadratic LGCM
AR 100 100 100 100 100 100 100 100 100 100 100 100
lALT 100 100 100 100 100 100 100 100 100 100 100 100
qALT 100 100 99.8 100 100 100 100 100 100 100 100 100
lbALT 38 34 29 50 48 39 98 99 100 88 92 99
lLGCM 93.4 92.2 94.8 99.7 99.4 99.5 99.8 99.9 93.4 100 100 99.7
qLGCM 100 100 100 99.1 99.6 100 100 100 100 99.4 99.6 99.1
lbLGCM 14 11 2 100 100 100 100 0 0 0 0 0

DGM = Linear ALT
AR 100 100 100 100 100 100 100 100 100 100 100 100
lALT 100 100 100 100 100 100 100 100 100 100 100 100
qALT 100 100 100 98 100 100 100 100 100 99 100 100
lbALT 65 59 62 77 81 68 93 97 100 71 77 94
lLGCM 100 100 100 100 100 100 100 100 100 100 100 100
qLGCM 100 100 100 100 100 100 100 100 100 100 100 100
lbLGCM 100 100 100 100 100 100 98 100 100 99 100 100

DGM = AR AR 100 100
100 100 100 100 100 100 100 100 100 100
lALT 100 100 100 100 100 100 100 100 100 100 100 100
qALT 99 100 100 99 100 100 100 100 100 91 95 100
lbALT 0 66 86 12 12 10 0 0 0 85 91 99
lLGCM 100 100 100 100 100 100 100 100 100 100 100 100
qLGCM 100 99 100 100 100 100 100 100 100 100 100 100
lbLGCM 100 100 100 100 100 100 100 100 100 100 100 100

Note: the first column is the names for fitting models, in which AR = Autoregressive Model, lALT = Linear
Autoregressive Latent Trajectory, qALT = Quadratic Autoregressive Latent Trajectory, lbALT = Latent Basis
Autoregressive Latent Trajectory; lLGCM = Linear Latent Growth Curve Model, qLGCM = quadratic Latent Growth
Curve Model; lbLGCM = latent basis Latent Growth Curve Model

of iterations (from 1,000 to 10,000), lowered the convergence criteria (from .00005 to .001), and

manually inputted starting values. The starting values were corresponding parameter estimates we

obtained by fitting the model to population covariance matrix (rather than to the sample covariance

matrix). Only the last strategy helped some (but not all) problematic models reach convergence. For

example, when fitting the ALT models to data generated by the AR model, the ALT models were

not converged in the beginning. We then used estimates of the nonconverged models as starting

values for the intercepts. Table 3.1 presents the percentage of convergence after implementing these

strategies for each DGM (fitted model by row and simulation conditions by column).

We found that models with freed loadings were most likely to have convergence problems. For

example, their convergence rates were particularly low when fitted to data generated by a quadratic

LGCM in some conditions: the freed loadings LGCM only converged consistently to data with the

6-timepoint, the original or large parameter setting; for the data with long wave (10-timepoint), the

rate ranged 2% to 14% in the large parameter conditions while no model converged in the half-sized

or small parameter conditions, respectively. Most of the freed loadings ALT models converged when

fitted to data generated by the small parameter values; in comparison, the rate ranged from 29% to
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50% under the large-parameter conditions. Fitting the freed loadings ALT model to data generated

by the linear ALT also had some trouble converging to a unique solution particularly under the

large-parameter condition (ranging from 62% to 77%), although they are not necessarily the most

parameter-heavy model (e.g., a 6-timepoint quadratic ALT has more parameters to estimate than

does a 6-timepoint latent basis ALT).

Model misspecification is a possible source of nonconvergence. Since none of the DGM has a

freed loadings trajectory, it is possible that nonconvergence results from misspecification in

growth-related (slope) parameters, besides the omission of the AR parameters when the DGM is a

linear ALT or an AR model. A model that omits important parameters (e.g., AR-related

parameters) or includes wrong parameters (e.g., freed loadings slope parameters rather than a

specified shape) might fail to return a function of estimable parameters that reasonably

approximates the variance-covariance structure of the variables provided by the data. We also

hoped to identify other factors that contributed to this problem. However, our results across

simulation conditions did not clearly reveal the sources of nonconvergence. For example, we know

that the larger sample sizes reduce sampling fluctuations and thus should relieve the issue of

nonconvergence when the true model is fitted. While it is the case for the small-parameter

conditions, we found that some models with larger sample sizes have lower chance of reaching

convergence under certain situations, e.g., the freed loadings models across the 10-timepoint

large-parameter conditions. Another observation is that the larger number of timepoints seemed to

be accompanied by more frequent nonconvergent models, although one would intuitively think that

complex model should be easier to converge with more waves of data. One reason might come from

the difficulty of computing a larger covariance matrix in the maximum-likelihood estimation.

Another guess is that the it is more difficult to approximate with alternative functions when the

shape of the true trajectory or the AR processes get more precise with more waves of data, because

any misspecification in the trajectory or patterns become increasingly more prominent. Further, the

discrepancies between the small parameter versus and large parameter sets perhaps point to another

scenario that is common in practice: some specific combinations of growth-related or AR-related

parameters generate trajectories that might be more easily approximated by other functions.

Indeed, nonconvergence is a complex issue and should be interpreted with care. Based on the

results of the simulation and prior literature we hypothesize that the nonconvergence in the
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simulation is a function of some combination of model structural misspecifications of either the

wrong model structure or including unnecessary parameters, smaller sample sizes, or higher error

variances. A deeper examination on the causes of nonconvergence is outside the scope of the current

study. For more details, we defer readers to the literature such as Anderson and Gerbing (1984),

Bentler and Chou (1988), and JÃ¶reskog (1967).

3.2 Goodness-of-Fit Results

In this section, we present the model fit results from all the converged models by each DGM.

We are aware that the results were affected by the omission of models that failed to reach a

convergence. We will further discuss this in the limitation section. Comparisons are made across

candidate fit measures on the goodness of fit for the true model versus the other estimated models.

A well-behaved fit statistic is defined as one that consistently shows better fit for the true model

than the misspecified models. We present the results according to the different DGMs.

3.2.1 Quadratic LGCM as the DGM

Chi square test. We found that p values of the DGM and quadratic ALT models were almost

equivalent across conditions (ranging from .47 to .52), indicating an equally impressive fit. In other

words, the inclusion of additional, unnecessary AR parameters did not hurt the model fit as

reflected in the chi square p-value. The discrepancies between the data and other models resulted in

large and statistically significant chi square test statistics. One exception was the freed loading ALT

model that had acceptable fit with the 6-timepoint model and a moderate sample size (N = 300).

Data with more repeated measures or larger sample sizes did not fit as well with the latent-basis

ALT model. This suggests that a quadratic growth trajectory with a few waves of data and a

moderate sample might be hard to empirically distinguish from the freed loadings ALT model. A

large sample size or more waves of data made it easier to distinguish between these two models.

BIC and AIC. We found that BIC favored the DGM and the quadratic ALT models over the

saturated model. Different from the equal chi square test p-value results, however, both BIC and

AIC further distinguishes the two: the DGM had a significant lower BIC or AIC value than that of

the corresponding quadratic ALT model across conditions (where a moderate or larger difference is

one that is larger than three; Raftery, 1995). Interestingly, the 6-timepoint linear or latent basis

ALT model has a good BIC fit (although poorer than that of the DGM) when sample size is

moderate. It seemed that a large sample size is necessary for BIC statistics to distinguish some
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short wave ALT model from the saturated model. It is also seen that BIC performed better in

distinguishing the true model from the saturated model or in detecting misspecification in the model

(e.g., the omitting a quadratic term) with increased sample size. AIC results showed an overall

similar trend to that of BIC; however, the absolute AIC values were less directly interpretable. For

example, although it looked like the DGM had the best AIC fit, values of the corresponding

quadratic and latent-basis ALT were not different. It might be practically challenging to distinguish

models that have close AIC values.

CFI and TLI. We found that fit results of CFI and TLI in the same condition were almost

identical, and that they both had difficulty distinguishing the DGM from the other models. In

addition, the DGM and the quadratic ALT model had identical CFI or TLI results (to two-digits)

across all conditions, the fits of other ALT models were also near perfect. The performance showed

not much variation among varying sample sizes or parameter sizes. This means it would be difficult

to determine the DGM by relying only on the CFI and TLI.

RMSEA and SRMR. RMSEA behaved somewhat similar to the chi square p-value in that no

distinction was obvious for the DGM and quadratic ALT models, and that the latent-basis ALT fit

acceptably well to data generated by the 6-timepoint DGM. SRMR also showed a similar but

slightly poorer performance than other statistics in distinguishing the DGM from alternative models

such as linear or latent-basis ALT, particularly in the small-parameter setting or with fewer waves of

data. SRMR had the weakest ability to reliably distinguish the true quadratic trajectory from

alternative function of trajectories, linear or nonlinear alike.

LRT. By setting the mean, the variance and covariances of the quadratic term with the linear

slope and intercept to zero, the quadratic LGCM is equivalent to the linear LGCM and hence these

models are nested. Recall that we also obtained a set of LGCM models nested within the quadratic

ALT model by treating the first wave of data as predetermined for the purpose of the LRT test. We

found that while the LRT test between the DGM with predetermined first measure and the

quadratic ALT model was always not significant, the LR difference between the linear LGCM model

and the DGM was likely significant, suggesting that the omission of the quadratic term in the

LGCM was detectable by the LRT. It also seemed that such differences were more likely to be

detected by the LRT in the small parameter set and with fewer the number of waves condition,

despite the sample size. It is possible that the quadratic trend would be more easily approximated
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by a linear trend when the trajectory is characterized by a slight curvilinearity that is hard to be

modeled when stretches out over many time points.

To summarize, we found that if the data were generated by a quadratic LGCM, most fit indexes

would indicate an excellent fit for the true model as well as the quadratic ALT model where the

former is a special case of the latter model. In comparison, neither the AR, linear LGCM, or latent

basis/freed loadings LGCM fit well. Results on the other ALT models were more divergent amongst

fit statistics. Only the chi square, BIC, and RMSEA indicated a poor fit for the linear ALT most of

the time. The discrepancy between the freed loadings ALT and data generated by the Quadratic

LGCM was difficult to detect when data were generated by the small number of waves or with a

moderate sample size (N = 500).

3.2.2 Linear ALT as the DGM

Chi square test. According to chi square statistics, all ALT models fit excellently to the data

generated in all conditions. As expected, a linear ALT showed no chi square difference from a

nonlinear ALT in most cases, except that under the 10-timepoint, large parameter set conditions,

the chi square slightly favored the DGM over the latent basis ALT. AR and most LGCM models did

not fit well. Interestingly, the p value of the quadratic LGCM indicated an insignificant discrepancy

to the data generated by a small-parameter, 6-timepoint ALT model with a moderate sample size.

However, the discrepancy was significant once sample size increased to 2000. Apparently, omitting

either a strong AR (which reduced to a linear LGCM) or a strong linear growth curve component of

a linear ALT (which reduced to an AR model) will end up with a poor chi square fit. However,

without sufficient observations (e.g., sample size, number of waves), chi square might not detect the

discrepancy between the true linear ALT with a weak, short AR process and a quadratic LGCM

where the AR effects was approximated by a quadratic trajectory.

BIC and AIC. As expected, all ALT models showed a better fit than the saturated model, but

the nonlinear ALT models fit slightly worse than did the DGM. However, BIC underperformed chi

square in distinguishing the DGM from the LGCMs. Specifically, it is only when sample size was as

large as 2,000, the DGM showed uniformly the best fit. Otherwise, the nonlinear LGCMs fit well to

data generated under the large-parameter conditions (while AR or linear LGCM fit poorly); all

LGCMs showed comparable BIC fit to those of the DGM under the small-parameter conditions,

linear LGCM had even a slightly better BIC fit than did the DGM when sample size was medium.
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This observation that BIC selected a simpler model than the DGM when sample size is not

sufficiently large is a little surprising. But given that BIC often favor a more parsimonious model

with fewer parameters when fitted to two unsatisfactory models (Raftery, 1995), the bias toward the

simpler model over the true model might result from the lack of power (sample size). AIC, in

comparison, favored the incorrect AR model as the best fitting model at all times. All ALT models

had very similar and worse AIC fit than did the incorrect AR model.

CFI, TLI, RMSEA, and SRMR. The DGM and nonlinear ALT do not differ in terms of their

CFI, TLI, RMSEA, or SRMR fit. Nonlinear LGCMs also exhibited good CFI or TLI fit, although

slightly worse than did the DGM. Additionally, under the small-parameter situations, all LGCM

models including the linear ones fit the data well according to CFI, TLI, RMSEA, and SRMR. The

performance of CFI and TLI was invariant across parameter sizes, sample sizes, or number of

timepoints, while parameter sizes seemed to affect that of the RMSEA and all of the factors seemed

to slightly affect the SRMR.

LRT. The LRT results showed no distinction between the DGM and the quadratic ALT model,

while 100% of the time AR or linear LGCM with the predetermined first measure had a significant

worse fit than the DGM. In other words, LRT can perfectly detect the omitting of either the linear

growth curve beyond the AR process or the AR beyond growth curve. As expected, the inclusion of

additional quadratic term of the growth curve did not lead to a meaningful likelihood difference for

the more complex model.

As discussed in the introduction, since hybrid types of change processes coexist in a linear ALT,

misspecification can happen either in the AR component (e.g., the LGCM models), the growth

curve (e.g., AR), or both (freed loadings LGCM). Results were diverse with respect to the type of

misspecification being involved. We found that the AR model, which completely omitted the linear

trajectory of the ALT, did not fit the data by all measures. As for the linear LGCM, while chi

square p values, BIC, and RMSEA indicated a poor fit when fitted to data generated by the large

parameter set (suggesting strong AR processes), only a poor chi square fit was observed when under

the small parameter set (suggesting moderate AR effects); surprisingly, the other measures returned

an acceptable to good fit under such conditions. In terms of the quadratic or freed loadings LGCM,

the models where AR was omitted and the trajectory was not linear, chi square was again the only

measure that can detect the misspecifications given sufficient sample size; other measures, by
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contrast, indicated somewhat acceptable to good fit for the quadratic and freed loadings LGCM.

3.2.3 AR as the DGM

Chi square test. We found all the ALT models showed a good fit to the data generated by the

AR model according to the chi square test, with zero estimates of the growth related parameters.

Amongst the three, the latent-basis ALT (when it converged) fit the data the best and equally well

as did the DGM. In comparison, none of the LGCMs showed an acceptable chi square fit to the data.

BIC and AIC. The DGM AR model had the best BIC fit at all times. The ALT models also

returned good BIC or AIC fit. Between the ALT models, the BIC fit of the linear ALT model was

better than those of the quadratic and the latent basis ALT models when fitted to the data

generated with AR models using moderate lagged parameters. These results suggested that when

AR process was strong, the chi square p-value and BIC tend to select the DGM over the more

general ALT models; while when the true AR process was weak, there is not a clear preference for

the DGM over the ALT model unless a very large sample size was given. However, the

misspecification in LGCM, i.e., an omission of AR processes, was easily detected by either chi

square or BIC statistics.

CFI, TLI, RMSEA, and SRMR. CFI, TLI, and RMSEA returned very good fit for all ALT

models except that the latent-basis ALT did not fit well under one condition, i.e., large-parameter,

10-timepoint, N = 300 (oddly, the corresponding chi square, BIC, AIC suggested a good fit). This

suggests that CFI, TLI, and RMSEA did not distinguish an AR from the ALT models. In addition,

sample size did not affect the performance of CFI, TLI, or RMSEA as much as it did for chi square,

BIC, or AIC. SRMR results differed amongst the ALT models: linear or freed loading ALT models

did not fit well across conditions, quadratic ALT did not fit only to data generated by the

small-parameter, 10-timepoint model.

LRT. The LRT test between the DGM (AR) and the ALT models were not significant most of

the times, suggesting that the discrepancy between the AR and the ALT models were negligible as

would be expected given the relationship between these two models. When the DGM is the AR

model, our results showed that the fit statistics under evaluation behave similarly in distinguishing

the DGM from alternative ones. And we found that such ability is associated with the strength of

the AR effects: when strong AR effects were present, the DGM can be distinguished by most fit

indexes from other models. When the AR effects were moderate, results on the ALT models were
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mixed while the LGCMs led to a poor fit according to the majority of fit statistics.

3.3 Recovery of DGM as the Best Fitting Model

The recovery of the DGM as the best fitting model was defined as the proportion of replications

in which the DGM has the optimal fit indicated by each fit statistic. The nonconverged models

reported above were excluded from the calculation. To account for trivial, practically meaningless

differences, we counted best-fitting models as tied if the top-ranking models had a difference that is

less than +/- 2 for BIC or AIC, or less than .01 for other fit statistics. Further, for the cases where

the DGM is nested within the fitting model (i.e., models that have all the correct free parameters in

the DGM plus some additional free parameters), the selection between the DGM and the more

general model does not matter much, as opposed to a misspecified model where either wrong

parameters were included or true parameters in the DGM were missing. Indeed, one could argue

that in practice, the DGM is equivalent to the more general model with the additional free

parameters equal to zero. It is for this reason that we present the results in three categories: 1) the

DGM is the only best fitting model (presented as blue bars in the graphs); 2) the DGM only ties

with the more general models that contain all the correct free parameters and additional parameters

in the situations listed by Table 3 (presented as yellow bars in the graphs) and 3) the DGM ties

with models that contain âwrongâ free parameters in which the wrong parameters are defined by

those not in the DGM (presented as red bars in the graphs). We perceive that the cumulative

percent summed up by the first two categories represents the ability of a fit statistic to select the

true model, though ties complicate the selection process.

Follow these guidelines, Figures 1-3 show the results for the best fitting model according to each

fit statistics across the 12 simulation conditions (one graph per condition) for the three DGM,

respectively. In each figure, the upper two rows are the large-parameter sets and the lower two rows

are the small-parameter sets, within which the first row being the 10-timepoint model and the

second row the 6-timepoint model, respectively. Each column represents a different sample size

condition (from left to right: N = 300, N = 500, N = 2,000). In each graph, the x-axis represents fit

statistics, while the y-axis is the cumulative percentage summed from the three categories.

Under these criteria, we found that BIC had the highest probability to select the DGM as the

unique best fitting model among all the measures. When the DGM is quadratic LGCM or AR(1),

statistics other than BIC also showed a high probability of selecting as the best model either the
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DGM or both the DGM together with a model in which it is nested. Chi square p-value and SRMR

statistics had the weakest ability for selecting the true quadratic LGCM. When the DGM is linear

ALT, however, most statistics besides the BIC had trouble selecting the DGM from other models.

AIC performed the worse in this case. Below we present more details for each DGM.

3.3.1 Quadratic LGCM as the DGM

Overall, BIC performed the best among all fit statistics in identifying the DGM as the unique

best fitting model; other statistics besides the chi square p-value showed comparable cumulative

probability, i.e., in the majority of time they select either only the DGM or both the DGM as well

as the quadratic ALT as the best fit (Figure 7). When data were generated with longer waves

(10-timepoint vs. 6-timepoint), SRMR always selected the DGM together with wrong models as

equal best fits, while when generated with shorter waves, CFI also showed this tendency. Chi square

p-value recovered the DGM as the best model only half the time, while the quadratic ALT model

was selected as the best fit for the remainder. In practice, this would not necessarily result in a

wrong model selection (for the reason we stated before, i.e., the two models can be seen as

equivalent). But the fact that the DGM was not selected at the same time indicate the tendency to

select an over-parameterized model.

3.3.2 Linear ALT as the DGM

Overall, BIC had the highest unique recovery for the DGM as the best fitting model under the

large-parameter conditions, although the performance under the small-parameter conditions varied

according to sample size (Figure 8). Chi square p-value underperformed BIC, selecting the DGM

only half the time across conditions. Other fit statistics almost never identified the DGM as the sole

best fitting model, among which not only the more general quadratic ALT but also other models

had equal fit with the DGM. This was particularly likely in the small-parameter condition. Among

these remaining fit indexes, the CFI showed the highest recovery rate with ties, followed by RMSEA

and TLI. The cumulative recovery rates of these statistics were higher than that of BIC in the

small-parameter condition when sample size is moderate (N = 300) or medium (N = 500). The

performance of SRMR was poor overall, but the most surprising result was that AIC had zero

chance of recovering the DGM as the best fit.

We further examined what alternative models were chosen as the best fit model by different fit

statistics if not the DGM. We found that BIC selected the linear LGCM or quadratic LGCM over
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Figure 3.1: Quadratic LGCM: Recovery of Data Generating Model by Fit Statistics
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Figure 3.2: Quadratic LGCM: Recovery of Data Generating Model by Fit Statistics

34



the DGM, while chi square, RMSEA, TLI, CFI most likely chose one of the nonlinear ALT models

instead. Interestingly, the AR model had the best AIC fit all the time, which was why we observed

zero recovery rate of the DGM by AIC. Results of SRMR was mixed: AR had the best SRMR fit to

the 10-timepoint data, while nonlinear ALT had the best SRMR fit to the 6-timepoint data.

3.3.3 AR as the DGM

The overall recovery rate for the AR DGM as the best fitting model was excellent across fit

statistics. BIC, AIC can almost perfectly identify the true model as the unique best fit, except in

the small-parameter, 10-timepoint data condition where the sample size was moderate or medium.

Here BIC tended to select the linear ALT as the best-fit instead. Chi square p-value had the lowest

cumulative recovery and performed the worst in the large-parameter, 10-timepoint condition with

medium to large sample sizes or in the small-parameter, 6-timepoint condition, in which cases the

latent-basis ALT model was mostly likely to be chosen as the best fit, followed by quadratic ALT

model. Other fit statistics, particularly CFI and followed by TLI, tended to select AR and the more

general model, i.e., one or more ALT model(s), as the equally best fits. A good thing is that no

other misspecified models were chosen to have equal best fit. Cumulative recovery rates were very

satisfactory. The overall lowest cumulative recovery rates across RMSEA, CFI, TLI, and SRMR

were observed under the small-parameter, 6-timepoint condition with moderate or medium sample

sizes, when the best fitting model was latent-basis ALT instead. An implication of these finding is

that when an AR process is weak and short-spanned, it is more likely to be well resembled by some

alternative nonlinear trend so that the discrepancy is hard to be detected by fit indexes.
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Figure 3.3: Quadratic LGCM: Recovery of Data Generating Model by Fit Statistics
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CHAPTER 4

DISCUSSION

The purpose of this study was to examine the degree to which researchers can use empirical

means to choose among competing longitudinal models. Our study bridged a crucial gap in the

literature, that little is known about the ease of empirically distinguishing between the different

models in analyzing longitudinal data with insufficient theoretical guidance. Indeed, it has been a

difficult task for many applied researchers to choose an appropriate longitudinal model to represent

the change trajectory over time, because often there are uncertainties in the change pattern and yet

a lack of consistent substantive theory or empirical evidence to guide the selection. On the one

hand, exploratory approaches are often adopted in the search for an appropriate model, such as

visual inspection on the plot of the raw data. However, visualization is informative only under

limited circumstances and interpretation is sometimes misleading, particularly when hybrid

developmental processes are involved. On the other hand, while analytic research has provided

special cases where the models are statistically equivalent, the conditions upon which the

equivalency hold are rare in practice, not to mention that statistical equivalence is not the same as

substantive equivalence. Therefore, we aimed to provide some empirical guidance to longitudinal

research facing these model choice challenges. Particularly, we focused on the examination of several

widely used longitudinal models to dictate patterns of change with common functional forms. Our

simulation investigation is characterized by two features. To keep our models realistic, we used data

generating models that were based on published empirical examples and their estimates. We also

varied the type of longitudinal model that was the corresponding true data generating model, but

compared among the same set of possible models to determine how well we could distinguish the

true from the false models.

Four major research questions that we sought to answer were:

1. Which model fit indices are most reliable in identifying the true DGM?

2. Are there some DGM that are harder to distinguish as true relative to other DGMs?
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3. To what degree do characteristics of the parameters of the DGM such as rate of change,

curvilinearity, strength of autoregression, the amount of random errors, number of time points,

sample size of observations, etc. make it more difficult to determine the correct DGM?

4. Should the search for the DGM begin with a model with too many parameters and trim back

or with too few parameters and build up to more complex DGMs?

4.0.1 Most Reliable Fit Statistic(s)

First, we observed some general patterns of the fit statistics with respect to their capability to

distinguish the DGM model from models. Overall, BIC is most accurate in selecting the DGM as

the best fitting model, regardless of the DGM or the type of misspecification. That is, whether the

fitting model is a restrictive form of or nested within the DGM (under-parameterized), or a more

general model than the DGM (over-parameterized), or mis-parameterized from the DGM (some

wrong parameters are included instead of correct ones). In addition, the chi square test is reliable

under most scenarios in identifying significant discrepancies between the data and misspecified

models, particularly when trajectory-related parameters are eliminated. In contrast, fit measures

such as CFI, TLI, and RMSEA are less helpful in selecting the correct model. They often have a

tendency to favor a more complex model than necessary, e.g., select quadratic ALT when the DGM

is a quadratic LGCM, and what is more concerning is that they sometimes show equal fit for the

DGM and models with some type of misspecification. For example, when the DGM is a hybrid

model, i.e., a linear ALT, it is possible they select some LGCMs as the best fitting model,

particularly given certain conditions. In general, SRMR has the weakest ability to select the true

model from alternatives. Last but not least, LRT is particularly reliable in detecting

under-parameterized misspecifications (i.e., the omitting of correct parameters) and eliminating

models that are nested within the true model. Therefore, when it comes to which fit index to aid for

the longitudinal model selection, we recommended to use a combination of fit statistics with primary

attention given to BIC, chi square test, as well as LRT when there exists a nesting relation among

the candidate models.

4.0.2 Most Detectable DGM

The AR model is the most easily detected longitudinal model across all fit measures.

Information criteria (i.e., AIC and BIC) consistently detect the AR when it is the true DGM.
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Although CFI, TLI, RMSEA, and SRMR might identify both the true AR model and some more

general (over-parameterized) ALT models as the equal best fits, this is less concerning because the

latter is not a âwrongâ model in that the unnecessary parameters are not significantly different from

zero.

Similar behaviors amongst fit statistics are observed for the identification of a true quadratic

LGCM. However, we found that challenge arises for all fit measures in the distinction of the DGM

from the freed loadings ALT or the freed loadings LGCM, particularly under those challenging

situations. This suggested that the freed loadings models can provide a satisfactorily approximation

to a short-wave quadratic LGCM so closely that the discrepancy between the substitute trajectory

and the true model-implied trajectory is not detectable. The inclusion of the incorrect parameters

(i.e., the AR parameters from the freed loadings ALT) in substitute for the missing slope parameters

makes the distinction between the true and alternative models particularly difficult. Statistically,

part of the residual variances in the incorrect model might be âaccidentallyâ explained by the

additional âwrongâ parameters, this is particularly possible when the sample size is small and

sampling fluctuation is high. We shall discuss what other characteristics of the model are involved

with greater details next.

It is increasingly difficult to select the correct model from the alternatives using fit index when

data was simulated from more complex DGM model. We found that results amongst the fit

statistics were most divergent when the DGM is a linear ALT, a complex model where both

autoregressive process and growth trajectory are present. In a hybrid model like the ALT, there

could be multiple sources of misspecification, not all of them are equally difficult to be detected. For

example, the AR models showed a consistent poor fit due to the omission of the true linear growth

trend. In comparison, even though the LGCMs lack the AR parameters, it is not always easily

distinguished from the true ALT. This is particularly the case when quadratic LGCM or the freed

loadings LGCM were chosen. In these cases, chi square is the most sensitive statistics to detect the

misspecification in the alternative models. However, (with a little surprise) we found that BIC

sometimes was in favor of a model simpler than the DGM, i.e., the linear LGCM. In comparison,

other measures opt for the LGCMs with a quadratic term or freed loadings. The selection of wrong

model(s) is most likely observed under challenging situations in the DGM such as a large random

error and/or a small sample size.
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4.0.3 Important Conditions Affecting Detection of DGM

Turning next to the characteristics of model and data that might be associated with the

distinction, we found that each of the factors under investigation plays an important role. For

instance, larger sample size or more waves of observation increased the likelihood of the chi square

test or BIC detecting the discrepancy between the DGM and alternative models. A combination of

difficult situations might largely decrease the chance of selecting the correct model from some

alternatives. For example, the discrepancy between a true quadratic LGCM is difficult to be

distinguished from a freed loadings ALT or a freed loadings LGCM using the chi square test or BIC

under conditions such as a small number of waves, or a moderate sample size, or large amount of

random error in the DGM. Similarly, without sufficient observations (e.g., sample size, number of

waves), chi square might not distinguish a true short-wave linear ALT with a moderate AR process

from a quadratic LGCM. The presence of nontrivial random error from the DGM, and the sampling

error from the data due to small sample size or short waves, seem to be a deciding factor in the

difficulty of identify the true model, or the ease to approximate it with alternative functional forms.

For example, when one or both are met, it is very likely to find a quadratic trajectory that can

provide a close approximation to the combined pattern of the AR processes and the linear trajectory

from an ALT model. Indeed, on the one hand, some models that have complex structures might be

empirically hard to distinguish or be easily resembled by alternative forms. On the other hand,

increased observations â a sufficiently large sample size and more waves of data â will facilitate the

distinction between these complicated models.

4.0.4 Search Strategies

Altogether, our result suggest that when theory is lacking it is a good practice to start with the

most general (identifiable) model (e.g., the quadratic ATL model). To reduce it to a more

parsimonious model, sets of parameters can be eliminated progressively as long as the goodness of

fit does not drop substantially. It is likely that one might end up choosing a more general model

than necessary, because our findings indicate that the correct model is equivalent to the restricted

form of the general model in which the additional or unnecessary parameters should have

insignificant estimates. Hence, the interpretation would essentially be the same whichever model is

chosen. However, if one is concerned about obtaining an overly complex model, it is suggested that

BIC result should be given special attention because our results show that it is the least likely to
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favor an over-parameterized model.

Nevertheless, challenges might appear at different stages of this stepwise model selection fashion

regarding the following aspects: 1) the most general model might not converge; 2) if the optimal

model is not the most general one, what would be an alternative option for the starting model; and

3) how can we increase our chances of stopping at the correct model instead of a close

approximation that carries a wrong substantive interpretation. Answers to these questions may

differ on a case-by-case basis, but here we offer some general suggestions based on our findings.

First, when nonconvergence occurs when fitting the most general model, it could result from too

few waves of data or insufficient sample size. Researchers can implement common practices to

enhance convergence such as inputting starting values, increasing the number of iterations, or

switching to less conservative convergence criteria. However, if convergence remains a problem, it is

possible that the model is more complex than necessary. With careful examination, one might then

move forward with simpler models such as the AR or LGC models as a starting point. In the

meantime, we recommend the BIC and Chi square test to compare the fit of the more restricted

model with the previous model at each step. When we are reducing from a more general model to

its restrictive form (e.g., from quadratic LGCM to linear LGCM), LRT should also be adopted. We

proceed until most of the fit index indicate a poor fit to a model, and we return to the previous

well-fit model as the optimal model.

One of the most challenging cases is when more than one model with no nesting relations

indicate comparable good fit, e.g., the LGCMs with the AR model, or quadratic LGCM with the

linear ALT. Because these models are nonnested, we cannot compare the relative fit using LRT.

From our results, it seemed like the distinction between the LGCMs with the AR model should be

easier if we look at all the fit indexes. However, for the distinction of quadratic LGCM with the

linear ALT, we might be better off to look closely at BIC and the chi square. As shown from our

study, while BIC might tend to favor a simpler model, chi square could be very sensitive to

misspecifications given sufficient sample sizes. It is therefore a good practice to find a tradeoff of the

two or more fit references whenever necessary. Admittedly, we imagine there might be some other

unforeseeable empirical challenges that adds to the complexity. Model selection without substantive

theory is always a dauting task. But our results at least suggest that even without any hypothesis,

some fit indexes including BIC and the chi square test are useful more often than not.
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To sum up, our evaluation emphasizes the following highlights: BIC is the most reliable

measure in selecting the optimal longitudinal model. The chi square test is also sensitive to detect

misspecifications and works particularly well to identify a true linear ALT model. LRT is most

helpful only when the candidate models have some nesting relations. Goodness-of-fit results work

most consistently when distinguishing a true AR model from false models. The most challenging

distinctions are between short-wave nonlinear LGCMs and ALT models when sample size is

moderate. Larger sample size or more waves of observation increased the likelihood to detect the

discrepancy between the DGM and the alternative models. It is always a good empirical practice to

start with the most general model (among those that can be identified and converged), and reduce it

to more restrictive forms until one reach the most parsimonious representation with roughly or very

consistent goodness fit results.

4.1 Limitation and Future Directions

We note that there are several limitations of our study. As with all simulations, the research

design can affect the results. First, we only used a subset of longitudinal models as the DGMs

instead of all. While there might be some value to include the additional sets of the DGMs using

the remaining four candidate models, we did not given the time constraints of this project. Second,

the list of the seven candidate models does not exhaust all longitudinal models. For instance, we did

not use alternative hybrid models such as the Latent Change Score model or the State Trait models,

as it has been shown that they are special cases of the more general Latent Variable ALT model

(Bianconcini & Bollen, 2018). We suspect that some of our findings of how fit statistics work can be

generalized given the same type of longitudinal models. The major difference lies in the parameter

estimates and interpretations, which might differ as a result of how components of change are

specified in the models. Although less common, LGCMs or ALT models with even higher order

polynomial terms have been documented in literature. Researchers might opt for these models if the

hypothesis on the shape of curvilinearity suggested so, and that the number of waves and sample

size of the data were sufficient enough to allow for the inclusion of complicated nonlinear terms.

While the general message to start with the most flexible (identifiable) model and proceed to

simpler ones by adding restrictions, the ease of distinguishing the true from false using fit indexes is

unknown particularly amongst those with no nesting relations.

Another limitation is that our simulation covers only a certain levels of random factors. For
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example, the number of timepoints and sample size in the moderate conditions and the portion of

missingness (i.e., 6 waves, N = 300, missing = 15%, respectively) were chosen to meet the minimum

requirement of model identification and convergence in the most complex models (i.e., the quadratic

ALT or the freed loadings ALT). However, empirical longitudinal studies sometimes face even

tougher situations such as only a handful waves of data less than 6, a smaller number of

observations than 300 or with larger or even increasing portion of missingness (i.e., due to attrition).

If the data were indeed even more varied than the moderate conditions considered in the simulation,

generalizing from our results to these conditions might be unwarranted. Some models under

investigation might not be applicable or identifiable in these scenarios, and the starting model has

to be downsized to a more restrictive representation. Even with identified models, sampling

fluctuations are likely larger so that the distinction between candidate models is made more difficult.

That is, finding more than one close approximations to the true underlying change patterns could be

more likely. As it does in practice, nonconvergence is another issue to consider in our study. The

fact that not all the models with simulated data converged raises issues about how best to report

the results. Following a common practice, we eliminate all replications that did not converge and

our success rate was based on using only replications that converged. If we counted nonconverged

replications as failures, then the success rates would be lower, especially under those conditions

when nonconvergence was relatively frequent.

Finally, another compromise comes from the adoption of an empirical simulation approach. We

are aware that with a selective set of the parameters, the model implied trajectories represent

specific change patterns. However, many characteristics of the trajectory might vary, sometimes

largely, across different substantive contexts, e.g., rate of change, size of curvilinearity, magnitude of

association between the two, etc. The uncertainty is that we do not know to what extent these

characteristic affect the distinguishability of the fit statistics. The data generated by the DGMs

have certain structures such as the scales of the measures, strength in the correlations, magnitude of

random errors, etc. It is difficult to know how much our results generalize under new conditions.

However, we did vary several factors including incorporating missingness. Particularly, to avoid the

limitation to specific change patterns or trajectories, we repeated each DGM by using the original

parameter set from the selected studies as well as the half sized parameter set (except for random

errors). We believe this strategy help to make the results more applicable. Last but not least, some
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topics are related but are out of the scope of the current investigation. For instance, the present

study does not consider the choice of the starting model and model selection with or without

covariates. Further, our study does not account for measurement error. For the simplicity, all the

evaluations are conducted on observed variables, assuming no measurement error for each variable

as well as measurement invariance in the validity of repeated measures over time. Future studies are

needed to examine these areas.
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