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ABSTRACT

Jonathan D. Rosen: Moving beyond Genome-wide Association Studies
(Under the direction of Yun Li)

In the last two decades, thousands of genome-wide association studies (GWAS) have been

published, describing hundreds of thousands of variant-trait associations across a diverse set of

phenotypes. The ubiquity of these studies, however, does not mitigate their significant limita-

tions, including the inability, in many cases, to illustrate the molecular mechanisms underlying

these associations. To bridge this gap between association and biological function, a plethora of

methodologies have been introduced that move beyond interrogation of the genome at the variant

level.

Transcriptome-wide association studies (TWAS) examine the association between imputed

gene expression and traits of interest, and in doing so reduce the multiple testing burden that

plagues GWAS while offering biological rationales for such associations. Many such methods

have been introduced in the last five years, however most do not account for the uncertainty in

genotype that arises from imputation. We present a new Bayesian TWAS method, inspired by

the BayesR framework, that explicitly models well- and poorly-imputed variants under differ-

ing assumptions, allowing for more flexibility in the training step where models to predict gene

expression values are built. This method is compared to existing methods using simulated data,

demonstrating improved accuracy and power in certain scenarios as well as conservation of Type

I error. Predictive performance versus elastic net, which is utilized by PrediXcan, a popular state-

of-the-art TWAS method, is measured using real RNA sequencing (RNA-seq) data generated by

the Depression Genes and Network (DGN) consortium.

Chromosome conformation capture (3C) techniques have allowed for analysis of the spa-

tial organization of chromatin within the cell nucleus, and the identification of regions that are
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in close 3-dimensional (3D) proximity provides insight into regulatory pathways that would be

hidden from strictly 1-dimensional (1D) analyses such as GWAS or 1D epigenetic footprints

similar to those generated by the ENCODE or Roadmap Epigenomics consortia. HiChIP and

PLAC-seq (collectively referred to as HP) are emerging 3C technologies for studying genome-

wide long-range chromatin interactions mediated by proteins of interest, enabling more sensitive

and cost-efficient interrogation of protein-centric chromatin conformation compared to previous

Hi-C methods. We present a stratified and weighted correlation metric, derived from normalized

contact counts, for quantification of reproducibility in HP data. Our method is applied to mul-

tiple real datasets and is shown to outperform existing methods developed for data generated

from Hi-C, a widely used genome-wide 3C technology. Furthermore, in a complex PLAC-seq

dataset consisting of 11 samples from four types of human brain cells, our method demonstrates

expected clustering of data that could not be reproduced using existing methods developed for

Hi-C data.

Continuing work in the arena of HP data analysis, we present HPTAD, a method for the

identification of topologically associating domains (TADs) using HP data. TADs are contiguous

regions of the genome characterized by a higher frequency of within-region interactions relative

to between-region interactions; they are implicated in gene regulation and their disruption is as-

sociated with a variety of diseases, including cancer. We compare HPTAD to several publicly

available tools used to identify TADs from Hi-C input data and demonstrate improved perfor-

mance relative to “ground truth” TAD regions and boundaries in both mouse and human cell

lines. Furthermore, we demonstrate excellent consistency between results obtained from biologi-

cal replicates and also observe CTCF enrichment at TAD boundaries identified using HPTAD.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

For the last 15 years, genome-wide association studies (GWAS) have been a popular tool for

exploring the relationship between genotype and phenotype. These studies typically interrogate

the genome at the variant level by performing individual tests of association between single nu-

cleotide polymorphisms (SNPs) and phenotype. The first GWAS, which focused on age-related

macular degeneration (Klein et al., 2005), was published in 2005 and since then there have been

almost 4,800 publications detailing over 200,000 associations, according to the National Hu-

man Genome Research Institute and European Bioinformatics Institute (NHGRI-EBI) catalog

(Buniello et al., 2019).

Despite the success of GWAS in revealing associations between genotype and a diverse

variety of traits including psychiatric (Li et al., 2017), cardiovascular (Zhao et al., 2017), and

endocrinologic disorders (Nikpay et al., 2015), among others, these studies are not without no-

table shortcomings. Many traits are highly polygenic, implying a large number of variants each

contribute very small individual effects on the expression of a trait (Hindorff et al., 2011). Conse-

quently, the true underlying genetic architecture of such traits is difficult to understand, and very

large cohorts are necessary to achieve adequate power for detection of subtle signals. GWAS also

suffers from a multiple testing burden given the large number of SNPs interrogated. Linkage dis-

equilibrium (LD) obscures which variant or variants represent true associations (Edwards et al.,

2013). Even if the truly associated variant(s) could be disentangled, a majority of discovered

variant-trait associations have ambiguous causal links; approximately 88% of GWAS identified

variants reside in non-coding regions of the genome (Buniello et al., 2019).
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It is intuitively attractive to assign intergenic variants to the closest gene in 1D space, but it

has been demonstrated that intergenic variants can regulate the expression of genes that are quite

far apart (Maurano et al., 2012). As one example, a variant associated with low-density lipopro-

tein cholesterol (LDL-C) via regulation of the SORT1 gene is not located within or adjacent to

SORT1, but rather physically resides between two other genes, CELSR2 and PSRC1 (Musunuru

et al., 2010). However, it has been observed that GWAS associated variants in non-coding re-

gions are enriched in transcriptional regulatory regions defined by chromatin accessibility, tran-

scription factor binding, and histone marks such as H3K27ac, H3Kme1, and H3K4me3 (Schaub

et al., 2012; Maurano et al., 2012), suggesting that they affect phenotype via alteration of gene

expression. Additionally, there is a significant overlap between these non-coding region variants

and expression quantitative trait loci (eQTL), further supporting their role in gene expression

(Nicolae et al., 2010).

To bridge the gap between variant-trait association and function, several methodologies have

been developed (Gallagher and Chen-Plotkin, 2018; Cano-Gamez and Trynka, 2020), and we

will focus on two of these. Transcriptome-wide association studies (TWAS) utilize transcriptomic

reference panels to build predictive models of gene expression based on genotype (Zhu and Zhou,

2020). Using these models it is possible to predict gene expression in large cohorts for which

transcriptomic data is not available, and this predicted expression can be tested for association

with a trait of interest. Since these models aggregate SNP effects reducing the analysis unit to the

gene level, the multiple testing burden is reduced by orders of magnitude. Since 2002, chromo-

some conformation capture (3C) techniques have allowed for analysis of the spatial organization

of the cell nucleus (de Wit and de Laat, 2012). By identifying regions that are in close 3D prox-

imity, we can gain insight into regulatory pathways that would not be discernible from a strictly

1D perspective.
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1.2 Transcriptome-wide Association Studies

The number of GWAS identified variant-trait associations is continually increasing, how-

ever elucidating the biological processes by which these variants affect phenotype remains a

challenge. In the last five years, TWAS have emerged as a new set of tools to help further our

understanding of these processes. As opposed to GWAS, which interrogates the genome at the

variant level, TWAS tests for associations at the gene level. By treating the gene as the functional

unit of interest, the multiple testing burden is reduced by orders of magnitude, and any discovered

associations imply a mechanistic biological interpretation, even if these interpretations do require

further validation.

A number of diverse TWAS methodologies have been published in the last few years, but all

share the same basic framework. The standard TWAS analysis can be broken into three distinct

steps:

1. Train a model to predict genetically regulated gene expression (GReX)

2. Predict gene expression into a large (GWAS) cohort

3. Test for association between predicted GReX and phenotype

What differentiates most TWAS methods are the basic model assumptions used in the train-

ing step. We will focus most of our attention on examining these models, however some methods

do differ, to varying degrees, in the other two steps.

Model training necessitates the availability of gene expression and genotype data, and several

consortia have made such data publicly available in the last several years. The Genotype-Tissue

Expression (GTEx, Carithers et al. 2015) project provides whole genome sequencing (WGS) and

RNA-seq data for over 50 tissue types in almost 1,000 subjects, although the number of samples

varies widely per tissue. The DGN (Battle et al., 2014) consortium provides whole blood RNA-

seq data for 922 genotyped European subjects. The GEUVADIS database (Lappalainen et al.,

2013) provides messenger and micro RNA sequencing data from lyphoblastoid cell lines in 462
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individuals from The 1000 Genomes Project (1000G, The 1000 Genomes Project Consortium

Institution/Organization et al. 2015).

The aim of the training step is to construct a prediction model that assigns a weight to each

SNP that reflects its effect on GReX. Prediction and testing are typically straightforward; the

weights determined in the training step are applied to a large genotype panel providing predicted

GREx for this cohort. Testing for association can be accomplished using standard models, such

as simple ordinary least squares regression if phenotype is continuous or logistic regression if

binary.

Training models differ in distributional assumptions on the weights assigned to SNPs, what

regions of the genome to consider in the analysis of each gene, and the extent of polygenicity

of GReX. Most TWAS methodologies consider only cis-SNPs when fitting models, utilizing a

fixed window (1 Mb, e.g.) around the start and stop positions of each gene, despite evidence that

a significant amount of variance in gene expression can be explained by trans-SNPs (Brynedal

et al., 2017; Liu et al., 2019). Certain TWAS models explicitly assume high sparsity in which

most variants have no effect on GReX, while others assign full polygenicity, assigning some

non-zero effect to all variants in the model.

1.2.1 TWAS Training Models

The first TWAS method was published in 2015 (PrediXcan, Gamazon et al. 2015), formally

introducing the framework outlined in the previous section. PrediXcan utilizes the elastic net

(Zou and Hastie, 2005) illustrated in Equation 1.1, which consists of a linear combination of

LASSO (α “ 1, Tibshirani 1996) and ridge regressions (α “ 0, Hoerl and Kennard 1970).

However, the general TWAS framework the authors present is compatible with other machine

learning approaches (Gamazon et al., 2015), such as Random Forest and OmnicKriging (Wheeler

et al., 2014).

β̂ “ arg min
β

}y ´Xβ}2 ` λ
“

α}β}1 ` p1´ αq{2}β}
2
2

‰

(1.1)
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In addition to minimizing the mean squared error, the two additional penalty terms serve dual

purposes. First, by placing a higher penalty on weights with large absolute values, single SNPs

with large effects are discouraged. Second, sparsity is induced by favoring many zero-valued

weights following a similar rationale. This, then, is ideologically consistent with the assumption

that GReX consists of moderate effects from a relatively small number of SNPs.

Using R2 between predicted and true expression as criteria, a pure LASSO (α “ 1) model

performed similarly to elastic net (α “ 0.5), however the latter was more robust to slight changes

in input SNPs (Gamazon et al., 2015). While imputed genotypes outperformed less dense typed

data, the use of denser imputation panels like 1000G did not provide significant benefit over less

dense panels (HapMap, International HapMap Consortium et al. 2007). Interestingly, the inclu-

sion of trans-eQTLs improved performance by such a marginal amount they were not included in

the ultimate pipeline.

Assessing performance via cross-validation R2 with DGN whole blood data, PrediXcan

outperformed polygenic risk score (Dudbridge, 2013), the single most significant SNP, and the

gene-based testing methods VEGAS (Liu et al., 2010) and SKAT (Wu et al., 2011), with cross-

validation R2 approaching the narrow-sense heritability calculated using GCTA (Yang et al.,

2011) for many genes. Previously reported GWAS results from the Wellcome Trust Case Control

Consortium (WTCCC) study (Burton et al., 2007) were able to be validated, and a novel gene

with an established biological precedent was identified that is associated with type 1 diabetes and

rheumatoid arthritis.

One criticism of TWAS is that many methods fail to account for error in the prediction step,

instead treating predicted expression as a single point mass in the association step. To address

this concern Bhutani et al. proposed BAY-TS, which bootstraps elastic net models to estimate

the mean and variance of each component of β. These estimates are incorporated into the prior

distributions of effect sizes used in a Bayesian association step. Using area under the precision

recall curve (AUPRC), BAY-TS was compared to ordinary least square regression using β from a

single elastic net model, the mean of 50 bootstrapped models, a multiple imputation framework
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(Little and Rubin, 1987), and regression calibration (Fuller, 1987), demonstrating improved

performance over the other methods. Efforts to repeat the PrediXcan analysis of the WTCCC

dataset resulted in replicating less than half of the reported genes, although the authors do report

certain inconsistencies attributable to expression normalization techniques.

Shortly following the publication of PrediXcan, Gusev et al. published another TWAS

methodology, which actually was the first printed usage of the term TWAS. The software as-

sociated with this paper is referred to as TWAS/FUSION and we will adopt that nomenclature

when discussing this method. TWAS/FUSION incorporates three models in associating geno-

type with GREx: Bayesian Sparse Linear Mixed Model (BSLMM, Zhou et al. 2013), best linear

unbiased predictor (BLUP, Robinson 1991), and the most signficant eQTL. It was reported that

BSLMM outperforms the other two methods in a majority of examaples and so we will focus our

attention on this method.

y “ 1nµ`Xβ̃ ` u` ε (1.2)

In Equation 1.2 y is a length n vector of expression values, µ is a scalar representing mean ex-

pression,X is an n ˆ p genotype matrix which is typically standardized such that all p columns

have mean 0 and unit variance, u is length n vector of random effects with known covariance

matrix, and ε is a length n vector of error terms. The term β̃ is a length n vector of weights such

that

β̃i „ πNp0, σ2
aq ` p1´ πqδ0 (1.3)

where δ0 is a point mass at zero. This method represents a hybrid between linear mixed models

and sparse regression models; the point mass in Equation 1.3 induces sparsity, and indeed the

number of β values set to zero is controlled through the parameter π, while the random effect

vector u captures the combined small effects from all SNPs.
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This methodology was evaluated by comparison to standard GWAS as well as restricting

association testing to the single best eQTL in each gene. Using simulated causal scenarios with

real genotype data from METSIM (Nuotio et al., 2014), YFS (Raitakari et al., 2008), and NTR

(Wright et al., 2014), TWAS/FUSION demonstrated the most power in polygenic scenarios and

performed similarly to the best eQTL method in scenarios with a single causal SNP. Similarly to

PrediXcan, the BSLMM was able to recover most of the theoretical cis-heritabilty as determined

by GCTA, and while recovery of some trans-heritability was observed, many models failed to

converge given the subtle effects and small sample sizes. Cross-cohort performance was also

demonstrated; training in one dataset and imputing into another yielded correlations between

predicted and true expression comparable to those for within-cohort performance after adjust-

ing for heritability in the test set. This has important practical considerations since real-world

applications will entail different training and testing cohorts.

The year after the publication of TWAS/FUSION, a factored polygenic QTL (fQTL) method

was proposed (Park et al., 2017) that also utilizes a Bayesian framework, similarly using a “spike

and slab” prior on β as in Equation 1.3. In contrast to BSLMM, no random effects are assumed,

so fQTL specifically models sparse effects. Here, the response considered is an n ˆ m matrix

of expression values Y for n subjects over m tissues. The per variant effects are partitioned into

tissue-invariant and tissue-dependent effects, and by pooling information across multiple tissues

fQTL not only improves the power of causal SNP identification, but also helps identify specific

tissues in the causal pathway of expression in a particular phenotype. Computational efficiency

over the Markov chain Monte Carlo (MCMC) algorithm implemented in BSLMM is achieved via

use of stochastic variational parameterization (Paisley et al., 2012; Ranganath et al., 2014).

In simulations with multiple causal tissues, fQTL unsurprisingly demonstrated increased

power relative to single tissue fQTL, LASSO, and elastic net, but suffered a loss of power in

scenarios with a single causal tissue, assumedly due to diluting the signal over several null tis-

sues. This loss of power was mitigated with an increase in the number of causal SNPs, eventually

matching that of elastic net. Real-world testing was done employing GTeX for model training,
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which provides multi-tissue expression data, and GWAS data from both Alzheimer’s disease and

schizophrenia studies. fQTL identified 107 significant genes, only 10 of which had been previ-

ously reported in the NHGRI GWAS catalog. However, applying fQTL in a series of single tissue

analyses identified more than twice as many significant genes, most of which were significant

only in a single tissue, highlighting the utility of using this method in conjunction with, not in

replacement of, single tissue methods.

Other multiple-tissue TWAS methods followed fQTL. MultiXcan (Barbeira et al., 2019)

utilizes an ideologically distinct framework to integrate information from more than one tissue.

The central premise of this method is the utilization of single tissue expression models to test

phenotype association using a joint model:

y “ µ` t1g1 ` t2g2 ` ¨ ¨ ¨ ` tpgp ` ε (1.4)

where y is a vector of phenotypes and ti denotes a vector of imputed gene expression for tissue p.

In practice, MultiXcan obtains the weights for the expression prediction models from those sup-

plied by PrediXcan and the joint significance of the regression is assessed via F-test. In contrast

to fQTL, this method is not specifically testing tissue-dependent SNP effects but rather aggre-

gating effects over multiple tissues. Recognizing that predicted expression for certain tissues

can be highly correlated, pricipal component regularization is employed to deal with potential

collinearity issues.

In simulation studies, MultiXcan outperformed PrediXcan in all scenarios except in cases of

a single causal tissue, similar to what was demonstrated with fQTL. Both MultiXcan and PrediX-

can were applied to 222 traits from UK Biobank (Bycroft et al., 2018), which contains deep

genotyping for nearly half a million participants, and the former was able to detect more signif-

icant gene-trait associations, including many that had not been previously reported. Admittedly,

more associations does not imply more true positives, but in conjunction with simulations results

showing type I error control these do warrant further investigation.
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Yet another multi-tissue TWAS method is the Unified Test for MOlecular SignaTures (UT-

MOST, Hu et al. 2019), which, like fQTL, fits a multivariate model on expression for multiple

tissues simultaneously. As opposed to the BSLMM however, the estimates of β are determined

by solving

β̂ “ arg min
β

p
ÿ

i“1

1

2Ni

}yi ´Xiβ¨i}
2
2 ` λ1

p
ÿ

i“1

1

Ni

}β¨i}1 ` λ2

m
ÿ

j“1

}βj¨}2 (1.5)

Using the β̂ values from this model it is possible to test for tissue-specific gene-trait associations,

and these Z-values can be combined using a modified generalized Berk-Jones test (Sun and Lin,

2017) to provide an omnibus statistic for gene-trait association.

Similar to the aforementioned multi-tissue methods, UTMOST displayed increased power

relative to single tissue methods in simulation scenarios with more than one causal tissue. Within-

and cross-cohort imputation accuracy, with models trained using GTEx data, exceeded that of

PrediXcan and BSLMM in all 44 tissues analyzed, with the largest gains observed in tissues with

the smallest sample size; additionally, there was no observed inflation of type I error. Real-world

data analysis using UTMOST revealed more significant associations compared to the other two

methods, with the same caveats as previously discussed.

In an extension to PrediXcan, Zhou et al. proposed a method for joint-tissue transcriptome

imputation (JTI, Zhou et al. 2020). The motivation driving JTI is borrowing information from

other tissues while retaining the variable selection properties of the elastic net. This is achieved

by retaining the L1 and L2 penalties in Equation 1.1 and adding a weight to the mean squared

error term, where now there are observations for each sample-tissue pair. Weights are derived

according to the similarity of gene expression profiles and epigenomic factors (such as DNase-I

hypersensitivity sites) between tissues, with larger weights corresponding to greater similarity. In

this fashion, cross-tissue information is borrowed in a highly strategic fashion, and by setting all

cross-tissue weights to unity, PrediXcan becomes a special case of JTI.
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Expected performance gains over single-tissue methods were observed using JTI, with the

biggest gains coming from tissues with small sample size and high expression correlation with

other tissues, and in a direct comparison to another muti-tissue method, JTI outperformed UT-

MOST with regard to prediction accuracy. We note that JTI includes a Mendelian randomization

(Smith and Ebrahim, 2004; Pierce and Burgess, 2013; Burgess and Thompson, 2013) component

for causal inference on gene-trait relationships that is beyond the scope of this discussion.

The framework for a non-parametric Bayesian method, latent Dirichlet process regression

(DPR), was proposed by Zeng and Zhou and later formally incorporated into a TWAS package

named TIGAR (Nagpal et al., 2019). The motivation behind DPR is the extension of methodolo-

gies such as BVSR to include a linear combination of infinite normal distributions:

βi „
8
ÿ

k“0

πkNp0, σ
2
kq, σ2

k „ IGpak, bkq,

πk “ νk

k´1
ź

l“1

p1´ νlq, νk „ Betap1, ξq

(1.6)

where IG is the inverse gamma distribution and parameter ξ controls the number of non-zero β

values.

In simulations with genotype data from the Religious Orders Study and Rush Memory Aging

Project (ROS/MAP, A. Bennett et al. 2012a,b), TIGAR was compared to PrediXcan with respect

to both imputation accuracy and TWAS power. The DPR framework outperformed elastic net in

most scenarios except low proportion of causal SNPs (ă 0.01) and high expression heritability

(ą 0.2) in both cross-validation and cross-cohort experiments.

Similar results were observed comparing PrediXcan to a collaborate mixed model (CoMM)

for dissecting genetic contributions to genetic traits (Yang et al., 2019). Previously discussed

methods have been two-stage strategies, namely imputation of gene expression followed by a

distinct association step. CoMM performs both steps simultaneously via an expectation maxi-

mization algorithm (EM, Dempster et al. 1977), which is accelerated using parameter expansion

(Liu et al., 1998), and ultimately tests for association via likelihood ratio test. This framework,

10



like BAY-TS, addresses one criticism of many TWAS methods, namely that little or no considera-

tion is given to the error in GReX prediction.

Since CoMM does not impute gene expression in a distinct step, performance comparisons

are restricted to TWAS power, and CoMM outperforms both the elastic net and ridge models of

PrediXcan in simulated (NFBC1966, Sabatti et al. 2009 and real-world (GERA Hoffmann et al.

2011) GWAS datasets. Similar to DPR, the biggest power gains are observed in low heritability,

highly polygenic scenarios.

1.2.2 Extensions of TWAS Methods

Recently, the CoMM methodology has been extended to multi-tissue analysis (TisCoMM,

Shi et al. 2020, again accounting for prediction uncertainty by jointly solving both stages via EM

algorithm. Of note is the ability to test the joint null (no gene-trait association across all tissues)

and the individual nulls individually. In joint testing, TisCoMM outperformed both UTMOST

and MetaXcan, notably at low heritability and high sparsity, with power for all tests roughly

equivalent at higher heritability. In single tissue testing, TisCoMM was slightly less powerful

than CoMM, PrediXcan, and TWAS/FUSION, but with a lower false positivity rate than the other

single tissue methods.

While often not explicitly described as such, the aforementioned TWAS methods have been

framed as a form of two-sample Mendelian randomization (MR) analysis (Zhu and Zhou, 2020)

which aims to determine the causal relationship between an exposure variable, gene expression in

the case of TWAS, and an outcome variable (phenotype). The two-sample component arises from

the fact that expression imputation is done on a different sample than association testing. Here

the cis-SNPs serve as instrument variables for the exposure variable, yet one of the underlying

assumptions of MR is that instruments affect the outcome solely through the exposure. The well

documented horizontal pleiotropy (Verbanck et al., 2018) of variants invalidates this assumption,

necessitating sophisticated MR methods to apply in the TWAS setting. Recently, a spate of such

methods have been published (PMR-Egger Yuan et al. 2020, TWMR Porcu et al. 2019, MR-
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Robin Gleason et al. 2020, PTWAS Zhang et al. 2020, SMR Zhu et al. 2016, and eQTLWAS

Taylor et al. 2019), but we forgo discussion of these because of their primary focus on issues

outside of gene expression prediction.

Thus far we have restricted our discussion to methods that utilize cis-eQTLs for model con-

struction despite considerable evidence that much, if not most, of the variability in GReX can be

explained by distal genetic traits (Brynedal et al., 2017; Liu et al., 2019). The justification for

focusing on local variants usually proceeds along two arguments: incorporation of trans-eQTLs

can be computationally intractable in some cases and trans-effects can be too noisy to model ade-

quately. However, methods are beginning to emerge in the literature that successfully incorporate

both cis- and trans-eQTLs into the TWAS framework.

MOSTWAS (Multi-Omic Strategies for TWAS, Bhattacharya et al. 2020) extends the typical

TWAS paradigm by incorporating distal information via one of two methods: 1) identification

of distal regulatory elements, training prediction models that incorporate these using their lo-

cal SNPs, and including these models in the TWAS prediction model and 2) inclusion of distal

eQTLs that demonstrate large indirect mediation effect on the gene of interest through mediat-

ing local regulatory elements. Predictive models are fit using previously described elastic net or

linear mixed model methods.

In simulation studies, MOSTWAS demonstrated improved prediction accuracy and power

with respect to detecting gene-trait associations over local-only methods, with larger gains ob-

served with increased distal expression heritability. Under the null case of no distal expression

heritability in the testing panel, MOSTWAS performed similarly to local-only methods, with a

modest loss of power in low heritability, high sparsity scenarios. Using ROS/MAP data, MOST-

WAS demonstrated improved mean predictive and cross-validation R2 compared to local-only

models.

A Bayesian genome-wide TWAS (BGW-TWAS, Luningham et al. 2020) was recently pro-

posed that, unlike MOSTWAS, does not discriminate which trans-SNPs are included in the

model. This method relies on a BVSR framework, fitting separate models for cis- and trans-
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effects, but standard computational solutions for such models are impractical due to both the

memory demands of using the entire genome and slow MCMC convergence. To address both of

these concerns, BGW-TWAS implements a scalable EM-MCMC algorithm (Yang et al., 2017a)

using only summary GWAS statistics based on single variant tests as opposed to individual geno-

type information. In simulation studies BGW-TWAS demonstrated improved predictive perfor-

mance and TWAS power compared to cis-only BVSR, PrediXcan, and TIGAR over a range of

heritability and sparsity scenarios with two exceptions: in highly polygenic simulations with low

expression heritability all methods performed equally poorly, and when the majority of signal

was due to cis-SNPs under high expression heritability, PrediXcan and TIGAR outperformed

BGW-TWAS. Using a ROS/MAP trained model, BGW-TWAS identified an Alzheimer’s gene

ZC3H12B whose signal was driven entirely by trans-eQTLs.

Since individual level genotype data is not typically available for large GWAS, many of

the aforementioned methods can directly accommodate GWAS summary statistics, or have ex-

tensions allowing for their use (S-PrediXcan Barbeira et al. 2019, CoMM-S2 Yang et al. 2020).

TWAS/FUSION was the first method to demonstrate the viability of using expression weights,

GWAS Z-scores, and a suitable LD panel for cis-SNPs to construct a gene-trait association Z-

score. This process was validated by comparison with an identical analysis using individual

genotype data, yielding nearly identical results, with an overall slight underestimation observed

using summary data.

1.3 Chromosome Conformation Capture

GWAS has undeniably been successful in identifying variant-trait relationships, but genomic

function is known to depend on more than the 1D structure of DNA. Human DNA contains over

3 billion nucleotides, which when unwound has a linear length greater than 2 meters, yet it re-

sides within the nucleus, a cellular structure many orders of magnitude smaller. The organiza-

tional architecture required to achieve this necessitates complex folding (Bickmore, 2013) which,

in conjunction with its 1D structure, confers functionality to DNA (Ong and Corces, 2014). Early
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investigations into the 3D structure of DNA relied on simple light microscopy, and subsequent

technological advances enabled more sophisticated microscopy methods such as 3D fluorescence

in-situ hybridization, which allowed for visualization of individual contacts within the nucleus

(3D-FISH, Cremer et al. 2012). Microscopy based methods, however, are limited to studying a

particular region of the genome rather than the genome as a whole (Bonev and Cavalli, 2016).

A breakthrough study at the beginning of the 21st century (Dekker et al., 2002) demonstrated

a technique to explore the 3D structure of DNA organization that did not rely on any form of

microscopy. This so-called chromosome conformation capture (3C) technique is based on a

simple premise: by immobilizing DNA at points where different sections are in very close spatial

proximity to each other, it should be possible to quantify the frequency of interactions at different

genetic loci. In practice, this is performed by using formaldehyde to freeze interactions between

chromatin bound regions (cross-linking) followed by digestion of DNA using enzymes that cut

DNA strands at specific base pair (bp) sequences, typically 4 or 6 bp in length. Subsequent to

digestion, the loose ends are ligated in dilute solution to promote ligation between segments that

are cross-linked over ligation between non-linked segments. Finally, the ligated segments are

reverse cross-linked and the signal amplified using polymerase chain reaction (PCR) methods.

These paired ends can then be sequenced to reveal genetic loci that interact in 3D space.

Since the initial Dekker et al. procedure, several additional 3C methods have been developed,

which differ mainly in the scope of the interactions they detect. While the original procedure

quantifies interactions between two specific genetic loci, chromosome conformation capture on

a chip (4C, Simonis et al. 2006) quantifies interactions between one specific locus and all other

loci in the genome. Chromosome conformation capture carbon copy (5C, Dostie et al. 2006)

quantifies all pairwise interactions between loci confined to a specific region of the genome.

Perhaps the most ubiquitous 3C methodology in the last decade has been Hi-C (Lieberman-

Aiden et al., 2009), which incorporates high-throughput sequencing into the 3C workflow, allow-

ing for the genome-wide quantification of all pairwise interactions between genetic loci. Since

its introduction, Hi-C has been widely used to explore the 3D structure of both the human and
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non-human genomes (Han et al., 2018). Data visualization for these studies often consists of a

contact map, a symmetric nˆ n matrix whose i, j element represents the number of interactions

between loci i and j. The length of these loci in bp is referred to as the resolution of the experi-

ment and is a function of the restriction enzyme used and, indirectly, to the read depth. Too fine

of a resolution relative to number of reads would result in an overly sparse contact map.

In order to provide scientific rigor in Hi-C experimentation it is critical to have computa-

tional tools available to quantify data quality and measure reproducibility between samples. Not

only does Hi-C suffer from technical noise that is inherent in all biological experiments, the use

of many different tools to perform alignment and many choices among restriction enzymes, res-

olutions, and normalization techniques add additional variability. Consequently, it is particularly

important to have methods that ensure data quality from Hi-C experiments.

1.3.1 Measuring Hi-C Reproducibility

A natural, intuitive, and computationally simple method for quantifying the similarity be-

tween two Hi-C contact matrices is Pearson correlation between vectors of contact frequencies,

and indeed this was used in practice in the early days of Hi-C. However, one of the characteristic

features of Hi-C data is that contact frequency, on average, decreases with increasing genomic

distance (Lieberman-Aiden et al., 2009), and Pearson correlation does not account for this. Yang

et al. have demonstrated the failure of Pearson correlation in distinguishing between biological

replicates and non-replicates, specifically showing that the latter can be more correlated than the

former, contrary to biological plausibility.

Additional biases further invalidate a naı̈ve correlation analysis, which implicitly assumes

that all measurements in a contact map are independent. Contact frequency has been demon-

strated to be dependent on factors such as restriction fragment length, GC content, and mappabil-

ity (Juric et al., 2019). Chromosomes exhibit compartmentalization on several scales, including

alternating regions open and closed chromatin (A/B compartments, Lieberman-Aiden et al. 2009)

and topologically associated domains (TADs, Dixon et al. 2012; A. Bennett et al. 2012a; Nora
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et al. 2012), regions that exhibit frequent interactions within the domain but much lower levels of

interaction outside the domain. Additionally, the choice of resolution is usually done in an ad hoc

fashion, yet is correlated with the noise due to signal dropout.

There exists the need then for computational methods that quantify how “close”, in some

sense, two contact matrices are to each other while accounting for some, if not all, of these bi-

ases. At minimum, a reasonable measure of reproducibility should determine that replicates are

closer than non-replicates, and ideally this closeness would have some meaningful biological

interpretability. We will discuss several such methods that have been developed in the last few

years.

GenomeDISCO (Ursu et al., 2018) reports a concordance measure of DIfferences between

Smoothed COntact, which comprises three steps: conversion of a Hi-C contact matrix to a tran-

sition matrix, smoothing via a random walk process, and comparison of two such transformed

matrices to yield a reproducibility metric.

Contact matrices are converted to transition matrices by first normalizing the number of

contracts by a procedure known as vanilla coverage (VC, Lieberman-Aiden et al. 2009) square

root followed by scaling such that the rows all sum to one. In this manner the i, j element is

interpretable as the probability of transitioning from locus i to j. A random walk of t steps is

then simply calculated by raising the matrix to the t power, the result of which is smoothing the

original contact matrix such that between element variability is reduced.

For two such matrices, A1t and A2t, the distance between them is then measured as the sum

of the absolute difference between each entry divided by the average number of non-zero entries

prior to smoothing:

dtpA1, A2q “

ř

i

ř

j

ˇ

ˇpA1qtij ´ pA2qtij
ˇ

ˇ

1
2

´
ˇ

ˇ

ˇ
tA1i|

ř

j A1ij ą 0u
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
tA2i|

ř

j A2ij ą 0u
ˇ

ˇ

ˇ

¯ (1.7)

This metric is converted to the domain of r´1, 1s, with larger values representing “closer” ma-

trices. The smoothing is tuned heuristically with high quality Hi-C datasets, using half of the
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dataset for training and the remaining half for testing in order to find a value for t such that suf-

ficient denoising is performed but not to the extent that domain specific information is lost due

to over-smoothing. In practice this is accomplished by maximizing the area under the precision-

recall curve (auPRC).

Rather than focusing on smoothing to reduce the noise in Hi-C data, HiC-spector (Yan et al.,

2017a) utilizes eigendecomposition to reduce the dimensionality of contact matrices, focusing on

eigenvectors containing the most information. As in GenomeDISCO, contact frequency is used

as a proxy for spatial distance such that larger values of the i, j element of a contact matrix imply

closer proximity of loci i and j in 3D space (Wang et al., 2016). Normalized Laplacian matrix `

is defined as I ´D´1{2AD´1{2 where A is the contact matrix, I is the n ˆ n identity matrix and

D is a diagonal matrix such that Dii “
ř

j Aij . In this formulation Dii represents the coverage of

locus i, the total contact frequency across the entire chromosome.

Laplacian ` is guaranteed to be positive semi-definite with at least one eigenvalue equal to 0,

so the eigenvalues λ satisfy t0 ď λ0 ď λ1 ď ¨ ¨ ¨ ď λn´1u. For two contact matrices A1 and A2, if

we define the aforementioned eigenvalues as tλA1
0 , λA1

1 , . . . , λA1
n´1u and tλA2

0 , λA2
1 , . . . , λA2

n´1u with

corresponding eigenvectors tνA1
0 , νA1

1 , . . . , νA1
n´1u and tνA2

0 , νA2
1 , . . . , νA2

n´1u, then the distance be-

tween them is defined as the sum of Euclidean norms of the differences between r eigenvectors:

SdpA1, A2q “
r´1
ÿ

i“0

||νA1
i ´ νA2

i || (1.8)

Using a pair of random vectors as a reference, this metric can be normalized to lie in the range

r0, 1s.

The Euclidean distance between two high order eigenvalues was found to be nearly identical

to that of two randomly selected unit vectors from a multivariate normal distribution, suggest-

ing they are merely capturing noise. Therefore, the inclusion of excess terms would serve only

to downward bias the similarity metric between two matrices, increasing their similarity. The

authors report the use of 20 as an empirically derived acceptable value for r.
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QuASAR-Rep (Sauria and Taylor, 2017) reduces the problem of reproducibility to calculat-

ing the Pearson correlation between two vectorized matrices; however, rather than comparing raw

or normalized contact frequencies, scaled correlations are the unit of comparison. Since the ma-

jority of contacts occur within small linear distances and long-range interactions are very noisy, a

local correlation matrix is computed such that only a narrow, pre-defined distance between loci is

considered.

For contact matrix A, correlation matrix C is defined such that Cij “ corrpAij,local, Aji,localq

where Aij,local “ tAik|j ´ 100 ď k ď i ` 100, k ‰ i, k ‰ j, Ipkq “ 1u and Ipkq is the

indicator for valid rows or columns. A valid row is defined as one that contains more than three

non-zero terms with a standard deviation not equal to zero. Transformation matrix T is defined as

the element-wise product of C and the scaled raw counts of A. The final reproducibility metric

is the correlation between two transformation matrices, corrptTA1ij|IA1pi, jq “ 1, IA2pi, jq “

1u, tTA2ij|IA1pi, jq “ 1, IA2pi, jq “ 1uq where the indicator functions take on the value of 1 for

valid values of the corresponding transformation matrices.

Unlike the previously discussed methods, QuASAR-Rep does not attempt denoising by

smoothing or dimensionality reduction, but rather by summarizing a function of contact fre-

quency within genomic neighborhoods. Local correlation structures are scaled proportionally

to contact frequency, and the correlation between these is put forward as an indicator of matrix

similarity.

HiCRep (Yang et al., 2017b) is perhaps the most mathematically straightforward of the Hi-C

reproducibility methods introduced in the last few years, however complexity should not be con-

flated with performance. HiCRep has been cited far more often than the aforementioned methods

and, not surprisingly, shares some elements with them as well. Like GenomeDISCO, contact fre-

quency is smoothed to reduce noise. This is accomplished by simply taking the arithmetic mean

of counts within a defined 2-dimensional square region.

Considering that the predominant feature of Hi-C data is the decay of interaction freqency as

linear genomic distance increases (Lajoie et al., 2015), rather than treating all data in a smoothed
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contact matrix as equally informative, the HiCRep procedure explicitly takes this relationship

into account. This is accomplished by extracting equidistant loci (stratum) from smoothed

contract matrices and comparing these via Pearson correlation. Strata specific values are then

combined via weighted sum, with weights derived as a function of sample variances. If A1k

and A2k are the kth strata from smoothed contract matrices A1 and A2 respectively, then ρk is

corrpA1k, A2kq. The weight for statum k is given by

wk “
Nk

a

varpA1kqvarpA2kq
řK
k“1Nk

a

varpA1kqvarpA2kq
(1.9)

where K is the total number of strata. By definition the weights fall in the range r0, 1s and sum to

one, and from Equation 1.9 we see that more weight is placed on strata containing more observa-

tions and which are more highly variable. The final reproducibility metric is simply
řK
k“1wkρk.

1.3.2 Comparison of Hi-C Reproducibility Methods

In their original publications, some of the aforementioned methods were directly compared

to each other; recently, however, a comprehensive comparison of the methods described in the

previous section, including Pearson correlation, was published to assess their relative perfor-

mance (Yardimci et al., 2019). Testing data consisted of two replicate Hi-C experiments on cells

from 13 immortalized human cancer cell lines, with read depth ranging from 10 million to 400

million paired reads per experiment. Simulated noise was generated arising from two sources:

genomic distance noise (Lieberman-Aiden et al., 2009) and random ligation noise (Lajoie et al.,

2015). Two ratios of these noise types were injected into real data to examine the effect on perfor-

mance.

The reproducibility metrics monotonically decreased with increasing noise for all methods

compared. Qualitatively, there is evidence that HiCRep and QuASAR-Rep might be more ro-

bust to noise evidenced by the concavity of their plotted curves of metric vs. noise, in contrast

to convex patterns observed with the other methods. That is, steep declines in reproducibility
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metrics (relative to other methods) were only observed at the highest noise levels for HiCRep and

QuASAR-Rep. Despite consistency in the monotonicity of decay trends, the methods did differ

in which noise ratio resulted in higher reproducibility metrics, suggesting that some methods are

more sensitive to specific types of noise.

Performance using real-world data focused primarily on differentiating biological replicates,

non-replicates, and pseudo-replicates (further details in Chapter 2), with the expectation that a

reproducibility metric should rank pseudo-, biological, and non-replicates respectively in order

of decreasing metric. While all five methods were able to correctly rank the replicate types on

average, intuitively a measure of method performance would be the greatest separation between

replicate types. In many test scenarios HiCRep and HiC-Spector outperformed the other mea-

sures in this regard.

Performance at different coverages was assessed by downsampling, and all methods demon-

strated a consistent pattern of smaller metrics and worse separation between replicate types at

lower coverages. However, performance did plateau for all methods at approximately 25 mil-

lion read pairs. HiCRep and HiC-Spector outperformed the other methods at most depths, while

QuASAR-Rep was unable to differentiate cell pair types below 20 million read pairs.

Using two deeply sequenced cell lines (400 million read pairs) all methods were compared

at different binning resolutions (10, 40, and 500 Kb) and found to be robust to changes in reso-

lution. Interestingly, QuASAR-Rep demonstrated greater separation between the three types of

replicate pairs at lower resolution, potentially implying that the method is capturing more large

domain structure than the other methods. However, when binning resolutions of 5, 10, 20, and

40 Kb were applied to pairs of biological replicates, the relative performances of the methods

showed variable trends. Consequently, using reproducibility measures to determine appropriate

experiment resolutions is not recommended.

The main conclusion from the various comparisons is not that one method is wholly superior

to the others, but rather that selection of reproducibility measure should be guided by the nature

of the analysis.
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1.3.3 Chromatin Immunoprecipitation Methods

While Hi-C has allowed for tremendous gains in the understanding of the 3D architecture of

the human genome at high resolution, one drawback is the requirement for very deep sequencing

to achieve such resolution since Hi-C detects proximity ligations in a genome-wide fashion. Such

deep sequencing not only increases cost, but often makes investigation of specific regions at high

resolution impractical. Gene transcription regulation has been shown to be controlled by distal

interaction between enhancers and promoters (West and Fraser, 2005) but Hi-C is not ideally

suited for a strict focus restricted to such interactions. To enhance specificity of Hi-C, a novel

strategy for chromatin interaction analysis using paired end tag sequencing (ChIA-PET, Fullwood

et al. 2009) has been proposed that combines Hi-C with chromatin immunoprecipitation (ChIP)

to enrich long-range contacts associated with a protein or histone modification of interest.

ChIA-PET indeed allows for improved resolution of interactions implicated in transcriptional

regulation, however these experiments still require hundreds of millions of cells with a small

fraction of informative reads (Tang et al., 2015). Two related methods, HiChIP (Mumbach et al.,

2016) and PLAC-seq (Fang et al., 2016), have recently been introduced that aim to alleviate this

issue by utilizing the principles of in situ Hi-C (Rao et al., 2014); specifically, proximity ligation

is performed within intact nuclei prior to lysis reducing the number of false positive interactions.

Both methods boast improved signal-to-noise ratios over in situ Hi-C. HiChiP provides 10 times

the number of informative reads with a 100-fold reduction in input material relative to ChIA-PET

(Mumbach et al., 2016), and PLAC-seq similarly provides 10 times the number of reads with

20-fold fewer cells relative to a similar ChIA-PET study (Fang et al., 2016).

Several tools originally designed for Hi-C have been applied to HiChIP and PLAC-seq data

(Phanstiel et al., 2015; Lareau and Aryee, 2018; Juric et al., 2019) for the detection of long-range

peaks, but no methods for assessing reproducibility have been designed specifically for this type

of data. In addition to biases inherent in all Hi-C data, such as effective fragment length and GC

content (Yaffe and Tanay, 2011), the chromatin immunoprecipitation step introduces additional

biases. Furthermore, since the HiChIP/PLAC-seq methods allow for detection of interactions
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between two protein-bound regions as well as one bound and one unbound region, some biases

may not be consistent across all interactions.

GenomeDISCO was successfully applied to one HiChIP dataset (Ursu et al., 2018), how-

ever that methodology was designed for Hi-C data analysis and does not account for the afore-

mentioned ChIP bias, nor does it restrict attention solely to interactions that contain at least one

protein-bound region. Recently, an extension to the irreproducible discovery rate (IDR, Li et al.

2011) method has been proposed that allows for the principles of the original method to be ap-

plied to 2-dimensional data (IDR2D, Krismer et al. 2020). By use of a two-component gaussian

copula mixture model, the IDR method assigns a probability of being irreproducible to each peak

in a ChIP-seq experiment. IDR2D applies this to significant ChIA-PET and HiChIP interactions

as called by Mango (Phanstiel et al., 2015) and hichipper (Lareau and Aryee, 2018) respectively,

however neither method considers interactions between protein-bound and non-bound regions.

Moreover, IDR2D considers interactions individually, and while these results could theoretically

be combined to produce a single genome-wide reproducibility metric, no formal method for this

exists. It is specifically recommended that IDR2D should be used in conjunction with, not in lieu

of, existing Hi-C specific methods.

1.4 Topologically Associating Domains

The development of chromatin conformation capture technologies has led to the discovery of

larger scale organizational features of DNA beyond chromatin loops. When the Hi-C method was

originally described (Lieberman-Aiden et al., 2009) the authors discussed an apparent segmenta-

tion of the genome into arbitrarily labeled A and B compartments. These compartments represent

areas of open and closed chromatin (A and B respectively), and have been shown to be cell-type

specific. Furthermore, compartmentalization of the genome can change during the course of an

organism’s development (Dixon et al., 2015). In 2012, another type of compartmentalization

was described (Dixon et al., 2012); topologically associating domains (TADs) are defined as

chromatin regions where within-region interactions are more frequent than between-region inter-
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actions. TADs are believed to regulate gene expression by limiting the interaction between distal

regulatory elements such as enhancers and promoters (Dixon et al., 2016), while genes within the

same TAD have demonstrated correlated expression (Nora et al., 2012).

Since their initial description, there has been an increase in the examination of the functional

relevance of TADs. These regions have been shown to be highly conserved between cell types

(Schmitt et al., 2016; McArthur and Capra, 2021) and species (Dixon et al., 2012). Additionally,

they have been implicated in number of diseases. Disruption of TAD boundaries has been linked

to adult-onset demyelinating leukodystrophy (Giorgio et al., 2015), developmental limb defects

(Lupiáñez et al., 2015; Ren and Dixon, 2015) and cancer (Valton and Dekker, 2016; Li et al.,

2019; Akdemir et al., 2020; Pinoli et al., 2020). It should not be surprising then that a number of

methods to detect TADs and TAD boundaries have been reported in the last decade. In the follow-

ing section we will examine some of these methods and compare their underlying assumptions.

1.4.1 TAD Calling Methods

The first formalized TAD calling method was based on the directionality index described by

Dixon et al.. As descrbed in the previous section, a Hi-C experiment yields the number of read

pairs between two genetic loci which are binned at a specific resolution. Consequently, using

these (possibly normalized) counts as input, it is straightforward to compute the total number of

read counts between any locus i all loci within a specified window upstream or downstream of i.

If we let Ai and Bi represent these upstream and downstream counts respectively, the directional-

ity index is defined as:

DI “
Bi ´ Ai
|Bi ´ Ai|

ˆ

pAi ´ Eiq
2

Ei
`
pBi ´ Eiq

2

Ei

˙

(1.10)

where Ei represents the expected counts at locus i, defined as the arithmetic mean of Ai and Bi.

The fundamental assumption is that the difference between upsteam and downstream con-

tacts should be maximized at TAD boundaries, specifically upstream counts are expected to
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exceed downstream counts at the beginning of a TAD region while the opposite is expected at

the end of a TAD. Actual boundaries are called using the vector of indices as input into a hid-

den markov model consisting of a Gaussian mixture model with one to twenty components. The

optimal number of mixture components is chosen using AIC to assess the best fit model and do-

mains are called based on changes in hidden state. TADs that do not meet specific criteria (such

as minimum length) are designed as unorganized chromatin and represent inter-TAD regions.

Another widely adopted early TAD calling method is referred to as insulation score (Crane

et al., 2015). Scanning the diagonal of a contact matrix, for each locus an insulation score it

computed representing the sum of interactions spanning that locus within a specified neighbor-

hood. Intuitively, a TAD boundary should be reprented by a local minima insulation score, and

the method employs an algorithmic process by which such minima are selected and evaluated. It

should be noted that this process involves parameters whose value can have a significant impact

on the number of TADs identified.

TopDom (Shin et al., 2016) is another TAD calling method that bears some ideological sim-

ilarities to both the directionality index and insulation score. Similar to the directionality index,

upstream and downstream contacts from a specific locus are counted, but these are averaged (“bin

score”) instead of evaluated separately. Similar to the insulation score, potential TAD boundaries

are identified as inflection points in the series of “bin scores”, however these are determined by a

piecewise linear function. TAD boundaries are selected from these potential ones by testing the

upstream and downstream contact frequency difference using a Wilcoxan rank sum test.

The aforementioned methods all identify discrete TADs, however high resolution Hi-C stud-

ies have pointed to the existence of hierarchically nested TADs (Weinreb and Raphael, 2016).

OnTAD (An et al., 2019) was developed specifically to identify such nested TADs (subTADs)

and TAD-containing TAD hierarchies (metaTADs). Similar to insulation score and TopDom, the

average contact frequencies within a diamond-shaped window are determined by sliding along

the diagonal. The process is repeated varying the window size, and local minima are selected for
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each window size. Hierarchical TADs are called from the union of potential boundaries using a

dynamic programming algorithm.

More recent TAD calling methods include Grinch (Lee and Roy, 2021), which is reported to

be particularly well suited to sparse Hi-C data. Unlike the previously discussed methods, Grinch

relies on contact matrix factorization rather than a linear score based method for TAD detection.

Non-negative factorization of the contact matrix is followed by a local smoothing procedure to

account for the previously discussed distance dependence of Hi-C contact frequency. One of

the smoothed factor matrices is treated as a set of latent features, and TADs represent clustered

regions found by applying k-medoids clustering.

Other methods use statistical inference to call TADs, making assumptions about the dis-

tribution of integer counts or normalized contact frequency. HiCseg (Lévy-Leduc et al., 2014)

assumes counts follow a negative binomial (integer) or Gaussian distribution (normalized), and

by assuming that interactions within a TAD arise from a common distribution, the 2-dimension

segmentation problem is reduced to a 1-dimensional problem. Boundaries are determined using a

dynamic programming algorithm that iteratively tests sets of boundaries to determine the set that

maximizes the likelihood of the observed data.

There are over two dozen published TAD calling methods to date, and it is outside of the

scope of this review to provide detail for all of them. In addition to linear score based meth-

ods such as insulation score, directionality index, TopDom, and OnTAD, numerous others have

been reported. These include armatus (Filippova et al., 2014), arrowhead (Durand et al., 2016),

CaTCH (Zhan et al., 2017), EAST (Ardakany and Lonardi, 2017), GMAP (Yu et al., 2017),

HiCDB (Chen et al., 2018), HiCExplorer (Ramı́rez et al., 2018), HiTAD (Wang et al., 2017),

matryoshka (Malik and Patro, 2019), and TADBD (Lyu et al., 2020).

Several clustering based methods have also been published, such as CHDF (Wang et al.,

2015), ClusterTAD (Oluwadare and Cheng, 2017), ICFinder (Haddad et al., 2017), and TADpole

(Soler-Vila et al., 2020). Other statistical based methods include HiCKey (Xing et al., 2021),

PSYCHIC (Ron et al., 2017), TADbit (Serra et al., 2017), and TADtree (Weinreb and Raphael,
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2016). Viewing Hi-C contacts as a network where bins are nodes and contact pairs are connected

by an edge, several network based TAD detection methods have also been proposed: 3DNetMod

(Norton et al., 2018), deDoc (Li et al., 2018a), MrTADFinder (Yan et al., 2017b), and spectral

(Chen et al., 2016). Recently, a machine learning approach has been proposed which utilizes epi-

genetic data (such as CTCF ChIP-seq) to train predictive models (Stilianoudakis and Dozmorov,

2020).

None of the aforementioned methods are designed for use with HiChIP or PLAC-seq as

input, which leaves the question of whether biologically meaningful TAD information can be

obtained from such data currently unanswered. It is reasonable to asssume that the biases in-

troduced by the chromatin immunoprecipitation step would make Hi-C specific methodologies

inappropriate to use, at least without modification, similar to what discussed in the previous sec-

tion.
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CHAPTER 2: BAYES QN: A TWAS TRAINING MODEL

2.1 Introduction

GWAS has been undeniably successful in revealing a tremendous number of SNP-trait as-

sociations, however the multiple testing burden of genome-wide analyses, difficulty in detecting

small effects even with very large sample sizes, and frequent lack of mechanistic insight pro-

vided by such results have all contributed to the search for improved methods to test genotype-

phenotype relationships. TWAS has been proposed as one method to address these GWAS short-

comings (Gamazon et al., 2015; Gusev et al., 2016), and a number of methods have emerged in

the last five years to implement the TWAS strategy, as discussed in Chapter 1.

Despite the diverse modeling strategies employed, few have explicitly incorporated sources

of uncertainty, outside of random noise, into TWAS models. Consequently, most TWAS methods

restrict training and testing to high-quality SNPs, typically those meeting stringent criteria, such

as high imputation R2 (ą 0.80, e.g.). Variants that fail to meet these thresholds often do so as a

result of low allele frequency, and are frequently discarded from analyses despite evidence that

less common variants may carry significant information (Dickson et al., 2010; Gibson, 2012).

The BAY-TS method (Bhutani et al., 2017) estimates prediction error from the training models

by bootstrapping the posterior distributions of SNP effect coefficients, but still only utilizes high-

quality genotype data.

In this chapter we introduce BayesQN, a TWAS model framework motivated by BayesR

(Erbe et al., 2012) that is designed to incorporate low-quality variants. Rather than applying iden-

tical distributional assumptions to each SNP in the model, BayesQN allows for the dichotomiza-

tion of variants based on imputation quality, each with attributes unique to its category. Proof of

concept is demonstrated using simulated data and conservation of Type I error is verified. Predic-
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tive performance training with data from DGN is compared to the methodology used by PrediX-

can (Gamazon et al., 2015), highlighting the benefit of using poor-quality SNPs and revealing

genes for which this strategy is preferred over elastic net. Lastly, we compare cross-cohort predic-

tive performance training with data from DGN and imputing into an unrelated dataset.

2.2 Methods

2.2.1 Training Model

The BayesQN model is built upon an assumption common to many TWAS methods; SNPs

individually contribute to gene expression in a linear fashion:

Y “ µ`Xβ ` ε (2.1)

whereX is an n ˆ p matrix whose elements are dosages for n subjects and p variants whose

columns have been centered and scaled to have unit variance. Dosage values capture the post-

imputation genotype probability with respect to a reference allele; if p0, p1 and p2 represent the

probabilities of homozygous for the alternate allele, heterozygous, and homozygous for the ref-

erence allele, the dosage given by p1 ` 2p2, and consequently is restricted to the domain r0, 2s.

For each gene, the set of variants that compriseX are chosen from a 1 Mb window around the

gene, a cis-SNP range common to many TWAS methods. The response Y is a length n vector

of gene expression values that have been adjusted for covariate effects and transformed to be ap-

proximately normally distributed, β is a length p vector of per-variant effects on gene expression,

µ is a scalar mean effect and ε is a length n vector of random noise with assumed distribution

ε „ Np0, σ2
gInq.

One of the primary motivations for BayesQN was the ability to incorporate the increased

imputation uncertainty of low-quality variants by not forcing a uniform set of distributional as-

sumptions across allX . In practice, this is accomplished by partitioning the variants a priori into
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two categories and assuming

βj|πq, σ
2
q , qj “ q „ πq1Np0, 0q ` πq2Np0, 0.001σ2

q q ` πq3Np0, 0.01σ2
q q ` πq4Np0, 0.1σ

2
q q (2.2)

where q P N in theory, but will be restricted to 1 and 2 in the examples that follow. The vector πq,

whose elements sum to unity, contains the proportions each of the components of Equation 2.2

contributes to the distribution of variant j.

2.2.2 Genotype Simulation

Genotypes were simulated such that samples would possess realistic linkage disequilibrium

(LD) structures and minor allele frequency profiles. First, 1 Mb sections of the genome were

generated using a coalescent simulation model (Schaffner et al., 2005), each section containing

ten-thousand chromosomes. These samples were subsequently thinned to HapMap variant den-

sity and matching HapMap allele frequency spectrum, and pairwise LD values were computed on

a random subset of haplotypes. From this set of SNPs, tags were chosen to mimic the coverage

of the Illumna 300K panel. Finally, two-thousand haplotypes were randomly chosen to provide

a reference panel for imputation of the remaining eight-thousand haplotypes, reduced to the set

of tag SNPs, with Minimac3. This procedure not only simulated realistic genotypes, but also

imputation results, including “Rsq” (r̂2) for each variant, which is defined as

r̂2
“

1
2n
ˆ
ř2n
i“1pDi ´ p̂q

2

p̂p1´ p̂q
(2.3)

where n is the number of samples, Di is the dosage of sample i, and p̂ is the allele frequency.

This r̂2 value is the metric used to dichotomize variants in the BayesQN experiments with two

categories (herein referred to as BayesQ2).
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2.2.3 Phenotype Simulations

Two sources of variation need to be specified in a standard TWAS framework, the percent

variance of gene expression explained by genotype (PV Eg) and the percent variance of pheno-

type explained by gene expression (PV Ee). Gene expression values are simulated by first ran-

domly selecting the desired number of causal SNPs from their respective categories. The value of

each β corresponding to a causal SNP is then simulated from a standard Normal distribution for

scenarios in which all effect sizes of genotype on expression come from a common distribution.

In cases of differential distributions for causal SNP β values, the standard distributions are mod-

ified accordingly. For example, if one set of causal SNPs is assumed to have twice the variance

of another, the βs for the former are simulated from independent Np0,
?

2q distributions while

the latter are simulated from standard Normal. Non-causal SNPs correspond to β “ 0. We then

define simulated gene expression Ysim as

Ysim “Xβ ˆ
b

PV Eg{v `Np0, I ˆ
a

1´ PV Egq (2.4)

where v “ V arpXβq.

Phenotype values are simulated in a related fashion. We define Psim as

Psim “ Ysim ˆ α `N

ˆ

0, I ˆ

c

u
1´ PV Ee
PV Ee

˙

(2.5)

where u “ V arpYsim ˆ αq and α is a scalar indicating the strength of association between gene

expression and phenotype.

2.3 Results

2.3.1 Variation in Number of Causal SNPs

In order to establish the viability of the BayesQN methodology, we compared predictive

performance between several established methods using simulated data, with the number of
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Figure 2.1: Comparison of five TWAS gene expression prediction methods using simulated data.
The number of causal SNPs is displayed on the x-axis, and the predictive R2 is on the y-axis.
Center lines of the boxplots indicate median over all simulations, and the whiskers represent the
IQR, with outliers displayed as points. The PV Eg is set to 12.5%.

causal SNPs ranging from 2 to 500. Predictive R2 was determined by splitting each sample into

4:1 training/testing sets and measuring the correlation between predicted expression and the truth

in the testing set. Elastic net was chosen due to its ubiquity and the contrast between penalized

regression to the “spike and slab” Bayesian framework of our method, as was similarly done in

the TIGAR publication (Nagpal et al., 2019). BayesR is a special case of BayesQN with q “ 1,

and is referred to as BayesQ1 for the remainder of this text. The Dirichlet process regression

(DPR) is conceptually similar to the BayesQN method with an infinite number of mixtures, and

two implementations are compared, one using the computationally intense Monte Carlo Markov

Chain (DPR.MCMC) and another using a variational Bayes (DPR.VB) approximation to reduce

computation time.

Considering all causal SNPs were assigned to a single category in these experiments, we ex-

pected performance to lag behind that of BayesQ1 due to signal dilution arising from the second

category containing no true signal. Indeed, this is the case; the relative mean predictive R2 of
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BayesQ2 consistently lagged BayesQ1 by 3.1, 2.8, 3.0, 2.5, and 3.0% in scenarios with 2, 5, 10,

25, and 500 causal SNPs respectively.

The theoretical R2 limit in these experiments is PV Eg, which was set at 12.5%. Under the

scenario with two causal SNPs, the results of all five methods performed similarly well; BayesQ1

and BayesQ2 captured 84.2 and 81.7% of the theoretical maximum, while elastic net outper-

formed both capturing 89.9%. The two DPR methods exhibited the poorest performance of

the five methods, recovering 77.2 and 80.6% of the theoretical maximum R2 for the variational

Bayes and MCMC methods respectively. While it is expected that DPR.MCMC would outper-

form DPR.VB, it underperformed both elastic net and BayesQN in the sparsest setting.

There is a trend of monotonically decreasing R2 with an increasing number of causal SNPs

across all five methods, except comparing the two most polygenic scenarios for the Bayesian

methods (Figure 2.1). In this simulation framework, the effect sizes are drawn from the same

distribution, so the increased polygenicity places smaller effects over a larger number of variants.

Elastic net has been reported to underperform in highly polygenic scenarios, and we observe a

decline in performance relative to other methods as the number of causal SNPs increases. As

mentioned above, in the most sparse scenario elastic net outperforms all other methods, yet in the

most polygenic scenario it underperforms the next best method by 16.1% (mean R2 0.0624 vs.

0.0745 for DPR.MCMC). The other methods, however, perform similarly in the most polygenic

scenario, with mean R2 values of 0.0774, 0.0750, 0.0783, and 0.0745 for BayesQ1, BayesQ2,

DPR.VB, and DPR.MCMC respectively. It is interesting to note that this is the only scenario

under which the DPR.VB DPR method outperforms DPR.MCMC, hinting that slow convergence

under high polygenicity could be hindering performance, however BayesQN similarly involves

Monte Carlo simulation and this effect is not observed.

2.3.2 Variation in Quality of Causal SNPs

Having demonstrated that BayesQN performs comparable to established methods when

causal variants do not span multiple designated categories, we sought to explore performance
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when causal SNPs are both well and poorly imputed (r̂2 cutoff of 0.8). The average proportion

of poorly-imputed variants is only 8.4% across all samples implying that π1 ‰ π2 and stochastic

variation in a small sample would mean σ1 ‰ σ2 with high probability. Given these considera-

tions we chose 10 causal SNPs for our simulations under three scenarios: all well-imputed, all

poorly-imputed, and 5 well-imputed / 5 poorly-imputed variants, again setting PV Eg “ 12.5%.

Table 2.1: A summary of R2, MSE, and power comparing TWAS training methods varying the
quality of causal SNPs.

Method
10 well-imputed SNPs Half poorly-imputed SNPs 10 poorly-imputed SNPs

R2 MSE Power R2 MSE Power R2 MSE Power

BayesQ1 0.0887 0.056 0.823 0.0794 0.118 0.717 0.0436 0.343 0.293

BayesQ2 0.0860 0.049 0.800 0.0794 0.067 0.722 0.0533 0.099 0.407

Elastic Net 0.0877 0.225 0.810 0.0806 0.317 0.735 0.0525 1.323 0.399

DPR.VB 0.0852 0.118 0.787 0.0749 0.258 0.653 0.0224 3.920 0.120

DPR.MCMC 0.0869 0.062 0.801 0.0744 0.116 0.657 0.0383 0.250 0.256

Considering only well-imputed variants as causal, predictive perfomance is similar across

all methods (Table 2.1), with mean R2 values ranging only 0.0035. Surprisingly, the predictive

performance using half well-imputed, half poorly-imputed variants is also quite uniform, ranging

from a minimum of 0.0744 (DPR.MCMC) to 0.0806 (elastic net). This range increases when all

SNPs are poorly-imputed: the DPR methods perform the worst (R2 “ 0.0224 and 0.0383 for

VB and MCMC respectively), while BayesQ2 performs the best (R2 “ 0.0533). Interestingly,

elastic net barely lags BayesQ2 (R2 “ 0.0525), but BayesQ1 unsurprisingly performs worse than

(R2 “ 0.0436) both.

To assess the association testing performance, simulated phenotype data was generated with

PV Ee “ 10% and an effect size α “ 1, and predicted gene expression was regressed on pheno-

type using ordinary least squares regression. An increase in the variance of estimated association

coefficients with increasing numbers of poorly-imputed causal variants was evident across all

methods (Figure 2.2). This was most pronounced for elastic net and DPR.VB, which is partially
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Figure 2.2: Comparison of five TWAS gene expression prediction methods using simulated data.
The makeup of causal SNPs is displayed on the x-axis, and the predictive R2 is on the y-axis.
Center lines of the boxplots indicate median over all simulations, and the whiskers represent the
IQR, with outliers displayed as points. The PV Eg is set to 12.5% and PV Ee is set to 10%.
Several extreme outliers for DPR.VB are omitted to maintain scale.

reflected in the mean squared error (MSE), which increased 5.9 and 33-fold respectively com-

paring entirely poorly-imputed to entirely well-imputed causal SNPs. The massive increase

observed in the MSE for DPR.VB is mainly driven by a small number of extreme outliers, which

are not plotted. Slight negative bias is consistently observed with both BayesQN models as well

as DPR.MCMC, with stronger positive bias observed with the other two methods.

Given the aim of TWAS, power in detecting signficant gene expression-trait associations

is another important consideration in evaluating any TWAS method. When all causal variants

are well-imputed, all methods perform relatively similar in terms of power (0.787 - 0.823) with

BayesQ1 outperforming the others, however power decreases as much as 85% when comparing

to entirely poorly-imputed causal variants. This decrease in power reflects the difficulty of mod-

eling gene expression from poorly-imputed variants; some of this effect presumably being due to

the confounding of MAF with imputation quality. When all causal variants are poorly-imputed,

BayesQ2 is the only method to exceed 40% power, although elastic net falls just below this value.

34



Figure 2.3: Calibration of BayesQ2 method under the alternative (a); the null hypothesis of
association between genotype and gene expression but no trait-expression association (b); the
null hypothesis of no association between genotype and gene expression but trait-expression
association (c); the combined null (d). Histograms are truncated at 5ˆ 10´6 (a) and 0.05 (b-d)

The two DPR methods underperform the others under this scenario, with DPR.VB exhibiting

only 12% power.

2.3.3 Calibration of BayesQN

Given the two-stage nature of TWAS, there are multiple null scenarios to consider: no associ-

ation between genotype and gene expression, no association between predicted gene expression

and trait, and the redundant null when both nulls are true. We found BayesQN to be well cali-

brated under all three null scenarios by examining the p-value distribution under each; addition-

ally we contrasted these distributions against p-values under the single alternative (Figure 2.3).

2.3.4 Comparison to Elastic Net Using DGN

We next sought to examine the performance of our method using real-world data, opting

for the publicly available DGN data. This dataset includes whole blood gene expression for
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over 900 subjects, and was particularly attractive considering these subjects were genotyped by

panel, not whole genome sequencing as was done in other expression datasets. Consequently, we

imputed the cohort’s genotype, without resorting to artificial downsampling, to TOPMed freeze

5b using the Michigan Imputation Server, not only affording accurate imputation quality data but

reproducing a representative pipeline likely to be followed by other groups.

Considering the similarity between BayesQN and elastic net in terms of both predictive

performance and power using simulated data, we restricted our comparison to elastic net in this

analysis as was done in the original TIGAR publication (Nagpal et al., 2019). To ensure technical

consistency, we fit models using elastic net rather than using the pre-trained weights offered by

PrediXcan, resulting in 11,687 genes for which complete gene expression values were available

and fitted models contained more than one SNP with a non-zero effect. Genomic regions for

each predictive model consisted of ˘ 1 Mb from each gene’s start and stop position, respectively,

trimming the genotype to randomly remove one variant of each perfectly collinear pair.

Using the aforementioned set of genes, we directly compared BayesQ1 to BayesQ2 (Fig-

ure 2.4) in order to assess if any performance gain is observed using real-world data. Based on

the previously discussed results using simulated data, the possibility existed that partitioning

data would lead to overall predictive performance degradation if the majority GReX was driven

solely by well-imputed variants. This does not appear to be the case when comparing model R2;

the mean values are 0.275 and 0.274, and median values are 0.221 and 0.220 for BayesQ2 and

BayesQ1 respectively. A one-sided paired t-test of the alternative that BayesQ2 yields higher

predictive R2 values is marginally significant pp “ 0.039q. It should be noted R2 values are not

only similar in the aggregate, the majority of genes yield models whose predictive performances

are close on an individual level. Of all genes tested, 85.8% have R2 values within 0.025 of each

other, and of those outside this range, BayesQ2 outperforms BayesQ1 in 190 additional genes.

Comparing BayesQ2 to elastic net, again on the basis of model R2 without cross-validation

(that is, the model is both trained and tested using all subjects), yielded less similar results. Ex-

cluding low imputation quality variants from the elastic net model fitting resulted in predictive
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Figure 2.4: Scatterplot comparing the model R2 values of BayesQ1 and BayesQ2 using 11,687
select DGN genes. The model R2 values were obtained testing and training on the entire cohort.
BayesQ1 R2 values are on the x-axis and BayesQ2 R2 values are on the y-axis. The red line
represents equality.

performance that lagged behind BayesQ2 (Figure 2.5a), illustrating that these variants do indeed

carry useful information for the prediction of gene expression. Mean R2 was 0.255 for BayesQ2

vs. 0.238 for elastic net using only high quality variants, and median R2 was 0.198 and 0.176

respectively for the two methods. However, the opposite relationships were observed when com-

paring the methods using the same set of variants (Figure 2.5b): mean and median R2 values
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Figure 2.5: Scatterplot comparing the model R2 values of elastic net and BayesQ2 using 11,687
select DGN genes. The model R2 values were obtained testing and training on the entire cohort.
Elastic net R2 values using only high imputation quality SNPs (r̂2 ě 0.8) (a) and using the same
set of variants as BayesQ2 (b) are on the x-axis and BayesQ2 R2 values are on the y-axis. The
red line represents equality.

for BayesQ2 were both lower than those compared to elastic net (mean 0.255 vs. 0.266; median

0.198 vs. 0.212). Two-sided paired t-tests against the alternative that mean differences are not

zero resulted in p ă 2.2ˆ 10´6 for both cases. It is interesting to note, however, that the increased

imputation accuracy of elastic net over BayesQ2 is not consistent over the range of R2 values.

Indeed, while elastic net outperforms BayesQ2 at high R2, it underperforms at low R2. This can

be quantified by comparison of mean values conditioned on elastic net R2 above or below 0.2;

the mean model R2 values are 0.401 and 0.375 for elastic net and BayesQ2 respectively under

the former condition, and 0.116 and 0.128 under the latter. The low prevalence of very highly

heritable GReX allows for the potential utility of the BayesQ2 method, while the possibility of

model over-fitting in the case of high model R2 motivated us to repeat these comparisons using

cross-validation.

As expected, using 5-fold cross-validation reduced the number of genes with high model

R2 values. The number of genes with model R2 ą 0.2 either via elastic net (using all variants)
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Figure 2.6: Scatterplot comparing the 5-fold cross-validation R2 values of elastic net and
BayesQ2 using 11,687 select DGN genes. Elastic net R2 values using only high imputation
quality SNPs (r̂2 ě 0.8) (a) and using the same set of variants as BayesQ2 (b) are on the x-axis
and BayesQ2 values are on the y-axis. The red line represents equality.

or BayesQ2 decreased from 5,442 before using cross-validation to 3,739 after, and a similar de-

crease was observed comparing to elastic net using only high quality variants (3,724 to 5,102).

Furthermore, results between the two methods are overall more consistent, both when incorpo-

rating all or only high quality variants into elastic net models (Figure 2.6). While BayesQ2 does

outperform elastic net using on high quality variants, the extent to which this occurs is visually

overstated by Figure 2.6a. The difference in mean model R2 is 0.004, more than half of which

is accounted for by 168 genes where the BayesQ2 model R2 exceeds that of elastic net by more

than 0.1. There were no genes where the elastic net model R2 exceeded that of BayesQ2 by more

than 0.1.

In an attempt to gain insight into potential drivers for differential predictive performance

between the two models, we examined the models for two genes: LAMA5, which represents

the greatest R2 differential in favor of BayesQ2, and FAM86DP, the analogous gene in favor

of elastic net. For FAM86DP, there were three SNPs consistently in the top five with respect

to absolute effect size over all BayesQ2 folds: 75395451, 75397556, and 75434806 (using bp
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position to identify SNPs). The first two are in very high LD (R2 “ 0.975) but the third SNP is

essentially independent of the other two (highest R2 “ 0.002). Similarly, the top two variants

with respect to absolute effect size over all elastic net folds were 75599696 and 75618257, which

are independent signals (R2 “ 0.001). We hypothesized that given the largely similar overall

predictive performance between the two methods, it is plausible that the lead variants in each

pair of models would be correlated. This was not the observed however with the two models for

FAM86DP; the four cross-model correlations between 75395451 and 75434806 from BayesQ2

and the two lead variants from elastic net were all ă 0.001.

A similar analysis on LAMA5 provided contrasting results. The top two BayesQ2 model

SNPs were identical across all folds (61898661 and 61898954), and the SNP with the next largest

effect size was 62339136, or in very high LD with it. Again, the top two variants were in very

high LD with each other (R2 “ 0.862), but in low LD with 62339136 (highest R2 ă 0.001).

However, the elastic model was not as consistent across folds; while SNP 61886187 had the most

or second most absolute effect across all five folds, the next four highest effect sizes were very

similar, and there was little consistency between folds. Furthermore, these variants were largely

independent from each other and the BayesQ2 SNPs. The top variant for the BayesQ2 and elastic

net model were highly correlated though (R2 “ 0.743).

While this model comparison is admittedly not rigorous, both in terms of scope (examining

only two genes) and depth (comparing only top variants), it nonetheless shows some contrast

between two models with opposite relative performances. Specifically, BayesQ2 outperforms

elastic net in the case of similar models and lags in the case of dissimilar models. Paradoxically,

the lead variants in both models for FAM86DP all fall below the imputation quality threshold

of 0.8 yet elastic net outperforms BayesQ2, however the lead variants for LAMA5 have high

imputation quality and the opposite is true.
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2.3.5 Cross-Cohort Evaluation

Finally, in order to most closely approximate a real-world TWAS application of training

in one cohort and imputing into an independent cohort, we utilized the Multi-Ethnic Study of

Atherosclerosis (MESA, Bild et al. 2002) dataset. This multi-site, longitudinal study was de-

signed to investigate the prevalence and progression of cardiovascular disease and RNAseq data

for a subset of the entire cohort over several of the five exams that comprise the entire study has

been made available.

In the following analysis we compare BayesQ2 to elastic net by training each model with

the previously described DGN population and then imputing into 356 European MESA subjects

using TOPMed freeze 5b WGS genotype data, and comparing imputed GReX with the RNAseq

measured values, adjusted for age, sex, study site, and the first ten principle components, fol-

lowed by inverse normalization. One-thousand genes were randomly chosen from a set of those

with model R2 ą 0.1 under both models, also adding FAM86DP and LAMA5 which were not

included in the original random sample. Of these 1,002 genes, we analyzed only 891 for which

expression values for ą 25% of subjects were available.

Given the similar predictive performance between BayesQ2 and elastic net in cross-validation

experiments, it is not surprising that the cross-cohort R2 values remain similarly close (Figure

2.7). The relative predictive performances of both models on FAM86DP and LAMA5 remain un-

changed; specifically, elastic net outperformed BayesQ2 for FAM86DP (R2 = 0.239 vs. 0.185

respectively) while BayesQ2 outperformed elastic net for LAMA5 (R2 = 0.046 vs. 0.030 respec-

tively). The gene for which we observed the largest disparity between imputation accuracy was

CEACAM3 (R2 = 0.533 for elastic net, 0.438 for BayesQ2). Interestingly, the model R2 values

in the training models were 0.164 and 0.248 for elastic net and BayesQ2 respectively. Not only

were the relative performances with regard to cross-cohort imputation reversed, the imputed

values greatly exceeded the respective model R2 values.
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Figure 2.7: Scatterplot comparing the R2 values of elastic net and BayesQ2 training in 891 select
DGN genes and imputing into European subjects from the MESA cohort. (a) Each point
represents one gene; three are highlighted for discussion. The blue box represents the area of (a)
plotted in (b).

2.4 Discussion

We have demonstrated BayesQN, a TWAS gene expression prediction model that attempts

to leverage the information in SNPs with both high and low imputation quality by allowing for

separate distributional assumptions for the two groups. This method has several significant short-

comings however, perhaps most notably that it does not appear to outperform existing methods

such as PrediXcan in real-world settings. The requirement for MCMC sampling necessitates a

computational burden that grows linearly with the number of variants in the model, and process-

ing times using BayesQN signficantly exceed that for for elastic net. The current implementation

is in C++ via the Rcpp R package, while the original BayesR software improves computational

time with a Fortran implementation but requires typed genotypes, not post-imputation dosages.

While there is mounting evidence of significant trans-SNP contributions to GReX (Brynedal

et al., 2017; Liu et al., 2019) we restrict our attention to cis-SNPs given the computational in-

tractability of our current MCMC sampling genome-wide.
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The comparison between the FAM86DP and LAMA5 models hints at another potential short-

coming. We would expect that relative model performance would be greater in scenarios where

effect alleles were categorized separately from the majority of the alleles, as in FAM86DP, and

simulation results support this expectation. However, we observe the opposite effect, but not-

ing that FAM86DP models were driven by a very small number of high effect SNPs using both

BayesQ2, while the LAMA5 models were far more polygenic. As demonstrated in simulations,

elastic net performance declines with increasing polygenicity, and it is possible that in this one

example these competing factors are dominated by polygenicity. A more fair comparison would

require two genes with similar effect variant sparsity but differing in imputation quality, a goal for

future work.

As imputation panels increase in size and population diversity, and whole genome sequenc-

ing for large cohorts becomes more financially feasible, the density of well-imputed SNPs in

experiment cohorts will continue to increase, diminishing the need for categorization based on

imputation quality. While we focus on this as the discriminating factor, there is no reason this

cannot be extended to any factor suitable to categorization. Opportunities for future work include

exploring other such factors, such as stratification based on population; our cross-cohort analysis

was limited to training and testing in European populations. The current methodology requires

that categorization be done a priori; extending the scope of BayesQN to adaptively categorize

variants in a data-driven fashion is another opportunity for future efforts.

Given the failure to demonstrate any significant real-world predictive performance gains over

elastic net, we did not continue with GReX-trait association testing. These analyses provide even

more opportunities for future work.
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CHAPTER 3: HPREP: QUANTIFYING REPRODUCIBILITY IN
HICHIP/PLAC-SEQ DATASETS

3.1 Introduction

Chromatin spatial organization plays a critical role in genome structure and transcriptional

regulation (Li et al., 2018b; Schmitt et al., 2016; Schoenfelder and Fraser, 2019). During the last

decade, great strides have been made in the mapping of long-range chromatin interactions, thanks

to the rapid development of chromatin conformation capture (3C) based technologies. Among

them, Hi-C enables genome-wide measure of chromatin spatial organization and has been widely

used in practice. To ensure scientific rigor, various methods have been developed to assess the

reproducibility of Hi-C data (Yang et al., 2017a; Ursu et al., 2018; Yan et al., 2017a; Sauria and

Taylor, 2017; Yardimci et al., 2019), as discussed in detail in Chapter 1. To recapitulate, HiCRep

(Yang et al., 2017a) first performs 2D smoothing to reduce the stochastic noise resulting from

the sparsity of Hi-C data, and then quantifies reproducibility by calculating a weighted average

of correlation coefficients between contact frequencies across specific one-dimensional (1D)

genomic distance bands. Similar to HiCRep, GenomeDISCO (Ursu et al., 2018) relies on data

smoothing, which is performed over a range of steps of the random walk to determine an opti-

mal separation between biological replicates and non-replicates as measured by area under the

precision-recall curve. The reproducibility measure is a function of distances between two con-

tact matrices smoothed using this optimized number of steps. HiC-Spector (Yan et al., 2017a)

adopts a different approach, transforming symmetric Hi-C contact matrices to their correspond-

ing Laplacian matrices and then calculating similarity as the average of the distances between

normalized eigenvectors. QuASAR-Rep (Sauria and Taylor, 2017) determines a local correlation

matrix by comparing observed interaction counts to background signal-distance values within
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a 100-bin range. This local correlation matrix is transformed by element-wise multiplication

with a matrix of scaled interaction counts and the reproducibility between two samples is defined

as the Pearson correlation coefficient between the corresponding transformed matrices. These

methodologies generally share the conceptual framework of data smoothing (with the exception

of HiC-Spector) followed by a correlation calculation.

Recently, HiChIP (Mumbach et al., 2016) and PLAC-seq (Fang et al., 2016) technolo-

gies (hereafter collectively referred to as HP for brevity) have been developed to study protein-

mediated long-range chromatin interactions at much reduced cost and greatly enhanced reso-

lution relative to Hi-C. While the chromatin immunoprecipitation (ChIP) step involved in HP

technologies allows for the cost and resolution benefits, it also introduces additional layers of

systematic biases which make analysis methods developed for Hi-C data potentially unsuitable

for HP data. To date, no method is available for quantifying reproducibility of HP data.

To fill in this gap, we propose a novel method, HPRep, to measure the similarity or repro-

ducibility between two HP datasets. HPRep is motivated by HiCRep (Yang et al., 2017a), the

previously described method developed for quantifying reproducibility of Hi-C data. Similar

to HiCRep, HPRep leverages the dependence of chromatin contact frequency on 1D genomic

distance. In particular, HPRep models different ChIP enrichment levels, which contributes to the

systematic biases specific to HP data.

3.2 Methods

Currently available methods to quantify reproducibility in Hi-C datasets, such as HiCRep,

HiC-Spector, GenomeDISCO, and QuASAR-Rep (systematically evaluated in Yardimci et al.

(2019)), all involve derivation of a similarity metric between two contact frequency matrices.

The input Hi-C data consists of n ˆ n symmetric matrices of non-negative integers, where each

row/column represents one genomic locus (i.e., bin). The ij element of such a matrix represents

the number of paired-end reads spanning between bin pair i and j.
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These existing methods are conceptually inappropriate for HP data due to the ChIP enrich-

ment bias introduced in the HP data. In addition, while Hi-C data consist of interactions between

all bin pairs, HP data is restricted to bin pairs where at least one bin overlaps a binding region

of the protein of interest. Such overlapping bins are referred to as the anchor bins. We further

define bin pairs consisting of two anchor bins as the AND pairs, while those consisting of only

one anchor bin are defined as the XOR pairs. In contrast, the NOT pairs, for which neither bin is

an anchor bin, are not meaningful due to the nature of HP technologies and therefore are not used

in HP data analysis (Juric et al., 2019).

The basic data structure we consider is an N ˆ m matrix, where N represents the number

of anchor bins and m is 2 x 1 Mb/resolution. The ij element represents the normalized contact

count between anchor i and the bin j units away, j P t´m{2, . . . ,´1, 1, . . . ,m{2u. The number

of anchor bins considered (N ) is the union set of anchor bins derived from all samples in the

study under analysis. Normalization is performed via a multi-step procedure: 1) Integer counts

are adjusted for the biases introduced by effective fragment length, GC content, mappability, and

ChIP efficiency by fitting a positive Poisson regression model (see Section B.1), following the

approach detailed in the MAPS method (Juric et al., 2019). Separate models are fit to the AND

and XOR sets since the AND pairs are expected to have significantly higher contact frequencies

due to double ChIP enrichment. 2) Using the fitted models, the data are normalized by taking the

log2 value of (1 + observed / expected counts).

Similar to HiCRep, the distance metric used by our method is a weighted Pearson correlation

that is stratified by distance (see Section B.2), which is identical for columns of the matrix which

are symmetric from the center (Figure 3.1). Due to the sparsity of HP data, especially at longer

distances, the normalized count values are smoothed (see Section B.3). The smoothing procedure

used is a 1D arithmetic mean of values within a window of d bins away along the same row. Each

of the m{2 correlations is weighted based on the variation of the smoothed values at that distance

such that the weights sum to one. Therefore, the resultant metric is restricted to lie in r´1, 1s and

has a similar interpretation as a standard Pearson correlation coefficient.
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Figure 3.1: Step 1 involves first identifying anchors (i.e., 1D ChIP peak sites) and then extracting
all interactions between these anchors and bins within a specified genomic distance from the
anchors. This is followed by a one-dimensional smoothing procedure. Stratification by distance
is performed in step 2 such that the elements of vector ak represent interactions that are
equidistant from their respective anchors, k bins apart. In the final step, the Pearson correlation
coefficients are calculated between a1k from one sample and b1k from another for all k, and these
are combined in a weighted average to yield the final reproducibility metric.

Let ak and bk be two vectors of length 2N from samples a and b, whose elements are smoothed

normalized contact counts, where N represents the number of anchor bins in the union set of an-

chor bins from all samples in a study, and k indexes bins that are ˘k units away. Let a1k and b1k

be the resulting vectors of length Nk ď 2N after removing any elements that are 0 in identical
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positions in both vectors. The weight for stratum k pwkq is defined as
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where K is the total number of strata, which is analogous to the weighting used in HiCRep

(Yang et al., 2017a). The numerator of wk is the product of strata size and the standard deviations

of each stratum, while the denominator is the sum of these values over all strata. Consequently,

the weights are restricted to r0, 1s and sum to 1, where larger and more variable strata carry more

weight than smaller and less variable strata.

3.3 Results

3.3.1 Mouse H3K4me3 PLAC-seq data

In order to examine the performance of HPRep, we first analyzed published H3K4me3

PLAC-seq datasets from mouse embryonic stem cells (mESCs) (Juric et al., 2019) and mouse

brain tissues (Yamada et al., 2019), both consisting of two samples analyzed at 10 Kb resolution.

Samples from the same cell type or tissue were labeled as biological replicates while those cross

cell type or tissue were labeled non-replicates, yielding two pairs of biological replicates and four

pairs of non-replicates. Pseudo replicates were generated by pooling the two samples of the same

cell type or tissue and partitioning the pooled contact frequency in each bin pair randomly via

Binomial (p = 0.5) sampling.

We would expect that pseudo replicates are most similar, followed by biological replicates,

and that non-replicates are least similar. Indeed, this expected pattern is observed using HPRep

(Figure 3.2), with results also exhibiting highly consistent patterns across chromosomes (Figure

B.9). The higher metric for replicate mESC samples relative to mouse brain samples is due to the

higher sampling depth of the former.

48



Figure 3.2: Metrics obtained applying HPRep to PLAC-seq data from mESC and mouse brain
(mb) tissues. Pseudo replicates are generated by pooling two mESC samples followed by random
sampling. Cross sample results represent the mean of four pairings. Results are presented as the
mean value over 19 autosomal chromosomes with error bar representing ˘ 1 standard deviation.

We next compared HPRep with alternative methods, specifically two Hi-C reproducibility

methods: HiCRep and HiC-Spector as well as a naı̈ve Pearson correlation (see Section B.4).

Since the Hi-C specific methods are designed using n ˆ n symmetric contact matrices as the

standard input, for these comparisons, in addition to restricting to bin pairs in the AND and XOR

sets, we generated a pseudo Hi-C dataset from a HP dataset by also using bin pairs in the NOT

set. The naı̈ve Pearson correlation consisted simply of converting the entire upper triangular Hi-C

contact matrices for each sample to single vectors and calculating the Pearson correlation coeffi-

cient between them. The methods were performed separately on all 19 autosomal chromosomes

and the resulting metrics were reported as the arithmetic mean. The HiCRep and HiC-Spector

methods were applied with the default parameters. The results are displayed in Figure 3.3.

All methods except for naı̈ve Pearson correlation yielded results consistent with what we

expected, namely higher similarity for the biological replicates and lower similarity for the non-

49



replicates. The similarity or reproducibility metrics for the biological replicates were similar

among these three methods, which is expected for HPRep and HiCRep, since both methods are

based on stratified Pearson correlation, but is noteworthy for HiC-Spector since it is based on a

rather different method, and furthermore is restricted to a different domain (r0, 1s as opposed to

r´1, 1s). The difference among these methods, with the exclusion of HiC-Spector when including

the NOT set, manifests largely in values for non-replicates, with HPRep yielding much smaller

values relative to the others, although in each case the four non-replicate pair results were very

consistent. Interestingly, the naı̈ve Pearson correlation nearly fails to correctly rank replicates

with the mouse brain sample, yielding a reproducibility score almost identical to those of the non-

replicates, whereas the result from mESC replicates is consistent with the other three methods.

This failure is obviated in HiCRep and HPRep, the other Pearson based methods. For example,

for biological replicates, HPRep yields a mean reproducibility metric of 0.92 compared to a mean

value of 0.25 for non-replicates. For the experiments using bin pairs in the AND, XOR and NOT

sets, the mean reproducibility metrics comparing replicates and non-replicates are 0.80 vs. 0.51,

0.99 vs. 0.73, and 0.88 vs. 0.76 for HiC-Spector, HiCRep, and Pearson correlation coefficients,

respectively.

3.3.2 Human HiChIP data

In addition, we applied HPRep to measure the reproducibility of H3K27ac HiChIP data

from GM12878 cells (two biological replicates) and K562 cells (three biological replicates) at

10 Kb resolution (Mumbach et al., 2016) resulting in 4 pairs of biological replicates (1 pair from

GM12878, 3 pairs from K562) and 6 pairs of non-replicates (Figure 3.4). We anticipated a priori

that differences between replicates and non-replicates would be more pronounced in this human

dataset than the previous mouse H3K4me3 PLAC-seq dataset due to the greater dissimilarity

in H3K27ac anchor bins between GM12878 cells and K562 cells. Specifically, the GM12878

and K562 cell lines contain 31,980 and 26,963 H3K27ac anchor bins genome-wide (autosomal)

respectively, with only 14,304 shared (Jaccard index 0.32). By contrast, mESC and mouse brain
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Figure 3.3: HPRep compared to Hi-C specific methods HiC-Spector and HiCRep as well as
Pearson correlation. 1: All methods using bin pairs in the AND and XOR sets. 2: Methods other
than HPRep using all bin pairs in the AND, XOR and NOT sets. PLAC-seq dataset consisted of
two mESC and two mouse brain replicates.

have 28,903 and 21,778 H3K4me3 anchor bins, with 17,722 overlapping, (Jaccard index 0.54)

which is not surprising given active promoters are largely shared across tissues and cell lines.

For this human dataset, again, the methods were performed individually on all 22 autosomal

chromosomes and the resulting metrics were averaged across chromosomes.

The results from the human HiChIP data are consistent with those from mouse PLAC-seq

data: the biological replicates yield high similarity (close to 1) while the non-replicates yield

uniformly lower similarity. While all autosomal chromosomes were used in these analyses and

results were largely consistent across them using HPRep, HiCRep, and Pearson correlation coeffi-

cients, results were quite inconsistent using HiC-Spector (Figure B.9). Specifically, HiC-Spector

used 20 eigenvectors in the computation of a reproducibility metric, yet for several chromosomes

convergence failed so fewer eigenvectors were used which yielded erratic results (Table B.1).
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Figure 3.4: HPRep compared to Hi-C specific methods HiC-Spector and HiCRep as well as
Pearson correlation. 1: All methods using bin pairs in the AND and XOR sets. 2: Methods other
than HPRep using all bin pairs in the AND, XOR and NOT sets. HiChIP dataset consisted of two
GM12878 replicates and three K562 replicates.

Again, HPRep results in the lowest metrics for the non-replicates which are all close to zero,

highlighting the influence on anchor bin identity in this method.

3.3.3 Human PLAC-Seq data

We next applied HPRep to a more complex H3K4me3 PLAC-seq dataset at 5 Kb reso-

lution, consisting of 11 samples from four brain cell types in human fetal brain obtained via

fluorescence-activated cell sorting (Song et al., 2020): 3 samples from neurons (N), 3 samples

from interneurons (IN), 2 samples from radial glial (RG), and 3 samples from intermediate pro-

genitor cells (IPC). These samples have varying sequencing depths (detailed in Supplementary

Table 2 of Song et al. 2020), with number of cis reads ranging from 47.5 million for RG2 (sec-

ond replicate for RG cell type) to 390 million for RG1. The anchor bins are the union of 1D

H3K4me3 peaks from all 4 cell types. In Figure 3.5a, reproducibility obtained by HiCRep shows
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Figure 3.5: HPRep compared to HiCRep. HiChIP dataset consisted of three neuron (N), 3
interneuron (IN), 2 radial glial (RG), and 3 intermediate progenitor cell (IPC) samples. The color
scale indicates low (blue) to high (red) reproducibility metric.

no differentiation between inter- and intra-cell types. In contrast, HPRep shows a clear pattern

of higher similarity for replicates from the same cell type compared to those from different cell

types (Figure 3.5b).

Focusing on bin pairs in the AND and XOR sets highlights the effect of normalizing ChIP

enrichment level bias. Figure 3.6 is analogous to 3.5a excluding bin pairs in the NOT set. The

cell type clustering is more in line with the known truth, however, still has misspecifications

according to the dendrogram: neuron and interneuron cells are correctly grouped, but radial glial

cells are not.

Recent studies have shown that HiCRep is sensitive to sequencing depth (Yardimci et al.,

2019). To evaluate the robustness of HPrep with respect to different sequencing depths, we per-

formed down-sampling to the original PLAC-seq data from 4 human brain cell types. This was

performed by sampling from a multinomial distribution with n equal to the new total count and

count probabilities set to match the distribution in the corresponding original data (see Section

B.5).
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Figure 3.6: HiCRep. HiChIP dataset consisted of three neuron, 3 interneuron, 2 radial glial, and
3 intermediate progenitor cell samples excluding interactions where neither bin overlapped with
an anchor. Red color signifies results indicating stronger correlation.

The first down-sampling was performed such that all samples matched the depth of the sam-

ple which had the lowest sequencing depth (RG2). Note the identical color scales for Figures

3.5b and Figure 3.7, but the decrease in metric values for many pairwise comparisons for samples

of the same cell type such as the interneuron cells. In order to quantify this reduced discernibility
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Figure 3.7: HPRep results obtained after down-sampling all eleven samples to read depth of that
of the lowest sample.

between samples, we utilized the silhouette procedure (Rousseeuw, 1987), treating reproducibil-

ity score as a distance metric and reporting the average of the 11 silhouette values, one for each

sample (see Section B.6). We obtain 0.717 and 0.685 for the original experiment and down-

sampled results respectively, where smaller numbers indicate worse clustering performance.
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Figure 3.8: HPRep results obtained after down-sampling each sample to by specified factor. a)
80% of original depth of each sample, b) 60% of original depth, c) 40% of original depth, d) 20%
of original depth. Note that the diagonal is now gray to remove it from the scaling in order to
better highlight differences.

Subsequent down-sampling was performed uniformly across all samples such that total

counts were reduced to 80%, 60%, 40%, and 20% of their original values following the same

sampling protocol as described above. As expected, in Figure 3.8 we observe decreased discerni-

bility among samples from different cell types, most strikingly with IPC and RG where the within
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sample HPRep reproducibility metric dropped to as low as 0.26 and 0.43, respectively. Applying

the modified silhouette procedure described above to these four down-sampled datasets, we ob-

tained a silhouette score of 0.700, 0.678, 0.634, and 0.518 for down-sampling to 80%, 60%, 40%,

and 20% respectively.

We next sought to investigate the extent to which our HPRep metric was driven by the 1D

ChIP (anchor) signals relative to the 3D bin contact signals. To this end, we compared the irre-

producible discovery rate (IDR, Li et al. 2011) (see Section B.8) to the HPRep results utilizing

the highest read depth brain sample (RG1). This was accomplished by pairwise comparisons

between the original ChIP-Seq data (IDR) or AND/XOR data (HPRep) and corresponding sam-

ples that had been downsampled to 80%, 60%, 40%, and 20% to the original depth. As expected,

both IDR and HPRep metrics decreased with more aggressive downsampling, however, the effect

on IDR, as measured by fraction of peaks passing a false discovery rate threshold of 5%, was

far more pronounced. HPRep metrics were 0.97, 0.96, 0.93, and 0.88 compared to IDR of 0.80,

0.68, 0.24, and 0.06 at 80%, 60%, 40%, and 20% of the original depth, respectively. This effect

difference suggests that 1D information does not dominate our results; if the HPRep results were

merely a reflection of anchor similarity, we would expect a more consistent trend between the

two experiments.

3.4 Discussion

Quantification of data reproducibility is critical to ensure scientific rigor, yet methods tai-

lored for HiChIP and PLAC-seq data are still lacking. Here, we propose HPRep, the first model-

based approach to account for ChIP enrichment biases in measuring HP data reproducibility.

Given the lack of HP specific tools, we compare HPRep to existing methods designed for Hi-C

data, specifically HiCRep and HiC-Spector. Additionally, since our method, similar to HiCRep,

relies on a weighted average of Pearson correlation coefficients, we also compare HPRep to the

naı̈ve Pearson correlation coefficient.
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Our HPRep method, improving on existing Hi-C specific methods, is tailored to HP data for

the measurement of reproducibility in two fundamental ways. First, HPRep is designed around

the specific structure of HP data, namely that while Hi-C data consists of contact frequencies for

all bin pairs, HP data focuses on bin pairs where at least one bin overlaps with a ChIP-seq peak

for a protein of interest. This is different from the standard nˆ n symmetric Hi-C contract matrix.

We focus the data matrix on anchor bins, regions that overlap with ChIP-seq peaks, and pairs

between bins within a specified window of these anchors as illustrated in Figure 3.1.

Second, HPRep fits a positive Poisson regression model to normalize HP-specific biases

from ChIP enrichment level, and used the residuals as the normalized contact frequencies. It

also analyzes bin pairs in the AND and XOR sets separately, effectively accounting for ChIP

enrichment bias for the two different types of bin pairs.

Our results from mouse H3K4me3 PLAC-seq data demonstrated very low variability in

metrics between chromosomes (Figure B.9), which is consistent with HiCRep (Figure B.9). In ad-

dition, we also compared HPRep with other existing methods using H3K27ac HiChIP data from

GM12878 and K562 cells, as well as H3K4me3 PLAC-seq data from 4 human brain cell types.

Our results demonstrated the superior performance of HPRep, in terms of accurate clustering

of samples from the human brain cell types which was not achievable using HiCRep, although

better clustering accuracy was observed when excluding bin pairs in the NOT set.

Future work involves exploring the potential of using this method to determine minimum

per-sample sequencing depth or maximum allowable (if any) differential depth across samples

for accurate quantification or HP data reproducibility. We show that sample differentiation and

expected clustering can survive down-sampling, but rigorous experimentation needs to be con-

ducted in order to demonstrate practical use, as more high-depth HP data become available from

more tissues, cell lines or cell types. Additionally, we plan to examine the use of this general

framework with capture Hi-C datasets, including those targeting at a relatively small number

of loci centered at regions identified from genome-wide association studies, and those genome-

wide promoter capture Hi-C experiments. These extensions are highly warranted, but are beyond
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the scope of our current HPRep work, due to the complexities of these data and their specific

features.

In terms of computational efficiency, for the human PLAC-seq data consisting of 11 samples,

tuning the smoothing parameter and determining all 55 pairwise reproducibility metrics for all 22

autosomal chromosomes took 1 hour and 5 minutes using a single core on a 2.50 GHz Intel pro-

cessor with 4GB of RAM. One can choose to apply HPRep to one chromosome to obtain nearly

identical results. On the same data, HPRep takes 35 minutes to perform tuning and analysis on

solely chromosome 1 using the same single core.
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CHAPTER 4: HPTAD: TAD DETECTION IN HICHIP/PLAC-SEQ DATASETS

4.1 Introduction

The examination of the spatial organizational structure of DNA has been greatly enhanced by

the development of chromatin conformation capture technologies (Dekker et al., 2002). Specif-

ically, Hi-C (Lieberman-Aiden et al., 2009) has allowed for the analysis of genome-wide inter-

actions between genetic loci at very high resolution. This has led to the identification of various

structural elements such as chromatin loops (Rao et al., 2014), chromosomal compartments

(Lieberman-Aiden et al., 2009), and topologically associating domains (TADS, Dixon et al.

(2012)).

TADs are characterized as contiguous sections of the genome where within-region interac-

tions are more frequent than between-region interactions. Since their first formal description in

2012 (Dixon et al., 2012; Nora et al., 2012), the functional relevance of TADs continues to be

investigated; they have been implicated in multiple cellular contexts (Sikorska and Sexton, 2020),

and modification or destruction of TAD boundaries have been associated with cellular dysfunc-

tion (Lupiáñez et al., 2015; Ren and Dixon, 2015) and cancer (Valton and Dekker, 2016; Li et al.,

2019; Akdemir et al., 2020; Pinoli et al., 2020).

In the last decade many methods have been proposed for the detection of TADs. The ap-

proaches taken by these methods vary widely; many use metrics derived directly from contact

frequency to detect TAD regions and boundaries (Filippova et al., 2014; Durand et al., 2016;

Zhan et al., 2017; Ardakany and Lonardi, 2017; Dixon et al., 2012; Yu et al., 2017; Ramı́rez

et al., 2018; Wang et al., 2017; Crane et al., 2015; Malik and Patro, 2019; Shin et al., 2016; An

et al., 2019) while others use statistical (Lévy-Leduc et al., 2014; Ron et al., 2017; Xing et al.,

2021; Serra et al., 2017; Weinreb and Raphael, 2016), cluster (Wang et al., 2015; Oluwadare and
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Cheng, 2017; Haddad et al., 2017; Soler-Vila et al., 2020), network-based (Norton et al., 2018;

Yan et al., 2017b; Lyu et al., 2020), and machine learning (Stilianoudakis and Dozmorov, 2020)

methods. Results obtained using these methods have been shown to vary greatly in terms of num-

ber, size, and enrichment of measures of biological relevance (Zufferey et al., 2018) even when

controlling for factors such as technical variation, read depth, etc.

While high-depth, unbiased Hi-C datasets will remain the preferred input data for TAD de-

tection, cost limitations can make acquisition of such input data infeasible. Recent advances in

chromatin conformation capture technologies have provided alternatives that can achieve kilobase

resolution while requiring less biological input material and at reduced cost relative to Hi-C. Two

such methods, HiChIP (Mumbach et al., 2016) and PLAC-seq (Fang et al., 2016) (herein referred

to HP for brevity) achieve this by combining chromatin immunosuppression (ChIP) with in-situ

Hi-C to specifically target interactions bound by specific proteins or histone modifications. HP

data is primarily used for the detection of enhancer-promoter interactions at high resolution (5

or 10 Kb), however considering the similarity to Hi-C data we explored the use of HP data to

identify low resolution (40 Kb) TADs.

We present HPTAD, a TAD caller designed for use with HP, rather than Hi-C, data as input.

We compare its performance against several publically available TAD callers using mESC and

GM12878 HP datasets relative to ground truth TAD boundaries called from Hi-C experiments

in the respective cell types. Additionally, we demonstrate good consistency between biological

replicates and CTCF enrichment at TAD boundaries called with HPTAD, a biological feature

frequently associated with TAD boundaries (Dixon et al., 2012).

4.2 Methods

4.2.1 HPTAD Method

During the pre-processing step, intra-chromosomal reads are split into two groups: short-

range reads (ď 1 Kb) and long-range reads (ą 1Kb). The short-range reads are used as a measure

of ChIP efficiency in the regression framework described in Equation 4.1. Long-range reads
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are used to determine long-range interactions, which are extracted and classified as either AND,

XOR, or NOT sets based on whether 2, 1, or 0 (respectively) read ends overlap with a ChIP-seq

identified peak for the protein of interest. Additional details can be found in the MAPS paper

(Juric et al., 2019).

The subsequent HPTAD method follows a four step procedure:

1. We model the non-zero intra-chromosomal contacts as a zero-truncated Poisson model with

mean µij . We consider the following covariates: effective fragment length (FL), GC con-

tent (GC), mappability (MS), ChIP enrichment level (IP), and 1-D distance (D). The values

used in the regression are log(xi ˆ xj), where xi and xj are the corresponding covariates for

bins i and j respectively. Unless otherwise stated, the bin size is 40 Kb. We fit regression

models for the AND, XOR, and NOT sets separately.

logpµijq “ β0 ` β1 ¨ FLij ` β2 ¨GCij ` β3 ¨MSij ` β4 ¨ IPij ` β5 ¨Dij (4.1)

Fitted values are normalized as the ratio of observed to expected (fitted) count.

2. Let Xij be the normalized count between bins i and j. Next, for each bin b we calculate the

mean of Xij for all pi, jq such that

tpi, jq : b´ w ă i ď b, b ă j ď b` wu

for specified window size w measured in bin units. Let Xb represent this value, then we

record the score as

Score “ log2

ˆ

Xb

X̄

˙

(4.2)

where

X̄ “

řB
b“1Xb

B
(4.3)

and B is equal to the total number of bins.
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3. The resulting vector of scores is smoothed using the Nadaraya-Watson kernel regression

estimate as implemented in the R function “ksmooth”, using a box kernel with bandwith

3. From this smoothed vector of scores we select candidate TAD boundaries as the set of

points meeting the following criteria: 1) Using an approximation to the second derivative

the score is identified as a minimum with positive second derivative and 2) the value is

below zero (Figure 4.1b).

4. From this set of candidate boundaries we choose final TAD boundaries by first assuming

Xij „ Npµij, σ
2q. We define bt as the locus (bin) corresponding to candidate TAD bound-

ary t, and define domain pDT q as the TAD region bounded by candidate boundaries t´ 1 and

t. Therefore,

DT “ tpi, jq : bt´1 ď i ă j ă btu (4.4)

We make the assumption that intra-TAD interactions share a common mean, that is

µij “ µT if pi, jq P DT (4.5)

Further, we define an exterior region between two tads pET q as

ET “ tpi, jq : bt´1 ď i ă j ă bt`1u ´DT ´DT`1 (4.6)

as illustrated in Figure 4.1c. Now we assume

µij “ µET
if pi, jq P ET (4.7)

and therefore we would expect µT “ µT`1 “ µET
if t is a boundary. We formally test this

null hypothesis against the alternative using a likelihood ratio test.
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Figure 4.1: Cartoon illustration of HPTAD pipeline. We calculate the mean normalized contact
frequency in a square region, sliding the window along the diagonal (a). We determine candidate
boundaries from scores derived from these values (b) and then formally test these candidates.
Diagram (c) is provided to illustrate the regions defined by Equations 4.4 and 4.6. The red areas
are separate TAD regions assuming candidates t´ 1, t, and t` 1 are actual boundaries, however all
three illustrated regions are a single TAD if candidate t isn’t a boundary.

4.2.2 Jaccard Index

We utilize a modified Jaccard index for comparing sets of TAD boundaries. The intersecting

set contains boundaries that are within ˘ 1 bin unit. Recognizing that such an offset could intro-

duce double counting of a boundary within 1 bin unit of two others, we disallow any boundary

being counted more than once.

Let A and B be two sets of TAD boundaries, and let r represent the resolution of the analyses

in base pairs. The intersecting set I is comprised of elements b P B such that there exists at least
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one element a P A where a´ r ď b ď a` r. We sequentially test elements b; if one a P A satisfies

a´ r ď b ď a` r it is removed from A to prevent double counting and b is added to intersecting

set I . If more than one a P A satisfies a´ r ď b ď a` r the lowest value is removed from A.

The modified Jaccard index J is then defined as:

J “
|I|

|A| ` |B| ´ |I|
(4.8)

where | ¨ | represents the cardinality of the corresponding set.

4.2.3 Measure of Concordance

The measure of concordance (MoC) is a metric typically used to compare clustering assign-

ments (Pfitzner et al., 2009), but has been used to compare TAD regions (Zufferey et al., 2018),

considering them clusters of contiguous bins. Let A and B be two sets of TAD regions with car-

dinality NA and NB respectively, with each region being defined as a range of contiguous bin

intervals. Let Iij be the set of bins in both TAD regions Ai and Bj , and let | ¨ | indicate the size of

the corresponding TAD region in bins. We then define the MoC between A and B as:

MoCpA,Bq “
1

?
NANB ´ 1

˜

NA
ÿ

i“1

NB
ÿ

j“1

|Iij|
2

|Ai||Bj|
´ 1

¸

(4.9)

This metric is a formal measure, and is restricted to the domain [0, 1], which makes it appeal-

ing as an easily interpretable metric. Values closer to 1 indicate better agreement between TAD

regions, with 1 achieved if and only if A “ B.

4.3 Results

4.3.1 Performance assessment using “ground truth”

A persistent issue that arises when analyzing or comparing TAD regions and boundaries

is the lack of an objective ground truth. The definition of a TAD as a section of the genome in
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which within-region interactions are more frequent than between-region interactions does not

specify a quantitative threshold by which to judge this differential. Consequently, significant

variability exists in what constitutes a TAD depending on what criteria are used to define them,

as evidenced by the widely varying results obtained from numerous published TAD callers (Zuf-

ferey et al., 2018). Despite this, some boundaries have been reported to be reproducible not only

across samples, but are also preserved between different cell types in the same organism (Dixon

et al., 2015). We used TAD boundaries identified from deeply sequenced Hi-C data as the work-

ing truth to compare the relative performances of TAD callers.

Another issue when comparing TAD regions and boundaries is that different methodologies

define boundaries as points (bp) or regions (bin). Moreover, many methodologies define TADs

such that they span the entire chromosome while others specifically identify undefined regions

not classified as part of any TAD. To ensure consistent comparisons, we define TAD boundaries

as bins and exclude undefined regions in methods where they are specified rather than folding

them into a neighboring TAD or splitting between two neighbors. Consequently, we utilize a

modified Jaccard index for the purpose of comparing TAD boundaries. Specific details can be

found in Methods 4.2.2, but the key modification to the standard Jaccard index is that we consider

boundaries that overlap within ˘ one bin to be matched. The interpretability of this modified

Jaccard index is unchanged from the standard index.

In addition to the Jaccard index we use the measure of concordance (MoC, Methods 4.2.3) to

compare the TAD regions, originally described in Pfitzner et al. (2009). This is akin to viewing

TAD regions as a clustering of bins with the constraint that clusters contain only contiguous

bins. One advantage of using the MoC to compare TAD regions is its ease in interpretability: the

response is restricted to [0, 1], with higher values indicating closer alignment of TAD regions. A

value of 1 is achievable if and only if the set of regions overlap perfectly.

We compared the performance of HPTAD to four publically available TAD callers (OnTAD,

Grinch, TopDom, and the insulation score (IS). We applied each method to mouse embryonic

stem cell (mESC) H3K4me3 PLAC-seq data, using TADs reported in Dixon et al. (2012) as the
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Figure 4.2: mESC H3K4me3 PLAC-seq experiment - Boxplots displaying modified Jaccard
index results for HPTAD vs. the indicated methods using raw contact counts as input. The top,
middle, and bottom lines of the boxes represent the third, second, and first quartiles respectively
and whiskers extend to 1.5 times the interquartile range. Outliers are plotted as points. Displayed
results are for all 20 mouse chromosomes. The numbers above pairs of boxes represent the
p-value of a paired t-test comparing two methods.

ground truth. For the four TAD callers designed for use with Hi-C data we initially used raw

counts for the AND, XOR, and NOT sets (Methods 4.2.1) as input. The results are displayed in

Figure 4.2.

Considering the biases introduced by the chromatin immunoprecipitation step, it is not sur-

prising that HPTAD outperforms the other methods since the HPTAD input is normalized to

account for these biases. The largest p-value obtained from paired t-tests comparing HPTAD to

the other methods was 1ˆ 10´7. We repeated the experiment, normalizing the counts for effective

fragment length, GC content, mappability, and ChIP enrichment level (Figure 4.3). As expected,

the mean Jaccard indices for the Hi-C specific methods increased, with the exception of TopDom,

which was unchanged. For Grinch, the mean Jaccard index improved from 0.225 to 0.291, for
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Figure 4.3: mESC H3K4me3 PLAC-seq experiment - Boxplots displaying modified Jaccard
index results (a) and Measure of Concordance (b) for HPTAD vs. the indicated methods using
normalized counts as input. The top, middle, and bottom lines of the boxes represent the third,
second, and first quartiles respectively and whiskers extend to 1.5 times the interquartile range.
Outliers are plotted as points. Displayed results are for all 20 mouse chromosomes. The numbers
above pairs of boxes represent the p-value of a paired t-test comparing two methods.

IS it improved from 0.257 to 0.294, and for OnTAD it improved from 0.312 to 0.364. The mean

Jaccard index for HPTAD was 0.404. All comparisons by paired t-test were again significant at

the 0.05 significance level, with the largest p-value now 1ˆ 10´4.

With respect to the MoC, HPTAD also outperformed the other four methods. The mean MoC

over all 20 mouse chromosomes was 0.784 for HPTAD compared to 0.723, 0.601, 0.741, and

0.584 for Grinch, IS, OnTAD, and TopDom respectively.

We next repeated the previous experiment applying each method to human lymphoblastoid

cell line GM12878 H3K27ac HiChIP data, using TADs reported in Schmitt et al. (2016) as the

ground truth. We observed similar relative performances of the methods with respect to both Jac-

card index and MoC, with the notable exception of Grinch’s improved performance relative to

OnTAD (Figure 4.4). In the mESC experiment Grinch outperformed IS and TopDom and under-

performed OnTAD with respect to both Jaccard and MoC. However, in the GM12878 experiment

Grinch modestly outperformed OnTAD with respect to both metrics (0.201 to 0.190 Jaccard;

0.670 to 0.650 MoC). Again, HPTAD outperformed the other methods with respect to both met-
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Figure 4.4: GM12878 H3K27ac HiChIP experiment - Boxplots displaying modified Jaccard
index results (a) and Measure of Concordance (b) for HPTAD vs. the indicated methods using
raw contact counts as input. The top, middle, and bottom lines of the boxes represent the third,
second, and first quartiles respectively and whiskers extend to 1.5 times the interquartile range.
Outliers are plotted as points. Displayed results are for all 20 mouse chromosomes.

rics. We observed that for all methods both the Jaccard indices and measures of concordance are

lower for the GM12878 results relative to the mESC experiment. This is likely attributable to the

smaller number of read counts for the GM12878 experiment.

The consistency of relative performance between the two experiments is particularly en-

couraging. The “ground truth” TADs for both experiments were called using different methods

(mESC: directinality index; GM12878: IS). Inconsistent relative performances would have weak-

ened justification for our choice of “ground truth” TADs by suggesting that our observed results

were a function of the method used to call the reference TADs. It is interesting that the IS method

only outperforms TopDom in the GM12878 experiment given that the “truth” was called using

that method. This result highlights the difference between using Hi-C and HP data as input for a

TAD caller designed for use with the former technology.
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4.3.2 Model consistency

Considering evidence that TAD boundaries are conserved even across different cell lines in

the same organism, we hypothesized that a reasonable TAD calling methodology should be able

to produce consistent results across biological replicates of the same cell type. We compared re-

sults from the five TAD calling methodologies using two biological replicates each of previously

described mESC and GM12878 HP samples.

We observed strong agreement between biological replicates for all methods except for

Grinch. The mean Jaccard indices for the other four methods ranged from 0.756 (OnTAD) to

0.859 (HPTAD) and the MoC values ranged from 0.909 (IS) to 0.923 (HPTAD) for the mESC

replicates. Similarly, for the GM12878 replicates the mean Jaccard indices for the same methods

ranged from 0.684 (OnTAD) to 0.817 (IS) and the MoC values ranged from 0.870 (TopDom) to

0.895 (HPTAD). The poor consistency observed with Grinch suggests that some aspect of the

matrix factorization used by that method is particularly sensitive to HP data.

4.3.3 CTCF enrichment

Thus far we have compared TAD boundaries and regions to a chosen “ground truth” with

the understanding that no true standard actually exists. The transcription factor protein CTCF is

reported to be enriched at TAD boundaries ((Dixon et al., 2012)). Since the methods we are com-

paring vary in the number and identity of TADs they call, we presumed examining the overlap of

boundaries with CTCF signals would support the biological signficance of called TADs.

Repeating an analysis from Dixon et al. we first examined the number of CTCF peaks as

a function of distance from TAD boundaries within a window of ˘ 500 Kb. As observed in the

aforementioned reference, we see a peak at the TAD boundary and a rapid decrease in average

peak density with increasing distance from a boundary (Figure 4.6a).

We chose to compare CTCF enrichment between methods using two metrics: the mean

number of CTCF peaks per TAD boundary and the fold change enrichment based on number

of boundaries that overlap CTCF peaks. The motivation for looking at the second metric was to
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Figure 4.5: Consistency between biological replicates - mESC Jaccard index (a) and measure of
concordance (b) and GM12787 Jaccard index (c) and measure of concordance (d). Boxplots
displaying results for HPTAD vs. the indicated methods using normalized contact counts as input.
The top, middle, and bottom lines of the boxes represent the third, second, and first quartiles
respectively and whiskers extend to 1.5 times the interquartile range. Outliers are plotted as
points. Displayed results are for all 20 mouse or 23 human chromosomes.

mitigate against the possibility that a method was capturing a few dense CTCF peak regions but

many non-overlapping regions. This does not appear to the case however, considering the relative
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Figure 4.6: CTCF enrichment for mESC experiment - Number of CTCF peaks as a function of
distance from HPTAD boundaries (a) and average number of peaks per TAD boundary (b).
Boxplots displaying results for HPTAD vs. the indicated methods using normalized contact
counts as input. The top, middle, and bottom lines of the boxes represent the third, second, and
first quartiles respectively and whiskers extend to 1.5 times the interquartile range. Outliers are
plotted as points. Displayed results are for all 20 mouse chromosomes.

performances of the methods are identical under both metrics (Figures 4.6b and C.2). OnTAD

exhibits the highest average peak density per TAD boundary and fold enrichment (1.59 and 2.16

respectively), followed by HPTAD (1.32, 1.90), Grinch (1.23, 1.76), TopDom (1.00, 1.56), and IS

(1.00, 1.49). Similar relative results were observed repeating the experiment with GM12878 data

(Figure C.1).

4.3.4 Number of TADs called

To better understand the differences in results for the various methods we visualized the TAD

regions in the mESC experiments by plotting them against the “ground truth” values from Dixon

et al., overlaid on a heatmap of the normalized counts (Figure 4.7). Expectedly, TopDOM and

IS, the methods that call the greatest number of TADs, show the highest level of partitioning

TADs into sub-TAD regions. Based on the lower CTCF enrichment observed in these methods

compared to HPTAD, OnTAD, and Grinch, there is not compelling evidence that these sub-TADs
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Figure 4.7: Visualization of TAD region 31 - 37 Mbp on chromosome 1 for mESC experiments.
TADs from Dixon et al. (2012) on top, indicated method on bottom.

are biologically relevant. This implies that those methods could be overly sensitive using HP

input data.

The increased numbers of TADs called by TopDom and IS (Figure C.4) are undoubtedly

contributing to their poor performance measured by Jaccard index and MoC. For example, if two

sets have relative sizes 1:2, their Jaccard index has a maximum possible value of only 0.5. The

measure of consistency metric decreases as a function of the inverse square root of set size.

Both the TopDom and IS implementations utilize method-specific tuning parameters. While

we conducted our primary analyses using default options (see Section C.4), we modified param-

eters to intentionally reduce the number of TADs called to closer match the “ground truth” num-
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bers (Figure C.5). We then compared the Jaccard indices and MoCs obtained using the results

with fewer called TADs.

TopDom has one user-defined parameter, “window.size”, which defines the number of bins

to extend for locus evaluation. Larger window sizes lead to fewer called TADs so we extended

this to the maximum recommended value of 20. This reduced the mean number of TADs called

per chromosome from 319 to 181, which is still greater than the mean number of “ground truth”

TADs (158). For the IS method we modified two parameters independently, window size and

minimum score, a threshold used to determine whether the change in insulation score between

loci is sufficient to indicate a TAD boundary (default is 0). Both parameters are inversely re-

lated to the number of called TADs, that is, increasing their values results in fewer TADs. By

increasing the window size we reduced the mean number of TADs called from 246 to 164, and

by increasing the minimum score we similarly reduced the number of called TADs to 166. As ex-

pected, we observed improvements in both the Jaccard index and MoC in all three cases, however

the performance still lagged behind HPTAD (Figure 4.8). For TopDom, the mean Jaccard index

increased only modestly from 0.255 to 0.272, while for IS the mean Jaccard index increased

more substantially from 0.294 to 0.364 (window size adjustment) and 0.360 (minimum score

adjustment). All of these are below 0.404, the mean Jaccard index for HPTAD. The mean MoC

for TopDom increased from 0.584 to 0.781, and for IS increased from 0.601 to 0.719 (window

size adjustment) and 0.697 (minimum score adjustment), but again, these are all below 0.786, the

mean MoC for HPTAD.
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Figure 4.8: Intentional reduction in number of TADs called - Jaccard index (a) and measure of
concordance (b) for HPTAD, TopDom, and IS (repeated) plotted with results obtained with
adjusted window sizes for TopDom (TopDom win) and IS (IS win) and adjusted minimum score
for IS (IS min score). The top, middle, and bottom lines of the boxes represent the third, second,
and first quartiles respectively and whiskers extend to 1.5 times the interquartile range. Outliers
are plotted as points. Displayed results are for all 20 mouse chromosomes.

4.4 Discussion

While we anticipate that dense read count Hi-C data will remain the gold standard for TAD

identification in the foreseeable future, practical considerations such as experiment expense can

preclude this as an option for some researchers. Lower-cost methods such as HiChIP and PLAC-

seq (HP) provide similar data to Hi-C experiments, however the chromatin immunoprecipitation

step introduces an additional bias that must be accounted for. Our aim was to explore the feasibil-

ity of using HP data, rather than Hi-C data, to identify TADs.

We present HPTAD, a novel method for TAD identification in HP data. After standard pre-

processing we normalize the data as the ratio of expected to observed counts, where the expected

counts are derived from a zero-truncated Poisson model. We select candidate TAD boundaries

using mean normalized counts within a neighborhood of each locus, and from these candidates

we select boundaries based on statistical significance from an assumed model.
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We compare the performance of HPTAD to four other publicly available TAD calling meth-

ods that were designed for use with Hi-C data and demonstrate improved performance with re-

spect to the Jaccard index applied to TAD boundaries and the measure of concordance applied to

TAD regions. In addition, we demonstrate excellent consistency between results from biological

replicates, matching or exceeding those of the other methods compared. We even manipulated

the number of TADs called by two methods assuming oracular knowledge of the true number of

TADs. Even with such matching HPTAD still outperforms these methods.

An obvious shortcoming of our comparisons is that we use published TADs as “ground truth”

with the understanding that these are not actually truth. Nonetheless, we use reference TADs

called from mouse embryonic stem cells and human lympoblastoic cells using different methods,

yet demonstrate consistent relative performance of the TAD callers. This reduces the possibility

that HPTAD is merely doing a better job mimicking one particular method. Additional support

for the biological relevance of TADs called by our method was provided by CTCF enrichment.

Still, more convincing evidence for the relevance of TADs called from HP data would greatly

strengthen an argument for our method’s utility to the scientific community. To that end we plan

to apply HPTAD to a complex H3K4me3 PLAC-seq dataset consisting of samples from four

brain cell types in human fetal brain obtained via fluorescence-activated cell sorting (Song et al.,

2020).

In terms of computational efficiency, we processed the mESC data in 1 hours and 12 min-

utes using a single core on a 2.50 GHz Intel processor with 9GB of RAM. This represents the

time to run all 20 chromosomes; it is possible to run each chromosome in parallel to accelerate

processing.
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CHAPTER 5: CONCLUSION

While undeniably successful in terms of identifying a tremendous number of variant-trait

associations, GWAS results have left open many questions concerning the biological mechanisms

underlying these associations. In this dissertation we have proposed several novel methods to ana-

lyze genomic data that move beyond one-dimensional, variant-level interrogation of the genome.

In a broad sense, these methods represent zooming out from examination of the genome at the

allelic level to varying degrees.

First, we pull back from the GWAS variant-level analysis of the genome in favor of the gene-

based vantage of transcriptome-wide association studies (TWAS), which examine the association

between imputed gene expression and traits of interest. In Chapter 2 we present BayesQN, a

Bayesian TWAS method that explicitly models well- and poorly-imputed variants under different

distributional assumptions. BayesQN is compared to existing TWAS training methods in both

simulated and actual RNA-seq data. Performance gains over several TWAS training methods

were observed in specific simulation scenarios, however these gains attenuated in real-world data.

Nonetheless, we identified scenarios in which our Bayesian methodology outperformed the com-

monly used elastic net framework. Future research endeavors include moving from dichotomiza-

tion of variants based on imputation quality in favor of population-based metrics. For example,

local ancestry can be assigned on the variant level using software such as RFMix (Maples et al.,

2013), potentially allowing for improved predictive performance in admixed populations.

Next, we pull back even further and examine long-range interactions between genomic loci,

which help link GWAS variants to their most likely effector genes in relevant tissues or cell types.

Specifically, we concern ourselves with Hi-ChIP and PLAC-seq (HP) data, two evolutions of

Hi-C technology that incorporate chromatin immunoprecipitation to select for loci bound by a
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protein of interest, which enables high-resolution analyses at reduced cost and using less input

material compared to Hi-C. In Chapter 3 we present HPRep, a method that uses zero-truncated

Poisson regression to normalize contact frequencies adjusting for HP-specific biases and calcu-

lates a stratified and weighted correlation metric to quantify the reproducibility in HP datasets.

While several methods for quantifying reproducibility in Hi-C datasets exist, none of these ac-

count for biases introduced in the chromatin immunoprecipitation step of HP methods. We com-

pare HPRep to some of these methods developed for Hi-C data and demonstrate improved perfor-

mance in both mouse and human data. Furthermore, we demonstrate the ability to differentiate

cell types using HPRep applied to a complex set of 11 samples of human brain cells representing

four cell types. Future research will involve applying our method to similar chromatin conforma-

tion capture technologies, such as promoter capture Hi-C.

Finally, we shift vantage point once again and examine topologically association domains

(TADs), large contiguous regions of the genome characterized by a higher frequency of within-

region interactions relative to between-region interactions. Continuing our analyses of HP data

introduced in Chapter 3, in Chapter 4 we explore the possibility of using such data to identify

TADs, thereby expanding the utility of HP data. We introduce HPTAD, which uses a regression-

based framework to normalize contact frequencies and select a set of candidate TAD boundaries

from which final boundaries are chosen using a statistical test. We compare the performance of

HPTAD to several publicly available tools for identifying TADs from Hi-C data and demonstrate

improved performance compared to “ground truth” data in both mouse and human cell lines. Ad-

ditionally, we demonstrate good consistency between results obtained from biological replicates

and CTCF enrichment in TAD boundaries called with HPTAD. Future research plans are to apply

this method to the complex PLAC-seq human brain cell dataset described in Chapter 3 with the

aim of identifying TADs whose biological relevance can be supported with other omics data (e.g.

gene expression) in matched tissue(s) and/or cell type(s).

Over the last twenty years GWAS has continued to be utilized for the identification of vari-

ants associated with a diverse array of phenotypes, however the need for new tools to move be-
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yond mere correlation in favor of a deeper understanding of causation still exists. A recent ini-

tiative was just funded by the NHGRI to address this need: the Impact of Genomic Variation on

Function (IGVF) Consortium’s stated goal is to “develop a framework for systematically under-

standing the effects of genomic variation on genome function and how these effects shape phe-

notypes.” While far less expansive in scope than anticipated IGVF-driven advances, we present

three projects that represent additions to the continually expanding toolkit of methods aimed at

the same goal.
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APPENDIX A: ADDITIONAL RESULTS FOR CHAPTER 2

A.1 Terminology Definitions

Let us define some terminology to be used throughout this section:

• Y is a length p vector of responses

• X is an nˆ p matrix of genotypes for n subjects. The p SNPs can be represented by dosages

or {0, 1, 2}, and the matrix is centered and scaled to unit variance. Xi¨ andX¨j represent

the ith row and jth column ofX respectively. Xp´jq represents matrixX with the jth

column removed.

• For a BayesQN model, we assign SNPs to category q P t1, 2, . . . , Nu; we focus on the

case where N “ 2. The categories are mutually exclusive; therefore if mq is the number of

SNPs in category q then
řN
q“1mq “ p.

• β is a length p vector of SNP effect sizes. βp´jq is a length p´ 1 vector representing β with

the jth element (βj) removed. βq is a length mq vector of category q SNP effect sizes and

βqj is the jth element of βq. The value qj simply denotes the category of SNP j.

• Jn is a length n vector of ones.

• πq is a length 4 vector whose elements are probabilities that βqj follows distribution k P

t1, 2, 3, 4u, and sum to 1. πq1 is the first element of the vector, πq2 the second, etc.

• σ2
qk is a scalar representing 0, 0.001σ2

q , 0.01σ2
q , or 0.1σ2

q for k “ t1, 2, 3, 4u respectively.

Following the framework established in the BayesR paradigm, the response variable Y is

modeled as

Y |X,β, µ, σ2
e „ NpµJn `Xβ, Inσ

2
eq
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A.2 Prior Distributions

We set the following priors:

• Prior on µ is uninformative

ppµq91

• Prior on βj

βj|πq, σ
2
q , qj „ πq1Np0, 0q ` πq2Np0, 0.001σ2

q q ` πq3Np0, 0.01σ2
q q ` πq4Np0, 0.1σ

2
q q

• Prior on σ2
e

ppσ2
eq „ Scaled inverse χ2

pνo, S
2
oq

• Prior on σ2
q

ppσ2
q q „ Scaled inverse χ2

pνo, S
2
oq

• Prior on πq

ppπqq „ Dirichletp1, 1, 1, 1q
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A.3 Derivation of Posterior Distributions

So for the conditional posterior distribution of µ

ppµ|¨q9ppY |¨qppµq9p2πq´n{2
ˆ

1

σ2
e

˙n

expt´1{2σ2
epY ´ µJn ´Xβq

T
pY ´ µJn ´Xβqu

Therefore

µ|¨ „ N

˜

1{n
n
ÿ

i“1

pYi ´Xi¨βq, σ
2
e{n

¸

whereXi¨ is the length p row vector for the ith subject.

Next we need to calculate the conditional probability that SNPj comes from distribution

k P t1, . . . , 4u given the data

Likelihood9ppY |¨,SNPj from dist kqppSNPj from dist kq

where the first term is

Y |X,βp´jq, µ, σ
2
e , σ

2
q ,πq, qj „ NpµJn `Xp´jqβp´jq, Inσ

2
e `X¨jX

T
¨jσ

2
qkq

Therefore the log liklihood is

logpπqkq ` logpCq ´ 1{2 logpdetpInσ
2
e `X¨jX

T
¨jσ

2
qkqq

´ 1{2pY ´ µJn ´Xp´jqβp´jqq
T
pInσ

2
e `X¨jX

T
¨jσ

2
qkq

´1
pY ´ µJn ´Xp´jqβp´jqq

Next we make use of the Woodbury identity:

pA`XBXT
q
´1
“ A´1

´ A´1XpB´1
`XTA´1Xq´1XTA´1
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where A “ Inσ
2
e and B “ σ2

qk. Therefore the inverted matrix becomes

In

ˆ

1

σ2
e

˙

´ In

ˆ

1

σ2
e

˙

X¨j

˜

1

σ2
qk

`XT
¨jX¨j

1

σ2
e

¸´1

XT
¨j

ˆ

1

σ2
e

˙

Now let Ỹ “ Y ´ µJn ´Xp´jqβp´jq and letW “ Inσ
2
e `X¨jX

T
¨jσ

2
qk. Substituting into above

we get:

logpπqkq`logpCq´1{2 logpdetpW qq´
1

2σ2
e

Ỹ T Ỹ `
1

2σ2
e

Ỹ TX¨j

˜

σ2
e ` σ

2
qkX

T
¨jX¨j

σ2
eσ

2
qk

¸´1
1

2σ2
e

Ỹ TX¨j

“ logpπqkq ` logpCq ´ 1{2 logpdetpW qq ´
1

2σ2
e

Ỹ T Ỹ `
1

2σ2
e

pỸ TX¨jq
2

σ2
qk

σ2
e ` σ

2
qkX

T
¨jX¨j

Making use of the identity detpA ` uvT q “ p1 ` vTA´1uq detpAq we let A “ Inσ
2
e and let

u “ v “X¨jσqk and obtain

detpW q “ p1` σqkX
T
¨j

1

σ2
e

InX¨jσqkq “

ˆ

1`
σ2
qk

σ2
e

XT
¨jX¨j

˙

σ2n
e

Therefore

Loglik 9 logpπqkq ` logpCq ´ 1{2 log

ˆ

1`
σ2
qk

σ2
e

XT
¨jX¨j

˙

´ n{2 logpσ2
eq ´

1

2σ2
e

«

Ỹ T Ỹ ´ Ỹ TX¨j

˜

Ỹ TX¨j

σ2
e{σ

2
qk `X

T
¨jX¨j

¸ff

For the posterior distribution of βj|¨, j from dist k we have:

βj|¨, j from dist k 9ppY |¨qppβj|j from dist kqppj from dist kq
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9 exp

ˆ

´
1

2σ2
e

pY ´ µJn ´Xp´jqβp´jq ´X¨jβjq
T
pY ´ µJn ´Xp´jqβp´jq ´X¨jβjq

˙

exp

˜

1

2σ2
qk

β2
j

¸

“ exp

˜

´
1

2

«

1

σ2
e

pỸ ´X¨jβjq
T
pỸ ´X¨jβjq `

1

σ2
qk

β2
j

ff¸

9 exp

˜

´
1

2

«

1

σ2
e

pβjX
T
¨jX¨jβj ´ 2βjX

T
¨j Ỹ q `

1

σ2
qk

β2
j

ff¸

9 exp

¨

˝´
1

2

˜

1

σ2
qk

`
XT
¨jX¨j

σ2
e

¸

¨

˝βj ´

˜

1

σ2
qk

`
XT
¨jX¨j

σ2
e

¸´1

XT
¨j Ỹ

1

σ2
e

˛

‚

2˛

‚

Therefore the posterior distribution of βj|¨, j from dist k is

N

˜

XT
¨j Ỹ σ

2
qk

σ2
e ` σ

2
qkX

T
¨jX¨j

,
σ2
eσ

2
qk

σ2
e ` σ

2
qkX

T
¨jX¨j

¸

The posterior distribution of σ2
e is:

ppσ2
e |¨q9ppY |¨qppσ

2
eq

“ p2πq´n{2
ˆ

1

σ2
e

˙n

exp

ˆ

´
1

2σ2
e

pY ´ µJn ´Xβq
T
pY ´ µJn ´Xβq

˙

pS2
oνo{2q

νo{2

Γpνo{2q
exp

ˆ

´
1

2σ2
e

νoS
2
o

˙

`

σ2
e

˘´1´νo{2

“
`

σ2
e

˘´1´pνo`nq{2
exp

ˆ

´
1

2σ2
e

rνoS
2
o ` pY ´ µJn ´Xβq

T
pY ´ µJn ´Xβqs

˙

So

σ2
e |¨ „ Scaled inverse χ2

ˆ

νo ` n,
νoS

2
o ` pY ´ µJn ´Xβq

T pY ´ µJn ´Xβq

νo ` n

˙

The posterior distribution of σ2
q is a function of the βj for which qj “ q. Specifically,
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ppσ2
q |¨q9ppσ

2
q q

p
ź

j“1

ppβj|σ
2
q q
Ipqj“qq

For clarity, let us introduce a new variable Zj which takes on the value of k P t1, 2, 3, 4u if

SNP j follows distribution k. For k “ 1 the corresponding βs are zero, hence they do not factor

into the derivation.

ppσ2
q |¨q9ppσ

2
q q

4
ź

k“2

$

&

%

ź

jPtj:Zj“ku

˜

1

σqk
?

2π
exp

#

´
β2
j

2σ2
qk

+¸Ipqj“qq
,

.

-

9 exp

ˆ

´
νoS

2
o

2σ2
q

˙

`

σ2
q

˘´1´νo{2
4
ź

k“2

σ
´mqk
q exp

#

´

ř

jPtj:Zj“ku
β2
j Ipqj “ qq

2σ2
qk

+

9σ´2´νo´mq2´mq3´mq4
q exp

#

4
ÿ

k“2

´

ř

jPtj:Zj“ku
β2
j Ipqj “ qq

2ckσ2
q

´
νoS

2
o

2σ2
q

+

9σ´2´νo´mq2´mq3´mq4
q exp

#

´
1

2σ2
q

˜

νoS
2
o `

p
ÿ

j“1

βjIpqj “ qqIpZj “ 2q

c2

`

p
ÿ

j“1

βjIpqj “ qqIpZj “ 3q

c3

`

p
ÿ

j“1

βjIpqj “ qqIpZj “ 4q

c4

¸+

9σ´2´νo´mq2´mq3´mq4
q exp

#

´
1

2σ2
q

˜

νoS
2
o `

4
ÿ

k“2

p
ÿ

j“1

βjIpqj “ qqIpZj “ kq

ck

¸+

Therefore, the posterior distribution is

σ2
g |¨ „ Scaled inverse χ2

˜

νo `mq2 `mq3 `mq4,
νoS

2
o `

ř4
k“2

řp
j“1

βjIpqj“qqIpZj“kq

ck

νo `mq2 `mq3 `mq4

¸

Finally, it is a known result that the Dirichlet distribution is conjugate in this setting, so the

posterior distribution of πq is given by

ppπq|¨q9
4
ź

k“1

π1´1
k π

mqk

k
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So the posterior distribution is

ppπq|¨q „ Dirichlet pmq1 ` 1,mq2 ` 1,mq3 ` 1,mq4 ` 1q
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APPENDIX B: ADDITIONAL RESULTS FOR CHAPTER 3

B.1 Details for Step 1 and 2 of HPRep

During the pre-processing step, intra-chromosomal reads are split into two groups: short-

range reads (ď 1 Kb) and long-range reads (ą 1Kb). The short-range reads are used as a measure

of ChIP efficiency in the regression framework described later in the pipeline. Long-range reads

are used to determine long-range interactions, which are extracted and classified as either AND,

XOR, or NOT sets based on whether 2, 1, or 0 (respectively) read ends overlap with a ChIP-seq

identified peak for the protein of interest. Additional details can be found in the MAPS paper:

(Juric et al., 2019).

The regression and normalization step (step 2) follows a multi-step procedure:

1. We model the non-zero intra-chromosomal contacts as a zero-truncated Poisson model with

mean µij . The covariates for effective fragment length (FL), GC content (GC), mappability

(MS), and ChIP enrichment level (IP) are provided by the feather pre-processing step (as

implemented in the MAPS pipeline), and represent log(xi ˆ xj), where xi and xj are the

corresponding covariates for bins i and j respectively. We fit regression models for the

AND and XOR sets separately.

logpµijq “ β0 ` β1 ¨ FLij ` β2 ¨GCij ` β3 ¨MSij ` β4 ¨ IPij (B.1)

2. Fitted values are determined for each bin pair based on the resulting model for AND and

XOR sets in each chromosome, resulting in 2ˆ n files where n is the number of autosomal

chromosomes.

3. Normalized values are defined as log2(1 + observed / fitted) and all bin pairs are combined

into one file. Additionally, the ChIP-seq peaks are binned to analysis resolution and sup-
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plied as a file containing a list of these anchor bins. Peaks that span a bin boundary are

assigned to all bins they span.

B.2 Details for Step 3 of HPRep

The final step involves data smoothing and sample comparison to calculate a final repro-

ducibility metric between each pair of samples as a weighted Pearson correlation. The combined

AND and XOR normalized data is stored in a matrix which is used as an input for the compar-

ison algorithm. The basic data structure we consider is an N ˆ m matrix, where N represents

the number of anchor bins in the union set of anchors from all samples and m is 2 x binning

distance/resolution, where binning distance is recommended to be set at 1 Mb but can be user

specified. Interactions further than 1 Mb are typically sparse and highly variable. The ij element

of the matrix represents the normalized contact frequency between the anchor i and the bin j

bin widths away, j P t´m{2, . . . ,´1, 1, . . . ,m{2u. In Figure B.1, N “ 4,m “ 400 at 5 Kb

resolution, 200 at 10 Kb resolution.

Figure B.1: Each cell represents the smoothed normalized contact frequency between the anchor
bin corresponding to the row and the bin x bin units away, where x is the number of cells to the
right or left of the midpoint. Cells to the left and right of the midpoint represent bins upstream
and downstream of the anchor bin respectively.
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The normalized values undergo a 1-D smoothing procedure as follows: for a specified win-

dow size d, the ij element (xij) is transformed such that the smoothed value is

xsmoothedij “

řj`d
k“j´d xik

2d` 1
(B.2)

Let ak and bk be two vectors of length 2N from samples a and b respectively, whose elements

consist of the values from the smoothed data matrix from columns ˘k units symmetrically from

the center. All these values represent normalized and smoothed contacts that are ˘k bins from

their respective anchors. Let a1k and b1k be the resulting vectors of length Nk ď 2N after removing

any elements satisfying ai “ bi “ 0, where aki is the ith element of vector ak. We define rk as

rk “
Nk

řNk

i“1 a
1
ib
1
i ´

řNk

i“1 a
1
i

řNk

i“1 b
1
i
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1
iq

2
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1
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(B.3)

namely the empirical correlation between a1k and b1k. We then define the weights for each of the k

strata as

wk “

Nk

d

řNk
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12
i
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´

ˆ
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i
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(B.4)

The reproducibility score between two matrices is then the weighted average of the stratified

correlations rk

reproducibility score “
K
ÿ

k“1

rkwk (B.5)

B.3 Smoothing Parameter Optimization

The smoothing parameter d is tuned using the method similar to the HiCRep protocol with

modification to the sampling scheme and search termination criterion. The following algorithm is

used:
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Two samples to be analyzed are selected, preferably ones that are dissimilar such as non-

biological replicates. Twenty-five percent of the non-zero contacts from one are randomly sam-

pled and used to populate a contact matrix as previously diagrammed, with the remaining entries

set to zero. The analogous positions in the other sample are used to populate a corresponding

matrix. The reproducibility score is calculated for these matrices and the sampling procedure is

repeated a total of ten times with no smoothing performed. The average of these ten values is

recorded.

The smoothing parameter is then iterated, repeating the above procedure until the average

metric using smoothing parameter d` 1 compared to d exhibits less than a one percent increase.

The value of d is recorded and used as the smoothing parameter for all analyses with the particu-

lar dataset.

B.4 Procedures for Comparative Methods

• HiCRep

– All results obtained using HiCRep were conducted using R (3.6.0) and using version

1.12.0 of the HiCRep package obtained from https://github.com/MonkeyL

B/hicrep. Default parameters were used for all experiments. Note that the docu-

mentation recommends a smoothing parameter of 20 for 10 Kb resolution but does

not specify a recommended parameter for 5 Kb resolution. We used 20 for 5 Kb as

well since marginal difference was reported when tuning beyond 20.

• HiC-Spector

– The Python version of HiC-Spector was used rather than the Julia version since the

former readily accepts Hi-C data in genomic coordinates rather than .hic format. The

program used was “run reproducibility v2.py found at https://github.com/g

ersteinlab/HiC-spector. Experiments that included solely AND and XOR

sets of contacts were prepared by extracting bin pairs and observed (integer) contacts
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from the corresponding AND / XOR files. Note, the bin positions had to be converted

to indices starting at 1, so the global minimum bin position was determined, and all

bins positions scaled by (genomic position minimum position) / resolution. Experi-

ments also including NOT sets were generated similarly.

• Pearson correlation

– The upper triangular component of a standard symmetric n ˆ n contact matrix was

flattened to a vector for each sample. The Pearson correlation between two samples

was computed as the correlation between these vectors.

B.5 Down-sampling Procedure

The generalized down-sampling procedure was performed on the AND and XOR contact

files for each chromosome separately. Let n be the total number of counts for all bin pairs in the

specific file and let d be the down-sampling coefficient. That is, to down-sample to 0.8x depth,

d “ 0.8. The vector v of counts for all bin pairs is down-sampled to depth d utilizing the R

function rbinom where the size parameter is set to floor(n ˆ d) and the probability vector is the

element-wise division of v by n. These down-sampled AND and XOR files then intersect the

pipeline as usual with the removal of bins that now have counts of 0.

B.6 Determination of Silhouette Values

Silhouette values were calculated via the method in Rousseeuw (1987). Let dpi, jq be the

similarity between sample i and j, which in this analysis is the scaled reproducibility metric be-

tween the two samples. The silhouette method requires that the similarity (or distance) quantities

be comparable on a ratio scale, that is, if the distance between two points is doubled that implies

the points are twice as far apart. Pearson correlation does not have such a property, so for each

experiment the values were standardized to [0, 1] by subtracting the lowest value and dividing by

(max - min) value.
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Let sample i be a member of cluster A. Furthermore, let apiq be the average similarity of i to

all other samples in the same cluster. Let dpi, Cq be the average similarity of sample i to all other

samples in cluster C and let bpiq be the maximum value of dpi, Cq over all clusters C distinct

from cluster A. Then the silhouette value is defined as

spiq “
apiq ´ bpiq

maxtap1q, bpiqu
(B.6)

We report the average spiq over all 11 samples. The closer this value is to 1 the better the cluster-

ing performance.

B.7 Data Details

For the human brain PLAC-seq data, fastp (https://github.com/OpenGene/fast

p) was used to trim the fastq files to 100 bp. No additional modifications to the described pipeline

were performed on any of the datasets used in this paper. Default software options described in

https://github.com/yunliUNC/HPRep were used for alignment and merging for all

samples analyzed. Resolutions used for each dataset were: 10 Kb for mouse embryonic stem cell

and mouse brain tissue H3K4me3 PLAC-seq; GM12878 and K562 H3K27ac HiChIP; and 5 Kb

for human brain H3K4me3 PLAC-seq.

B.8 Irreproducible Discovery Rate

ChIP-Seq data processing followed the procedure outlined in Juric et al. (2019). Specifi-

cally, MACS2 (v 2.1.2) was used to provide the narrowPeak input files using flags: –nolambda,

–nomodel, –extsize 147, –call-summits, -B, –SPMR, and -q 1e-2. These files were processed us-

ing IDR (v 2.0.4.2) with default parameters. Results reported represent the fraction of peaks that

exceed a false discovery rate of 5%. Downsampling was performed on the MACS2 input files by

randomly selecting an appropriately sized subset of reads.

92

https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
https://github.com/yunliUNC/HPRep


B.9 Additional Results by Chromosome

Figure B.2: Metrics obtained applying HPRep to two mouse embryonic stem cell (mESC) and
mouse brain (mb) tissues H3K4me3 PLAC-seq samples. Pseudo replicates were generated from
pooling mESC samples followed by random sampling via a Binomial (p=0.5) distribution. Cross
sample results represent the mean of four cross-tissue pairings.
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Figure B.3: HiC-Spector results by chromosome. The plotted results clearly demonstrate the
chromosome to chromosome variability we do not see with HiCRep or HPRep with this data. For
example, the chromosome 22 results are as expected whereas the chromosome 21 results fail to
distinguish between 5 of the 6 non-replicates and 3 of the 4 replicates.
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Table B.1: The number of eigenvectors used by HiC-Spector by chromosome in the GM12878
and K562 H3K27ac HiChIP experiment. Subscripts are used to denote the six non-repicate and
K563 biological replicate sample pairs respectively.

Chr
Sample pair

GM NR1 NR2 NR3 NR4 NR5 NR6 K5621 K5622 K5623

1 18 19 18 19 17 17 17 16 19 18
2 19 19 19 19 19 20 18 19 19 18
3 20 20 20 20 20 20 20 20 20 20
4 18 19 19 18 18 18 18 19 19 19
5 20 20 20 20 20 20 20 20 20 20
6 19 19 19 19 19 18 19 19 19 19
7 20 20 18 19 20 18 19 19 19 19
8 20 18 20 20 18 20 20 20 20 20
9 18 19 19 19 19 19 19 19 20 19
10 19 19 20 20 19 19 19 19 19 20
11 20 20 18 20 20 18 20 18 20 19
12 20 20 20 20 20 20 20 20 20 20
13 20 20 20 20 19 20 20 19 19 20
14 19 19 19 19 20 20 19 20 19 19
15 20 20 19 20 20 19 20 18 20 18
16 20 19 19 20 19 19 20 19 20 19
17 19 19 19 19 19 19 19 20 20 20
18 19 20 19 19 18 20 20 18 18 18
19 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20
21 16 16 16 16 18 18 18 19 19 18
22 19 20 20 20 20 20 20 19 19 20
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Figure B.4: Metrics obtained applying HiCRep to two mouse embryonic stem cell (mESC) and
mouse brain (mb) tissues H3K4me3 PLAC-seq samples. Cross sample results represent the mean
of four cross-tissue pairings.
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APPENDIX C: ADDITIONAL RESULTS FOR CHAPTER 4

C.1 HP and ChIP-seq data sources

Table C.1: Source HP and CTCF ChIP-seq data for experiments described in HPTAD
manuscript.

Data description Reference (PMID) GEO accession number or other
sources

mESC H3K4me3 PLAC-seq 30986246 GSE119663
GM12878 H3K27ac HiChIP 28945252 GSE101498

mESC CTCF ChIP-seq ENCFF508CKL ENCODE ENCSR000CCB
GM12878 CTCF ChIP-seq ENCFF217EAX ENCODE ENCSR000AKB

C.2 TAD sources

mESC TADs: (Dixon et al., 2012) https://static-content.springer.com/es

m/art%3A10.1038%2Fnature11082/MediaObjects/41586 2012 BFnature110

82 MOESM330 ESM.xls

GM12878 TADs: (Schmitt et al., 2016) https://www.ncbi.nlm.nih.gov/pmc/a

rticles/PMC5478386/bin/NIHMS828671-supplement-3.xlsx

The mESC TADs were reported referenced to the mm9 genome but HP data were referenced

to the mm10 genome. Consequently, the TAD boundaries were lifted over to mm10 using the

USCS liftover tool: https://genome.ucsc.edu/cgi-bin/hgLiftOver.

C.3 Likelihood Ratio Test

We begin by assuming that normalized interaction counts between loci i and j (Xij) have a

Gaussian distribution with mean µij and known common variance σ2. We further assume that

intra-TAD interactions share a common mean as described in Equation 4.5 and that interactions

between loci in the exterior regions share a common mean as described in Equation 4.7.
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The likelihood ratio statistic λ is defined as

λ “ ´2 ln

„

supθPΘ0
Lpθq

supθPΘ Lpθq



Under the null hypothesis that candidate t is not a TAD boundary, we expect µT “ µT`1 “

µET
. Therefore, the supremum of the likelihood under the null is obtained by setting θ0 equal to

the mean of Xij for all tpi, jq : bt´1 ď i ă j ă bt`1u

Under the alternative hypothesis, the supremum of the likelihood is achieved if µT “ X̄ij for

all pi, jq P DT , if µT`1 “ X̄ij for all pi, jq P DT`1 and if µET
“ X̄ij for all pi, jq P ET .

Define D0 “ DT `DT`1 ` ET . Therefore, we can write the likelihood ratio as

´2rlpθ0q ´ lpθ̂qs

where θ̂ “ pµT , µT`1, µET
q. This is equivalent to

´2

»

–

ÿ

pi,jqPDT

pXij ´ µT q
2
`

ÿ

pi,jqPDT`1

pXij ´ µT`1q
2
`

ÿ

pi,jqPET

pXij ´ µET
q
2
´

ÿ

pi,jqPD0

pXij ´ θ0q
2

fi

fl

Asymptotically, λ „ χ2
2 and we reject the null at the α “ 0.05 significance level.

C.4 Procedures for Comparative Methods

• TopDom (Shin et al., 2016)

– Similar to the directionality index, upstream and downstream contacts from a specific

locus are counted, but these are averged (“bin score”) instead of evaluated separately.

Similar to the insulation score, potential TAD boundaries are identified as inflection

points in the series of bin scores, however these points are determined using a piece-

wise linear function. TAD boundaries are selected from these potential ones by testing
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the upstream and downstream contact frequency difference using a Wilcoxan rank

sum test.

– All results obtained using the “TopDom” R package version 0.10.0 downloaded from

the CRAN repository. The source code and documentation for the package is also

available at https://github.com/HenrikBengtsson/TopDom. Analyses were conducted

using R version 3.6.0. Default parameters were used for experiments unless otherwise

noted. The window size was set to 500 kb to closely match the average window size

used by HPTAD after tuning. This was extended as described in Results.

• Insulation Score (Crane et al., 2015)

– Scanning the diagonal of a contact matrix, for each locus an insulation score it com-

puted representing the sum of interactions spanning that locus within a specified

neighborhood. Intuitively, a TAD boundary should be reprented by a local minima in-

sulation score, and the method employs an algorithmic process by which such minima

are selected and evaluated. It should be noted that this process involves parameters

whose value can have a significant impact on the number of TADs identified.

– All results obtained using the command line tools from FAN-C version 0.9.1 obtained

from https://vaquerizaslab.github.io/fanc/index.html. Specifically, the “insulation” and

“boundaries” functions were used sequentially to call TADs. Default parameters were

used for experiments unless otherwise noted. The window size for the “insulation”

function was adjusted to 20 and the minimum score of the “boundaries” function was

set to 0.7 for the two experiments described in Results.

• Grinch (Lee and Roy, 2021)

– Non-negative factorization of the contact matrix is followed by a local smoothing

procedure to account for the distance dependence of Hi-C contact frequency. One of

the smoothed factor matrices is treated as a set of latent features, and TADs represent

clustered regions found by applying k-medoids clustering.
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– All results obtained using GRiNCH version 1.0.0 obtained from https://roy-la

b.github.io/grinch/. Default parameters were used for all experiments.

• OnTAD (An et al., 2019)

– Similar to insulation score and TopDom, the average contact frequencies within a

diamond-shaped window are determined by sliding along the diagonal. The process

is repeated varying the window size, and local minima are selected for each size.

Hierarchical TADs are called from the union of potential boundaries using a dynamic

programming algorithm.

– All results obtained using OnTAD version 1.4 obtained from https://github.c

om/anlin00007/OnTAD. Default parameters were used for all experiments.

C.5 Window Size Tuning

The HPTAD process has a single adjustable parameter which determines the evaluation win-

dow size used to determine average normalized contact frequency. We tune this parameter using a

data-driven approach that obviates the need for user specification. This is beneficial considering

a lack of criteria for evaluating appropriate values in an agnostic fashion, that is without “dialing

in” specific TAD characteristics.

Let Nij represent the raw number of counts between loci i and j and further define set St “

tpi, jq : i ă j; j ´ i “ tu for t P t1, 2, . . . , 20u. We define

Nt “

ř

pi,jqPSt
Nij

|St|

where |St| represents the cardinality of set St. One of the characteristics of Hi-C data is its strong

distance dependence; average contact frequency decreases (quickly) as a function of genomic

distance. Consequenty, the values of Nt are expected to decrease monotonically with increasing t.
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We set the window size to the smallest value of t such that

1´
Nt`1

Nt

ď 0.1

C.6 CTCF Enrichment

The CTCF ChIP-seq peaks were obtained from the sources referenced in Supplementary

Table S4.1. The GM12878 peaks were reported referenced to build hg38 but HP data were refer-

enced to build hg19 genome. Consequently, the CTCF peaks were lifted over to hg19 using the

USCS liftover tool: https://genome.ucsc.edu/cgi-bin/hgLiftOver.

Peak density is reported as the number of peaks whose start and end points fall entirely

within a specific 40 Kb locus. The fold change is reported as the ratio of (# of bins containing

at least one peak / # of bins) to (# of peaks / # TADs).
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Figure C.1: CTCF enrichment for GM12878 experiment - Average number of peaks per TAD
boundary (a) and fold change (b). Boxplots displaying results for HPTAD vs. the indicated
methods using normalized contact counts as input. The top, middle, and bottom lines of the
boxes represent the third, second, and first quartiles respectively and whiskers extend to 1.5 times
the interquartile range. Outliers are plotted as points. Displayed results are for all 23 human
chromosomes.
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Figure C.2: CTCF fold change for mESC H3K4me3 PLAC-seq experiment - Boxplots
displaying results for HPTAD vs. the indicated methods using normalized contact counts as input.
The top, middle, and bottom lines of the boxes represent the third, second, and first quartiles
respectively and whiskers extend to 1.5 times the interquartile range. Outliers are plotted as
points. Displayed results are for all 20 mouse chromosomes.
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C.7 Jaccard Index Comparison

Figure C.3: Comparison of modified Jaccard index (a) and standard Jaccard index (b) applied to
GM12878 H3K27ac HiChIP data.
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C.8 Number of Reduced TADs

We artificially reduced the number of TADs called by both TopDom and IS by modifying the

appropriate input parameters. For TopDom, this consisted of setting the “window.size” parameter

to the maximum value in the recommended range, which is 20. Note, the default value is 5.

There were two parameters we modified in the FAN-C implementation of the insulation

score method presented by Crane et al.. The first paramter, “window-sizes”, was set to 2 Mb;

the original experiements were conducted using a window size of 500 Kb consistent with other

methods. The second parameter, “min-score”, thresholds the delta vector and was set to 0.7. Note,

the default setting is no threshold.

Figure C.4: Scatterplots comparing the number (a) and average size (b) of TADs identified by
HPTAD, OnTAD, TopDom, Grinch, and IS. Results are displayed as average per chromosome.
For all methods we observed the same trend of decreasing number of TADs with decreasing
autosomal chromosome number. Average TAD size remains relatively consistent across
chromosomes for all methods. Note that Grinch explicitly models the average TAD size to be 1
Mb.
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Figure C.5: Scatterplot of number of TADs called before and after reduction achieved by
changing default parameters for TopDom and IS methods.

106



REFERENCES

A. Bennett, D., A. Schneider, J., Arvanitakis, Z., and S. Wilson, R. (2012a). Overview and
Findings from the Religious Orders Study. Current Alzheimer Research, 9(6), 628–645.

A. Bennett, D., A. Schneider, J., S. Buchman, A., L. Barnes, L., A. Boyle, P., and S. Wilson,
R. (2012b). Overview and Findings from the Rush Memory and Aging Project. Current
Alzheimer Research, 9(6), 646–663.

Akdemir, K. C., Le, V. T., Chandran, S., Li, Y., Verhaak, R. G., Beroukhim, R., Campbell, P. J.,
Chin, L., Dixon, J. R., and Futreal, P. A. (2020). Disruption of chromatin folding domains
by somatic genomic rearrangements in human cancer. Nature Genetics 2020 52:3, 52(3),
294–305.

An, L., Yang, T., Yang, J., Nuebler, J., Xiang, G., Hardison, R. C., Li, Q., and Zhang, Y. (2019).
OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and
boundaries. Genome Biology 2019 20:1, 20(1), 1–16.

Ardakany, A. R. and Lonardi, S. (2017). Efficient and Accurate Detection of Topologically
Associating Domains from Contact Maps. In R. Schwartz and K. Reinert, editors, 17th
International Workshop on Algorithms in Bioinformatics (WABI 2017), volume 88 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 22:1–22:11, Dagstuhl, Germany.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Barbeira, A. N., Pividori, M. D., Zheng, J., Wheeler, H. E., Nicolae, D. L., and Im, H. K. (2019).
Integrating predicted transcriptome from multiple tissues improves association detection.
PLoS Genetics, 15(1), e1007889.

Battle, A., Mostafavi, S., Zhu, X., Potash, J. B., Weissman, M. M., McCormick, C., Hauden-
schild, C. D., Beckman, K. B., Shi, J., Mei, R., Urban, A. E., Montgomery, S. B., Levinson,
D. F., and Koller, D. (2014). Characterizing the genetic basis of transcriptome diversity
through RNA-sequencing of 922 individuals. Genome Research, 24(1), 14–24.

Bhattacharya, A., Li, Y., and Love, M. (2020). MOSTWAS: Multi-Omic Strategies for
Transcriptome-Wide Association Studies. bioRxiv, page doi:10.1101/2020.04.17.047225.

Bhutani, K., Sarkar, A., Park, Y., Kellis, M., and Schork, N. J. (2017). Modeling prediction error
improves power of transcriptome-wide association studies. bioRxiv, page doi:10.1101/108316.

Bickmore, W. A. (2013). The spatial organization of the human genome. Annual Review of
Genomics and Human Genetics, 14, 67–84.

Bild, D. E., Bluemke, D. A., Burke, G. L., Detrano, R., Diez Roux, A. V., Folsom, A. R., Green-
land, P., Jacobs, D. R., Kronmal, R., Liu, K., Nelson, J. C., O’Leary, D., Saad, M. F., Shea,
S., Szklo, M., and Tracy, R. P. (2002). Multi-Ethnic Study of Atherosclerosis: Objectives and
design. American Journal of Epidemiology, 156(9), 871–881.

107



Bonev, B. and Cavalli, G. (2016). Organization and function of the 3D genome. Nature Reviews
Genetics, 17(11), 661–678.

Brynedal, B., Choi, J. M., Raj, T., Bjornson, R., Stranger, B. E., Neale, B. M., Voight, B. F., and
Cotsapas, C. (2017). Large-Scale trans-eQTLs Affect Hundreds of Transcripts and Mediate
Patterns of Transcriptional Co-regulation. American Journal of Human Genetics, 100(4),
581–591.

Buniello, A., Macarthur, J. A., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C., McMahon,
A., Morales, J., Mountjoy, E., Sollis, E., Suveges, D., Vrousgou, O., Whetzel, P. L., Amode,
R., Guillen, J. A., Riat, H. S., Trevanion, S. J., Hall, P., Junkins, H., Flicek, P., Burdett, T.,
Hindorff, L. A., Cunningham, F., and Parkinson, H. (2019). The NHGRI-EBI GWAS Catalog
of published genome-wide association studies, targeted arrays and summary statistics 2019.
Nucleic Acids Research, 47(D1), D1005–D1012.

Burgess, S. and Thompson, S. G. (2013). Use of allele scores as instrumental variables for
Mendelian randomization. International Journal of Epidemiology, 42(4), 1134–1144.

Burton, P. R., Clayton, D. G., Cardon, L. R., Craddock, N., Deloukas, P., Duncanson, A.,
Kwiatkowski, D. P., McCarthy, M. I., Ouwehand, W. H., Samani, N. J., Todd, J. A., Don-
nelly, P., Barrett, J. C., Burton, P. R., Davison, D., Donnelly, P., Easton, D., Evans, D., Le-
ung, H.-T., Marchini, J. L., Morris, A. P., Spencer, C. C. A., Tobin, M. D., Cardon, L. R.,
Clayton, D. G., Attwood, A. P., Boorman, J. P., Cant, B., Everson, U., Hussey, J. M., Jolley,
J. D., Knight, A. S., Koch, K., Meech, E., Nutland, S., Prowse, C. V., Stevens, H. E., Taylor,
N. C., Walters, G. R., Walker, N. M., Watkins, N. A., Winzer, T., Todd, J. A., Ouwehand,
W. H., Jones, R. W., McArdle, W. L., Ring, S. M., Strachan, D. P., Pembrey, M., Breen,
G., St Clair, D., Caesar, S., Gordon-Smith, K., Jones, L., Fraser, C., Green, E. K., Grozeva,
D., Hamshere, M. L., Holmans, P. A., Jones, I. R., Kirov, G., Moskvina, V., Nikolov, I.,
O’Donovan, M. C., Owen, M. J., Craddock, N., Collier, D. A., Elkin, A., Farmer, A.,
Williamson, R., McGuffin, P., Young, A. H., Ferrier, I. N., Ball, S. G., Balmforth, A. J.,
Barrett, J. H., Bishop, D. T., Iles, M. M., Maqbool, A., Yuldasheva, N., Hall, A. S., Braund,
P. S., Burton, P. R., Dixon, R. J., Mangino, M., Stevens, S., Tobin, M. D., Thompson, J. R.,
Samani, N. J., Bredin, F., Tremelling, M., Parkes, M., Drummond, H., Lees, C. W., Nimmo,
E. R., Satsangi, J., Fisher, S. A., Forbes, A., Lewis, C. M., Onnie, C. M., Prescott, N. J.,
Sanderson, J., Mathew, C. G., Barbour, J., Mohiuddin, M. K., Todhunter, C. E., Mansfield,
J. C., Ahmad, T., Cummings, F. R., Jewell, D. P., Webster, J., Brown, M. J., Clayton, D. G.,
Lathrop, G. M., Connell, J., Dominiczak, A., Samani, N. J., Marcano, C. A. B., Burke, B.,
Dobson, R., Gungadoo, J., Lee, K. L., Munroe, P. B., Newhouse, S. J., Onipinla, A., Wal-
lace, C., Xue, M., Caulfield, M., Farrall, M., Barton, A., and Genomics (BRAGGS), T. B.
i. R. A. G., Bruce, I. N., Donovan, H., Eyre, S., Gilbert, P. D., Hider, S. L., Hinks, A. M.,
John, S. L., Potter, C., Silman, A. J., Symmons, D. P. M., Thomson, W., Worthington, J.,
Clayton, D. G., Dunger, D. B., Nutland, S., Stevens, H. E., Walker, N. M., Widmer, B., Todd,
J. A., Frayling, T. M., Freathy, R. M., Lango, H., Perry, J. R. B., Shields, B. M., Weedon,
M. N., Hattersley, A. T., Hitman, G. A., Walker, M., Elliott, K. S., Groves, C. J., Lind-
gren, C. M., Rayner, N. W., Timpson, N. J., Zeggini, E., McCarthy, M. I., Newport, M.,
Sirugo, G., Lyons, E., Vannberg, F., Hill, A. V. S., Bradbury, L. A., Farrar, C., Pointon, J. J.,

108



Wordsworth, P., Brown, M. A., Franklyn, J. A., Heward, J. M., Simmonds, M. J., Gough,
S. C. L., Seal, S., Susceptibility Collaboration (UK), B. C., Stratton, M. R., Rahman, N.,
Ban, M., Goris, A., Sawcer, S. J., Compston, A., Conway, D., Jallow, M., Newport, M.,
Sirugo, G., Rockett, K. A., Kwiatkowski, D. P., Bumpstead, S. J., Chaney, A., Downes, K.,
Ghori, M. J. R., Gwilliam, R., Hunt, S. E., Inouye, M., Keniry, A., King, E., McGinnis, R.,
Potter, S., Ravindrarajah, R., Whittaker, P., Widden, C., Withers, D., Deloukas, P., Leung,
H.-T., Nutland, S., Stevens, H. E., Walker, N. M., Todd, J. A., Easton, D., Clayton, D. G.,
Burton, P. R., Tobin, M. D., Barrett, J. C., Evans, D., Morris, A. P., Cardon, L. R., Cardin,
N. J., Davison, D., Ferreira, T., Pereira-Gale, J., Hallgrimsdóttir, I. B., Howie, B. N., Mar-
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Lau, K. W., Lu, X., Lu, Y., Lyytikäinen, L. P., Mihailov, E., Morrison, A. C., Pervjakova, N.,
Qu, L., Rose, L. M., Salfati, E., Saxena, R., Scholz, M., Smith, A. V., Tikkanen, E., Uitter-
linden, A., Yang, X., Zhang, W., Zhao, W., De Andrade, M., De Vries, P. S., Van Zuydam,
N. R., Anand, S. S., Bertram, L., Beutner, F., Dedoussis, G., Frossard, P., Gauguier, D.,
Goodall, A. H., Gottesman, O., Haber, M., Han, B. G., Huang, J., Jalilzadeh, S., Kessler,
T., König, I. R., Lannfelt, L., Lieb, W., Lind, L., MLindgren, C., Lokki, M. L., Magnusson,
P. K., Mallick, N. H., Mehra, N., Meitinger, T., Memon, F. U. R., Morris, A. P., Nieminen,
M. S., Pedersen, N. L., Peters, A., Rallidis, L. S., Rasheed, A., Samuel, M., Shah, S. H.,
Sinisalo, J., EStirrups, K., Trompet, S., Wang, L., Zaman, K. S., Ardissino, D., Boerwinkle,
E., Borecki, I. B., Bottinger, E. P., Buring, J. E., Chambers, J. C., Collins, R., Cupples, L.,
Danesh, J., Demuth, I., Elosua, R., Epstein, S. E., Esko, T., Feitosa, M. F., Franco, O. H.,
Franzosi, M. G., Granger, C. B., Gu, D., Gudnason, V., SHall, A., Hamsten, A., Harris,
T. B., LHazen, S., Hengstenberg, C., Hofman, A., Ingelsson, E., Iribarren, C., Jukema, J. W.,
Karhunen, P. J., Kim, B. J., Kooner, J. S., Kullo, I. J., Lehtimäki, T., Loos, R. J., Melander,
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