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Abstract: Functional electrical stimulation (FES) is a potential neurorehabilitative intervention to en-
able functional movements in persons with neurological conditions that cause mobility impairments.
However, the quick onset of muscle fatigue during FES is a significant challenge for sustaining the
desired functional movements for more extended periods. Therefore, a considerable interest still
exists in the development of sensing techniques that reliably measure FES-induced muscle fatigue.
This study proposes to use ultrasound (US) imaging-derived echogenicity signal as an indicator of
FES-induced muscle fatigue. We hypothesized that the US-derived echogenicity signal is sensitive
to FES-induced muscle fatigue under isometric and dynamic muscle contraction conditions. Eight
non-disabled participants participated in the experiments, where FES electrodes were applied on their
tibialis anterior (TA) muscles. During a fatigue protocol under either isometric and dynamic ankle
dorsiflexion conditions, we synchronously collected the isometric dorsiflexion torque or dynamic
dorsiflexion angle on the ankle joint, US echogenicity signals from TA muscle, and the applied stimu-
lation intensity. The experimental results showed an exponential reduction in the US echogenicity
relative change (ERC) as the fatigue progressed under the isometric (R2 = 0.891± 0.081) and dynamic
(R2 = 0.858± 0.065) conditions. The experimental results also implied a strong linear relationship
between US ERC and TA muscle fatigue benchmark (dorsiflexion torque or angle amplitude), with
R2 values of 0.840± 0.054 and 0.794± 0.065 under isometric and dynamic conditions, respectively.
The findings in this study indicate that the US echogenicity signal is a computationally efficient
signal that strongly represents FES-induced muscle fatigue. Its potential real-time implementation
to detect fatigue can facilitate an FES closed-loop controller design that considers the FES-induced
muscle fatigue.

Keywords: muscle fatigue; electrical stimulation; ankle joint; biomechanical phenomena; ultrasonography;
linear models; nonlinear dynamics

1. Introduction

(Note that preliminary results have been published in [1]; however, those results em-
ployed US echogenicity post-processing as an offline manner and contained experimental
data from only three participants.) Neurological injuries, like a spinal cord injury (SCI) [2]
and stroke [3], usually result in paraplegia or hemiplegia, disrupting both physical and emo-
tional well-beings [4]. Without physical assistance from mobility aids or a neuroprosthetic
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intervention, the mobility impairment increases social isolation, anxiety, and depression.
Functional electrical stimulation (FES), an artificial technique that applies low-amplitude
electrical potentials across the paralyzed skeletal muscle belly or peripheral nerve, can
reanimate the walking function and help restore mobility. Since the earlier demonstrations
of FES to correct drop foot [5,6], recent studies [7–12] investigated its orthotic effects on a
larger clinical population. Additionally, FES can provide supplementary benefits, including
the improvement in muscle tone and size, muscle strength, blood flow, and a reduction in
muscle spasticity and disuse osteoporosis. Despite the efficacy and benefits of FES, the rapid
onset of muscle fatigue is a major limitation. Due to the non-selective stimulation nature
of FES, peripheral motor units are synchronously activated and discharged, causing the
stimulated muscle to fatigue easily. The induced fatigue results in the deterioration of the
muscle contraction force generation, causing a rapid loss of FES control effectiveness [13].

To reduce the FES-induced muscle fatigue, multiple studies have investigated the
spatially distributed sequential stimulation pattern [14–16], where a single stimulation
site distributes the center of the electrical field over a wide area by using an array of
surface electrodes. In addition, Downey et al. [17] showed that the use of multi-channel
asynchronous stimulation reduced muscle fatigue compared to conventional single-channel
stimulation. Later in [18], a closed-loop controller for asynchronous FES was shown to
extend the duration of functional movements. Despite the advances in stimulation protocols
and new closed-loop FES controllers, non-invasive evaluation and characterization of the
FES-induced muscle fatigue are lacking. Fatigue measurement methods are important for
quantifying the fatigue effects on the neuromusculoskeletal dynamics and for an effective
FES control design.

Efforts in indirectly measuring fatigue include, but are not limited to, tetanic con-
traction force measurement [19], electromyography (EMG)/surface electromyography
(sEMG) [20–22], mechanomyography [23], near-infrared spectroscopy [24–26], and phos-
phorus nuclear magnetic resonance [27]. Among these technologies, sEMG is the most
well-developed and convenient non-invasive methodology to assess peripheral muscle
fatigue. Although [28–30] report successful extraction of volitional or evoked sEMG during
FES, the analysis and evaluation of the EMG signals during FES is still challenging. The
challenges are mainly due to the FES-induced contractions cluttering and masking the
pure sEMG signals [31,32], interference and cross talk from adjacent muscles [21], and
the inability to measure the sEMG signals from deeply seated muscles [33]. Recently,
ultrasound (US) imaging technique, know as sonomyography, has been investigated to
qualitative or quantitatively assess muscle fatigue for volitional and FES-induced muscle
contraction as an alternative methodology to sEMG. Due to a relatively high spatial and
temporal resolution, the US images provide direct visualization of the muscle deformations
during the implementation of FES. These muscle deformations can be quantified to obtain a
comprehensive measure that reflects the fatigue effect. Shi et al. [34] used muscle thickness,
extracted from cross-sectional US images, to characterize the volitionally induced fatigue
in the biceps brachii muscles. Similarly, Witte et al. [35] applied US strain imaging to cap-
ture the elastic and viscoelastic-like modifications in the 3rd flexor digitorum superficialis
muscle after a voluntary fatiguing exercise. Sheng et al. [36,37] investigated an adaptive
speckle tracking algorithm for determining strain changes in the quadriceps muscle during
the FES-induced muscle fatigue protocol under isometric knee extensions.

The aforementioned US imaging-related studies for assessing muscle fatigue primarily
investigated isometric muscle contractions. Few studies have investigated FES-induced
muscle fatigue characteristics under dynamic joint movement conditions. Additionally,
the aforementioned studies reported their results based on offline processed US imaging
data, since deriving fatigue-relevant features from US imaging is generally computationally
intensive. The high computation cost significantly limits the use of US imaging to evaluate
muscle fatigue in real-time.

Inspired by recent studies in US imaging-derived echogenicity signals to predict
motion intent or voluntary effort in the forearm and ankle muscles [38,39], preliminary
results of using post-processed US echogenicity signal to assess the FES-induced muscle
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fatigue have been reported in [1]. In this work, we extended the preliminary results in [1]
to a larger participant group and investigated the feasibility of using the online-processed
US echogenicity to quantitatively assess FES-induced muscle fatigue. Specifically, the
tibialis anterior (TA) muscle was selected to reveal the fatigue-indicating performance
of US echogenicity under both isometric and dynamic ankle dorsiflexion movements,
where we synchronously collected dorsiflexion force/angular position (isometric/dynamic
conditions), TA muscle’s US echogenicity, and FES intensity during the muscle fatigue
progression. A comprehensive correlation analysis between the temporal US echogenicity
relative change (ERC) and TA muscle fatigue progression (decay of dorsiflexion force
or angle during isometric or dynamic conditions) was performed to assess the muscle
contractility during fatigue progression. It was hypothesized that there exists a nonlinear
relationship between the US ERC and the FES duration (contraction cycles), as well as
a linear relationship between the US ERC and the decay of dorsiflexion force or angle.
Furthermore, the performance of US ERC as a surrogate metric of muscle fatigue was
compared to the US tissue strain as reported in [36,37].

2. Materials and Methods
2.1. Subjects

The study was approved by the Institutional Review Board (IRB) at North Carolina
State University (IRB approval number: 20602). The study is also in accordance with the
ethical standards of the Helsinki Declaration. Eight participants without any neuromuscular
disorders (age: 26.0 ± 2.2 years, height: 173.7 ± 5.9 cm, weight: 72.6 ± 11.2 kg, 3F/5M) were
recruited to complete FES-elicited ankle dorsiflexion experiments during isometric and
dynamic conditions. Every participant signed an informed consent form before taking
part in the experiments. The participants were identified as Sub01, Sub02, ..., Sub08. The
current study was a pilot-designed study or a proof-of-concept study with a relatively small
sample size. We applied an a priori sample size estimation before the experiments. The
hypotheses of this paper are that there exists a nonlinear relationship between the US ERC
and the FES duration, as well as a linear relationship between the US ERC and the decay
of dorsiflexion torque/angle. So, the null hypotheses would be that no obvious nonlinear
or linear relationships exist between the US ERC and the FES duration or between the US
ERC and the decay of dorsiflexion torque/angle. To control the risk of accepting a false
hypothesis, the probability of rejecting the null hypothesis when it is true, α, was set as 0.05,
and the probability of accepting the null hypothesis when it is wrong, β, was set as 0.10.
Then the minimum sample size N, is calculated below for the one-sided test of hypothesis
with standard deviation s assumed to be known and equal to the shift δ.

N = (t1−α/2 + t1−β)
2(

s
δ
)2 = (1.64 + 1.28)2 ≈ 8. (1)

2.2. Experimental Protocol and Data Collection

The isometric and dynamic experimental setup is illustrated in Figure 1a. Detailed
descriptions of the isometric setup, including the load cell platform (C) and US imaging
transducer (B) and processing machine (G), can be found in [39,40]. In the dynamic experi-
mental setup, the participant’s foot was suspended to ensure the full range of motion for
both dorsiflexion and plantarflexion. A wearable ankle brace connected with an incremen-
tal encoder (D) (1024 pulses per revolution, TRD-MX1024BD, AutomationDirect, GA, USA)
was inserted into the participant’s shoes, and two pieces of free movable components were
stamped to the shank. Thus, the ankle motion was constrained in the sagittal plane and
measured by the encoder. The seated posture in Figure 1a was maintained throughout
isometric and dynamic experimental procedures. Two electrodes (A) (size: 2′ ′ × 2′ ′) were
placed on the fibular head and the distal belly of the TA muscle, respectively. The electrodes
applied bi-phasic stimulation pulse trains from a commercial stimulator (E) (Rehastim
2, HASOMED GmbH, Magdeburg, Germany). A region approximately 30% to 50% of
individual shank length distal from the rotation central line of the knee joint was chosen as



Sensors 2022, 22, 335 4 of 18

the location for the US transducer placement. The depth of US imaging was set at 40 mm
to include the entire TA muscle area. A monitoring screen (F) that displayed B-mode US
images was used to adjust the US transducer location and orientation to guarantee good
visualization and resolution of the TA muscle.

Figure 1. (a) Experimental setup of the isometric (left) and dynamic (right) ankle joint dorsiflexion by
using FES. A—FES electrode pads, B—Prodigy US transducer, C—Load cell platform, D—Incremental
encoder, E—FES stimulator, F—Monitor showing B-mode US imaging, G—Prodigy US machine,
H—Safety stop button. (b) Data synchronization and collection among multiple channels.

There were three separate experimental tasks performed on three different days. At
least 72 h were provided for two successive tasks to ensure a full recovery and mitigate
muscle fatigue effects from the last task. For each experimental task, participants were
instructed to avoid any volitional TA muscle contraction. Throughout those three experi-
mental tasks, the FES current amplitude was set as 25 mA and the stimulation frequency as
33 Hz for all participants. The first task was conducted under the isometric condition to
determine subject-specific FES pulse width threshold and saturation values, following the
procedures described in [41]. The second and third sets were conducted randomly over two
days to analyze muscle fatigue in both isometric and dynamic conditions. The threshold
pulse width amplitude of each individual was taken as the amplitude that produced the
first significant increase of the dorsiflexion torque. The pulse width saturation was taken
as the amplitude that no longer generated a significant increase in the dorsiflexion torque.
During the first task, the pulse width was increased from 0 µs to 600 µs with an increment
of 20 µs and with an activation period of 1 s every 5 s. After the personalized pulse width
saturation was determined from the first experimental task, 80% of individual pulse width
saturation was applied for the second and third tasks to facilitate the isometric and dynamic
fatigue protocols. Figure 1b presents the protocol for FES-induced TA muscle fatigue pro-
gression, data synchronization, and collection. The first second was left blank to initialize
all channels for data collection. A time base of 1000 Hz was run in a Simulink (R2019b,
MathWorks Inc., Natick, MA, USA) real-time program on a target machine (Speedgoat Inc.,
Liebefeld, Switzerland).

The participants felt stronger muscle deformations under the isometric condition
than the dynamic condition, even with the same stimulation intensity. Therefore, the
time periods of those two fatigue progressions were set differently. With respect to the
aforementioned time base, two fatigue progression periods of 120 s and 240 s were applied
for the isometric and dynamic conditions, respectively. FES was activated every 2 s with a
duty cycle of 65%. Under the isometric and dynamic fatigue progressions, the dorsiflex-
ion force signal and dorsiflexion angle signal were collected at 1000 Hz throughout the
entire period.
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The US echogenicity signal was acquired offline in our previous studies [1,39], where
the plane-wave US imaging radio frequency (RF) data were collected and saved on the US
machine at a frame rate of 1000 frames per second. A delay-and-sum beamforming method
was applied offline to generate the US image time sequence and the US echogenicity signal
time sequences were calculated post hoc. The RF data collection was triggered by signals
from the target machine for synchronizing with the collection of dorsiflexion torque or
dorsiflexion angle. Although that approach makes it extremely suitable for applications
where fast phenomena and tiny deformations need to be observed, this plane wave imaging
at high temporal resolution (1000 Hz) significantly degrades the spatial resolution (image
quality), thus resulting in more noise when calculating US echogenicity. In addition, the
offline beamforming and echogenicity calculation are not feasible for FES closed-loop
control with the US imaging-derived signal as feedback in real-time.

In the current study, we developed and implemented the online US image beam-
forming and echogenicity calculations on the US machine according to the series steps of
“line-by-line beamforming—image cropping—US echogenicity calculation—data transfer
to Simulink”, which required a lot of computational capability and time to make this
online US echogenicity stream available. During the muscle fatigue progression, while
the US echogenicity transmission was running online, raw RF data were also saved for
US imaging visualization in a post hoc way. To reduce the computation and data storage
burden of the US machine, during both isometric and dynamic fatigue progressions, US
echogenicity signals and raw RF data were collected synchronously with signals from the
load cell or the encoder during the first second of every 4 stimulation cycles, as illustrated
in Figure 1b. Preliminary results showed the above online steps could run around 7.8 times
per second, so the online US echogenicity was sent out from the US machine at a frequency
of 7.8 Hz. Due to the use of a zero-order-hold function in Simulink, the US echogenicity
data collection was still sampled and collected at 1000 Hz, but without changes during two
successively generated values from the US machine. The details of the US echogenicity
calculation are explained in the following subsection. The aforementioned experimental
data collection procedures were applied on the left ankle joint of each participant.

2.3. Data Processing and Analysis

The ankle dorsiflexion torque and angle measurements were low-pass filtered by
a 4th-order Butterworth filter with a cutoff frequency of 6 Hz. According to the data
synchronization in Figure 1b, the dorsiflexion torque signal during the isometric condition
and dorsiflexion angle during the dynamic condition were aligned with the period when
FES was on, and the last data point from each stimulation cycle was selected and normalized
to the peak value across all stimulation cycles for further analysis. Similarly, the dorsiflexion
torque or dorsiflexion angle signals were aligned with the period when the US imaging
trigger was on, and the last data point from each trigger cycle was selected and normalized
to the peak value across all US imaging trigger cycles for further analysis. The detailed
data processing diagram is presented in Figure 2.

Here are the procedures for US imaging data processing. First, the raw RF data were
beamformed online through the line-and-line beamforming algorithm. Then the logarithmic
imaging intensity compression was performed to get the envelope of the demodulated RF
data. By normalizing the envelope of each pixel between 0 and 255, the B-mode US image
at the current frame was generated. A median filter and non-local means denoising [42]
were applied to spatially filter each B-mode image. At last, the averaged gray-scaled echo
intensity within the region of interest (ROI) of 400 pixel × 400 pixel was calculated as
the echogenicity value for the current US image frame [38]. Therefore, the sequential US
echogenicity signal was calculated as

Echotk =
1

NANL

NA

∑
x=1

NL

∑
y=1

Itk (x, y), (2)
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where NA, NL represent the pixel numbers along with axial and lateral directions, respec-
tively. Itk (x, y) represents the US intensity information at the pixel location (x, y) on the
image at tk instant from the normalized logarithmic imaging intensity compression signals.
As a consequence, the 2D image time sequence was transferred to a 1D signal time sequence.
Visually, each Itk (x, y) presents the brightness of that pixel at the location of (x, y) on the
2D map. Thus, the calculated echogenicity signal presents an overall brightness within
the ROI. Note that although the US imaging beamforming and echogenicity calculation
were based on the online manner, the updating frequency was fairly low (7.8 Hz from
preliminary results) due to the computation time and communication delay between the
US machine and Simulink real-time program. Therefore, a zero-order-hold function was
used in the real-time program to collect the online calculated US echogenicity at 1000 Hz.
The echogenicity time sequence within the same stimulation cycle was subtracted by the
echogenicity of the first image from the same cycle, which was defined as the ERC within
the same cycle. Similarly, the last data point of ERC in each trigger cycle was selected
and normalized to the peak ERC throughout all trigger cycles. Given the FES-induced
fatigue progression protocol, the last point of ERC corresponded to a sub-maximal dor-
siflexion force or dorsiflexion angle; therefore, the aligned last data point of dorsiflexion
force or angle during each FES cycle and the aligned last data point of ERC during each US
imaging trigger cycle were selected to characterize the muscle contractility during fatigue
progressions. As a consequence, during the isometric fatigue progression, 60 samples from
dorsiflexion forces and 15 samples from ERC were obtained, while during the dynamic
fatigue progression, 120 samples from the dorsiflexion angles and 30 samples from ERC
were obtained.

Figure 2. Diagram of data processing, including US imaging echogenicity, load cell, and encoder
measurements under both isometric and dynamic conditions.

According to the muscle fatigue dynamics and its solution mentioned in [13], an expo-
nential regression model was used to fit the curve between the normalized sub-maximal dor-
siflexion force or angle and the index number of contractions (i = 1, 2, ..., 60/i = 1, 2, ..., 120),
as well as the curve between the normalized sub-maximal ERC and the index number of
contractions (i = 4, 8, ..., 60/i = 4, 8, ..., 120). The coefficients of the exponential regres-
sion models were determined by using the Levenberg–Marquardt nonlinear least squares
algorithm [43]. A linear regression model was used to fit the line between the normalized
sub-maximal dorsiflexion torque/angle and the normalized sub-maximal US ERC. To eval-
uate the goodness of curve fittings, the coefficient of determination (R2) of each regression
model was also calculated as

R2 =

(
∑N

i=1(Ti − T̄)
(

T̂i − ¯̂T
))2

∑N
i=1(Ti − T̄)2 ∑N

i=1

(
T̂i − ¯̂T

)2 , (3)

where Ti and T̂i denote each measured sub-maximal variable point and output from the
regression model, respectively. T̄ and ¯̂T denote the average of the measured sub-maximal
variable and the average of the output from regression model, respectively.
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2.4. Statistical Analysis

The normality of the targeted data sets was tested based on the Shapiro–Wilk para-
metric hypothesis test (SW test). Those data sets include coefficients and R2 values of
each exponential regression model and linear regression model under either isometric or
dynamic conditions across all eight participants, as well as the computation times of the
US echogenicity and axial strain per image frame. According to the results from SW test, a
paired t-test (normal distribution) or a Wilcoxon signed rank test (not normal distribution)
was applied to analyze if there was significant difference between two independent groups.
To be more specific, for the exponential and linear regression models, the optimal coeffi-
cient values were compared to zero, and R2 values were compared under isometric and
dynamic conditions.

As a comparative study, the R2 values between the normalized ERC and normalized
sub-maximal torque under the isometric condition were compared to the results reported
in [36] between the normalized maximal axial strain and normalized sub-maximal torque.
In addition, the computation times of the US echogenicity and axial strain per image frame
were also compared to determine if there was a significant difference between these two
muscle fatigue indicators. For all statistical analysis, the significant difference level was set
as p < 0.05.

3. Results
3.1. Individual FES Pulse Width Threshold and Saturation Determination

The experimental results from the first task on Sub01 are presented in Figure 3, where
the monotonically increasing FES pulse width and ankle dorsiflexion torque are normalized
to their corresponding peak values during the entire task. The threshold pulse width
amplitude of each individual was taken as the amplitude that produced the first significant
increase of the dorsiflexion torque, while the pulse width saturation was taken as the
amplitude that no longer generated a significant increase of dorsiflexion torque. According
to the dorsiflexion torque increase in Figure 3, the pulse width threshold and saturation
for Sub01 are around 100 µs and 420 µs, respectively. Similarly, the same determination
approach was applied to all other participants, and the pulse width threshold and saturation
values are summarized in Table 1.

Table 1. FES pulse width threshold and saturation values from each participant (Unit: µs)

Participant Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08

Threshold 100 40 20 20 60 80 60 40
Saturation 420 580 520 500 520 500 400 560
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Figure 3. The normalization of FES pulse width that applied on the TA muscle and the normalization
of ankle dorsiflexion torque measurements on Participant Sub01 during the first task.

3.2. TA Muscle Fatigue Effects on Isometric and Dynamic Ankle Dorsiflexion

Taking the FES-induced TA muscle fatigue under the dynamic condition on Participant
Sub03 as an example, the qualitative evaluation of muscle contractility characteristics
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during the fatigue progression can be visualized in Figure 4. The first and last frames of
US imaging from every 4 stimulation cycles were selected and compared in each subplot
of Figure 4. According to the negative correlation between the echogenicity signals and
muscle contraction levels in [39], the hyperechogenic (with higher gray-scaled values) and
hypoechogenic (with lower gray-scaled values) US images represent less and more muscle
contraction force, respectively. It is observed that with the increase of stimulation cycles,
the last frame of US imaging becomes more hyperechogenic, which indicates the TA muscle
force generation ability decreases. The 2D correlation coefficient between the presented two
frames in each stimulation cycle was also calculated and shown in each subplot. A higher
correlation coefficient represents smaller deformation of the targeted muscle, indicating less
muscle contraction force generation. It is observed that the correlation coefficient increases
along with the stimulation cycles, representing the reduced muscle force generation due to
FES-induced muscle fatigue. A similar changing pattern of US imaging was also observed
under the isometric and dynamic conditions of other participants. Representative videos
displaying the temporal and spatial changes of TA muscle US imaging under both isometric
and dynamic FES-induced fatigue progression on Sub03 and Sub05 are included in the
Supplementary Materials.

To evaluate the FES-induced fatigue, the reduction of dorsiflexion torque or angle
was considered as the benchmark. Corresponding to the benchmark, we observed the
reduction of ERC during the muscle fatigue progression. The representative results of TA
muscle fatigue progression from Sub03 are shown in Figure 5, where each curve on the top
subplot represents dorsiflexion torque (a) or angle normalization (b) continuous change
during each recorded contraction cycle. Each curve on the bottom subplot represents the
corresponding ERC normalization change during the first recorded contraction cycle every
4 stimulation cycles. As mentioned in the last section, the last data point of each variable
curve was selected, which represents the sub-maximal value for each variable during each
recorded contraction cycle. The scattered plots between the last data point of each variable
and TA muscle stimulation cycle are presented in Figure 6. Remarkably, all signals show a
monotonic decay trend with the muscle fatigue progression. In Figure 6a, the sub-maximal
dorsiflexion torque reduces to 50% of the pre-fatigue capability after about 35 contraction
cycles, while the sub-maximal dorsiflexion angle reduces to 50% of the pre-fatigue capability
after about 30 contraction cycles. Additionally, after 60 stimulation cycles, the dorsiflexion
torque and angle decayed to 39.2% and 31.2% of the pre-fatigue capacity under isometric
and dynamic conditions, respectively. The results indicate that, with the same FES intensity
and same muscle stimulation cycles, the fatigue levels of the TA muscle are similar under
isometric and dynamic conditions. However, the participants reported that they feel
more comfortable during the fatigue progression under the dynamic condition. Under
both conditions, as the increase of muscle contraction cycles, the isometric dorsiflexion
torque and dynamic dorsiflexion angle present a strong exponential decay. The exponential
regression equations and R2 values are labeled on upper plots of Figure 6a,b. On lower
plots of Figure 6, although with even sparser measurement points, a strong exponential
relationship is still observed between the ERC normalization and the stimulation cycles for
both isometric and dynamic conditions. The exponential regression equations and R2 values
are labeled in Figure 6. For other participants, the coefficients of exponential regression
models and corresponding R2 values are listed in Table 2, where the upper (lower) half
represents the regression model between dorsiflexion torque/angle normalization (ERC
normalization) and contraction cycles.
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Cycle 4, R: 0.335 Cycle 8, R: 0.347 Cycle 12, R: 0.365 Cycle 16, R: 0.366 Cycle 20, R: 0.382 Cycle 24, R: 0.406

Cycle 28, R: 0.412 Cycle 32, R: 0.417 Cycle 36, R: 0.419 Cycle 40, R: 0.421 Cycle 44, R: 0.423 Cycle 48, R: 0.423

Cycle 52, R: 0.424 Cycle 56, R: 0.427 Cycle 60, R: 0.427 Cycle 64, R: 0.436 Cycle 68, R: 0.439 Cycle 72, R: 0.441

Cycle 76, R: 0.441 Cycle 80, R: 0.456 Cycle 84, R: 0.46 Cycle 88, R: 0.462 Cycle 92, R: 0.462 Cycle 96, R: 0.474

Cycle 100, R: 0.484 Cycle 104, R: 0.484 Cycle 108, R: 0.5 Cycle 112, R: 0.5 Cycle 116, R: 0.501
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Figure 4. The first and last frames of US imaging from every 4 stimulation cycles under the dynamic
fatigue progression on Participant Sub03.

Usually, a standard criterion to evaluate the goodness of the regression performance
is that the R2 value is higher than or equal to 0.8. For the exponential regression model
between the dorsiflexion torque/angle normalization and muscle contraction cycles, R2

values are higher than 0.8 across all participants and both conditions from Table 2. For
the exponential regression model between the ERC normalization and muscle contraction
cycles, R2 values are higher than 0.8 except for Sub02 and Sub05 under both conditions.
Furthermore, Figure 7 shows comparison results of the R2 values between the isometric
and dynamic conditions. No significant difference is observed between R2 values of
torque-contraction cycle-regression (mean ± standard deviation: 0.907 ± 0.048) and R2

values of angle-contraction cycle-regression (mean ± standard deviation: 0.921 ± 0.024).
However, R2 values of ERC-contraction cycle-regression during the isometric condition
(mean ± standard deviation: 0.891 ± 0.081) are significantly higher (p < 0.001) than these
during the dynamic condition (mean ± standard deviation: 0.858 ± 0.065). The results
in this subsection present the promising potential of the US ERC normalization as an
alternative and commonly effective muscle fatigue indicator.
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Figure 5. The representative effects of FES-induced TA muscle fatigue on each recorded stimulation
cycle of the isometric dorsiflexion torque normalization, dynamic dorsiflexion angle normalization,
and US ERC normalization on Participant Sub03. (a) Normalization of dorsiflexion torque and
ERC in each recorded stimulation cycle due to TA muscle fatigue under the isometric condition.
(b) Normalization of dorsiflexion angle and ERC in each recorded stimulation cycle due to TA muscle
fatigue under the dynamic condition.
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Figure 6. Results of the last data point of each recorded stimulation cycle, including the isometric
dorsiflexion torque normalization, dynamic dorsiflexion angle normalization, and US ERC normaliza-
tion on Participant Sub03. Furthermore, this figure includes the exponential regression equations and
R2 values of each variable decay curve along with the muscle contraction number. (a) Last data point
of normalized dorsiflexion torque and ERC in each recorded stimulation cycle under the isometric
condition. (b) Last data point of normalized dorsiflexion angle and ERC in each recorded stimulation
cycle under the dynamic condition.

Figure 7. The comparison results of the coefficients of determination under isometric and dynamic
conditions. (a) Exponential regression model between the dorsiflexion torque/angle normalization
and muscle contraction cycles, (b) Exponential regression model between the ERC normalization and
muscle contraction cycles. *** represents the significant difference level of p < 0.001.
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Table 2. Coefficients of exponential regression models (y = a exp(bx) + c) and R2 values between
each variable and the TA muscle contraction cycles.

Participants

Coefficients and R2 of Exponential Regression Models

Isometric Condition Dynamic Condition

a b c R2 a b c R2

Sub01 0.955 −0.022 0.015 0.929 0.952 −0.016 0.115 0.923

Sub02 0.948 −0.018 0.098 0.919 0.600 −0.020 0.405 0.904

Sub03 0.931 −0.019 0.005 0.876 0.894 −0.034 0.186 0.965

Sub04 0.515 −0.020 0.502 0.942 0.732 −0.048 0.453 0.940

Sub05 0.616 −0.019 0.760 0.957 0.733 −0.037 0.377 0.926

Sub06 0.981 −0.011 0.428 0.803 0.478 −0.037 0.526 0.888

Sub07 0.824 −0.018 0.301 0.904 0.518 −0.049 0.567 0.911

Sub08 0.835 −0.031 0.165 0.925 0.457 −0.053 0.631 0.907

Sub01 0.581 −0.082 0.598 0.967 0.634 −0.025 0.436 0.919

Sub02 0.390 −0.036 0.193 0.772 0.751 −0.013 0.119 0.763

Sub03 0.643 −0.073 0.497 0.899 0.867 −0.062 0.350 0.857

Sub04 0.695 −0.060 0.452 0.966 0.622 −0.026 0.449 0.919

Sub05 0.730 −0.036 0.193 0.771 0.751 −0.013 0.119 0.763

Sub06 0.665 −0.055 0.455 0.966 0.642 −0.046 0.408 0.919

Sub07 0.618 −0.057 0.398 0.891 0.691 −0.038 0.309 0.863

Sub08 0.724 −0.046 0.344 0.895 0.685 −0.039 0.308 0.865

3.3. Implication of US Echogenicity as a Fatigue Indicator

Figure 8 presents the representative scatter plots between the TA muscle’s sub-maximal
US ERC normalization and the sub-maximal dorsiflexion torque normalization/angle nor-
malization under isometric/dynamic fatigue progression conditions, where the data were
collected from Participant Sub05. The direction of decreasing dorsiflexion torque or angle
corresponds to the fatigue progression direction, as labeled in Figure 8. Through the linear
regression model (the equations and R2 values as shown in Figure 8), strong linear relation-
ships between the sub-maximal US ERC and the sub-maximal dorsiflexion torque/angle
were observed with the p-value of each slope from the F-statistic less than 10−4, which
indicates that US ERC is a reliable alternative fatigue indicator for each participant. A
summary of R2, slope with p-value, and y-intercept with p-value from the linear regression
analysis under isometric and dynamic fatigue progression conditions on all eight partic-
ipants is given in Table 3. The results show that the mean slope values under isometric
and dynamic conditions are both close to 1, while the mean y-intercept values are close
to 0. Overall, the R2 values are 0.840 ± 0.054 and 0.794 ± 0.065 under the isometric and
dynamic conditions. The statistical analysis shows that the R2 values under the isometric
condition are significantly higher than those under the dynamic condition (p-value = 0.024).
Therefore, the results imply that when using US ERC as the secondary fatigue indicator,
the isometric scenario is likely to show significantly better fatigue-indicating performance
than the dynamic scenario.
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Figure 8. Linear relationships between the sub-maximal US ERC normalization and sub-maximal
dorsiflexion torque/angle normalization under isometric/dynamic muscle fatigue progression condi-
tions. Reported data are from Participant Sub05.

Table 3. Coefficients of linear regression models (y = ax + b) and R2 values between dorsiflexion
torque/angle normalization and ERC normalization.

Participants

Coefficients and R2 of Linear Regression Models

Isometric Condition Dynamic Condition

a p-Value b p-Value R2 a p-Value b p-Value R2

Sub01 0.895 1.30e−6 0.245 0.091 0.889 1.009 2.22e−14 −0.014 0.773 0.879

Sub02 0.894 2.81e−5 −0.118 0.025 0.852 1.036 1.92e−8 −0.155 0.079 0.682

Sub03 0.879 3.44e−10 0.124 0.002 0.879 0.752 6.55e−9 0.161 0.003 0.827

Sub04 1.475 3.30e−8 −0.555 1.17e−4 0.911 0.900 6.14e−13 0.126 5.90e−3 0.847

Sub05 0.928 1.65e−5 −0.168 0.117 0.763 0.800 5.80e−8 0.068 0.274 0.756

Sub06 0.754 2.18e−5 0.206 0.224 0.843 1.245 1.25e−12 −0.144 0.036 0.839

Sub07 1.319 4.65e−6 −0.248 0.026 0.811 1.019 1.35e−11 0.005 0.261 0.763

Sub08 1.169 1.23e−5 −0.234 0.083 0.771 0.955 1.34e−7 0.133 0.155 0.755

Mean 1.039 - −0.094 - 0.840 0.965 - 0.023 - 0.794
Standard deviation 0.253 - 0.271 - 0.054 0.154 - 0.123 - 0.065

4. Discussion

The US echogenicity signal as an online FES-induced muscle fatigue indicator was in-
vestigated for the first time under the isometric and dynamic ankle dorsiflexion movements
in this study. The experimental results on eight participants without any neurological
disorders showed that the US ERC normalization was exponentially decreasing along
with the muscle contraction cycles for both isometric (R2 = 0.891± 0.081) and dynamic
(R2 = 0.858± 0.065) conditions. Additionally, the results also showed strong linear re-
lationships between the US ERC normalization and dorsiflexion torque normalization
(R2 = 0.840 ± 0.054) or dorsiflexion angle normalization (R2 = 0.794 ± 0.065) during
the muscle fatigue progression. Interpretation of results, potential improvements, and
applications will be discussed in the following parts.

In the experimental protocol, a zero-order-hold function was used to enable the data
collection of the real-time US echogenicity signal at 1000 Hz. However, the US echogenicity
update frequency was determined by the online imaging beamforming, processing, and
gray-scaled analysis. In the current experimental setup and US imaging machine configu-
rations, the online US echogenicity generation time was 127.9 ± 7.8 ms for a single image
frame, which resulted in a US echogenicity updating frequency of 7.8 Hz. Compared to
the US strain imaging computation time per image frame, 368.7 ± 7.2 ms [37], the com-
putational load is significantly reduced by 65.3% (p <0.001) by using the US echogenicity
as the FES-induced muscle fatigue indicator. Regarding the FES-induced muscle fatigue-
indicating performance, the findings in [37] showed that under the isometric condition,
the R2 value of the linear regression model between sub-maximal mean (maximal) axial
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tissue strain normalization and sub-maximal joint torque normalization was 0.823± 0.151
(0.850± 0.165). A two-tail paired t-test did not show any significant difference between
the R2 values of the linear model by using US echogenicity and the R2 values of the lin-
ear model by using US strain imaging. The advantages of using US echogenicity as a
muscle fatigue indicator include (1) the relatively robust selection of the ROI due to the
static nature, (2) no requirement of US image with higher resolution and clearly visual-
ized architectural features, and (3) the significant reduction of calculation time for easier
real-time implementation. Therefore, enough evidence implies that the US echogenicity
has a comparable fatigue-indicating performance of FES-induced muscle fatigue as US
strain imaging, but with a much lower computational intensity and a promising potential
for online implementation for functional tasks, like drop-foot correction by using FES
during walking.

The muscle force’s, joint torque’s or joint motion’s decay during the FES-elicited
muscle contraction has always been taken as a gold standard indicator for peripheral
muscle fatigue, but measures of muscle force, joint torque, or joint motion usually require
sophisticated hardware setup and only provide mechanical-type signals without showing
any neuromuscular changes during the muscle fatigue progression. In addition, switching
between indicator platforms is required to evaluate muscle fatigue for both isometric
and dynamic conditions. Therefore, introducing an alternative non-invasive FES-induced
muscle fatigue indicator that can be easily implemented for both isometric and dynamic
tasks, with a simpler setup and in a real-time manner, is necessary. The real-time US
echogenicity measurement facilitates a simplistic evaluation of the current muscle fatigue
levels so that users can adjust the corresponding stimulation intensity to increase the FES-
related rehabilitative training period or terminate the rehabilitative training if the muscle
is too fatigued. Furthermore, the US echogenicity-indicated muscle fatigue will also be
beneficial to advanced closed-loop FES controller design with the consideration of muscle
fatigue. The US echogenicity signal is potentially sensitive to several factors, including
the elevation angle between the transducer arm and the skin surface, the orientation
angle between the transducer array and the skin surface, the relative sliding between the
transducer array and the skin surface, and the pressure on the skin. To mitigate these
factors, a customized 3D-printed US transducer holder, detailed in [39,40], and elaborate
experimental operations were utilized. First of all, the US transducer beam was tightly
bonded onto the arm of the rotation component of the holder, which guaranteed the
elevation angle to be approximately 90°, so the transducer was always perpendicular to
the skin surface. Secondly, the US transducer was rotated to the cross-sectional direction
to get a good view of the target TA muscle and then rotated to the longitudinal direction
for real-time echogenicity data collection. Once the longitudinal direction was determined,
no further rotation was conducted, so the orientation angle was set as the location where
the transducer was at the longitudinal direction. Thirdly, Velcro straps were used to bond
the base frame of the holder onto the skin tightly to avoid significant sliding of the US
transducer, although there might be some squeezing of the TA muscle. Due to the compliant
shape of the Velcro straps, when the TA muscle was bulging due to the stimulation, minimal
transducer-to-skin pressure change was expected throughout each fatigue progression trial.

To evaluate the generalization of using US echogenicity as an FES-induced muscle fa-
tigue indicator, results from the individual participant as shown in Figure 8 are summarized
in Figure 9. There are 120 data points (15 points from each participant × 8 participants)
and 240 data points (30 points from each participant × 8 participants) for isometric and
dynamic conditions, respectively. The linear regression equations and correlation coeffi-
cients are also labeled on the corresponding plots. From the F-statistic, the slope values
for isometric and dynamic conditions are 0.843 and 0.576 with the p-values of 5.52−13 and
9.19−22, respectively, while the y-intercept values are 0.086 and 0.370 with the p-values
of 0.38 and 1.76−19, respectively. It is observed that the correlation coefficient under the
isometric condition is higher than that under the dynamic condition, which indicates the
US echogenicity has a stronger correlation with the fatigue benchmark and potentially is a



Sensors 2022, 22, 335 15 of 18

more accurate fatigue indicator when FES is applied under the isometric condition than the
dynamic condition.

Figure 9. Summarized results of using US echogenicity as the FES-induced muscle fatigue indicator
under both isometric and dynamic conditions. Reported data are from all eight participants.

The results in Figure 9 showed a relatively high inter-subject variation of using US
echogenicity as a muscle fatigue indicator under the application of FES in the current study.
One possible reason is that the current work is a proof-of-concept study, which is not to
develop a very generalized interface to predict FES-induced muscle fatigue. Instead, the
purpose was to validate that the US echogenicity signal can be used as a personalized
muscle fatigue indicator when FES is applied. The diversity most likely resulted from the
personalized muscle contraction pattern and the personalized ultrasound echogenicity
relative change during the FES-induced muscle fatigue protocol under both isometric
and dynamic conditions. Furthermore, due to the variations of muscle size, recruitment
pattern, FES electrode placement, and ultrasound transducer placement among different
participants, the same submaximal dorsiflexion torque/angle change from different persons
is likely to cause different submaximal ERC change. Another possible reason would be the
relatively small population size in the current study, which will be further validated in a
larger number of participants and multiple groups of different muscle conditions in future
work. In addition, the findings in the current study indicate that the US echogenicity as
an indicator of FES-induced muscle fatigue behaves better under the isometric condition
than the dynamic condition. This observation corresponds to the results related to evoked
EMG (eEMG) as an indicator [44], where the eEMG is effective at quantifying muscle force
and fatigue during the isometric contraction but may not be effective during dynamic
contractions including cycling and stepping. However, one limitation is that no muscle
fatigue-indicating performance comparison between the use of US ERC and the use of
sEMG during the same FES-induced muscle fatigue progression is presented in the current
study. Inspired by the studies in [39,40,45], future work will investigate the FES-induce
muscle fatigue indicators by using sole sEMG signal, sole US echogenicity signal, and the
potential fusion of sEMG and US echogenicity signals.

5. Conclusions

In the current work, we investigated the use of temporal US echogenicity to quantita-
tively assess the muscle fatigue elicited by FES under both isometric and dynamic ankle
dorsiflexion functionalities. The results showed that the US ERC expressed an exponen-
tial reduction along with the muscle contraction cycles both in isometric and dynamic
conditions. Furthermore, the results of linear regression analysis showed strong linear
relationships between the US ERC normalization and the gold standard fatigue indicators,
namely, isometric dorsiflexion torque normalization or dynamic dorsiflexion angle normal-
ization. The comparison between the current work and existing studies verified that the US
ERC is a comparable fatigue indicator to axial tissue strain imaging during the isometric
fatigue progression, but with a realistic computation time for real-time implementation.
The findings in the current work indicate that the US echogenicity is a promising non-
invasive and computationally efficient measure for assessing FES-induced muscle fatigue,
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and potentially, it can be integrated into an advanced FES controller design that considers
muscle fatigue in real-time.

Supplementary Materials: The following supporting information can be downloaded at: https://
zenodo.org/record/5637439, Video S1: Dynamic_fatigue_Sub03; Video S2: Dynamic_fatigue_Sub05;
Video S3: Isometric_fatigue_Sub03; Video S4: Isometric_fatigue_Sub05.
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