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Abstract

Germ cell immortality, or transgenerational maintenance of the germ line, could be promoted

by mechanisms that could occur in either mitotic or meiotic germ cells. Here we report for the

first time that the GSP-2 PP1/Glc7 phosphatase promotes germ cell immortality. Small RNA-

induced genome silencing is known to promote germ cell immortality, and we identified a sep-

aration-of-function allele of C. elegans gsp-2 that is compromised for germ cell immortality

and is also defective for small RNA-induced genome silencing and meiotic but not mitotic

chromosome segregation. Previous work has shown that GSP-2 is recruited to meiotic chro-

mosomes by LAB-1, which also promoted germ cell immortality. At the generation of sterility,

gsp-2 and lab-1 mutant adults displayed germline degeneration, univalents, histone methyla-

tion and histone phosphorylation defects in oocytes, phenotypes that mirror those observed

in sterile small RNA-mediated genome silencing mutants. Our data suggest that a meiosis-

specific function of GSP-2 ties small RNA-mediated silencing of the epigenome to germ cell

immortality. We also show that transgenerational epigenomic silencing at hemizygous

genetic elements requires the GSP-2 phosphatase, suggesting a functional link to small

RNAs. Given that LAB-1 localizes to the interface between homologous chromosomes during

pachytene, we hypothesize that small localized discontinuities at this interface could promote

genomic silencing in a manner that depends on small RNAs and the GSP-2 phosphatase.
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Author summary

The germ line of an organism is considered immortal in its capacity to give rise to an

unlimited number of future generations. To protect the integrity of the germ line, mecha-

nisms act to suppress the accumulation of transgenerational damage to the genome or epi-

genome. Loss of germ cell immortality can result from mutations that disrupt small RNA-

mediated genome silencing, which protects the germ line from foreign genetic elements

such as transposons. Here we report for the first time that the C. elegans protein phospha-

tase GSP-2 that promotes core chromosome biology functions during meiosis is also

required for germ cell immortality. Specifically, we identified a partial loss-of-function

allele of gsp-2 that exhibits defects in meiotic chromosome segregation and that is also

dysfunctional for transgenerational small RNA-mediated genome silencing. Our results

are consistent with a known role of Drosophila Protein Phosphatase 1 in heterochromatin

silencing, and point to a meiotic phosphatase function that ensures germ cell immortality

by promoting genomic silencing in response to small RNAs.

Introduction

Animals, including humans, are comprised of two broad cell types: somatic cells and germ

cells. Somatic cells consist of many diverse differentiated cell types, while germ cells are spe-

cialized to produce the next generation of offspring. An important difference between these

two cell types is that somatic cells undergo aging phenomena while the germ line is effectively

immortal and capable of creating new “young” offspring [1]. Understanding the basis of

immortality in germ cells may provide insight into why organisms age.

In C. elegans, disruption of pathways that promote germ cell immortality results in initially

fertile animals that become sterile after reproduction for a number of generations. Many such

mortal germline (mrt) mutant strains are temperature-sensitive, becoming sterile at 25˚C but

remaining fertile indefinitely at 20˚C [2]. Mutations that cause a Mrt phenotype have been

reported in two distinct pathways: telomerase-mediated telomere maintenance [3,4] and small

RNA-mediated nuclear silencing [5–9]. Mutations in the PIWI Argonaute protein cause

immediate sterility in many species. However, disruption of the C. elegans Piwi orthologue

PRG-1, which interacts with thousands of piRNAs to promote silencing of some genes and

many transposons in germ cells, results in temperature-sensitive reductions in fertility and a

Mrt phenotype [6–12]. Multiple members of a nuclear RNA interference (RNAi) pathway that

promote the inheritance of transgene silencing also promote germ cell immortality and likely

function downstream of PRG-1/Piwi and piRNAs [10,13]. One nuclear RNAi defective

mutant, nrde-2, a number of heritable RNAi mutants, including hrde-1, and two RNAi defec-

tive mutants, rsd-2 and rsd-6, only become sterile after growth for multiple generations at the

restrictive temperature of 25˚C [10,12–16]. The reason for this temperature-sensitivity is not

clear. These ‘small RNA-mediated genome silencing’ mutants fail to repress deleterious geno-

mic loci as a consequence of deficiency for small RNA-mediated memory of ‘self’ vs ‘non-self’

segments of the genome [13,17,18]. The transgenerational fertility defects of such mutants

could reflect a progressive desilencing of heterochromatin, which is modulated by histone

modifications that occur in response to small RNAs, such as H3K4 demethylation and

H3K9me2/3 [15,19].

The SPR-5 histone 3 lysine 4 demethylase promotes genomic silencing in the context of

H3K9 methylation and represses transgenerational increases in sterility [20]. Deficiency for

spr-5 also compromises germ cell immortality in a temperature-sensitive manner [21], similar
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to genome silencing mutants that are deficient for RNAi or RNAi inheritance [10,12–16].

However, thorough genetic screens for defects in RNAi inheritance failed to recover mutations

in spr-5 [16], and a direct test confirmed that deficiency for spr-5 does not compromise RNAi

inheritance [13]. It is therefore not clear if the role of SPR-5 and small RNA-mediated genome

silencing proteins in maintenance of germ cell immortality is a consequence of deficiency for

the same genomic silencing pathway. If this is the case, it is possible that deficiency for spr-5
leads to the upregulation of a compensatory RNAi inheritance mechanism that masks an overt

role for SPR-5 in RNAi inheritance.

Pioneering studies in Neurospora demonstrated that unsuccessful pairing of whole chromo-

somes during meiotic prophase, as well as discrete ‘unpaired’ chromosomal regions within

paired meiotic homologs, can trigger small RNA-mediated genome silencing [22]. Multigener-

ational transmission of hemizygous transgenes in C. elegans, which results in an ‘unpaired’

~10 kb genomic segment within paired homologous chromosomes during meiosis, leads to

transgene silencing in a manner that depends on small RNAs and the PRG-1/Piwi Argonaute

protein [23]. Therefore, a conserved small RNA mechanism operates during meiosis to pro-

mote genomic silencing when either large (chromosome scale) or small (transgene scale) seg-

ments of the genome are not properly paired.

A central function of Piwi/piRNA-mediated genomic silencing is to protect the genome

from foreign genetic elements like transposons and viruses [11]. Horizontal transfer of a trans-

poson into the genome of a naïve species will result in a burst of transposition events that ends

when the host mounts a small RNA-mediated genomic silencing response against the transpo-

son. In this context, de novo transposon insertions that represent a threat to genomic integrity

would create small ‘unpaired’ hemizygous discontinuities within paired homologous chromo-

somes during meiosis. The discrete ‘unpaired’ meiotic chromosome aberrations created by de
novo transposon insertions are structurally analogous to hemizygous transgenes, which are

the targets of a multigenerational small RNA-induced genome silencing process [23]. Small

‘unpaired’ meiotic discontinuities created by de novo transposon insertions are therefore likely

to be important for shaping genomic and epigenomic evolution.

C. elegans chromosomes do not have a discrete centromere to maintain cohesion between

chromosomes during meiosis. Therefore they utilize two domains, separated by a crossover,

called the long and the short arms. These arms separate at distinct stages of meiosis to prevent

premature separation, with the short arms separating in Meiosis I and the long arms separating

in Meiosis II. The regulation of cohesion occurs through localization of GSP-2 to the long

arms of meiotic chromosomes through binding to LAB-1, where it antagonizes AIR-2

(Aurora-B kinase) activity [24–26]. In addition, LAB-1 is also present on mitotic chromosomes

where it likely antagonizes AIR-2 activity [27]. In C. elegans, LAB-1 and GSP-2 fulfills the roles

played by Shugoshin and Protein Phosphatase 2A in many other organisms, by protecting

meiotic chromosome cohesion on the long arms in Meiosis I [27–29]. Once recruited by LAB-

1, GSP-2 keeps REC-8, a meiosis-specific cohesin subunit, dephosphorylated to protect it from

premature degradation and chromatid separation [26,27]. Additionally, recent work has

shown that HTP-1/2, HORMA-domain proteins are responsible for LAB-1 chromosomal

recruitment and therefore GSP-2 phosphatase activity [30].

Here we report the identification of a hypomorphic allele of gsp-2, a PP1/Glc7 phosphatase,

which fails to maintain germline immortality at 25˚C. GSP-2 is one of four PP1 catalytic sub-

units in C. elegans [31,32]. PP1 phosphatase has roles in many cellular processes including

mitosis, meiosis, apoptosis and protein synthesis [33]. Previously, GSP-2 has been shown to

promote meiotic chromosome cohesion by restricting the activity of the Aurora B kinase

ortholog AIR-2 to the short arms of C. elegans chromosomes during Meiosis I [26,27]. Here,
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we demonstrate that GSP-2 is likely to act during meiosis to promote germline immortality via

a small RNA-mediated genome silencing pathway.

Results

Identification of GSP-2 as a temperature-sensitive mrt mutant

In a screen for mrt mutants [2], one mutation that displayed a Temperature-sensitive defect in

germ cell immortality, yp14, was tightly linked to an X chromosome segregation defect mani-

festing as a High Incidence of Males (Him) phenotype, such that 3.9% of yp14 self-progeny

were XO males, which was significantly greater than the 0.05% male self-progeny phenotype

observed in wildtype animals at 20˚C (Fig 1A, p<.0001). The yp14 mutation was mapped to

Chromosome III, and whole genome sequencing revealed missense mutations in 6 genes

within the yp14 interval (S1A and S1B Fig). Three-factor mapping of the yp14 Him and Mrt

phenotypes suggested that yp14 might correspond to the missense mutation in gsp-2 (Fig 1C

and 1D) or to a mutation in the G-protein coupled receptor gene srb-11 (S1A and S1B Fig).

To test whether the chromosome segregation defect of yp14 was due to a mutation in gsp-2,

we performed a non-complementation test with a deletion mutation in gsp-2, tm301. yp14 /
tm301 F1 heterozygous hermaphrodites gave rise to F2 male progeny at a frequency of 5.7% at

20˚C, similar to the 3.8% male phenotype observed for yp14 homozygotes (S1C Fig). Thus,

tm301 failed to complement gsp-2(yp14) for its Him phenotype. In contrast, neither gsp-2
(tm301) / + nor gsp-2(yp14) / + control animals displayed a Him phenotype (S1C and S1F Fig).

Additionally, gsp-2(tm301) null mutants immediately exhibited high levels of embryonic

lethality at 20˚C with a few F3 embryos that survive until adulthood (Fig 1B), consistent with

roles for PP1 in chromosome condensation and segregation during mitosis in several species

[24,25,34]. High levels of embryonic lethality for F3 gsp-2(tm301) mutant embryos (97%), led

to uniformly sterile uniformly sterile F3 adults that produced no F4 progeny [25] (Fig 1B).

These very high levels of embryonic lethality contrast with the embryonic lethality observed

for gsp-2(yp14) mutants, which was 6% at 20˚C and 41.6% for F8 animals grown at 25˚C (Fig

1B). Both the Emb and Him phenotypes were exacerbated at 25˚C (Fig 1A and 1B), suggesting

that gsp-2(yp14) has a chromosome segregation defect that may be mechanistically linked to its

Mortal Germline phenotype (Fig 1A and 1E).

In gsp-2(yp14) mutants, the X chromosome non-disjunction defect was more pronounced

at both temperatures than the embryonic lethality associated with non-disjunction of the five

C. elegans autosomes (S1 Table). Mutations that cause chromosome non-disjunction during

mitosis occasionally lead to loss of an X chromosome during germ cell development, which

could result in the stochastic appearance of XX hermaphrodites with high numbers of XO

male progeny [35]. However, jackpots of XO males did not occur when yp14 mutant hermaph-

rodites were isolated as single L4 larvae at 20˚C or as L1 or L4 larvae at 25˚C (Fig 1G, S1D and

S1E Fig), implying that yp14 is a separation-of-function mutation that specifically compro-

mises the meiotic chromosome segregation function of GSP-2, with little or no effect on

mitotic chromosome segregation. It is formally possible that gsp-2(yp14) is deficient for a

mitotic function of GSP-2 that is relevant to germ cell immortality that is either distinct from

its role in mitotic chromosome segregation or so subtle that we could not detect it in our

assays.

LAB-1 and GSP-2 promote germline immortality at high temperature

At 20˚C, gsp-2(yp14) mutants remained fertile indefinitely, but at 25˚C they exhibited sterility

between generations F5 and F17 (Fig 1E and 1F). Given that LAB-1 promotes cohesion of the

long arms of meiotic chromosomes via the GSP-2 phosphatase, we asked if LAB-1 is relevant
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Fig 1. A hypomorphic mutation in gsp-2 results in transgenerational sterility phenotype. (A) Incidence of males in

gsp-2(yp14) was 3.9% at 20˚C and increased to 16.8% at 25˚C. When L1 animals were shifted to 25˚C we saw a similar

increase in males (5%, N = 42) to animals grown at 20˚C and when L4 animals were shifted incidence of males was

10.7% (N = 49) (B) Progeny of gsp-2(yp14) animals grown at 20˚C or 25˚C were 6% and 41% Embryonic Lethal,

respectively, compared to 97% of gsp-2(tm301) progeny (N = 20). (C-D) gsp-2(yp14) was identified to have a G to A

mutation in exon 5 by whole genome sequencing. This results in a D to N amino acid substitution in a well conserved
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to germ cell immortality by first outcrossing a lab-1 deletion with wildtype and re-isolating

lab-1 homozygotes in an effort to eliminate epigenetic defects that could have accumulated in

the parental lab-1 strain. Outcrossed lab-1 mutants displayed a Mortal Germline phenotype at

25˚C (Fig 1E and 1F). We created lab-1; gsp-2 double mutants, which remained fertile indefi-

nitely when grown at 20˚C but displayed a slightly accelerated number of generations to steril-

ity at 25˚C in comparison with lab-1 mutants (Fig 1E and 1F). Together, these results suggest

that a meiotic function of GSP-2 that is directed by LAB-1 promotes germ cell immortality.

The small acceleration in the time to sterility in the double mutant animals suggests slight

additivity between the mutations. Both the gsp-2 and lab-1 alleles are partial loss-of-function

alleles that when combined could conceivably result in a stronger phenotype. Moreover, the

weak Mortal Germline phenotype of lab-1 single mutants at 20˚C was suppressed by gsp-2
(yp14) (Log Rank Test, p = .001). One possible explanation for this very slight rescue at the per-

missive temperature is the loss of lab-1 alone results in GSP-2 being mis-localized and per-

forming an ectopic function that is ablated when GSP-2 function is reduced. It is likely that

this does not occur at 25˚C because GSP-2 function is more severely compromised at the

higher temperature.

Small RNA-mediated genome silencing is disrupted in gsp-2(yp14)
Multiple genes that regulate small RNA-mediated epigenomic silencing promote germ cell

immortality at high temperatures, like gsp-2(yp14) and lab-1 [10,12,16]. Three small RNA-

mediated epigenomic silencing genes that are required for germ cell immortality promote a

specific form of transcriptional gene silencing termed nuclear RNA interference, nrde-1, nrde-
2 and nrde-4 [10,12,36]. The response to a dsRNA trigger that targets lin-26 is dependent on

nuclear RNA interference [37]. Control wildtype and gsp-2(yp14) mutant animals displayed a

completely penetrant Embryonic Lethality phenotype in response to lin-26 dsRNA, whereas

nuclear RNAi defective mutant nrde-2 and the RNAi defective mutant rsd-6 did not (Fig 2A),

indicating that nuclear RNAi within a single generation is normal in the gsp-2(yp14) mutant.

Small RNAs can trigger RNAi inheritance [10,13], where silencing of a gene in response to

siRNAs can be transmitted for multiple generations. Transgenerational RNAi inheritance can

occur when endogenous genes are targeted by dsRNA triggers [38], but this can also happen

when GFP reporter transgenes are targeted by small RNAs derived from GFP [13,17,18]. We

tested the transgene cpIs12 Pmex-5::GFP and found that it was silenced in response to GFP siR-

NAs and that silencing of this transgene was inherited for up to 4 generations after removal

from the dsRNA trigger (Fig 2B, Results summarized S6 Table). In contrast, GFP expression in

gsp-2(yp14); cpIs12 was initially silenced but silencing was not inherited over multiple genera-

tions (Fig 2B), indicating that gsp-2(yp14) promotes RNAi inheritance.

Propagation of GFP or mCherry transgenes in the hemizygous state for multiple genera-

tions elicits a strong transgene silencing response, which is thought to be due to persistent yet

small ‘unpaired’ discontinuities in the structure of paired meiotic homologous chromosomes

at the site of the transgene [23]. We found that hemizygosity for the transgene cpIs12 resulted

in progressive transgene silencing in populations of animals over the course of several genera-

tions until cpIs12 became fully silenced by generation 5 (Fig 2C and 2D). In contrast, when

region of GSP-2. (E) When passaged at 20˚C for many generations N2, gsp-2(yp14), lab-1 and lab-1; gsp-2(yp14) did not

exhibit a loss of transgenerational fertility. (F) gsp-2(yp14) and lab-1 both exhibited loss of fertility at 25˚C and were

completely sterile by generation F17 and F11 respectively. A double mutant of lab-1;gsp-2 went sterile slightly faster than

the individual single mutants and were completely sterile by F10. (N�40) (G) Analysis of incidence of males showed no

jackpots of males at in gsp-2(yp14) animals. �P<.0001 by T-test. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pgen.1008004.g001
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cpIs12 was placed in a gsp-2(yp14) genetic background and propagated in a hemizygous state,

we found that cpIs12 was initially weakly silenced but that genomic silencing never became

fully penetrant (Fig 2C and 2D). Together, the above data indicate that gsp-2 promotes the

silencing of unpaired hemizygous transgenes, which depends on small RNA-mediated genome

silencing [23].

Fig 2. GSP-2 promotes multigenerational transgene silencing. (A) gsp-2(yp14) mutants do not exhibit single generation RNAi

defects while rsd-6 and nrde-2 mutants are defective for single generation RNAi. (B) cpIs12 treated with RNAi remains undetectable

for multiple generations after RNAi treatment. However, in gsp-2(yp14);cpIs12 animals treated with RNAi cpIs12 only remains

undetectable for one generation and by generation 3 exhibit close to wildtype levels of expression. (C,D) When LP138, a GFP

transgene, is passaged as a heterozygote for multiple generations it is silenced in the germline. LP138 passaged as a heterozygote in a

gsp-2(yp14) mutants results in only partial silencing over 5 generations suggesting defective heterozygous transgene silencing. (E)

Comparison of small RNAs in rsd-6, gsp-2 and spr-5 mutants showing a great overlap in small RNA identity between gsp-2 and spr-
5. (F) Graph showing levels of piRNA expression in N2 controls, rsd-6, gsp-2 and spr-5 mutants at both early and late generations

grown at 25˚C.

https://doi.org/10.1371/journal.pgen.1008004.g002
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A central function of small RNA-mediated genomic silencing is to maintain silencing of

repetitive elements and transposons in the germline, thereby protecting genomic integrity

[15,19,39]. We previously reported that RNA expression of tandem repeat loci was upregu-

lated in late-generation rsd-2 and rsd-6 mutants grown at 25˚C [12]. Therefore, we asked if

desilencing of tandem repeats occurred in gsp-2(yp14) mutants using RNA fluorescence in
situ hybridization (FISH) to examine the expression of multiple repetitive elements. In wild-

type controls grown at 25˚C, we detected RNA from tandem repeat sequences using CeRep59
sense and anti-sense probes in embryos but not in the adult germline or somatic cells, consis-

tent with previous observations (S2 Fig) [12]. However, in late-generation gsp-2(yp14) and

rsd-6 mutants, robust expression of tandem repeats was observed throughout the soma and

germline of adult animals, indicating that tandem repeats become desilenced in these strains

(S2 Fig).

Small RNA dysfunction in gsp-2 mutants

Given that small RNA-mediated genome silencing is dysfunctional in gsp-2(yp14) mutants, we

asked if small RNA populations were perturbed by preparing RNA from early- and late-gener-

ation wildtype, gsp-2(yp14), rsd-6 and spr-5 mutants grown at either 20˚C or 25˚C. We exam-

ined rsd-6 and spr-5 mutants as they have known temperature sensitive germ cell immortality

defects associated with loss genomic silencing as a consequence of small RNA or histone

demethylation defects, respectively [12,21]. Small RNA libraries were prepared and subjected

to high throughput sequencing, and we then examined levels of 22G RNAs that are 22 nucleo-

tides in length beginning with a 5’ guanine, as 22G RNAs are the major effectors of genomic

silencing in C. elegans [5,40]. 22G-RNAs in all late generation lines, normalized to total small

RNA content showed a decrease relative to early generation N2 lines. The decrease was more

pronounced in gsp-2 and rsd-6 mutants (p = 1.2e-7 and 4e-19, Wilcox paired test; S2 Table, S3

Fig) but not in spr-5 where the decrease was not significantly different from the difference in

N2 (p = 0.13). Analysis of the 22G-small RNA data revealed that spr-5 and rsd-6 share some

genes with reduced levels of 22G RNAs with increasing generations, but there are other genes

that show dissimilar behavior for each individual mutant. This suggests that spr-5 may act

both in conjunction with rsd-6 and in a separate pathway to promote germline immortality. In

contrast, 22G RNAs from gsp-2(yp14) showed strong similarities to those of spr-5 mutants but

showed little similarity to 22G RNA changes observed for rsd-6 mutants, suggesting that gsp-2
(yp14) and spr-5 have similar effects on genome maintenance (S3 Fig). As a control, there is lit-

tle coherent change in late-generation versus early generation N2 wildtype that overlaps with

gsp-2(yp14) meaning that changes we see in gsp-2(yp14) are not due simply to passaging ani-

mals at 25˚C (Fig 2E and 2F). As germ cell immortality is promoted in part by primary siRNAs

termed piRNAs that interact with the Piwi Argonaute protein PRG-1 [8], we also examined

piRNA populations, which are enriched for 21 nucleotide RNAs that begin with a 5’ uracil

(21U RNAs) [6,7,9] and found that these were normal (Fig 2E and 2F). We also examined

miRNAs, which have not previously been implicated in the Mortal Germline phenotype. Inter-

estingly, miRNAs were significantly reduced in late generation spr-5 and gsp-2(yp14) mutants

(p = 1.2e-20 and p = 2.05e-25 respectively; S3 Table, S3 Fig), but not in rsd-6 mutants. Since

spr-5 does not show global decrease in 22G-RNAs this is unlikely to be a secondary conse-

quence of disturbance of the total small RNA pool. The relevance of this finding to the Mortal

Germline phenotype awaits further investigation. Together these results indicate that gsp-2
(yp14) and spr-5 display common statistically significant changes in two classes of small RNAs,

which implies that their genomic silencing defects may be more similar to one another than to

those of rsd-6 mutants.

Phosphatase GSP-2/PP1 promotes germline immortality during meiosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008004 March 28, 2019 8 / 26

https://doi.org/10.1371/journal.pgen.1008004


Small RNA silencing components and gsp-2 promote germ cell immortality

To study the relationship between gsp-2(yp14) and the small RNA genome silencing pathway,

we created double mutants between gsp-2(yp14) and small RNA silencing mutants that display

temperature-sensitive defects in germ cell immortality, hrde-1, nrde-2 and rsd-6. Because gsp-2
(yp14) is a hypomorphic allele, we predicted that single and double mutants would display a

similar number of generations to sterility if it were functioning in the small RNA silencing

pathway. For gsp-2(yp14); hrde-1 and rsd-6; gsp-2(yp14), we saw a modest decrease in the num-

ber of generations to sterility suggesting a slight additive effect (Fig 3A and 3C, Log Rank test:

p<.0001). In contrast, nrde-2; gsp-2(yp14) double mutants did not differ from the single

mutants (Fig 3B, Log Rank test: p = .06). Together, these results indicate that there is a weak

additive effect on transgenerational lifespan when gsp-2 is combined with hrde-1 or rsd-6, but

not when it is combined with nrde-2. The modest acceleration observed for some small RNA

genomic silencing pathway and gsp-2(yp14) double mutants may be consistent with a single

genome silencing pathway, as many single mutants in this pathway that display similar germ-

line phenotypes at sterility also display a consistent, slightly accelerated sterility as double

mutants. There are a number of explanations for this, including transmission of epigenetic

defects from germ cells of the grandparents that created these double mutants, or shared but

non-equivalent functions in terms of which segments of the genome each protein silences

[15].

Sterile gsp-2 and lab-1 mutants display germline defects similar to small

RNA genome silencing mutants

We previously reported that sterile, late-generation small RNA genome silencing mutants dis-

play a wide range of germline sizes, including many with few or no germ cells [12,41]. There-

fore to investigate the cellular cause of transgenerational sterility in gsp-2(yp14) and lab-1
mutants, we examined germline development in animals that became sterile after multiple

generations. Most sterile generation L4 gsp-2(yp14) and lab-1 mutant germlines were normal

in size, though a small minority had a reduction in total germline length, resulting in a weak

but significant difference in germline profile compared to wild-type (Fig 4A–4E and 4H, S5

Table, Results summarized S6 Table). Differentiating germ cell nuclei in spermatogenesis were

observed for sterile generation L4 larvae for all strains (Fig 4A and 4H). However, the germ-

lines of two-day-old sterile gsp-2(yp14) and lab-1 mutant adults ranged in size from normal to

a complete loss of germ cells (Fig 4B–4E and 4I), resulting in a significant difference when

compared to wild-type controls (S5 Table p<1E-80). We studied small RNA genome silencing

mutants and found that rsd-6, hrde-1 or nrde-2 mutant L4 larvae that were poised to become

sterile displayed predominantly normal-sized germlines (Fig 4H). In contrast, sterile-genera-

tion rsd-6, hrde-1 and nrde-2 mutant adults had germline profiles that were similar to those of

sterile gsp-2(yp14) mutant adults and markedly smaller than those of sterile generation L4 lar-

vae (Fig 4I, S4 Table). lab-1(tm1791) displayed an increased frequency of germline tumors in

comparison to other mutants, possibly due to a genetic modifier present in the tm1791 mutant

background.

Lastly, we tested if sterile spr-5 mutants displayed similar germline phenotypes as those

observed in small RNA mutants and gsp-2(yp14). We found that sterile spr-5 mutant adults

displayed similar germline atrophy phenotypes, suggesting the resemblance to gsp-2(yp14) or

lab-1 mutants (Fig 4H and 4I). Our previous work showed that mutations in the cell death

genes ced-3 and ced-4 partially rescued the empty and atrophy phenotypes observed for germ-

lines of rsd-2, rsd-6, and prg-1 small RNA genome silencing mutant adults [12,41], suggesting

that apoptosis promotes germ cell atrophy as these animals develop from L4 larvae into adults.
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To determine if acute loss of GSP-2 causes germline atrophy, we examined gsp-2(tm301)
null mutants grown at 20˚C and 25˚C. gsp-2(tm301) homozygous F2 animals and their few

surviving F3 progeny showed normal germlines, with no morphological defects in germline

size or development for either L4 larvae or young adults, which significantly differed from the

Fig 3. Temperature-sensitive small RNAi mutants exhibited similar times to sterility as gsp-2(yp14) at 25˚C.

Germline mortality assays all performed at 25˚C (A) Both gsp-2(yp14) and hrde-1 animals exhibit similar times to

sterility while gsp-2(yp14);hrde-1 double mutants display a slightly decreased time to sterility. p<.001 (B) gsp-2(yp14),
nrde-2 and rsd-6;gsp-2(yp14) animals all go sterile in a similar number of generations. p = .06 (C) gsp-2(yp14) and rsd-6
exhibit similar times to sterility while gsp-2(yp14);rsd-6 double mutants become sterile at a slightly earlier generation.

p<.001(N�40). Significance was tested using a log rank test.

https://doi.org/10.1371/journal.pgen.1008004.g003
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Fig 4. Germline defects occur in gsp-2 and temperature-sensitive small RNA mutants at sterility. (A-E) Representative images of DAPI stained

germlines passaged at 25˚C until sterility. The timing of passage differed depending on the genotype as the time to sterility varies (See Fig 3).

Germlines of either L4 (A) or adult control and sterile mutant animals were stained, and the germline size quantified as either normal (B), short

(C), atrophied (D) or empty (E). (F-G) 6 DAPI bodies in control oocytes (F) and 8 DAPI bodies in gsp-2(yp14) animals (G). (H-I) Germlines from

gsp-2(yp14), lab-1, rsd-6, nrde-2, hrde-1, and spr-5 mutants were examined and found to have mostly normal morphology at the L4 stage (H) but

exhibited germline atrophy in adult animals (N�98) (I). (J) In addition to germline atrophy, gsp-2(yp14) animals displayed greater than the

wildtype number of 6 DAPI bodies in oocytes at the generation at sterility in 32% of oocytes (N�100). (K) Quantification of HIM-8 staining

showing the % of paired foci for each zone (See S2 Fig) along the germline for all indicated mutants. Error bars represent the standard deviation. P-

values were obtained by using a student’s t-test for unpaired samples with unequal variance.

https://doi.org/10.1371/journal.pgen.1008004.g004
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germline profiles of gsp-2(yp-14) animals (S4 and S5 Tables). Therefore, the late-generation

sterility phenotype of yp14 mutants is distinct from the fertility defects that occur in response

to acute loss of GSP-2 in maternally depleted F3 deletion homozygotes.

Pronounced meiotic defects occur in sterile gsp-2(yp14) mutants

Mature C. elegans oocytes typically contain 6 bivalents (pairs of homologous chromosomes

held together by crossovers), which can be scored as 6 DAPI-stained bodies. Defects in meiotic

pairing, cohesion, synapsis, and crossing over can lead to the presence of univalents, which are

observed as greater than 6 DAPI bodies per oocyte. We previously observed that small RNA

nuclear silencing mrt mutants rsd-2 and rsd-6 displayed increased levels of univalents at steril-

ity, which were not observed in either wildtype or in fertile rsd-2 or rsd-6 mutant late-genera-

tion animals grown at 25˚C [12]. We measured the presence of oocyte univalents in N2

wildtype control worms grown at 20˚C and 25˚C, which almost always contained 6 DAPI bod-

ies representing the 6 paired chromosomes (5 bodies are occasionally scored when bivalents

that overlap spatially cannot be distinguished). However, when gsp-2(yp14) worms were pas-

saged at 25˚C until sterility, only 60% of oocytes contained 6 paired chromosomes with the

other 40% contained 7 to 12 DAPI bodies (Fig 4J, Results summarized S6 Table). This increase

in oocyte univalents was not present in fertile gsp-2(yp14) worms, at 20˚C or even for fertile

late-generation 25˚C gsp-2(yp14) adults that were close to sterility (Fig 4J). In contrast, we

found no univalents in the null gsp-2 allele tm301, either for F2 animals or for rare F3 escapers,

consistent with previous observations [24,25].

LAB-1 has been previously implicated in the pairing of homologous chromosomes during

meiosis [27]. To determine if homolog pairing is perturbed in gsp-2(yp14) mutants grown for

two generations at 25˚C, we examined the X chromosome pairing center protein HIM-8 in fer-

tile 2 day old adults. When scored at pachytene only one spot was present in the majority of

the nuclei suggesting pairing is occurring normally (Fig 4K, S4 Fig). In addition to gsp-2(yp14),
we examined HIM-8 foci in fertile lab-1, rsd-6 and spr-5 mutants grown at 25˚C for two gener-

ations and found that lab-1 mutants displayed decreased meiotic chromosome pairing consis-

tent with previously reported data [27] but that pairing was relatively normal in the other

mutants (Fig 4K, S4 Fig).

Given that LAB-1 and GSP-2 are known to promote meiotic chromosome cohesion, we

tested the hypothesis that dysfunction of other factors that promote meiotic chromosome

cohesion might be sufficient to elicit germline atrophy. Mutant strains with defects in cohe-

sion, smc-3(t2553) and coh-3(gk112); coh-4(tm1857) double mutants [42–44] became sterile

immediately and did not exhibit germline atrophy phenotypes observed in gsp-2(yp14) (S5 Fig,

S4 Table). Therefore, the late-generation sterility phenotypes of gsp-2(yp14) and small RNA

mutants are not due to acute loss of meiotic chromosome cohesion.

To further characterize the nature of the gsp-2(yp14) mutation, we examined the localiza-

tion of LAB-1 and GSP-2 in pachytene nuclei of gsp-2(yp14), lab-1, rsd-6 and spr-5 animals.

Decreased GSP-2 localization was observed in both gsp-2(yp14) and spr-5 mutants but not in

lab-1 or rsd-6 mutants (Fig 5A). Similar defects in small RNA profiles of gsp-2 and spr-5
mutants are consistent with the localization of GSP-2 being normal in rsd-6 mutants but

absent in gsp-2(yp14) and spr-5 mutants (Fig 5A), which supports the possibility that GSP-2

may promote genomic silencing in response to small RNAs. The presence of GSP-2 staining in

the lab-1 deletion was surprising as animals treated with RNAi against lab-1 show decreased

GSP-2 staining. However, as the tm1791 deletion is a non-null allele, it is possible that GSP-2

can still interact with LAB-1 to some degree. Additionally, we saw no change in LAB-1

localization in any strain except for the lab-1 deletion, which still exhibited some staining
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consistent with the tm1791 deletion being a non-null allele (Fig 5B). Lastly, we assessed LAB-1

localization at diakinesis to determine if LAB-1 localization on the long arms was altered in

any of these mutants and we found that localization was relatively normal in gsp-2(yp14),
rsd-6 and spr-5 mutants (S6 Fig). The localization of LAB-1 in gsp-2(yp14) along the long arms

Fig 5. GSP-2 and LAB-1 localization during mid-pachytene to late diplotene. (A-B) Representative images of nuclei

from early pachytene to late diplotene for controls, rsd-6, gsp-2(yp14), spr-5 and lab-1 are stained with an antibody

against GSP-2 (A) and an antibody against LAB-1 (B). DAPI images for each nucleus are shown to indicate the specific

cell cycle stage. All worms were grown at 25˚C for 2 generations and fixed as day 2 adults.

https://doi.org/10.1371/journal.pgen.1008004.g005
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was abnormal looking but clearly did not localize to both the long and short arms of the

chromosomes.

gsp-2(yp14) and lab-1 display increased histone H3 phosphorylation

A previously identified phenotype of gsp-2 null mutants is an increase in Histone 3 Serine 10

(H3S10) phosphorylation due to expansion of the AIR-2-localizing domain [24,30]. In wild-

type worms grown at 20˚C and 25˚C, H3S10 phosphorylation was visible on the condensed

chromosomes in the -1 to -3 oocytes, which are defined relative to the spermatheca with the

closest being called -1 (Fig 6A, Results summarized S6 Table). In both early- and late-genera-

tion gsp-2(yp14) mutant oocytes, H3S10 phosphorylation increased when compared with wild-

type controls, with increased levels on chromosomes (Fig 6B and 6M). Late-generation gsp-2
(yp14) mutant animals grown at 25˚C had a small but significant increase in H3S10 phosphor-

ylation levels compared to gsp-2(yp14) mutant controls grown at 20˚C (Fig 6M). Furthermore,

we observed increased levels of H3S10 phosphorylation in lab-1 mutants (Fig 6C and 6M),

consistent with previous results [27]. By quantification of fluorescence intensity we measured

significant increased levels of H3S10p in lab-1, rsd-6, and hrde-1 but not in nrde-2 mutants

(Fig 6C–6F and 6M). The distinct phosphorylation levels in nrde-2 mutants could reflect its

small RNA genome silencing function, where NRDE-2 works downstream of RSD-6 and

HRDE-1 to promote accumulation of stalled RNA polymerase II at loci that are targeted by

small RNAs [45]. This would suggest that the maintenance of histone marks occurs at the

point in the pathway where RSD-6 and HRDE-1 function but not downstream at level of

NRDE-2.

PP1 has been previously shown to dephosphorylate a number of histone amino acids,

including Histone 3 Threonine 3 (H3T3) [46]. When we examined H3T3 phosphorylation in

wildtype controls grown at 25˚C, staining was visible in the -1 to -3 oocytes (Fig 4G and 4G’,

Results summarized S6 Table). However, in sterile generation gsp-2(yp14) mutants, H3T3p

staining was significantly brighter than controls when images were taken under the same con-

ditions (Fig 6H and 6H’). Sterile generation lab-1 and the small RNA mutants hrde-1, rsd-6
and nrde-2 all exhibited increased H3T3 phosphorylation signal intensity in the -1 to -3

oocytes (Fig 6I, 6L and 6N). Furthermore, there was a significant increase in H3T3 phosphory-

lation in sterile generation gsp-2(yp14) mutant adults compared to the earlier, fertile genera-

tion animals suggesting transgenerational accumulation of H3T3 phosphorylation (Fig 6N).

Together, our results suggest that an increase in phosphorylation of H3T3 consistently occurs

in oocytes of gsp-2 and small RNA silencing mutants however, increased H3S10 phosphoryla-

tion occurs only in gsp-2(yp14), lab-1, rsd-6, and hrde-1 but not in nrde-2 mutants. This defect

is sensitive to temperature, as observed for the meiotic chromosome segregation and germ cell

immortality defects of gsp-2(yp14) (Fig 1E and 1F).

Methylation of silencing related histone marks is decreased in small RNA

genome silencing, gsp-2 and lab-1 animals

Finally, we examined histone marks that promote gene silencing or activation. H3K9 methyla-

tion can be deposited at silenced genomic loci, and H3K9me and H3S10p marks can function

as a phospho-methyl switch where H3S10 phosphorylation can block some epigenetic regula-

tors, such as HP1, from accessing the adjacent H3K9me mark [47–49]. In late-generation

fertile gsp-2(yp14), lab-1, rsd-5 and spr-5 mutant animals grown at 25˚C, we observed a signifi-

cant decrease in H3K9me2 and H3K9me3 intensity in diakinesis oocytes (Fig 7A and 7B,

Results summarized S6 Table). We also assessed the H3K4me3 transcriptional activation

mark and found that it was significantly decreased in all mutant genotypes at diakinesis
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Fig 6. Increased histone phosphorylation is present in gsp-2(yp14) oocytes. (A-F) Day 2 late stage adults passaged at 25˚C

stained with an pH3S10 antibody (red) and DAPI marking the DNA (cyan). All samples were prepared at the same time and

imaged using identical settings. (A) Wildtype control oocytes show low levels of H3S10p on condensed chromosomes. (B)

gsp-2(yp14) oocytes have increased levels of H3S10p covering the entire chromosomes. (C,E, F) lab-1, rsd-6 and hrde-1
mutants also display increased levels of H3S10p but nrde-2 (D) did not. (N�20) (G-L) Day 2 late generation or sterile adults

passaged at 25˚C stained with an H3S10p antibody (red) and DAPI marking the DNA (cyan). All samples were prepared at
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(Fig 7A and 7B). It is possible that excess H3T3 phosphorylation present in these mutant

strains (Fig 6G–6N) could affect the activities of enzymes that modify histone H3, especially

H3K4. Additionally, the presence of excess phosphorylation on adjacent amino acids could

perturb the binding of the histone methylation antibodies, possibly disrupting our ability to

assess methylation levels.

Discussion

We demonstrate for the first time that gsp-2 and lab-1 are required for germ cell immortality

at 25˚C as strains deficient for these proteins become sterile when they are passaged for several

generations (Fig 1C and 1D). Although PP1/GSP-2 is a general protein phosphatase with

roles in a number of cellular processes including mitosis and meiosis [33], we identified a

the same time and imaged using identical settings. (G) Control oocytes show low levels of localized H3T3p on the condensed

chromosomes. (H) gsp-2(yp14) oocytes contain high levels of H3T3p that are expanded to cover the entire condensed

chromosome. (I-L) lab-1, hrde-1, rsd-6 and nrde-2 all display varying levels of increased H3T3p staining compared to

wildtype controls. (N�20) (M) Quantification of fluorescence intensity of H3S10p staining in N2, gsp-2(yp14) animals grown

at 20˚C and 25˚C, rsd-6, nrde-2, hrde-1, and lab-1 shows significant difference in staining intensity between N2 and mutants

grown at the same temperature (except for nrde-2) and between gsp-2(yp14) mutants grown at 20˚C and 25˚C. (N�20) (N)

Quantification of fluorescence intensity of H3T3p staining in N2, gsp-2(yp14) animals grown at 20˚C and 25˚C, rsd-6, nrde-2,

hrde-1, and lab-1 shows significant difference in staining intensity between N2 and mutants grown at the same temperature

and between gsp-2(yp14) mutants grown at 20˚C and 25˚C. (N�20) Scale bar = 10um.

https://doi.org/10.1371/journal.pgen.1008004.g006

Fig 7. Temperature-sensitive germline immortality exhibit decreased histone methylation. (A-B) Control, rsd-6,

gsp-2(yp14), spr-5 and lab-1 animals were grown for 2 generations at 25˚C and stained for H3K9me2, H3K9me2 and

H3K4me3. (A) Images of diakinesis nuclei are shown (B) Intensity measurements for diakinesis nuclei (N�41). Error

bars for all panels indicate standard deviation.

https://doi.org/10.1371/journal.pgen.1008004.g007
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separation-of-function allele of gsp-2 that displayed an X chromosome non-disjunction pheno-

type that was specific for meiosis (Fig 1B and 1G, S1D and S1E Fig). The incidence of both X

chromosome loss and inviable embryos, which are likely aneuploid for autosomes, was exacer-

bated at high temperature (Fig 1A and 1B), which is consistent with the temperature-sensitive

defect in germ cell immortality observed for gsp-2(yp14) mutants. Stronger defects in segrega-

tion of the X chromosome of gsp-2(yp14) mutants during meiosis could be due to the fact that

X chromosomes tend to have more central crossovers than the autosomes [50]. PP1/GSP-2 is

known to be recruited to meiotic chromosomes by the C. elegans-specific protein LAB-1, and

we found that deficiency for lab-1 elicited transgenerational sterility accompanied by adult

germ cell degeneration phenotypes that were observed in sterile small RNA silencing mutants

(Figs 1F and 4). Together, these results indicate that LAB-1 and GSP-2/PP1 are likely to define

a critical step during meiosis that potentiates genomic silencing and germ cell immortality (Fig

8). Our data that GSP-2 acts in the context of hemizygous transgenes suggests that it may pro-

mote genomic silencing at a stage of germ cell development where homologous chromosomes

physically interact.

We found that gsp-2(yp14) mutants were proficient for nuclear RNA interference and for

the initial generation of silencing of a GFP transgene in response to an exogenous dsRNA trig-

ger (Fig 2A and 2B). However, in subsequent (inheriting) generations, gsp-2(yp14) mutants

failed to maintain GFP transgene silencing, indicating that gsp-2(yp14) is defective for RNAi

inheritance (Fig 2B), a trait that is frequently associated with temperature-sensitive defects in

germ cell immortality [16]. Consistently, propagation of an ‘unpaired’ hemizygous GFP

Fig 8. A model for the roles of GSP-2 and small RNA-mediated silencing in promoting germline immortality. We

propose that both GSP-2 and small RNA-mediated silencing regulate the transgenerational inheritance of the epigenome.

When these pathways are disrupted loss of epigenetic regulation can lead to germline atrophy. (A) GSP-2 modulates small

RNA silencing machinery promoting small RNA silencing potentially through histone dephosphoryation in a manner that

promotes epigenetic silencing, (B) Previous work has shown that PRG-1 is important for heterozygous transgene silencing

(red = active transgene and black = silenced) in a similar manner to GSP-2. GSP-2/LAB-1 could function to silence small

heterozygous regions of DNA, which disrupt meiotic pairing between homologs or cohesion between sister chromatids. This

model reflects data presented here and ideas and data from other studies. The model is meant to provoke thoughtful

experiments, rather than to represent concepts for which there is definitive experimental proof.

https://doi.org/10.1371/journal.pgen.1008004.g008
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transgene for multiple generations resulted in complete transgene silencing for wildtype con-

trols, but only partial transgene silencing in a gsp-2(yp14) mutant background (Fig 2C). These

independent tests indicate that gsp-2(yp14) is deficient for small RNA-mediated genomic

silencing.

Hemizygous transgene silencing occurs in a manner that depends on prg-1/Piwi and associ-

ated piRNAs as well as downstream factors that promote second siRNA biogenesis [23]. How-

ever, we found that piRNA levels were normal in gsp-2(yp14) mutants, and also that late-

generation gsp-2(yp14) strains displayed changes in 22G RNA levels that were similar to those

of spr-5 histone H3K4 demethylase mutants but not to those of rsd-6 small RNA biogenesis

mutants (Fig 2). Moreover, epistasis analysis indicated that there is a weak additive effect when

gsp-2 is combined with the nuclear Argonaute hrde-1 or the small RNA biogenesis factor rsd-6,

but no additive effect when gsp-2 is combined with nrde-2 (Fig 3) [45]. The parallels with spr-5
and nrde-2 mutants suggest that GSP-2 may help to integrate histone silencing modifications

with the response to small RNAs (Fig 8). In this context, the GSP-2 phosphatase could directly

modify histones or a component of the genome silencing machinery that responds to small

RNAs. It is possible that the yp14 mutation compromises the ability of GSP-2 to interact with

either LAB-1 or with small RNA genome silencing proteins in a manner that abrogates the

process of small RNA-mediated genomic silencing.

Hemizygous transgenes cause persistent transgenerational discontinuities in the local pair-

ing of small regions of DNA during meiosis, which promotes transgene silencing in a manner

that depends on GSP-2 (Figs 2C and 8). Although deficiency for LAB-1 perturbs the pairing of

homologous chromosomes during meiosis [26,30], we found that homolog pairing is normal

for gsp-2(yp14) mutants. LAB-1 localizes to the interface between homologous chromosomes

during pachytene, and LAB-1 recruits GSP-2 to nuclei during early stages of meiosis (Fig 8)

[26,27,30]. We therefore suggest that LAB-1/GSP-2 may act at the interface between homolo-

gous meiotic chromosomes to promote small RNA-mediated epigenomic silencing (Fig 8). An

intriguing possibility is that locally ‘unpaired’ hemizygous transgenes could create a structural

discontinuity between paired homologous chromosomes that alters the normal meiotic func-

tion of LAB-1/GSP-2, creating an environment where the chromosome silencing machinery

can respond to small RNAs (Fig 8). Alternatively, the presence of a homologous allele could

provide protection from silencing [51–53].

In mammals, a wave of piRNA production occurs during the pachytene stage of meiosis

[54,55]. Pachytene piRNAs are derived from intergenic regions, are depleted for transposons,

and their functions are not well understood [56]. Given that LAB-1/GSP-2 localizes to the

interface between homologous chromosomes during pachytene [26,30], we suggest that one

purpose of pachytene piRNAs may be to detect and coordinate the response to ‘unpaired’

structural discontinuities that represent de novo transposition events that threaten genome

integrity (Fig 8). Consistently, components of the C. elegans small RNA-mediated genome

silencing machinery, such as the HRDE-1 and PRG-1/Piwi Argonaute proteins, are expressed

throughout germ cell development and are present during meiotic prophase [6,10,13,18].

Consistent with our results, an allele of the Drosophila Protein Phosphatase 1 gene, Su var
(3) 6, was identified as a suppressor of position-effect variegation, which relieves epigenetic

silencing of a transcriptionally active gene that is placed adjacent to a segment of heterochro-

matin [34]. As position-effect variegation is promoted by small RNA-mediated genome silenc-

ing in animals, plants and fungi [57,58], we conclude that PP1 is likely to play a conserved role

in this epigenomic silencing process. It has been suggested that the heterochromatin defect of

Su var (3) 6 mutants could reflect a direct role of PP1 in dephosphorylation of H3S10p, a mark

that results in dissociation of Heterochromatin Protein 1 from heterochromatin [46,59]. More-

over, human PP1 has been shown to dephosphorylate H3T3p, this function is also carried out
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by C. elegans GSP-2 during meiosis [46,59]. One or both of these silencing marks could be rele-

vant to meiotic small RNA-mediated genome silencing.

We propose that the role of LAB-1/GSP-2 in genome silencing may be at a stage of meiosis,

possibly pachytene, when LAB-1/GSP-2 are localized between paired homologs in a manner

that might be capable of responding to small ‘unpaired’ discontinuities between homologs like

hemizygous transgenes (Fig 8). This model raises questions about the significance of increased

H3T3 and H3S10 phosphorylation levels in mature oocytes of gsp-2(yp14) mutants at diakine-

sis when homologous chromosomes are held together only by chiasma [26,27]. H3 phosphory-

lation defects were not observed at earlier stages of germ cell development, but similarly

increased levels of H3T3 phosphorylation were observed at diakinesis for small RNA genome

silencing mutants (Fig 7A and 7B). This could suggest that altered histone phosphorylation

levels could be an indirect effect of dysregulation of heterochromatin, which could affect the

activity of a protein that functions in the context of heterochromatin, such as the H3T3 kinase

Haspin [36]. It is also possible that the diakinesis-specific phosphorylation defect that we

observed reflects a fundamental property of how GSP-2 promotes genomic silencing in

response to small RNAs. For example, the structure that triggers genomic silencing could

occur at pachytene when homologous chromosomes are paired, but the role of GSP-2 in

responding to small RNAs could occur at a later stage of germ cell development like diakinesis,

potentially via H3 phosphorylation.

Work in several organisms, particularly in fungi and Drosophila, has shown that local

regions of heterozygosity are prone to silencing during meiosis in a small RNA dependent

manner (reviewed by [22]). Our study defines a meiotic process that links transgenerational

small RNA-mediated genome silencing with the structure of paired homologous chromo-

somes during meiosis. Given that endogenous small RNAs promote germ line stem cell main-

tenance, oogenesis and meiosis itself [60,61], we suggest that small RNA pathways and germ

cell development have evolved to become mutually reinforcing processes.

Materials and methods

Strains

All strains were cultured at 20˚C or 25˚C on Nematode Growth Medium (NGM) plates seeded

with E. coli OP50. Strains used include Bristol N2 wild type, gsp-2(tm301) III, gsp-2(yp14) III,
lab-1(tm1791) I, cpIs12[Pmex-5::GFP::tbb-2 3'UTR + unc-119(+)] II, hrde-1(tm1200) III, rsd-6
(yp11) I, nrde-2(gg95) II, rbr-2(tm1231) IV, smc-3(t2553) III, coh-4(tm1857) V, coh-3(gk112) V,

air-2(or207) I, unc-32(e189) III, unc-13(e450) I, unc-24(e1172) IV. smc-3(t2553) is a tempera-

ture sensitive missense mutation, and coh-4(tm1857)/coh-3(gk112) are deletions.

Germline mortality assay

Worms were assessed for the Mortal Germline phenotype using the assay previously described

[2]. L1 or L2 larvae were transferred for all assays. After passaging plates that yielded no addi-

tional L1 animals were marked as sterile. Log-rank analysis was used to determine differences

of transgenerational lifespan between strains.

DAPI staining

DAPI staining was performed as previously described. L4 larvae were selected from sibling

plates and sterile adults were singled as late L4s, observed 24 hours later for confirmed sterility,

and then stained 48 hours after collection.
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RNA FISH

DNA oligonucleotide probes coupled with a 50 Cy5 fluorophore were used to detect repetitive

element expression. The four probes used in this study were as follows: tttctgaaggcagtaattct,

CeRep59 on chromosome I (located at 4281435–4294595 nt); agaattactgccttcagaaa, antisense

CeRep59 on chromosome I; caactgaatccagctcctca, chromosome V tandem repeat (located at

8699155–8702766 nt); and gcttaagttcagcgggtaat, 26S rRNA. The strains used for RNA FISH

experiments were rsd-6(yp11), gsp-2(yp14), and N2 Bristol wild type. Staining was performed

as described by Sakaguchi et al., 2014.

Immunofluorescence

Adult hermaphrodites raised at 20˚C or 25˚C were dissected in M9 buffer and flash frozen on

dry ice before fixation for 1 min in methanol at -20˚C. After washing in PBS supplemented with

0.1% Tween-20 (PBST), primary antibody diluted in in PBST was used to immunostain over-

night at 4 ˚C in a humid chamber. Primaries used were 1:500 pH3S10 (Millipore, 06570),

1:4000 pH3T3 (Cell Signaling, D5G1I, Rabbit) 1:50 GSP-2 antibody (Colaiacovo lab), 1:300

LAB-1 antibody (Colaiacovo lab), 1:200 HIM-8 antibody raised in guinea pig (Dernburg lab),

1:200 SYP-1 antibody raised in goat, 1:500 H3K9me3 (Abcam ab8898), 1:500 H3K9me2

(Milipore Upstate 07–441), 1:500 H3K4me3 (Active Motif 39159). Secondary antibody staining

was performed by using an Cy3 donkey anti-mouse or Cy-5 donkey anti-rabbit overnight at

4˚C. All images were obtained using a LSM 710 laser scanning confocal and were taken using

same settings as control samples. Images processed using ImageJ and Icy (http://icy.

bioimageanalysis.org/). Intensity quantification was done by measuring total fluorescence in

individual condensed chromosomes and subtracting the background levels obtained from

mitotic nuclei as nucleoplasm levels varied greatly. Histone methylation intensity measurements

were measured without background subtraction since only very few background was present.

RNAi assays

N2 wildtype, gsp-2, rsd-6 and nrde-2 animals were grown on lin-26 RNAi clones and the prog-

eny of 10 worms each were scored for Embryonic Lethality.

Transgene silencing assay

cpIs12 and gsp-2; cpIs12 worms were scored for GFP expression on NGM plates and then

transferred to RNAi plates targeting GFP. The next generation (that was laid on GFPi plates)

were scored for GFP expression and their sisters were removed and transferred back to NGM

plates. Worms were propagated for multiple generations on NGM and scored each time for

GFP expression. Both GFP reporter gsp-2 doubles were created by marking with dpy-17.

Heterozygous transgene silencing

cpIs12 was maintained as a heterozygote over dpy-10 unc-4 for gsp-2 strains that were heterozy-

gous for cpIs12, gsp-2 remained mutant for the entire assay and cpIs12 was balanced over dpy-
10 unc-4.

Genome sequence analysis

Paired sequence reads (2X100 nucleotide long) were mapped to the C. elegans reference

genome version WS230 (www.wormbase.org) using the short-read aligner BWA [62]. The

resulting alignment files were sorted and indexed with the help of the SAMtools toolbox [63].

The average sequencing depths for the mutant and wild-type N2 strains were 116x and 71x,
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respectively. Single-nucleotide variants (SNVs) were identified and filtered with SAMtools and

annotated with a custom Perl script using gene information downloaded from WormBase

WS230. Candidate SNVs in the mutant strain already present in the N2 strain were eliminated

from further consideration.

The raw sequence data from this study have been submitted to the NCBI BioProject (http://

www.ncbi.nlm.nih.gov/bioproject) under accession number PRJNA395732 and can be

accessed from the Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) with

accession number SRP113543.

Small RNA sequence analysis

5’ independent small RNA sequencing was performed as described previously [13], using one

repeat for each time-point of N2 wildtype, rsd-6 and spr-5 at 25˚C. Custom Perl scripts were

used to select different small RNA species from the library. To map small RNA sequences to

genes, reads were aligned to the C. elegans ce6 genome using Bowtie, Version 0.12.7, requiring

perfect matches [64]. Data was normalized to the total number of aligned reads and 1 was

added to the number of reads mapping to each gene to avoid division by zero errors. To

map 22G sequences to transposons and tandem repeats, direct alignment to the transposon

consensus sequences, downloaded from Repbase (Ver 17.05) or repeats obtained from the ce6

genome (WS190) annotations downloaded from UCSC as above, was performed using Bowtie

allowing up to two mismatches and reporting only the best match. Uncollapsed fasta files were

used for these alignments to compensate for the problem of multiple identical matches. Data

was normalized to the total library size and 1 was added to the number of reads mapping to

each feature to avoid division by zero errors. In order to analyze data from rsd-2 mutants

grown at 20˚C [65], Fasta files were downloaded from the Gene Expression Omnibus and

uncollapsed using a custom Perl script before aligning to transposons or tandem repeats as

above. Analysis of data was carried out using the R statistical language [66].

The small RNA sequencing data from this study are available from GEO database accession

number GSE126531.

Supporting information

S1 Fig. Mapping and non-complementation test of gsp-2(yp14). (A) Map of genomic region

surrounding gsp-2 on Chr. III. (B) Mapping of gsp-2(yp14) between dpy-17 and unc-32 on

Chr. III placing yp14 at -1.08. (C) Non-complementation test for Him phenotype between gsp-
2(yp14) and gsp-2(tm301) showed an incidence of males of 5.7% at 20˚C. (D-E) Analysis of

incidence of males showed no jackpots of males at in gsp-2(yp14) animals when shifted as L1’s

to 25˚C or as L4’s to 25˚C. (F) F1 gsp-2(yp14)/+ progeny scored for HIM do not exhibit a HIM

phenotype.

(TIF)

S2 Fig. Repetitive regions in the genome are desilenced in gsp-2(yp14) animals. (A-F) Con-

focal images of Cy5-labeled RNA FISH probes (green) and DAPI-stained nuclei (blue). (A,C,

E) RNA FISH probes show expression of Ch V repeats in the germlines of gsp-2(yp14) (C) and

rsd-6 (E) animals grown at 25˚C and only embryonic expression in wildtype controls (A). (B,

D,F) Probes against CeRep59 repeats reveal similar germline expression in gsp-2(yp14) (D)

and rsd-6 (F) animals and embryo-only expression in wildtype controls (B). All images were

taken under the same condition. The germ line is outlined with white line. Scale bar = 30um.

(TIF)

Phosphatase GSP-2/PP1 promotes germline immortality during meiosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008004 March 28, 2019 21 / 26

http://www.ncbi.nlm.nih.gov/bioproject
http://www.ncbi.nlm.nih.gov/bioproject
https://www.ncbi.nlm.nih.gov/sra
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008004.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008004.s002
https://doi.org/10.1371/journal.pgen.1008004


S3 Fig. spr-5 and gsp-2 show overlap in their small RNA populations. (A) Multigenerational

inheritance assay using a second transgene pkls32 in the background of hrde-1 and gsp-2
mutants. (B-E) Comparison of small RNAs in rsd-6, gsp-2 and spr-5 mutants grown at 25˚C:

(B) rsd-6 vs gsp-2, (C) spr-5 vs gsp-2, (D) rsd-6 vs spr-5 and (E) N2 vs gsp-2. (F) Global

22G-RNA levels relative to the levels of small RNAs in early generation N2 wildtype grown at

25˚C, for the indicated strain grown at 25˚C. Boxplots show interquartile range, with a line at

the median and with whiskers extending to the furthest point that is < = 1.5 times the inter-

quartile range from the median. (G) miRNA levels relative to miRNAs in early generation N2

wildtype grown at 25˚C, for the indicated strain grown at 25˚C. Interquartile range and whis-

kers are as for (F).

(TIF)

S4 Fig. lab-1 but not gsp-2(yp14) exhibited significant pairing defects in late pachytene.

(A) Images show HIM-8 localization at mid-pachytene for control, rsd-6, gsp-2(yp14), spr-5
and lab-1 animals. (B) To quantify pairing each germline was divided in 5 equal zones illus-

trated here.

(TIF)

S5 Fig. Loss of cohesion or gsp-2(tm301) did not cause germline atrophy. (A) 100% of adult

gsp-2(tm301) animals displayed normal germline size by DAPI staining (N = 30). P-values

present in S4 and S5 Tables. Scale bar = 10um. (B) DAPI staining and germline analysis

showed no germline atrophy in smc-3 and coh-3; coh-4 mutants and minor defects in air-2 ani-

mals suggesting loss of chromosome cohesion alone does not cause germline atrophy.

(N = 30).

(TIF)

S6 Fig. LAB-1 localized normally at diakinesis in gsp-2(yp14) and small RNA genome

silencing mutants. Images show LAB-1 and SYP-1 localization at early to late diakinesis for

control, rsd-6, gsp-2(yp14), spr-5 and lab-1. One chromosome was magnified to show proper

localization on the long and short chromosome arms.

(TIF)

S1 Table. Expected vs observed embryonic lethality.

(DOCX)

S2 Table. Wilcox test comparing log2(normalized 22G LATE+1)-log2(normalized 22G

EARLY +1) to log2 (normalized 22G LATE N2+1)-log2(normalized 22G EARLY N2+1).

(DOCX)

S3 Table. Wilcox test comparing normalized miRNAs to normalized miRNAs in N2 early

[alternative = less].

(DOCX)

S4 Table. P-values for adult germline defects in gsp-2 and temperature-sensitive small

RNA mutants.

(DOCX)

S5 Table. P-values for L4 germline defects in gsp-2 and temperature-sensitive small RNA

mutants.

(DOCX)

S6 Table. Summary of results.

(DOCX)
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