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Abstract

Objectives

The objective of this report was to provide a review of the minipig intraoral dental implant

model including a meta-analysis to estimate osseointegration and crestal bone remodeling.

Methods

A systematic review including PubMed and EMBASE databases through June 2021 was

conducted. Two independent examiners screened titles/abstracts and selected full-text arti-

cles. Studies evaluating titanium dental implant osseointegration in native alveolar bone

were included. A quality assessment of reporting was performed. Random-effects meta-

analyses and meta-regressions were produced for bone-implant contact (BIC), first BIC,

and crestal bone level.

Results

125 out of 249 full-text articles were reviewed, 55 original studies were included. Quality of

reporting was generally low, omissions included animal characteristics, examiner masking/

calibration, and sample size calculation. The typical minipig model protocol included surgical

extraction of the mandibular premolars and first molar, 12±4 wks post-extraction healing,

placement of three narrow regular length dental implants per jaw quadrant, submerged

implant healing and 8 wks of osseointegration. Approximately 90% of studies reported unde-

calcified incandescent light microscopy histometrics. Overall, mean BIC was 59.88% (95%

CI: 57.43–62.33). BIC increased significantly over time (p<0.001): 40.93 (95%CI: 34.95–

46.90) at 2 wks, 58.37% (95%CI: 54.38–62.36) at 4 wks, and 66.33% (95%CI: 63.45–69.21)

beyond 4 wks. Variability among studies was mainly explained by differences in observation

interval post-extraction and post-implant placement, and implant surface. Heterogeneity

was high for all studies (I2 > 90%, p<0.001).

Conclusions

The minipig intraoral dental implant model appears to effectively demonstrate osseointegra-

tion and alveolar bone remodeling similar to that observed in humans and canine models.
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Introduction

Per-Ingvar Brånemark studying micro-circulation using a rodent model fortuitously discov-

ered that devices made from titanium while biocompatible also formed an intimate relation-

ship with adjoining bone [1]. This initial discovery was confirmed in humans and every year

millions of patients benefit from titanium dental implant-anchored prosthetic rehabilitations.

Animal models have been used extensively to study soft and hard tissue responses to dental

implant materials and designs over the last 50 years [2]. Thousands of animal studies have

been published reporting on novel implant technologies, surgical techniques, and alveolar

bone augmentation strategies. The use of rodent models and extra-oral sites in large animal

models provide insights into the biology of osseointegration and represent useful screening

tools of new designs and technologies; however, they fail to mimic the complexity of the oral

environment and uniqueness of the alveolar bone. Only large animal intraoral models allow

the use of clinically relevant dental implants and prosthetic components.

Historically, canine and nonhuman primate platforms have been preferred for oral/maxil-

lofacial research, however porcine/minipig models have emerged as an important alternative

[3,4]. The minipig has been widely used in biomedical research including cardiovascular,

orthopedic, and dermatologic settings due to similarities with humans in the anatomy and

physiology [5]. Regarding the oral cavity, minipigs feature deciduous, mixed, and permanent

dentitions; the first permanent molar is the first permanent tooth to erupt, and there is an

extended mixed dentition period. Whereas the minipig and humans share tooth types, the

minipig features 6 maxillary and mandibular incisors rather than 4, and 8 maxillary/mandibu-

lar premolars rather than 4. Periodontally healthy minipigs feature shallow to moderate prob-

ing depths [3]. Keratinized tissue width averages 2.7±0.8mm [6]. Minipig and humans have

similar bone formation and remodeling rates [7]. Pilawski et al. (2021) compared maxillary

alveolar bone structure in minipigs and humans using radiography, histology, and immuno-

histochemistry [8]. Histologically, the collagen organization, osteocyte density, alveolar bone

remodeling, and mineral apposition rate were similar. Radiographically, bone architecture,

bone mineral density, and bone volume were also comparable [8]. Bone formation in gap

defects has been estimated to be 1.2–1.5mm per day in minipigs and 1.0–1.5mm per day in

humans [2].

Herein, we report a systematic review and meta-analysis of a minipig intraoral dental

implant model used to evaluate dental implant technologies and study peri-implant tissue

healing. Histological observations from minipig, canine and human studies are discussed in a

clinical perspective.

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) was fol-

lowed during the review process and reporting [9].

Focused questions

The literature was systematically searched to answer the following focused questions:

a. What are the osseointegration and crestal bone remodeling levels in the minipig intraoral

dental implant model?

b. Which factors explain the different results observed in the literature?
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Search strategy

An electronic search of MEDLINE (via PubMed) and EMBASE up to June 2021 was con-

ducted using the following combination of MeSH terms:

For PubMed

((((dental implant[MeSH Terms]) OR (dental implantation[MeSH Terms])) OR (tooth

implantation[MeSH Terms])) AND ((miniature swine[MeSH Terms]) OR (miniature pig

[MeSH Terms]) OR (micropig)))

For EMBASE

(’minipig’ OR ’miniature swine’ OR ’mini pig’ OR ’miniature pig’ OR ’micropig’) AND

(’tooth implant’ OR ’dental implant’ OR ’tooth implantation’) AND [embase]/lim

A manual search of the list of references of the included studies was performed. No efforts

were undertaken to search the grey literature.

Study selection

Original articles using minipigs, intraoral sites, titanium dental implants, and evaluating

osseointegration histologically were included. Publications without proper statistical analysis

including central tendency measures (means or medians) and variability (standard deviation

or data range) were excluded from the analysis.

Animals’ characteristics. Only studies with data of systemically healthy animals were

included. For those studies that also included animals with systemic diseases/conditions, only

data from healthy controls were used.

Type of treatments. Only data derived from implants placed in native bone were

included. For studies that placed implants in augmented bone or that carried out implant

placement concomitantly with guided bone regeneration, only data from control groups were

used.

Outcomes

The primary outcome of interest was bone-implant contact (BIC). Secondary outcomes were

distance between the implant platform and the first bone-implant contact (first BIC) and dis-

tance between the implant platform and the crestal alveolar bone. Osseointegration was

defined as the percentage of BIC measured along the length of the implant within the exten-

sion of alveolar bone/total perimeter of the implant. First BIC was defined as the distance

between the most coronal BIC and the implant platform. Crestal bone level/loss was defined as

the distance between the most coronal extent of crestal bone along the implant and the implant

platform.

Data synthesis

Two reviewers (MLM and AFS) independently screened titles and abstracts through the data-

bases. Any disagreement was solved by consensus between the reviewers or by a third reviewer

(CS). One examiner (MLM) extracted data from the selected studies, and data was reviewed

for completeness and accuracy (CS).

Studies characteristics and quality of reporting

Studies characteristics, including sample, preparatory and implant placement protocols, histol-

ogy performed, and main findings are summarized in table format. Quality assessment of the

studies included in the meta-analyses was evaluated based on selected items from ARRIVE

checklist (see S1 Table) [10].
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Statistical analysis

Meta-analyses were performed for histological parameters for which data could be extracted

from at least 3 studies. Articles reporting means and standard deviations were included in the

meta-analysis. Studies that only reported medians, data range and sample size were also

included, and means and standard deviations were calculated using appropriate formulas [11].

Studies that only presented results in graphic format were not included. Data analysis was per-

formed using statistical software (Stata 17 for Mac, Stata Corporation, College Station, TX,

USA). Random effects models were used to estimate the effect sizes and 95% confidence inter-

vals (CI) [12]. Random-effects meta-regression analysis was carried out to investigate factors

(moderators) that could help explain between-study heterogeneity. Animal strain and age,

healing after extraction and implant placement, staging, type of healing, loading and implant

surface were considered. The restricted maximum likelihood method was used. The heteroge-

neity of effects among studies was assessed by calculating I2 and was broadly categorized as

low, moderate and high following the I2 statistics cut-off points suggested by Higgins et al.

(2003): 25%, 50%, and 75% [13]. Publication bias was investigate using funnel plots and

Egger’s test for funnel plot asymmetry [14]. Exploratory analyses investigating quality of

reporting and study funding were done. A total score for quality of reporting was generated by

adding scores for each item as follows: 0 = not reported; 1 = unclear; 2 = reported. Funding

was categorized as public, private, combined public and private, and unclear.

Ethics approval was not required for this systematic review and meta-analysis.

Results

Studies selection and characteristics

The bibliographic search yielded 279 publications (Fig 1) and a clear increase in the number of

articles published overtime was observed. Agreement between reviewers was 85% for titles and

80% for abstracts selection. Fifty-five studies [15–69] were included in the quantitative analysis

and the most frequent reason for exclusion from the review was lack of BIC data (47.27% of

studies) (S2 Table). No additional studies were found in the reference list of studies included.

Studies are summarized in S3 Table. Most studies focused on evaluating new implant sur-

face technologies (47.27%), implant material (10.91%), implant design (7.27%), and surgical

protocol (7.27%). The minipig strain most used was the Göttingen (30.90%), followed by

Lanyu small-ear pigs (7.27%). The animal’s age ranged from 12 to 72 months and the weight

average was 48.99±5.57 kg. Most studies used only females (49.09%). The average number of

animals included in the studies was 10.10±5.57 (range 3–30).

Premolars and first molars were usually extracted to provide space for posterior implant

placement; few studies extracted incisors or placed implants in diastemas. Immediate implant

placement occurred in only 5 studies (9.09%). For delayed implant placement studies, healing

following extractions ranged between 8 and 32 wks; most studies allowed for 12 wks of healing

post-extraction (36.36%). The average number of implants placed per animal was 6.49±3.63

(range: 2–20), and most studies placed implants in the mandible only (64%). Most studies used

implants with 3.5mm in diameter (range: 3.3–6.0mm) and 8mm in length (range: 5-15mm).

The average healing time following implant placement was 8.87±10.76 wks (range: 1–96).

Delayed implant placement and submerged healing were used in 80% and 64% of studies,

respectively. Transmucosal healing was used in 20 out of 55 (36.4%) studies; 14 out of 20 (70%)

studies used healing abutments or stock abutments/healing caps. Four (20%) studies used stock

abutments and provisional restorations, and two (10%) studies used stock abutments and

metallic/ceramic crowns. Approximately 60% of studies reported the use of antibiotics following
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implant placement. Chemical plaque control was reported by 2 (3.64%) studies and in 4 (7.27%)

studies a professional dental cleaning was performed during the follow up time.

All studies used the cutting-grinding technique for histologic preparation of undecalcified sam-

ples and 90% used light microscopy for histological evaluation. A buccal-lingual orientation was

used in 55% of the studies and section thickness�50μm was used in 51% of the studies (range:

50-150μm) when light microscopy was used. Only 15 studies (27.3%) reported that more than

one section was used for histological analysis. Toluidine blue staining was used in 45% of studies.

Quality of reporting

Reporting of selected items from the ARRIVE checklist are presented in Fig 2 and S4 Table.

Fig 2A presents the distribution of the abovementioned items for the selected studies. Overall,

Fig 1. Flowchart describing the study selection process.

https://doi.org/10.1371/journal.pone.0264475.g001
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94.54% of studies described the experimental groups, 74.55% reported animal loss, 56.36%

allocated treatment using randomization, and 65.45% described the surgical protocol for

implant placement. Most studies described the surgical protocol for implant placement as fol-

lowing the manufacturer’s protocol. Details of animal used were fully described by 40% of the

studies. Low quality was related to absence of sample size calculation (94.54% of studies), cali-

bration (83.64% of studies), and masking/blinding (69.09% of studies). Implant loss, an impor-

tant adverse event, was reported in 76.36% of studies, ranging between 0 and 47 implants, and

on average 6.29±11.42 were reported lost.

Primary outcome

Table 1 presents BIC according to healing period. Overall, BIC was 59.88% (95%CI: 57.43–

62.33). BIC increased significantly during the first month of healing levelling off afterwards

(Fig 3A). A high degree of variability was observed in each healing period (Fig 3B). Meta-

regressions were used to explore between-study heterogeneity, and crude and adjusted BIC

estimates are presented according to important covariates in Table 2. In the unadjusted analy-

sis, between-study heterogeneity could be explained by animal age, alveolar ridge healing time,

immediate implant placement, implant loading, implant healing time, and implant surface.

In the adjusted analysis, healing time following extractions, healing time after implant

placement, and implant surface remained statistically significant factors. Studies that used

more than 12 wks of healing following extraction and more than 5 wks of healing after implant

Fig 2. a. Quality assessment of the 55 studies included in the systematic review. b. Bubble plot of BIC% and quality assessment scores.

https://doi.org/10.1371/journal.pone.0264475.g002

Table 1. Osseointegration (BIC %) according to observation interval (wks).

Observation interval Mean 95%CI I2 p-value

1–2 40.93 34.95 46.90 97.43 <0.001

3–4 58.37 54.38 62.36 94.59 <0.001

5–6 65.79 58.53 73.05 96.63 <0.001

7–8 69.13 64.82 73.43 98.19 <0.001

9–12 58.49 48.64 68.34 99.39 <0.001

13–16 68.32 60.05 76.58 96.60 <0.001

17 64.33 58.33 70.34 97.51 <0.001

Overall 59.88 57.43 62.33 98.90 <0.001

BIC: Bone-implant contact; CI: Confidence interval; I2: Heterogeneity index.

https://doi.org/10.1371/journal.pone.0264475.t001
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Fig 3. a. Predicted bone-implant contact (BIC) over time. b. Box plot of bone-implant contact (BIC) according to healing time.

https://doi.org/10.1371/journal.pone.0264475.g003

Table 2. Unadjusted and adjusted osseointegration (BIC %) estimates according to covariates (meta-regression).

Crude Adjusted

Mean 95%CI Mean 95%CI

Age <18 months 64.96A 61.13 68.78

18–24 months 58.62AB 53.53 63.71

>24 months 56.90B 51.84 61.95

Arch Maxilla 60.21A 56.40 64.03

Mandible 60.21A 56.99 63.43

Maxilla/Mandible 52.78A 37.20 68.37

Ridge healing �8 wks 56.89A 51.81 61.97 55.90A 51.49 60.31

>8 -�12 wks 59.26A 55.27 63.25 58.41A 55.13 61.69

>12 wks 63.27B 59.62 66.92 65.84B 61.96 69.71

Immediate Delayed 61.29A 58.82 63.76

Immediate 39.21B 30.79 47.63

Staging Submerged 58.77A 55.85 61.69

Mixed 61.99A 52.68 71.30

Non-submerged 66.24A 62.03 70.44

Loading No 59.21A 56.62 61.80

1–12 wks 70.94AB 67.38 74.49

>12 wks 74.44B 67.28 81.60

Implant healing �2 wks 40.93A 34.95 46.90 37.50A 32.09 42.91

>2 - �4 wks 58.37B 54.38 62.36 58.42B 54.45 62.40

�5 wks 66.33C 63.45 69.21 67.23C 64.39 70.08

Surface Machined 54.04A 41.82 66.25 56.75AB 47.09 66.40

Coated 54.04A 49.10 58.99 53.59A 48.50 58.68

Mod rough/not SLA 60.63A 57.04 64.21 58.74A 55.47 62.00

SLA 62.83B 58.36 67.29 65.32BC 61.69 68.95

BIC: Bone-implant contact; CI: Confidence interval; I2: Heterogeneity index; I2 > 90% for all models; estimates followed by the same capital letters did not differ

significantly (p>0.05).

SLA: Sandblasted acid-etched.

https://doi.org/10.1371/journal.pone.0264475.t002
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placement had significantly higher BIC. Studies testing implants with SLA surface had signifi-

cantly higher BIC than studies testing other surfaces. An exploratory meta-regression showed

an inverse relationship between quality of reporting and BIC (coef = -0.99±0.35, p = 0.004).

The scatterplot of the effect sizes against the quality of reporting showed that BIC decreased

from approximately 65% for studies with low quality to 50% for studies with high quality (Fig

2B). No significant differences were observed for study funding (p = 0.06).

Heterogeneity was high for all random effect models (I2 > 90%). Evidence of publication

bias was observed in the funnel plot (Fig 4) and the Egger test was statistically significant

(p<0.001).

Secondary outcomes

Table 3 presents first BIC and crestal bone level according to implant site. Nine studies

reported combined buccal and lingual sites first BIC averaging 1.24mm (95%CI: 0.83–1.66).

Four studies reported buccal and lingual sites separately first BIC averaging 1.5mm. Four stud-

ies reported crestal bone level separately for buccal and lingual sites mean bone level approxi-

mating 1.5mm. No studies reported crestal bone level combining buccal and lingual sites.

Fig 4. Funnel plot.

https://doi.org/10.1371/journal.pone.0264475.g004
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Discussion

In summary, the present systematic review included 55 studies evaluating osseointegration

and crestal bone remodeling using a minipig intraoral dental implant model. Most studies

evaluated novel dental implant surfaces. Great variability in minipig strain and age, sample

size, healing time, and surgical approach was observed. Approximately 90% of studies reported

undecalcified histology and incandescent light microscopy histometrics. The quality of report-

ing assessment identified that most studies did not sufficiently report several methodological

items, including animal characteristics and husbandry, sample size calculation, examiner cali-

bration. masking/blinding, and statistical analysis. Studies typically extracted the mandibular

premolar and first molar teeth and allowed 12 wks post-extraction healing. Three narrow,

8–10 mm implants were placed in contralateral jaw quadrants and allowed to osseointegrate

submerged for 8 wks. The overall mean BIC was approximately 60% for the minipig intraoral

dental implant model; BIC increased steadily during the first 5–6 wks and remained stable

onwards. Between-study heterogeneity could be explained by healing time post-extraction and

after implant placement, and implant surface. Few studies evaluated bone remodeling around

the implant platform; the mean first BIC distance was approximately 1.2mm and crestal bone

level was 1.5mm.

Few studies have evaluated dental implant osseointegration in humans [70–77]. For instance,

Lang et al. (2011) compared osseointegration of two sandblasted acid-etched surface mini-

implants (SLA and SLActive, Straumann1, Basel, Switzerland) in the posterior mandible [71].

BIC increased from 12.2–14.8% wk 2, to 32.4–48.3% wk 4, to 62% wk 6. Cecchinato et al. (2012)

evaluated osseointegration of a fluoride-treated nanostructured mini-implant (Osseospeed1,

Astra, Charlotte, NC USA) in individuals with and without history of periodontitis [72]. Overall

BIC averaged 58.4±13.0% following 12 wks of osseointegration. Still others observed a mean

BIC ranging from 45% to 75% following 12 wks of osseointegration depending on site charac-

teristics and surgical/loading protocols [73,74,76]. Collectively, these estimates of osseointegra-

tion are comparable with mean BICs observed in minipigs ranging from 40.9% to 69.1%

depending on observation interval. Nevertheless, whereas large animal models may provide

estimates of osseointegration comparable with that in humans, it is prudent to caution that

bone formation/remodeling [78] and osseointegration [79] appears faster than in humans.

From a regulatory standpoint, several agencies, including the United States Food and Drug

Administration, follow the technical specifications related to preclinical evaluation of dental

implant systems outlined by the International Organization for Standardization [80]. The

specifications indicate that predicate implant devices intended for human clinical use should

be tested in intraoral sites with opposing teeth. The animals should have a non-herbivorous

pattern of masticatory jaw movements and allow for long-term oral hygiene to be maintained.

Although domestic pigs have been used to test dental implants [81–84], their increased size

Table 3. Crestal bone level and first BIC according to implant site (in mm).

Site n studies Mean (95% CI) I2 p-value

First bone-implant contact Buccal 4 1.65 (1.23–2.07) 91.37% <0.001

Lingual 4 1.55 (1.11–2.00) 93.56% <0.001

Buccal+Lingual 9 1.24 (0.83–1.66) 98.19% <0.001

Crestal bone level Buccal 4 1.34 (0.81–1.86) 100.00% <0.001

Lingual 4 1.36 (0.78–1.94) 97.99% <0.001

Buccal+Lingual NA NA

BIC: Bone-implant contact; CI: Confidence interval; I2: Heterogeneity index; NA: Not available.

https://doi.org/10.1371/journal.pone.0264475.t003
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and weight at an early age leads to challenges in husbandry and handling [85]. Nonhuman pri-

mate and canine models also fulfill these requirements, however their use has been logistically

challenging opposed by public opinion [2,86,87]. In comparison to canines, minipigs require

more specialized facilities and veterinary care; animal availability and cost might be an issue

depending on age/sex and number of authorized vendors.

For decades the canine model has been the preferred platform in implant dentistry due to

its availability, handling, anatomic and biologic similarities. Several studies have observed

comparable osseointegration rates for the canine and minipig intraoral implant models [88]. A

meta-analysis comparing titanium and zirconia implants reported an overall BIC of 60.4%

(95%CI: 52.8–67.9%) for titanium implants using a wide range of healing intervals [89]. Abra-

hamsson et al. (2004) observed a BIC approximating 60% at 12 wks evaluating sandblasted and

acid-etched implants [90]. Cochran et al. (1998) reported a mean BIC of 68% for SLA and 78%

for titanium plasma sprayed implants at 12 months indicating stable long-term osseointegra-

tion [29]. Our laboratory has demonstrated BICs ranging between 63% and 78% for anodized

implants at 8 wks in a series of studies evaluating surgical techniques, implant materials, sur-

face characteristics, and restorative approaches [91–93].

The quality assessment of reporting in this review show a need for more stringent reporting

that readers can evaluate the quality of the studies and researchers replicate methodologies.

Only one study was judged to provide a complete description of the methods and results; most

studies exhibited multiple omissions. Future reports using the minipig intraoral dental implant

model should follow the ARRIVE guidelines [10]. Special attention should be given to sample

size calculation, randomization, and examiner masking/blinding to minimize the number of

underpowered studies and risk of bias. We did not formally apply established risk of bias tools

for animal research such as SYRCLE [94] due to the difficulty to adapt its use to large animal

studies and large number of studies that did not report methodology appropriately. Neverthe-

less, an exploratory analysis showed an inverse relationship between quality of reporting and

osseointegration, which may indicate some inflation in the estimates.

This systematic review underscores the safety and efficacy of the surgical procedures and

implant technologies tested by most studies using the minipig intraoral dental implant model

as measured by clinically acceptable levels of osseointegration, crestal remodeling and short-

term survival rates. In perspective, the cumulative implant failure rate in humans for commer-

cially available implants with moderately rough surfaces reviewed herein has been estimated to

be approximately 4% after 10 or more years in function [95]. This provides indirect evidence

that the osseointegration level observed within 3–4 months following implant placement in

minipigs could translate into meaningful long-term clinical outcomes for patients barring

technical and biological complications.

The experimental design complexity, including multiple experimental groups and healing

times, observed in this review underscores the tension between a desire to reduce the number

of animals used in research, one of the pillars of the 3Rs by Russel and Burch [96], while col-

lecting as much data as possible within a single experiment. However well intentioned, this

approach is clearly generating a high level of data heterogeneity, which contributes to unreli-

able results and potentially to reporting bias. The use of simplified study designs such as the

split-mouth design with multiple observations per experimental group/animal (duplicates,

triplicates) would likely yield most robust results.

Conclusions

Despite reported great variability observed, preferred characteristics for the minipig intraoral

dental implant model have emerged, including observation intervals, implant placement
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approaches, number and size of implants, and outcomes assessment. Osseointegration esti-

mates were comparable to other large animal models and human studies indicating that the

minipig model can provide meaningful information for clinical applications.
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