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Major depressive disorder (MDD) is one of the most commonmental health disorders that

can affect sleep, mood, appetite, and behavior of people. Multimodal neuroimaging data,

such as functional and structural magnetic resonance imaging (MRI) scans, have been

widely used in computer-aided detection of MDD. However, previous studies usually

treat these twomodalities separately, without considering their potentially complementary

information. Even though a few studies propose integrating these two modalities, they

usually suffer from significant inter-modality data heterogeneity. In this paper, we propose

an adaptive multimodal neuroimage integration (AMNI) framework for automated MDD

detection based on functional and structural MRIs. The AMNI framework consists of four

major components: (1) a graph convolutional network to learn feature representations

of functional connectivity networks derived from functional MRIs, (2) a convolutional

neural network to learn features of T1-weighted structural MRIs, (3) a feature adaptation

module to alleviate inter-modality difference, and (4) a feature fusion module to integrate

feature representations extracted from two modalities for classification. To the best

of our knowledge, this is among the first attempts to adaptively integrate functional

and structural MRIs for neuroimaging-based MDD analysis by explicitly alleviating inter-

modality heterogeneity. Extensive evaluations are performed on 533 subjects with

resting-state functional MRI and T1-weighted MRI, with results suggesting the efficacy

of the proposed method.

Keywords: major depressive disorder, resting-state functional MRI, structural MRI, feature adaptation, multimodal

data fusion

1. INTRODUCTION

Major depressive disorder (MDD) is one of the most common mental health disorders,
affecting as many as 300 million people annually (Organization et al., 2017). This disease
is generally characterized by depressed mood, diminished interests, and impaired cognitive
function (Alexopoulos, 2005; Pizzagalli et al., 2008; Otte et al., 2016). Despite decades of research in
basic science, clinical neuroscience and psychiatry, the pathological, and biological mechanisms of
major depression remain unclear (Holtzheimer III and Nemeroff, 2006). The traditional diagnosis
of MDDmainly depends on criteria from the diagnostic and statistical manual of mental disorders
(DSM) and treatment response (Papakostas, 2009), which could be subjective and susceptible. As a
robust complement to clinical neurobehavior-based detection, computer-aided diagnosis based on
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neuroimaging data hold the promise of objective diagnosis and
prognosis of mental disorders (Foti et al., 2014; Liu and Zhang,
2014; Bron et al., 2015; Shi et al., 2018; Zhang L. et al., 2020; Buch
and Liston, 2021).

Multiple neuroimaging modalities, such as resting-state
functional magnetic resonance imaging (rs-fMRI) and structural
MRI (sMRI), can provide complementary information in
discovering objective disease biomarkers, and have been
increasingly employed in automated diagnosis of various
brain disorders (Hinrichs et al., 2011). Resting-state fMRI
helps capture large-scale abnormality or dysfunction on
functional connectivity network (FCN) by measuring bold-
oxygen-level-dependent (BOLD) signals of subjects (Van
Den Heuvel and Pol, 2010; Wang et al., 2019; Zhang
Y. et al., 2020; Sun et al., 2021), and thus, can measure
hemodynamic response related to neural activity in the brain
dynamically. Structural MRI provides relatively high-resolution
structural information of the brain, enabling us to study
pathological changes in different brain tissues, such as gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) (Cuadra et al., 2005). It is critical to integrate rs-fMRI
and sMRI data to facilitate automated diagnosis of MDD and
related disorders.

Existing neuroimaging-based MDD studies usually focus
on discovering structural or functional imaging biomarkers,
by employing various machine learning approaches such as
support vector machines (SVM), Gaussian process classifier
(GPC), linear discriminant analysis (LDA), and deep neural
networks (Sato et al., 2015; Bürger et al., 2017; Rubin-Falcone
et al., 2018; Li et al., 2021). However, these methods generally
ignore the potentially complementary information conveyed by
functional and structural MRIs. Several recent studies propose
to employ functional and structural MRIs for MDD analysis,
but they usually suffer from significant inter-modality data
discrepancy (Fu et al., 2015;Maglanoc et al., 2020; Ge et al., 2021).

In this article, we propose an adaptivemultimodal neuroimage
integration (AMNI) framework for automated MDD detection
using functional and structural MRI data. As shown in Figure 1,
the proposed AMNI consists of four major components: (1)
a graph convolutional network (GCN) for extracting feature
representations of functional connectivity networks derived
from rs-fMRI scans; (2) a convolutional neural network (CNN)
for extracting features representations of T1-weighted sMRI
scans; (3) a feature adaptation module for alleviating inter-
modality difference by minimizing a cross-modal maximum
mean discrepancy (MMD) loss; and (4) a feature fusion module
for integrating features of two modalities for classification (via
Softmax). Experimental results on 533 subjects from the REST-
meta-MDD Consortium (Yan et al., 2019) demonstrate the
effectiveness of AMNI in MDD detection.

The major contributions of this work are summarized
below:

• An adaptive integration framework is developed to fuse
functional and structural MRIs for automated MDD diagnosis
by taking advantage of the complementary information of the
two modalities. This is different from previous approaches

that focus on only discovering structural or functional imaging
biomarkers for MDD analysis.

• A feature adaptation strategy is designed to explicitly reduce
the inter-modality difference by minimizing a cross-modal
maximum mean discrepancy loss to re-calibrate features
extracted from two heterogeneous modalities.

• Extensive experiments on 533 subjects with rs-fMRI and sMRI
scans have been performed to validate the effectiveness of the
proposed method in MDD detection.

The rest of this article is organized as follows. In Section 2, we
briefly review the most relevant studies. In Section 3, we first
introduce the materials and then present the proposed method
as well as implementation details. In Section 4, we introduce
the experimental settings and report the experimental results. In
Section 5, we investigate the effect of several key components in
the proposed method and discuss limitations as well as possible
future research directions. We finally conclude this article in
Section 6.

2. RELATED WORK

In this section, we briefly introduce the most relevant studies
on structural and functional brain MRI analysis, as well as
multimodal neuroimaging-based diagnosis of brain disorders.

2.1. Brain Structural MR Imaging Analysis
Currently, MRI is the most sensitive imaging test of the brain
in routine clinical practice. Structural MRIs can non-invasively
capture the internal brain structure and atrophy, assisting us
to understand the brain anatomical changes caused by various
mental disorders. Conventional sMRI-based MDD analysis
is usually performed manually by human beings via visual
assessment (Scheltens et al., 1992), which could be subjective and
susceptible. To this end, many machine learning methods (Gao
et al., 2018), such as support vector machines (SVM), Gaussian
process classifier (GPC), and linear discriminant analysis (LDA),
have been used for automated MRI-based MDD diagnosis.
However, these methods generally rely on handcrafted MRI
features and these features may be suboptimal for subsequent
analysis, thus significantly limiting their practical utility.

In recent years, deep learning methods such as convolutional
neural networks (CNNs) have been widely used in the fields of
computer vision and medical image analysis (Yue-Hei Ng et al.,
2015; Chen et al., 2016; Zhang L. et al., 2020). As a special
type of multi-layer neural network, CNN is capable of automatic
feature learning, which eliminates the subjectivity in extracting
and selecting informative features for specific tasks (Lee et al.,
2017). Based on the LeNet5 network, Sarraf and Tofighi
(2016) presented a 2D convolutional neural network that could
classify sMRI scan slices for Alzheimer’s disease diagnosis. With
the development of high-performance computing resources,
Hosseini-Asl et al. (2016) developed a deep neural network
that used 3D convolution layers to extract features of 3D
medical images for Alzheimer’s disease diagnosis. Chakraborty
et al. (2020) developed a 3D CNN architecture for learning
intricate patterns in MRI scans for Parkinson’s disease diagnosis.
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FIGURE 1 | Illustration of the proposed adaptive multimodal neuroimage integration (AMNI) framework, including (1) a graph convolutional network (GCN) for extracting

features of functional connectivity networks derived from resting-state functional MRI (rs-fMRI) data, (2) a convolutional neural network (CNN) for extracting features of

T1-weighted structural MRI (sMRI) data, (3) a feature adaptation module for alleviating inter-modality difference by minimizing a cross-modal maximum mean

discrepancy (MMD) loss, and (4) a feature fusion module for integrating sMRI and fMRI features for classification. MDD, major depressive disorder; HC, healthy control.

Compared with 2D convolution, 3D convolution on the entire
MR image is able to capture the rich spatial information, which is
essential for disease classification.

2.2. Brain Functional MR Imaging Analysis
Existing studies have revealed that fMRI can capture large-
scale abnormality or dysfunction on functional connectivity
networks by measuring the blood-oxygen-level in the brain (Van
Den Heuvel and Pol, 2010; Zhang et al., 2019). With fMRI
data, we usually construct a functional connectivity network
for representing each subject, where each node represents
a specific brain region-of-interest (ROI) and each edge
denotes the pairwise relationship between ROIs (Honey et al.,
2009; Dvornek et al., 2017). By capturing the dependencies
between BOLD signals of paired ROIs, functional connectivity
networks (FCNs) have been widely used to identify potential
neuroimaging biomarkers for mental disorder analysis. Previous
studies often extract handcrafted FCN features (e.g., clustering
coefficient and node degree) to build prediction/classification
models (Guo et al., 2021; Zhang et al., 2021), but the
definition of the optimal FCN features highly relies on expert
knowledge, so it is often subjective. Extracting effective feature
representations of functional connectivity networks is essential
for subsequent analysis.

Recent studies have shown that spectral graph convolutional
networks (GCNs) are effective in learning representations of
brain functional connectivity networks, where each FCN is
treated as a graph (Bruna et al., 2013; Parisot et al., 2018; Bai
et al., 2020; Yao et al., 2021). Motivated by breakthroughs of deep
learning on grid data, people make efforts to extend CNN to
graphs, giving rise to the spectral graph convolutional networks
(GCNs) (Bruna et al., 2013). Recent studies have shown that
GCNs are effective in learning representations of brain functional

connectivity networks compared to traditional machine learning
algorithms. For example, Parisot et al. (2018) proposed a
GCN-based method for group-level population diagnosis that
exploited the concept of spectral graph convolutions. Yao
et al. (2021) presented a mutual multi-scale triplet GCN
model to extract multi-scale feature representations of brain
functional connectivity networks. Bai et al. (2020) developed
a backtrackless aligned-spatial GCN model to transitively
align vertices between graphs and learn effective features for
graph classification. Compared with traditional CNN with
Euclidean data, GCN generalizes convolution operations to non-
Euclidean data, and helps mine topological information of brain
connectivity networks.

2.3. Multimodal Neuroimaging-Based Brain
Disease Diagnosis
Previous studies have been shown that multimodal neuroimaging
data can provide complementary information of individual
subjects to improve the performance of computer-aided disease
diagnosis (Sui et al., 2013; Calhoun and Sui, 2016; Maglanoc
et al., 2020; Guan and Liu, 2021). For example, Sui et al. (2013)
developed a machine learning model to enable fusion of three
or more multimodal datasets based on multi-set canonical
correlation analysis and joint independent component analysis
algorithms. Maglanoc et al. (2020) used linked independent
component analysis to fuse structural and functional MRI
features for depression diagnosis. Even though previous
studies have yielded promising performance, they often extract
sMRI and fMRI features manually, which requires domain-
specific knowledge (Shen et al., 2017). Several deep learning
models of multimodal medical image fusion are proposed
to employ multimodal neuroimaging data for brain disease
diagnosis (Rajalingam and Priya, 2018). However, existing
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studies usually focus on combining feature representation
of multiple modalities and ignore significant inter-modality
heterogeneity (Huang et al., 2019). To this end, we propose
an adaptive multimodal neuroimage integration (AMNI)
framework for automated MDD diagnosis based on resting-
state functional MRI and T1-weighted structural MRI data.
The proposed method can not only extract high-level feature
representations of structural and functional data via CNN and
GCN, respectively, but also alleviate the heterogeneity between
modalities with the help of a unique feature adaptation module.

3. MATERIALS AND METHODS

In this section, we first introduce the materials and image pre-
processing method used in this work, and then present the
proposed method and implementation details.

3.1. Materials
3.1.1. Data Acquisition
Resting-state fMRI and T1-weighted structural MRI data were
acquired from 282MDD subjects and 251 healthy controls (HCs)
recruited from the Southwest University, an imaging site of
the REST-meta-MDD consortium (Yan et al., 2019). Resting-
state fMRI were acquired through a Siemens scanner with the
following parameters: repetition time (TP) = 2, 000ms, echo
time (TE)= 30ms, flip angle= 90o, slice thickness= 3.0mm,
gap= 1.0ms, time point= 242, voxel size= 3.44 × 3.44 ×
4.00mm3. More detailed information can be found online1. The
demographic and clinical information of these studied subjects is
summarized in Table 1.

3.1.2. Image Pre-processing
The resting-state fMRI and structural T1-weighted MRI
scans were pre-processed using the Diffeomorphic Anatomical
Registration Through Exponentiated Lie algebra (DPARSF)
software (Yan and Zang, 2010) with a standardized protocol (Yan
et al., 2016). For rs-fMRI data, we first discard the first 10
volumes the initial 10 volumes were discarded, and slice-timing
correction was performed. Then, the time series of images for
each subject were realigned using a six-parameter (rigid body)
linear transformation. After realignment, individual T1-weighted
images were co-registered to the mean functional image using a
6 degrees-of-freedom linear transformation without re-sampling
and then segmented into gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF). Finally, transformations from
individual native space to MNI space were computed with the
Diffeomorphic Anatomical Registration Through Exponentiated
Lie algebra (DARTEL) tool (Ashburner, 2007). After that, the
fMRI data were normalized with an EPI template in the MNI
space, and resampled to the resolution of 3 × 3 × 3mm3,
followed by spatial smoothing using a 6mm full width half
maximum Gaussian kernel. Note that subjects with poor image
quality or excessive head motion (mean framewise-displacement
>0.2mm) were excluded from analysis (Jenkinson et al., 2002).

1http://rfmri.org/REST-meta-MDD

Finally, we extracted the mean rs-fMRI time series with band-
pass filtering (0.01 − 0.1Hz) of a set of 112 pre-defined regions-
of-interest (ROIs), including cortical and subcortical areas based
on the Harvard-Oxford atlas. Each T1-weighted structural MR
image was also segmented into three tissues (i.e., GM, WM,
and CSF) and transformed into the MNI space with DARTEL
tool (Ashburner, 2007), resulting in a 3D volume (size: 121 ×
145 × 121). Here, we employ gray matter volume in the MNI
space for representing the original sMRI.

3.2. Proposed Method
As illustrated in Figure 1, the proposed AMNI consists of four
major components: (1) a GCN module to extract features from
rs-fMRI, (2) a CNNmodule to extract features from T1-weighted
sMRI, (3) a feature adaptation module to reduce inter-modality
discrepancy, and (4) a feature fusion module for classification,
with details introduced below.

3.2.1. GCN for Functional MRI Feature Learning
Based on resting-state fMRI data, one usually constructs
a functional connectivity matrix/network (FCN) for
representing each subject, with each node representing a
specific brain ROI and each edge denoting the pairwise
functional connection/relationship between ROIs (Honey
et al., 2009; Dvornek et al., 2017). That is, FCNs help capture
the dependencies between BOLD signals of paired ROIs.
Considering the fact that FCNs are non-Euclidean data, we
treat each functional connectivity network as a specific graph
and resort to spectral graph convolutional network (GCN) for
FCN feature learning by capturing graph topology information.
Previous studies have shown that GCN is effective in learning
graph-level representations by gradually aggregating feature
vectors of all nodes (Yao et al., 2019). In this work, we aim to
learn graph-level representations based on node representations
of input FCNs.

(i) Graph Construction. Denote N and M as the numbers of
ROIs and time points, respectively, whereN = 112 andM = 232
in this work. We assume that the rs-fMRI time-series data for
a subject is Y = (y1, · · · , yN)T ∈ RN×M , where each element
yn ∈ RM (n = 1, · · · ,N) denotes BOLD measurements of the
n-th ROI atM successive time points.

As the simplest and most widely used method, Pearson
correlation (PC) is usually used to construct functional
connectivity networks from raw rs-fMRI time-series data. Denote
B = (bij) ∈ RN×N as the functional connectivity matrix based on
the Pearson correlation algorithm. Each element bij ∈ [−1, 1] in
B represents the Pearson correlation coefficient between the i-th
and j-th ROIs, defined as follows:

bij =
(yi − ȳi)

T(yj − ȳj)
√
(yi − ȳi)T(yi − ȳi)

√
(yj − ȳj)T(yj − ȳj)

(1)

where ȳi and ȳj are the mean vector corresponding to yi ∈ RM

and yj ∈ RM , respectively, and M represents the length of time
points of BOLD signals in each brain region.
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TABLE 1 | Demographic and clinical information of subjects from Southwest University [a part of the REST-meta-MDD consortium (Yan et al., 2019)].

Category Gender Age Education First period On medication Duration of illness

MDD
99 M

38.7± 13.6 10.8± 3.6
209 (Y)/49 (N) 124 (Y)/125 (N) 50.0± 65.9

183 F 24 (D) 33 (D) 35 (D)

HC
87 M

39.6± 15.8 13.0± 3.9 − − −
164 F

Values are reported as Mean ± Standard deviation. M, Male; F, Female; Y, Yes; N, No; D, Lack of record.

For each subject, we regard each brain FCN as an undirected
graph G = {V ,E}, where V = {v1, · · · , vN} is a set of N
nodes/ROIs and bij ∈ B denotes the functional connectivity
between a paired nodes vi and vj. Since spectral GCNs work
on adjacency matrices by updating and aggregating node
features (Bruna et al., 2013), it is essential to generate such
an adjacency matrix A and a node feature matrix X from
each graph G.

To reduce the influence of noisy/redundant information,
we propose to construct a K-Nearest Neighbor (KNN) graph
based on each densely-connected functional connectivity matrix.
Specifically, a KNN graph is generated by only keep the top
k important edges according to their functional connectivity
strength (i.e., PC coefficient) for each node. Then, the topology
structure of the graph G can be described by adjacency matrix
A = (aij) ∈ {0, 1}N×N , where aij = 1 if there exists
an edge between the i-th and the j-th ROIs, and aij = 0,
otherwise. In addition, the node features are defined by the
functional connection weights of edges connected to each node,
i.e., corresponding to a specific row in the functional connectivity
matrix. Thus, the node features of the graphG can be represented
by the node feature matrix X = B.

(ii) Graph Feature Learning. In GCN models, the
convolution operation on the graph is defined as the
multiplication of filters and signals in the Fourier domain.
Specifically, GCN model learns new node representations by
calculating the weighted sum of feature vectors of central nodes
and the neighboring nodes. Mathematically, the simplest spectral
GCN layer (Kipf and Welling, 2016) can be formulated as:

Hl+1 = f (Hl,A) = σ (ÃHlW l) (2)

where Hl is the matrix of activations in the l-th layer, andW l is a
layer-specific trainable weight matrix.

In addition, Ã = D− 1
2AD− 1

2 is the normalized adjacency
matrix with self loops, and σ (·) is an activation function, such
as the ReLU(·) = max(0, ·). In addition, D is the diagonal degree
matrix, with the i-th diagonal element defined as di =

∑
i6=j Aij.

In the GCN module in our AMNI framework, we stack two
graph convolutional layers with the adjacency matrix A and node
features matrix X as inputs. The output of this two-layer GCN
module is calculated as:

Z = f (A,X) = ReLU(ÃReLU(ÃXW(0))W1) (3)

Note that the number of neurons in the two graph
convolutional layers is set as 64 and 64, respectively.

Given that this is a graph classification task, we employ a
simple graph pooling strategy (Lee et al., 2019) to generate graph-
level FCN representations. To be specific, we employ both global
average pooling and global max pooling that aggregate node
features to generate new feature representations. The output
feature of the graph pooling layer is as follows:

gF =
1

N

N∑

i=1

zi||
N

max
i=1

zi (4)

where N is the number of ROIs, zi is the feature vector of i-
th ROI obtained by the graph convolution operation, and ||
denotes concatenation.

By stacking multiple graph convolution layers and graph
pooling layers, GCN can learn higher-order node features from
neighboring nodes. In addition, GCN propagates information
on a graph structure and gradually aggregates the information
of neighboring nodes, which allows us to effectively capture the
complex dependencies among ROIs.

3.2.2. CNN for Structural MRI Feature Learning
In recent years, convolutional neural networks (CNNs)
have shown much predomination in image recognition and
classification (Simonyan and Zisserman, 2014; He et al.,
2016). Due to the 3D nature of structural MR images (sMRI),
it is important to learn feature representations of all three
dimensions from volumetric medical data. Considering that 3D
convolutional kernels can encode richer spatial information,
we adopt 3D CNN model to extract feature representations of
T1-weighted MRIs.

In the AMNI framework, the CNN module consists of four
convolution blocks and two fully-connected (FC) layers for
local to global sMRI feature extraction. To be specific, each
convolution block consists of one convolutional layer, one batch
normalization layer, one activation function and onemax pooling
layer. To capture local patterns, 3D convolution is achieved by
convolving a 3D kernel over 3D feature cubes. Formally, the j-th
feature map in the i-th layer, denoted as vi,j, is given by

vi,j = f ((Wi,j ∗ Vi−1)+ bi,j) (5)

where Wi,j and bi,j are the kernel weights and the bias for the
j-th feature map, respectively, Vi−1 are the sets of input feature
maps connected to the current layer from the (i− 1)th layer, ∗
is the convolution operation, and f is the non-linear activation
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function. The size of each convolution filter is 3 × 3 × 3,
and the numbers of convolution filters are set to 16, 32, 64,
128, respectively. In addition, max pooling is applied for each
2 × 2 × 2 region which reduces the spatial size of the feature
maps and the number of parameters, and ReLU is used as the
activation function. Meanwhile, batch normalization technique
can promote faster convergence and better generalization of
trained networks.

For the pooling layer, we use the Global Average
Pooling (GAP) operation (Lin et al., 2013), which performs
downsampling by computing the mean of the height, width,
and depth dimensions of the input. The formula for GAP is as
follows:

gj =

∑H
h=1

∑W
w=1

∑D
d=1 v

h,w,d
j

H ×W × D
(6)

where vh,w,dj is the value at position (h,w, d) of the j-th input

feature map, H, W, and D are the height, width, and depth
respectively and gj is getting value of the j-th input feature map
through GAP. Thus, the sMRI feature gS generated by CNN is
given by:

gS = [g1, g2, · · · , gc]T (7)

where c is the number of input feature map. It can be seen that the
GAP layer converts a 4D tensor to a 1-dimensional feature vector,
thus significantly reducing the number of network parameters.

The two fully-connected layers have 128 and 64 neurons,
respectively. To avoid overfitting, we employ the dropout
technique (Srivastava et al., 2014), with a probability of 0.5 after
each fully-connected layer. More detailed information about the
CNN architecture can be found in Table 2.

3.2.3. Feature Adaptation Module
Due to the heterogeneous nature of multimodal data, it
is necessary to reduce the discrepancy between feature
representations of different modalities before feature fusion.
Inspired by existing studies on domain adaptation (Tzeng
et al., 2014), we employ a cross-modal loss based on maximum
mean discrepancy (MMD) (Gretton et al., 2012) to re-calibrate
channel-wise features extracted from sMRI and fMRI. Denote
GF and GS as feature representations of fMRI and sMRI,
respectively. The cross-modal MMD loss LM is formulated as
follows:

LM = MMD(GF ,GS)

=
∣∣∣∣
∣∣∣∣

1

|GF |
∑

gF∈GF

φ(gF)−
1

|GS|
∑

gS∈GS

φ(gS)

∣∣∣∣
∣∣∣∣

(8)

where φ(·) denotes the feature map associated with the kernel
map, and gF and gS are elements in GF and GS, respectively.
During model training, the cross-modal MMD loss will be used
as a regularization term to penalize heterogeneity of the features
between the two modalities.

As shown in Figure 1, this cross-modal MMD loss is applied
to features from two fully-connected layers in the proposed
CNN and GCN modules. This would enable the feature
adaptation module to learn shared and aligned information

across modalities by minimizing the distribution difference
between two feature representations.

3.2.4. Feature Fusion Module
To enable our AMNI method to capture the complementary
information provided by functional and structural MRIs, we also
design a feature fusion module for classification/prediction.

Assuming that F1 and F2 are two feature representations
obtained by feature adaptationmodule, we first concatenate them
to obtain a new representation. The new representation F can be
described as follows:

F = [FT1 , F
T
2 ]

T (9)

After concatenation, the obtained new representation is fed to
two fully-connected layers (with 64 and 2 neurons, respectively),
and the learned features are further fed into a Softmax layer
for classification.

During the training stage, we use the cross-entropy loss
function to optimize the parameters in our AMINI model. The
classification loss LC is defined as:

LC = −
1

N

N∑

i=1

(
yilog(pi)+ (1− yi)log(1− pi)

)
(10)

where N is the number of samples, and yi is the true label of
the i-th sample, with 1 representing the sample being a MDD
patient and 0 denoting the sample being a healthy control. In
addition, p is the predicted probability that the sample belongs
to the MDD category.

In our model, we aim to minimize not only the classification
loss, but also the cross-modal loss to reduce the inter-modality
difference. Hence, the total loss function L of the proposed AMNI
is defined as follows:

L = LC + λLM (11)

where λ is a hyperparameter to tune the contributions of two
terms in Equation (11).

3.3. Implementation Details
We optimize the proposed AMNI model via the Adam (Kingma
and Ba, 2014) algorithm, with the learning rate of 0.0001,
weight decay rate of 0.0015, training epoch of 100, and mini-
batch size of 16. The proposed model is implemented based on
Pytorch (Paszke et al., 2017), and the model is trained by using a
single GPU (NVIDIA Quadro RTX 6000 with 24 GB memory).
The hyperparameter λ in Equation (11) is empirically set as 0.01.
And we will experimentally investigate its influence in Section 5.

4. EXPERIMENTS

In this section, we introduce experimental settings and several
competing methods, present the experimental results, and
visualize feature distributions of different methods.
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TABLE 2 | Architecture of the CNN module in the proposed AMINI framework.

Layer Kernel size Stride Output size Feature volumes

Input – – 121×145×121 1

C1 3×3×3 1 121×145×121 16

M1 2×2×2 2 60×72×60 16

C2 3×3×3 1 60×72×60 32

M2 2×2×2 2 30×36×30 32

C3 3×3×3 1 30×36×30 64

M3 2×2×2 2 15×18×15 64

C4 3×3×3 1 15×18×15 128

M4 2×2×2 2 7×9×7 128

GAP – – 1×1×1 128

FC – 1×1×1 64

Cn, the n-th convolutional layer; Mn, the n-th max pooling layer; GAP, global average pooling; FC, fully-connected layer.

4.1. Experimental Settings
We randomly select 80% samples as training data, and the
remaining 20% samples are used as test data. To avoid bias
introduced by random partition, we repeat the random partition
procedure 10 times independently, and record the mean and
standard deviation results. Eight metrics are used to evaluate
the performance of different methods in the task of MDD
detection (i.e., MDD vs. HC classification), including accuracy
(ACC), sensitivity (SEN), specificity (SPE), balanced accuracy
(BAC), positive predicted value (PPV), negative predictive value
(NPV), F1-Score (F1), and area under the receiver operating
characteristic curve (AUC).

4.2. Methods for Comparison
In this work, we compare the proposed AMNI method with six
traditional machine learning methods and three popular deep
learning methods. More details can be found below.

(1) PCA+SVM-s: The PCA+SVM-s method only uses sMRI
data. The 3D image of the whole brain is down-sampled from
121 × 145 × 121 to 61 × 73 × 61, and further flattened
into a vectorized feature representation for each subject. We
use principal component analysis (PCA) (Wold et al., 1987)
by keeping the top 32 principal components to reduce feature
dimension based on the above feature representations of all
subjects. Finally, the support vector machine (SVM) with Radial
Basis Function (RBF) kernel is employed for classification.

(2) EC+SVM: The EC+SVM method uses rs-fMRI data.
Similar to our AMNI, we first construct a functional connectivity
matrix based on Pearson correlation coefficient for each subject.
We then extract eigenvector centralities (EC) (Bonacich, 2007),
which measure a node’s importance while giving consideration to
the importance of its neighbors in the FC network, as features of
the FCN and feed these 112-dimensional features into an SVM
classifier with RBF kernel for disease detection.

(3) DC+SVM: Similar to EC+SVM, the DC+SVM
method first constructs a FCN based on Pearson correlation
coefficient for each subject, and then extracts degree centrality
(DC) (Nieminen, 1974) as FCN features by measuring node
importance based on the number of links incident upon a node.

The 112-dimensional DC features are finally feed into an SVM
for classification.

(4) CC+SVM: Similar to EC/CC+SVM, this method extracts
the local clustering coefficient (CC) (Wee et al., 2012) to
measure clustering degree of each node in each FCN. The 112-
dimensional CC features are fed into an SVM for classification.

(5) PCA+SVM-f: In the PCA+SVM-f method, the upper
triangle of a FC matrix is flattened into a vector for each subject
after the FC matrix is constructed. Then, we use PCA by keeping
the top 32 principal components to reduce feature dimension
based on the above feature representations of all subjects. Finally,
an SVM is used for classification.

(6) PP+SVM: In this method, we integrate rs-fMRI and
sMRI features for classification based on SVM. Specifically, we
first employ PCA+SVM-s and PCA+SVM-f to extract features
from structural and functional MRIs, respectively. Then, we
concatenate features of these two modalities for the same subject,
followed by an SVM for classification.

(7) 2DCNN: In this method, we employ the original FC
matrix of each subject as input of a CNN model (LeCun
et al., 1989). Specifically, this CNN contains three convolutional
layers and two fully-connected layers. Each convolutional layer
is followed by batch normalization and ReLU activation. The
channel numbers for the three convolutional layers are 4, 8, and 8,
respectively, and the corresponding size of the convolution kernel
is 3×3, 5×5, 7××7, respectively. The two fully-connected (FC)
layers contain 4, 096 and 2 neurons, respectively.

(8) ST-GCN: We also compare our method with the spatio-
temporal graph convolutional network (ST-GCN), a state-of-the-
art method for modeling spatio-temporal dependency of fMRI
data (Gadgil et al., 2020). Specifically, the ST-GCN comprises
two layers of spatio-temporal graph convolution (ST-GC) units,
global average pooling and a fully connected layer. Note that
each ST-GC layer produces 64-channel outputs with the temporal
kernel size of 11, a stride of 1, and a dropout rate of 0.5.

(9) 3DCNN+2DCNN: In this method, we employ 3DCNN
and 2DCNN to extract features from sMRI and fMRI,
respectively. We then concatenate features learned from
3DCNN and 2DCNN, and feed the concatenated features to a
fully-connected layer and the softmax layer for classification.
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FIGURE 2 | ROC curves and related AUC values achieved by different methods in MDD vs. HC classification. (A) AMNI vs. six conventional methods. (B) AMNI vs.

three deep learning methods. (C) AMNI vs. its three variants.

TABLE 3 | Classification results in terms of “mean (standard deviation)” achieved by ten methods in MDD vs. HC classification, with best results shown in bold.

Method Data ACC SEN SPE BAC PPV NPV F1 AUC

PCA+SVM-s S 0.566 (0.011) 0.669 (0.021) 0.456 (0.007) 0.563 (0.010) 0.580 (0.006) 0.553 (0.017) 0.618 (0.013) 0.591 (0.008)

EC+SVM F 0.560 (0.014) 0.651 (0.009) 0.462 (0.029) 0.557 (0.015) 0.577 (0.013) 0.539 (0.018) 0.609 (0.009) 0.586 (0.019)

CC+SVM F 0.574 (0.007) 0.674 (0.018) 0.470 (0.014) 0.572 (0.006) 0.589 (0.005) 0.562 (0.011) 0.625(0.009) 0.597(0.014)

DC+SVM F 0.578 (0.014) 0.676 (0.019) 0.477 (0.016) 0.577 (0.017) 0.593 (0.015) 0.568 (0.021) 0.627 (0.014) 0.605 (0.015)

PCA+SVM-f F 0.570 (0.011) 0.653 (0.014) 0.483 (0.019) 0.568 (0.012) 0.588 (0.010) 0.554 (0.016) 0.614 (0.009) 0.602 (0.013)

PP+SVM SF 0.593 (0.026) 0.675 (0.022) 0.502 (0.036) 0.588 (0.027) 0.605 (0.026) 0.578 (0.030) 0.636 (0.022) 0.631 (0.027)

2DCNN F 0.613 (0.013) 0.670 (0.022) 0.551 (0.024) 0.611 (0.013) 0.628 (0.013) 0.599 (0.016) 0.643 (0.014) 0.645 (0.013)

STGCN F 0.583(0.022) 0.616 (0.027) 0.544 (0.026) 0.580 (0.022) 0.612 (0.015) 0.548 (0.037) 0.614 (0.018) 0.591 (0.008)

3D+2DCNN SF 0.632 (0.028) 0.667 (0.022) 0.593 (0.043) 0.630 (0.029) 0.649 (0.034) 0.617(0.041) 0.656 (0.026) 0.655 (0.013)

AMNI (Ours) SF 0.650 (0.016) 0.694 (0.068) 0.609 (0.056) 0.651 (0.016) 0.640 (0.031) 0.667 (0.055) 0.663 (0.021) 0.665 (0.017)

S, sMRI; F, fMRI; SF, sMRI+fMRI.

4.3. Experimental Results
The quantitative results of the proposed AMNI and nine
competing methods in the task of MDD vs. HC classification are
reported in Table 3. In Figures 2A,B, we also show ROC curves
of different methods. From Table 3 and Figures 2A,B, we have
the following interesting observations.

First, our AMNI and two deep learning methods (i.e., 2DCNN
and 3DCNN+2DCNN) generally achieve better performance
in terms of eight metrics, compared with six traditional
machine learning methods. For example, in terms of ACC
values, the AMNI yields the performance improvement of
5.7%, compared with the best traditional machine learning
method (e.g., PP+SVM) in MDD detection. These results
demonstrate that, deep learning methods that can learn
diagnosis-oriented neuroimage features is more effective in
MDD detection, compared with traditional machine learning
methods that rely on handcrafted features. Second, three
multimodal methods (i.e., PP+SVM, 3DCNN+2DCNN, and
AMNI) generally outperform their single-modality counterparts
(i.e., PCA+SVM-s, PCA+SVM-f, and 2DCNN). For instance,
both our AMNI and 3DCNN+2DCNN methods that integrate
sMRI and fMRI data are superior to 2DCNN which only
use functional data. This implies that taking advantage of

multimodal MRIs (as we do in this work) helps promote
the diagnosis performance, thanks to the complementary
information provided by functional and structural MRIs.
Furthermore, our proposed AMNI achieves better performance
in terms of most metrics, compared with eight competing
methods. These results imply that adaptive integration of
multimodal neuroimages helps boost the performance of
MDD identification.

4.4. Statistical Significance Analysis
We further calculate predicted probability distribution difference
on test data between our model and each of eight competing
methods by paired sample t-test. Denote u1 and u2 as the
population mean of predicted probability distributions from our
AMNI and one competing method, respectively. The hypotheses
can be expressed as follows:

H0 : u1 = u2

H1 : u1 6= u2
(12)

where H0 is the null hypothesis, meaning that our model and
the competing method do not have significant difference. And
H1 is the alternative hypothesis, meaning that our model and the
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competing method have significance difference. The test statistic
for the paired samples t-test is as follows:

t =
xdiff

sdiff/
√
n

(13)

where x̄diff is sample mean of the differences, sdiff is sample
standard deviation of the differences and n is the sample size
(i.e., number of pairs). The p-values that corresponds to the test
statistic t are shown in Table 4.

As shown in Table 4, all obtained p-values are less than our
chosen significance level (i.e., 0.05). Therefore, H0 is rejected,
which means that our AMNI method differs significantly from
each of the eight competing methods.

4.5. Feature Visualization
In Figure 3, we visualize the data distributions of features
derived from two multimodal methods (i.e., PP+SVM and
AMNI) via t-SNE (Van der Maaten and Hinton, 2008). Note
that the features of PP+SVM are generated by concatenating
handcrafted features from two modalities, while the features
of our AMNI are extracted based on an end-to-end deep
learning model (see Figure 1). As shown in Figure 3, the feature
distributions of two categories (i.e., MDD and HC) generated
from our AMNI method have more significant difference, while
their feature distribution gap is not evident for the PP+SVM
method. This may indicate that our AMNI can learn more
discriminative features for MDD detection by explicitly reducing
the inter-modality discrepancy, compared with the traditional
PP+SVMmethod.

5. DISCUSSION

5.1. Ablation Study
To evaluate the effectiveness of each component in the proposed
AMNI, we further compare AMNI with its three variants: (1)
AMNI-s that only uses CNN branch and feature fusion module
of AMNI, without considering functional MRI, (2) AMNI-f that
only uses GCN branch and feature fusion module of AMNI,
without considering structural MRI, (3) AMNI-w/oMMD that
directly feeds concatenated fMRI and sMRI features (via GCN
and CNN modules, respectively) into the feature fusion module
for classification, without using the proposed feature adaption
module. The experimental results are reported in Figures 4, 2C.

It can be seen from Figure 4 that two multimodal methods
(i.e., AMNI-w/oMMD and AMNI) generally outperform
the single modality methods (i.e., AMNI-s and AMNI-f).
This further demonstrates that multimodal data can provide
complementary information to help boost the performance of
MDD identification. Besides, our AMNI achieves consistently
better performance compared with AMNI-w/oMMD that
ignores the heterogeneity between the two modalities. These
results further validate the effectiveness of the proposed feature
adaption module in alleviating the inter-modality discrepancy
between different modalities. In addition, Figure 2C suggests
that our proposed AMNI achieves good ROC performance and
the best AUC value compared with its three variants.

TABLE 4 | Results of statistical significance analysis between the proposed AMNI

and eight competing methods.

Pairwise comparison p-value p < 0.05

AMNI vs. PCA+SVM-s 3.40× 10−4 Yes

AMNI vs. EC+SVM 3.93× 10−4 Yes

AMNI vs. CC+SVM 3.16× 10−4 Yes

AMNI vs. DC+SVM 2.43× 10−4 Yes

AMNI vs. PCA+SVM-f 1.01× 10−5 Yes

AMNI vs. PP+SVM 2.71× 10−5 Yes

AMNI vs. 2DCNN 9.48× 10−3 Yes

AMNI vs. 3DCNN+2DCNN 1.07× 10−3 Yes

5.2. Influence of Hyperparameter
The hyperparameter λ in Equation (11) is used to tune the
contribution of the proposed feature adaptation module for
re-calibrating feature distributions of two modalities. We now
report the classification accuracy of the proposed AMNI with
different values of λ in Figure 5. As shown in Figure 5, with λ =
0.01, our AMNI can achieve best performance. But using a too
large value (e.g., λ = 1) will yield worse performance. A possible
reason is that focusing too much on the reduction of differences
between modalities (with a large λ) may lose the specific and
unique information of each modality, thereby degrading the
learning performance.

5.3. Influence of Graph Construction
Strategy
In the main experiment, we build a KNN graph to generate an
adjacency matrix for each FCN. To investigate the influence of
the use of different graph construction strategies, besides KNN,
we also construct a fully-connected graph and a threshold graph
to generate the adjacency matrix, respectively. For the fully-
connected graph, we directly take A = (|wij|) as the adjacency
matrix, which is an edge-weighted graph. For the threshold
graph, we generate the adjacency matrix A by binarizing the FC
matrix B to regulate the sparsity of the graph. Thus, the adjacency
matrix can be described as A = (aij) ∈ {0, 1}N×N , where aij = 1
if the connection coefficient between i-th and j-th ROI is greater
than a threshold q; and aij = 0, otherwise. The threshold q is
set as 0.2 here. The experimental results of our AMNI with three
different graph construction strategies are reported in Figure 6.

As can be seen from Figure 6, our AMNI model based on
KNN graph outperforms its two variants that use fully-connected
graph and threshold graph. The underlying reason could be
that KNN graph can preserve node-centralized local topology
information while removing noisy/redundant information in
graph (Ktena et al., 2018; Yao et al., 2021).

5.4. Influence of Network Architecture
To explore the influence of different network architectures of
AMNI on the experimental results, we adjust the the network
depth of two branches of the AMNI model, respectively. On
the one hand, with the CNN branch fixed, we vary the number
of graph convolutional layers for the GCN branch of AMNI
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FIGURE 3 | Visualization of feature distributions from the PP+SVM and the proposed AMNI models via t-SNE (Van der Maaten and Hinton, 2008). The horizontal and

vertical axes denote two dimensions after feature mapping. (A) Distribution of features derived from PP+SVM. (B) Distribution of features derived from AMNI.

FIGURE 4 | Performance of our AMNI and its three variants in the task of MDD vs. HC classification, with best results shown in bold.

FIGURE 5 | Accuracy achieved by the proposed AMNI method with different

values of λ in Equation (11) in the task of MDD vs. HC classification.

and report the corresponding results of AMNI in Table 5.
This table shows that the AMNI achieves the overall best
performances (e.g., ACC=0.6495 and AUC=0.6648) with two
graph convolutional layers in the GCN branch. In addition,
as the number of graph convolutional layers increases (see
AMNI-G3 and AMNI-G4), the performance is not good. This

may be due to the over-smoothing problem (that is, Laplacian
smoothing makes the node representations more similar as
the graph convolutional layer increases; Yang et al., 2020),
which may reduce the discriminative compatibility of learned
features. On the other hand, we fix the GCN branch and
vary the architecture of the CNN in AMNI for performance
evaluation. Specifically, we vary the number of convoluational
layers in CNN within [3, 6] and report the results of AMIN
in MDD vs. HC classification in Table 5. This table shows
that fine-tuning the network architecture of the CNN branch
in AMNI achieves comparable results, which implies that our
AMNI is robust to different network architectures. Further,
AMNI with five convoluational layers in the CNN branch
(e.g., AMNI-G5) achieves better performance in terms of
accuracy, sensitivity, balanced accuracy, positive predicted value
and F1-Score.

Besides, we also further discuss the influence of network width
of each branch on the experimental results. For one thing, with
the CNN branch fixed, we change the number of neurons in the
graph convolutional layers and then report the corresponding
results of AMNI in Table 6. It can be found from Table 6 that
the AMINI model using different numbers of neurons in graph
convolutional layers achieves comparable experimental results,
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FIGURE 6 | Results of the proposed AMNI based on three different graph construction methods (e.g.fully-connected graph, threshold graph, and KNN graph) in the

task of MDD vs. HC classification, with best results shown in bold.

TABLE 5 | Classification results of our AMNI in MDD vs. HC classification with different network depth, with best results shown in bold.

Method ACC SEN SPE BAC PPV NPV F1 AUC

AMNI-G1 0.634 (0.014) 0.677 (0.065) 0.587 (0.054) 0.632 (0.019) 0.669 (0.041) 0.598 (0.077) 0.669 (0.011) 0.627 (0.032)

AMNI-G2 0.650 (0.016) 0.694 (0.068) 0.609 (0.056) 0.651(0.016) 0.640 (0.031) 0.667 (0.055) 0.663 (0.021) 0.665 (0.017)

AMNI-G3 0.595 (0.008) 0.629 (0.034) 0.559 (0.041) 0.594 (0.010) 0.600 (0.010) 0.590 (0.019) 0.614 (0.016) 0.605 (0.009)

AMNI-G4 0.587 (0.011) 0.618 (0.023) 0.554 (0.025) 0.586 (0.011) 0.610 (0.042) 0.561 (0.036) 0.613 (0.022) 0.599 (0.022)

AMNI-C3 0.628 (0.005) 0.692 (0.045) 0.551 (0.057) 0.622 (0.007) 0.647 (0.014) 0.603 (0.012) 0.668 (0.013) 0.622 (0.007)

AMNI-C4 0.650 (0.016) 0.694 (0.068) 0.609 (0.056) 0.651 (0.016) 0.640 (0.031) 0.667 (0.055) 0.663 (0.021) 0.665 (0.017)

AMNI-C5 0.660 (0.022) 0.742 (0.042) 0.565 (0.049) 0.653 (0.023) 0.663 (0.011) 0.657 (0.040) 0.700 (0.020) 0.653 (0.023)

AMNI-C6 0.642 (0.014) 0.701 (0.046) 0.580 (0.041) 0.641 (0.017) 0.651 (0.029) 0.634 (0.053) 0.673 (0.008) 0.628 (0.018)

Note that AMNI-Gn contains n graph convolutional layers in the GCN module of AMNI, and AMNI-Cn contains n convolutional layers in the CNN module of AMNI.

TABLE 6 | Classification results of our AMNI in MDD vs. HC classification with different network width, with best results shown in bold.

Method ACC SEN SPE BAC PPV NPV F1 AUC

AMNI-g40 0.620 (0.035) 0.626 (0.089) 0.614 (0.097) 0.620 (0.035) 0.652 (0.039) 0.593 (0.040) 0.635 (0.049) 0.650 (0.036)

AMNI-g64 0.650 (0.016) 0.694 (0.068) 0.609 (0.056) 0.651 (0.016) 0.640 (0.031) 0.667 (0.055) 0.663 (0.021) 0.665 (0.017)

AMNI-g88 0.626 (0.015) 0.697 (0.048) 0.542 (0.052) 0.620 (0.015) 0.644 (0.016) 0.604 (0.023) 0.669 (0.021) 0.667 (0.011)

AMNI-g112 0.631 (0.016) 0.647 (0.053) 0.612 (0.037) 0.629 (0.015) 0.659 (0.015) 0.602 (0.024) 0.651 (0.029) 0.637 (0.037)

AMNI-c1 0.598 (0.017) 0.643 (0.046) 0.535 (0.081) 0.589 (0.028) 0.643 (0.028) 0.535 (0.073) 0.642 (0.026) 0.607 (0.0148)

AMNI-c2 0.630 (0.020) 0.693 (0.080) 0.575 (0.096) 0.634 (0.016) 0.593 (0.033) 0.685 (0.029) 0.635 (0.023) 0.667 (0.004)

AMNI-c3 0.650 (0.016) 0.694 (0.068) 0.609 (0.056) 0.651 (0.016) 0.640 (0.031) 0.667 (0.055) 0.663 (0.021) 0.665 (0.017)

AMNI-c4 0.641 (0.015) 0.654 (0.051) 0.629 (0.030) 0.642 (0.015) 0.628 (0.030) 0.658 (0.044) 0.638 (0.028) 0.689 (0.042)

Note that AMNI-gn contains n neurons in the graph convolutional layers of the GCN module. And the filter sequences in CNN module of AMNI-c1, AMNI-c2, AMNI-c3 and AMNI-c4

are [4, 8, 16, 32], [8, 16, 32, 64], [16, 32, 64, 128], and [32, 64, 128, 256], respectively.

which means our model is not very sensitive to the change of
network width of the GCN branch. For another thing, with the
GCN branch fixed, we change the number of filters in each 3D
convolutional layer and record the results in Table 6. As shown
in Table 6, with the increase of the number of filters in 3D
CNN module of AMNI, the model (i.e., AMNI-c3 and AMNI-
c4) generally achieves better performance. This may be due to
that using more filters in CNN can capture richer features across
global and local information of sMRI.

5.5. Influence of Multimodality Fusion
Strategy
We fuse fMRI and sMRI data at the feature-level (see Figure 1)
in the main experiments. We further investigate the influence

of different fusion strategies by comparing our AMNI (using
feature-level fusion) with its variant (called AMNI_lf) using
a decision-level fusion strategy. As shown in Figure 7, in the
AMNI_lf, the fMRI feature derived from GCN is fed into two
fully connected layers and a Softmax layer for feature abstraction
and classification. Similarly, the sMRI feature derived from CNN
is fed into three fully connected layers and a Softmax layer. The
outputs of these two branches are further fused via a weighted
sum operation. We vary the weighted ratio between fMRI and
sMRI branches within [ 0.20.8 ,

0.5
0.5 ,

0.8
0.2 ] and denote these three

methods as AMNI_lf1, AMNI_lf2, and AMNI_lf3, respectively,
with the experimental results shown in Figure 8.

As shown in Figure 8, as the weight of GCN branch increases,
the model achieves better performance in terms of most metrics.
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FIGURE 7 | Illustration of the adaptive multimodal neuroimage integration (AMNI) framework based on a decision-level fusion strategy.

FIGURE 8 | Experimental results of late fusion method and our AMNI method in MDD vs. HC classification. Note that AMNI_lf1, AMNI_lf2, and AMNI_lf3 denote that

the weight ratio between fMRI and sMRI branch is 0.2
0.8 ,

0.5
0.5 , and

0.8
0.2 , respectively.

However, the results of AMNI using the decision-level fusion
method are generally inferior to that of the feature-level fusion
method proposed by this article. This implies that feature-level
fusion of functional and structural representations could be
more effective.

5.6. Limitations and Future Work
Several limitations need to be considered. First, we only integrate
T1-weighted MRI and functional MRI data for automated MDD
diagnosis. Actually, diffusion tensor imaging (DTI) data can
examine and quantify white matter microstructure of the brain,
which can further help uncover the neurobiological mechanisms
of MDD. Therefore, it is valuable to incorporate DTI data
into multimodal research in our future work. Second, we use
functional connectivity networks for representing rs-fMRI data
and treat them as input of the proposed method. It is interesting
to extract diagnosis-oriented fMRI features, as we do for T1-
weighed MRIs, which will also be our future work. Besides,

a feature adaptation module with a cross-modal MDD loss is
designed for reducing inter-modality data heterogeneity. Many
other data adaptation methods (Ben-David et al., 2007) can also
be incorporated into the proposed AMNI framework for further
performance improvement.

6. CONCLUSION

In this article, we propose an adaptive multimodal neuroimage
integration (AMNI) framework for automated MDD diagnosis
based on functional and structural MRI data. We first
employ GCN and CNN to learn feature representations of
functional connectivity networks and structural MR images.
Then, a feature adaptation module is designed to alleviate
inter-modality difference by minimizing the distribution
difference between two modalities. Finally, high-level features
extracted from functional and structural MRI modalities
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are integrated and delivered to a classifier for disease
detection. Experimental results on 533 subjects with rs-
fMRI and T1-weighted sMRI demonstrate the effectiveness
of the proposed method in identifying MDD patients from
healthy controls.
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