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Soil microbes that colonize plant roots and are responsive to
differences in plant genotype remain to be ascertained for
agronomically important crops. From a very large-scale longitudi-
nal field study of 27 maize inbred lines planted in three fields, with
partial replication 5 y later, we identify root-associated microbiota
exhibiting reproducible associations with plant genotype. Analysis
of 4,866 samples identified 143 operational taxonomic units
(OTUs) whose variation in relative abundances across the samples
was significantly regulated by plant genotype, and included five
of seven core OTUs present in all samples. Plant genetic effects
were significant amid the large effects of plant age on the
rhizosphere microbiome, regardless of the specific community of
each field, and despite microbiome responses to climate events.
Seasonal patterns showed that the plant root microbiome is locally
seeded, changes with plant growth, and responds to weather
events. However, against this background of variation, specific
taxa responded to differences in host genotype. If shown to have
beneficial functions, microbes may be considered candidate traits
for selective breeding.
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Agrowing number of studies report an influence of plant ge-
notype on various facets of the rhizosphere microbiome, but

the majority are conducted under greenhouse and laboratory
conditions where environmental variability is controlled (1–5), or
are limited in scope (3, 6–10). Studies with small sample numbers
(e.g., in the hundreds), or that lack replication over space or
time, are limited in their power and may yield spurious results.
As a result, they can both overestimate the importance of plant
genotype and underestimate genotype interactions with the en-
vironment (11). Furthermore, although small-scale studies can
assess the effect of plant genotype on abstracted measures of the
microbiome, such as within (alpha-diversity) and between (beta-
diversity) samples, they lack the power to quantify the effect of
plant genotype on abundances of specific taxa comprising the
microbiome. Thus, large-scale studies with replication are re-
quired to identify heritable taxa, i.e., those whose variance in
abundance across samples has a significant plant genotype com-
ponent (12). Heritable microbes of the rhizosphere (the region of
soil surrounding, and chemically influenced by, plant roots) should
exhibit, across a plant population, differential abundances signif-
icantly influenced by variation in plant genotype (13, 14). Heri-
table components (e.g., taxa or functions) of the soil microbiome
remain to be identified for major crop species.
Maize (Zea mays L. subsp. mays) is a globally important crop

with over a billion metric tons of production in 2016 (15) and is

used for a variety of food and industrial products (16). Maize
possesses exceptional phenotypic diversity that is influenced by
genotype, which has the potential to influence the rhizosphere
microbiome. For instance, maize lines with mutations affecting
their carbon storage patterns have been shown to harbor distinct
rhizosphere microbiomes; mutant lines with the sugary endo-
sperm su1 gene have been associated with higher fungal and
Gram-positive bacterial biomass compared with lines with the
shrunken endosperm sh2 gene, and their overall communities
differed (7). Maize lines can also differ in their root structures,
with effects on the rhizosphere microbiome (17). Heritable
microbiota of the maize rhizosphere remain to be identified.
The largest set of public maize germplasm used to dissect

genetically complex traits (i.e., lines developed for nested asso-
ciation mapping, so-called NAM lines) (18) consists of ∼5,000
recombinant inbred lines. Analysis of genotype–phenotype re-
lationships using NAM lines has revealed the genetic architec-
ture underlying a variety of complex quantitative traits, such as
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flowering time, height, stalk strength, and disease resistance (19).
If the parents of the NAM lines, selected for maximal genetic
diversity while still flowering in summer in North America, show
variation in their microbiomes, then subsequent analysis of a far
greater number of NAM inbred lines would be warranted. In a
previous study of the maize rhizosphere microbiome of NAM
parent lines, we analyzed ∼500 samples derived at flowering time
from 27 NAM parental lines planted in a randomized block design
replicated in five fields (20). This analysis was sufficient to show
that plant genotype drove subtle differences in rhizosphere bac-
terial diversity. However, as with other small-scale analyses, this
study did not have sufficient power to identify the specific taxa that
responded to differences in maize plant genotype (20).
Here, we performed a longitudinal analysis of the 27 NAM

parental line genotypes planted in five fields, yielding >4,800
samples collected weekly over the course of the growing season.
In addition, we partially replicated the study 5 y later with a
subset of the NAM parent genotypes sampled over the growing
season in one field. Microbial diversity was assessed with Illu-
mina sequencing of the V4 region of the 16S rRNA gene for all
samples, resulting in an extremely large assessment of rhizo-
sphere microbial community membership. We chose 16S rRNA
gene sequencing over metagenome sequencing primarily due to
the very large size of the sample set and to specifically identify
heritable taxa. These data were analyzed with respect to climate
variables, field location, plant age, and genotype. We report well-
powered identification of heritable taxa of the maize rhizosphere,
over and above the prior beta-diversity differences observed in ref. 20.

Results and Discussion
Maize Rhizosphere Core Microbiome. The rhizosphere microbiome
examined here includes bacteria and archaea inhabiting the
combined “rhizosphere” and “rhizoplane” (21) of maize. A total
of 4,911 samples and ∼627 million 16S rRNA reads were gen-
erated for these analyses (Materials and Methods). Across all
samples, we detected 55 bacterial phyla, which represent a siz-
able fraction of the current ∼92 named phyla (22). As expected,
maize rhizosphere and bulk soil microbiome differed, but all
phyla were detected in both sample types. As microbes that are
consistently present across samples likely provide critical eco-
logical functions (23), we searched for a core microbiome, de-
fined here using a stringent criterion: the set of operational
taxonomic units (OTUs) common to all rhizosphere microbiome
samples. Seven OTUs comprised the core maize microbiome in
100% of samples. All seven were taxonomically assigned to the
phylum Proteobacteria, including three Alphaproteobacteria
(Agrobacterium, Bradyrhizobiaceae, Devosia), two Betaproteo-
bacteria (both Comamonadaceae), and two Gammaproteobac-
teria (Pseudomonas and Sinobacteraceae; SI Appendix, Dataset
S1). The core microbiome for OTUs shared across 95% of
samples included 251 OTUs from a wider diversity of phyla. The
seven OTUs present in 100% of 2010 samples were also present
in 100% of the 2015 samples. Given that we assessed the di-
versity of a single plant species, a core microbiome might be
expected. However, the observation that seven OTUs were
present in all maize rhizosphere samples, in five fields across
three states, and across a 5-y timespan, implies that these taxa
are highly persistent and ubiquitous in agricultural soil.

Plant Age and Field Are the Main Drivers of Rhizosphere Microbiome
Diversity. To identify factors that shape the differences between
maize rhizosphere microbiomes (beta diversity), we applied the
phylogenetically aware UniFrac metrics, which provide a mea-
sure of dissimilarity between any two microbiomes based on
shared membership (unweighted UniFrac), and also take into
account the abundances of the lineages (weighted UniFrac).
Principal coordinates analysis (PCoA) of unweighted UniFrac
distances showed that regardless of field, rhizosphere microbiomes

showed a strong patterning according to plant age (Fig. 1A).
Principal coordinate (PC) 1 explains the majority of the variance
in the data, and plant age (sampling week) maps well onto this PC.
Samples form a gradient from left to right along PC1, ranging
from the bulk soil and early samples to the samples taken at later
weeks (Fig. 1A). The second PC of the unweighted UniFrac PCoA
shows a strong patterning of samples by field (Fig. 1B). The age
patterning, but not field patterning, was stronger when we used
the weighted UniFrac metric (Fig. 1C).
Additionally, we analyzed the data for clustering of samples by

Adonis testing with unweighted and weighted UniFrac distances,
which revealed that plant age is the strongest factor shaping
these rhizosphere communities, followed by field, and then plant
genetics [R2 of 0.10363, 0.08684, and 0.00770 (unweighted
UniFrac); 0.38644, 0.07716, and 0.00724 (weighted UniFrac), for
age, field, and inbred maize line, respectively, P value < 0.001 for
all tests]. To further assess the relative importance of field, plant
age, plant genotype, and their interactions on these patterns, we
performed variance decomposition for each principal coordinate
of the PCoAs (SI Appendix, Fig. S1). This confirmed that the
majority of variance exhibited by PC 1 in the unweighted UniFrac
PCoA (Fig. 1) is attributable to plant age, and variance in PC2
was attributable to location. For PC1 of the unweighted UniFrac
analysis, the second largest component of the variance is the in-
teraction of plant age, genotype, and location. Together, these
results imply significant gene-by-environment interaction, implying
that plant genotype impacts the community composition differently
depending on the plant’s age and location.

Plant Genotype Distance Matrix Versus Microbiome Distance Matrices.
We used a distance matrix for the maize genotypes (24) to ask if
the overall genetic dissimilarity of any two maize lines was
predictive of the dissimilarity of their rhizosphere microbiomes.
Correlations between the maize genotype distance matrix and
the UniFrac distance matrices yielded weak (R2 = 0.04 and
0.03) effects with opposite (inverse and positive relationships)
directions for unweighted and weighted UniFrac, respectively
(SI Appendix). This implies that the overall genetic differences
between the maize lines mostly fail to predict the overall di-
versity differences in their rhizosphere microbiomes (i.e., the
most genetically distant NAM lines of maize do not have the
largest UniFrac distances between microbiomes). Thus, any plant
genetic effects on the diversity of the rhizosphere microbiome will
likely manifest at the level of specific taxa.

Identification of Taxa with Differential Abundances Across Plant
Genotypes. To identify microbial taxa responsive to plant geno-
type, we first compared the abundances of OTUs in pairwise
categories of maize groups [six broad functional groups: sweet-
corn, popcorn, tropical, stiff-stalk, non-stiff-stalk, and mixed
(25)] using a mixed-model approach with Bonferroni correction
(Materials and Methods). Pairwise comparisons between broad
maize groups resulted in 83 instances of differentially abundant
OTUs. We observed that these instances involved 48 OTUs, with
the same OTUs differentially abundant in several pairwise com-
parisons (SI Appendix, Dataset S2).
Compared with other maize groups, the sweet-corn group had

a strong tendency to enrich for taxa that have been associ-
ated with nitrogen fixing activities (e.g., Bradyrhizobiaceae,
Burkholderia, Rhizobium, Sphingomonas, and Oxalobacteraceae).
The sweet-corn inbred lines harbor mutations that cause higher
sucrose and glucose concentrations and lower starch production
in the endosperm (26), which may lead to different root exudate
availability to the microbiome.
We performed similar paired tests of the 27 inbred maize line

(SI Appendix, Dataset S2), and observed 255 significant instances
involving 92 OTUs. Again, maize lines with characteristics likely
impacting exudate profiles shaped the rhizosphere microbiome
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differentially. For instance, members of the Chloracidobacteria
and Pedosphaerales orders, and the Opitutaceae family, were
enriched on the non-stiff-stalk Oh43 maize line, which has a
defective invertase for sucrose uptake in the root system (27). A
Paenibacillus sp. was enriched in the tropical CML247 line. This
genus includes free-living N2 fixers (28). Many of the OTUs
differentially abundant between maize lines belong to the same
bacterial families, and they might be expected to show similar
patterns of enrichment or depletion. Indeed, we noted that for
the 20 cases where OTUs had the same taxonomic classification,
all responded in the same manner on the same maize lines. This
may indicate that the related OTUs perform similar functions. In
the 2015 dataset, no OTUs had significantly different abundance
by inbred maize line or maize group after multiple comparison
corrections. This is likely due to the reduced power of the
smaller dataset.

Microbiome Richness Across Plant Genotypes. Microbiome richness
(alpha diversity) varied between broad maize groups and be-
tween inbred lines. Specifically, “mixed” maize lineage had lower
diversity than other groups, including the tropical and non-stiff-
stalk maize. In accordance, the mixed inbred line Mo18W had
lower microbiome richness compared with many other lineages
(SI Appendix, Dataset S3; this line was not planted in 2015).
Differences in richness replicated 5 y later; compared with other
maize lines, the non-stiff-stalk Mo17 had higher alpha diversity,
and the sweet-corn IL14H had lower diversity in both years (SI
Appendix, Dataset S3).

Identification of Heritable OTUs in the 2010 Field Study. To estimate
the amount of variance in OTU abundances across all samples
that could be attributed to plant genetics, while controlling for
environmental factors, we calculated the broad-sense heritability
(H2) for OTUs shared by ≥80% of samples (n = 792). We
identified 143 OTUs with significantly more heritability than
expected by chance based on 5,000 random permutations of the
data (empirical P value ≤ 0.001; Fig. 2 and SI Appendix, Fig. S2
and Dataset S4).
Overall, the broad-sense heritabilities for these OTUs were

relatively low, with a range of 0.15–0.25 (on a scale from 0 to 1,
where 1 means that all variance is attributed to genetics). This
indicates that environmental factors contribute most of the var-
iance observed in the relative proportion of OTUs across samples,
as expected given the strong environmental effects discussed ear-
lier. We observed partial overlap between the heritable OTUs and
the 92 OTUs that showed significant differences in abundances in
the pairwise comparisons (inbred maize lines and broad maize
groups; SI Appendix, Dataset S5).
Mapping the heritable OTUs onto a common phylogeny

revealed some clusters of related taxa (Fig. 3). The heritable
OTUs are diverse, including 26 Alphaproteobacteria, 9 Betapro-
teobacteria, 12 Actinobacteria, 6 Verrucomicrobia, and 8 Bacter-
oidetes. Others belong to WS3, Beta- and Gammaproteobacteria,
Planctomycetes, Firmicutes, Chloroflexi, Acidobacteria, Gemmati-
monadetes, and interestingly, the Archaeal phylum Crenarchaeota
(candidatus Nitrososphaera). Five of the seven core OTUs described
previously (Agrobacterium,Devosia, both Comamonadaceae, and the
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Fig. 1. Environment and age strongly structure the rhizosphere microbial community. PCoA of unweighted (A and B) and weighted (C and D) UniFrac
distances for maize rhizosphere and bulk soil samples. A and B show the same projection of the data, as do C and D. Symbols represent microbiomes and are
colored by plant age (A and C; sampling week; see color gradient) by environment (B and D; by the specific field of origin). The first three PCs are plotted with
the percentage of variation explained by each PC.
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Sinobacteraceae OTUs) were among the heritable taxa. Although
the Alpha, Beta, Delta, and Gammaproteobacteria were well rep-
resented among the heritable OTUs, the genus Pseudomonas was
not (except one OTU, classified as Pseudomonas viridiflava). Of
note, only eight OTUs did not match the Greengenes reference
database, indicating that a majority of heritable OTUs have pre-
viously been observed, at least by sequencing. Indeed, the OTUs
with the greatest heritability values (>0.2) could be classified at least
to the family level, and many to genus and species.
The heritability of individual rhizosphere OTUs was lower

than for most traditional agronomic traits (0.15–0.25, whereas
the heritability of plant yield is around 0.3 and flowering time can
be 0.9 or higher). Nonetheless, there is a noticeable effect of
plant genetics on the relative abundances of specific taxa. Since
plant genotype selects on microbial phenotypes, heritable taxa
likely encode functions that are phylogenetically restricted, with
function manifested at the taxon level.

Heritable OTUs in the 2015 Field Study. Analysis of the 2015 dataset
identified five OTUs that were significantly heritable (P < 0.001;
SI Appendix, Fig. S3 and Dataset S4). One OTU, an Ellin517
taxon, was overlapping between the 2 y, and another was taxo-
nomically related to OTUs heritable in 2010 (Erythrobacter-
aceae). The OTUs that did not overlap between years were
detected in both years; however, they were present in a smaller
number of samples (55–70%) than the Ellin517 OTU in 2010
(>95%). These zero counts limit variance in abundance, and
hence heritability. Note that the heritability estimates were
higher in 2015 than in 2010, likely because of the small 2015
sample size. Moreover, the 2015 data stem from just one field, so
that environmental variability is reduced. Indeed, higher H2 es-
timates emerged when the 2010 data were subsetted to equivalent
sample size (SI Appendix). These findings underscore the impor-
tance of large datasets and multiple environments in heritability
analyses.

Pseudomonas Bloom. The age gradient allowed a weekly view of
rhizosphere microbiome development over the growing season.
Averaging the abundances of OTUs across fields and maize in-
bred lines, we observed that bacteria belonging to the Pseudo-
monas genus bloomed from week 8 onward (average increased
from ∼2.7% during weeks 1–7 to ∼44.5% thereafter; SI Appen-
dix, Fig. S4A). This bloom was apparent across all fields. Pseu-
domonas was not, however, dominant in bulk soil sampled across
the season, indicating the bloom was plant-driven (SI Appendix,
Fig. S4B). Of note, Pseudomonas has previously been shown to
dominate the maize rhizosphere microbiome (29–31).
After week 8, 43.1% of the total microbial community belonged

to just three Pseudomonas OTUs. The top 10 most abundant
unique sequences within these OTUs accounted for 78.6% of the
2015 and 73.1% of the 2010 Pseudomonas sequence data. Bray–
Curtis dissimilarity clustering revealed that the Pseudomonas
community structure differed by field (SI Appendix, Fig. S5), and
that this field-specific structure remained constant over time. Thus,
each field harbored a distinct Pseudomonas population structure
that was stable over the growing season.
The three Pseudomonas 97% OTUs that dominated in the

latter half of the 2010 sampling season were also present in the
2015 dataset, albeit at lower abundance. Moreover, the three
Pseudomonas 100% identity OTUs dominant in 2010 were also
the most abundant in 2015, although at lower relative abundance
to all other taxa. In 2015, Pseudomonas were slightly more
abundant in rhizosphere compared with bulk soil samples (2.0%
versus 0.3%; SI Appendix, Fig. S6), but we did not observe the
same seasonal bloom. Intriguingly, when we correlated the rel-
ative abundances of all unique 100% identity Pseudomonas
OTUs between the 2010 and 2015 datasets, we observed a strong
relationship (R2 of 0.91 for the 10 most abundant OTUs and R2

of 0.94 for all data), even though the 2010 data included three
geographically distinct fields and the 2015 data only one. Thus,
the most abundant 100% identity Pseudomonas OTUs in 2010
were also the most abundant in 2015. These data suggest that the
field-specific Pseudomonas community structure persists across

Fig. 2. Broad-sense heritability of individual OTUs for the 2010 field study. The broad-sense heritability (H2) is shown for the 100 OTUs with highest H2 values.
Circles show the actual H2 values for each OTU in decreasing order and blue distributions show the corresponding H2 values from 5,000 permutations of the
data. Red circles indicate OTUs with P values ≤0.001. Taxonomies shown are most specific for each OTU.
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long time periods, even though the relative abundance of the
Pseudomonas as a broader category can vary substantially.

Impact of Climate, 2010 and 2015. A subset of the rhizosphere
microbiome is responsive to weather: their relative abundances
were associated with climate variables. We modeled the effects
of weather, as recorded from the National Centers for Envi-
ronmental Information, on the rhizosphere microbiome across
the 2010 and 2015 season (SI Appendix, Dataset S6). Families of
Bacteria and Archaea tended to respond in the same positive or
negative pattern for given weather conditions. For instance,
Nocardioidaceae, Caulobacteraceae, and Sphingobacteriaceae
responded positively (across more than 80% of OTUs) to tem-
perature, whereas members of the Ellin515 and Opitutaceae,
Solibacteraceae, and Oxalobacteraceae responded negatively.
For same-day precipitation, Sphingobacteriaceae and Cytopha-
gaceae families responded positively 100% of the time, while the
Verrucomicrobia Ellin517 and Ellin515, Hyphomicrobiaceae,
Chthoniobacteraceae, and Chitinophagaceae responded nega-
tively to precipitation at least 80% of the time. When cumulative
precipitation for the prior 2 or 3 d was tested, the OTUs that
responded in a positive manner changed. Chitinophagaceae,
Hyphomicrobiaceae, Sphingomonadaceae, Comamonadaceae,
Gaiellaceae, Nocardioidaceae, Microbacteriaceae, and Opituta-
ceae responded positively to long-term precipitation for both 2-

and 3-d sums. Members of the Pseudomonadaceae responded
negatively to long-term precipitation, indicating that wetter and
colder conditions disfavor this group. The weather-responsive
subset of the rhizosphere microbiome adds variability to the
age-gradient trends and underscores the importance of multiple
time measurements in field studies.
Similar patterns of responsiveness to weather were replicated

5 y later (SI Appendix, Dataset S6). Since there is limited overlap
between the specific 97% OTUs detected in 2010 and 2015, and
because we had observed that OTUs belonging to the same
bacterial family usually had similar responses to weather events
in the 2010 data, we compared the 2010 and 2015 weather re-
sponses by examining if OTUs of the same family responded to
weather similarly in both years. Of note, members of the family
Hyphomicrobiaceae responded negatively to temperature in both
years. In addition, several taxa showed a positive response to pre-
cipitation in both years (2- and 3-d precipitation sums), including
Saprospiraceae, Hyphomicrobiaceae, Verrucomicrobia, A4b
(Anaerolineae), Ellin6075 (Chloracidobacteria), Sphingomonadaceae,
and Chitinophagaceae.
Interestingly, while many of the heritable OTUs belonged to

the same families, these also included taxa responsive to weather
events (e.g., members of the Oxalobacteraceae, Nocardioidaceae,
Sphingomonadaceae, and Chitinophagaceae). The observation
that the heritable set of OTUs and the weather-responsive set are
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related suggests that many of the heritable taxa are r-selected: they
likely react to short-term changes in carbon availability that are
modulated by the plant (32).

Prospectus. This well-powered study revealed the heritable com-
ponents of the maize rhizosphere under field conditions. Despite
strong environmental patterning, we identified close to 150
OTUs with significant heritability. These were highly diverse,
including Archaea. Many are related to taxa with putative ben-
eficial functions. While our 2015 replication study was limited in
scope, it nevertheless partially recovered the 2010 findings con-
cerning heritability and weather responses. The maize inbred
lines studied here were selected because they are the parents of
the recombinant inbred lines (RILs) that comprise the largest set
of public maize germplasm used to dissect genetically complex
traits (18). The present work was conducted in part to ascertain if
the NAM population might exhibit enough variance in the rhi-
zosphere microbiome to warrant an expanded study using the
NAM RILs, aimed at mapping plant genes that drive aspects of
the rhizosphere microbiome. Our results suggest that there is
indeed a variable selection of NAM RILs upon specific microbial
abundances.
A next step is to discern the plant genes that associate with

these taxa and to better characterize their functions. GWAS in
mammals highlight an effect of immune-related genes on the
microbiome, and similarly, studies in Arabidopsis point to effects
of plant immune-related genes on microbiome composition (4).
It remains to be seen if immune-related phenotypes (33) are as
important in shaping the maize rhizosphere microbiome.
Future studies may address other aspects of the microbiome

that are more directly related to function, using approaches such
as metagenomics and metabolomics. The rhizosphere microbiome
phenotypes could also be defined closer to the root surface (e.g.,

rhizoplane or endosphere), but then the impact of the plant on the
soil may be lost. Another possibility is to incorporate the rhizo-
sphere microbiome as a factor in determining desirable traits in
maize, such as yield or drought tolerance, and to assess how plant
genotype interacts with the rhizosphere microbiome to shape host
phenotype.

Materials and Methods
In 2010, we sampled replicate NAM parental lines in three fields in New York
State (USA) weekly, and two more fields (Illinois and Missouri) were sampled
once at flowering time. Combined with bulk soil from each field, this yielded
4,866 samples. From these samples, we generated ∼627,000,000 sequences of
the V4 region of the 16S rRNA gene using Illumina MiSeq sequencing. We
later partially replicated the field sampling in 2015 in one location (New
York) with a subset of the maize lines and sampling times. From the repli-
cate field study, we obtained 45 rhizosphere samples, which we processed
similarly to the 2010 set. Beta diversity, Adonis testing, core microbiome, and
raw alpha-diversity values were calculated with the QIIME (34) software
package. Differential abundance, alpha-diversity significance tests, microbial
response to weather, and heritability results were generated using the lme4
(35) mixed-model package. More specific details for sampling handling and
data analyses are described in SI Appendix.
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