
Meiotic recombination gets stressed out: CO frequency
is plastic under pressure
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Meiotic recombination ensures the fertility of gametes and

creates novel genetic combinations. Although meiotic

crossover (CO) frequency is under homeostatic control, CO

frequency is also plastic in nature and can respond to

environmental conditions. Most investigations have focused on

temperature and recombination, but other external and internal

stimuli also have important roles in modulating CO frequency.

Even less is understood about the molecular mechanisms that

underly these phenomenon, but recent work has begun to

advance our knowledge in this field. In this review, we identify

and explore potential mechanisms including changes in: the

synaptonemal complex, chromatin state, DNA methylation,

and RNA splicing.
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Introduction
Meiosis is a defining feature of sexually-reproducing

organisms. During meiosis, homologous chromosomes

pair and reciprocally exchange DNA, forming crossovers

(COs). This process creates new allelic combinations in

the resulting gametes, which may aid evolution by

creating favorable allelic combinations and breaking

up undesirable ones [1]. Meiotic recombination also

generates physical connections between homologous

chromosomes (chiasmata), which are crucial for proper

chromosome segregation. In Arabidopsis, �200 DNA

double-strand breaks (DSBs) are formed, but only

�10 develop into COs; the remainder are repaired as

non-crossovers (NCOs) [2–4]. Perturbation of DSB
frequency in yeast does not correspondingly alter CO

frequency, suggesting that recombination is homeosta-

tically regulated [5]. Nevertheless, CO frequency can be

modulated by external factors, such as temperature, and

varies by intrinsic factors, such as age [e.g., 6,7]. Under-

standing and manipulating the placement and frequency

of COs has enormous potential to aid in plant breeding

efforts, and to ensure crop productivity in the face of

external stressors.

Meiotic recombination is initiated when the conserved

topoisomerase VI-like SPO11 creates DSBs [8]. After

DSB formation, the 50 ends are resected, leaving 30 tails,
which can invade both sister and non-sister chromatids.

RAD51 and DMC1, bacterial RecA homologs, aid inva-

sion of non-sister chromatids in meiotic recombination

[9–11]. Following strand-invasion, intermediates can be

resolved by two pathways—double-strand break repair

(DSBR), which results in COs, or synthesis dependent

strand annealing (SDSA), which results in NCOs [12,13,

for a review see 14]. In Arabidopsis and many other

organisms, COs can be further divided into those that

are mediated by ZMM proteins (e.g., ZIP4, MSH4,

MSH5, MER3, HEI10 in Arabidopsis) and are subject

to interference (Type I) and those that are mediated by

MUS81 and are not sensitive to interference (Type II)

[15–19]. To date, it is largely unknown how CO formation

in these pathways is modulated in response to extrinsic

and intrinsic factors. In this review, we first provide an

overview of the factors that can modulate CO frequency.

We then identify and explore the molecular mechanisms

that may be responsible for the plastic nature of CO

frequency.

Meiotic CO frequency is plastic and
modulated by stress
Factors that affect genome-wide CO frequency fall into

two categories: (1) extrinsic factors, such as temperature,

and (2) intrinsic factors, such as sex or age. Historically,

the most-well studied of these factors is the effect of

temperature (Table 1) [20, reviewed in 21,22]. The effect

of temperature on CO frequency is complex (Table 1).

The most common finding is that CO frequency follows a

U-shaped pattern as temperature increases from low to

high (Figure 1). In some species, such as Arabidopsis
thaliana, Hordeum vulgare (barley), Caenorhabditis elegans,
the grasshopper Melanoplus femurrubrum, and Hyacinthus
orientalis [6,7,23,24��], an increase in CO frequency with

increasing temperature is observed. In others species,

such as Fritillaria meleagris, Allium ursinum, and Hyacinthus
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Table 1

Stressors that modulate CO frequency

Species Category CO frequency Reference

Caenorhabditis elegans Age Decrease [6]

Lycopersicon pimpinellifolium � L. esculentum Age Decrease [30]

Mus musculus Age Female: significant decrease Male:

non-significant increase

[38]

Mus musculus Behavioral Increase [100]

(referenced in [101])

Lycopersicon pimpinellifolium � L. esculentum Chemical Decrease [30]

Zea mays Defoliation No effect a

Arabidopsis thaliana Developmental stage Increase [7,76]

Zea mays Drought Increase a

Chlamydomonas reinhardi Nutrient Increase [34]

Drosophila melanogaster Nutrient Increase [31]

Drosophila melanogaster Nutrient [33]

Lycopersicon pimpinellifolium � L. esculentum Nutrient Na decrease, all others no change [30]

Saccharomyces cerevisiae Nutrient Increase [32]

Lycopersicon pimpinellifolium � L. esculentum Nutrient availability Decrease without fertilizer [30]

Allium ursinum Temperature Decrease [27]

Arabidopsis thaliana Temperature Increase [7,76]

Caenorhabditis elegans Temperature Increase [6]

Chorthippus parallelus (Stenobothrus parallelus) Temperature Increase then decrease [102]

Coprinus lagopus Temperature Increase [103]

Drosophila melanogaster Temperature Increase then decrease [20,37]

Fritillaria meleagris Temperature Decrease [25]

Hordeum vulgare Temperature Increase [24��,40]
Hyacinthoides non-scripta (Endymion nonscriptus) Temperature Decrease [21]

Hyacinthus orientalis Temperature Increase [26]

Locusta migratoria Temperature Increase [102]

Melanoplus femurrubrum Temperature Decrease [23]

Rhoeo spathacea var. variegata Temperature Decreased distal chiasma [104]

Saccharomyces cerevisiae Temperature Increase/no effect [46,105]

Schistocerca gregaria Temperature Increase-decrease-increase [102]

Sordaria fimicola Temperature Results varied based on locus examined [106]

Tradescantia bracteata Temperature Increase then decrease [107]

Uvularia perfoliata Temperature Increase then decrease [107]

a LA Verde, PhD Thesis, Iowa State University, 2003.
[25–27], a decrease in CO frequency is observed. At

stressful temperatures, synapsis may be impaired, its

timing altered, or the orientation of the spindle in meiosis

II may be altered [28]. At extreme temperatures, fertility

is reduced, suggesting catastrophic failure of meiosis [29].

Other external stressors have also been shown to modu-

late CO frequency. Lack of nutrients, treatment with the

CNS depressant barbituric acid and the antibiotic strep-

tomycin causes a decease in CO frequency in tomato [30].

In Drosophila melanogaster and Saccharomyces cerevisiae,
lack of nutrients causes an increase in CO frequency

[31,32], as does the chemical EDTA in Drosophila and

Chlamydomonas reinhardii [33,34].

Intrinsically, heterochiasmy, or differences in CO fre-

quency between the sexes, occurs in a wide variety of

taxa; most often there is a tendency towards elevated

recombination rates in females compared to males,
although this pattern is not universal [35,36]. In plants,

the tendency towards higher female recombination rates

is associated with outbreeding [35,36]. In humans, mice,

Drosophila and C. elegans, CO frequency decreases with

maternal age [6,37–39]. In plants, a similar pattern may

hold. In Lycopersicon, CO frequency decreases with age

of fruit on the primary meristem [30], while in Arabidop-

sis, no effect of age on the primary meristem is observed,

although an increase in CO frequency is observed when

the primary versus secondary and tertiary meristems are

compared [7]. The experiments performed in Arabidopsis

and Lycopersicon are critically different in one aspect: in

Arabidopsis, only the products of male meiosis were

observed, while the Lycopersicon data is derived from

F2 plants, which include both male and female meiosis.

Together, this data suggests that age may play a sex-

specific role in CO frequency in plants and other higher

eukaryotes.
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A proposed Arabidopsis model for stess-induced modulation of CO frequency. As temperature deviates from standard conditions, meiotic CO

frequency increases until conditions become unfavorable for meiosis, and meiotic catastrophe ensues. Chromatin re-modeling, specifically, H2A.Z

deposition, and the synaptonemal complex (SC) may play a role in CO frequency modulation as temperature changes. Additionally, alternatively-

spliced transcripts may contribute to this response.
The synaptonemal complex may play a critical
role in modulating CO frequency
The mechanism and genes responsible for changes in

meiotic CO frequency in response to extrinsic and intrin-

sic factors are presently unknown, although several plau-

sible candidates exist (Figure 1). A mechanistic clue may

come from the observation that CO placement can also

change in response to temperature. In Fritillaria meleagris
and barley, chiasma were shown to decrease in distal

regions with an accompanying shift to interstitial and

proximal regions [24��,25]. In other organisms, the

response of CO frequency to temperature was locus

dependent (Table 1). In barley, the shift from distal to

proximal was associated with an increase in synaptonemal

complex (SC) length [40]; the SC is a tripartite protein

structure responsible for meiotic chromosome pairing

[41]. Increases in SC length are also associated with

intrinsic factors that affect CO frequency, such as sex.

In heterochiasmic species, such as humans and mice, the

heterogametic sex has both higher CO frequency and

longer SC length [42,43]. In Arabidopsis, males exhibit a

higher recombination rate, which appears to also be

related to SC length [44,45��]. In barley, the increase

in CO frequency in response to temperature was male

meiosis-specific and was accompanied with an increase in

SC length [24��].

The association between SC length and CO frequency,

both in response to temperature and in heterochiamsic

species, suggests that the SC or the process of its elonga-

tion may act to alter CO frequency. In budding yeast, the

SC transverse filament protein, ZIP1, increases spore

viability in response to increased temperature in the
absence of the ZMM proteins MSH4 and MSH5,

although in this case, a corresponding alteration of CO

frequency is not observed [46]. In C. elegans and Orzya
sativa, the SC appears to limit rather than enhance CO

frequency [47–49]. Meiotic CO frequency is increased in

C. elegans in response to temperature [6]; consequently,

lengthening the SC in C. elegans would be expected to

decrease rather than increase CO frequency. Perhaps not

coincidentally, pairing of homologous chromosomes is not

dependent upon the SC in C. elegans, and a positive

association between chromosome length and CO fre-

quency is still found in C. elegans [47]. Thus if the SC

itself plays a causal role in modulating CO frequency, its

mode is unlikely to be a universal one.

Chromatin state alters the frequency of
crossovers
Several lines of evidence suggest that local CO frequency

may also be related to local chromatin state. CO hotspots

in Arabidopsis and Mimulus appear to be associated with

transcriptional start sites and chromatin [50��,51��]. Spe-

cifically, CO hotspots in Arabidopsis are associated with

H2A.Z-containing nucleosomes; a decrease in CO fre-

quency is observed in mutants defective for H2A.Z

placement [50��]. H2A.Z deposition decreases with

increasing temperature [52], suggesting that CO fre-

quency should also increase as temperature decreases.

Indeed, in plants grown at 12�C an increase in CO

frequency is observed relative to plants grown at 21�C;
this difference disappears in mutants defective for H2A.Z

deposition [50��]. This data, combined with earlier find-

ings in Arabidopsis of an increase in CO frequency as

temperature increases [7], implies that the mechanism



responsible for temperature-dependent modulation of 
CO frequency has non-linear dynamics across moderate 
temperature ranges (�12�C to �29�C), or that there are 
multiple mechanisms that combine to produce a complex 
response.

DNA methylation status transforms CO 
distribution and is temperature-sensitive 
Epigenetic modifications are also known to affect the 
local frequency of COs. In Arabidopsis, mutants of the 
chromatin-remodeling protein DDM1 and DNA methyl-

transferase MET1 experience a remodeling of CO place-

ment along chromosome arms—COs are shifted from 
pericentromeric regions to interstitial regions as a result 
of epigenetic remodeling [53–55]. It is interesting that 
DNA methylation is also temperature-dependent. In a 
survey of Arabidopsis accessions an increase in transpo-

son-associated CHH methylation was observed at 16�C 
relative to 10�C [56��], demonstrating that DNA meth-

ylation is temperature-dependent. A relationship 
between northern accessions that inhabit cooler environ-

ments and an increase in CG methylation of genes was 
also observed, suggesting that CG methylation of genes 
may be locally adaptive [56��]. It is currently unknown 
how and if the distribution of COs in Arabidopsis changes 
in response to temperature and other biotic and abiotic 
stressors, although it certainly seems plausible that epi-

genetic modifications may act along with other factors to 
remodel the CO landscape in response to such stressors.

The genetics of modulating meiotic CO 
frequency
Regardless of the roles of the SC, chromatin, and DNA 
methylation in modulating CO frequency, we are still left 
with unanswered questions—for example, which genes 
are responsible for inducing stress-related changes in CO 
frequency? Recently, it was discovered that absence of 
the cyclin-dependent kinase CDKG1 in Arabidopsis 
results in a temperature-dependent meiotic phenotype 
of reduced crossing over, resulting from defects in SC 
formation [57��]. Although CDKG1 acts in a pivotal 
temperature-dependent manner to maintain the SC, it 
remains unclear if it can act to alter the SC causing an 
increase in CO frequency in plants under heat stress. 
However, there is some evidence that supports a role for 
RNA splicing genes and alternatively-spliced transcripts 
in the meiotic thermosensory response. Genes involved in 
RNA splicing function in thermosensory-induced floral 
initiation [58], while diurnal temperature fluctuations 
result in alternatively-spliced transcripts of circadian 
clock genes [59]. Together, this suggests that RNA splic-

ing factors or alternatively-spliced transcripts may be 
important for temperature sensing in plants, as well as 
alteration of CO frequency in response to temperature 
fluctuations.
Variation in CO frequency among lines suggests that CO

frequency is modulated by trans effects as well [60–62].

Similarly, heterozygous regions in Arabidopsis have more

COs when they are juxtaposed with regions of adjacent

homozygosity [63��], and CO frequency is increased in

Arabidopsis F1 hybrids [64]. However, on a local scale,

sequence diversity appears to impede recombination in

yeast, humans, and mice [65–67], presumably this phe-

nomenon is caused by sequence mismatches which

impair successful strand invasion [68]. In maize, transpo-

son polymorphism attenuates CO frequency [69,70], how-

ever it seems possible that in this case transposon poly-

morphism may be confounded with methylation status, as

transposons may be heavily methylated and COs display a

negative association with methylation [71,50��]. Within

species nucleotide diversity is known to correlate with

recombination rate [72], although it seems likely that

recombination, along with selection, shapes patterns of

nucleotide diversity by reducing Hill–Robertson effects

[73–75], rather than polymorphism driving

recombination.

Type I and Type II CO pathways may play
unique roles in response to stress
Plants have both Type I and Type II COs, and exhibit

plasticity in their meiotic CO frequency. It remains

unclear if both types of COs contribute to frequency

modulations, either independently or in conjunction.

Furthermore, it is possible that changes in CO frequency

in response to abiotic and biotic factors are not regulated

by the same mechanisms or pathways across species. In

Arabidopsis, temperature modulates both CO and gene

conversion frequency, while differences in developmen-

tal stage are associated only with alteration of CO fre-

quency but not gene conversion frequency, suggesting

that separate processes, and potentially, pathways, regu-

late the temperature and development phenomenon [76].

While most, if not all, currently described hyper-recom-

binant mutants in Arabidopsis that have been character-

ized at the pathway level drive increases in Type II CO

frequency alone [77,78�,79�], loss of CG methylation in

met1 mutants reveals that DNA methylation controls the

placement (but not frequency) of Type I COs [80��].
Evidence from barley suggests that both pathways may

play important but unique role in alterations in CO

frequency in response to temperature; an overall increase

in CO frequency in response to heat was accompanied by

a shift in the distribution, but not number, of Type I

(MLHI) foci [24��]. This suggests, although not conclu-

sively, that in barley the placement of Type I COs is

altered at elevated temperatures, perhaps via epigenetic

modifications, and that at elevated temperatures, addi-

tional COs are derived from the Type II pathway. Intrigu-

ingly, polyploidization causes an increase in Type I COs

in Brassica [81] and overall CO frequency in neopoly-

ploids has been observed [82–84]. Neopolyploids often

exhibit extensive changes in methylation [85,86], which



may play a role in alteration of CO frequency and distri-

bution post-polyploidization.

Putting it all together: an inevitable link
between stress and recombination?
Finally, it is possible that alterations in meiotic CO

frequency are a consequence of the evolutionary heritage

of meiotic machinery. Many components of the meiotic

recombination pathway are either directly involved in

mitotic DNA damage repair, or are homologs to proteins

involved in mitotic DNA damage repair (e.g., MSH4,

MLH1). Alteration of recombination frequency by exter-

nal factors is not restricted to meiosis; the frequency of

somatic homologous recombination events is also altered

by external factors. Induced DNA damage is repaired by

either non-homologous end joining or somatic homologus

recombination [87]. Abiotic stresses, such as viral infec-

tion, temperature shifts, osmotic and oxidative stress, and

UV-radiation are followed by an increase in somatic

homologous recombination [88–93]. Interestingly, in Ara-

bidopsis, mitotic recombination follows the same temper-

ature pattern as seen in meiosis: an increase in CO

frequency is observed at temperature extremes [94].

Both Type I and Type II CO proteins either have known

mitotic functions or are homologs of bacterial genes

involved in mitotic recombination or DNA damage repair.

Meiosis-specific Type I ZMM proteins MSH4 and MSH5

are homologs of the bacterial MutS mismatch repair

(MMR) proteins which have lost their mismatch repair

function [16,18]. MSH4 and MSH5 have likely retained

their ability to identify mis-matched regions of heterodu-

plex DNA, which is an intermediate product of both the

DSBR and SDSA pathways of meiotic recombination. In

the MMR system, MutS homologs recognize mismatched

DNA sequences and interact with MutL [95]. The MutL

homolog and Type I protein MLHI works to both pro-

mote somatic homologous recombination and prevent

recombination between divergent sequences [96]. In

meiosis, MLHI co-localizes with MLH3 to mark sites

that will become Type I COs, but its absence is not

marked by severe reductions in fertility like those seen in

msh4 plants [96,97]. MUS81, the only confirmed Type II

pro-recombination protein, is an endonuclease that also

has a function in mitotic DNA damage repair [17,98].

Together, this data suggests that the evolution of meiosis

from mitosis may affect how meiotic CO frequency is

modulated in response to stress.

Conclusions
The varied response of CO frequency to temperature

across organisms suggests a recurrent evolutionary inno-

vation that may have diverse mechanistic basis across

organisms. Regardless, the SC, DNA methylation, chro-

matin modifications, and RNA splicing all seem to be

plausible candidates for the mechanism underpinning

modulation of meiotic CO frequency in response to
stressors. In many species, CO frequency in response

to temperature follows a U shaped pattern [21,22]

(Table 1). Thus, in addition to different mechanisms

modulating CO frequency across species, it is also possi-

ble that different mechanisms mediate changes in CO

frequency within species. Given their sessile nature, the

ability of plants to both sense and respond to their

environment in a plastic manner is of significant impor-

tance, as this ability may also have adaptive conse-

quences. Consistent with this hypothesis, evidence from

Drosophila suggests that alteration of meiotic CO fre-

quency does not necessarily increase organismal fitness

[99��] but does result in more genetically variant (recom-

binant) offspring; which provides grist for the evolution-

ary mill. In addition to its possible adaptive role, under-

standing the placement and frequency of meiotic COs

could be an invaluable tool in plant breeding efforts that

do not entail genetic modifications.
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RAD51, DMC1, and MLH1 foci.
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Muñoz DF, Wellman EC, Cherian S, Lewis SM, Berchowitz LE:
Deep genome-wide measurement of meiotic gene conversion
using tetrad analysis in Arabidopsis thaliana. PLoS Genet 2012,
8:e1002968.

77. Crismani W, Girard C, Froger N, Pradillo M, Santos JL,
Chelysheva L, Copenhaver GP, Horlow C, Mercier R: FANCM
limits meiotic crossovers. Science 2012, 336:1588-1590.

78.
�

Girard C, Chelysheva L, Choinard S, Froger N, Macaisne N,
Lehmemdi A, Mazel J, Crismani W, Mercier R: AAA-ATPase
FIDGETIN-LIKE 1 and helicase FANCM antagonize meiotic
crossovers by distinct mechanisms. PLoS Genet 2015, 11:
e1005369.

In a screen for rescued fertility in zmm mutants (see also Ref. [79�]), it was
discovered that AAA-ATPase FIDGETIN-LIKE 1 (FIGL1) works to limit
Type II COs. In figl fancm mutants, an additive effect is observed,
suggesting that the the two anti-CO genes work independently. Immu-
nolocalization of DMC1 and RAD51 foci in WT and figl mutants suggests
that FIGL1 alters the dynamics of DMC1/RAD51 localization on CO
intermediates, impeding CO formation.

79.
�
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