
Strobilurin Fungicides in House Dust: Is Wallboard a Source?

Ellen M. Cooper, PhD1, Rosie Rushing, BS2, Kate Hoffman, PhD1, Allison L. Phillips, PhD1, 
Stephanie C. Hammel, PhD1, Mark J. Zylka, PhD3, Heather M. Stapleton, PhD*,1

1Nicholas School of the Environment, Duke University, Durham, North Carolina, USA

2University of Puget Sound, Tacoma, Washington, USA

3University of North Carolina, Chapel Hill, North Carolina, USA

Abstract

Strobilurin fungicides are used primarily in fruits and vegetables, but recently, a patent was issued 

for one strobilurin fungicide, azoxystrobin, in mold-resistant wallboard. This raises concerns about 

the potential presence of these chemicals in house dust and potential exposure indoors, particularly 

in young children. Furthermore, recent toxicological studies have suggested that strobilurins may 

cause neurotoxicity. Currently, it is not clear whether or not azoxystrobin applications in wallboard 

lead to exposures in the indoor environments. The purpose of this study was to determine if 

azoxystrobin, and related strobilurins, could be detected in house dust. We also sought to 

characterize the concentrations of azoxystrobin in new wallboard samples. To support this study, 

we collected and analyzed 16 new dry wall samples intentionally marketed for use in bathrooms to 

inhibit mold. We then analyzed 188 house dust samples collected from North Carolina homes in 

2014-2016 for azoxystrobin and related strobilurins, including pyraclostrobin, trifloxystrobin and 

fluoxastrobin using liquid chromatography tandem mass spectrometry. Detection frequencies for 

azoxystrobin, pyraclostrobin, trifloxystrobin and fluoxastrobin ranged from 34 – 87%, with 

azoxystrobin being detected most frequently and at the highest concentrations (geometric 

mean=3.5 ng/g; maximum=10,590 ng/g). Azoxystrobin was also detected in mold-resistant 

wallboard samples, primarily in the paper covering where it was found at concentrations up to 88.5 

μg/g. Cumulatively, these results suggest that fungicides present in wallboard may be migrating to 

the indoor environment, leading to exposure in the residences that would constitute a separate 

exposure pathway independent of dietary exposures.
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Introduction

Strobilurin pesticides, which include azoxystrobin, pyraclostrobin, fluoxastrobin and 

trifloxystrobin, are fungicides originally derived from the fungus Strobilurus tenacellus and 

are most commonly applied to fruits and vegetables. Strobilurin fungicides act as disruptors 

of mitochondrial respiration by binding to QO sites of the cytochrome bc1 complex in target 

fungi (1). Given that mitochondria are the target of these fungicides, they may potentially 

elicit a wide range of acute and chronic toxic effects. These fungicides are highly toxic to 

many vertebrate and invertebrate aquatic species (2–7); however, comparatively little is 

known about toxic effects in non-aquatic species, including mammals. Recently, a review 

paper raised concerns about the use of fungicides in food and provided risk quotients for a 

variety of common use fungicides (7). Interestingly, a meta-analysis included in the paper 

found pyraclostrobin and azoxystrobin to have the highest risk quotients. Other studies 

highlighted the potential for these chemicals to cause neurotoxicity in vitro (8, 9). 

Additionally, pyraclostrobin has been demonstrated to stimulate mitochondrial dysfunction 

and adipogenic activity in human cell lines (10, 11); however, effects by other strobilurins 

have not been evaluated. It is interesting to note that strobilurins have been dissolved in 

aqueous vehicles when dosing animals in some toxicity studies; however, pyraclostrobin is 

not soluble in water at the doses used in these studies, suggesting that the true dose or 

exposure to pyraclostrobin and other strobilurin fungicides was likely much lower than the 

intended dose, and as a consequence, their toxicity may be underestimated (12). These 

findings raise concerns about human health consequences from exposures to these 

pesticides, particularly in mixtures, and the extent to which humans are exposed to these 

pesticides.

Until recently, the primary source of exposure to strobilurin pesticides for the general 

population has been assumed to occur through the diet via consumption of produce 

containing strobilurin residues. However, additional pathways may contribute to exposures. 

For example, strobilurins are used to treat fungal diseases in lawns, landscaping and turf 

grass in formulations such as Heritage (Syngenta; azoxystrobin), DiseaseEX (Scotts; 

azoxystrobin), Insignia (BASF, pyraclostrobin), Compass (Bayer, trifloxystrobin) and Cabrio 

(Bayer, fluoxastrobin). These are not restricted-use pesticides, and they are used by both 

homeowners and professionals. Strobilurin concentrations, provided on the product label, 

can vary widely depending on formulation (e.g., 0.31-50% w/w for azoxystrobin). It is 

possible that the use of these fungicides on home lawns and landscapes may contribute to 

human exposures not only during application but also from contact during time spent 

outdoors and from tracking treated soil and plant matter into the home environment where 

they may ultimately accumulate in house dust. Additionally, azoxystrobin has been patented 

for use in mold-resistant building materials, including wallboard. Although these products 

were first registered with the EPA in 2004 (13), they were not available in the U.S. market 

until 2009, and use of mold-resistant wallboard in new construction and home renovations 

raises concerns about potential human exposure to these fungicides. Strobilurin-treated 

wallboard products include the XP line of Gold Bond® Purple® gypsum board (National 

Gypsum), and M-Bloc™ gypsum board product line (American Gypsum). These products 

are treated with azoxystrobin, along with thiabendazole, marketed as Sporgard™ (Lanxess 
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Corporation) and AzoTech™ (Syngenta). The presence and amount of fungicides in treated 

wallboard is not listed on the product, and the purchaser may be unaware that the product 

contains these fungicides. Additionally, whether or not strobilurins in treated construction 

materials migrate into the indoor environment and contribute to exposure is currently 

unknown. While estimates of human exposure to strobilurins are available from dietary 

sources and for occupational exposures, estimates of exposure for these pesticides from non-

dietary sources, particularly in indoor environments, have not been evaluated for the general 

population.

The presence of these compounds in house dust would suggest that the indoor environment 

is a potential source of exposure for strobilurin pesticides, outside of diet. Children, in 

particular, receive higher exposure to chemicals found in house dust as they have smaller 

bodies and have more contact with dust particles. Therefore, the purpose of this study was to 

quantify the distribution of a group of strobilurins in samples of house dust and to quantify 

azoxystrobin levels in new wallboard samples. We collected 16 wallboard samples from 

home improvement stores across several states within the U.S. that were intentionally 

marketed to inhibit mold. We analyzed both the paper and the mineral content in each dry 

wall sample and reported the concentrations. To examine exposure potential, we collected 

188 house dust samples in 2014-2016 in central North Carolina as part of the Toddlers 

Exposure to Semi-volatile organic chemicals in the Indoor Environment study (“TESIE”). 

Children’s potential exposure to the fungicides was then estimated using exposure factors 

from the U.S. EPA’s Exposure Factors Handbook 2011 Edition.

Methods

Wallboard Sample Collection and Preparation

Convenience samples of wallboard (n=16) were collected by a group of friends and family 

living in various states around the U.S., including CA, CO, DE, IN, MD, NC, NJ, NV, NY, 

PA and WA. All samples purchased new from large chain stores and were marketed for use 

in damp locations. The paper covering was removed from the gypsum layer and both 

components were analyzed separately.

House Dust Collection

House dust was collected as part of the TESIE study based in central North Carolina (14,15). 

Details describing the cohort recruitment are reported in Hoffman et al. (14). Briefly, 

between 2014 and 2016, families with children 3-6 years of age were invited to participate in 

TESIE. As described by Phillips, Hammel, et al., study staff conducted a home visit with 

188 enrolled families and collected a dust sample from the main living area of the home 

using a vacuum cleaner fitted with a thimble for dust collection (15). All study protocols and 

related materials were reviewed and approved by the Duke Medicine Institutional Review 

Board (Duke IRB Protocol #55540). Legal guardians provided informed consent prior to the 

collection of samples and questionnaire data for the TESIE study. To explore whether 

azoxystrobin in the home might be related to when the homes were built or the size of the 

home, housing data were obtained using county property tax records. Tax assessment 

information was available for 122 homes but was unavailable for public housing units, 
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apartments and mobile homes/trailers thus housing characteristics for these homes were 

unknown (n=65).

Analysis of Strobilurin Pesticides

Analyses focused on four strobilurin pesticides, which have not been previously quantified 

in house dust. Dust sample collection and preparation details are reported by Phillips, 

Hammel et al. (15). Briefly, dust samples (~ 100 mg) and wallboard paper and gypsum (100 

mg) were extracted by sonication for 15 min in 5 mL 1:1 dichloromethane:hexane (v/v). 

Extracts were cleaned with Super-clean ENVI-Florisil (6 mL, 500 mg bed) in three 

fractions: hexane (F1), ethyl acetate (F2), and methanol (F3). Strobilurins eluted in F2. To 

evaluate the efficiency of our extraction method, we measured the recoveries of a 50 ng 

spike of each strobilurin into 100 mg of a Standard Reference Material (SRM) (NIST SRM 

2585) in triplicate. These spiked SRM samples were treated the same way as the dust 

samples.

Strobilurin Analysis:

The house dust extraction method was evaluated for strobilurins, which eluted from the dust 

extracts in the ethyl acetate (F2) fraction of the Florisil cleanup for dust extracts. Strobilurins 

were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS; Agilent 

6460 QQQ MS) with separation on a Luna 2.5 μm C18 50×2 mm column (Phenomenex) 

using a gradient of 10% formic acid (A) / 10% formic acid in methanol (B) (30% B 0-0.2 

min, to 99% B at 2 min, hold 99% B to 6 min) at 0.3 mL/min and with a 20 μL injection. 

Deuterated (D6) linuron (CDN Isotopes, Pointe-Claire, QC, Canada) was used as an internal 

standard. Analytes were detected by multiple reaction monitoring for the following 

transitions: azoxystrobin 404.1>372.0 m/z; fluoxastrobin 459.1>427.0 m/z; pyraclostrobin 

388.1>194.0 m/z; trifloxystrobin 409.1>185.9 m/z; D6-linuron 255.1>175 m/z. Wallboard 

paper and gypsum samples were analyzed for azoxystrobin by gas chromatography-mass 

spectrometry with electron impact ionization (GC/MS-EI) (Agilent 6900 GC/5975 MS) with 

1 μL pulsed splitless injection on a programmable temperature inlet (80-300°C, 10°C/s). 
13C6-cis permethrin (Cambridge Isotope Laboratories, Inc, MA) was used as the internal 

standard. Separation was achieved with DB-5MS 30m x 250 μm, 0.25 μm film column with 

constant flow (1.3 mL/min) and a thermal gradient of 80°C for 2 min; to 250°C at 20°C/min; 

to 260°C at 1.5°C/min; to 300°C at 25°C/min for 20 min. The transfer line and EI source 

were held at 300°C, with emission 35 μA, electron energy 70 eV. Analytes were detected by 

selected ion monitoring: azoxystrobin 344.1 m/z and 13C6-cis permethrin 189 m/z. Very 

little to no strobilurins were detected in the lab processing blanks and ranged from 

0.002-1.21 ng for azoxystrobin, 0.001-0.253 ng for fluoxastrobin, 0.001-0.027 ng for 

pyraclostrobin, and 0.002-0.004 ng for trifloxystrobin.

Recoveries of the 50 ng spike of strobilurins into SRM 2585 varied across the compounds, 

from 68% for azoxystrobin to 151% for fluoxastrobin. Dust SRM 2585 was below detection 

for azoxystrobin and fluoxastrobin in unspiked samples, while pyraclostrobin and 

trifloxystrobin were detected at 1.21±0.36 and 0.45±0.19 ng/g, respectively (Table 1). These 

concentrations were measured alongside the other dust samples and then verified with high-

resolution accurate mass spectrometry (HRAMS) to reduce interferences from non-
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strobilurin ions of similar mass. HRAMS was performed on a Q-Exactive GC hybrid 

quadrupole-Orbitrap GC-MS/EI-MS (Thermo Scientific™) equipped with a Thermo 

TraceGOLD TG-5HT column (30 m × 0.25 mm ID, 0.25 μm film thickness) operating under 

chromatographic conditions described above. Mass accuracies were <5 ppm at a resolution 

of 60,000 (200 m/z). Quantification and qualifier ions, respectively, included 344.1029678 

and 388.0927970 for azoxystrobin, 188.058029 and 219.0764187 for fluoxastrobin, 

132.0443904 and 164.0706051 for pyraclostrobin, and 116.0494758 and 131.0729509 for 

trifloxystrogin. For the wallboard sample extractions, which did not require a Florisil 

cleanup or purification step, azoxystrobin spike recoveries were 92% and 96% of a 10 and 

100 ng matrix spikes, respectively.

Statistical Analyses

Data were analyzed using Microsoft Excel (Office 2011) or R (version 3.4.2), with statistical 

significance defined at the alpha = 0.05 level. Method detection limits (MDLs) were 

calculated by multiplying the standard deviation of the laboratory processing blanks by 

three. All dust and wallboard concentrations were blank corrected using the average level 

measured in the laboratory processing blanks (i.e., organic solvents only). Descriptive 

statistics were calculated for wallboard and house dust samples. These analyses revealed that 

concentrations of strobilurins were not normally distributed, and accordingly, we report 

medians, geometric means and used non-parametric statistical tests as appropriate. We 

evaluated characteristics of the homes and their potential associations with azoxystrobin 

concentrations in house dust. Given that azoxystrobin-treated wallboard did not come to 

market until around 2004, we explored whether or not azoxystrobin in household dust might 

be related to when the homes were built, which may determine the types of materials used in 

construction. We grouped homes by year of construction: <1960, 1960-1977, 1978-1989, 

1990-2003, 2004-2008 and 2009-2014 and evaluated relationships between the year of home 

construction and azoxystrobin concentrations using a Kruskal-Wallis rank sum test. Similar 

analyses were conducted for the size of the home (categorized as <1500, 1500-2500, >2500 

or unknown square footage). Values less than the MDL (e.g., 13 dust samples for 

azoxystrobin) were replaced with a value equal to MDL/2 for statistical analyses (16).

Results

Azoxystrobin in wallboard

To investigate alternate sources of azoxystrobin in the indoor environment, we evaluated 

mold-resistant wallboard currently on the market and readily available to homeowners. As 

azoxystrobin formulations are likely applied to the paper covering in wallboard, we analyzed 

the paper independently from the interior gypsum mineral. Azoxystrobin in the gypsum 

portion was detected in 50% of the 16 samples tested, while in the paper portion 

azoxystrobin was detected in 94% of samples (Figure 1). In our samples of mold-resistant 

wallboard, the paper contained the majority of azoxystrobin, ranging from 0.01-88.5 μg/g 

and averaging 17.3 μg/g.
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Characterization of strobilurins in North Carolina house dust samples

All strobilurins investigated were detected in house dust at varying frequencies and ranges as 

shown in Table 2. Azoxystrobin was the most frequently detected (93% of dust samples) and 

found at the highest concentrations, ranging from <MDL to 10,587 ng/g in house dust 

samples. The remaining three compounds were observed at much lower frequencies and 

concentrations: fluoxastrobin (73% detection, <MDL-40.7 ng/g), pyraclostrobin (36% 

detection, <MDL-35.6 ng/g), and trifloxystrobin (38% detection, <MDL-2.61 ng/g).

Azoxystrobin levels did not differ significantly by the year of home construction (p=0.14), 

and levels varied widely for all years (Figure 2). In addition, we evaluated whether the 

square footage of the home (categorized as <1500, 1500-2500, >2500 or unknown square 

feet), which could be a proxy for the amount of drywall in the space, was associated with 

azoxystrobin in dust, but we observed no association (p=0.54).

Exposure Estimates

The U.S. EPA’s EFH provides data for use in estimating exposure via various pathways. For 

children’s exposure to chemicals in house dust, the EFH suggests using a central tendency 

estimate of 60 mg of dust ingested per day for children 1-6 years of age (17). If we assume 

an average child in this age range weighs 15 kg (average weight at 1 year~10 kg and at 6 

years~20 kg), then their estimated exposure to azoxystrobin via incidental ingestion of house 

dust would be 0.013 ng/kg/day, using the geometric mean levels measured in dust with a 

maximum of 42.3 ng/kg/day using the highest concentration measured.

Discussion

Our results suggest that fungicides are present in wallboard and may be migrating to the 

indoor environment. We evaluated mold-resistant wallboard samples purchased at stores 

around the U.S. and found that the majority contained azoxystrobin, particularly in the paper 

portion. To our knowledge, this is the first report of analysis of azoxystrobin in wallboard. 

The formulations used to treat wallboard may contain 15-19% w/w azoxystrobin; however, 

the amount applied during treatment is unknown. Notably, some products contained little to 

no azoxystrobin, even though the sample came from a product marketed as mold-resistant. 

This suggests that these products may be treated with formulations that contain something 

other than azoxystrobin. Overall, these results support the possibility that treated wallboard 

may contribute to azoxystrobin levels in house dust. Further research is needed to more fully 

characterize azoxystrobin levels in commercial mold-resistant wallboard as well as the 

factors that affect the rate and extent of migration to the indoor environment.

Strobilurin pesticides were detected frequently in house dust collected in central North 

Carolina (2014-2016). Among the strobilurins investigated, azoxystrobin stands out not only 

as the most frequently detected compound but also the compound detected at the highest 

levels. Median (2.7 ng/g) values for azoxystrobin were approximately an order of magnitude 

higher than for other strobilurin pesticides. Notably, the maximum measured azoxystrobin 

concentration (10, 587 ng/g) was 297 times greater than pyraclostrobin. Although little is 

known about the fate and persistence of strobilurins in the indoor environment, the higher 
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levels and range in concentrations of particularly azoxystrobin observed in house dust 

suggest that azoxystrobin on food is not the only source of this compound in the indoor 

environment when compared to levels observed for other strobilurins also used on foods.

The levels of azoxystrobin in house dust were lower than what we have measured in these 

samples for other environmentally relevant chemicals including organophosphates (e.g., tris 

(1,3-dichloro-2-propyl) phosphate and tris(2-chloropropyl) phosphate, geometric means 

(GM) = 4 818 and 4 843 ng/g, respectively (15)), phthalates (e.g., diethylhexyl phthalate, 

GM = 118 820 ng/g (18)), and brominated flame retardants (e.g., brominated diphenyl ethers 

47 and 99, GM = 452 and 741 ng/g, respectively (19)). With regard to other pesticides, the 

range of values detected for azoxystrobin is similar to that observed for other types of 

pesticides in indoor dust (e.g., up to 11,000 and 15,100 ng/g for diazinon and chlorpyrifos, 

respectively (20)); however, the reported values for the median (17.5 and 135 ng/g, 

respectively) were similar to azoxystrobin measured in the current study (3.35 ng/g).

We hypothesized that the year of construction could be associated with azoxystrobin in dust 

because drywall formulations containing azoxystrobin were first used in the U.S. in 2008, 

suggesting that homes built after this time period may have higher levels in dust. However, 

we did not observe associations between housing characteristics (e.g., housing age and size) 

and azoxystrobin in household dust. One limitation of the data used to evaluate this 

hypothesis is that the year of construction does not reflect any home renovations, which 

frequently involve updates in kitchens and bathrooms where mold-resistant wallboard would 

be installed. Unfortunately, information about home improvements or any materials used 

during renovations or construction were not included in the questionnaire for this study; 

future investigations into the source of azoxystrobin in indoor environments may benefit 

from gathering this information. It’s also possible that azoxystrobin could be tracked into 

homes from outdoors, and accumulate in house dust, following applications of fungicides to 

residential lawns.

Our estimate of children’s potential exposure to azoxystrobin from house dust ingestion 

based on the geometric mean level was approximately an order of magnitude lower than 

1.15 ng/kg/day estimated for dietary azoxystrobin exposure reported by Winter (21). 

However, based on the highest concentration measured in this study, azoxystrobin exposures 

via ingested dust could far exceed dietary exposures.

Conclusions

This study demonstrates that strobilurin fungicides are present in house dust and represent a 

potential exposure pathway outside of diet. Furthermore, our analyses suggest that a fair 

percentage of wallboard samples sold on the market today contain azoxystrobin. The recent 

introduction and use of this fungicide in wallboard may explain the higher detection 

frequency and levels of azoxystrobin measured in house dust samples; however, we 

encourage more research to identify the primary sources to the indoor environment. Our 

exposure estimates suggest that children may be receiving exposure at levels as high as 42 

ng/kg/day in homes with high levels of azoxystrobin in house dust. Given that a recent study 

ranked azoxystrobin second for the highest risk quotient among fungicides, more research 
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may be warranted to evaluate health risks for some populations, particularly children who 

are more vulnerable to neurodevelopmental effects.
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Figure 1. 
Azoxystrobin (μg/g) in mold-resistant wallboard samples collected across multiple states.
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Figure 2. 
Azoxystrobin in dust by year of home construction from property tax records. Homes with 

unknown year of construction are included in the unknown category. The distribution of the 

data (shape of the violin plot) are shown with individual colors for each year bin. Black 

bands represent the median value per category and the dashed white lines indicate individual 

measured values in individual dust samples. The overall median azoxystrobin concentration 

(in all categories) is shown by the dashed line.
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Table 1.

Strobilurin background levels measured in dust SRM 2585 and measured recoveries in spiked dust.

Azoxystrobin Fluoxastrobin Pyraclostrobin Trifloxystrobin

MDL (ng/g) <0.001 5.23 0.06 <0.001

SRM 2585 (ng/g) <MDL <MDL 1.21 ± 0.36 0.45 ± 0.19

Spike Recovery (%) 68 ± 37 151 ± 3 116 ± 13 89 ± 7.0
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