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Abstract

Genome-wide association studies have been successful mapping loci for individual phenotypes, but few studies have
comprehensively interrogated evidence of shared genetic effects across multiple phenotypes simultaneously. Statistical
methods have been proposed for analyzing multiple phenotypes using summary statistics, which enables studies of shared
genetic effects while avoiding challenges associated with individual-level data sharing. Adaptive tests have been developed
to maintain power against multiple alternative hypotheses because the most powerful single-alternative test depends on
the underlying structure of the associations between the multiple phenotypes and a single nucleotide polymorphism (SNP).
Here we compare the performance of six such adaptive tests: two adaptive sum of powered scores (aSPU) tests, the unified
score association test (metaUSAT), the adaptive test in a mixed-models framework (mixAda) and two
principal-component-based adaptive tests (PCAQ and PCO). Our simulations highlight practical challenges that arise when
multivariate distributions of phenotypes do not satisfy assumptions of multivariate normality. Previous reports in this
context focus on low minor allele count (MAC) and omit the aSPU test, which relies less than other methods on asymptotic
and distributional assumptions. When these assumptions are not satisfied, particularly when MAC is low and/or phenotype
covariance matrices are singular or nearly singular, aSPU better preserves type I error, sometimes at the cost of decreased
power. We illustrate this trade-off with multiple phenotype analyses of six quantitative electrocardiogram traits in the
Population Architecture using Genomics and Epidemiology (PAGE) study.

Introduction
Genetic susceptibility underlies a majority of complex phe-
notypes, as illustrated by thousands of loci (1) that have been
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identified in genome-wide association studies (GWAS). This
large body of published GWAS has enabled fresh insights into the
genetic architecture underlying complex phenotypes, including
strong evidence of shared genetic effects (i.e. pleiotropy), even
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Table 1. Methods that are powerful against a single alternative. Columns describe the way that the phenotype-specific association statistics Zk
are combined across K phenotypes, while rows represent different approaches to transforming these association statistics before combining
them. Specifically, the identity transformation (I) implies no change to the statistic, the T−1 transformation implies rotation onto the orthogonal
coordinate system defined by the eigenvectors of the estimated correlation matrix R, e.g. PC1 = umaxTZ where umax is the eigenvector associated
with the largest eigenvalue of R, and the R−1 transformation implies multiplying the Z-scores by the inverse of the estimated correlation matrix,
e.g. VC = ZTR−1R−1Z. The notation SPU∗ implies SPU using this R−1 transformation

L1 norm L2 norm Lγ norm L∞ norm

Statistic
∑K

k=1 Zk
∑K

k=1 Z2
k

∑K
k=1 Zγ

k max
1≤k≤K

Zk

Transformation I Burden test; SPU(1) SSU; SPU(2); PCQ0 SPU(γ ) minP; SPU(Inf)
T−1 PC1, PC2, etc Wald; CCA;

metaMANOVA; PCQ1
PCminP

R−1 Shom; SPU∗(1); MPAT
fixed effect; PCLC

VC; Shet (no
threshold); MPAT
variance of random
effect; PCQ2; SPU∗(2)

SPU∗(γ ) SPU∗(Inf)

among phenotypes with few known etiologic links (2–4). Shared
genetic effects have the potential to identify novel biologic
pathways (2), inform drug development and disease classifi-
cation (3–6), clarify adverse drug reactions (7), advise on crucial
assumptions underlying Mendelian randomization (MR) studies
(8) and increase statistical power (9,10). However, few studies
have systematically identified and characterized evidence of
such effects across a spectrum of complex phenotypes.

The limited number of studies interrogating shared genetic
effects across a broad phenotypic spectrum may reflect the
difficulty of accurately measuring common and rare phenotypes
spanning phenotypic domains (e.g. cardiovascular, metabolic,
cancer, kidney, liver, psychiatric, ocular, neuromuscular and der-
matological) and life stages (e.g. childhood, adulthood, preg-
nancy) in large populations. Statistical methods that leverage
publicly available GWAS summary statistics offer a method for
studying genetic effects shared within or across phenotypic
domains, while avoiding challenges associated with individual-
level data sharing. These summary statistics are generally more
flexible for incorporating data comprised of related individuals
and/or multiple outcome types, as well as overlapping partici-
pants. Although multiple phenotype methods are not directed
at establishing pleiotropy, they can identify loci where a more
explicit evaluation of pleiotropy is warranted (3). While several
statistical methods have been proposed for multiple phenotype
testing using summary statistics, comprehensive comparisons
are only now emerging (e.g. (11)) despite considerable interest
in multiple phenotype testing not only for GWAS (12,13), but
also when interrogating ‘OMIC correlates of health and disease
(14,15). Few comparative evaluations have been published to
review the expanding range of tools for multiple phenotype
analyses, and there is incomplete guidance on the relative merits
of different methods across practical settings.

Methods that rely on summary data use a matrix of single
nucleotide polymorphism (SNP)-phenotype association statis-
tics to compute a SNP-specific multiple phenotype association
test. Multiple papers have shown that a correlation matrix can
be estimated either by computing the correlation among non-
significant association statistics directly to obtain an estimate
of residual phenotypic correlation (16–18) or by using them
as inputs to an LD-score regression approach (19) to obtain
an estimate of genetic correlation. The methods considered in
this paper use phenotypic correlation estimates. Given the test
statistics and the estimated correlation matrix, there are many

ways to combine the information across phenotypes to test the
null hypothesis that there is no genetic association with any of
the phenotypes, e.g. summing over phenotypes, focusing on the
biggest test statistics by raising them to a power or considering
only the biggest one, and/or transforming the data prior to
combination (16–18,20–21) (Table 1). Each unique combination of
test statistics maintains power against a different alternative
hypothesis. Researchers rarely know the underlying structure of
the relationships among the phenotypes and a given SNP, and
this structure likely varies across SNPs. Therefore, adaptive tests
that maintain power against multiple alternative hypotheses
have been proposed for use on a genome-wide basis (Table 2).

These adaptive tests are the ones that we evaluate in this
manuscript; specifically, we include two versions of the adap-
tive sum of powered scores (aSPU) test (18), the unified score
association test using summary data (metaUSAT) (20), the test
based on both fixed effects and variance components from a
mixed model (mixAda) (17), and two principal-component-based
tests (PCAQ and PCO) (21). In general, the adaptive tests seek to
simultaneously account for distinct patterns of homogeneous
and heterogeneous SNP effects across phenotypes. They do so
by incorporating different combinations of tests from Table 1
and estimating P-values using different methods. Thus, their
properties depend both on what components are included in the
statistic and on how P-values are computed. All adaptive meth-
ods except aSPU incorporate at least one test that transforms the
Z statistics using the inverse of the estimated correlation matrix.
It is possible to transform the Z statistics in aSPU, which we
denote aSPU∗, but the test that does not include the estimated
correlation in the test statistic is recommended (18).

Some of these adaptive tests, plus multiple phenotype tests
using individual-level data and tests that are powerful against a
single alternative hypothesis, were evaluated by Ray and Chat-
terjee (11) in scenarios where the assumption of multivariate
normality (MVN) was not satisfied and minor allele count (MAC)
was low. However, their examination excluded aSPU, perhaps
due to its computational burden. In this paper, using our newly
developed, more efficient implementation of aSPU in the Julia
language (13), we add aSPU to performance comparisons when
MAC is low and the MVN assumption is not satisfied. We also
evaluate an additional scenario in which violation of the MVN
assumption leads to inflated type I error rates: when phenotype
correlation matrices are singular or nearly singular, a situation
not previously reported.



Table 2. Adaptive methods that maintain power against multiple alternatives. Each column describes a different adaptive test, while the rows
indicate which type of tests are included in each adaptive test, how P-values are estimated, and how much computational time is needed
for each test. Computational burden is based on analyses of simulated data for one million SNPs, n = 1000, MAF = 0.05, and five traits with
correlation of 0.6, using 20 CPUs (Intel Xeon E5–2680) on the University of North Carolina cluster

aSPU aSPU∗ metaUSAT mixAda PCAQ PCO

Sum SPU(1) SPU∗(1) SPU∗(1) SPU∗(1)
Sum of squares SPU(2) SPU∗(2) SSU=SPU(2)

Wald
VC SSU=SPU(2)

Wald
VC

SSU=SPU(2)
Wald
VC

Sum of powers . . . . . .

Maximum SPU(Inf) SPU∗(Inf) PCminP
Non-linear PCFisher
P-value
computation

Monte Carlo
simulations to get
reference
distribution

Monte Carlo
simulations to get
reference
distribution

numerical
integration with
reference
distribution being
a mixture of
(potentially
dependent)
chi-square
distributions

numerical
integration with
reference
distribution being
a mixture of
independent
chi-square
distributions

assuming MVN of
inverse-normal-
transformed
P-values, with
covariance
estimated via
Monte Carlo
simulations

assuming MVN of
inverse-normal-
transformed
P-values, with
covariance
estimated via
Monte Carlo
simulations

Computational
burden
(CPU-hours)

12.2 11.4 4.7 13.7 33 64

To evaluate the performance of the six adaptive multiple
phenotype tests, all of which can be implemented in multieth-
nic populations using only summary GWAS data, we present
results from a series of simulations, paired with data from a
multiethnic cohort, the Population Architecture using Genomics
and Epidemiology (PAGE) study (22). Based on our results we
provide practical advice for choosing a method in general as well
as specific advice when the MAC is low or the phenotypes of
interest are highly correlated.

Results
In this section we present comparisons of adaptive multiple
phenotype test levels and power both when MAC is low and
when phenotypic correlation matrices are nearly singular, first
using summary statistics generated via simulations and then
using data collected in the PAGE multiethnic cohort study. For
the simulations, we use one sample of 1000 people per pheno-
type, with varying MAC, phenotype correlation and multivariate
distribution as detailed in the Materials and Methods section.

Simulations comparing the tests’ levels: low MAC

Figure 1 compares type I error of the six tests when traits have
a multivariate t (MVT) distribution with 5 degrees of freedom
(df) and SNP MAC ranges from 20 to 300. For a MAC of 20–
30, all methods had inflated type I error, though aSPU had the
least inflation (Fig. 1C and D). For a MAC of 100, only aSPU had
appropriate control of type I error (Fig. 1B). For a MAC of 300, all
methods showed control of type I error (Fig. 1A).

Simulations using MVT distributions with 3 and 10 df
are included in Supplementary Material, Figs. S1 and S2.
They show that type I error is preserved at lower MAC
when the underlying multivariate trait distribution was
closer to normality (Supplementary Material, Fig. S1), that
higher MAC is required to preserve type I error when the
underlying multivariate trait distribution was further from

normality (Supplementary Material, Fig. S2), and that the
comparisons among methods are similar for all displayed MVT
distributions.

Simulations comparing the tests’ powers: low MAC

The six tests’ power can only be compared in scenarios where
all of the tests preserve type I error. For SNPs with MAC of 30,
we compared power when the traits have an MVN distribution,
where type I error is preserved (Supplementary Material, Fig.
S3). Figure 2 shows that the relative power of the methods
depended on the correlation among traits and the pattern of
the effects. When the SNP variant had the same effect size
for all five traits, all methods have similar power. However,
when only a subset of the traits was associated, aSPU has
lower power than the other methods, particularly when the
trait correlation was strong (Fig. 2A). That said, with strong
trait correlation, it would be surprising for only a subset of
the traits to have a genetic effect, so the scenario for the
left panel in Figure 2A would not be common in empirical
data.

Simulations comparing the tests’ levels:
near-singularity of correlation matrix

Figure 3 illustrates type I error of these tests for more common
SNPs and traits that have a nearly singular correlation matrix
and are far from MVN assumptions. In these simulations, mod-
eled on six contiguous ECG traits that are each adjusted for their
sum, all methods had inflated type I error for an MVT distribu-
tion with 2 df (Fig. 3A), but as the df increased, the performance
of all methods improved. With higher df, aSPU had less type I
error (Fig. 3B and C) than other methods. The closer the under-
lying trait distribution was to MVN, the less influential a nearly
singular correlation structure was on the validity of the test.
When one trait was excluded so that the trait correlation matrix
was no longer nearly singular, all methods still had inflated type
I error for an MVT distribution with 2 df (Supplementary Mate-
rial, Fig. S4A), but the inflation was much less substantial than
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Figure 1. Simulations under the null hypothesis with low effective sample size, specifically MAC ranging from 20 to 300, as indicated in the figure. Five traits with

pairwise correlation of 0.6 and MVT distribution with 5 df are simulated. For each scenario and each method, figures include q-q plots of the observed versus expected

−log10 P-values, including 95% prediction bands for the null hypothesis.

when the correlation matrix was nearly singular. With 3–5 df,
all methods had minimal type I error (Supplementary Material,
Fig. S4B–D).

Simulations comparing the tests’ levels under two other rela-
tionships among traits—a linear relationship and a non-linear
relationship—are included in Supplementary Material, Figs. S5
and S6. When traits linearly determine each other, all methods
except aSPU, and sometimes mixAda, had substantial type I error
for a range of MVT distributions, and even when MVN assump-
tions were satisfied (Supplementary Material, Fig. S5). When
traits have a non-linear relationship, for all methods except aSPU
there was still substantial type I error for MVT distributions

with less than 5 df, though it was less pronounced than in the
case of a linear relationship and resolved for df of 5 and higher
(Supplementary Material, Fig. S6).

The amount of type I error in these simulations reported in
Figure 3 and Supplementary Material, Figures S4–S6 was directly
related to the trait correlation matrix condition number, a
measure of degree of singularity (23). The condition number was
essentially infinite for the linearly related traits, intermediate at
151 for the non-linearly related traits, smaller yet still elevated at
47 for the traits that sum to an adjustment variable, and smallest
at 2 when one of the traits that sum to the adjustment variable
was excluded.
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Figure 2. Estimated power using multivariate data for five traits simulated under an MVN distribution with exchangeable correlation of 0.2 or 0.6. Simulated SNPs have

MAC of 30, and either two or five traits have SNP effects, with a constant effect size based on SNP-specific genetic variance of 2.5%.

Simulations comparing the tests’ powers:
near-singularity of correlation matrix

Power of the tests was compared in scenarios where correlation
matrices were nearly singular and all tests preserved type I
error (Supplementary Material, Fig. S7). Figure 4 presents power
comparisons based on sets of both five and six ECG traits with
MVN distributions and several different patterns of association
that are based on published ECG results. Specifically, we included
three scenarios as described in Table 4: 1) a strong (genome-
wide significant) association with one trait plus a moderate (P = 5
× 10−4) association with another trait (Strong + Moderate), 2)
multiple moderate associations (P = 5 × 10−3 to 1 × 10−5) plus a
strong association with the most highly correlated trait (Multiple
Moderate) and 3) a strong association with only one trait (Strong
only).

Figure 4 shows that the relative power of different meth-
ods to analyze associations varied depending on the size and
direction of effects, as well as the trait correlation matrix. For
Strong + Moderate and Strong only, metaUSAT, PCO and PCAQ
had the highest power, with the relative ordering of the other
three methods dependent on the trait correlation matrix and
whether there was a second moderate effect. Specifically, when
the correlation was nearly singular (Fig. 4A), both mixAda and
the transformed version of aSPU (aSPU∗) had negligible power,
while the untransformed version of aSPU had power closer
to metaUSAT, PCO and PCAQ. On the other hand, when the
correlation was not nearly singular (Fig. 4B), all three of aSPU,
aSPU∗ and mixAda had higher power, though still not as high as
metaUSAT, PCO and PCAQ. In the Strong + Moderate scenario of
Figure 4B, aSPU had power close to metaUSAT, PCO and PCAQ,
whereas in the Strong only scenario, aSPU’s power was reduced
while mixAda’s and aSPU∗’s powers were higher. In the Multiple
Moderate scenario, the comparison of the tests’ power when the
correlation matrix was nearly singular (Fig. 4A) was similar to
the comparison under the Strong + Moderate and Strong only
scenarios. However, when the trait correlation matrix was not
nearly singular (Fig. 4B), mixAda had the highest power, followed

by PCAQ, PCO and metaUSAT, and both versions of aSPU had a bit
lower power. Overall, in the scenarios we considered where type
I error is preserved, metaUSAT, PCO and PCAQ consistently had
the highest power. However, aSPU’s power was not dramatically
lower, making it a reasonable alternative in scenarios where type
I error of the other methods may not be preserved.

PAGE analyses

Multiple phenotype analyses of six ECG phenotypes in the PAGE
study (13) provide a published example where the trait corre-
lation matrix was nearly singular and the data were analyzed
using aSPU. Figure 5 compares the six adaptive methods using
the same data on the 34 668 participants, but for an expanded
set of SNPs with no MAF or MAC filters. The figure includes only
likely null SNPs for which all single-phenotype P-values were
≥1 × 10−4, and these are stratified by minor allele frequency
(MAF) greater or less than 0.05 and inclusion of five moderately
correlated or all six highly correlated traits. Figures 5A and C
show that when using six ECG traits, all multiple phenotype
methods except aSPU had much lower P-values than expected,
likely reflecting inflated type I error, regardless of MAF category.
When using only the five less correlated ECG traits, excluding TP
segment, Figures 5B and D show that all methods yielded many
fewer low P-values, likely reflecting less inflated type I error.
Again results were similar regardless of MAF category. Results
from aSPU look truly null, whereas other methods still included
more low P-values than would be expected under the null; it
is impossible to know whether these low P-values represent
inflated type I error or actual associations.

Restricting to the SNPs that were included in published anal-
yses of the ECG traits, first using all six traits, then excluding TP
segment, Figure 6 shows the number of significant SNPs (P < 5 ×
10−9) identified with the different adaptive tests. Results from
PCO and PCAQ were quite similar, so we only show the PCO
results. Both the performance of tests and the comparison of test
results were substantially different when the trait correlation
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Figure 3. Simulations under the null with non-normal trait distributions, specifically MVT with 2–5 df in plots (A)–(D). Six traits with high correlation modeled on the

ECG components in Table 3C, and a SNP with MAC = 600 are simulated. For each scenario and each method, figures include q-q plots of the observed versus expected

−log10 P-values, including 95% prediction bands for the null hypothesis.

matrix was nearly singular (Fig. 6A) from what they were when
the trait correlation matrix was not nearly singular (Fig. 6B).
Because we cannot know which results represent true associa-
tions versus false positives or false negatives, we cannot know
for sure which methods performed better in these empirical
results.

However, informed by our simulations of null data when the
correlation matrix is nearly singular, we suspect that for all
methods except aSPU there were hundreds of SNPs that may
be false positives in the six-trait analysis. Specifically, none of
the 295 SNPs identified as significant by all tests except aSPU
in Figure 6A was significant using any of the methods in the

five-trait analysis, and only two of the 295 had a single-trait
P-value <1 × 10−4 for TP segment. Additionally, none of the
381 SNPs identified as significant by only PCO, mixAda and
aSPU∗ was identified as significant using any method in the five-
trait analysis, and none of the 381 had a significant P-value for
association with TP segment.

Potential differences in power are also hard to characterize in
actual data. However, mixAda and aSPU∗ identified many fewer
significant results than the other methods when the correlation
matrix was nearly singular in Figure 6A, despite being more con-
sistent with them when the correlation matrix was not nearly
singular in Figure 6B. This relationship is consistent with our



Figure 4. Estimated power using multivariate data simulated using the correlation of ECG traits with MVN distribution. Simulated SNPs have MAC of 600, and three

patterns of association are included, as specified in Table 4.

simulated power results in Figure 4. The 3718 SNPs significant
using aSPU, metaUSAT and PCO in the six-trait analyses (Fig. 6A)
were also significant either for TP segment alone or using at
least one method in the five-trait analyses. The same is true for
the 945 SNPs that were only significant using metaUSAT and
PCO (Fig. 6A). For these 945 SNPs, aSPU P-values ranged from
5 × 10−4 to 5 × 10−9, providing some evidence that many of
these SNPs may be true associations that aSPU did not have
power to detect. This hypothesis is consistent with aSPU’s lower
power in simulations shown in Figure 4. We do note, however,
that some of these additional significant SNPs could also be
due to metaUSAT and PCO having inflated type I error in this
setting.

Discussion
In this paper, we compared six adaptive multiple phenotype
tests that can be implemented on a genome-wide scale using
summary data. When MVN assumptions are not satisfied, we
confirmed recent findings that five of the tests can have inflated
type I error for SNPs with low MAC (11), and showed that the
sixth test can also suffer from inflated type I error for SNPs with
low MAC. We also contribute new findings illustrating how all
six tests can also have inflated type I error when phenotypic
correlation is nearly singular. And we show that the sixth test,
aSPU, is more robust to the violation of MVN assumptions than
the other adaptive methods. In some scenarios, the increased
robustness of aSPU may come at the cost of less statistical power
than the other tests. We provide empirical evidence in PAGE
data that supports the existence of this trade-off, though this
evidence could also be the result of poor type I error control.
Thus, in practical applications, the choice of adaptive test, as well
as decisions about what SNPs and what phenotypes to include,
should consider both the amount of information in terms of MAC
and the correlation among the phenotypes.

All methods make assumptions about the MVN nature of the
joint Z-statistics; however, their robustness to violation of those
assumptions varies, depending on whether the test statistics

are transformed using the inverse of the estimated correlation
across phenotypes. Of the adaptive tests, aSPU is the only test
that does not incorporate the inverse of the estimated correla-
tion matrix in the test statistic; instead, it uses the estimated
correlation only in the computation of the reference distribu-
tion. This feature makes aSPU more robust to violation of MVN
assumptions. However, as noted by previous researchers (11,20),
the most powerful test for a given SNP is a complicated function
of the pattern of correlation among traits and the trait-specific
associations. In scenarios where type I error is preserved by
all methods, our simulations have shown that aSPU may have
decreased power compared to methods that use transformed
test statistics to evaluate multivariate associations. That said,
the patterns of correlation and effects across traits will often be
more complicated than what is presented in this paper, so these
power comparisons do not provide a comprehensive view of all
possibilities.

Ray and Chatterjee (11) evaluated scenarios where the
effective sample size is low, concluding that the most reliable
option was MultiPhen (24), a reverse regression proportional-
odds approach that uses a likelihood ratio test and requires
individual-level data. When only summary-level data are
available, some improvement on the options considered by
Ray and Chatterjee can be achieved by choosing aSPU which
does not rely as heavily on asymptotic MVN distribution of
the traits. However, with low enough MAC, even aSPU does not
have enough information to provide good estimates of multiple
phenotype associations when MVN assumptions are not
satisfied, so a phenotype-specific MAC cutoff is recommended.
The appropriate phenotype-specific MAC cutoff depends on
how severe the departure from normality is and what method
will be used. In simulated data, we have found that for single-
study results analyzed with aSPU a cutoff of 40 is adequate if
the true distribution is MVT with 10 df (Supplementary Material,
Fig. S1), and a cutoff closer to 100 is needed for a t distribution
with 5 df (Fig. 1). Examining rarer SNPs is of course of interest,
but power is typically low, so some method of combining rare
SNPs will be necessary. A SNP combination method has been
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Figure 5. Adaptive multiple phenotype tests of ECG traits in PAGE data, including SNPs with all six single-phenotype P-values >1 × 10−4. (A) and (C) include all six

highly correlated ECG traits [P wave, PR segment, QRS interval, ST segment, T wave and TP segment], whereas (B) and (D) exclude TP segment, which is most highly

correlated with the other traits. The top row includes the 50 million SNPs with MAF < 0.05, while the bottom row includes the 7.5 million SNPs with MAF ≥ 0.05. For

each scenario and each method, subfigures include q-q plots of the observed versus expected −log10 P-values, including 95% prediction bands for the null hypothesis.

developed using individual-level data (25), and more recently,
using summary data (26).

As in the case of small MAC, when the estimated correlation
matrix is nearly singular, aSPU without the estimated inverse
correlation matrix in the test statistic has better type I error
properties than other tests. However, given enough departure
from normality, aSPU has inflated type I error in line with the
other adaptive multiple phenotype methods. While several
methods are available to test MVN assumptions (27) they
may not have enough power to detect important deviations
in subsets of SNPs, and there is no established method
to test MVN assumptions using summary data across the

many SNPs included in GWAS. Univariate normality for each
phenotype also is not sufficient to establish MVN, and the
impact of this is greatest when there is insufficient data for
asymptotic distribution theory to apply (11,28). Therefore, we
recommend that analysts think carefully about the relationships
among their phenotypes of interest and check explicitly for
near singularity of their estimated covariance matrix, for
example by checking its condition number. If the condition
number is large, analysts should consider omitting highly
correlated traits, particularly when using a method that
incorporates the inverse correlation matrix into the test
statistic.



Figure 6. Venn diagrams showing significant SNPs (P < 5 × 10−9), among the 17.6 million with MAF > 0.01 in at least one stratum, in analyses of PAGE summary statistics

from six ECG traits with nearly singular correlation matrix [P wave, PR segment, QRS interval, ST segment, T wave and TP segment] in plot (A) and five ECG traits with

substantially less singular correlation matrix [excluding TP segment] in plot (B).

Related to the issue of near-singularity of the correlation
matrix is the question of the number of traits that these methods
can accommodate. As the number of traits increases, both the
computational complexity and the chance that the correlation
matrix is singular increase. New methods that accommodate the
near singularity of the correlation matrix are being developed
for investigation of pleiotropy across larger numbers of traits, for
example across 58 brain volumetric measures available in the UK
Biobank (29).

Another practical issue in multiple phenotype analyses is the
need to estimate a correlation matrix. Most adaptive multiple
phenotype methods can accommodate use of either a pheno-
typic or a genetic correlation matrix. The methods discussed in
this paper used phenotypic correlation matrices, which must
be accurately estimated to satisfy MVN assumptions. Ray and
Boehnke (20) acknowledged the importance of the correlation
estimate but found minimal practical issues in simulations with
mis-specified covariance estimates. Recent work has indicated
that genetic correlation matrices may be preferable (30); how-
ever, under the null hypothesis the correlation among test statis-
tics reflects phenotypic correlation, so test results can differ sub-
stantially when genetic correlation estimates are used instead.
Additionally, using summary data to estimate genetic correla-
tion typically relies on bivariate LD score regression methods
(19), which are not straightforward to apply to multiethnic data
and may suffer inaccuracies when there is genetic heterogeneity
between the actual sample and the reference data (31). Meth-
ods in development aim to estimate genetic correlation more
accurately in diverse populations, but these methods currently
require individual-level genotype data (32). Future work that
facilitates estimation of genetic correlation in multiethnic pop-
ulations using summary data could improve the performance of
these adaptive multiple phenotype methods.

In this paper, we focus on methods that can be implemented
using summary data on multiple phenotypes in multiethnic
populations. Several other methods have been developed, but do

not directly apply in this context. One such method is multi-trait
analysis of GWAS (MTAG), the goal of which is to obtain a more
powerful test of each single trait’s association by incorporating
its correlation with other traits (33). The trait-specific estimates
MTAG provides are weighted sums of the GWAS estimates and
can be combined using a minimum P-value type approach to
test the hypothesis that one or more of the traits are associated
with the SNP, which is the goal of the methods evaluated herein.
MTAG uses LD-score regression to account for all types of esti-
mation error, including sampling error, population stratification,
sample overlap and cryptic relatedness. A related, recently pro-
posed method that also uses results from LD-score regression is
Pleiotropic Locus Exploration and Interpretation using Optimal
test (PLEIO) (34). PLEIO is specifically designed to detect SNPs
with multiple phenotype associations. Both of these LD-score
regression approaches work well in large homogeneous samples
for which reference populations can be easily defined. However,
with smaller sample sizes and more diverse populations, their
utility is less clear.

Other methods excluded from our comparisons include
Bayesian approaches such as CPBayes (35) and reverse regression
methods such as meta-SCOPA (36). Bayesian approaches have
the advantage of providing explicit information about the
optimal subset of associated traits but are computationally
intensive. Reverse regression approaches require the same set
of phenotypes to be available across all studies. Although one
reverse regression approach (MultiPhen) (24) has been shown
to preserve type I error with small MAC and under violation of
MVN assumptions, it currently requires individual level data,
does not permit imputed SNP data, and does not meaningfully
adjust for population structure and relatedness. meta-SCOPA
addresses some of these concerns but still requires new analysis
of individual-level data before aggregating information across
studies. Reverse regression may also suffer loss of power if all
phenotypes are not available in all people or if measurement
error varies across phenotypes.



Genetic epidemiology has entered the era of mega-GWAS,
where researchers can leverage data from hundreds of thou-
sands of participants to enable very well-powered studies.
Despite the anticipated large statistical power from these
studies, multiple phenotype studies still represent a valuable
suite of tools, particularly for rare diseases, diseases more
common in populations poorly represented in contemporary
GWAS, when examining other ‘OMICs (e.g. epigenomics or
metabolomics), or in subgroup analyses. Ultimately, researchers
will need to balance control of type I error against the potential
for reduced statistical power.

Materials and Methods
aSPU computation

Previous efforts comparing adaptive multiple phenotype meth-
ods did not include aSPU (11). At a genome-wide scale, estima-
tion of P-values can be computationally intensive for any of the
adaptive methods, but the Monte Carlo simulations used for
aSPU can be particularly burdensome given the large number
of iterations that are needed to estimate accurate P-values at
low significance thresholds. We (ARB) developed a Julia (37)
implementation of aSPU that optimizes resource usage (https://
github.com/kaskarn/JaSPU) by reusing simulated z-scores across
SNPs, parsimoniously storing simulated draws with a potential
impact on the computation end results, and leveraging the high-
performance Julia language. Using this implementation of aSPU,
P-values can be computed as quickly as for current implementa-
tions of the other methods under consideration (Table 2). Unlike
the other tests we consider, for which the computational burden
scales linearly with the number of SNPs, our algorithm for aSPU
requires less computational time for a large number of SNPs,
because the rate-limiting step in simulating the null distribution
does not depend on the number of SNPs. This comparison is not
entirely fair because for other methods we use R functions that
have not been optimized for large numbers of SNPs, but the fact
that it is currently possible to run aSPU in a comparable time-
frame to the other methods enables us to add it to methods
comparisons.

Simulations

All simulations and analyses were conducted in R version 3.1.1
(38), with the exception of aSPU analyses, which used Julia. The
phenotypic correlation matrix, which is used as an input to the
multiple phenotype methods, was estimated using all SNPs with
P-values greater than 1 × 10−4 in all traits. To obtain P-values for
aSPU and aSPU∗, 1010 Monte Carlo simulations were run.

Our simulation studies included traits for a fixed number of
people (N = 1000) in a single study using a specified correlation
matrix and multivariate distribution; SNP data were generated
using a fixed MAF ranging from 0.01 to 0.3 to generate an
MAC ranging from 20 to 600. Linear regression models for each
trait-SNP association generated trait-specific Wald statistics that
were used as inputs to multiple phenotype analyses. Simulations
were replicated one million times for each scenario. Under the
null hypothesis of no association with any phenotypes, unifor-
mity of P-values was assessed visually using quantile–quantile
(q-q) plots of the observed −log10 P-values versus expected
−log10 P-values, including 95% prediction bands. Under the
alternatives of known associations, power was estimated as
the percentage of samples yielding a P-value <5 × 10−9 for
each method. This cutoff reflects a Bonferroni correction for 10
million SNPs.

Table 3A. Phenotype correlation matrix estimated using Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE) data
for QT, QRS and JT. The eigenvalues of this matrix are 2.0, 1.0 and
0.00009. Darker shading implies stronger correlation

QT QRS JT

QT 1.00
QRS 0.95 1.00
JT 0.11 -0.20 1.00

Table 3B. Phenotype correlation matrix estimated using PAGE data
for BMI, height and weight. The eigenvalues of this matrix are 1.9,
1.1 and 0.01. Darker shading implies stronger correlation.

BMI Weight Height

BMI 1.00
Weight 0.85 1.00
Height 0.08 0.42 1.00

To evaluate performance of tests for low MAC and traits that
are not multivariate normal (MVN), data were simulated for five
traits with exchangeable correlation of 0.6 and trait distribution
of multivariate t (MVT) with either 3 (Supplementary Material,
Fig. S2), 5 (Fig. 1) or 10 (Supplementary Material, Fig. S1) degrees
of freedom (df). An MVT distribution has heavier tails than an
MVN distribution, with higher df corresponding to a distribution
that is closer to MVN. MAC varied across simulations. Under the
alternative, power was estimated assuming an MVN distribution
with exchangeable correlation of 0.6 and 0.2, MAC of 30, and
assuming either two traits were associated with the SNP or
all five traits were associated (Fig. 2). In both cases, the effect
sizes for each associated trait were set equal and calculated
based on a genetic variance of 2.5% so that the power estimates
were in a range that would illustrate any differences across
methods. Simulations for the same scenarios were also run
under the null to confirm that all methods preserved type I error
(Supplementary Material, Fig. S3).

To evaluate tests when traits with nearly singular correlation
matrix do not have an MVN distribution, data (MVT with varying
df) were simulated for four scenarios: 1) linear relationship (Sup-
plementary Material, Fig. S5) modeled on ECG data, specifically
including QT interval and its two components QRS duration
and JT interval in a single analysis (Supplementary Material,
Fig. S8, correlation in Table 3A), 2) non-linear relationship
(Supplementary Material, Fig. S6) modeled on including BMI,
weight and height in a single analysis (correlation in Table 3B),
3) highly correlated but not directly determined relationship
(Fig. 3) modeled on six contiguous ECG phenotypes that
together add up to the RR interval, an adjustment variable in
individual-phenotype analyses (correlation in Table 3C) and 4)
less correlated relationship (Supplementary Material, Fig. S4)
modeled on five of the contiguous ECG phenotypes, excluding
TP segment which is the most correlated one (correlation
in Table 3C). SNP data were generated using MAF = 0.3 so
that MAC would be 600, minimizing any impact of small
effective sample sizes on the relative performance of the
methods.

Null data were simulated for all four of these scenarios,
whereas power simulations were limited to the final two
scenarios modeled on five and six contiguous ECG traits.
Valid comparisons of power across methods require control
of type I error across all methods, so power was estimated

https://github.com/kaskarn/JaSPU
https://github.com/kaskarn/JaSPU
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab126#supplementary-data
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https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab126#supplementary-data
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Table 3C. Phenotype correlation matrix estimated using meta-analyzed summary statistics for each of six ECG traits in the PAGE data, using
SNPs with P-value greater than 1 × 10−4 in all traits. The eigenvalues of this matrix are 1.8, 1.4, 1.2, 1.0, 0.6 and 0.04. When TP segment is not
included, the eigenvalues are 1.4, 1.2, 1.0, 0.8 and 0.6. Darker shading implies stronger correlation

P wave PR segment QRS interval ST segment T wave TP segment

P wave 1.00
PR segment -0.12 1.00
QRS interval 0.21 -0.01 1.00
ST segment 0.02 -0.01 -0.04 1.00
T wave 0.00 -0.07 -0.26 -0.24 1.00
TP segment -0.44 -0.59 -0.20 -0.14 -0.38 1.00

Table 4. P-values and directions of effect that were used in simulations to estimate relative power of multiple phenotype methods in the context
of a nearly singular correlation matrix. The P-values and directions of effect for these SNPs were taken from analyses of PAGE ECG data using
aSPU (11). They were converted into effect sizes for simulations by incorporating the standard error of the effect, which is a function of the
number of people (1000) and the MAF (0.3) used in simulations

Motivating SNP P wave PR
segment

QRS
interval

ST
segment

T wave TP
segment

Strong +
Moderate

rs13143308 2 × 10 −11; − 5 × 10−4; + 2 × 10−1; − 3 × 10−2; − 3 × 10−1; + 1 × 10−1; +

Multiple
Moderate

rs3211938 2 × 10−5; − 8 × 10−3; − 5 × 10−3; − 4 × 10−1; + 1 × 10−5; − 1 × 10 −13; +

Strong only rs13047360 7 × 10−1; + 3 × 10−2; + 2 × 10 −11; − 2 × 10−1; − 5 × 10−2; + 1 × 100; +

for traits with MVN distributions (Supplementary Material,
Fig. S7 for null results and Fig. 4 for power). Three patterns
of multivariate effects, based on previously published results
(13), were considered (Table 4). The P-values and directions
of effects were converted into effect sizes for simulations
by incorporating the standard error of the effect, which is
a function of the number of people and the MAF used in
simulations.

PAGE Analyses

Illustrative analyses were also done using data from the
PAGE study (22), evaluating genetic associations with the six
components of a heartbeat, as measured on an ECG: P wave,
PR segment, QRS interval, ST segment, T wave and TP segment
(Supplementary Material, Fig. S8). Baldassari et al. (13) estimated
genetic associations with each ECG trait using data imputed to
the 1000-genomes reference panel. A total of 12 strata defined
by race, ethnicity and genotyping platform were analyzed sep-
arately. Specifically, African-American (AA) and Hispanic/Latino
(HIS) participants from the Women’s Health Initiative (WHI) and
the Hispanic Community Health Study/Study of Latinos (HCH-
S/SOL) were genotyped together and thus analyzed together as
one stratum, whereas other WHI participants [five European-
American (EA) sub-studies], as well as those from the Multi-
Ethnic Study of Atherosclerosis (MESA) [EA, AA, HIS and Chinese-
American] and the Atherosclerosis Risk in Communities (ARIC)
study [EA and AA], were analyzed separately. The results from
these 12 strata were combined via inverse-variance-weighted
meta-analysis to get one estimate of association for each trait-
SNP combination. For each SNP, only strata with MAF > 0.01,
R2

imp > 0.3, where R2
imp is a measure of imputation quality,

and 2 × n × MAF × (1-MAF) × R2
imp > 30 were included in the

meta-analysis. The trait-specific meta-analytic results, which
are publicly available (dbGaP Study Accession: phs000356.v2.p1
and NHGRI GWAS catalog), were then combined using aSPU to
give an estimate of association that incorporates evidence from

all traits simultaneously. For this paper, we reanalyzed those
trait-specific meta-analytic results using the other adaptive
multiple phenotype methods for the nearly 18 million available
SNPs.

To illustrate performance in low MAC scenarios, we also
reran meta-analyses without the filters based on MAF and
2 × n × MAF × (1-MAF) × R2

imp, and used these summary
statistics as inputs to multiple phenotype analyses. The
smallest stratum had 315 people, so assuming high imputation
quality, MAF of 0.05 would yield MAC of 30. Therefore, we
stratified multiple phenotype analyses by MAF of 0.05 to try
to separate impacts of low MAC from impacts of near-singular
correlation.

Due to concern about the nearly singular correlation matrix
among these six ECG components, which was computed from
the PAGE test statistics, we repeated the multiple phenotype
analyses using only five of the ECG components, excluding TP
segment due to its strong negative correlations with the other
ECG components.

Supplementary Material
Supplementary Material is available at HMG online.
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