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Abstract

Optimization of the sulfonamide-based kappa opioid receptor (KOR) antagonist probe molecule 

ML140 through constraint of the sulfonamide nitrogen within a tetrahydroisoquinoline moiety 

afforded a marked increase in potency. This strategy, when combined with additional structure-

activity relationship exploration, has led to a compound only six-fold less potent than norBNI, a 

widely utilized KOR antagonist tool compound, but significantly more synthetically accessible. 

The new optimized probe is suitably potent for use as an in vivo tool to investigate the therapeutic 

potential of KOR antagonists.
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1. Introduction

Activation of the kappa opioid receptor (KOR) by endogenous neuropeptides, primarily 

dynorphin, initiates complex signaling cascades. The downstream effects of KOR agonism 

vary greatly and include antinociception, dysphoria and anxiety, though the details of the 

pharmacological pathways are still being elucidated.12 In contrast, KOR antagonists have 

been investigated as potential therapeutic treatments for addiction, depression, post 

traumatic stress disorder, eating disorders and other conditions related to anxiety or 
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aversion-reward responses.3, 4, 5 Many canonical KOR antagonists (Fig. 1) are derived from, 

or bear a structural element of morphinan opioids, such as the widely-utilized tool 

compounds norBNI,6 5′-GNTI7 and JDTic.8 Some KOR antagonists that are widely used, 

such as NorBNI, have a remarkable long duration of action in animal models (weeks), which 

could introduce difficulties in interpreting the effect of chronic antagonist exposure, or some 

other effects of the drug that are not fully understood.9, 10, 11, 12 Accordingly, one goal of 

our laboratories is to discover and evaluate structurally-distinct KOR antagonists with novel 

pharmacological properties, including a focus on KOR antagonists that are more rapidly 

cleared in vivo. We recently disclosed a new sulfonamide series of KOR antagonists, 

exemplified by the Molecular Libraries probe molecule ML140 (Figure 1).13

Although ML140 only exhibited modest potency in the DiscoveRx βarrestin2 PathHunter™ 

assay (403 nM), it was selective against the μ and δ receptors (IC50 values of > 24 and >32 

uM, respectively). In contrast to the better-established chemotypes noted, ML140 is highly 

modular, possesses no stereogenic centers and bears little structural similarity to known 

opioid ligands. Together, these properties inspired us to further investigate the structure–

activity relationship (SAR) of this chemotype. In our original report,13 we evaluated the 

effect on biological potency through ca. forty structural changes focused primarily on the 

“eastern” portion of the molecule (Figure 1). We investigated both replacing the substituents 

of the basic nitrogen as well as introducing constraint into the eastern region of the 

molecule. Perhaps most interestingly, we found that replacing the N-isopropyl with N-tert-

butyl can increase the potency by as much as 14-fold. Less successful were our attempts to 

enhance antagonist potency through constraint of the nitrogen within various ring systems as 

illustrated by the structures in Figure 2.

Each of these changes eradicated essentially all KOR activity, suggesting that the constraints 

examined placed this portion of the molecule into a conformation inconsistent with receptor 

activity, introduced unpalatable steric clashes, deprived the compound of an important 

hydrogen bond, or some combination of these effects. Herein we describe a more fruitful 

approach to conformational constraint by focusing on the modification of the sulfonamide 

portion of the molecule while retaining the promising substitution patterns around the basic 

nitrogen. This process afforded a series of antagonists with single-digit nanomolar potency 

in G protein coupling and consistent SAR trends across the series.

2. Results and discussion

In this investigation we measured the potency of all test compounds by three complementary 

methods for assessing KOR antagonist potency:14 [35S]GTPγS binding,15 ERK activation,16 

and β-arrestin2 recruitment.17 Since our compounds, like norBNI, are found to be most 

potent in the [35S]GTPγS assay over the other two, we chose this assay for primary SAR 

determination. The analogues presented here were prepared in the manner of those 

previously reported,11 which is summarized in Scheme 1. Briefly, the tetrahydroisoquinoline 

core was reacted with the appropriate sulfonyl chloride and subsequently saponified to 

afford the western fragment bearing a carboxylic acid. Activation of the carboxylic acid to 

the acid chloride and coupling with the diamine fragments afforded the final analogues. All 
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final compounds were purified by mass-directed, reverse-phase HPLC and submitted to 

biological assays at ≥94% purity.

We began this investigation by preparing the analogue where both the sulfonamide and 

amide nitrogens of ML140 were methylated, which resulted in the loss of all KOR 

antagonist activity (Table 1, entry 1a) and suggesting that at least one of or both N-H groups 

were essential for activity. To determine if modification at the sulfonamide nitrogen was 

allowable, we first investigated the effect of tethering the sulfonamide nitrogen to the central 

benzene ring. We chose the tetrahydroisoquinoline carboxylate scaffold since it was both 

readily available and mapped directly onto the template established by ML140. Thus, we 

synthesized twelve tetrahydroisoquinoline analogues bearing modifications around the basic 

nitrogen fragment and substitution on the aryl sulfonamide group. The results of screening 

these analogues in the three KOR antagonist assays are presented in Table 1. To facilitate 

comparison to our previous SAR efforts and the broader KOR antagonist literature, norBNI, 

ML140, and the bromo analogue of ML140, 1b, were included in this study. Notably, the 

tetrahydroisoquinoline analogues were all significantly more potent than either ML140 or 

1b. Directly comparing 1b to the tetrahydroisoquinolinone with the same substitution, 1f, 
shows an eight-fold improvement in potency. A further two-fold increase in potency was 

achieved through a bromo to chloro replacement (i.e., 1f to 1e). The effect of changing from 

isopropyl to tert-butyl was even more pronounced than was observed in the context of 

ML140, providing for the first time in this series compounds possessing single-digit 

nanomolar potency. Halogen incorporation further improved the potency, resulting in the 

nearly equipotent fluoro analogue 1j, chloro analogue 1l and the corresponding bromide 1m. 

To date, compound 1l is the most potent compound in the series, as measured by its activity 

in inhibiting G protein function. Throughout this study, 2,4,6-trimethyl aryl sulfonamide 

substitution led to notably less potent compounds when compared to either the benzene 

sulfonamide, 4-methyl- or 4-ethyl-substituted aryl sulfonamide analogues. However they are 

still more potent than ML140, nicely illustrating the positive influence of the 

tetrahydroisoquinoline moiety on the SAR of this chemotype.

Another interesting feature is the differential potencies noted for many of the analogs against 

G protein function, as revealed in the [35S]GTPγS assay, relative to βarrestin2 recruitment or 

ERK phosphorylation. For example, simple comparison of the relevant IC50 values obtained 

in each assay suggests that the compounds may be more potent in inhibiting G protein 

function as opposed to βarrestin2 recruitment, although they are less potent than norBNI in 

both assays. Whether this suggests a bias in the affinity to imparting differential active states 

for KOR remains to be determined as such mathematical modeling parameters have yet to 

be defined for comparing compounds that do not reveal stimulatory efficacy. Differences 

also appear in relative potencies for inhibiting ERK phosphorylation, but may vary because 

the ERK is downstream in both the G protein and βarrestin2 pathways. Although possibly 

intriguing in light of current interest in functional selectivity in GPCR agonism, the 

functional relevance of any such differences in the present series of antagonists is currently 

unknown.

We had previously profiled the lead compound for this study, ML140, in radioligand 

binding assays and observed selectivity for the KOR compared to the δ opioid receptor 
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(DOR) and modest selectivity compared to the μ opioid receptor (MOR).13 To determine if 

ML140 analogues had off target effects, 1f, 1h and 1l were also profiled through the 

Psychoactive Drug Screening Program at the University of North Carolina, Chapel Hill for 

KOR, DOR and MOR binding affinity (Table 2). Gratifyingly, the more potent antagonists 

were found to be more selective in radioligand binding assays than ML140. For example, 1l 
possessed a binding affinity (Ki) at KOR of 53 nM and binding affinity (Ki) of >10,000 nM 

at both the DOR and MOR.

3. Conclusion

We have improved the antagonist potency of the sulfonamide-based KOR antagonist probe 

molecule ML140 from 138 nM to 1.6 nM as measured by [35S]GTPγS binding to afford a 

new molecular tool appropriate to investigate the physiological role of the KOR and the 

therapeutic potential of KOR antagonists. The constrained sulfonamide analogue 1l is 

almost 100-fold more potent than ML140 and permits for the first time the potential use of 

this chemotype in behavioral or in vivo efficacy models. These experiments are currently 

planned as well as further pharmacological characterization and the synthesis of additional 

analogues. The results of these studies will be disclosed as appropriate.

4. Experimental

4.1 General methods

All reagents and materials were purchased from commercial vendors (Sigma, Alfa Aesar, 

Oakwood or ASW Medchem) and used as received. Ethyl ether, toluene, THF, MeCN and 

CH2Cl2 were degassed with nitrogen and passed through two columns of basic alumina on 

an Innovative Technology solvent purification system. 1H and 13C NMR spectra were 

recorded on a Bruker AM 400 spectrometer (operating at 400 and 100 MHz respectively) in 

CDCl3 with 0.03% TMS as an internal standard, unless otherwise specified. Chemical shifts 

are reported in parts per million (ppm) downfield from TMS. 13C multiplicities were 

determined with the aid of an APT pulse sequence, differentiating the signals for methyl and 

methane carbons as “d” from methylene and quarternary carbons as “u”. The infrared (IR) 

spectra were acquired as thin films using a universal ATR sampling accessory on a 

PerkinElmer Spectrum 100 FT-IR spectrometer and the absorption frequencies are reported 

in cm-1. Melting points were determined on a Stanford Research Systems Optimelt 

automated melting point system interfaced through a PC and are uncorrected. ML140 and 

1b were synthesized as previously described.13

HPLC/MS analysis was carried out with gradient elution (5% CH3CN to 100% CH3CN) on 

an Agilent 1200 RRLC with a photodiode array UV detector and an Agilent 6224 TOF mass 

spectrometer (also used to produce high resolution mass spectra). HPLC purification was 

carried out by mass-directed fractionation (MDF) with gradient elution (a narrow CH3CN 

gradient was chosen based on the retention time of the target from LCMS analysis of the 

crude sample) on an Agilent 1200 instrument with photodiode array detector, an Agilent 

6120 quadrupole mass spectrometer, and a HTPAL LEAP autosampler. Fraction collection 

was triggered using an MS and UV threshold determined by HPLC/MS analysis of the crude 

sample. One of two column/mobile phase conditions was chosen for both analysis and 
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purification to promote the target compound's neutral state (0.02% formic acid with Waters 

Atlantis T3 5um, 19 × 150 mm; or pH 9.8 NH4OH with Waters XBridge C18 5 um, 19 × 

150 mm).

4.2 Synthesis of carboxylic acid fragments 2a-2c

4.2.1.1. Methyl 2-tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylate—To a 

solution of methyl 1,2,3,4-tetrahydroisoquinoline-6-carboxylate (171 mg, 0.894 mmol) and 

triethylamine (271 mg, 2.68 mmol, 3.0 equiv) in CH2Cl2 (15 mL) was added p-

toluenesulfonyl chloride (256 mg, 1.34 mmol, 1.5 equiv). The reaction was stirred at rt for 

15 h, diluted with 1 N HCl and extracted with CH2Cl2. The combined organics were dried 

(Na2SO4), concentrated and purified by silica gel chromatography to afford the sulfonamide 

product as a white solid (231 mg, 0.669 mmol, 75% yield). Mp = 143–145 °C; Rf = 0.34 

(25% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 2.41 (s, 3H), 2.96 (t, J = 6.0 Hz, 2H), 

3.36 (t, J = 6.0 Hz, 2H), 3.88 (s, 3H),4.28 (s, 2H), 7.10 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 8.0 

Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.77 (s, 1H), 7.79 (d, J = 8.0 Hz, 1H); 13C NMR (101 

MHz, CDCl3, APT pulse sequence) δ d 21.5, 52.1, 126.6, 127.4, 127.7, 129.8, 130.2; u 28.8, 

43.6, 47.7, 128.7, 133.2, 133.4, 136.9, 143.9, 166.7; IR 1718 cm-1; HRMS (ESI) m/z calcd 

for C18H20NO4S ([M+H]+) 346.1108, found 346.1116.

4.2.1.2. 2-Tosyl-1,2,3,4-tetrahydroisoquinoline-6-carboxylicacid (2a)—To a 

solution of the above methyl ester (298 mg, 0.765 mmol) in THF:MeOH:water (3:1:1, 10 

mL) was added lithium hydroxide monohydrate (160 mg, 3.83 mmol, 5 equiv) and the 

reaction stirred at rt for 15 h. The THF and MeOH were removed in vacuo and the reaction 

concentrate was acidified with 2 N HCl, precipitating the carboxylic acid product as a 

sparingly soluble white solid (213 mg, 0.643 mmol, 84% yield), which was filtered, washed 

with water, dried under vacuum and used without further purification. Mp = 234–240 °C; Rf 

= 0.58 (10% MeOH and 2% AcOH in CH2Cl2); 1H NMR (400 MHz, DMSO-d6) δ 2.39 (s, 

3H), 2.91 (t, J = 6.0 Hz, 2H), 3.30 (t, J = 6.0 Hz, 2H), 4.25 (s, 2H), 7.28 (d, J = 8.0 Hz, 1H), 

7.44 (d, J = 8.0 Hz, 2H), 7.70–7.74 (complex, 4H), 12.89 (br s, 1H); 13C NMR (101 MHz, 

DMSO-d6, APT pulse sequence) δ d 21.0, 126.7, 126.9, 127.4, 129.7, 129.9; u 27.9, 43.3, 

47.3, 129.1, 133.0, 133.4, 136.7, 143.7, 167.0; IR 1678 cm-1; HRMS (ESI) m/z calcd for 

C17H16NO4S ([M-H]-) 330.0806, found 330.0807.

4.2.2.1. Methyl 2-((4-ethylphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-
carboxylate—Methyl 1,2,3,4-tetrahydroisoquinoline-6-carboxylate (182 mg, 0.952 mmol) 

and 4-ethyl-benzenesulfonyl chloride (292 mg, 1.43 mmol, 1.5 equiv) were reacted 

according to the protocol in section 4.2.1.1. to afford the sulfonamide product as a white 

solid (285 mg, 0.793 mmol, 83% yield). Mp =128–130 °C; Rf = 0.40 (25% EtOAc/

hexanes); 1H NMR (400 MHz, CDCl3) δ 1.23 (t, J = 7.6 Hz, 3H), 2.69 (q, J = 7.6 Hz, 2H), 

2.95 (t, J = 6.0 Hz, 2H), 3.36 (t, J = 6.0 Hz, 2H), 3.87 (s, 3H), 4.28 (s, 2H), 7.09 (d, J = 8.4 

Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.74–7.79 (complex, 4H); 13C NMR (101 MHz, CDCl3, 

APT pulse sequence) δ d 14.9, 51.9, 126.4, 127.2, 127.7, 128.5, 130.0; u 28.62, 28.65, 43.5, 

47.6, 128.6, 133.2, 133.3, 136.8, 149.8, 166.5; IR 1717 cm-1; HRMS (ESI) m/z calcd for 

C19H22NO4S ([M+H]+) 360.1264, found 360.1274.
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4.2.2.2. 2-((4-Ethylphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxylic 
acid (2b)—The above methyl ester (252 mg, 0.701 mmol) was reacted according the 

protocol in section 4.2.1.2. to afford the carboxylic acid product as a sparingly soluble white 

solid (216 mg, 0.625 mmol, 89% yield), which was filtered, washed with water, dried under 

vacuum and used without further purification. Mp = 208– 213 °C; Rf = 0.58 (10% MeOH 

and 2% AcOH in CH2Cl2); 1H NMR (400 MHz, DMSO-d6) δ 1.18 (t, J = 7.6 Hz, 3 H), 2.68 

(q, J = 7.6 Hz, 2H), 2.91 (t, J = 6.0 Hz, 2H), 3.31 (t, J = 6.0 Hz, 2H), 4.26 (s, 2H), 7.28 (d, J 

= 8.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.69–7.76 (complex, 4H), 12.91 (br s, 1H); 13C 

NMR (101 MHz, DMSO-d6, APT pulse sequence) δ d 15.0, 126.7, 126.8, 127.5, 128.7, 

129.7; u 28.0, 43.3, 47.3, 129.1, 133.2, 133.4, 136.6, 149.6, 167.0; IR 1683 cm-1; HRMS 

(ESI) m/z calcd for C18H20NO4S ([M+H]+) 346.1113, found 346.1114.

4.2.3.1. Methyl 2-((2,4,6-trimethylphenyl)sulfonyl)-1,2,3,4-
tetrahydroisoquinoline-6-carboxylate—Methyl 1,2,3,4-tetrahydroisoquinoline-6-

carboxylate (191 mg, 0.999 mmol) and 2,4,6-trimethyl-benzenesulfonyl chloride (328 mg, 

1.50 mmol, 1.5 equiv) were reacted according to the protocol in section 4.2.1.1. to afford the 

sulfonamide product as a white solid (188 mg, 0.503 mmol, 50% yield). Mp = 142–143 °C; 

Rf = 0.50 (25% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 2.29 (s, 3H), 2.63 (s, 6H), 

2.91 (t, J = 6.0 Hz, 2H), 3.47 (t, J = 6.0 Hz, 2H), 3.89 (s, 3H), 4.40 (s, 2H), 6.96 (s, 2H), 

7.12 (d, J = 8.0 Hz, 1H), 7.81 (m, 2H); 13C NMR (101 MHz, CDCl3, APT pulse sequence) δ 

d 21.0, 22.8, 52.1, 126.6, 127.4, 130.3, 132.0; u 28.6, 41.9, 45.9, 128.7, 131.7, 133.8, 137.3, 

140.5, 142.9, 166.7; IR 1718 cm-1; HRMS (ESI) m/z calcd for C20H24NO4S ([M+H]+) 

374.1426, found 374.1424.

4.2.3.2. 2-((2,4,6-Trimethylphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-
carboxylic acid (2c)—The above methyl ester (146 mg, 0.391 mmol) was reacted 

according to the protocol in section 4.2.1.2. to afford the carboxylic acid product as a 

sparingly soluble white solid (137 mg, 0.381 mmol, 97% yield), which was filtered, washed 

with water, dried under vacuum and used without further purification. Mp = 222–233 °C; Rf 

= 0.55 (10% MeOH and 2% AcOH in CH2Cl2); 1H NMR (400 MHz, DMSO-d6) δ 2.28 (s, 

3H), 2.55 (s, 6H), 2.87 (t, J = 5.6 Hz, 2H), 3.43 (t, J = 5.6 Hz, 2H), 4.36 (s, 2H), 7.08 (s, 

2H), 7.31 (d, J = 7.6 Hz, 1H), 7.71–7.73 (m, 2H); 13C NMR (101 MHz, DMSO-d6, APT 

pulse sequence) δ d 20.5, 22.3, 126.8, 126.9, 129.9, 131.9; u 27.8, 41.6, 45.5, 129.2, 133.8, 

137.2, 139.6, 142.6, 167.1; IR 1683 cm-1; HRMS (ESI) m/z calcd for C19H22NO4S ([M

+H]+) 360.1264, found 360.1270.

4.3. Conversion of carboxylic acids 2a-2c to the acid chlorides

4.3.1. 2-Tosyl-1,2,3,4-tetrahydroisoquinoline-6-carbonylchloride—The carboxylic 

acid 2a (145 mg, 0.438 mmol) was dissolved in thionyl chloride (0.95 mL, 13.13 mmol, 30 

equiv) and heated at 65 °C for 4 h. Excess thionyl chloride was removed in vacuo and the 

residue azeotropically dried with toluene (3 × 5 mL) to afford the acid chloride as a white 

solid (147 mg, 0.420 mmol, 96% yield), which was used without further purification. 1H 

NMR (400 MHz, CDCl3) δ 2.36 (s, 3H), 2.94 (t, J = 5.9 Hz, 2H), 3.32 (t, J = 5.9 Hz, 2H), 

4.25 (s, 2H), 7.11 (d, J = 8.2 Hz, 1H), 7.25–7.30 (m, 2H), 7.63–7.69 (m, 2H), 7.77–7.85 (m, 

2H).
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4.3.2. 2-((4-Ethylphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonyl 
chloride—The carboxylic acid 2b (303 mg, 0.878 mmol) was reacted according to the 

protocol in section 4.3.1. to afford the acid chloride as a white solid (322 mg, 0.860 mmol, 

98% yield), which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 

1.19 (t, J = 7.6 Hz, 3H), 2.65 (q, J = 7.6 Hz, 2H), 2.95 (t, J = 5.9 Hz, 2H), 3.33 (t, J = 5.9 

Hz, 2H), 4.25 (s, 2H), 7.11 (d, J = 8.2 Hz, 1H), 7.27–7.32 (m, 2H), 7.65–7.71 (m, 2H), 7.77- 

7.85 (m, 2H).

4.3.3. 2-(Mesitylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonyl chloride—
The carboxylic acid 2c (38 mg, 0.106 mmol) was reacted according to the protocol in 

section 4.3.1. to afford the acid chloride as a white solid (39 mg, 0.103 mmol, 98% yield), 

which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 2.31 (s,, 3H), 

2.63 (s, 6H), 2.95 (t, J = 6.0 Hz, 2H), 3.493 (t, J = 6.0 Hz, 2H), 4.43 (s, 2H), 6.97 (s, 2H), 

7.21 (d, J = 8.0 Hz, 1H), 7.88 (s, 1H), 7.90 (d, J = 8.4 Hz, 1H).

4.4. Synthesis of diamine fragments 4a-4d

4.4.1.1. 2-(Benzyl(tert-butyl)amino)acetonitrile—To a solution of N-benzyl-tert-

butylamine (930 mg, 5.70 mmol) in MeCN (15 mL) was added K2CO3 (1,575 mg, 11.40 

mmol, 2 equiv), potassium iodide (946 mg, 5.70 mmol, 1 equiv) and chloroacetonitrile 

(1,720 mg, 22.79 mmol, 4 equiv). The reaction was heated at 75 °C for 16 h, cooled to rt and 

partitioned between water (150 mL) and ethyl ether (3 × 75 mL). The combined organic 

layers were washed with brine (50 mL), dried (Na2SO4), adsorbed onto celite and purified 

by silica gel chromatography to afford the nitrile product as a colorless oil (846 mg, 4.18 

mmol, 73% yield). Rf = 0.49 (10% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 1.29 (s, 

9H), 3.43 (s, 2H), 3.82 (s, 2H), 7.23–7.28 (m, 1H), 7.29–7.36 (complex, 4H); 13C NMR 

(101 MHz, CDCl3, APT pulse sequence) δ d 27.4, 127.5, 128.5, 128.6; u 35.7, 51.4, 55.2, 

118.0, 138.9; IR 2975, 1454, 1366, 1202 cm-1; HRMS (ESI) m/z calcd for C13H19N2 ([M

+H]+) 203.1543, found 203.1536.

4.4.1.2. N1-benzyl-N1-(tert-butyl)ethane-1,2-diamine (4a)—To a solution of the 

nitrile from 4.4.1.1. (255 mg, 1.26 mmol) in THF (25 mL) was added LiAlH4 solution (1 M 

in THF, 5.0 mL, 5.04 mmol, 4 equiv) at rt. The reaction was stirred at rt for 4 h and 

quenched by the careful addition of Na2SO4•10H2O (20 g). The reaction was filtered and the 

solids washed with ethyl ether (2 × 10 mL). The combined organic layers were washed with 

brine (50 mL), dried (Na2SO4) and purified by silica gel chromatography to afford the 

diamine fragment 4a as a colorless oil (64 mg, 0.31 mmol, 25% yield). Rf = 0.49 (10% 

MeOH + 2% NH4OH in CH2Cl2); 1H NMR (400 MHz, CDCl3) δ 1.12 (s, 9H), 2.43 (t, J = 

6.4 Hz, 2H), 2.62 (t, J = 6.4 Hz, 2H), 3.67 (s, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.27 (t, J = 7.2 

Hz, 2H), 7.35 (d, J = 6.8 Hz, 2H); 13C NMR (101 MHz, CDCl3, APT pulse sequence) δ d 

27.5, 126.4, 127.7, 128.1; u 42.2, 54.4, 55.1, 55.3, 143.6; IR 2967, 2869, 1576, 1469, 1452, 

1361 cm-1; HRMS (ESI) m/z calcd for C13H23N2 ([M+H]+) 207.1861, found 207.1848.

4.4.2.1. 2-((4-Fluorobenzyl)(tert-butyl)amino)acetonitrile—N-(4-Fluoromobenzyl)-

tert-butylamine (900 mg, 4.97 mmol) was reacted according to the protocol in section 

4.4.1.1. to afford the nitrile product as a colorless oil (1,038 mg, 4.71 mmol, 95% yield). Rf 
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= 0.49 (10% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 1.29 (s, 9H), 3.42 (s, 2H), 

3.80 (s, 2H), 7.00 (t, J = 8.8 Hz, 2H), 7.31 (dd, J = 5.6, 8.8 Hz, 2H); 13C NMR (101 MHz, 

CDCl3, APT pulse sequence) δ d 27.4, 115.5 (d, J = 21.5 Hz), 130.1 (d, J = 8.0 Hz); u 35.6, 

50.7, 55.3, 117.9, 134.5, 162.3 (d, J = 246.3 Hz); IR 2975, 1604, 1508, 1367, 1219 cm-1; 

HRMS (ESI) m/z calcd for C13H18FN2 ([M+H]+) 221.1449, found 221.1438.

4.4.2.2. N1-(tert-Butyl)-N1-(4-fluorobenzyl)ethane-1,2-diamine (4b)—The nitrile 

from 4.4.2.1. (582 mg, 2.64 mmol) was reacted according to the protocol in section 4.4.1.2. 

to afford the diamine fragment 4b as a colorless oil (422 mg, 1.88 mmol, 71% yield). Rf = 

0.46 (10% MeOH + 2% NH4OH in CH2Cl2); 1H NMR (400 MHz, CDCl3) δ 1.11 (s, 9H), 

2.42 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.4 Hz, 2H), 3.63 (s, 2H), 6.96 (t, J = 8.8 Hz, 2H), 7.30 

(dd, J = 6.4, 8.8 Hz, 2H); 13C NMR (101 MHz, CDCl3, APT pulse sequence) δ d 27.4, 114.8 

(d, J = 21.2 Hz), 129.0 (d, J = 7.8 Hz); u 42.1, 54.3, 54.5, 55.1, 139.1, 161.6 (d, J = 244.6 

Hz); IR 2970, 2870, 1603, 1506, 1362 cm-1; HRMS (ESI) m/z calcd for C13H22FN2 ([M

+H]+) 225.1767, found 225.1756.

4.4.3.1. 2-((4-Chlorobenzyl)(tert-butyl)amino)acetonitrile—N-(4-Chlorobenzyl)-

tert-butylamine (700 mg, 3.54 mmol) was reacted according to the protocol in section 

4.4.1.1. to afford the nitrile product as a white solid (685 mg, 2.89 mmol, 82% yield). Mp = 

65–67 °C; Rf = 0.49 (10% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 1.27 (s, 9H), 

3.41 (s, 2H), 3.78 (s, 2H), 7.27 (s, 4H); 13C NMR (101 MHz, CDCl3, APT pulse sequence) δ 

d 27.2, 128.6, 129.8; u 35.6, 50.7, 55.2, 117.7, 133.0, 137.4; IR 2975, 1597, 1490, 1368, 

1201 cm-1; HRMS (ESI) m/z calcd for C13H18ClN2 ([M+H]+) 237.1153, found 237.1141.

4.4.3.2. N1-(tert-Butyl)-N1-(4-chlorobenzyl)ethane-1,2-diamine (4c)—The nitrile 

from 4.4.3.1. (384 mg, 1.62 mmol) was reacted according to the protocol in section 4.4.1.2. 

to afford the diamine fragment 4c as a colorless oil (248 mg, 1.03 mmol, 64% yield). Rf = 

0.51 (10% MeOH + 2% NH4OH in CH2Cl2); 1H NMR (400 MHz, CDCl3) δ 1.10 (s, 9H), 

2.44 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.4 Hz, 2H), 3.63 (s, 2H), 7.22 – 7.30 (complex, 

4H); 13C NMR (101 MHz, CDCl3, APT pulse sequence) δ d 27.4, 128.2, 128.9; u 42.2, 54.5, 

54.6, 55.2, 131.9, 142.2; IR 2969, 2869, 1488, 1363 cm-1; HRMS (ESI) m/z calcd for 

C13H22ClN2 ([M+H]+) 241.1472, found 241.1462.

4.4.4.1. 2-((4-Bromobenzyl)(tert-butyl)amino)acetonitrile A—N-(4-Bromobenzyl)-

tert-butylamine (920 mg, 3.80 mmol) was reacted according to the protocol in section 

4.4.1.1. to afford the nitrile product as a white solid (906 mg, 3.22 mmol, 85% yield). Mp = 

64–66 °C; Rf = 0.49 (10% EtOAc/hexanes); 1H NMR (400 MHz, CDCl3) δ 1.26 (s, 9H), 

3.40 (s, 2H), 3.76 (s, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H); 13C NMR (101 

MHz, CDCl3, APT pulse sequence) δ d 27.2, 130.1, 131.5; u 35.6, 50.7, 55.1, 117.6, 121.1, 

137.9; IR 2976, 1592, 1485, 1366, 1203 cm-1;HRMS (ESI) m/z calcd for C13H18BrN2 ([M

+H]+) 281.0648, found 281.0644.

4.4.4.2. N1-(tert-Butyl)-N1-(4-bromobenzyl)ethane-1,2-diamine (4d)—To a 

solution of the nitrile from 4.4.4.1. (195 mg, 0.69 mmol) in THF (20 mL) was added LiAlH4 

solution (1 M in THF, 0.7 mL, 0.69 mmol, 1 equiv) at 0 °C. The reaction was stirred at 0 °C 
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for 4 h and quenched by the careful addition of Na2SO4•10H2O (20 g). The reaction was 

filtered and the solids washed with ethyl ether (2 × 10 mL). The combined organic layers 

were washed with brine (50 mL), dried (Na2SO4) and purified by silica gel chromatography 

to afford the diamine fragment 4d as a colorless oil (106 mg, 0.37 mmol, 54% yield). Rf = 

0.46 (10% MeOH + 2% NH4OH in CH2Cl2); 1H NMR (400 MHz, CDCl3) δ 1.10 (s, 9H), 

2.44 (t, J = 6.4 Hz, 2H), 2.61 (t, J = 6.0 Hz, 2H), 3.61 (s, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.39 

(d, J = 8.4 Hz, 2H); 13C NMR (101 MHz, CDCl3, APT pulse sequence) δ d 27.4, 129.4, 

131.4; u 42.2, 54.5, 54.7, 55.3, 120.1, 142.6; IR 2968, 2868, 1596, 1473,1451, 1360 cm-1; 

HRMS (ESI) m/z calcd for C13H22BrN2([M+H]+) 285.0966, found 285.0960.

4.5. Synthesis of compounds 1a, 1c-1m

4.5.1. N-(2-(Benzyl(isopropyl)amino)ethyl)-N-methyl-4-((N,4-
dimethylphenylsulfonamido)methyl)benzamide (1a)—To a solution of ML140 (41 

mg, 0.085 mmol) in DMF (1 mL) was added sodium hydride, 60% dispersion in mineral oil 

(10 mg, .256 mmol, 3 equiv). The reaction was stirred for 10 min at rt and methyl iodide (30 

mg, 0.215 mmol, 2.5 equiv) was added. The reaction was stirred at rt for 17 h and 

partitioned between aqueous NaHCO3 and CH2Cl2. The organics were separated and the 

aqueous layer extracted with CH2Cl2 (3 × 5 mL) and the combined organic layers were 

dried (Na2SO4), concentrated and purified by silica gel chromatography to afford 1a as a 

light yellow oil (36 mg, 0.071 mmol, 83% yield). Rf = 0.49 (75% EtOAc/hexanes); 1H NMR 

(400 MHz, CDCl3) (ca. 1:1 mixture of rotomers) δ 0.92 (d, J = 6.4 Hz, 3H), 1.06 (d, J = 6.4 

Hz, 3H), 2.46 (s, 3H), 2.50 (t, J = 7.2 Hz, 1 H), 2.54 (s, 1.5H), 2.59 (s, 1.5H), 2.73 (m, 

1.5H), 2.85 (s, 1.5H), 2.93 (s, 1.5H), 3.04 (m, 0.5H), 4.14 (m, 1 H), 3.41 (s, 1 H), 3.49 (t, J = 

6.0 Hz, 1 H), 3.63 (s, 1 H), 4.13 (d, J = 3.6 Hz, 2 H), 7.19–7.37 (complex, 11H), 7.73 (d, J = 

8.0 Hz, 2 H); 13C NMR (101 MHz, CDCl3, APT pulse sequence) (mixture of rotomers) δ d 

17.9, 21.5, 33.6, 34.3, 34.5, 38.6, 49.8, 50.5, 126.7, 126.9, 127.0, 127.3, 127.5, 128.2, 128.4, 

128.7, 129.8; u 46.9, 47.1, 47.9, 51.0, 53.9, 54.6, 134.4, 136.4, 136.5, 136.9, 137.0, 140.4, 

140.9, 143.6, 170.7, 171.5; IR 2964, 2928, 1629 cm-1; HRMS (ESI) m/z calcd for 

C29H38N3O3S([M+H]+) 508.2628, found 508.2629; HPLC purity = 97.4%.

4.5.2. N-(2-(Benzyl(isopropyl)amino)ethyl)-2-(mesitylsulfonyl)-1,2,3,4-
tetrahydroisoquinoline-6-carboxamide (1c)—To a solution of 2-

(mesitylsulfonyl)-1,2,3,4- tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) 

in CH2Cl2 (3 mL) was added diamine fragment 3a (10 mg, 0.054 mmol) and triethylamine 

(0.019 mL, 0.14 mmol, 2.6 equiv). The reaction was stirred for 48 h at rt, aqueous, saturated 

sodium bicarbonate solution (2 mL) was added and all solvents removed in vacuo. The 

residue was extracted with a solution of CH2Cl2:MeOH (5:1, 6 mL). The filtrate was dried 

(Na2SO4), evaporated and purified by mass-directed, reverse phase preparative HPLC to 

afford 1c (9 mg, 0.017 mmol, 31% yield). 1H NMR (400 MHz, DMSO-d6) δ 1.00 (d, J = 6.6 

Hz, 6H), 2.24 (s, 3H), 2.57 (s, 6H), 2.61 (t, J = 5.8 Hz, 2H), 2.83 (t, J = 5.9 Hz, 2H), 2.94 

(sep, J = 6.6 Hz, 1H), 3.29 (q, J = 5.0 Hz, 2H), 3.41 (t, J = 5.9 Hz, 2H), 3.49 (s, 2H), 4.33 (s, 

2H), 6.47 (br s, 1H), 6.90 (s, 2H), 7.03 (d, J = 8.0 Hz, 1H), 7.15 – 7.30 (m, 6H), 7.39 (s, 

1H); 13C NMR (101 MHz, DMSO-d6) δ 18.0, 21.0, 22.9, 28.7, 37.5, 41.9, 45.7, 47.8, 49.7, 

53.7, 124.4, 126.6, 127.0, 127.9, 128.5, 128.6, 131.6, 132.0, 133.3, 133.8, 135.4, 140.6, 
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140.8,142.9, 166.7; IR 2966, 1648, 1544, 1494 cm-1; HRMS (ESI) m/z calcd for 

C31H39N3O3S ([M+H]+), 534.2790, found 534.2804;HPLC purity = 98.7%.

4.5.3. N-(2-((4-Fluorobenzyl)(isopropyl)amino)ethyl)-2-tosyl-1,2,3,4-
tetrahydroisoquinoline-6-carboxamide (1d)—2-Tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) and diamine fragment 3b 
(11 mg, 0.054 mmol) were reacted according the protocol in section 4.5.2. to afford 1d (15 

mg, 0.028 mmol, 52% yield). 1H NMR (400 MHz, DMSO-d6) δ 0.96 (d, J = 6.4 Hz, 6H), 

2.39 (s, 3H), 2.51 (m, 2H), 2.82 – 2.90 (m, 3H), 3.22 (m, 2H), 3.29 (t, J = 6.4 Hz, 2H), 3.54 

(s, 2H), 4.21 (s, 2H), 7.06 (t, J = 8.8 Hz, 2H), 7.23 (d, J = 8.4 Hz, 1H), 7.36 (dd, J = 6.4, 8.8 

Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.56 (m, 2H), 7.72 (d, J = 8.4 Hz, 2H); 13C NMR (101 

MHz, DMSO-d6) δ 17.9, 21.0, 28.0, 40.4, 43.4, 47.2, 48.4, 49.3, 53.0, 114.7 (d, J = 21.1 

Hz), 124.7, 126.4, 127.45, 127.49, 129.9 130.0, 132.90, 132.96, 132.99, 134.6, 137.0 (d, J = 

2.8 Hz), 143.7, 161.0 (d, J = 242.3 Hz), 165.6; IR 2966, 1649, 1508 cm-1; HRMS (ESI) m/z 

calcd for C29H35FN3O3S ([M+H]+), 524.2383, found 524.2401; HPLC purity = 97.0%.

4.5.4. N-(2-((4-Chlorobenzyl)(isopropyl)amino)ethyl)-2-tosyl-1,2,3,4-
tetrahydroisoquinoline-6-carboxamide (1e)—2-Tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) and diamine fragment 3c 
(12 mg, 0.054 mmol) were reacted according the protocol in section 4.5.2. to afford 1e (13 

mg, 0.024 mmol, 45% yield). 1H NMR (400 MHz, DMSO-d6) δ 0.95 (d, J = 6.4 Hz, 6H), 

2.31 (s, 3H), 2.55 (m, 2H), 2.85 (m, 2H), 3.24 – 3.28 (m, 4H), 3.41 (s, 2H), 4.17 (s, 2H), 

6.97 (d, J = 8.0 Hz, 1H), 7.07 – 7.12 (complex, 4H), 7.15 (s, 1H), 7.19 (m, 1H), 7.22 (d, J = 

8.0 Hz, 2H), 7.31 (br s, 1H), 7.62 (d, J = 8.4 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 

17.9, 21.0, 28.0, 40.4, 43.4, 47.2, 48.6, 49.5, 53.0, 124.7, 126.4, 127.4, 127.5, 127.9, 129.86, 

129.95, 130.2, 130.9, 132.9, 133.0, 134.6, 140.1 143.6, 165.6; IR 2966, 1647, 1543, 1491 

cm-1; HRMS (ESI) m/z calcd for C29H35ClN3O3S ([M+H]+), 540.2088, found 540.2104; 

HPLC purity = 100.0%.

4.5.5. N-(2-((4-Bromobenzyl)(isopropyl)amino)ethyl)-2-tosyl-1,2,3,4-
tetrahydroisoquinoline-6-carboxamide (1f)—2-Tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) and diamine fragment 3d 
(15 mg, 0.054 mmol) were reacted according the protocol in section 4.5.2. to afford 1f (18 

mg, 0.30 mmol, 56% yield). 1H NMR (400 MHz, CDCl3) δ 0.98 (d, J = 6.4 Hz, 6H), 2.35 (s, 

3H), 2.58 (t, J = 5.6 Hz, 2H), 2.88 – 2.94 (m, 3H), 3.26 – 3.31 (m, 4H), 3.42 (s, 2H), 4.21 (s, 

2H), 6.39 (br s, 1 H), 7.01 (d, J = 8.0 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 7.22 – 7.28 

(complex, 5H), 7.34 (s, 1H), 7.66 (d, J = 8.4 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 18.1, 

21.6, 29.0, 37.8, 43.7, 47.6, 48.2, 49.9, 53.2, 120.7, 124.4, 126.6, 127.75, 127.82, 129.9, 

130.4, 131.6, 133.2, 133.3, 133.7, 135.1, 139.9 144.0, 166.9; IR 2965, 1646, 1541, 1486 

cm-1; HRMS (ESI) m/z calcdl for C29H34BrN3O3S ([M+H]+), 586.1562, found 586.1585; 

HPLC purity = 94.6%.

4.5.6. N-(2-((4-Bromobenzyl)(isopropyl)amino)ethyl)-2-((4-
ethylphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxamide (1g)—2-

((4-Ethylphenyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonyl chloride (160 mg, 0.44 
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mmol) and diamine fragment 3d (119 mg, 0.44 mmol) were reacted according the protocol 

in section 4.5.2. to afford 1g (122 mg, 0.21 mmol, 47% yield). 1H NMR (400 MHz, DMSO-

d6) δ 0.95 (d, J = 6.8 Hz, 6H), 1.15 (t, J = 7.6 Hz, 3H), 2.55 (t, J = 6.0 Hz, 2H), 2.61 (q, J = 

7.6 Hz, 2H), 2.83 – 2.90 (m, 3H), 3.22 – 3.28 (m, 4H) 3.40 (s, 2H), 4.18 (s, 2H), 6.52 (br s, 

1H), 6.99 (d, j = 8.0 Hz, 1H), 7.07 (d, J = 8.4 Hz, 1H) 7.21 – 7.27 (complex, 5H), 7.33 (s, 

1H), 7.65 (d, J = 8.4 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 15.0, 17.8, 27.98, 28.03, 

40.4, 43.4, 47.2, 48.6, 49.5, 53.1, 119.3, 124.7, 126.3, 127.47,127.55, 128.7, 130.3, 130.8, 

132.92, 132.93, 133.1, 134.6, 140.5149.5, 165.6; IR 2965, 1646, 1543, 1486 cm-1; HRMS 

(ESI) m/z calcd for C30H36BrN3O3S ([M+H]+), 600.1719, found 600.1740;HPLC purity = 

98.1%.

4.5.7. N-(2-(Benzyl(tert-butyl)amino)ethyl)-2-tosyl-1,2,3,4-
tetrahydroisoquinoline-6-carboxamide (1h)—2-Tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) and diamine fragment 4a 
(11 mg, 0.054 mmol) were reacted according the protocol in section 4.5.2. to afford 1h (26 

mg, 0.049 mmol, 91% yield). 1H NMR (400 MHz, CDCl3) δ 1.10 (s, 9H), 2.36 (s, 3H), 2.76 

(t, J = 6.0 Hz, 2H), 2.89 (t, J = 6.0 Hz, 2H), 3.12 (q, J = 5.6 Hz, 2H), 3.30 (t, J = 6.0 Hz, 

2H), 3.64 (s, 2H), 4.21 (s, 2H), 6.22 (br s, 1H), 6.98 (d, J = 8.0 Hz, 1H), 7.09 (m, 1H), 7.16 – 

7.22 (m, 3H), 7.27 – 7.29 (complex, 5H), 7.66 (d, J = 8.4 Hz, 2H); 13C NMR (101 MHz, 

CDCl3) δ 21.6, 27.5, 28.9, 39.9, 43.7, 47.6, 50.1, 55.2, 55.6, 124.5, 126.5, 126.8, 127.7. 

127.8, 127.9, 128.5, 129.9, 133.2, 133.36, 133.42, 134.9,142.9, 143.9, 166.7; IR 2989, 1628, 

1538, 1497, 1460 cm-1;HRMS (ESI) m/z calcd for C30H37N3O3S ([M+H]+), 520.2634,found 

520.2650; HPLC purity = 97.5%.

4.5.8. N-(2-(Benzyl(tert-butyl)amino)ethyl) -((4-ethylphenyl)sulfonyl) -1,2,3,4-
tetrahydroisoquinoline-6-carboxamide (1i)—2-((4-Ethylphenyl)sulfonyl)-1,2,3,4-

tetrahydroisoquinoline-6-carbonyl chloride (160 mg, 0.44 mmol) and diamine fragment 4a 
(91 mg, 0.44 mmol) were reacted according the protocol in section 4.5.2. to afford 1i (66 

mg, 0.12 mmol, 28% yield). 1H NMR (400 MHz, CDCl3) δ 1.11 (s, 9H), 1.20 (t, J = 7.6 Hz, 

3H), 2.67 (q, J = 7.6 Hz, 2H), 2.77 (t, J = 6.1 Hz, 2H), 2.90 (t, J = 5.9 Hz, 2H), 3.12 (q, J = 

5.9 Hz, 2H), 3.31 (t, J = 5.9 Hz, 2H), 3.65 (s, 2H), 4.21 (s, 2H), 6.37 (br s, 1H), 7.00 (d, J = 

8.0 Hz, 1H), 7.07 – 7.11 (m, 1H), 7.16 – 7.21 (m, 2H), 7.24 – 7.27 (m, 1H), 7.29 – 7.33 (m, 

5H), 7.67 – 7.71 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 15.0, 27.3, 28.7, 28.8, 39.9, 40.9, 

43.6, 47.5, 50.0, 55.1, 124.5, 126.4, 126.6, 127.6, 127.76, 127.81, 128.3, 128.6, 133.1, 

133.2, 134.7, 142.8, 149.9, 166.6; IR 2968, 1645, 1540, 1494 cm-1; HRMS (ESI) m/z calcd 

for C30H39N3O3S ([M+H]+), 534.2790, found 534.2801; HPLC purity = 94.7%.

4.5.9. N-(2-((4-Fluorobenzyl)(tert-butyl)amino)ethyl)-2-tosyl-1,2,3,4-
tetrahydroisoquinoline-6-carboxamide (1j)—2-Tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) and diamine fragment 4b 
(12 mg, 0.054 mmol) were reacted according the protocol in section 4.5.2. to afford 1j (28 

mg, 0.052 mmol, 96% yield). 1H NMR (400 MHz, CDCl3) δ 1.08 (s, 9H), 2.35 (s, 3H), 2.73 

(t, J = 6.1 Hz, 2H), 2.87 (t, J = 5.9Hz, 2H), 3.10 (q, J = 5.6 Hz, 2H), 3.29 (t, J = 5.9 Hz, 2H), 

3.58 (s, 2H), 4.20 (s, 2H), 6.10 (br s, 1H), 6.77 – 6.84 (m, 2H), 6.97 (d, J = 8.0 Hz, 1H), 7.18 

– 7.28 (m, 6H), 7.64 – 7.67 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 21.5, 27.4, 28.8, 40.1, 
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43.6, 47.5,50.0, 54.5, 55.5, 115.2 (d, J = 21.2 Hz), 124.3, 126.4, 127.6,127.7, 129.3 (d, J = 

8.0 Hz), 129.8, 133.2, 133.3, 133.5, 135.0,138.3 (d, J = 4.0 Hz), 143.9, 161.6 (d, J = 245.4 

Hz), 166.7; IR 2970, 1643, 1541, 1506 cm-1; HRMS (ESI) m/z calcd for C30H36FN3O3S 

([M+H]+), 538.2540, found 538.2554; HPLC purity = 96.3%.

4.5.10. N-(2-((4-Fluorobenzyl)(tert-butyl)amino)ethyl)-2-
(mesitylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxamide (1k)—2-

(mesitylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) 

and diamine fragment 4b (12 mg, 0.054 mmol) were reacted according the protocol in 

section 4.5.2. to afford 1k (14 mg, 0.024 mmol, 45% yield). 1H NMR (400 MHz, CDCl3) δ 

1.08 (s, 9H), 2.35 (s, 3H), 2.54 (s, 6H), 2.73 (t, J = 6.1 Hz, 2H), 2.87 (t, J = 5.9 Hz, 2H), 

3.10 (q, J = 5.6 Hz, 2H), 3.29 (t, J = 5.9 Hz, 2H), 3.58 (s, 2H), 4.20 (s, 2H), 6.10 (br s, 1H), 

6.77 – 6.84 (m, 2H), 6.97 (d, J = 8.0 Hz, 1H), 7.18 – 7.28 (m, 6H), 7.64 – 7.67 (m, 2H); 13C 

NMR (101 MHz, CDCl3) δ 21.5, 27.4, 28.8, 40.1, 43.6, 47.5, 50.0, 54.5, 55.5, 115.2 (d, J = 

21.2 Hz), 124.3, 126.4, 127.6, 127.7, 129.3 (d, J = 8.0 Hz), 129.8, 133.2, 133.3, 133.5, 

135.0, 138.3 (d, J = 4.0 Hz), 143.9, 161.6 (d, J = 245.4 Hz), 166.7; IR 2971, 1644, 1604, 

1543, 1507 cm-1; HRMS (ESI) m/z calcd for C32H41FN3O3S ([M+H]+), 566.2853, found 

566.2871; HPLC purity = 99.1%.

4.5.11. N-(2-((4-Chlorobenzyl)(tert-butyl)amino)ethyl)-2-tosyl-1,2,3,4-
tetrahydroisoquinoline-6-carboxamide (1l)—2-Tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) and diamine fragment 4c 
(13 mg, 0.054 mmol) were reacted according the protocol in section 4.5.2. to afford 1l (25 

mg, 0.046 mmol, 85% yield). 1H NMR (400 MHz, CDCl3) δ 1.09 (s, 9H), 2.39 (s, 3H), 2.64 

(m, 2H), 2.87 (t, J = 6.0 Hz, 2H), 3.04 (m, 2H), 3.28 (t, J = 6.0 Hz, 2H), 3.69 (s, 2H), 4.20 

(s, 2H), 7.20 (d, J = 8.0 Hz, 1H), 7.31 (m, 2H), 7.39 – 7.45 (m, 4H), 7.53 (m, 2H), 7.71 (d, J 

= 8.4 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 21.0, 27.1, 28.0, 40.4, 43.4, 47.2, 49.9, 53.4, 

54.8, 124.7, 126.3, 127.42, 127.45, 127.8, 129.3, 129.9, 130.5, 132.77, 132.84, 132.9, 134.6, 

142.1, 143.6, 165.5; IR 2969, 1644, 1541, 1489 cm-1; HRMS (ESI) m/z calcd for 

C30H37ClN3O3S ([M+H]+), 554.2244, found 554.2261; HPLC purity = 99.2%.

4.5.12. N -(2-((4-Bromobenzyl)(tert-butyl)amino)ethyl)-2-tosyl-1,2,3,4-
tetrahydroisoquinoline-6-carboxamide (1m)—2-Tosyl-1,2,3,4-

tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) and diamine fragment 4d 
(15 mg, 0.054 mmol) were reacted according the protocol in section 4.5.2. to afford 1m (7.8 

mg, 0.013 mmol, 24% yield). 1H NMR (400 MHz, CDCl3) δ 1.08 (s, 9H), 2.35 (s, 3H), 2.74 

(t, J = 6.0 Hz, 2H), 2.89 (t, J = 5.9 Hz, 2H), 3.13 (q, J = 5.8 Hz, 2H), 3.27 – 3.32 (m, 2H), 

3.56 (s, 2H), 4.21 (s, 2H), 6.07 (br s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 7.11 – 7.20 (m, 3H), 7.23 

– 7.30 (m, 5H), 7.64 – 7.68 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 21.6, 27.3, 28.9, 40.1, 

43.6, 47.5, 50.2, 54.6, 55.6, 120.3, 124.3, 126.5, 127.6, 127.7, 129.5, 129.8, 131.5, 133.21, 

133.23, 133.6, 135.0, 141.9, 143.8, 166.7; IR 2980, 1652, 1521, 1489 cm-1; HRMS (ESI) 

m/z calcd for C30H36BrN3O3S ([M+H]+), 600.1719, found 600.1740; HPLC purity = 94.1%.

4.5.13. N-(2-((4-Bromobenzyl)(tert-butyl)amino)ethyl)-2-
(mesitylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carboxamide (1n)—2-
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(mesitylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonyl chloride (20 mg, 0.054 mmol) 

and diamine fragment 4d (15 mg, 0.054 mmol) were reacted according the protocol in 

section 4.5.2. to afford 1n (10 mg, 0.016 mmol, 29% yield). 1H NMR (400 MHz, CDCl3) δ 

1.17 (s, 9H), 2.33 (s, 3H), 2.66 (s, 6H), 2.83 (m, 2H), 2.92 (t, J = 6.0 Hz, 2H), 3.33 (q, J = 

6.0 Hz, 2H), 3.50 (t, J = 6.0 Hz, 2H), 3.66 (s, 2H), 4.42 (s, 2H), 6.18 (br s, 1H), 6.99 (s, 2H), 

7.12 (d, J = 8.0 Hz, 1H), 7.12 (d, J = 8.4 Hz, 2H), 7.28 (m, 1H), 7.34 (d, J = 8.4 Hz, 2H), 

7.42 (s, 1H); 13C NMR (101 MHz, CDCl3) δ 21.1, 23.0, 27.5, 28.8, 40.2, 42.0, 45.8, 50.3, 

54.8, 55.7, 120.4, 124.3, 126.8, 127.9, 129.6, 131.6, 131.7, 132.1, 133.4, 134.0. 135.6, 

140.7, 142.0, 143.0, 166.9; IR 2972, 1647, 1533,1486 cm-1; HRMS (ESI) m/z calcd for 

C32H40BrN3O3S ([M+H]+),628.2032, found 628.2049; HPLC purity = 98.6%.

4.6. In vitro assay methods

4.6.1. Compounds and reagents—(+)-(5α,7α,8β)-N-Methyl-N-(7-(1-pyrrolidinyl)-1-

oxaspiro(4.5)dec-8-yl)-benzeneacetamide (U69,593) and nor-binaltorphimine 

dihydrochloride (norBNI) were purchased from Sigma Aldrich. U69,593 was prepared in 

ethanol as a 10 mM stock, norBNI was prepared in water as a 10 mM stock, and test 

compounds were prepared as 10 mM stocks in DMSO (Fisher). All compounds were then 

diluted to working concentrations in vehicle for each assay without exceeding 1% DMSO or 

ethanol concentrations. [35S]GTPγS was purchased from PerkinElmer Life Sciences. 

Phospho-ERK1/2 and total ERK1/2 antibodies were purchased from Cell Signaling 

(Beverly, MA) and Li-Cor secondary antibodies (anti-rabbit IRDye800CW and anti-mouse 

IRDye680LT) were purchased from Li-Cor Biosciences.

4.6.2. Cell lines and cell culture—Chinese hamster ovary (CHO) cells were virally 

transfected to express HA-tagged recombinant human kappa opioid receptors (CHO-hKOR 

cell line) and maintained in DMEM/F-12 media (Invitrogen) supplemented with 10% fetal 

bovine serum, 1% penicillin/streptomycin, and 500 μg/ml geneticin as previously 

described.14 A DiscoveRx PathHunter™ U2OS cell line expressing βarrestin2 and hKOR 

(U2OS-hKOR-βarrestin2-DX) was purchased from DiscoveRx Corporation (Fremont, CA) 

and maintained MEM with 10% fetal bovine serum, 1% penicillin/streptomycin, 500 μg/ml 

geneticin and 250 μg/ml hygromycin B. All cells were grown at 37 °C (5% CO2 and 95% 

relative humidity).

4.6.3. G Protein coupling assay—[35S]GTPγS binding assay was performed following 

a previously published protocol.14,18 Briefly, cells were serum-starved for 1 hour and 

membranes were prepared. Each reaction was performed at room temperature and contained 

15 μg of membrane protein, 40 μM GDP, ∼0.1 nM [35S]GTPγS and increasing 

concentrations of compounds in assay buffer (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 5 

mM MgCl2, 1 mM EDTA). Directly after the addition of test compounds, 100 nM U69,593 

was added to yield a total volume of 200 μL. After 1 hour, reactions were quenched by rapid 

filtration through GF/B filters and radioactivity was counted with a TopCount NXT high 

throughput screening microplate scintillation and luminescence counter (PerkinElmer Life 

Sciences). In some cases, the assays were also carried out as above except that 1 μM 

U69,593 was used; analogous results were obtained.
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4.6.4. βArrestin2 recruitment (DiscoveRx PathHunter™)assay—The 

PathHunter™ assay was performed according to the manufacturer's protocol with slight 

modification and following previously published protocols.14,18 Briefly, 5,000 cells/well 

were plated overnight in Opti-MEM containing 1% fetal bovine serum, 1% penicillin/

streptomycin. Cells were pretreated with antagonist for 15 min at 37 °C followed by the 

addition of 1 μM U69,593 and a 90 minute incubation at 37 °C. PathHunter™ detection 

reagent was added and cells incubated at room temperature for 60 minutes. 

Chemiluminescence was detected using a SpectraMax® M5e Multimode Plate Reader 

(Molecular Devices).

4.6.5. In-cell western ERK1/2 phosphorylation—Antagonist inhibition of U69,593-

induced ERK phosphorylation was determined by in-cell westerns as previously 

described.14,18 Briefly, hKOR-CHO cells were plated in 384-well plate at 15,000 cells per 

well and incubated at 37 °C overnight. After an hour serum-starve, cells were treated with 

compound followed by the addition of 100 nM U69,593 and a 10 minute incubation at 37 

°C. Cells were fixed, permeabilized, blocked, and stained with primary antibodies for 

phosphorylated ERK1/2 and total-ERK1/2 (1:300 and 1:400, respectively) at 4 °C overnight. 

Cells were then incubated with Li-Cor secondary antibodies (anti-rabbit IRDye800CW, 

1:500; anti-mouse IRDye680LT, 1:1500) and imaged with the Odyssey Infrared Imager (Li-

Cor Biosciences, Lincoln, NE) at 700 and 800 nm.

4.6.6. Data analysis and statistics—GraphPad Prism 6.01 software (GraphPad) was 

used to generate sigmoidal concentration-response curves using a three-parameter, non-

linear regression analysis. All compounds were run in parallel assays in 2 – 4 replicates per 

individual experiment. All studies were performed n ≥ 3 independent experiments in 

multiple replicates. For determination of antagonist inhibition, each individual experiment 

was normalized to the percentage of maximal U69,593 stimulation. The efficacy and 

potency values were obtained from the averages of the nonlinear regression analysis 

performed on each individual curve and are reported as the mean ± S.E.M.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative widely utilized KOR antagonist ligands and ML140.
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Figure 2. 
Conformational constraints explored in ML140.
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Scheme 1
General scheme for the preparation of 2-(Arylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-6-

carboxamide derivatives.
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