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Musashi-1 (MSI1) is an RNA-binding protein that acts as a translation activator or repressor

of target mRNAs. The best-characterized MSI1 target is Numb mRNA, whose encoded pro-

tein negatively regulates Notch signaling. Additional MSI1 targets include the mRNAs for

the tumor suppressor protein APC that regulates Wnt signaling and the cyclin-

dependent kinase inhibitor P21WAF�1. We hypothesized that increased expression of

NUMB, P21 and APC, through inhibition of MSI1 RNA-binding activity might be an effective

way to simultaneously downregulate Wnt and Notch signaling, thus blocking the growth of

a broad range of cancer cells. We used a fluorescence polarization assay to screen for small

molecules that disrupt the binding of MSI1 to its consensus RNA binding site. One of the

top hits was (�)-gossypol (Ki ¼ 476 � 273 nM), a natural product from cottonseed, known

to have potent anti-tumor activity and which has recently completed Phase IIb clinical

trials for prostate cancer. Surface plasmon resonance and nuclear magnetic resonance

studies demonstrate a direct interaction of (�)-gossypol with the RNA binding pocket of

MSI1. We further showed that (�)-gossypol reduces Notch/Wnt signaling in several colon

cancer cell lines having high levels of MSI1, with reduced SURVIVIN expression and
lecular Biosciences, University of Kansas, 4002 Haworth Hall, 1200 Sunnyside Avenue,
864 5849; fax: þ1 785 864 1442.

dical Information Engineering of Ministry of Education, School of Life Science and Technol-

4
ochemical Societies. Published by Elsevier B.V. All rights reserved.

mailto:xul@ku.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molonc.2015.03.014&domain=pdf
www.sciencedirect.com/science/journal/15747891
http://www.elsevier.com/locate/molonc
http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014


M O L E C U L A R O N C O L O G Y 9 ( 2 0 1 5 ) 1 4 0 6e1 4 2 0 1407
increased apoptosis/autophagy. Finally, we showed that orally administered (�)-gossypol

inhibits colon cancer growth in a mouse xenograft model. Our study identifies (�)-gossypol

as a potential small molecule inhibitor of MSI1-RNA interaction, and suggests that inhibi-

tion of MSI1’s RNA binding activity may be an effective anti-cancer strategy.

ª 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights

reserved.
1. Introduction (MCS) (Battelli et al., 2006; Imai et al., 2001; Spears and
Musashi-1 (MSI1) is an evolutionarily conserved protein best

known for its role in neural development in invertebrates.

Msi1 was first identified in Drosophila where it helps establish

different levels of Notch signaling in the daughters of a sen-

sory organ progenitor (SOP) cell (Nakamura et al., 1994). Subse-

quent studies indicate a similar role for Msi1 in the

asymmetric divisions of other precursor cells, including

Drosophila male germline stem cells (Kaneko et al., 2000;

Okano et al., 2005; Potten et al., 2003; Siddall et al., 2006). Ho-

mologs ofDrosophilaMsi1 have been identified in other species

including mouse, Xenopus and humans (Charlesworth et al.,

2006; Kaneko et al., 2000; Potten et al., 2003; Sakakibara

et al., 1996; Sugiyama-Nakagiri et al., 2006; Toda et al., 2001),

where the protein is also expressed in stem cells and/or other

precursor cell populations. Other MSI1 functions have been

identified including a role in microRNA biogenesis

(Kawahara et al., 2011). MSI1 is also overexpressed in a variety

of human cancers, including glioblastoma, breast, and colon

cancers (Fan et al., 2010; Ma et al., 2008; Potten et al., 2003;

Seigel et al., 2007; Sureban et al., 2008; Toda et al., 2001;

Wang et al., 2010; Ye et al., 2008; Yokota et al., 2004), with

the highest levels occurring in late stage cancers (Fan et al.,

2010; Li et al., 2011; Sureban et al., 2008; Wang et al., 2010).

Taken together, these data indicate that MSI1 is a cell fate

determinant that drives cells toward the less differentiated

(more proliferative) fate through maintenance of high levels

of Notch and/or Wnt signaling (further discussed below).

The loss of MSI1 expression from stem cells or other precursor

cell populations results in the loss of such cells and a corre-

sponding expansion of differentiated cell populations, while

the over-expression of MSI1 leads to the expansion of undif-

ferentiated and a decrease in differentiated cell populations

(Okano et al., 2005; Siddall et al., 2006).

Several observations suggest that MSI1 upregulates

Notch and Wnt signaling by repressing the translation of

Numb (Imai et al., 2001; Takahashi et al., 2013) and APC

(adenomatous polyposis coli) (Spears and Neufeld, 2011),

which act as negative regulators of Notch and Wnt

signaling, respectively (Moon and Miller, 1997; Pece et al.,

2004). MSI1 also represses translation of P21WAF�1 (Battelli

et al., 2006), a negative regulator of cell cycle progression.

MSI1 contains a well-conserved RNA binding domain (RBD)

and exhibits sequence-specific RNA binding activity in vitro

(Battelli et al., 2006; Imai et al., 2001; Spears and Neufeld,

2011). Numb, APC and P21 mRNAs each contain at least

one copy of the MSI1 consensus RNA binding sequence
Neufeld, 2011), and the direct binding of MSI1 to these sites

has been established for both Numb and P21WAF�1 (Battelli

et al., 2006; Imai et al., 2001). In the case of APC and Numb,

deletion of the sites from the 30-UTRs resulted in increased

luciferase expression in luciferase reporter assays (Imai

et al., 2001; Spears and Neufeld, 2011).

Post-transcriptional regulation mediated by MSI1 can also

be positive. Translational activation activities of MSI1 have

been reported in pre-cerebellar neurons during midline

crossing (Kuwako et al., 2010) and during Xenopus oocyte

maturation (Charlesworth et al., 2006).

Our focus is on the function of MSI1 in tumorigenesis and

on the development of small molecule inhibitors of MSI1 as

a possible novel therapeutic approach. The identification of

compounds that specifically interfere with proteineprotein

interactions is recognized as a challenging task, there is an

evenmore severe lack of compounds that directly disrupt pro-

teineRNA interactions. While previous studies have identified

small molecule inhibitors of MSI family proteins, none of

these studies measured in vivo anti-cancer activities

(Clingman et al., 2014; Minuesa et al., 2014). In this work, we

use a fluorescence polarization (FP) competition assay to iden-

tify (�)-gossypol, a natural product from cottonseed, as a

potent inhibitor of MSI1-RNA binding. We further show using

surface plasmon resonance (SPR) and nuclear magnetic reso-

nance (NMR) assays that (�)-gossypol binds MSI1 directly,

and inhibits Notch andWnt signaling in a variety of colon can-

cer cell lines. (�)-Gossypol has completed Phase IIb multi-

center clinical trials for treating prostate cancer (e.g.,

NCT00286806, NCT00286793, NCT00666666) and a variety of

other cancers (e.g., NCT00275431, NCT00397293). These clin-

ical trials stemmed from previous work including ours, which

showed that (�)-gossypol induces autophagy and apoptosis in

prostate and other cancer cell lines through inhibition of the

Bcl-2 family of anti-apoptotic proteins (Keshmiri-Neghab

and Goliaei, 2014; Lian et al., 2011; Meng et al., 2008;

Mohammad et al., 2005; Paoluzzi et al., 2008; Zhang et al.,

2003, 2010). Our in vitro fluorescent polarization binding assays

indicate that (�)-gossypol has a similar or higher affinity for

MSI1 (Ki¼ 476� 273 nM) than that of the Bcl-2 familymember,

BCL-xL (Ki ¼ w0.48 mM) (data not shown and US patent

8163805 B2 (Wang et al., 2012)). (�)-Gossypol has a lower affin-

ity to BCL-2 than BCL-xL (IC50 10 mM vs 0.4 mM) in the same

experiment condition (Wang et al., 2012; Zhang et al., 2003).

This suggests that (�)-gossypol might have value in treating

colon and other cancers associated with high levels of MSI1

expression.

http://dx.doi.org/10.1016/j.molonc.2015.03.014
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2. Materials and methods

2.1. Cell culture and reagents

CCD-841 (normal colon epithelial) and human colon cancer

cell lines HCT-116, HT-29, DLD-1 and LS174T were obtained

from American Type Culture Collection (ATCC). HCT-116 b/

W was provided by Dr. Bert Vogelstein. HCT-116 b/W contains

one copy of the wild type b-catenin while b-catenin in HCT-

116 is heterozygous mutant (Chan et al., 2002). All cells were

maintained in DMEM (Mediatech, Manassas, VA) supple-

mented with 10% fetal bovine serum (FBS) (SigmaeAldrich,

St. Louis, MO), 1% Glutamine (Mediatech), 1% antibiotics

(Mediatech). (�)-Gossypol was isolated from racemic gossypol

as we previously described (Lian et al., 2011; Meng et al., 2008).

(3, 4-Dimethoxyphenyl) methanimine gossypol (MP-Gr) was

synthesized from gossypol (Supplementary Methods). The

(�)-Gossypol and MP-Gr powder were dissolved in DMSO at

20 mM as stock solutions. Cell growth, western blot analysis,

Caspase-3 activation assay, RT-PCR and quantitative real-

time PCR were carried out according to our previous publica-

tions (Li et al., 2014, 2013; Lian et al., 2011; Meng et al., 2008;

Wu et al., 2010). Primers sequences are listed in

Supplementary Table 1. The primary antibodies used were

anti-Cyclin D1 (SC-753) and anti-P21 (SC-397, Lot#A1007)

(Santa Cruz Biotechnology, Santa Cruz, CA), anti-a-tubulin

(T5168) (Sigma, St. Louis, MO), anti-c-Myc (#5605), anti-PARP

(#9542), anti-Caspase 3 (#9662), anti-MSI1 (#5663) and anti-

Numb (#2756) (Cell Signaling Technology, Danvers, MA),

anti-Survivin (NB500-201) (Novus Biologicals, Littleton, CO)

and anti-Notch1 (ab8925) (Abcam, Cambridge, UK). The sec-

ondary antibodies used were goat-anti-mouse-HRP, goat-

anti-rabbit-HRP (Sigma, St. Louis, MO). Bafilomycin A1 used

in autophagy assays is from Sigma (Sigma, St. Louis, MO).

Western blot band intensities were measured using Image

Studio Ver 4.0 (LI-COR Biosciences, Lincoln, NE).

2.2. MTT-based cytotoxicity assay

Cell viability was determined by the MTT-based assay using

Cell Proliferation Reagent WST-8 (GenScript, Piscataway, NJ).

Cells (4000e5000 cells/well, except WI-38 was 10,000 cells/

well) were plated in 96-well culture plates, and serially diluted

testing compounds were added to the cells in triplicates. Four

to six days later, when DMSO control wells reach confluences,

WST-8 was added to each well and incubated for 2 h at 37 �C.
Absorbance was measured with Synergy H4 plate reader (Bio-

tek, Winooski, VT) at 450 nm with correction at 650 nm. The

results are expressed as the percentage of absorbance of

treated wells versus that of DMSO control. IC50, the drug con-

centration causing 50% growth inhibition, was calculated via

sigmoid dose response curve fitting using GraphPad Prism

5.0 (GraphPad, Winooski, VT).

2.3. Colony formation assay

For colony formation assay, cells were seeded in 6-well plate

in triplicate (400 cells/well) and treated with (�)-gossypol,

MP-Gr at different dose or DMSO control (concentration 0 in
both (�)-gossypol and MP-Gr treated samples). 0.5 ml of FBS

was added to each well at day 5. After 10 days of incubation,

plates were gently rinsed with PBS and stained with 0.1% of

crystal violet (in PBS). Colonies with over than 50 cells were

counted manually. Survival fraction was calculated by

dividing the number of colonies in the treatment group by

that of the DMSO control.

2.4. Protein expression and purification

pGEX4T-1-MSI1 and pET21a-GB1-RBD1 plasmids encoding full

length MSI1 and the RNA binding domain 1 (RBD1, residues

20e107) of MSI1 were constructed with Mus musculus cDNAs

under Tac and T7 promoter, respectively. The amino acid

sequence of RBD1 is identical in Homo sapiens and Mus muscu-

lus. GST-MSI1 and GB1-RBD1 proteins were expressed in E. coli

and purified as previously described (Estrada et al., 2009;

Harper and Speicher, 2011) with modifications for GB1-RBD1

protein production (Supplementary Methods).

2.5. Fluorescence polarization competition assay

The oligonucleotide sequence for MSI1 RNA binding studies

was 50-UAGGUAGUAGUUUUA-30, corresponding to

2781e2795 of the published Numb mRNA sequence

(NM_001272055.1) and was previously shown to bind MSI1

(Imai et al., 2001). A 16-nt fully degenerative control RNA

was used as a negative control. Control RNA is a mixture of

16-nt oligos with random sequences. The 3ʹ-fluorescein-

labeled Numb and control RNAs were purchased from Dhar-

macon (Thermo Scientific, Lafayette, CO) and deprotected

as recommended by the manufacturer. Unlabeled versions

of the Numb and control RNAs, used in RNA competition as-

says, were purchased from IDT (Coralville, IA). FP assays

were carried out according to previous publications with

ourmodification (Aviv et al., 2003; Pagano et al., 2011). Briefly,

before binding analysis, RNAs were heated to 95 �C for 5 min

and immediately cooled on ice for 5 min. For the determina-

tion of equilibrium dissociation constants (Kd), purified pro-

teins were serially diluted in binding buffer containing

150 mM NaCl, 20 mM HEPES, pH 7.4, 1 mM DTT, 0.05% plur-

onic F-68, and aliquoted to 96-well assay plates (Corning

3915) (Corning, Corning, NY). For binding reactions, 2 nM of

fluorescein-labeled RNA was added to each well and incu-

bated at room temperature for 30 min. Anisotropy measure-

ments were taken at room temperature using a BioTek

Synergy H4 plate reader (Biotek, Winooski, VT) following

the protocol recommended by the manufacture. The Kd

was estimated by nonlinear regression to a one-site binding

model using GraphPad Prism 5.0 (GraphPad, San Diego, CA).

For RNA competition assays, increasing concentrations of

unlabeled Numb or control RNAs were added to pre-formed

Numb RNA-protein complexes. For the drug screening/

competition assay, different testing compounds with single

(10 mM) or multiple concentrations (6 doses ranging from

2 nM to 200 mM) were added to each well prior to the addition

of the Numb RNA-protein complexes. After 2 h of incubation

at room temperature, anisotropy measurements were taken.

IC50, the drug concentration causing 50% inhibition, was

calculated via sigmoid dose response curve fitting using

http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014
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Prism 5.0. Ki value was calculated using free online software

(http://sw16.im.med.umich.edu/software/calc_ki/). The

percent of inhibition was normalized such that the FP value

of the protein-RNA complex with DMSO was defined as 0%

inhibition, while the FP value obtained with the same con-

centration of the free RNA alone was defined as 100%

inhibition.

2.6. Surface plasmon resonance (SPR)

The SPR experiments were performed using a BIACORE 3000

(GE Healthcare, Little Chalfont, UK) equipped with a CM5

sensor chip. GB1-RBD1 protein was immobilized using

amine-coupling chemistry (Supplementary Methods). For

drug studies, test compounds were dissolved in 20 mM

HEPES, 1 mM DTT, 100 mM NaCl, 0.05% Pluronic F-68, 5%

DMSO, and pH 7.4, and passed over the flow cells in dupli-

cate at concentrations ranging from 2.5 mM to 50 mM at a

rate of 30 ml/min at 20 �C. Reaction complexes were allowed

to associate and dissociate for 160 seconds each. The sur-

faces were regenerated with a 10-second injection of

10 mM glycine (pH 3.0, 0.2% SDS). The curves were calcu-

lated from the experimentally observed curves by succes-

sive subtractions of signals obtained for the reference

surface and signals for the running buffer injected under

the same conditions as testing compound.

2.7. Nuclear magnetic resonance (NMR)

For NMR analyses, 15N-labeled GB1-RBD1 protein was pro-

duced as previously described (Estrada et al., 2009). The

MSI1 target RNA sequence used for NMR studies was pur-

chased from IDT. This RNA oligomer (GUAGU) was previously

discovered to be the minimal sequence required for MSI1

recognition and binding (Ohyama et al., 2012). The 15N-

labeled GB1-RBD1 was prepared at the concentration of

200 mM in NMR buffer (50 mM sodium phosphate pH 7.0,

100 mM NaCl, 10 mM b-mercaptoethanol and 10% D2O).

Labeled GB1-RBD1 was titrated with increasing amounts of

(�)-gossypol to obtain molar protein:drug ratios of 1:0, 1:0.5,

1:1, and 1:2. 2D-1H-15N HSQC spectra were recorded for

each titration at 298 K on a Bruker Avance 800 MHz NMR in-

strument, equipped with a triple resonance (1H/13C/15N) cryo-

probe. NMR backbone assignments for MSI1-RBD1 were

obtained from the BMRB (entry 11450). Data was processed

using NMRPipe (Frank Delaglio et al., 1995) and analyzed

with NMRView (Johnson, 2004).

2.8. Computational modeling

The model of (�)-gossypol bound to MSI1, was built from the

three-dimensional structure of RBD1 in complex with RNA

(PDB: 2RS2) (Ohyama et al., 2012). We first built the structure

of gossypol and its hydrated aldehyde forms using Open Babel

(O’Boyle et al., 2011). We built structures of gossypol in fully

hydrated form, partially hydrated form and without hydrate.

The AutoDock tools from the MGL software package were

used to perform molecular docking studies (Morris et al.,

2009). AutoDock implements a Lamarckian genetic algorithm
to search the conformational space of the ligand. The grid

box was fixed in the RBD1 region centered on the residue

F23 with box size set as 40 �A � 44 �A � 56 �A. We performed

200 runs of separate docking for each of the gossypol and its

hydrated forms. The final docked conformation was taken to

be that with the lowest energy. (�)-Gossypol in its partially hy-

drated form is found to be the best docked model in complex

with MSI1.

2.9. Wnt luciferase reporter assay

HCT-116 cells were plated at a density of 8 � 105 cells per well

in a 6-well dish the day prior to transfection. Cells were trans-

fected with 1.6 mg of either TOPFLASH or FOPFLASH reporter

constructs and a pRL-TK Renilla luciferase plasmid to control

for transfection efficiency and cell number. The pRL-TK vector

contains the herpes simplex virus thymidine kinase promoter

to provide low to moderate levels of Renilla luciferase expres-

sion for normalization. Transfections were performed with

Lipofectamine 2000 (Life technologies) according to themanu-

facturer’s instructions. 16 hours after transfection, cells were

trypsinized and plated at a density of 8 � 104 cells per well

in a 48-well dish. Once cells had attached, cells were stimu-

lated with 20 mM LiCl and treated with individual compounds

or DMSO control. Cells were harvested and assayed using the

Dual-Glo Luciferase Assay (Promega, Fitchburg, WI) 24 hours

after treatment. All firefly luciferase values were normalized

to Renilla control.

2.10. Animal studies

In vivo experiments were carried out with 5- to 6-week-old fe-

male NCr-nu/nu nude mice purchased from the Harlan labo-

ratory (Indianapolis, IN). Mice were inoculated

subcutaneously with 0.2 ml HCT-116 cell suspension

(1.5 � 106 cells) using a sterile 23-gauge needle on both sides

of the mice. When tumors reached 30 mm3, the mice were

randomized into two groups with 5 mice per group. Group 1

was given 0.05% carboxymethyl cellulose (CMC) as vehicle

control; Group 2 was given 10 mg/kg (�)-gossypol in 0.05%

CMC. Both vehicle control and drug were administrated by

oral gavage daily for 4 weeks. The tumor sizes and animal

body weights were measured twice weekly and plotted ac-

cording to our published methods (Lian et al., 2011). Briefly,

the tumor sizes were measured using vernier caliper, and tu-

mor volume were calculated using formula

½(Length � Width2) (Lian et al., 2011). One week after treat-

ment, tumor tissues were excised and processed for western

blot analysis as we previously described (Lian et al., 2011).

All animal experiments were carried out according to the pro-

tocol approved by the University of Kansas Guidelines for Use

and Care of Animals.

2.11. Statistical analysis

Using Prism 5.0 software (GraphPad Prism), one-way ANOVA

and t-Test were used to analyze the in vitro data, two-way

ANOVA was used to analyze the in vivo data. A threshold of

P < 0.05 was defined as statistically significant.

http://sw16.im.med.umich.edu/software/calc_ki/
http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014
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3. Results

3.1. FP assay identified (�)-gossypol as a potent MSI1-
RNA interaction inhibitor

We used a high-throughput, FP-based assay to screen chemi-

cal libraries of small molecules for those that disrupt the bind-

ing of MSI1 to a synthetic copy of a well-characterized MSI1

binding site located in the 30-UTR ofNumbmRNA (50-UAGGUA-

GUAGUUUUA-30) (Imai et al., 2001). In preliminary studies, we

found that both full-length MSI1 and a truncated version of

the protein consisting of RBD1 only bound to Numb RNA and

not to a control RNA of random sequences (Figure 1A), there-

fore demonstrating specificity of the assay. We also found

that unlabeled Numb RNA could displace the labeled Numb

RNA, while unlabeled control RNA did not (data not shown).

We next screened w2000 compounds from NCI (Diversity Set

II, natural product set and approved oncology drugs) and in-

house libraries using full-length MSI1 and ranked them by

percent of inhibition (Figure 1B). Several molecules, including

(�)-gossypol, inhibited MSI1 binding by more than 80%. We

chose (�)-gossypol for further studies since it also scored

well in cell-based assays (see below), while other molecules

including (þ)-gossypol did not (data not shown).

Next, we carried out doseeresponse experiments using

(�)-gossypol and several gossypol Schiff base analogs. As

shown in Figure 1C, (�)-gossypol inhibits MSI1 RNA binding

at submicromolar Ki values, while the MP-Gr, a biologically

inert gossypol analog sharing the similar scaffold, did not

inhibit MSI1-RNA binding (Figure 1D). This inhibition was

confirmed using the truncated version of the MSI1 protein

that only contained RBD1 (Figure 1C).

3.2. SPR and NMR validation of (�)-gossypol binding to
MSI1

To confirm the binding of (�)-gossypol to MSI1, we carried out

an SPR-based binding assay. As shown in Figure 2A, the SPR

assay showed that (�)-gossypol binds to MSI1 RBD1 in a

dose-dependent manner. SPR data support that (�)-gossypol

interacts with MSI1 by directly binding to MSI1 protein RBD1.

To further confirm the binding of (�)-gossypol to MSI1 and

to determine if this binding event affects the RNA binding res-

idues, we employed an NMR assay. First, we reproduced the

previously published spectra data for 15N-MSI1-RBD1 bound

to a synthetic RNA corresponding to the MSI1 consensus

target site (GUAGU) with consistent results, as shown in

Figure 2B left panel (Miyanoiri et al., 2003). We identified

known RNA binding residues W29, K93, F23 and F65

(Figure 2B right panel), consistent with published peak assign-

ments ofMSI1 (Ohyama et al., 2012). Specifically, residue F65 is

required for MSI1-RBD1 to bind to target RNA (Imai et al.,

2001). In response to increasing doses of (�)-gossypol, residues

W29, K93, F23 and F65 peaks exhibited line-broadening, as

shown in Figure 2C, suggesting that the compound bound

most closely to these residues. Thus (�)-gossypol interacts

with the same binding pocket that MSI1 uses to bind target

RNA. As described in the Methods section above, in silico
analysis confirms a feasible binding mode for (�)-gossypol in

the lower portion of the RBD1 binding pocket, with aromatic

stacking interactions thatmimic the cognate RNA and include

three of the four shifted residues (F23, K93, F65; Figure 2C right

panel). Based on the NMR line-broadening of the remote posi-

tion W29, (�)-gossypol (see insert in Figure 2C) may also bind

to more than one region of the protein or induce a conforma-

tional change upon binding.
3.3. (�)-Gossypol inhibits cell proliferation, and induces
apoptosis and autophagy in colon cancer cell lines

We measured MSI1 expression in human colon cancer lines

and a human epithelial cell line derived from normal colon,

CCD-841. As shown in Figure 3A, all of the tested colon cancer

cell lines have high levels of MSI1 mRNA as compared to the

control normal cell line, some of them have high levels of

MSI1 protein (see Figure 3A, bottom panel Western blot). It is

noteworthy that all three bands in the Western blot are MSI1

protein, confirmed by MSI1 siRNA (data not shown). We next

analyzed the effects of (�)-gossypol on the growth of colon

cancer cell lines with high MSI1 expression. As measured by

the MTT-based cell viability assay, (�)-gossypol inhibited the

viability of colon cancer cells at a lower concentration

compared to the normal control CCD-841 cells (Figure 3B).

Decrease in cancer and normal cell viability was measured

following treatment with the biological inert analog of

(�)-gossypol, MP-Gr, at a slightly higher concentration. From

our in vitro biophysical binding data (Figure 1C), the binding af-

finity of MP-Gr (Ki> 200 mM) ismore than 200 foldweaker than

(�)-gossypol (Ki ¼ 0.476 � 0.273 mM). In in vitro MTT-based

cytotoxicity assay, IC50 (HCT-116) was 35.5 mM for MP-Gr

versus 8.8 mM for (�)-gossypol (Figure 3B). Similar results

were observed for other cell lines (Figure 3B). Consistent

with these findings, at the 72 h time point, (�)-gossypol, but

not the negative analog MP-Gr, inhibited cell proliferation of

the three colon cancer cell lines tested in a cell growth assay

(Figure 3C). MP-Gr showed some growth inhibition at the

96 h point. The weak activity of MP-Gr observed may be due

to other non-specific targets. Similar to the growth inhibition,

(�)-gossypol-treated cancer cells formed fewer colonies, as

compared with the MP-Gr-treated cells (P < 0.01, n ¼ 3)

(Figure 3D, Supplementary Figure 1). Our results indicate a

w4-fold selectivity in active versus negative compounds in

cancer cells with high MSI1, while they are not active in

normal cells with low MSI1 (all IC50s > 40 mM) (Figure 3B).

Previous studies have demonstrated that gossypol in-

duces apoptosis and/or autophagy in various cancer cell

lines with high levels of Bcl-2/Bcl-xL (Lian et al., 2011;

Meng et al., 2008; Zhang et al., 2003). To determine whether

(�)-gossypol induces apoptosis and autophagy in the colon

cancer cell lines with high MSI1, we first measured

caspase-3 and PARP cleavage levels with and without treat-

ment of (�)-gossypol. As shown in Figure 4AeB, (�)-gossypol

induced caspase-3 activation and PARP cleavage in HCT-116

and DLD-1 cells with high MSI1 levels in a dose-dependent

manner. (�)-Gossypol also caused an increase in sub-G1

population in HCT-116 cell (Supplementary Figure 2) and

http://dx.doi.org/10.1016/j.molonc.2015.03.014
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http://dx.doi.org/10.1016/j.molonc.2015.03.014


Figure 1 e (L)-Gossypol was identified as a potential MSI1 inhibitor through an initial FP-based drug screening. A. Binding between full length

MSI1 (GST-MSI1, left) and RNA binding domain 1 (aa 20e107) of MSI1 (GB1-RBD1, right) to Numb RNA. GST-tagged wild-type full length

MSI1 (GST-MSI1) or GB1-tagged RBD1 (GB1-RBD1) binds to Numb-FITC RNA (50-UAGGUAGUAGUUUUA-FITC-30), but not to control

oligo-FITC (CTL RNA). The concentration of FITC tagged-RNA used in the assay is 2 nM. (n> 3) B. Scattergram of the screening compounds.

MSI1/Numb mRNA FP-based screening assay was carried out with w2000 compounds from NCI (Diversity Set II, natural product set and

approved oncology drugs) and in-house libraries. MedianD3SD was used as a threshold to pick the hits. C. Doseeresponse curves of the selected

hit (L)-gossypol ((L)-G) and its negative analog MP-Gr. Ki values were calculated based on the Kd and the doseeresponse curves. D. Structure

of (L)-gossypol and MP-Gr.
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Figure 2 e Validation of (L)-gossypol binding to RBD1 of MSI1. A. SPR analyses of (L)-gossypol binding to immobilized GB1-RBD1.

Sensorgram representing direct binding kinetics for (L)-gossypol are shown in response units (RUs) as a function of time (seconds) with increasing

concentrations (shown as colorful lines). B. (Left) Overlay of 2D-HSQC spectra sections of 15N-MSI1-RBD1 (black) titrated with RNA oligo

(GUAGU). Four of the MSI1-RBD1 RNA binding residues were identified (highlighted in box) and undergo significant line broadening and peak

shifts upon addition of RNA. (Right) The structure of RBD1 of MSI1 bound with RNA (PDB 2RS2). The protein atoms are shown as spheres and

the RNA is shown as sticks. Four of the MSI1-RBD1 RNA binding residues (F23, W29, F65 and K93) that undergo significant peak shifts are

highlighted in yellow. C. (Left) Overlay of 2D-HSQC spectra sections of 15N-MSI1-RBD1 (black) titrated with (L)-gossypol. RNA binding

residues (highlighted in box) undergo significant line broadening upon addition of (L)-gossypol indicating micro molar affinity between (L)-

gossypol and RBD1. The residues that undergo line broadening in RBD1 indicates either they are directly involved in binding, or they are in close

proximity of the binding site, or they result from some allosteric effect. (Right) Computational model of the partially hydrated aldehyde form of

(L)-gossypol bound to RBD1. The (L)-gossypol is shown in sticks and the protein is represented as in 2B.
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DLD-1 cell (data not shown), indication of apoptosis. Curi-

ously, these increases did not correlate well with cell death;

(�)-gossypol induced moderate cell death (<10%) in the co-

lon cancer cell lines tested (Figure 4C). By comparison,
(�)-gossypol induced nearly 40% increase in cell death in

prostate cancer cell lines (Lian et al., 2011), which according

to the Oncomine� database have lowMSI1 expression levels.

(�)-Gossypol also induced LC3 conversion (Figure 4A, D),

http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014
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Figure 3 e (L)-Gossypol inhibits colon cancer cell proliferation. A. MSI1 is overexpressed in colon cancer cell lines. B. MTT-based cytotoxicity

assay of (L)-gossypol and MP-Gr in selected colon cancer cell lines and in CCD-841, human colon epithelial. (n [ 3, one representative

experiment of three is shown.) C. (L)-Gossypol inhibits HCT-116, HCT-116 b/W and DLD-1 cell growth. (n [ 3, **, P < 0.01; ***, P < 0.001;

****, P < 0.0001 versus DMSO control. One representative experiment of three is shown.) D. Colony formation assay with different doses of (L)-

gossypol and MP-Gr in HCT-116, HCT-116 b/W and DLD-1 cells (n [ 3, *, P < 0.05; **, P < 0.01; ****, P < 0.0001 versus DMSO control

(Concentration 0). One representative experiment of three is shown).
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indicating autophagy induction. To investigate the autopha-

gic flux level, we used Bafilomycin A1, which blocks the

fusion of autophagosome and lysosome, together with

(�)-gossypol. Our data showed that (�)-gossypol induced
efficient autophagic flux as evident by the increase of LC3II

level and the decrease of P62 degradation in the presence

of Bafilomycin A1 (Figure 4D). Taken together, these data

indicate that in MSI1-overexpressing colon cancer cells,

http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014
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Figure 4 e (L)-Gossypol induces apoptosis and autophagy in colon cancer cell lines. A. Caspapse-3/PARP cleavage and LC3 conversion were

observed in colon cancer cell lines treated with different doses of test compounds or DMSO only for 48 h, cell lysate was subject to western blotting

for PARP cleavage, caspase-3 cleavage and LC3 I/LC3II expression. B. Dose-dependent increase in caspase-3 activity was observed in (L)-

gossypol treated cells. (n [ 2) C. Percent of cell death upon drug treatment in different colon cancer cell lines. (n [ 3, P > 0.05, one

representative experiment of three is shown.) D. HCT-116 cells were treated with (L)-gossypol (10 mM) or DMSO, in the presence or absence of

Bafilimycin A1 (10 nM). Cell lysates were prepared after 18 h and subjected to immunoblot analysis. All figures, *, P < 0.05; **, P < 0.01; ***,

P < 0.001; ****, P < 0.0001 versus DMSO control.
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(�)-gossypol has a greater effect on cell proliferation through

Wnt pathway (see below) relative to its ability to induce cell

death, which is consistent with the hypothesis that

(�)-gossypol is exerting its effects through MSI1 inhibition.
However, in low MSI1/high BCL-2 prostate cancer cells

(Lian et al., 2011), (�)-gossypol has a greater effect on

apoptosis, presumably through its action as a BCL-2

inhibitor.

http://dx.doi.org/10.1016/j.molonc.2015.03.014
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3.4. (�)-Gossypol inhibits cell proliferation through
MSI1 downstream targets

Our in vitro binding and NMR studies above indicate that

(�)-gossypol inhibits MSI1-RNA interaction. This inhibition

leads to increased Numb and APC expression which results

in decreased Notch and Wnt signaling (Moon and Miller,

1997; Pece et al., 2004). Accordingly, we examined the MSI1

downstream signaling pathways after (�)-gossypol treat-

ment in HCT-116 and DLD-1 cells. Figure 5AeB show the

reduced expression of activated Notch and several down-

stream Notch target genes, HES1, c-MYC, CYCLIN D1 (CCND1)

and SURVIVIN following treatment with (�)-gossypol but

not the negative analog MP-Gr. The protein level of NOTCH1

intracellular domain (NICD) is 12% less in HCT-116 cells

treated with 10 mM (�)-gossypol compared to DMSO. In

DLD-1 cells, when compared to the DMSO treated sample,

10 mM (�)-gossypol treatment resulted in a 26% reduction of

c-MYC protein. Reduction of NICD is not obvious in DLD-

1cells treated with 10 mM (�)-gossypol compared to DMSO,

however, there is a 30% reduction when we compared

10 mM (�)-gossypol treatment to the negative compound

MP-Gr. Down-regulation of SURVIVIN was particularly strik-

ing, where levels following (�)-gossypol treatment were com-

parable to that treated with YM155, a known SURVIVIN

inhibitor that acts downstream of Notch activation (Cheng

et al., 2012) (Figure 5C). Our data also demonstrates

(�)-gossypol inhibition of Wnt/Notch signaling genes, c-

MYC and CYCLIN D1. Additional evidence that (�)-gossypol

inhibits Wnt signaling comes from quantitative PCR ana-

lyses, which showed reduction in AXIN2 mRNA levels in co-

lon cancer lines following (�)-gossypol treatment

(Figure 5B). In a functional Wnt reporter assay performed in

HCT-116 cells, (�)-gossypol decreased TOP/FOP reporter

signal in a dose-dependent manner (Figure 5D). Figure 5A, B

also show (�)-gossypol dose-dependently down-regulated

the MSI1 expression. Our previous study (Spears and

Neufeld, 2011) and others (Rezza et al., 2010) showed that

MSI1 is a Wnt target, and there is a positive feedback loop be-

tween MSI1 and Wnt (Rezza et al., 2010). The down-

regulation of MSI1 is a consequence of decreased Wnt

signaling. (�)-Gossypol treatment also led to the increase of

NUMB and P21 protein levels (Figure 5A). When HCT-116

and DLD-1 cells were treated with 10 mM (�)-gossypol,

NUMB protein was increased to 110% (HCT-116) and 119%

(DLD-1) as compared to DMSO control. NUMB and P21 mRNAs

are direct binding and translational repression targets of

MSI1 (Battelli et al., 2006; Imai et al., 2001), thus their in-

creases in protein levels are good indications of the MSI1 in-

hibition. Moreover, we detected increased mRNA levels of

NUMB and P21 (Figure 5B). As (�)-gossypol has been reported

(Keshmiri-Neghab and Goliaei, 2014; Lian et al., 2011; Meng

et al., 2008; Mohammad et al., 2005; Paoluzzi et al., 2008;

Zhang et al., 2003, 2010) and in clinical trials (e.g.,

NCT00286806, NCT00286793, NCT00666666) for targeting

Bcl-2 family members, we believe such increase could be

non-MSI1 related. Additionally, we see some effect of MP-

Gr on the protein and mRNA levels of several genes, consis-

tent with the growth inhibitions observed on HCT-116 and
DLD-1 cells, such effect could be due to non-specific targets.

Taken together, (�)-gossypol inhibits both Wnt and Notch

signaling pathways.

3.5. (�)-Gossypol inhibits HCT-116 xenograft tumor
growth

We and others have shown that (�)-gossypol inhibits the

growth of multiple human cancers in xenograft mouse

models (Coyle et al., 1994; Ko et al., 2007; Lian et al., 2011;

Meng et al., 2008; Paoluzzi et al., 2008; Wolter et al., 2006;

Zhang et al., 2010). We used a similar assay to determine if

(�)-gossypol inhibits the growth of human colon cancer cells

with high MSI1 in vivo. As shown in Figure 6A, daily oral

administration of (�)-gossypol inhibited the growth of human

colon cancer HCT-116 xenografts, as compared to the un-

treated control carboxymethyl cellulose (CMC) (P < 0.001,

n ¼ 10). Western blotting using tumor tissue lysates show

that MSI1, together with the activated NOTCH1, CYCLIN D1

and SURVIVIN protein levels were decreased in (�)-gossypol

treatment group as compared to CMC control (Figure 6B).

Based on the bands’ densities, MSI1 protein was down-

regulated 39%, the activated NOTCH1 (NICD) 20%, and CYCLIN

D1 23%, in the (�)-gossypol-treated tumor versus CMC control.

As shown the lower panel of Figure 6B, SURVIVIN protein was

down-regulated 55% and 43% in the two (�)-gossypol-treated

tumors, as compared with CMC control. These data indicate

that (�)-gossypol inhibited MSI1-Wnt/Notch signaling in

HCT-116 xenograft tumors in vivo, consistent with our

in vitro data. We also observed increased Caspase-3 activation

in the (�)-gossypol-treated tumor sample as indicated by the

increased cleaved Caspase-3 level (2.52 fold as compared to

CMC control) (Figure 6B). These data indicate that (�)-gossypol

promotes apoptosis in the treated tumor tissues, consistent

with a previous report in xenograft model of head and neck

squamous cell carcinoma (Wolter et al., 2006) and a prostate

cancer xenograft model (Meng et al., 2008). The animal body

weight of the control and (�)-gossypol-treated mice did not

differ significantly throughout the experiment (Figure 6C),

suggesting safe oral administration of (�)-gossypol. Our data

demonstrate that (�)-gossypol as a single-agent oral therapy

is effective in vivo in inhibiting tumor growth of human colon

cancers with high levels of MSI1.
4. Discussion

In this study, we report that (�)-gossypol is a potent inhibitor

of MSI1-Numb RNA interaction as determined by FP-based

screening. We validated direct binding of (�)-gossypol to the

RBD1 of MSI1 protein using SPR and NMR, and carried out in

silico docking studies to suggest a possible binding mode for

the compound. Further studies showed that (�)-gossypol in-

hibits colon cancer cell proliferation and down-regulates

both Notch andWnt signaling pathways. Using a colon cancer

xenograft model, we demonstrated that (�)-gossypol inhibits

tumor growth as a single agent.

MSI1 is an RNA binding protein thought to act as a cancer

maintenance factor through its ability to repress NUMB, APC

http://dx.doi.org/10.1016/j.molonc.2015.03.014
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Figure 5 e (L)-Gossypol down-regulates Notch/Wnt signaling in colon cancer cell lines. Notch/Wnt target genes expression changes upon drug

treatment were examined in HCT-116 and DLD-1 cells by western blotting (A) and by quantitative real-time PCR (B) with indicated doses. Cells

were collected 48 h (western) or 24 h (real-time PCR) after drug treatment. NICD: NOTCH1 intracellular domain; CCND1: CYCLIN D1. C.

Confirmation of SURVIVIN knockdown compared to YM155, a SURVIVIN inhibitor. Cells were collected 48 h after treatment. Dose: (L)-

gossypol and MP-Gr: 10 mM; YM155: 10 nM. D. (L)-Gossypol inhibits Wnt/b-catenin signaling reporter. HCT-116 cells were transfected with

Top or Fop Flash reporter constructs. Cells were treated with compounds for 24 h in the presence of 20 mM LiCl. All figures, n [ 3; *, P < 0.05;

**, P < 0.01; ***, P < 0.001 versus DMSO control.
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and P21 expression, which results in increased Notch andWnt

signaling. We used an FP assay to screen compounds for their

ability to inhibit the RNA binding activity of MSI1. Our NMR

studies indicate that (�)-gossypol competes with target

RNAs for binding to MSI1. (�)-Gossypol induced the residue
shifts in the RNA-binding pocket of MSI1 RBD1, including res-

idues F23, K93, F65 that form stacking interactions with

cognate RNA. Structure-based modeling suggests that

(�)-gossypol may mimic these stacking interactions when

binding to this pocket. The observed shift at W29 in the upper

http://dx.doi.org/10.1016/j.molonc.2015.03.014
http://dx.doi.org/10.1016/j.molonc.2015.03.014
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Figure 6 e Oral administration of (L)-gossypol inhibited HCT-116 xenograft growth. A. (L)-Gossypol potently inhibited the HCT-116

xenograft tumor growth in nude mice as a single-agent oral therapy. The data shown are average tumor size (means ± S.E.M., n [ 10) versus

vehicle control carboxymethyl cellulose (CMC) (n [ 10). *, P < 0.05; **, P < 0.01; ****, P < 0.0001. B. (L)-Gossypol down-regulated Wnt/

Notch signaling and induced apoptosis in HCT-116 xenograft model. Lysates from HCT-116 xenograft tumor tissues treated with vehicle (CMC)

or (L)-gossypol for one week and blotted for MSI1, NICD, CCND1, SURVIVIN and Cleaved Caspase-3. Relative band intensities were indicated

underneath the bands for (L)-gossypol treated tumor samples. NICD: NOTCH1 intracellular domain; CCND1: CYCLIN D1. C. Body weight

change during the course of treatment. D. Working model: (Up) In cells with MSI1 overexpression, MSI1 blocks the translation of NUMB and

APC mRNA, which leads to the up-regulation of Notch/Wnt signaling. Thus MSI1 indirectly promotes proliferation/survival of the cells and

inhibits cell death; (Down) In the presence of (L)-gossypol, (L)-gossypol binds to the RBD1 of MSI1, presumably releasing NUMB, APC and

P21 mRNA from their translational repression. Increased level of Numb and APC protein will block Notch and Wnt signaling respectively.

Increased P21 will block cell cycle progression. Thus (L)-gossypol-MSI1 complex indirectly blocks proliferation/survival of the cells.
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portion of the binding pocket could be due to a second, cryptic

(�)-gossypol binding site or an allosteric effect of binding to

the lower portion of the pocket. Additional biochemical

studies and X-ray crystallography will distinguish between

these two possibilities. So far, there are no reported small

molecule inhibitors of the RNA-binding protein MSI1, poten-

tially due to lacking of well-defined pocket in RNA binding

domain.

Further investigation of (�)-gossypol functions showed

that (�)-gossypol inhibits cell proliferation, induces

apoptosis and autophagy, and represses Notch/Wnt

signaling in colon cancer cell lines with MSI1 overexpres-

sion; (�)-gossypol also inhibits colon cancer xenograft tumor

growth in vivo. Our previous study has shown that

(�)-gossypol induces apoptosis and autophagy in prostate

cancer cell lines (Lian et al., 2011), but does not correlate

(�)-gossypol with MSI1 expression level or Wnt signaling,

because Wnt signaling is not a major pathway in the initia-

tion and progression of prostate cancers. In colon cancers,

however, Wnt signaling played a major role in the tumor

initiation and progression. Our working model in Figure 6D

shows that in cells with MSI1 overexpression, MSI1 blocks

the translation of NUMB and APC mRNA, which leads to

the up-regulation of both Notch and Wnt signaling path-

ways. Thus MSI1 indirectly promotes proliferation/survival

of the cells and inhibits cell death; (�)-gossypol binds to

the RBD1 of MSI1, presumably releasing NUMB, APC and

P21 mRNA from their translational repression. Increased

level of NUMB and APC protein will block Notch and Wnt

signaling, respectively. Increased P21 and decreased CYCLIN

D1 will block cell cycle progression, which is consistent with

cell cycle arrest observed in (�)-gossypol-treated HT-29 cells

(Zhang et al., 2003). Autophagy is another way to promote

cell cycle arrest, as it drives cells into quiescence. We

conclude that (�)-gossypol induces autophagy in colon can-

cer cells, and such induction puts cells into a cytostatic state

with G0/G1 arrest (data not shown and ref. (Zhang et al.,

2003)); Simultaneously, (�)-gossypol blockade of the MSI1-

RNA interaction leads to down regulation of Notch and

Wnt signaling, thus blocking proliferation/survival

(Figure 6D).

While (�)-gossypol shows strong binding to the newly

identified target MSI1 with promising in vitro activity, it is

not a specific MSI1 inhibitor as it also binds to many other tar-

gets. For example, (�)-gossypol has been shown to bind to

BCL-2 family of proteins and inhibit their anti-apoptotic and/

or anti-autophagic function in various cancer cells and to

inhibit tumor growth in vivo (Lian et al., 2011; Meng et al.,

2008; Oliver et al., 2004; Paoluzzi et al., 2008). Our current study

identified a new target of (�)-gossypol, and validated its func-

tion in inhibiting Notch andWnt signaling through MSI1 inhi-

bition. (�)-Gossypol binds to MSI1 with a similar or even

higher affinity than it binds to Bcl-2 family members, raising

the possibility that the drug may also have utility in the treat-

ment of cancers associated with high levels of MSI1 expres-

sion and Notch/Wnt signaling. Our future efforts will focus

on further examining this novel mechanism of (�)-gossypol.

Since the drug already shows promise in advanced clinical tri-

als, such efforts may well lead to a new approach to cancer

chemotherapy.
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