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Abstract

Background: The Musashi (MSI) family of RNA-binding proteins is best known for the role in post-transcriptional
regulation of target mRNAs. Elevated MSI1 levels in a variety of human cancer are associated with up-regulation of
Notch/Wnt signaling. MSI1 binds to and negatively regulates translation of Numb and APC (adenomatous polyposis
coli), negative regulators of Notch and Wnt signaling respectively.

Methods: Previously, we have shown that the natural product (−)-gossypol as the first known small molecule
inhibitor of MSI1 that down-regulates Notch/Wnt signaling and inhibits tumor xenograft growth in vivo. Using a
fluorescence polarization (FP) competition assay, we identified gossypolone (Gn) with a > 20-fold increase in Ki
value compared to (−)-gossypol. We validated Gn binding to MSI1 using surface plasmon resonance, nuclear
magnetic resonance, and cellular thermal shift assay, and tested the effects of Gn on colon cancer cells and colon
cancer DLD-1 xenografts in nude mice.

Results: In colon cancer cells, Gn reduced Notch/Wnt signaling and induced apoptosis. Compared to (−)-gossypol,
the same concentration of Gn is less active in all the cell assays tested. To increase Gn bioavailability, we used
PEGylated liposomes in our in vivo studies. Gn-lip via tail vein injection inhibited the growth of human colon
cancer DLD-1 xenografts in nude mice, as compared to the untreated control (P < 0.01, n = 10).

Conclusion: Our data suggest that PEGylation improved the bioavailability of Gn as well as achieved tumor-targeted
delivery and controlled release of Gn, which enhanced its overall biocompatibility and drug efficacy in vivo. This provides
proof of concept for the development of Gn-lip as a molecular therapy for colon cancer with MSI1/MSI2 overexpression.
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Background
The expression of the RNA-binding protein Musashi-1
(MSI1) is elevated in a variety of human cancers, including
glioblastoma, breast, colon and lung cancers [1–10], with
higher levels corresponding to poor prognosis [3–5, 10–12].
Msi1 was first identified in Drosophila where it plays a role
in neural development and asymmetric cell division in the

adult sensory organ [13]. Subsequently, Msi1 homologs were
identified in other species, with higher levels in stem and
undifferentiated cells [1, 2, 14–17]. Musashi-1 typically plays
a role in post-transcriptional regulation of target mRNAs
[18–22]. Up-regulation of MSI1 in cancers appears to asso-
ciate with elevated Notch/Wnt signaling, as MSI1 targets
Numb [22, 23] and APC (adenomatous polyposis coli) [19]
are negative regulators of Notch and Wnt signaling, respect-
ively [24, 25]. CDKN1A (P21), a negative regulator of cell
cycle progression, is also a direct MSI1 target [21]. In all
three cases, MSI1 blocks target mRNA translation. Knock-
ing down MSI1 using siRNA [3], miRNA [26] and a small
molecule inhibitor [27] led to decreased xenograft tumor
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growth. Taken together, these results point to MSI1 as a po-
tential therapeutic target.
Our previous study identified (−)-gossypol as a small

molecule inhibitor of MSI1 that reduced cancer cell pro-
liferation and xenograft growth [27]. More recent
screening in our lab using an FP assay revealed more po-
tent and/or specific inhibitors of MSI1. One inhibitor
with a Ki of 12 ± 2 nM against full length MSI1 was gos-
sypolone (Gn), it had a higher affinity than (−)-gossypol
(Ki = 476 ± 273 nM) [27]. Gn also showed similar affinity
towards Musashi-2 (MSI2) in FP assay (Ki = 7.0 ± 0.3 nM
against full length MSI2). MS12 is another Musashi fam-
ily member that plays both redundant and independent
roles as MSI1 in neural stem cells [28, 29]. In cancer,
MSI2 expression is elevated in hematologic malignancies
[30–36], colorectal adenocarcinomas [37], lung [38],
pancreatic cancers [39–41], and glioblastoma [42]. MSI1
and MSI2 share sequence and structure similarity, espe-
cially their N-terminal RNA recognition motifs (RRMs).
The residues that recognize r(GUAGU) are highly con-
served between MSI1 and MSI2 [43]. Thus, Gn can po-
tentially be used as a MSI1/2 dual inhibitor.
Gn is a major metabolite of gossypol [44], and is oxi-

dized in the liver by P450 enzyme [45]. Gn shares similar
biological activities as gossypol [46–52], including as an in-
hibitor of Bcl-2 family with a Ki of 0.28 μM toward Bcl-xL
[49]. However, in colon cancer cell assays, the same con-
centration of Gn was less potent than (−)-gossypol [27].
To address this problem, we introduce a new

liposome-based Gn nanocarrier. Liposomes have long
been used as nanocarriers for targeted cancer therapy
and have demonstrated biocompatibility and controlled
drug release in previous studies [53–56]. Particularly,
compared with unmodified liposomes, some PEGylated
liposomes were reported to be less entrapped by reticu-
loendothelial cells and lead to enhanced drug delivery to
solid tumors in vivo [57–59]. In the present study,
PEGylated liposomes were used to improve the bioavail-
ability of Gn as well as to achieve tumor-targeted deliv-
ery and controlled release of Gn, which enhances its
overall biocompatibility and drug efficacy in vivo.

Methods
Cell culture and reagents
Human colon cancer cell lines HCT-116, HCT-116 β/W
and DLD-1, are as described by Lan et al. [27] and tested
for mycoplasma contamination [60] before use.
Gossypolone (Gn) was prepared as previously described

[61]. (3, 4-Dimethoxyphenyl)methanimine gossypol (MP
-Gr) was synthesized from gossypol [27]. The Gn and
MP-Gr powder were dissolved in DMSO at 20 mM as
stock solutions. L-α-phosphatidylcholine (EPC) and 1,2-dis-
tearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(po
lyethylene glycol)-2000] (PEG-DSPE) were purchased from

Avati Polar Lipids, Inc. (Alabama, USA) . DiR (1,1′-diocta-
decyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide) was
purchased from Invitrogen (Carlsbad, CA).
Cell growth, MTT, colony formation, western blot ana-

lysis, Caspase-3 activation assay, RT-PCR and quantitative
real-time PCR were carried out according to our previous
publications [27, 62–66]. Protein expression and purifica-
tion, FP competition assay, SPR, NMR, and Wnt luciferase
reporter assay were carried out as previously described
[27]. The primer sequences, the primary and the second-
ary antibodies used were from Lan et al. [27]. Live cell im-
aging was carried out using EVOS FL Auto Cell Imaging
System (Invitrogen, Thermo Fisher Scientific) and images
were cropped and processed using ImageJ (NIH).
For all cell based studies, the DMSO concentration

was 0.1% except where indicated below (for CETSA).

Computational modeling
The AutoDock4.2.6 program [67] was used for docking
calculations. The three-dimensional structure of Musa-
shi1’s RBD1 in complex with RNA (PDB: 2RS2) was
used to dock the gossypolone compound at the MSI1
RBD1 - RNA interface. A grid box of size 40*44*56 Å
with 0.375 Å spacing centered around residue F23 was
used for docking. A total of 200 docking runs were car-
ried out using the Lamarckian genetic algorithm. The
docked conformation with lowest energy was selected as
the final predicted binding mode.

Cellular thermal shift assay (CETSA)
CETSA was carried out according to Molina et al. [68].
For Gn dose CETSA, the HCT-116 β/W cell lysates with
different concentrations of Gn were incubated for 30 min
and heated individually at 52 °C for 3 min (StepOnePlus™
Real-Time PCR System, Applied Biosystems/Life
Technologies) followed by cooling for 3 min at 25 °C. The
soluble fractions were analyzed by western blot. The con-
centration of DMSO in each sample is 3.3%. Musashi-1
antibody used for CETSA was anti-MSI1 (01–1041, Milli-
pore, Billerica, MA). Western band intensities were mea-
sured using Image Studio Ver 4.0 (LI-COR Bioscience,
Lincoln, NE), and normalized to α-Tubulin.

Preparation and characterization of gossypolone-
encapsulated liposomes (Gn-lip)
Gn-lip was formed using a mixture of Gn, EPC,
PEG-DSPE, and cholesterol in chloroform, at a molar ra-
tio of 30/85/6/9. The solution was dried under vacuum
to form a thin film of Gn/carrier mixture, which was
then dissolved in DPBS to produce Gn-encapsulated li-
posomes. Blank liposomes were prepared similarly with-
out the addition of Gn. To prepare the samples for TEM
image, both Gn-lip and blank liposomes were diluted in
DI water, respectively. The suspensions were applied to
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a grid and negatively stained by 4% uranyl acetate. Im-
ages of liposomes were acquired using FEI Tecnai G2
Polara 200 kV TEM (FEI Company, OR, USA). The size
distribution and zeta potential of liposomes in DI water
were measured at 25 C using a Malvern instrument
(Nano-ZS90, Malvern, UK). The size stability of Gn-lip for
3 months was investigated at 4 °C. The drug loading effi-
ciency (DLE%) and drug loading content (DLC%) of Gn
were determined using filtration method. Gn-lip solution
was filtered using an ultra centrifugal filter unit (MWCO
3000 Da, Amicon®, Merck KGaA, Germany). The concen-
tration of free drug in the filtrate was determined using a
UV-vis spectrophotometer. The DLE% and DLC% of Gn
were calculated as follows: DLE% = (weight of loaded Gn
÷ total weight of input Gn) × 100%; DLC% = (weight of
loaded Gn ÷ total weight of Gn-lip) × 100%.
The viabilities of HCT-116 and DLD-1 cells in the

presence of free Gn or Gn-lip were determined using
MTT-based assay, as described previously.

Biodistribution of DiR-loaded liposomes in tumor-bearing
mice
NOD.CB17-Prkdcscid (SCID) mice were purchased from
Harlan laboratory (Indianapolis, IN) and bred at the Uni-
versity of Kansas Animal Care Unit. The in vivo
tumor-specific distribution of liposomes was studied using
DiR, a near-infrared (NIR) fluorescent dye. DiR-loaded
liposome was formed using a mixture of DiR, EPC,
PEG-DSPE, and cholesterol in chloroform, at a molar ra-
tio of 1/85/6/9. The solution was dried under vacuum to
form a thin film of DiR/carrier mixture, which was then
dissolved in DPBS to produce DiR-loaded liposomes. Two
DLD-1 tumor-bearing SCID mice were used for in vivo
fluorescence imaging according to our previous studies
with modifications [69, 70]. Briefly, 10 nmol DiR-loaded
liposome in 200 μL was intravenously (i.v.) injected into
one mouse; 200 μL 10 nmol DiR ethanol/water (1:4 v/v)
mixed solvent as the control was i.v. injected into another
mouse. At different time points, the biodistributions of
DiR in both mice were observed using a Carestream Mo-
lecular Imaging System (Carestream Health, Rochester,
NY), with excitation at 750 nm and emission at 830 nm
using an exposure time of 60 s. Mice were euthanized at
72 h post-injection by CO2 overdose and confirmed by
cervical dislocation as recommended by the Panel on Eu-
thanasia of the American Veterinary Medical Association.
Organs and tumors of mice were obtained for further ex
vivo fluorescence imaging. The fluorescence intensities of
tumors at different time point in vivo, and tumors and
livers ex vivo, were quantified using the ‘Image Math’
function of Carestream Molecular Imaging Software
(Carestream Health, Inc). To produce calibration curves
for DiR-lip and free DiR, 50 μL DPBS containing different
amount of DiR-lip or free DiR was added in each well of a

96-well plate, followed by in vitro imaging using the same
settings with that of the in vivo imaging. The calibration
curves were produced using the fluorescence intensity of
each well. The amount of dye in each tissue was calculated
using its fluorescence intensity and the corresponding
calibration curve. The fluorescence percentage of injected
dose per gram (%ID/g) of each tissue was calculated using
the following formula:

%ID=g ¼ MDiR

ID�WTissue
� 100%

in which MDiR is the amount (nmol) of DiR in the tissue,
ID is the injected amount (nmol) of DiR, and WTissue is
the weight (g) of tissue.

In vivo drug efficacy of Gn in DLD-1 tumor-bearing nude
mice
The in vivo experiments were carried out with 5 to
6-week-old female athymic NCr-nu/nu nude mice pur-
chased from the Harlan laboratory (Indianapolis, IN).
After alcohol preparation of the skin, mice were inocu-
lated subcutaneously with 200 μL DLD-1 cell suspension
(1 × 106 cells) in plain DMEM on both flanks using a ster-
ile 23-gauge needle. When tumors reached 40 mm3 on
average, the mice were randomized into 2 groups. Group
1 (10 mice, 20 tumors) was given vehicle as the control;
group 2 (5 mice, 10 tumors) was given 10 mg/kg Gn-lip.
Gn-lip was administrated intravenously 2 times weekly for
3.5 weeks. Tumor size and body weight of each mouse
were measured twice a week, and tumor volumes were de-
termined as a × b2/2, in which a and b represent the lon-
gest and shortest diameter of the tumors, respectively. All
animal experiments were carried out according to the
protocol approved by the Institutional Committee for the
Use and Care of Animals of University of Kansas.

Statistical analysis
Using Prism 5.0 software (GraphPad Prism), one-way
ANOVA and t-Test were used to analyze the in vitro data,
two-way ANOVA was used to analyze the in vivo data. A
threshold of P < 0.05 was defined as statistically significant.

Results
Gossypolone disrupts the Musashi-numb RNA interaction
In our previous screen for small molecule inhibitors of
MSI1-Numb RNA binding using FP competition assay, we
identified and validated (−)-gossypol as an effective inhibi-
tor that disrupts MSI1-RNA binding [27]. We also identi-
fied gossypolone (Gn) as a potent disruptor of
MSI1-Numb RNA binding, with more than 20-fold higher
affinity than that of (−)-gossypol under the same experi-
mental condition (Ki 13 ± 5 nM vs 476 ± 273 nM) [27].
Figure 1a showed that Gn dose dependently inhibits MSI1
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Fig. 1 (See legend on next page.)
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from binding to a fluorescein labeled Numb RNA
(5’-UAGGUAGUAGUUUUA-3′), with Ki of 12 nM and
62 nM to full length MSI1 (MSI1-FL) and RNA-Binding
Domain 1 (RBD1) of MSI1 (MSI1-RBD1) respectively. As
a control, MP-Gr, which is structurally related to Gn and
(−)-gossypol, showed a Ki of larger than 200 μM (Fig. 1a
top panel, [27]). Because of the conserved residues in
N-terminal RRMs of MSI1 and MSI2 [43], the same
Numb RNA in our MSI1 FP assay also binds to MSI2-FL
and MSI2-RRM1 (data not shown). Figure 1a bottom
panel showed that Gn disrupted MSI2-Numb RNA bind-
ing, with Ki of 7 nM and 37 nM to full length MSI2 and
MSI2-RRM1 respectively. Our data demonstrate that Gn
disrupts MSI1/MSI2-Numb RNA binding and can poten-
tially work as a MSI1/MSI2 dual inhibitor.

Gossypolone directly binds to the RBD1 of MSI1 protein
To confirm the direct binding of Gn to MSI1, we carried
out additional assays. First, we tested Gn in a SPR-based
binding assay. In SPR, GB1-tagged MSI1-RBD1 was immo-
bilized on the sensor chip and the level of response increases
with increasing amount of material bound to the surface. As
shown in Fig. 1b, at 5 μM, the response was 50, while at
10 μM, the response was 200. The SPR assay showed that
Gn binds to MSI1-RBD1 in a dose-dependent manner.
The binding of Gn to MSI1-RBD1 was also confirmed

using NMR (Fig. 1c). Results of NMR titrations of 15N
MSI1-RBD1 with Gn showed that the RNA-binding resi-
dues (K93, F23, and W29) were primarily affected by Gn
(Fig. 1c). The backbone amide peaks of K93, F23, and W29;
including the side chain peak of W29, showed changes in
peak positions as well as decreased peak intensities with in-
creasing amounts of Gn, whereas most non-RNA binding
residues remained unaffected. These NMR results sug-
gested that these residues are involved in the binding of Gn
to the RNA-binding pocket of MSI1-RBD1. Using compu-
tational docking, we then built a model of Gn bound to the
RNA-binding pocket of MSI1-RBD1 (Fig. 1d); this model is
in agreement with the NMR observation that these particu-
lar residues (K93, F23 and W29) are responsible for the
interaction of MSI1-RBD1 with Gn.

Gn targets MSI1 in cells
To test drug-target engagement in cells, we used the
CETSA to determine the thermal stability of target protein
MSI1. When a protein is stabilized with addition of a lig-
and, the bound proteins can stay in solution whereas un-
bound proteins denature and precipitate with increasing
temperatures [68]. The advantage of CETSA is that one
can evaluate the compounds in a cellular context, thus
allowing us to identify the compounds with poor bioavail-
ability that otherwise have high affinity in biochemical as-
says. Fig. 1e showed the concentration-dependent target
engagement of Gn with MSI1, that is, more MSI1 protein
is stabilized at higher Gn concentration.

Gn inhibits cell proliferation, induces apoptosis and
autophagy in colon cancer cell lines
Previous studies have pointed to a tumorigenic role for
MSI1, with overexpression of MSI1 leading to tumorigenesis
in a mouse xenograft model [71], and decreased MSI1 lead-
ing to reduced tumor progression [3, 4, 10]. Our in vitro bio-
physical binding studies revealed a role of Gn in disrupting
the RNA-binding ability of MSI1. We hypothesized that such
disruption would lead to a de-repression of MSI1 target
mRNA translation, thus decreased Notch/Wnt signaling and
decreased cell growth. To investigate the effect of Gn in cells,
we first assayed the overall growth of colon cancer cells with
Gn treatment. As shown in Fig. 2, compared to negative
controls DMSO or MP-Gr [27], 10 μM Gn treatment led to
a significant decrease in cell growth in three colon cancer
cell lines tested (Fig. 2a), colony formation assays also con-
firmed that there were fewer colonies formed with higher
concentrations of Gn (Fig. 2b). Gn treatment phenocopied
the cell growth assay and colony formation assay results ob-
tained with HCT-116 β/W MSI1 CRISPR knockout clones
(Fig. 2c, Additional file 1: Figure S1) and HCT-116 β/W
MSI1 shRNA knock down clones (data not shown).
We next tested whether Gn treatment will induce apop-

tosis and/or autophagy in cells. We examined PARP cleav-
age and Caspase-3 activation in two colon cancer cell lines.
As shown in Fig. 3a-b, at 10 μM, Gn led to increased PARP
cleavage (Fig. 3a), as well as augmented Caspase-3 activa-
tion (Fig. 3b); while MP-Gr or DMSO did not show any

(See figure on previous page.)
Fig. 1 Gossypolone disrupts Musashi-numb RNA binding and directly binds to RBD1 of MSI1. a Gossypolone (Gn) was identified as a potential
MSI1 inhibitor through an initial FP-based drug screening. Top panel: Dose-response curves of Gn and its inactive analog MP-Gr in Full length
MSI1 (MSI1-FL) or RNA Binding Domain 1 (aa 20–107) of MSI1 (MSI1-RBD1) to Numb RNA. Bottom panel: Dose-response curves of Gn and MP-Gr
in Full length MSI2 (MSI2-FL) or RNA Recognition Motif 1 (aa 20–107) of MSI2 (MSI2-RRM1) to Numb RNA. Ki values were calculated based on the
Kd and the dose-response curves. b SPR analyses of Gn binding to immobilized GB1-tagged MSI1-RBD1. Higher response unit (RU) is a result of
more binding events. c Overlay of 2D 1H-15N HSQC spectra of 15N-MSI1-RBD1 (black) titrated with Gn. Four RNA binding residues (boxed)
undergo line broadening upon addition of Gn indicating that they are involved in binding to Gn. d Docked model of MSI1 RBD1 bound to
gossypolone. The protein atoms are shown as spheres. The gossypolone structure is shown as sticks. The four MSI1-RBD1 RNA binding residues
that undergo significant shifts are highlighted in yellow (F23, W29, F65 and K93). This figure was prepared using PyMOL. e Gn dose-response
CETSA in HCT-116 β/W cell lysate (n = 2) with one representative western blot
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effect, consistent with our early report [27]. These data in-
dicate that Gn induces apoptosis in colon cancer cell lines.
Using a live cell image system, we showed that 20 μM Gn
induced autophagy in DLD-1 cells and led to cell death via
apoptosis (Additional file 2: Video 1 and Additional file 3:
Video 2). One representative view from the video in each
treatment was presented in Fig. 3c. The cell treated with
20 μM Gn started to accumulate autophagosome after
14 h, and died via apoptotic cell death (Fig. 3c left panel).
In contrast, cells with DMSO control proliferated and
covered the whole view at the end of the time lapse (72 h)
(Fig. 3c right panel). Additionally, autophagy induction was

shown by the LC3 conversion and P62 degradation [72] in
Gn treated samples (Fig. 3d). When we pretreated the cells
with chloroquine (CQ), an autophagy inhibitor that blocks
the fusion of autophagosome with lysosome and lysosomal
protein degradation [73], p62 degradation was blocked
(Fig. 3d). These data indicate that Gn induces efficient
autophagic flux, and leads to apoptotic cell death.

Gn down-regulates Notch/Wnt signaling through MSI1
As describe above, binding assays showed that Gn bound
to RBD1 of MSI1 and potentially blocked MSI1-target
mRNAs binding, which would presumably lead to changes

Fig. 2 Gn inhibits cell proliferation in colon cancer cell lines. a Gn inhibits HCT-116, HCT-116 β/W and DLD-1 cell growth (n= 3). b Colony formation assay
with different doses of Gn and MP-Gr (n = 3) in HCT-116, HCT-116 β/W and DLD-1 cells. c Cell growth assay and colony formation assay in HCT-116 β/W
MSI1 CRISPR knockout clones. In all figures, ****p< 0.0001, ***p< 0.001, **p< 0.01, *p< 0.05 versus DMSO control. MP-Gr or DMSO treatment is consistent
with our early report [27]
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in MSI1 downstream targets. To test this idea, we exam-
ined the levels of several proteins and mRNAs upon Gn
treatment. We noticed an increase in P21 protein level
with Gn treatment in both colon cancer cell lines tested
(Fig. 4a). P21 is a direct binding target of MSI1 [21], Gn
binding to MSI1 would release P21 from its translation re-
pression. However, we saw an increase in P21 mRNA level
as well (Fig. 4b), which may potentially be due to other ef-
fects of Gn not related to MSI. Gn is an active metabolite
of (−)-gossypol, and we and others previously reported
(−)-gossypol as a Bcl-2 inhibitor [62, 63, 74–76]. The in-
crease in P21 mRNA level could be due to Bcl-2 related
functions of Gn. With Gn treatment, we observed de-
creases in other MSI1 downstream targets as well. These

included c-MYC, CCND1 (CYCLIN D1) and BIRC5
(SURVIVIN), all of which are downstream of Notch/Wnt
pathways. Additionally, we detected decreases in MSI1
protein and mRNA levels, such reductions are results of
decreased Wnt signaling, as MSI1 is a Wnt target [19, 71].
To evaluate the Gn’s ability in inhibiting Wnt signaling,
we used a TOP/FOP reporter assay. As shown in Fig. 4c,
Gn dose-dependently inhibited the reporter activity. Taken
together, our data indicate that Gn down-regulates Notch/
Wnt signaling.
Compare with (−)-gossypol, Gn was less effective in

downregulating Notch/Wnt signaling through MSI1 in
cells. For example, Wnt target gene AXIN2 mRNA levels
were 50% (10 μM Gn treatment) versus 20% (10 μM

Fig. 3 Gn induces apoptosis and autophagy in colon cancer cell lines. a PARP cleavage was observed in colon cancer cell lines treated with
different doses of Gn for 48 h. MP-Gr or DMSO treatment had no effect, consistent with our early report [27]. b Caspase-3 activity was increased
in Gn treated cells. MP-Gr or DMSO treatment had no effect, consistent with our early report [27]. (n = 2). ***p < 0.001 versus DMSO control.
c Representative images of Gn or DMSO treated DLD-1 cells from time lapse videos. d DLD-1 cells were treated with Gn or DMSO, in the
presence or absence of chloroquine (CQ, 50 nM) pretreatment for 16 h
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(−)-gossypol treatment) compared to DMSO control (set
as 1) in HCT-116 cells, and 80% versus 40% in DLD-1
cells (Fig. 4b, [27]). In our biophysical assays, Gn showed
a better affinity to MSI1 (Fig. 1a, [27]). We thus sought
to introduce a carrier for delivering Gn in vivo.

Characterizations of Gn-lip
The morphology of Gn-loaded liposomes (Gn-lip) and
blank liposomes was observed using transmission elec-
tron microscopy (TEM). Both Gn-lip and blank lipo-
somes exhibited a similar spherical shape (Fig. 5a and b
on the left). Some shrinkage was also observed in larger

liposomes. No obvious difference was found between the
two samples. Also, both liposomes possessed similar dy-
namic sizes around 56 nm (55.89 ± 0.34 nm for Gn-lip
and 56.03 ± 0.42 nm for blank liposomes) and
Zeta-potential around zero mV (− 0.04 ± 0.06 mV for
Gn-lip and 0.83 ± 0.46 mV for blank liposomes) as deter-
mined by Dynamic Light Scattering (DLS). The morph-
ology and surface charge of liposomes were not affected
by the Gn encapsulation. The DLE% and DLC% of Gn
were 80.74% ± 0.77 and 13.22% ± 0.11%, respectively, re-
spectively. After storage at 4 °C for 3 months, the par-
ticle size of Gn-lip was 62.97 ± 1.65 nm, which was near

Fig. 4 Gn down-regulates Notch/Wnt signaling. In HCT-116 and DLD1 cells, Notch and Wnt target genes expression in protein (a) and mRNA (b)
levels were altered upon drug treatment. For protein detection, cells were collected 48 h after drug treatment; for real-time RCR, cells were collected
24 h after treatment. c TOP flash Wnt signaling reporter assay was carried out in HCT-116 cells with DMSO or different doses of drugs. In all Figures,
****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05 versus DMSO control. MP-Gr or DMSO treatment is consistent with our early report [27]
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the particle size (55.89 ± 0.34 nm) of fresh sample. This
result demonstrated a good size stability of Gn-lip.
The viabilities of cells in the presence of free Gn or

Gn-lip were similar, for both HCT-116 and DLD-1 cells
(Fig. 5c). The IC50 value of free Gn and Gn-lip were
12 μM and 13 μM for DLD-1 cell, respectively, and were
8 μM and 11 μM for HCT-116 cell, respectively.

Although the IC50 values of Gn-lip was a little higher
than that of free Gn, cytotoxicity of Gn was not signifi-
cantly compromised by encapsulation. The increased
IC50 values of Gn-lip might be due to the sustained re-
lease of Gn from the liposomes.
The in vivo tumor-specific accumulation of the liposomes

was confirmed using DLD-1 tumor-bearing SCID mice. In

Fig. 5 Characterization of gossypolone-liposomes (Gn-lip). a TEM image (left), size distribution (upper right), and Zeta-potential (lower right) of blank
liposomes. b TEM image (left), size distribution (upper right), and Zeta-potential (lower right) of Gn-loaded liposomes. c MTT-based cytotoxicity assay of
free Gn, encapsulated Gn (Gn-lip), and the liposomes with the same concentrations of vehicle in Gn-lip using selected colon cancer cell lines (n = 3).
Gn-lip and Gn showed similar cell viability profiles; while the liposomes alone did not show evident cytotoxicity within the investigated concentrations
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the mouse that was given NIR dye-loaded liposomes, DiR
signal increased in the tumor regions over time and became
the strongest 24 h after the injection (Fig. 6a). DiR signal
was much weaker in control mouse that was given free DiR
at the same time, due to non-specific distribution, fast
clearance, and quenching of free DiR molecules. The ex
vivo imaging results were shown in Fig. 6b, and the fluores-
cence %ID/g tissue is shown in Fig. 6c. Compared with in
vivo imaging, ex vivo imaging does not have the masking
effects of the skin and hairs on the fluorescence. Consistent
with the in vivo results, quantifications using %ID/g also
showed more DiR in tumors of DiR-lip group than in tu-
mors of free DiR group. In addition, more DiR existed in
the liver of free DiR group. Since liver is the main organ for
Gn metabolism, this result indicates that the drug in lipo-
somes may have a long-term effect as compared with the
free drug. The results are also consistent with our previous
findings, which indicated the elongated retention and

protection of DiR in the body brought about by the encap-
sulation of liposomes [77].

In vivo drug efficacy of Gn in DLD-1 tumor-bearing nude
mice
The in vivo tumor suppression effect of Gn-lip was com-
pared with vehicle control (Fig. 7a). Significant tumor
growth inhibition was observed in Gn-lip group compared
with the vehicle (P < 0.01). Gn-lip also showed better effi-
cacy compared to gossypol treated group (Additional file 1:
Figure S2). The mice body weight of Gn group kept stable
during the whole experimental time (Fig. 7b), indicating the
low systemic toxicity of Gn-lip treatment. To investigate
whether Gn induces apoptosis and inhibit Notch/Wnt sig-
naling in tumors, tumor samples were collected and proc-
essed for western blotting analysis. With Gn-lip treatment,
there was an increase in PARP cleavage, indication of apop-
tosis (Fig. 7c, left panel). We also probed the Gn-lip

Fig. 6 NIR imaging and biodistribution of DiR-loaded liposomes (DiR-lip) in SCID mouse bearing DLD-1 tumor. a In vivo DiR fluorescent intensity
in tumors of mice. b Ex vivo NIR images of tumors and different organs of each mouse. c %ID/g tissue (%) for tumor and liver. Compared with
control mouse, DiR in liposomes tended to accumulate in tumors rather than liver and other organs of mouse
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treatment group for several Notch/Wnt downstream tar-
gets, as shown in Fig. 7c right panel, Gn-lip treatment led
to decreases in MSI1, activated Notch, CYCLIN D1 and
SURVIVIN protein levels, indication of decreased Notch/
Wnt signaling in the tumor tissues. Overall, Gn loaded in
the liposomes had a significant tumor inhibition efficacy
and a good biocompatibility; it also induced apoptosis and
inhibited Notch/Wnt signaling in tumors.

Discussion
In this study, we sought to identify additional small mol-
ecule inhibitors of Musashi-1(MSI1). Such inhibitors can

downregulate Notch/Wnt signaling and block cell cycle
progression through MSI1. To this end, we used FP-based
screening and identified Gn as a potential MSI1 inhibitor.
We further confirmed Gn binding to MSI1 using SPR and
using NMR, identified the amino acids in the
RNA-Recognition Motif 1 that were involved in the bind-
ing. Using colon cancer cell lines, we showed that Gn inhib-
ited cell growth, induced autophagy, inhibited Notch/Wnt
signaling in these cells and led to apoptotic cell death.
However, compared to 10 μM (−)-gossypol [27], the same
concentration of Gn was less active in cell assays. This re-
sult could be due to poor water-solubility of Gn. Therefore,

Fig. 7 Gn-lip inhibited DLD-1 xenograft growth. Tail vein injection of Gn-lip inhibited DLD1 xenograft growth and was associated with decreased
Notch/Wnt signaling and increased apoptosis. a Gn potently inhibited the DLD-1 xenograft tumor growth in nude mice as a single-agent
therapy. The data shown are average tumor size (means ± S.E.M., n = 10) versus control (n = 20). ** p < 0.01 b Body weight of both groups
remained similar during the treatment time, indicating a low systemic toxicity of Gn-lip. c Gn-lip induced apoptosis and down-regulated several
Notch/Wnt downstream genes in tumor samples. d Working model
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we used a liposomal carrier to deliver Gn in animals. The
liposome could efficiently increase the apparent solubility
of Gn in water. We showed that Gn loaded liposomes in-
duced apoptosis, inhibited tumor growth and Notch/Wnt
signaling in DLD-1 xenograft model. Our study identified a
new target for Gn and provided a new delivery method for
this poorly bioavailable compound.
MSI1 is an RNA-binding protein that promotes cell

proliferation and survival through Notch/Wnt signaling
(Fig. 7d). Inhibiting MSI1 is a promising therapeutic strat-
egy for preventing cancer cell proliferation and progression.
Here we identified Gn as a more potent inhibitor of MSI1
compared to (−)-gossypol [27] in our binding assays. Our
NMR studies showed that Gn bound to the same residues
as the cognate RNA. The NMR peaks of the RNA-binding
residues (K93, F23 and W29) showed the most changes
upon titration of Gn (Fig. 1c). This suggests that these resi-
dues are involved in the binding to Gn, consistent with our
docked model. The majority of non-RNA binding residues
were unaffected when titrated with Gn, suggesting that the
interaction between Gn and MSI1-RBD1 tends to be more
localized near the RNA binding pocket as compared to the
binding event between (−)-gossypol and MSI1-RBD1 [27].
This might explain the improved potency of Gn compared
to (−)-gossypol. Additional X-ray crystallography studies
will be helpful in determining the high resolution structure
of the complex between MSI1-RBD1 and Gn.
Based on the sequence identity of RBDs/RRMs of

MSI1 and MSI2, we tested the binding of Gn towards
MSI2 and showed that Gn can disrupt the binding of
MSI2 to Numb RNA. Like MSI1, MSI2 is also a member
of the Musashi family of RNA-binding protein and
shares similar roles as MSI1 in stem cells [28, 29]. In
colorectal cancer initiation and maintenance, a recent
study demonstrated the functional redundancy between
MSI1 and MSI2 [78]. Thus using a MSI1/MSI2 dual in-
hibitor such as Gn in patients with MSI overexpression
suggests an improved therapeutic outcome.
The introduction of PEGylated liposomes improved the

dispersion of Gn in aqueous environment, thus making it
possible to produce injectable drug solutions, which is es-
sential for a better bioavailability of Gn. As shown in the re-
sults of MTT assay (Fig. 5c), the encapsulation of Gn using
liposomes did not compromise the cytotoxicity of Gn in
vitro. Finally, the Gn-lip exhibited a significant tumor inhib-
ition efficacy and a low systemic toxicity in the mice. Our
work is important in that our study provides a
proof-of-concept to develop the Gn-lip as a novel molecu-
lar therapy for colon cancer with MSI overexpression.
The limitation of our current inhibitors is that they

are not specific to MSI1/MSI2, because Gn and the pre-
viously reported (−)-gossypol [27] are both Bcl-2 family
inhibitors as well [46–52, 62, 63, 76, 79]. With Gn treat-
ment, we saw apoptosis/autophagy induction via Bcl-2

and cell proliferation inhibition via Wnt and/or Notch
signaling pathways. Our goal is to develop potent and
specific MSI1/MSI2 inhibitors, and ultimately move
these new inhibitors into clinical applications in the
treatment of cancers with MSI overexpression. Towards
this goal, our future efforts will focus on utilizing com-
puter modeling and medicinal chemistry for identifying
new chemical scaffolds that selectively inhibit MSI1/2.

Conclusions
Gn was identified as a MSI1/2 duo inhibitor in this study.
It disrupted binding of MSI1 to its target mRNAs by bind-
ing to the RBD1 of MSI1. Gn inhibited colon cancer cell
growth, induced autophagy, down-regulated Notch/Wnt
signaling and led to apoptotic cell death. The introduction
of tumor-targeted liposomes significantly improved the
bioavailability of Gn, meanwhile maintaining its drug
efficacy. Gn-lip has promising antitumor effects and
biocompatibility in vivo, warranting further study to
determine its suitability for cancer treatment.
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