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A B S T R AC T Objective: This article introduces Bayesian spatial–temporal modeling
for social and health science research. We use the World Bank’s World Development
Indicators data on youth unemployment and HIV risk in Africa to illustrate the util-

ity of the Bayesian paradigm in modeling space–time changes in outcomes.Method:
Data on adolescents and young adults were collected in 36 African countries from
1991 to 2014. We examined associations between HIV risk and youth unemploy-
ment rates using 16 Bayesian Poisson models incorporating spatial and temporal
autocorrelations. Results: The best fit to the data was the model with spatially un-
correlated heterogeneity, temporally correlated random-walk autocorrelation, and
spatial–temporal interaction. HIV risk factors are spatially uncorrelated across
36 countries but temporally correlated (i.e., country and time interaction) over
the data collection period. The relationship between HIV risk and unemployment
rate is statistically nonsignificant because of large spatial–temporal variations. Con-
clusions: This article demonstrates the capacity of Bayesian modeling to incorporate
spatial (neighborhood) and temporal (historical) information to reflect not only the
influences of space and time but also their interactions on the phenomenon of in-
terest. The Bayesian framework holds great promise for improving the dynamic tar-
geting of interventions and strategies to achieve desired outcomes.
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T
he application of spatial techniques in social work research and social ser-

vices delivery is not new. As early as the 1800s, social workers such as Jane

Addams and Frances Kelley used hand-drawn maps and foot surveys to shed

light on the socioeconomic and demographic composition of communities (Felke,

2006; Hillier, 2007). More than a century later, spatial mapping became prominent

in social work theorization, discourse, and practice (Spatscheck, 2012). The German



tradition of social work is best known for fostering the idea of Sozialräume (i.e., con-

cept of social spaces) and application of spatial analytic approaches in the 1990s

(Spatscheck & Wolf-Ostermann, 2009).

In part, the increased application of advanced spatial approaches in social work

research has been fostered by the wide availability of geographic information sys-

tem (GIS) technology, open-source software (e.g., QGIS), and geographically refer-

enced data (e.g., census data; Felke, 2015; Teixeira, 2018). This shift to greater use

of spatial approaches is characterized by the movement away from graphical dis-

play of data, such as choropleth maps, toward applications that include spatial

inferential modeling, such as geographically weighted regression and hotspot anal-

ysis (see, e.g., Ansong, Ansong, Ampomah, & Adjabeng, 2015; Ansong, Ansong,

Ampomah, & Afranie, 2015; Ansong, Renwick, Okumu, Ansong, & Wabwire, 2018;

Felke, 2015; Freisthler, Lery, Gruenewald, & Chow, 2006; Wolf, Freisthler, Kepple,

& Chavez, 2017). As evident in these studies, advances in the ability to statistically

analyze spatial distributions, patterns, processes, and relationships have enabled

social work researchers and practitioners to rigorously apply a spatial perspective,

allowing them to not only understand and predict social problems affecting individ-

uals and communities but also to inform program and policy development (Knight,

2016).

Social work research often involves applying longitudinal and location data to

test hypotheses of outcome change trajectories; therefore, the need for social work

researchers to use advanced statistical models has become increasingly apparent

(Guo, 2013). Thus far, the advances in longitudinal and spatial analysis in social

work research have been overwhelmingly based on the frequentist paradigm (i.e., con-

ventional statistical approaches). The goal of this article is to draw attention to the

utility of the alternative Bayesian paradigm in modeling spatial–temporal changes

in outcomes. Notably, despite the promise that the Bayesian framework holds as a

more intuitive and practical approach to spatial statisticalmodeling, social work re-

searchers have not yet adequately explored the combination of temporal and spatial

modeling, particularly from a Bayesian framework.

With recent advances in computation and simulation methods, the application

of Bayesian methodology has become mainstream in spatial statistical and epide-

miological inferences (Congdon, 2010; Lawson, 2006, 2013; Lawson, Banerjee,

Haining, & Ugarte, 2016; Lesaffre & Lawson, 2002), and the popularity of Bayesian

methodology is growing in social work research (D. Chen & Fraser, 2017a, 2017b;

D. Chen, Fraser, & Cuddeback, 2018). Thus, this is an opportune time for social

work researchers to seriously consider the application of Bayesian methodology.

To further advance the application of Bayesian methods in social work and related

fields, we draw on practical examples from space and time patterns in HIV preva-

lence and youth unemployment in Africa. We show how researchers might apply

spatial statistics from a Bayesian framework to better understand how real-world



phenomena and social problems (e.g., young Africans’ HIV risk) and predictive fac-

tors (e.g., unemployment rates) evolve across space and time.

Without discounting the emotional, sexual, psychological, structural, and other

strong determinants of HIV risk, the present study focuses on unemployment and

its possible connections to HIV risk factors primarily to illustrate how Bayesian

spatial–temporal modeling can be applied to social research to support evidence-

based programs and policies. For a more in-depth review of the relevant literature

on HIV and unemployment, we encourage readers to consult the large body of rel-

evant empirical studies, systematic reviews, and meta-anlayses; in particular, we

recommend Arndt and Lewis (2001), Baral et al. (2012), Oldenburg et al. (2014), and

Zanoni, Archary, Buchan, Katz, and Haberer (2016). Additionally, we offer a brief

review of the literature on HIV prevalence and unemployment in Africa to help

readers put the methodogical application into context.

A Real-World Motivation for Bayesian Spatial–Temporal Modeling
Although rates of new HIV infections in Africa have declined in recent years, HIV

is still a major public health concern on the continent and remains one of the lead-

ing causes of death in many areas of sub-Saharan Africa (Kabiru, Izugbara, &

Beguy, 2013; Kharsany & Karim, 2016; United Nations Programme on HIV/AIDS

[UNAIDS] & World Health Organization [WHO], 2003; United Nations Children’s

Fund [UNICEF], 2016). Additionally, improved access to antiretroviral treatment

means more Africans are living with HIV. For example, from 2005 to 2015, the

number of young people in Africa living with HIV rose by 28% (UNICEF, 2016). Be-

yond global trends in HIV infections, Africa has regionalized spatial clustering of

HIV infections. For instance, seven countries in Eastern and Southern Africa ac-

count for two thirds of the global total of people living with HIV (Kharsany &

Karim, 2016).

Because real-world phenomena and social problems often evolve conjointly, ex-

ploring spatial trends in isolation from temporal trends can be problematic. Al-

though Africa’s Eastern and Southern regions have the highest concentration of

HIV cases, focusing only on the spatial clustering is often inadequate. Indeed, the

history of HIV in Africa hints at changing trends across time and geographies (Denis

& Becker, 2006; Shilts, 2007). Epidemiological data suggest the spread of HIV in

Africa started in the 1960s and 1970s (Kagaayi & Serwadda, 2016). While the HIV

epidemic quickly spread across Western, Eastern, and Central Africa in the early

1980s, Northern and Southern Africa were largely unscathed (UNAIDS & WHO,

2003). However, this status changed in the late 1980s when the infection hotspot

shifted to Southern Africa. By the late 1990s, Africa’s Southern region had become

the epicenter of the global HIV epidemic, andmore people in South Africa were liv-

ing with HIV/AIDS (approximately 5 million) than any other country in the world

(UNAIDS & WHO, 2003). Around the same time, the highest prevalence of HIV



was recorded in two other southern countries: Botswana (38%) and Swaziland (33%).

This geo-historical overview of HIV prevalence on the African continent suggests a dy-

namic geographical clustering—a phenomenon that the present study examines simulta-

neously from the spatial and temporal dimensions.

An essential benefit of Bayesian spatial–temporal modeling is the ability to in-

corporate spatial (neighborhood) and temporal (historical) information inways that

not only reflect the influences of space and time but also reflect the interactions of

space and time on the phenomenon of interest. In the case of HIV infections, despite

the significant advances in the fight against HIV made over the past two decades,

the progress has been uneven across Africa’s countries and regions. Although HIV

has touched every area of the continent, Eastern and Southern Africa have had

higher concentrations of HIV historically; consequently, those regions have not

only experienced some of the most severe effects of the HIV pandemic but also ex-

perienced higher prevalence of HIV than other regions of sub-Saharan Africa.More-

over, vast disparities remain at the regional level, with 2% of adults infected with

HIV in West and Central Africa compared to 7% of adults in Eastern and Southern

Africa (UNAIDS, 2017). Evenmore nuanced is the disparity within regions.Western

Africa is a case in point: During 2000–2016, newHIV infections among children de-

creased in 13 countries but increased in five other countries in the region (UNAIDS,

2017). This complex interaction between geography and time in the prevalence of

HIVmirrors nuanced trends in other social phenomena; thus, understanding these

complex interactions provides the impetus for social work researchers and practi-

tioners to use advanced analytical approaches and frameworks capable of unearth-

ing the spatial and temporal patterns of complex phenomena such as emotions,

perceptions, attitudes, and behavior.

Motivation for Incorporating Predictor/Covariates into Bayesian
Spatial–Temporal Modeling
Although understanding the space–time patterns in health outcomes and other de-

velopmental outcomes is critically important for policymakers, practitioners, and

funding agencies, such understanding might be inadequate without insights into

predictors and determinants. In the HIV example, perhaps the more important as-

pects are clarifying themalleable determinants and correlates of HIV outcomes and

identifying how those factors differ across space and time. Such insights would

inform the dynamic targeting of interventions and strategies to achieve desired out-

comes, such as reductions in new HIV infections. Therefore, this study demon-

strates how a predictor or covariate could be incorporated into Bayesian spatial–

temporal modeling.

In this example, we used the unemployment rate as a covariate. It is worth not-

ing that in a typical HIV risk study, the unemployment rate might not be the pre-



ferred variable of interest because the literature often focuses on HIV infection as

the antecedent in the connection between HIV and unemployment. Nonetheless,

given data constraints and our purposes for this demonstration, we have focused

on unemployment as a variable of interest to demonstrate whether the role of

unemployment in HIV infection, if any, was fixed across space and time. We en-

courage readers who are interested in the methodological application and the sub-

stantive role of unemployment as a correlate of HIV prevalence to consult the sub-

stantive literature. (For an overview of unemployment as an HIV risk factor, see

Austin, Choi, & Berndt, 2017; Delpierre et al., 2008; Maruthappu, Zhou, Williams,

Zeltner, & Atun, 2017).

Analogous to HIV prevalence in Africa, unemployment rates remain a primary

concern for many African governments. For decades, the African continent—espe-

cially sub-Saharan Africa—has experienced enormous increases in the working-age

population. By 2013, the continent’s working-age population stood at 466 million

people. Given the large upswell of youth entering the workforce, many African

countries have struggled to create enough employment opportunities; high unem-

ployment rates have resulted, especially among adolescents and young adults. Since

the 2000s, the unemployment rate in sub-Saharan Africa has hovered around 7.5%,

and the labor force participation rate has stagnated around 70% (Bhorat, Naidoo, &

Ewinyu, 2017). This problem is so widespread it warrants a special label for unem-

ployed youth: NEET, or youth who are not engaged in employment, education, or

job training (Organisation for Economic Co-operation and Development, 2016).

However, froma spatial perspective, significant variations exist in youth unemploy-

ment rates (Baah-Boateng, 2016). For instance, at the regional level from 2010 to

2014, North Africa had the largest share of NEET youth (World Bank, 2016). The in-

creasing numbers and locations of NEET youth are important because these individ-

uals lack skills to improve their economic well-being and therefore face a higher

risk of becoming excluded from mainstream society and trapped in a cycle of pov-

erty.

In addition to social exclusion, NEET youth face other risks related to unemploy-

ment. Austin and colleagues (2017) suggested that when extended unemployment

creates a sense of economic insecurity, young people—especially girls in developing

countries—becomemore susceptible to keeping concurrent partners or “sugar dad-

dies” and engaging in transactional sex, invariably risking HIV infection. For inter-

vention researchers, critical empirical questions might include the following: To

what extent might youth unemployment rates predict HIV transmission across

space? How robust is the association between youth unemployment and HIV prev-

alencewhenunemployment rates are appropriately accounted for as a time-varying

phenomenon? In this article, we demonstrate how Bayesian spatial–temporal mod-

eling can be applied to address such questions with space–time dimensions. Using



the example from the HIV–unemployment connections, we address two research

questions:

1. Are space–time trends observable in HIV incidence in Africa?

2. Are unemployment rates among adolescents predictive of the space–time

trends in HIV prevalence?
Bayesian Spatial–Temporal Models

General Spatial–Temporal Model
When using spatial–temporal data to study occurrences such as diseases, research-

ers are often interested in both the spatial and temporal aspects of these data. For

instance, researchers might want to investigate disease location and time of diagno-

sis along with the disease counts. This goal could be achieved by modeling the dis-

ease counts as a Poisson process while concurrently incorporating the space and

time data with all other risk covariates. Because of the spatial–temporal auto-

correlations, spatial–temporal disease data are typically modeled as multivariate

with correlated observations of Poisson disease counts at afixed spatial location that

evolves over time.

For the present study, we specifically focused on HIV data from 36 African coun-

tries collected over a 24-year period (1991–2014). Thus, i denotes the spatial location

among 36 countries (i5 1 ... i5 36), and t denotes years (t5 1 ... t5 24). HIV disease

incidence ( yit) is modeled as a Poisson spatial–temporal model with the expected in-

cidence (Eit) and the associated risk (hit). Therefore, the spatial–temporal model can

be characterized as

• Data distribution:

yit ∼ Poisson Eit � hitð Þ, (1)

• Mixed-effects regression model:

log hitð Þ 5 b0 1 b1x1it 1 ::: 1 bpxpit 1 Si 1 Tt 1 STit : (2)

S, T, and ST are random-effects components representing the random spatial effect,

the random temporal effect, and the random spatial–temporal interaction, respec-

tively. The fixed-effects component is b0 1 b1x1it 1...1 b pxpit , where x1it ... xpit are

the risk factors to be modeled with the disease risk (hit). Because only UEMit (i.e., un-

employment) is available, the model is simplified as

log hitð Þ 5 b0 1 b1UEMit 1 Si 1 Tt 1 STit : (3)



In the data distribution, Eit is the expected incidence; several methods can be

used to estimate these values. Themost commonly usedmethod is the overall average

from the population, which is calculated as

Eit 5 pit � oL
i51oT

t51
yit

oL

i51oT

t51
pit

.
(4)

where pit is the population at the ith location (i.e., country) and tth time point (i.e.,

year) in this HIV data.

HIV Spatial–Temporal Models
We fit eight spatial–temporal models to the African HIV data (see Table 1) with the

goal of modeling the spatial–temporal heterogeneity in the data. As seen in Table 1,

we explored three groups of models: Group 1, which includes Models 1 and 2, mod-

els only spatial heterogeneity; Group 2, which includes Models 3–6, extends the

Group 1 spatial models by incorporating temporal heterogeneity; and Group 3,

which includes Models 7 and 8, assesses the spatial–temporal interaction.

Model 1 is the simplest. It includes the spatial dimension only with uncorrelated

heterogeneity (UH)—that is, identically independent distributed (IID) errors among

the 36 African countries. Note that Model 1 is oversimplified as it assumes that no

spatial and temporal correlation exists; such an assumption is unrealistic. Thus, we

include Model 1 only as a reference. Extending Model 1 to incorporate spatial auto-

correlation, Model 2 includes spatial components with the standard Besag, York,
Table 1
Specific Spatial–Temporal Models and Associated Fit Statistics

Model Details DIC pD

1 Spatial Only (UH) 1,635.964 6.313
2 Spatial Only (UH 1 CH) 1,698.169 37.405
3 Spatial (UH 1 CH) 1 Temporal Trend 1,700.178 38.402
4 Spatial (UH 1 CH) 1 Temporal (UH) 1,744.839 59.443
5 Spatial (UH 1 CH) 1 Temporal (CH) 1,727.136 51.888
6 Spatial (UH 1 CH) 1 Temporal (UH 1 CH) 1,710.549 43.597
7 Spatial (UH) 1 Temporal (CH) 1 ST 1,646.630 11.646
8 Spatial (UH 1 CH) 1 Temporal (CH) 1 ST 1,708.228 42.436
Note. DIC 5 deviance information criterion; pD 5 effective number of parameters; ST 5

spatial–temporal. Spatial: UH 5 uncorrelated heterogeneity or identically independent dis-
tributed (IID); CH 5 standard Besag, York, and Mollié (BYM) model (Besag et al., 1991).
Temporal: UH 5 uncorrelated heterogeneity or IID; CH 5 random walk, spatial–temporal
interaction, or IID.



and Mollié (BYM) model (Besag, York, & Mollié, 1991) to assess the spatial autocor-

relation among the 36 African countries.

Group 2 includes twomodels that account for the temporal heterogeneity in the

data. First, Model 3 includes a linear time trend from 1991 to 2014 as a regression

term, whereas Model 4 assumes an uncorrelated (i.e., IID) temporal heterogeneity.

Next, Model 5 includes a random-walk correlated temporal correlation. The last

step in the progression of Group 2models isModel 6, which includes the convoluted

spatial and temporal autocorrelations.

The demonstration concludes with Models 7 and 8 in Group 3, both of which

explore possible spatial–temporal interactions.

Furthermore, to evaluate the regional effects, the spatial–temporal model in

Equation 3 is extended to include the five African regions:

log hitð Þ 5 b0 1 b1UEMit 1 b2Regionit 1 Si 1 Tt 1 STit : (3)

Therefore, eight additional spatial–temporal models are included, yielding 16 fit-

ted spatial–temporal models.

We used goodness-of-fitmeasures to compare howwell thesemodelsfit the data.

The most commonly used goodness-of-fit measures in Bayesian modeling include

the deviance information criterion (DIC) and the effective number of parameters

(pD); smaller values for the DIC and pD indicate a better model fit with the data

(as detailed in Lawson et al., 2016). When fitting a series of models, a 3- to 5-point

difference in DIC is considered a significant model improvement.

Implementation of Bayesian Spatial–Temporal Modeling
Typically, spatial–temporal disease mapping and modeling are conceptually com-

plicated and computationally intensive due to the autocorrelation fromboth spatial

and temporal aspects. Traditional statistical modeling techniques were developed

principally to use spatial neighborhood information with assumed positive spatial

autocorrelation between observations. The diseasemapping approach is credited to

Clayton and Kaldor (1987), who defined the empirical Bayesian methods from Pois-

son regression with random effects based on spatial correlation. This hierarchical

modeling is a natural framework that incorporates spatial correlation in the estima-

tion of disease rates. Besag and colleagues (1991) later extended this model to a full

Bayesian framework with Markov chain Monte Carlo (MCMC). Since then, Bayesian

spatial–temporal disease mapping with MCMC has become the default and is a pop-

ular method of modeling disease prevalence, as summarized in Congdon (2010),

Lawson (2006, 2013), and Lawson and colleagues (2016).

Notwithstanding the method’s popularity, Bayesian spatial–temporal disease

mappingwithMCMC is extremely intensive computationally, and thus, very expen-

sive (D. Chen & Chen, 2017). A new alternative to this approach uses integrated nested

Laplace approximations (INLA), which is much less computationally expensive. Most



MCMC software, such as BUGS and JAGS, samples from the posterior distribution of

parameters, which results in significant computations. However, INLA accurately

approximates to the posteriormarginals in significantly less time. Although Laplace

approximations have been known in mathematical and statistical computation for

a long time, the method is now sufficiently developed for accurate statistical com-

puting (Rue,Martino, & Chopin, 2009). Because INLA does not rely on sampling, this

approach is often much faster than MCMC in BUGS or JAGS, making INLA highly

suitable for large, high-dimensional computation in complex spatial and spatio-

temporal modeling. For our analyses, INLA was implemented in the R package

“INLA” (R-INLA), which can be downloaded fromhttp://www.r-inla.org. (Thewebsite

also provides extensive examples and documentation.)

Application to HIV Data

Data
We extracted time-series data from 1991 to 2014 from theWorld Development Indica-

tors collated by theWorld Bank (2016) for all countries in the African continent (Fig-

ure 1). Although HIV risk on the continent dates back to at least the late 1970s, HIV

data prior to 1991 are not available for many African countries; therefore, the pres-

ent study limited analyses to data collected in 1991 or later.We also excluded coun-

tries with large amounts of missing data and countries that are not contiguous.

Because the spatial aspect of the analyses assesses the influence of neighboring

countries, nations that did not share a boundary with at least one other country

were excluded from the analyses, which led to 36 countries as shown in Table 2.

In Table 2, we grouped the 36 African countries into five regions (i.e., Northern,

Southern, Eastern, Western, and Central Africa) to investigate regional differences.

TheWorld Development Indicators database contains nearly 1,500 indicators across

several development domains for data collected frommore than 200 countries start-

ing in the 1960s (World Bank, 2016). The United Nations Educational, Scientific,

and Cultural Organization (UNESCO) Institute for Statistics works with individual

countries to compile the indicators. We extracted the HIV prevalence for all 15- to

24-year-old males and females. To obtain the HIV incidence, we merged these data

with world population data to calculate the associated HIV incidence (yit) and the ex-

pected incidence (Eit) for use in Equations 1 and 4.

As acknowledged earlier, HIV can be related to many risk factors. Epidemiolog-

ically, HIV risk includes factors such as the number of immigrants and in-country

migrants, number of men who have sex with men, rates of prostitution, rates of il-

legal drug use/drug trafficking, rates of condom use, amount of government ex-

penditures for HIV prevention and treatment, education background, and socio-

economic and employment status, among others. The World Development Indicators

database (World Bank, 2016) includes an extensive list of risk covariates that could



be used tomodel the predictability of these risk factors to HIV prevalence; however,

most of the covariates have a significant amount of missing data (> 80%). For dem-

onstration purposes and based on the reviewed literature, we selected the unem-

ployment rate as a possible risk covariate.

Preliminary Data Analysis
As part of our preliminary data analysis procedures to explore the spatial–temporal

structure, we analyzed the temporal trend for HIV incidence for all African coun-

tries included in our study. Although many of the results had high probability val-

ues (p > .05), we chose to explain the results to help readers understand how the pa-

rameters could be interpreted. As seen in Figure 2, we modeled the log-transformed

HIV incidence from 1991 through 2014 for the 36 countries in our sample. We

found that 12 countries had positive trends and 24 countries had negative trends,
Figure 1. Map of the African continent. Countries shaded with hash marks were excluded from analyses
because of incomplete data.



Table 2
List of 36 African Countries and Associated Country Codes

RegionNum RegionName CountryName CountryCode RegionCode

1 Central Africa Burundi BDI 1.BDI
1 Central Africa Cameroon CMR 1.CMR
1 Central Africa Central African Republic CAF 1.CAF
1 Central Africa Chad TCD 1.TCD
1 Central Africa Equatorial Guinea GNQ 1.GNQ
1 Central Africa Gabon GAB 1.GAB
2 Eastern Africa Eritrea ERI 2.ERI
2 Eastern Africa Ethiopia ETH 2.ETH
2 Eastern Africa Rwanda RWA 2.RWA
2 Eastern Africa Somalia SOM 2.SOM
2 Eastern Africa Sudan SDN 2.SDN
2 Eastern Africa Uganda UGA 2.UGA
3 Northern Africa Algeria DZA 3.DZA
3 Northern Africa Mauritania MRT 3.MRT
3 Northern Africa Morocco MAR 3.MAR
3 Northern Africa Tunisia TUN 3.TUN
4 Southern Africa Angola AGO 4.AGO
4 Southern Africa Botswana BWA 4.BWA
4 Southern Africa Lesotho LSO 4.LSO
4 Southern Africa Malawi MWI 4.MWI
4 Southern Africa Namibia NAM 4.NAM
4 Southern Africa South Africa ZAF 4.ZAF
4 Southern Africa Zambia ZMB 4.ZMB
4 Southern Africa Zimbabwe ZWE 4.ZWE
5 Western Africa Benin BEN 5.BEN
5 Western Africa Burkina Faso BFA 5.BFA
5 Western Africa Ghana GHA 5.GHA
5 Western Africa Guinea GIN 5.GIN
5 Western Africa Guinea-Bissau GNB 5.GNB
5 Western Africa Liberia LBR 5.LBR
5 Western Africa Mali MLI 5.MLI
5 Western Africa Niger NER 5.NER
5 Western Africa Nigeria NGA 5.NGA
5 Western Africa Senegal SEN 5.SEN
5 Western Africa Sierra Leone SLE 5.SLE
5 Western Africa Togo TGO 5.TGO
Note. These 36 countries are grouped into five regions (RegionNum) under the region names
(RegionName). For ease of representation in Figures 2 and 3, we created the RegionCode ab-
breviation that combines the RegionNum and the CountryCode.
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but due to large variations, none of these temporal trends were statistically signifi-

cant. The average slope was 0.0086 (p 5 0.46). Had this finding been significant,

it would indicate that HIV incidence increased by about 0.86% per year, on average,

from 1991 to 2014.

We further examined the HIV incidence using the risk covariate of unemploy-

ment rate. As seen in Figure 3, of the 36 countries in our sample, 26 had positive

correlations and 10 had negative correlations; none of the correlations reached sta-

tistical significance. The average slope was 0.0091 (p 5 0.64). This increase in HIV

incidence was not statistically significant due to large variation. If this finding were

significant, one would back-transform the log-transformed variable and interpret

the slope as follows: For every additional 10% increase in the unemployment rate,

the HIV incidence increases by about 9.1%.

Spatial–Temporal Modeling
As a comprehensive analysis, we incorporated all the spatial–temporal data from

36 countries collected from 1991 to 2014 for a unified Bayesian spatial–temporal

model. The principle of the Bayesian spatial–temporalmodel is to use a convolution

of spatial correlated heterogeneity (CH) and uncorrelated heterogeneity (UH) to

model the HIV incidence within a fixed spatial (i.e., African countries) and temporal

period (i.e., years) along with the spatial–temporal interactions. We fitted the first

eight of 16models without regional effect and the second eightmodels with regional

effects. Testing of the regional effect was necessary to account for the fact that the

Eastern and Southern regions had disproportionally high prevalence compared to

the other regions.We found that the regional effects were not statistically significant,

and therefore, Table 1 reports results for only the models without regional effects.

As seen in Table 1, a series of spatial–temporal models were fitted with the

R-INLA package. Model selection was based on the DIC and pD values, where smaller

DIC and pD values indicate a better model fit to the data. The smallest of all DIC

and pD values produced Model 1 (see Table 1), but this model assumes that no spa-

tial and temporal correlation exists; therefore, this model is overly simplified and

unrealistic. We selected Model 7 as the most appropriate model for these data,

for which HIV risks are spatially uncorrelated among 36 countries but temporally

correlated over the 24-year period (1991–2014) with country and time interaction.

In Model 7, the estimated b̂0 5 23:293 with a 95% credible interval of [23.304,

23.282] translates into a statistically significant overall HIV risk rate of 3.7% for

the African continent. The estimated b̂1 5 2:306 � 1027 with a 95% credible inter-

val [20.0004, 0.0004] means that HIV risk is not statistically significantly related to

unemployment rate.

With Model 7, we concluded that HIV risk rates lacked spatial autocorrelation

among the 36 countries. A reviewer pointed out that as an infectious disease, HIV

usually shows a pattern of transmission across geographic neighborhoods, which is
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intuitively true epidemiologically. With careful investigation, we found that this

lack of significant spatial autocorrelation was mainly due to high variations in the

HIV rates within these 36 countries. In fact, even though there are no statistically

significant spatial patterns, the HIV rates as depicted in Figures 4 and 6 show some

signs of spatial trends.

Themap in Figure 4 illustrates the estimated overall pattern in the spatial random-

residual effects showing spatial autocorrelation (indicated by Si in Equation 3). The

map suggests that over time, all five regions—Eastern, Central, Northern, Southern,

and Western Africa—have had a mix of high and low HIV rates, which is indicated

by the random effects (Si) and fixed effects (b0 1 b1UEMit) in Equation 3. In some cir-

cumstances, researchers may find global and continent-wide snapshots useful; how-

ever, we caution against sole reliance on maps that offer a cross-sectional snapshot

of predicted prevalence (which is an aggregation of the temporal data) because

such maps do not fully account for the longitudinal nuances of the prevalence. In

the present study, although Figure 4 offers useful information about how each of

thefive regions has had countries with high prevalence, themap alsomasks the his-
Figure 4. Spatial random-residual effects showing spatial autocorrelation as indicated by Si (i 5 the spatial
effects from the 36 countries) in Equation 3. In the legend, spatial effects are displayed in eight categories
from the lowest (0) to the highest (0.14) residuals; the second number in parentheses signifies the number
of countries in that category.



torical reality that some regions (e.g., Eastern and Southern Africa) have had dispro-

portionally high rates. Figure 5 has a similar drawback because it depicts only the

overall temporal pattern of the HIV risk rates as indicated by Tt in Equation 3; this

suggests that the African continent as a whole experienced uneven risk ofHIV infec-

tion over the study period without offering information about differences across

countries or regions. Therefore, at the very least, the interpretationof spatial-only pat-

terns (Figure 4) should go hand-in-hand with interpretation of temporal-only trends

(Figure 5).

For a comprehensive graphical representation of space–time patterns, we en-

courage researchers to opt for space–time interaction maps such as those featured

in Figure 6 because this type of map is more nuanced and superior to either spatial-

only (Figure 4) or temporal-only (Figure 5) illustrations. As shown in Figure 6, the

interaction of spatial–temporal factors during the 1991–2014 period shows the pres-

ence of convoluted spatial and temporal autocorrelation as indicated by STit in

Equation 3. In addition, Figure 6 shows subtle region-wide trends. For instance,

in 1991, 1996, 2000, 2001, and 2011, the Southern Africa region reported compar-

atively lower HIV prevalence than the other four regions.

Discussion
In this article, we introduced themethod of Bayesian spatial–temporal mapping us-

ing R-INLA. A series of Bayesian spatial–temporal HIV risk models and the predic-

tive role of the unemployment rate were presented to shed light on the trajectories

of HIV risk among African adolescents and young adults. We processed country-

level data from the World Bank to obtain the HIV incidence for youth (ages 15–
Figure 5. Temporal random-residual effects showing temporal autocorrelation as indicated by Tt in Equa-
tion 3.



24 years) for 1991–2014. Using a hierarchical approach to model building, we used

data from 36 African countries to test a series of Poisson spatial–temporal models

from the Bayesian perspective, starting with the simplest model (null model). In

all, we tested 16 spatial–temporal models, which we then sorted into three groups

based on how the models accounted for spatial and temporal autocorrelations. In

addition to modeling the spatial–temporal correlations in HIV prevalence, we as-

sessed for possible links between HIV risks and unemployment rates in the 36 Afri-

can countries over the study period (1991–2014).

Results suggest that during the 24-year period starting in 1991, overall HIV risk

among the 36 countries was spatially uncorrelated but temporally correlated. Thismeans

that when viewed from a historical perspective at the country level, HIV infection

rates are geographically heterogeneous. Figure 6 illustrates that HIV prevalence

tends to be spatially dispersed over time. For example, even though HIV prevalence

is comparatively higher in specific Eastern and Southern African countries, country-

level analysis suggests that HIV prevalence is not spatially concentrated in statisti-

cally significant numbers but rather somewhat dispersed, particularly across re-

gions. The lack of evidence in the data to support spatially correlated trends at

the country level does not mean the theories of neighborhood influence and geo-

graphical bands do not apply to HIV infections and transmission. Instead, traces of

country-level spatial clustering might be temporary and dissipate over time. This

finding might also be a reflection of the unique experience of each country and each

country’s level of success in efforts to address the HIV epidemic.

Regardless of the possible reasons for the nonsignificant results, this finding

should caution researchers about the issue ofmodifiable areal unit problem (MAUP)

when interpreting spatial results. MAUP is a major problem in spatial inferential

modeling that occurs when data are aggregated and reported at a scale that biases

(i.e., overestimates or underestimates) results. For researchers interested in apply-

ing Bayesian spatial–temporal modeling in their work, the MAUP challenge has

implications for the choice of an appropriate geographical unit of analysis. It is pos-

sible that the data used in the present study contain spatially correlated HIV prev-

alence trends at the district, town, or census-tract level that are not visible at the

country level. When conducting Bayesian spatial–temporal modeling, if it is pos-

sible to analyze the data at higher and lower levels of aggregation, we recommend

conducting sensitivity tests to assess whether the results vary at different geograph-

ical scales. When results differ, researchers should be prepared to discuss the re-

search, policy, and practice implications. In addition, an emerging body of work

in the field of spatial ecology explores how Bayesian estimation can be used to ad-

dress MAUP. For insights into the Bayesian estimation approach, refer to Hui (2009).

When using Bayesian spatial–temporalmethods to research incidence, research-

ers should note a caveat related to measurement. Researchers must make theoret-

ically and conceptually driven decisions regardingwhether to calculate the incidence
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as population-based, geographic area-based, or a combination of both. As seen in

Equation 4, we used the population-based incidence, which is the most commonly

used incidence in spatial–temporal disease mapping as discussed in Lesaffre and

Lawson (2002), Lawson (2006, 2013), and Lawson and colleagues (2016). However, a

geographic area-based incidence and a combined population area-based incidence

have recently been proposed (D. Chen, 2017; X. Chen &Wang, 2017) as two novel in-

dicators to enhance research andprecisionof intervention formore effectiveHIV/AIDS

control. These newly proposed indictors could be more efficient than the existing

population-based approach of characterizing HIV epidemic by country. This alterna-

tive approach relies on extensive comparisonswith real data and computationally in-

tensive Monte Carlo simulations. We are exploring this alternative approach as our

next research direction.

Results from our analyses also suggest that the HIV risk rate in Africa overall is

estimated at 3.7%, which is statistically significant, and that HIV risk is temporally

correlated over the 24-year study period (1991–2014). The extent of correlation be-

tween consecutive years of HIV prevalence suggests that turning the tide on HIV in-

fections and prevalence takes substantial time. The results presented in Figure 2

show across-the-board volatility in HIV prevalence. Each country represented in

the trellis plot (Figure 2) experienced significant declines in their HIV incidence over

the 24-year period. These decreases in incidencemean that efforts to uncover spatial

patterns would be more robust if viewed from a temporal perspective; such combi-

nations address the fact that some spatial patterns might be nonstationary across

time. As best practice, if time data are available, researchers should consider time

trends to reveal nuanced interactions between time and space that could be missed

if studies do not attend to the mix of subtle and conspicuous variabilities in out-

comes across time. From a policy standpoint, the temporal dynamism in the spatial

patterns of HIV prevalence suggests that policies and strategies targeted at reducing

HIV prevalence or addressing complex social problems could be more effective if

designed to account for both short- and long-term changes. For researchers who test

adaptive interventions, methodological applications that allow for temporal track-

ing of outcomesmight be useful for developing SMART (sequential, multiple assign-

ment, randomized trials) design to build adaptive interventions. (For more on

SMART design, see Lei, Nahum-Shani, Lynch, Oslin, & Murphy, 2012.)

Advantages of Bayesian Spatial–Temporal Modeling
One of the superior capabilities of Bayesian spatial–temporal modeling is the ability

to glean insights into geographical and time patterns without aggregating the data

over time or across geographical areas. The ease and flexibility with which research-

ers can incorporate information from neighboring spatial units (“neighborhood ef-

fect”) and from prior information (“time effect”) means the Bayesian method is more

realistic because it alignswithhow social phenomenaandoutcomes evolve in the real



world. In many cases, people’s attitudes, behaviors, and dispositions are, at least in

part, a function of their prior and contextual experiences (Meinlschmidt, 2005). Thus,

the ability of social and health researchers to draw on spatial priors makes the Bayes-

ian approach more intuitive, credible, and accurate (Wioletta, 2015). Wioletta ex-

plained that the accuracy of the Bayesian analysis is a result of not being based on as-

ymptotic approximation. The implication for research using the Bayesian approach is

that even with limited and incomplete data, Bayesian-based spatial–temporal analy-

sis can produce accurate, reliable inferences to support decisions regarding policies,

interventions, and funding priorities.

Furthermore, the Bayesian spatial–temporal framework ismore comprehensive,

and thus superior, to spatial-only and temporal-only frameworks. The Bayesian ap-

proach is robust to outliers and missing data, particularly in the outcome variable.

In large part, temporal data can make up for missingness in spatial data, and vice

versa. Thus, considerably more information can be drawn concurrently from spa-

tial priors and contexts (neighbors) to make robust predictions. However, some ex-

ceptions are worth noting. In the present study, some countries were excluded from

the analyses due to lack of shared boundaries (noncontiguous), and others were ex-

cluded because of incomplete data. When incomplete cases are overly high, it may

be more prudent to exclude variables, although doing so may come at a cost to the

fit between the conceptual and statisticalmodels. In ourHIV prevalence demonstra-

tion, the countries excluded from analysis because of incomplete data fell in two

groups: those that did not have a data tracking system or those for which theWorld

Bank could not guarantee the integrity of the data provided. Regardless, the loss of

large amounts of data is a reason for concern.

Conclusion
Social phenomena are rarely stationary in space or time. As such, analytic frame-

works capable of modeling these space–time variabilities should be used when so-

cial work theories and conceptual frameworks suggest the presence of such vari-

abilities. Compared with the frequentist paradigm, the Bayesian spatial–temporal

analytic framework is a robust and intuitive framework for space–time data (Carlin

& Louis, 2009). Although this Bayesian framework is not entirely new to social sci-

ence research and practice, the use of Bayesian analysis is uncommon in social work

research. However, if researchers in social work and related fields are provided ad-

equate orientation to this analytic approach, the use of Bayesian analysis could gain

momentum—particularly in social work—and contribute to the robust analysis of

space–time nuances for most outcomes of interest to social workers. As a first step

toward achieving this goal, the present study used data on HIV prevalence and un-

employment among youth in Africa to demonstrate how spatial–temporal model-

ing can be conducted using R-INLA. (Interested readers may request the demon-

stration data and R program from the authors.) With the recent computational



advances and availability of geographically referenced longitudinal data, research-

ers seeking a deeper understanding of spatial–temporal patterns in their datawould

benefit from the intuitive, concrete, and robust advantages offered by Bayesian

spatial–temporal modeling.
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