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A B S T R AC T Objective: This article is an exposition of the joint-modeling approach
to testing intervention effects through the harmonization of longitudinal and time-
to-event data. We demonstrate the advantages of the joint-modeling approach over

the classical approach of separately analyzing these types of outcome data.Method:
Weused a subset of 150 participants from the Illinois Birth through Three Title IV-E
Waiver intervention study, which collected longitudinal Devereux Early Childhood
Assessment for Infants and Toddlers (DECA-I/T) scores and time-to-permanence data
for up to 3 years. We ran and contrasted three competing models: Cox proportional
hazard, linearmixed-effects, and jointmodeling.Results: If analyzed separately, the
DECA-I/T scores are highly nonsignificantly related to time to permanence (p 5 :929).
However, when analyzed jointly, the significance level drops 88 percentage points,
from .929 to .105. Because of its efficiency in addressing information loss when lon-
gitudinal and survival data are incorporated together, the joint model properly ac-
counts for outcome-dependent missingness. Conclusion: This article highlights the
utility of joint modeling in randomized longitudinal intervention studies by demon-
strating its ability to preserve information from both longitudinal and time-to-event
data, produce unbiased estimates, and retain higher statistical power than the tradi-
tional approach.
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n social intervention studies, we often collect different types of outcome data from

each participant to address complex time-related research questions. A typical case

in point is when researchers wish to assess the trajectories of time-varying phe-

nomena (e.g., children’s psychosocial functioning over multiple periods) and their



connections to the time at which an event of particular interest occurred (e.g., re-

unification, or drop out from the study). Traditionally, these outcome data are often

analyzed separately: Mixed-effects approaches are applied to the longitudinal out-

come data to estimate the growth trends, and Cox-type survival analyses are applied

independently to the time-to-event data to determine the hazard ratios (Brombin

et al., 2016; Roustaei et al., 2018).

However, this classical approach of separate analyses has three potential prob-

lems. First, independent analyses fail to model the real-world situation as they un-

realistically assume that participants’ well-being trajectories necessarily evolve in

isolation from their eventual dropout.Many such outcomeswork in tandem in the real

world and thus should be examined simultaneously. Second, isolated data analysis

for a single outcome risks information loss from the other outcome data, resulting in

biased and inefficient estimation of intervention effectiveness (Ibrahim et al., 2010).

Third, analysis of longitudinal outcomes handles missing values inaccurately if the

analysis fails to incorporate available time-to-event data (Brombin et al., 2016). Lon-

gitudinal studies in child welfare research tend to have nonignorable missing values

due to participants needing to exit a program after reaching a certain threshold,

milestone, or achieving a desired outcome such as graduation from school or reuni-

fication with a family. In other words, manymissing valuesmay be due to dropouts

or exits and are not missing at random, which is typically assumed in most longitu-

dinal data analysis with multiple imputations. Child welfare research, particularly

studies that track child outcomes longitudinally until children reunify with their

birth parents, is fraught with such dropout scenarios, where many missing values

are outcome dependent. An optimal remedy to the three challenges is to simulta-

neously model these outcome data using a joint-modeling approach, which may

produce a better estimation of intervention effectiveness.

Beginning in the early 1990s, HIV/AIDS clinical trials spurred the application of

joint models in applied research because of the urgency to simultaneously under-

stand the progression of CD4 lymphocyte count and its effect on patients’ survival

(De Gruttola & Tu, 1994; Faucett & Thomas, 1996; Pawitan & Self, 1993). Now, clin-

ical trials and observational studies widely use joint models. The increased usage is

mainly due to advancements in statistical modeling techniques, the development

of open-source software (Guo & Carlin, 2004), and the fact that joint models provide

“more powerful, accurate, efficient, and robust estimations” (Roustaei et al., 2018,

p. 1) compared to the classical approach of separate Cox and mixed-effect modeling

(Ibrahim et al., 2010; Li, 2016;Wu et al., 2012). Notwithstanding their increased use

in applied research, joint-modelingmethods are rarely used by social work interven-

tion researchers even though these researchers have a dual interest in understand-

ing long-term changes in child well-being and how such changes affect permanency

outcomes such as reunification with parents. More broadly, the renewed emphasis

on the scientific principle of phase-based evidence-building in child welfare (Chen



et al., 2020) could benefit from advances in data pooling and harmonization meth-

odologies that maximize available data.

This article aims to stimulate interest in joint modeling and increase its appli-

cation by providing an overview of the approach and its merits and demonstrating

how to use joint modeling to analyze data from intervention studies when longi-

tudinal and time-to-event data are available. To demonstrate the application in real-

world social intervention settings, we analyzed data from an intervention study in

which longitudinal social and emotional functioning data and time-to-permanence

data were collected from child-welfare-involved families that were randomly as-

signed to receive evidence-based parenting programs or services as usual.
Analyzing Different Types of Outcome Data
in Child Welfare Intervention Studies

Longitudinal designs are commonly used in child welfare intervention studies that

aim to achieve timely permanence and improve children’s social and emotional

well-being. Although foster care is intended to be temporary, many children experi-

ence long stays in foster care. Because children in foster care have experienced mul-

tiple forms of trauma or maltreatment, they are at risk for behavioral problems,

which can lead to placement changes and increase the time children spend in foster

care (Lawder et al., 1986;Merritt & Snyder, 2015; Newton et al., 2000; Petrenko et al.,

2012). Instead of relying on a snapshot of children’s well-being at a single point in

time, researchers can use longitudinal data to test whether an intervention or other

predictors are associated with subsequent changes in well-being. To improve child

outcomes, childwelfare agencies often provide parent training interventions, which

can reduce time to family reunification (Akin &McDonald, 2018; Brook et al., 2012).

The primary goals of child welfare services are to promote safety, permanency,

andwell-being for children and families. Permanence is typicallymeasured by track-

ing whether or not a child returned home or entered another type of permanent ar-

rangement with other caregivers. Length of stay is typically measured by tracking

the number of days or months a child spends in foster care until the last day of ob-

servation or until permanence is achieved—whichever occurs first. Well-being out-

comes can bemeasured inmanyways and atmultiple time points depending on the

study’s research question, age of the sample, type of respondent (e.g., parent, teacher,

child), and resources available for collecting data. Safety is continuously monitored

during a child’s stay in foster care as the assigned caseworker conducts home visits

and assessments. Safety can also bemeasured by tracking re-reports ofmaltreatment.

Data on these primary outcomes can be collected once (e.g., reunification) ormultiple

times across time (e.g., well-being). The joint-modeling approach allows researchers

to simultaneously test the longitudinal effect of an intervention on child well-being

and the influence of well-being on reunification with their parents.



The current study focuses on permanence, time to permanence (length of stay), and

well-being as targeted outcomes. Well-being was tracked using the Devereux Early

Childhood Assessment for Infants and Toddlers (DECA-I/T), a standardized assessment

that includes the following subscales: initiative, attachment/relationships, and self-

regulation. The tool assesses the child’s ability to use independent thought and actions,

the relationship between the child and significant adults, and the ability to manage

emotions. The DECA-I/T was among several measures used during a developmental

screening process to assess children’s level of need and recommended service. It was ad-

ministered to children and caregivers at baseline and every 6months to track children’s

social and emotional risks from the ages of 4 weeks to 35months. A standardized score

for each of the three scales was recorded at each screening. The longitudinal data from

theDECA-I/T and time-to-eventdata (permanency status and lengthof stay) canbeused

together in the joint-modeling approach to simultaneously estimate the impact of parent-

ing interventions on timely permanence and children’s social and emotional functioning.

Joint Modeling With Real-World Data
Joint modeling links time-dependent longitudinal observations (i.e., DECA-I/T scores)

to time-to-event (i.e., time-to-permanence) data to simultaneously assess intervention

effects on children’s well-being trajectories and their likelihood of reaching perma-

nence. In this setting, joint modeling is motivated by our goal to produce a more

efficient estimate than the separatemodeling of time to permanence and DECA-I/T tra-

jectories, given that the longitudinal observations are time-dependent and measured

with error because dropouts are missing not at random. A second aim is to reduce bi-

ases in estimating both permanence and DECA-I/T trajectories. This demonstration

uses Rizopoulos’ (2010, 2012) notations and his R package JM towalk readers through

some of the mathematical proofs of joint modeling.

In the following sections, we illustrate the use of jointmodeling using real-world

data. First, we describe the data source and nature of the variables used for the dem-

onstration. Next, we walk readers through three competing modeling approaches:

(a) separate analysis of longitudinal data, (b) separate analysis of survival data, and

(c) joint modeling of longitudinal and survival data. We describe the data format

suitable for the analysis and the model specification using statistical notations in

each demonstration. We also provide a how-to example in the R statistical comput-

ing environment. Finally, we present and juxtapose results of the three models to

highlight the superiority of the joint model over the classical longitudinal and sur-

vival models in dealing with outcome-dependent missingness and retention of lon-

gitudinal and survival data.

Intervention Description
Demonstration data are from the Illinois Birth through Three (IB3) Title IV-E

Waiver demonstration. The IB3 project was a 5-year study that supported the adap-

tation of two evidence-supported, trauma-informed parenting programs for nearly



2,000 infants, toddlers, and preschoolers who were taken into the legal custody of

the Illinois Department of Children and Family Services between July 1, 2013, and

June 30, 2017. The waiver targeted children ages 3 years and younger because re-

search confirms that the early years of a child’s life are critical for healthy social

and emotional development (Cooper et al., 2009; Lo et al., 2017; MacMillan et al.,

2001). Two interventions—Child–Parent Psychotherapy and the Nurturing Parenting

Program—were implemented to promote consistent and nurturing parenting, healthy

parent–child attachments, and timely family unification or alternative permanency

options.

The DECA-I/T was among several measures used in an integrated assessment pro-

cess to determinewhich interventionwas appropriate for a family based on the level

of developmental risk. Children with a moderate risk level were assigned to either

the parent or caregiver versions of theNurturing Parenting Program,whichwas con-

ducted in a group setting over 16weeks. Childrenwithmultiple trauma experiences

and who were screened as high risk were assigned to Child–Parent Psychotherapy, a

52-week dyadic program for children and their birth parents.

A total of 1,889 children were enrolled in IB3, with 894 assigned to receive the

Nurturing Parenting Program or Child–Parent Psychotherapy and 995 assigned to

receive services as usual. For the present illustration, we only focus on one DECA-I/T

subscale: attachment scores. We selected children from the intervention group who

had up to three attachment scores from the DECA-I/T recorded, which resulted in a

sample of 150 children. An increase in DECA-I/T attachment scores over time indi-

cates an improvement in children’s ability to form and maintain positive relation-

ships with other children and significant adults.

Separate Modeling of Longitudinal Data
We demonstrate longitudinal analyses using R and long-format data. To help read-

ers understand how the longitudinal data should be formatted if the original data

are wide-format, we present a snapshot of our long-format longitudinal data in Ta-

ble 1. Wide-format data record each individual’s repeated measures in columns in

the data set. In contrast, long-format data record the repeated measures in multiple

rows corresponding to the number of time points observed. For demonstration

purposes, we show data for 5 of the 150 participants in our analytic sample. This

data set is named d2long in the R code provided.

As seen in Table 1, child No. 1 was assessed 75 days after the case opening and

had a DECA-I/T score of 35. The same child was assessed again 284 days after case

opening and scored 53 on the DECA-I/T. That child entered foster care at age 0.699,

which is equivalent to approximately 8 months (i.e., 12months� 0.699). Child No. 2

was assessed once, child No. 3 and child No. 4 were assessed twice, and child No. 5

was assessed three times. Line graphs of the total 294 DECA-I/T measurements for all

150 participants are shown in Figure 1.



To model the DECA-I/T trajectories, we assumed that for an intervention study

with n participants, the observed longitudinal data for participant i at time t are

denoted by yi(t) (i.e., i 5 1, :::n, and t 5 1, :::Ti). These observed longitudinal data

are usually modeled as yiðtÞ 5 miðtÞ 1 ϵiðtÞ, where mi(t) presents the true mean at

time t for participant i, and ϵi(t) represents the random error, which is assumed

to be N(0, r2). The true mean, mi(t), is specified in a linear mixed-effects model as

x0iðtÞb 1 z0iðtÞbi in the following equation:

yi tð Þ 5 mi tð Þ 1 ϵi tð Þ 5 x0i tð Þb 1 z0i tð Þbi 1 ϵi tð Þ: (1)

In Equation 1, x0iðtÞb is the fixed-effects component linked to the unknown fixed-

effects parameter, b (e.g., intervention effectiveness), and z0iðtÞbi is the between-

participant random-effects component with a parameter of bi. This mixed-effects

model is well known to social work researchers who model longitudinal data. Such

models can be implemented in several R packages, primarily nlme (Pinheiro et al.,

2009) and lme4 (Bates & Maechler, 2010). Extensive literature exists on model spec-

ifications and parameter estimation using the maximum likelihood estimation

(Guo & Carlin, 2004; Henderson et al., 2000; Hsieh et al., 2006). The syntax used to

compute the linear mixed-effects model in the R statistical programming language

and computing environment is as follows:

R> DECA.LME 5 lme(DECA ~ Days 1 Age, random 5 ~ Days FID, data 5 d2long)

R> summary(DECA.LME)
Table 1
A Snapshot of DECA-I/T Longitudinal Data for Five Participants in the Long Format

ID Days Age (Years) DECA-I/T Score

1 75 0.699 35
1 284 0.699 53
2 21 2.063 33
3 21 1.584 35
3 391 1.584 37
4 21 0.109 37
4 427 0.109 28
5 271 0.268 47
5 433 0.268 54
5 699 0.268 49
Note. DECA-I/T 5 Devereux Early Childhood Assessment for Infants and
Toddlers scores; ID 5 child identification number; days 5 number of days
from case opening to the day a particular DECA-I/T score was measured; age5
child’s age at entry into foster care.



Separate Modeling of Time-to-Event Data
The data in wide format for the separate survival analysis can be seen in Table 2. In

our R program how-to guide, we named the survival dataset d2surv as seen in the

R code for the separate survival model.

Tomodel the time-to-event data (i.e., permanency data), let Ti denote the observed

time (i.e., “time in care” in Table 2) for the ith participant; di (i.e., “outcome” in
Figure 1. Longitudinal Trajectory Plots of Individual DECA-I/T Scores Observed at Different Time Points
Since Case Opening

Note. DECA-I/T 5 Devereux Early Childhood Assessment for Infants and Toddlers.



Table 2) is the permanency indicator that takes the value 1 if permanence is ob-

served at this time and 0 if otherwise. Therefore, the observed time-to-event data

consist of the pairs fðTi, diÞ, i 5 1, :::ng. The typical statistical approach to model-

ing time-to-event data is survival analysis with Cox proportional hazards regres-

sion (Cox, 1972), where the hazard function [h(t)] is modeled as two parts. The first

part focuses on the underlying baseline hazard function [h0(t)] to describe how the

risk of event (i.e., permanence) per time unit changes over time at baseline levels of

the covariates. The second part of the effect parameters, c, describes how the haz-

ard varies in response to explanatory covariates, w, (i.e., intervention effect, DECA

scores, etc.) as follows:

h tjwð Þ 5 h0 tð Þ exp w 0gð Þ: (2)

This model can be implemented in R with the survival package (Therneau & Lum-

ley, 2009). The R code used for this separate Cox proportional hazards regression

is as follows:

R> IB3.Cox5coxph(Surv(TimeInCare, Outcome)~Age, x 5 TRUE, data 5 d2surv)

R> summary(IB3.Cox)
Joint (Simultaneous) Modeling of Longitudinal and Time-to-Event Data
To quantify the effect of longitudinal DECA-I/T data (i.e., attachment score) on the

risk for permanency, the joint modeling has to associate the longitudinal outcome,

yi(t), for participant i at time t in Equation 1 with the time-to-event data (Ti, di) used

to model the hazard ratio in Equation 2. The standard approach to achieve this

joint modeling is to extend the hazard risk model in Equation 2 to incorporate
Table 2
A Snapshot of Survival Data for Four Participants in the Wide Format

ID Time in Care (Months) Outcome Age (Years)

1 648 0 0.699
2 587 1 2.063
3 465 1 1.584
4 465 0 0.109
Note. ID 5 child identification number; time in care 5 the time in foster
care; outcome5 indicates whether the child achieved permanence (15 yes,
0 5 no); age 5 child’s age at the time of entry into foster care.



h tjm tð Þ,wð Þ 5 h0 tð Þ exp w 0g 1 ami tð Þð Þ: (3)

The extra parameter a in Equation 3 quantifies the effect of the underlying longi-

tudinal DECA-I/T outcome on the risk of permanence for every additional unit in-

crease in the DECA-I/T score. In the R program output, the a parameter is labeled

Assoct.

Joint-modeling parameter estimation is carried out using a semiparametric max-

imum likelihood estimation method (Henderson et al., 2000; Hsieh et al., 2006;

Wulfsohn & Tsiatis, 1997). Of the several R packages for joint modeling, we recom-

mend Rizopoulos’ (2010, 2012) JM package. In this demonstration, we used the JM

package and the following syntax to run the joint model for the DECA-I/T longitudi-

nal data and the permanency survival data:

R> fit.JM.IB3 5 jointModel(DECA.LME, IB3.Cox,
timeVar 5 “Days”, method 5 “piecewise-PH-GH”)

R> summary(fit.JM.IB3)

This joint-model R code should be run after executing the R codes for the linear

mixed-effects and Cox proportional hazards models.

the history of longitudinal data from the time of enrollment to the time the child
achieves permanency, which is denoted as mðtÞ 5 fmðuÞ, 0  ≤ u < tg as suggested 
by Therneau and Grambsch (2000). The full joint model is specified as
Results of Separate Linear Mixed-Effects Model
To analyze the longitudinal DECA-I/T data, we graphically investigated the relation-

ship between the DECA-I/T scores and the number of days from the case opening.

As seen in Figure 1, these DECA-I/T scores behave in a complicated fashion: Some

children have increasing DECA-I/T scores, some have decreasing scores, and others

have more complicated trends. However, a linear trend seemed reasonable, so we

used the linear mixed-effects model in Equation 1 implemented in R package nlme

to investigate the longitudinal DECA-I/T trend along with the number of days from

case opening. Specifically, Equation 1 can be specified as a random-intercept and

random-slope model as

DECAi tð Þ 5 b0 1 b0i 1 Di tð Þb1 1 Di tð Þb1i 1 Ai tð Þb2 1 ei tð Þ, (4)

where Di(t) indicates the number of days from case opening for child i 5 1, ::: 150;

Ai(t) is the age of the ith child; b0, b1, and b1 are the parameters associated with the

fixed-effects; and b0i and b1i are the random effects associated with the intercept

and slope.



We present the results in Table 3. With nlme, we estimated the parameters

as b̂0 5 46:191 (SE 5 1:139; p < :001), b̂1 5 0:005 (SE 5 0:002; p < :048), and

b̂2 5 20:744 (SE 5 0:620; p < :232). In this DECA-I/T model, notice that the slope

parameter for the number of days in foster care is estimated at b̂1 5 0:005.

Note that this mixed-effects model treated the dropouts from the longitudinal

DECA-I/T as missing at random, which is unreasonable because the children in this

study who dropped out had achieved permanence and reunited with their families/

relatives. Those missing DECA-I/T scores are not missing at random, and therefore

treating them as missing at random in this mixed-effects longitudinal model pro-

duces biased estimates.
Results of Separate Cox Proportional Hazards Regression
Among the 150 children in this study’s demonstration sample, 47% (n 5 67)

achieved permanence.We analyzed the time-to-permanency data using Cox propor-

tional hazard regression in Equation 2 to identify related covariates, including age
Table 3
Differences in Results of the Separate and Joint Models

Summaries of Separate Longitudinal
and Survival Models

Model 3:

Summary of Joint ModelModel 1:

Survival Component
Separate Cox Proportional Hazards

Regression Model

Coefficient SE p-Value Coefficient SE p-Value

Age 0.406 0.109 < .001 0.455 0.115 < .001
DECA-I/T 0.001 1.001 .929 20.043 0.027 .105
Model 2:
Longitudinal ComponentSeparate Linear Mixed-Effects Model

Coefficient SE p-value Coefficient SE p-value

Intercept 46.191 1.139 < .001 46.549 1.163 < .001
Days 0.005 0.002 .048 0.003 0.003 .267
Age (years) 20.744 0.620 .232 20.845 0.639 .186
Note. DECA-I/T5 Devereux Early Childhood Assessment for Infants and Toddlers scores; days5
number of days from case opening to the day a particular DECA-I/T score was measured; age5
child’s age at the time of entry into foster care.



and the last observed DECA-I/T scores.We found a statistically significant coefficient

for age (betaage 5 0:406, SE 5 0:109, p < :001) but not for DECA-I/T score (betaDECA 5

0:001, SE 5 0:012, p 5 :929).

When we used logistic regression to analyze further whether DECA-I/T was pre-

dictive of the probability of children achieving permanence, we found no statistically

significant relationship between DECA-I/T and permanence status (beta5 0:019,

SE 5 0:017, p 5 :246). Notice that in both the Cox proportional hazards and logis-

tic regression models, DECA-I/T did not predict permanence.
Results of Joint Modeling of Longitudinal DECA-I/T Scores
and Time to Permanence

Jointly analyzing the longitudinal DECA-I/T scores and time-to-permanence data in-

volved integrating themodels in Equations 3 and 4.We intended to test the hypoth-

esis that the longitudinal DECA-I/T scores are associated with time to permanence,

adjusting all other parameters from the longitudinal component and time-to-event

component in the joint modeling.

With joint modeling, the estimated parameters from the longitudinal compo-

nent are b̂0Intercept5 46:549 (SE5 1:163, p < :001), b̂1Days5 0:0029 (SE 5 0:003,

p 5 :267), and b̂2Age 5 20:845 (SE 5 0:639, p 5 :186). Notice that the slope param-

eter, b1, for the days in foster care is no longer significant in this joint model. This

result is more reflective of the generally unchanging trends and high variability ob-

served in Figure 1. In other words, the significant p-value in the separate linear

mixed-effectsmodel didnot account for the bias introduced as a result of not treating

the missing data correctly. The change from a marginally significant p-value of .048

in the separate linear mixed-effects model to a nonsignificant p-value of .267 in the

longitudinal component of the joint model, as shown in Table 3, is indicative of the

inherent bias in the classical separatemodeling approach—a trend that has been ob-

served in other joint-modeling simulation studies (Xu et al., 2020).

Failure to account for such biases increases the risk of false positives (i.e., Type I

error). In our demonstration, the joint-modeling approach correctly incorporated

into the missing DECA-I/T scores the time-to-permanence information from chil-

dren who dropped out of the study when they achieved permanence. Our joint-

model framework essentially leverages information from the survival component

to correct the biases driven by the outcome-dependent DECA-I/T missing values.

As shown in Table 3, when the separate mixed-effects longitudinal model incor-

rectly assumed that the missing values were missing at random, without accounting

for the missingness due to reunification, the model overestimated the significance of

the longitudinal DECA-I/T trend. We examined other DECA-I/T subscales and arrived

at similar conclusions of statistically nonsignificant growth trends when we properly

corrected for the missingness driven by reunification.



For the time-to-event component of the joint model, the parameter estimate for

the age effect is still significant (betaAge 5 0:455, SE 5 0:115, p < :001). In the same

joint model, the parameter, a, representing the association between the longitudi-

nal DECA-I/T scores and time-to-permanence is estimated as â 5 20:043 (SE 5

0:027), which produces a greatly improved p-value of .053, down from .929 in

the separate Cox proportional hazards regression model. In other words, we im-

proved the significance level by more than 80% by properly accounting for the

biases introduced by the outcome-dependent missingness in the DECA-I/T score.

According to null hypothesis significance testing methods, if a study proposes a di-

rectional hypothesis based on the extant literature and therefore formulates a one-

sided test of H0: a ≤ 0 and H1: a > 0, the joint model’s p-value of .105 would become

marginally statistically significant with a p-value of .053 (i.e., .105� 2). This poten-

tial change from nonsignificant to marginally significant results is further proof

that using separate longitudinal and survival models when joint models are more

appropriate could have far-reaching implications on whether interventions are

deemed effective or not.

From Table 3, we also see that â 5 20:043, meaning the hazard rate would be

expðâÞ 5 expð20:0433Þ 5 0:958. Thatmeans, per the jointmodel, for every 1-point

improvement in the DECA-I/T attachment score, the length of stay in foster care

would decrease by 4.2% (100%–95.8%) when all other variables are held constant.

Stated differently, when DECA-I/T scores increase by 1 point, the probability of per-

manence increases by about 4.2%. Contrasted with results from the standalone

Cox proportional hazards regression model [i.e., hazard rate: (expðâÞ 5 expð0:001Þ 5
1:001)], every 1-point improvement in DECA-I/T score is associated with a 0.1%

(1:001%� 100%) increase in the lengthof stay in foster care. Again,we see that byus-

ing a joint-model framework rather than the classical separate survival model, the

magnitude, direction, and significance level of the association between DECA-I/T

and time topermanence changes considerably (i.e.,magnitude anddirection: hazard

rateCox Reg: 5 1:001 vs. hazard rateJoint Model 5 0:958; two-tailed p 2 valueCox Reg:5 :929

vs. two-tailed p 2 valueJoint Model 5 :105). As found in other joint-model simulations

(Ibrahim et al., 2010), correctly accounting for the longitudinal process in the pro-

portional hazards model produced a nearly unbiased estimate of the true association

between DECA-I/T scores and time to permanence.
Conclusions and Recommendations
In this article, we introduced the joint modeling of longitudinal data and time-to-

event data simultaneously. We used data from the IB3 Title IV-E Waiver to demon-

strate the applications and merit of the joint-modeling approach in child welfare

longitudinal intervention studies. As demonstrated, the joint-modeling approach

has several advantages over separatemodeling, both fundamentally and practically.



Fundamentally, the joint-modeling framework incorporated time-to-permanency

data into the observed longitudinal DECA-I/T measurements to mitigate the impact

of missing DECA-I/T values due to the desired dropout (i.e., children achieving per-

manence). Historically, when applying mixed-effects modeling, the dropouts in lon-

gitudinal data are treated asmissing at random, thus justifying the need for multiple

imputations. However, such an approach is flawed, and the failure to detect and ad-

dress such errors in data analysis would lead to biased estimates and, in some cases,

wrong conclusions for policymakers and practitioners. Therefore, the joint-modeling

framework is more logically consistent with study designs that dually track time-to-

event and longitudinal outcome data.

Practically, the joint-model framework has higher statistical power to detect an

effect or a relationship when one truly exists in survival models, as demonstrated

theoretically and computationally with extensive simulation studies (Brombin et al.,

2016; Rizopoulos, 2012; Roustaei et al., 2018). In our demonstration of the joint-

modeling framework’s efficiency, it is evident that the incorporation of the longi-

tudinal processes into survival modeling through the joint-modeling approach

increases the statistical power to detect the predictive role of DECA-I/T trajectories

in understanding children’s probability of reuniting with relatives and families.

Such higher statistical power has cost implications in that greater efficiency will re-

quire smaller sample sizes when researchers design intervention studies.

The present study focuses on the joint analysis of continuous, longitudinal mea-

surements and survival data. The joint analysis can be extended to multivariate

longitudinal data where multiple longitudinal outcomes are measured, as well as

categorical longitudinal data, such as binary and multinomial measurements with

survival data (Rizopoulos, 2012). These extensions would require different computa-

tions and modeling processes with advanced Bayesian computations, which we will

demonstrate in future papers.

Given the benefits of the joint-modeling framework, we recommend that when

designing clinical trials and intervention studies to understand treatment effects

on time-to-event data, researchers should incorporate longitudinal data. Not only

do joint models properly handle outcome-dependent missingness, but they also po-

tentially allow researchers to achieve higher statistical power even when sample

sizes are small. Program designers should endeavor to collect time-to-event data

so that the missing data from longitudinal measurements can be addressed and sta-

tistically modeled. We aim to foster the greater use of joint modeling in social work

research and related fields; hence, we have provided a step-by-step guide and R

codes to guide the data analysis processes. Joint modeling is in the direction of

emerging data pooling and harmonization practices, where Bayesian approaches

are commonly used to incorporate multiple data sources (Chen & Ansong, 2019;

Chen et al., 2018, 2020; Chen & Fraser, 2017). This paper contributes to this new

direction and practice.
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