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A B S T R AC T Objective: By presenting a simulation study that compares Bayesian
and classical frequentist approaches to research design, this paper describes and
demonstrates a Bayesian perspective on intervention research. Method: Using hy-

pothetical pilot-study data where an effect size of 0.2 had been observed, we de-
signed a 2-arm trial intended to compare an intervention with a control condition
(e.g., usual services). We determined the trial sample size by a power analysis with
a Type I error probability of 2.5% (1-sided) at 80% power. Following a Monte-Carlo
computational algorithm, we simulated 1million outcomes for this study and then
compared the performance of the Bayesian perspective with the performance of
the frequentist analytic perspective. Treatment effectiveness was assessed using a
frequentist t-test and an empirical Bayesian t-test. Statistical power was calculated
as the criterion for comparison of the 2 approaches to analysis. Results: In the sim-
ulations, the classical frequentist t-test yielded 80% power as designed. However,
the Bayesian approach yielded 92% power. Conclusion: Holding sample size con-
stant, a Bayesian analytic approach can improve power in intervention research.
A Bayesian approach may also permit smaller samples holding power constant. Us-
ing a Bayesian analytic perspective could reduce design demands in the develop-
mental experimentation that typifies intervention research.

K E YWORD S : intervention research, t-test, Bayesian, prior distribution, posterior
distribution, statistical power, Monte-Carlo simulation

doi: 10.1086/693432
Interventions are purposefully implemented change strategies. They range from

brief communication techniques, such as those intended to promote client motiva-

tion in substance-abuse treatment, tomultiyear prevention programs, such as those

intended to improve the academic achievement and life-course outcomes of ele-

mentary school children. Intervention research is the systematic design and devel-

opment of these change strategies. Intervention research tends to follow a design

and evaluation process in which activities build on prior information over time.



Typically, these activities include five steps: Step 1, develop problem and program

theories; Step 2, design programmaterials; Step 3, refine program components in a

series of pilot tests and experiments; Step 4, test effectiveness in large trials in prac-

tice settings; and Step 5, disseminate program findings and materials (e.g., Fraser &

Galinsky, 2010; Fraser, Richman, Galinsky, & Day, 2009). The process is iterative

and nonlinear in the sense that researchers often find themselves refining and test-

ing newmaterials while they run effectiveness trials and disseminate findings from

earlier phases of program development.

Intervention researchers use design processes that rely on prior information

(e.g., Charles, Gorman-Smith, & Jones, 2016; Wu, Fraser, Guo, Day, & Galinsky,

2016). For example, in Step 1 (develop problem and program theories), a theory

of the problem is usually developed from previous research on the causes and cor-

relates of the problem an intervention is intended to address. A problem theory is

then used to identify malleable mediators and to specify those mediators in a the-

ory of change, which describes how an intervention is expected to work. Together,

problem theory and change theory comprise program theory—that is, the latent

causal argument of an intervention. This argument is sometimes called a program’s

deep structure in the sense that the program theory specifies a risk process that in-

tervention researchers hope to change with program activities that create new op-

portunities, build knowledge, strengthen skills, and change environmental condi-

tions (Resnicow, Soler, Braithwaite, Ahluwalia, & Butler, 2000).

In intervention research, program materials are developed, tested, and revised

over many studies; these materials specify program activities intended to alter risk

processes (e.g., Bender et al., 2015; Kim, Oesterle, Hawkins, & Shapiro, 2015;

Schwinn, Hopkins, & Schinke, 2016). Activities can range from a direct focus on risk

factors to a direct focus on protective factors that might reduce risk exposure (e.g.,

creating an after-school mentoring program with academic and recreational activ-

ities that promote health knowledge, improve study skills, and reduce opportuni-

ties for association with delinquent peers). Programs often build in complexity over

time, and one study informs the next. New information sometimes leads to major

program adaptations to address sociocultural risk factors that operate in a new pop-

ulation. For example, an acculturation and settlement intervention for arriving im-

migrants who have escaped a war zone may need new content on trauma recovery

and resources. Although the deep structure of an intervention might change little,

program activities and processes—so-called surface structures—are often adapted to

new settings and populations. This development of a new intervention takes place

through revision of program materials based on qualitative and quantitative data

collected in a series of related studies (Galinsky, Fraser, Day, & Richman, 2013).

Although prior information informs successive iterations of program materials

in intervention research, prior information is rarely considered in data analysis

per se. To be sure, information from prior studies is incorporated in power estimates



(e.g., specification of an expected effect size based on prior research). However, infor-

mation from prior studies does not condition analyses per se. But it might.

This article describes a Bayesian perspective on intervention research. Bayesian

methods make use of prior information in analyses. In particular, the use of prior

information is incorporated in the estimation of means and standard errors in sta-

tistical data analysis. From a research-design perspective, Bayesian methods have

the potential to improve power and, assuming a constant significance level (a), re-

duce required sample sizes in pilot tests. If smaller samples could be used, the cost

of pilot tests might be reduced, which in turn could reduce the design demands of

intervention research.
Method

From Bayes’ Theorem to Bayesian Modeling
The Bayesian analytic perspective originated from Bayes’ theorem (Bayes & Price,

1763) developed by Thomas Bayes (1702–1761). Based on the principle of con-

ditional probability, the theorem is simple, yet elegant. Given two events (A and

B) with P(B) > 0, the conditional probability of A given B is defined as the ratio of

the joint probability of A and B, and the probability of B—that is, P(A│B) 5 P(AB)/P

(B). Similarly, with P(A) > 0, the conditional probability of B given A is defined as the

ratio of the joint probability of A and B and the probability of A—that is, P(B│A) 5 P

(AB)/P(A). Based on these two conditional probabilities, we can easily obtain:

P B│ A
� �

5 P Bð ÞP A│ B
� �

=P Að Þ: (1)

This equation exactly denotes Bayes’ theorem that the “posterior” probability,

P(BFA), is proportional to the prior probability, P(B), and a conditional probability

for event A given event B, P(AFB), with proportional constant, 1/P(A). To be exact,

the posterior probability, P(BFA), is the ratio of P(B)P(AFB)/P(A).

To illustrate use of Bayes’ theorem, suppose that B denotes the event of a patient

having breast cancer and A denotes the event of the patient having a positive mam-

mogram. From Equation 1, the conditional probability P(BFA) of the patient having

breast cancer (B) given the patient has a positive mammogram (A) can be calculated

from (prior) knowledge of the unconditional probabilities P(A) and P(B), as well as

the conditional probability of P(AFB). P(A) could be estimated as the proportion of

patients with a positive mammogram; P(B) could be estimated as the proportion

of patients having breast cancer; and P(AFB) could be estimated as the proportion

of patients having breast cancer and positive mammogram results. Technically,

Bayes’ theorem expresses the posterior probability for a hypothesis (B) of hav-

ing breast cancer after a positive mammogram (A) is observed—in terms of the prior

probabilities of B and A, and the probability of A given B. For instance, suppose a



mammogram is 95% accurate in detecting breast cancer among patients with

known breast cancer—that is, the sensitivity of the mammogram, P(AFB) 5 0.95—

and is 99% accurate in failing to detect breast cancer among patients not having

breast cancer—that is, the specificity of the mammogram, P(AcFBc) 5 0.99—where

Ac and Bc denote the compliment of A and B. Further, suppose 1% of all women will

have breast cancer—that is, the prevalence of breast cancer, P(B)5 0.01. Bayes’ theo-

rem enables researchers to calculate the probability that a patient has breast can-

cer, given the mammogramwas positive—that is, the precision of the mammogram,

P(BFA). For example,

PðBjAÞ 5 PðBÞPðBjAÞ
PðAÞ 5

PðBÞPðBjAÞ
PðA BÞPðBÞ 1 PðAj jBcÞPðBcÞ

5
0:95 � 0:01

0:95 � 0:01 1 ð1 2 0:99Þ � ð1 2 0:01Þ 5 0:45

—a surprisingly small probability that demonstrates why good medicine requires

further diagnostics.

The researcher can also calculate the probability that a patient does not have

breast cancer given the mammogram was negative—that is, the negative predictive

probability of the mammogram, P(BcFAc), such as,

P BcjAcð Þ 5
P AcjBcð ÞP Bcð Þ

P AcjBcð ÞP Bcð Þ 1 P AcjBð ÞP Bð Þ

5
0:99 � 1 2 0:01ð Þ

0:99 � 1 2 0:01ð Þ 1 1 2 0:95ð Þ � 0:01
5 0:999:

Applied to intervention research, if A represents observed data (D) and B is de-

scribed in terms of a hypothetical intervention effect parameter (v), then the prob-

ability, P(AFB), is the likelihood function L(v) 5 L(vFD), and P(B) 5 P(v) is the prior

distribution about the parameter (v). In this setting Bayes’ theorem becomes

P v│ D
� �

5 P vð ÞP D│ v
� �

=P Dð Þ, (2)

where v stands for any intervention parameter of interest whose probability can be

affected by data; D corresponds to data yet to be observed and therefore not used in

contributing to the prior probability; P(v), the prior probability distribution, is the

probability of intervention parameter v before D is observed, which is the prior be-

lief about how likely different parameters are; P(D│v) is the probability of observing
D given intervention parameter v (also known as the data likelihood that is used

for the classical frequentist statistical modeling); P(D) is the marginal likelihood

as the integration of P(D│v) over all v, which is then a constant and unrelated to

v. P(v│D) is the posterior probability, which is the probability of intervention pa-



rameter v after D is observed; this posterior probability is the probability of various

hypotheses about v given the observed data incorporated as prior knowledge. This

posterior probability function is central in Bayesian modeling and is used for estima-

tion of the intervention effect after the data are collected.

Equation 2 shows that in Bayesian modeling, the posterior probability of a hy-

pothesis is determined by a combination of the prior belief of the likeliness of a

hypothesis and the compatibility of the observed data with the hypothesis (likeli-

hood). This likelihood means that the posterior probability is proportional to the

prior information multiplied by the likelihood function (as seen in Equation 2).

For modeling purposes, the Bayesian paradigm starts with the prior distribution

of the parameter, P(v), where v typically represents the intervention effect size. Af-

ter new data (D) are collected, Bayes’ theorem is applied to derive an updated dis-

tribution, which is called the posterior distribution of the parameter, P(v│D), and is

used tomake statistical inferences about the intervention parameter (v). The prior dis-

tribution can be updated as more data are cumulated, and a new posterior distribu-

tion can be derived for updating statistical inferences. In this manner, the Bayesian

approach follows the general scientific principle of using cumulative information

or knowledge to make inferences.

The advantage of a Bayesian perspective is that it provides a way to combine

new data with prior information through the application of Bayes’ theorem. Prior

information might come from pilot tests, other research, and theory. A design and

development approach to intervention research makes use of prior knowledge to

formulate a program theory and relies on new information from pilot tests to re-

fine intervention protocols. Bayes’ theorem can be applied iteratively: After observ-

ing some data, the resulting posterior probability can be treated as a prior probabil-

ity, and a new posterior probability can be computed from new data. This iterative

process allows for Bayesian principles to be applied to various kinds of data, whether

viewed all at once or over time. The literature onBayesianmodeling is vast but largely

unapplied in social work intervention research (e.g., Berger, 1985; Carlin & Louis,

2008; Chen, Peace, & Zhang, 2017; Gelman et al., 2013). In the next section, we illus-

trate the implementation of a Bayesian perspective in intervention research.
Pilot Intervention Study
Developing an intervention involves a series of pilot studies. Although large effec-

tiveness trials typically garner all the media attention, intervention research begins

with conceptualization and small controlled studies, often with both qualitative

and quantitative data collection. After the initial design phase of program materi-

als, implementation of pilot studies typically starts with a power analysis based on

information from previous research. To estimate a sample size, a researcher sets

power (usually at .80) and posits an expected effect size and a standard deviation.



Suppose a researcher had conducted an initial pilot study to compare the effects

(denoted by v) of a new Intervention 2 (i.e., treatment) to a usual services Interven-

tion 1 (i.e., control). The researcher would use a small sample (n0) from each con-

dition. This pilot study produced a treatment effect (such as a difference in out-

comes between intervention and control conditions) of v0 and the corresponding

standard deviation (t). This pilot study information would serve as prior informa-

tion, denoted as

P vð Þ 5 N v0, t
2ð Þ: (3)

This prior information is then used for statistical power analysis to determine

the sample size for subsequent intervention studies. Using this prior information,

the researcher can perform a power analysis with the probability of Type I error (a)

controlled, such as at a 5 2.5% (one-sided) with a power of 80% (or 90%), the sam-

ple size can be determined as n1.
Statistical Analysis With t-Test: The Frequentist Perspective
From the power analysis, a new pilot study with sample size n1 is designed, and

data are collected for both treatment and control conditions. The classical t-test can

be used to test the treatment effect (v) from the collected data with the associated t

statistic defined as

t 5
v̂

ĵ
, (4)

where v̂ is the estimated treatment effect and ĵ is the standard error. The typical esti-

mate for v̂ is the observed mean difference between conditions with ĵ as the pooled

standard error. In statistics, this t-test is classified as part of the frequentist paradigm; in

this paradigm, a conclusion is drawn based on only the current intervention study.

(For a discussion of the frequentist paradigm, see Levy, 2016.) That is, in the analysis,

the researcher ignores the prior information from pilot studies (Box, 1987). Ignoring

this prior information can reduce power, as we show in the remainder of this article.
Bayesian Perspective on Intervention Research
Rather than ignoring prior information, the Bayesian approach to intervention re-

search incorporates prior information from new data distributions based on Bayes’

theorem in Equation 1. Information from pilot tests is used to formulate a poste-

rior distribution. This posterior distribution is then incorporated in the inferential

process. In this sense, a Bayesian approach to intervention research analyzes cur-

rent trial data by drawing on information from previous trials. The Bayesian per-

spective provides a sequential quantitative method for estimating outcomes in

newly obtained data by making use of the previous understanding of effects.



Specifically, the researcher can denote the data distribution, P(DFv)—that is,

likelihood function L(DFv)—from the new intervention study to estimate an inter-

vention effect as

Djh ∼ P Djhð Þ 5 N v̂, ĵ2
� �

: (5)

Using Bayes’ theorem, the Bayesian paradigm is then characterized by combin-

ing this data likelihood—P(DFv) from Equation 5—with the prior distribution—P(v)

from Equation 3—to construct the Bayesian posterior distribution, P(vFD). It has

been shown (e.g., Chen et al., 2017; Gelman et al., 2013) that

P vjDð Þ ∝ P Djvð ÞP vð Þ 5 L Djvð ÞP vð Þ 5 N m̂P, ĵ
2
Pð Þ: (6)

Central in Bayesian modeling, this combined posterior distribution then incor-

porates information from both the new data collection (D) and the prior informa-

tion. The combined distribution is used for further statistical inference to test for

an intervention effect. In this posterior distribution, m̂P 5 wv̂ 1 ð1 2 wÞv0 is the

posterior mean calculated as a weighted mean of the prior treatment effect (v0)

and the treatment effect from the current study (v̂). Theweight in the posteriormean

is defined as

w 5

n1

ĵ2

1
t2
1 n1

ĵ2

,

which depends on the prior variance and data variance. The posterior variance is

ĵ2
P 5

1
1
t2
1 n1

ĵ2

,

which incorporates variances from the prior variance (t 2) and the data variance

from the current intervention study (ĵ2). It can be proven that this posterior variance

is less than the current data variance (i.e., ĵ2
P < ĵ2) regardless of any values of the

prior variance (t 2), which indicates that the Bayesian estimate (i.e., posterior mean,

m̂P) of the intervention effect has shrunk in comparison to the classical frequentist

estimate of the treatment effect, where the variance is estimated by ĵ2. The posterior

mean (m̂P) and the posterior variance (ĵ
2
P) are used to calculate the empirical Bayesian

t ratio between m̂P and ĵP for statistical inference.

Note that the only situation in which the posterior variance of ĵ2
P approaches the

current data variance for the treatment effect (i.e., ĵ2=n1) is when the prior variance

(t 2) is infinite, as seen from the formulation in the posterior variance of

ĵ2
P 5

1
1
t2
1 n1

ĵ2

:

In this case, the first pilot study provides no information to the current study. This

scenario is called a noninformative prior in Bayesian modeling. If a noninformative



prior is used, the Bayesian posterior distribution approaches the data likelihood

or frequentist solution. Another application of the noninformative prior involves

cases in which prior information on the intervention effect might be biased or ir-

relevant (e.g., because of substantial changes to the intervention or application to

an entirely new population). In this situation, the prior variance (t2) can be chosen

to be infinitely large to diminish the influence of prior information on the Bayesian

inference.

Monte-Carlo Simulation Study
We designed a Monte-Carlo simulation to illustrate this Bayesian perspective and

compare outcomes with the classical frequentist perspective. For this simulation,

suppose that the researcher would like to test an intervention effect size of 2 or

greater (i.e., H0 : v 5 0 vs. Ha : v 5 2 > 0). In addition, suppose the researcher had

a pilot study with a relatively small sample size (n0 5 20) from each condition

(i.e., treatment and usual services). This pilot study produced a treatment effect

of v0 5 2 and standard deviation j0 5 10, with a standardized treatment effect of

v0/j0 5 2/10 5 0.2. With these data, a t-test can be performed, which produces a

p value of 0.265. This value means that the researcher does not have enough evi-

dence to reject the null hypothesis and argue that the new intervention is signifi-

cantly better than the conventional intervention. However, the observed effect size

of 0.2 is promising; therefore, the researcher might want to develop a new study to

further test the new intervention. Using the pilot study data, the researcher per-

forms a power analysis with the probability of Type I error controlled at 2.5%

(one-sided) with a power of 0.80. From this analysis, the researcher estimates the

sample size for a new trial to be n1 5 393 per arm. We used this information to

simulate the new study.

Using the sample size of 393 per arm, we simulated 1 million intervention stud-

ies to evaluate the performance of a Bayesian versus a frequentist perspective on

intervention research. Each simulation used the t-test and was constructed using

the following steps:

• Step 1: To mimic the predefined treatment effect of v 5 2, randomly gener-

ate n1 subjects from the control arm with a mean of 0 and standard devia-

tion of 10, and n1 samples for the treatment arm with a mean of 2 and

standard deviation of 10.

• Step 2 (frequentist perspective): Using the samples from both conditions,

the traditional two-sample t-test in Equation 4 is estimated to test the H0,

and the associated p value is recorded.

• Step 3 (Bayesian perspective): From a Bayesian perspective, the samples

from the current study are used to construct a data likelihood distribution,

as shown in Equation 5. The posterior distribution incorporates the prior



data and is constructed based on Equation 6. A p value was obtained from

this posterior distribution to test the H0.

We ran these three steps 1 million times, simulating 1 million separate inter-

vention studies. The statistical power can then be calculated as the proportion of

the total number of simulations with p value < a (i.e., reject H0) from the 1 million

simulations.

Results

Distributions for Means
For each of the simulated studies with sample size n1 5 393, we can calculate the

means for each arm, where the true mean for the control arm is 0 and the true

mean for the treatment arm is 2. The 1million simulations produce 1millionmeans

for each arm; the distributions of the means are illustrated in Figure 1. The distri-

butions for both arms are normally distributed with the center at 0 and 2 with

95% confidence intervals of [–0.99, 0.99] for the control arm and [1.01, 2.99] for

the treatment arm. These confidence intervals indicate that the simulations worked

as expected.
Figure 1. Distributions of the means for the control and treatment arms obtained from 1 million simulations.



Distributions for Standard Errors
For each of the simulated studies, we calculated the standard error (SE) for the treat-

ment effect (i.e., the mean difference) as shown in Equation 4, and we calculated

the SE for the Bayesian model as shown in Equation 6. In the classical frequentist

model, the SE for the mean difference can be calculated as the square-root of the

pooled variance (ĵ2), which is

ĵ 5
10
ffiffiffiffiffiffiffiffiffiffiffiffiffi
393=2

p 5 0:713,

corresponding to the setups in the simulation studies. In the Bayesian model, the

SE (jP) can be calculated as in Equation 6 by incorporating the prior study and data

from the current study. This calculation produces a standard error of 0.504, corre-

sponding to the setup in this simulation study.

In general, because the Bayesian model incorporates more information, the

Bayesian SE should be smaller than the SE in the classical frequentist model. Shown

in Figure 2, the means of these 1 million SEs were 0.713 for the classical frequentist

perspective and 0.504 for the Bayesian perspective. Also shown in Figure 2, the

95% confidence intervals (typically called credible intervals in the Bayesian perspec-

tive) were [0.678, 0.749] for the classical frequentist model and [0.479, 0.529] for

the Bayesian model.
Figure 2. Distributions of standard errors (SE ) for both frequentist and Bayesian models obtained from
1 million simulations. The vertical red lines signify the means, and the horizontal red lines represent 95% con-
fidence intervals.



Statistical Power: The Bayesian or the Frequentist Perspective?
As demonstrated in the simulation, the Bayesian SE is smaller than the frequentist

SE because the Bayesian model incorporates information from the prior study,

whereas the frequentist SE ignores the prior study information. With a smaller

SE, the statistical power of the Bayesian approach is higher. That is, holding the

sample sizes and mean differences constant, we are more likely to detect a signif-

icant difference when using a Bayesian perspective.

For the 1 million simulated studies, we can track the number of t-tests that have

a p value less than the one-sided prespecified a—the significance level used to cal-

culate power. For the classical frequentist t-test, the 1 million simulations contain

799,510 significant studies. This value confirms the power to be 80%, which is con-

sistent with the study design of 80% power. For the Bayesian model, however, the

1 million simulations contain 921,838 significant studies, yielding a power of

92%—higher than the classical frequentist approach.

An Illustrative Study
Because Bayesian modeling is more powerful than the classical frequentist t-test,

the Bayesian analysis is more likely to detect significant differences. We illustrate

this concept with a simulated study for which the control arm and treatment arm

data distributions are shown in Figure 3. As seen in the figure, the true mean for

the control arm is 0 and the true mean for the treatment arm is 2.
Figure 3. Data distribution for a simulated study with 393 observations. The vertical red lines signify the
means, and the horizontal arrowed red lines represent 95% confidence intervals.



Using the frequentist and Bayesian approaches, we come to different conclu-

sions. With the 393 observations per arm, the estimatedmeans for both the control

arm and the treatment arm are 0.781 and 1.689, respectively, which results in an

estimated treatment effect of 0.908 and an associated SE of 0.708. In a classical

frequentist t-test, these values produce a t statistic of 1.282 and a one-sided p value

of 0.100. The mean difference would not be statistically significant.

Using a Bayesian perspective and incorporating the prior information of a treat-

ment effect of v05 2 and standard deviation of t5 10, the estimated posterior mean

treatment difference is 0.911, and the standard error is 0.500, which yields an em-

pirical Bayes t ratio of 1.820 and a one-sided p value of 0.035. The use of prior in-

formation yielded a significant treatment effect.

Discussion
In this article, we described a Bayesian perspective on intervention research, com-

paring the Bayesian perspective to the frequentist perspective that dominates anal-

ysis in social work and the social sciences. Intervention research is characterized by

the sequential development of new programs. That is, at the beginning of the de-

sign phase, intervention research is deeply rooted in the replication of pilot studies

that rely, in turn, on meta-analyses and carefully constructed conceptual models.

As interventions are refined over time, researchers hope that subsequent pilot

studies will support and extend prior results. However, most studies use prior in-

formation only in the conceptualization of a program theory and in estimates of

statistical power. Trials are regarded as independent, and prior information is

not used to condition means and SEs. In Bayesian analysis, however, prior informa-

tion is used to condition means and SEs. We demonstrated that the Bayesian per-

spective provides more power in the design and development processes that com-

prise intervention research.

We illustrated the Bayesian perspective using a simple case of a two-arm com-

parison. However, Bayesian applications can be extended to include multiple treat-

ment comparisons with the analysis of variance, treatment comparisons with covar-

iates in regression, adjustments for clustering in multilevel modeling, and complex

parameter estimation in structural equation modeling (e.g., Holtmann, Koch, Loch-

ner, & Eid, 2016). For the more complicated designs, advanced Bayesian modeling

with Markov-Chain Monte-Carlo estimation can be used. Computation software is

available in SAS and R (e.g., Brooks, Gelman, Jones, & Meng, 2011; Chen et al., 2017;

Gelman et al., 2013).

When to Consider a Bayesian Approach
The Bayesian perspective has been developed extensively in statistics, but it has

rarely been applied to intervention research where new programs are developed

through sequenced studies. A key conceptual question in the use of Bayesianmeth-



ods in the design of new interventions requires consideration: To what extent can

prior information be used? Typically, interventions change over the course of de-

velopment. Interventions have deep structures that focus on risk processes be-

lieved to mediate risk exposure and subsequent negative developmental or life-

course outcomes. In the same vein, interventions also have surface characteristics,

which tend to be program activities and processes that can be tailored to improve

treatment uptake and adherence in alternative settings.

One consideration in the use of a Bayesian perspective is the relevance of prior

information to program structures. Unlike in drug trials in which doses can be

carefully controlled, the dosage of social interventions often has great variability.

Through the development process, researchers test programs of different lengths;

they create programs with different features and content; they use intervention

agents with different backgrounds, such as the provision of intervention content

by social workers versus teachers; and they alter theway content is presented. Given

the iterative development of interventions—usually through multiple pilot tests—

it is not clear when the use of prior information can be justified. At aminimum, use

of prior information would appear justifiable when the deep structure remains un-

changed across trials. To be sure, no harm is done when using noninformative

priors because the Bayesian model resolves to the frequentist model when prior in-

formation has no value. However, research on the goodness of prior information

is still emerging and caution is warranted, especially when program structure has

low resemblance from one trial to the next (e.g., see Holtmann et al., 2016).

Limitations
Simulations are inherently limited by the way they are parameterized. In this

study, we based findings on informative prior information, including an explicit

treatment effect and an adequate sample size. Simulations offer the advantage of

known parameters, and therefore, the precision of competing models, such as

the frequentist and Bayesian approaches, can be compared. However, simulations

canbedeveloped in infiniteways. Future research could, for example, estimate power

under varying conditions, such as small samples and weak ormisleading prior infor-

mation.

A key component of conducting Bayesian analysis is the specification of a prior

distribution for intervention parameters. This prior information can be either in-

formative or noninformative. The prior information is typically drawn from previ-

ous research; however, it is quite possible to use prior belief, which can be subjec-

tive. In the case of a subjectively determined prior, the posterior distribution could

be misleading, which would lead to incorrect statistical conclusions. A key feature

of intervention research is the iterative development of knowledge based on prior

research. We caution researchers who are interested Bayesian methods to carefully

choose prior information based on systematically derived information. Interven-



tion research is a sequential process based on knowledge and understanding that

accumulates overmany types of studies. If based on prior research, the prior is likely

to be informative.

To be sure, there may be times when no or little useful information exists to set

a prior distribution. In circumstances of uncertainty, researchers can use non-

informative priors that are loosely based on prior research. Priors are selected de-

liberately to minimize constraints on the posterior distribution parameters. In this

situation, the prior can be set with a large prior variance. This approach suggests

that not all prior information is totally noninformative. For example, if insufficient

evidence exists about the distribution of an intervention effect, researchers can set

the prior as a normal distribution with a mean of 0 and a large variance. It is not

unusual to set the variance as high as 1,000, or higher. By using such a large var-

iance for the prior distribution, the researcher acknowledges the lack of credible

information regarding the posterior distribution. Hence, the posterior distribution

is left largely unaffected by the prior distribution and relies primarily on observed

data to obtain the estimate for an intervention effect. When prior information is sub-

jectively determined or is of questionable value, a noninformative prior with its

variance set to be infinite forces reliance on the observed data.

In the situation when uncertainty exists about prior distributions, the researcher

should also conduct sensitivity analyses to determine the influence of different spec-

ifications of the priors. If the influence is not large, we would conclude that the

Bayesianmodel is robust to different specifications of priors. Otherwise, a reasonable

prior should be chosen for robust Bayesian analysis. In analysis, priors can be deter-

mined within a range of accumulated knowledge.

Conclusion
Although Bayesian methods are scarcely used in social work research, they offer

potential advantages over the commonly used frequentist perspective. For inter-

vention researchers, Bayesian approaches provide a logically cohesive framework

to permit updating analyses with new information. This feature amounts to a

mechanism to adjust analyses based on the level of uncertainty, which tends to de-

cline in intervention research as more information is cumulated through pilot

studies. To be sure, the selection of priors and the use of small samples are chal-

lenging issues in Bayesian analysis. However, within the frequentist perspective,

the need to improve point estimates and growing dissatisfaction with p values

are perhaps more challenging. The Bayesian approach provides an alternative in-

ferential method that, like intervention research itself, incorporates prior informa-

tion in the knowledge development process (Berry, Carlin, Lee, & Muller, 2011;

Oldehinkel, 2016). Rather than rejecting null hypotheses, Bayesian analyses permit

testing alternative theories about the data, and, holding other factors constant, Bayes-

ian analyses appear to provide intervention researchers withmore statistical power.
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