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ABSTRACT
A well-designed clinical trial requires an appropriate sample size with
adequate statistical power to address trial objectives. The statistical
power is traditionally defined as the probability of rejecting the null
hypothesis with a pre-specified true clinical treatment effect. This
power is a conditional probability conditioned on the true but actually
unknown effect. In practice, however, this true effect is never a fixed
value. Thus, we discuss a newly proposed alternative to this conven-
tional statistical power: statistical assurance, defined as the uncondi-
tional probability of rejecting the null hypothesis. This kind of assurance
can then be obtained as an expected power where the expectation is
based on the prior probability distribution of the unknown treatment
effect, which leads to the Bayesian paradigm. In this article, we outline
the transition from conventional statistical power to the newly devel-
opedassurance anddiscuss the computations of assuranceusingMonte
Carlo simulation-based approach.

1. Introduction

Clinical trials should be well designed for ethical consideration as well as cost effectiveness.
An aspect of good design of clinical trial protocol is to determine appropriate number of
patients (i.e., sample size) with adequate statistical power to address the clinical objectives.
The statistical power is traditionally defined as the probability of rejecting the null if the true
clinical trial treatment effect equals a prerequisite value. Therefore, the statistical power is a
conditional probability to this unknown prerequisite value, as discussed extensively in Chow
et al. (2003), Chen andPeace (2011), andWalter andChen (2014). In practice, this prerequisite
value is obtained from previous trials or specified based on prior experience and knowledge,
which could very well be different from the true treatment effect and then could lead to an
imprecise statistical power and its associated sample size.

As a result, the traditional statistical power used to “power” a clinical trial cannot actu-
ally assure a successful clinical trial. To assure a successful clinical trial, a newly proposed
alternative to this conventional statistical power is “assurance,” which is defined as the uncon-
ditional probability of rejecting the null hypothesis as propagated in O’Hagan and Stevens
(2001), O’Hagan et al. (2005), Chuang-Stein (2006), Chow and Chang (2012), and Ren and
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Oakley (2014). This assurance can then be obtained as the expected power with respect to the
prior probability distribution of the prerequisite value, which leads to the Bayesian paradigm.
O’Hagan et al. (2005) discussed the computational aspects with WinBUGS and gave the ana-
lytical formula for normally distributed data when the variance is known and the Bayesian
clinical trial simulation (BCTS) when the variance is unknown. They also discussed how to
apply BCTS to binary data. Chuang-Stein (2006) also illustrated the calculations for normal
data with known variance using SAS/R by numerical integration. For time-to-event data, Ren
and Oakley (2014) reviewed various methods and the associated calculations.

Assurance, as an alternative to the important concept of statistical power, is still new to
many biostatisticians, clinicians, and government regulators. Further illustrations of this con-
cept along with software implementation for public use remain an unmet practical need,
which leads to this article. In this article, we outline the concept of assurance and discuss
the computations of assurance using Monte Carlo simulation-based approach.

In Section 2, we outline the concept of transitioning from the conventional statistical power
to assurance. In Section 3, we demonstrate the implementation of Monte Carlo simulation-
based approach to calculate statistical power and assurance. Finally, in Section 4, a discussion
is provided.

2. Conventional statistical power to assurance

2.1. Conventional statistical power and its limitations

Typically, the general objective of a clinical trial is to compare whether a new drug is better
than placebo. In order to demonstrate the new drug is effective, one needs to determine how
many patients should be enrolled in each treatment. In statistical terms, the null hypothesis
H0 is defined as the two treatments being not different versus the alternative hypothesis Ha

is defined as the new drug being better than placebo. The hypothesis testing is then to test
whether there is a statistically significant treatment effect between these two treatments. The
associated concepts for this hypothesis testing are the Type I error and Type II error. The
Type I error (α, typically controlled at 5%) is defined as the probability of rejecting the null
hypothesis when it is true and the Type II error (β) as the probability of not rejecting the
null hypothesis when it is false. The statistical power (π) is then defined as the probability of
rejecting the null hypothesis when it is false (i.e., π = 1− β), which is typically set between
0.8 and 0.9. The associated sample size can then be determined based on this power and the
Type I error rate.

Following the notations from O’Hagan et al. (2005), we denote R as the event of rejecting
the null hypothesis. The conventional definition of statistical power is then

π (θ ) = P (R|θ ) , (1)

where π(.) is the power function and θ is a vector of the assumed parameters, such as the
treatment effect, sampling variance, and possible others. It can be seen that the statistical
power defined in Eq. (1) is a conditional probability of R conditioned on the unknown param-
eter vector θ . The value of this power as well as the associated sample size calculation is then
dependent on the unknown parameter vector θ.

Generally, this parameter vector θ cannot be provided precisely in practical clinical trials as
pointed out in O’Hagan et al. (2005) and others. Therefore, the statistical power, as one of the
most important concepts in clinical trials, traditionally has been quoted as a fixed probability
based on a prerequisite parameter value from the unknown alternative hypothesis parameter



space. It is rare that the observed data will coincide with the prerequisite parameter value,
which often lead to the issue of over-powering or under-powering a clinical trial.

2.2. Assurance in clinical trials

To eliminate these limitations from the conventional statistical power, O’Hagan and Stevens
(2001) advocated the “assurance” (denoted by γ ) as an alternative to this statistical power,
which is defined as an unconditional probability to reject the null hypothesis, that is, γ =
P(R), where R is rejection of the null hypothesis. The assurance can then be viewed as the
expected power to the parameter vector space of θ . It can be seen that

γ = P (R) = ∫ P (R, θ ) dθ = ∫P (R|θ ) P (θ ) dθ = Eθ (P(R|θ )) , (2)

where the expectation is to the (prior) probability distribution of parameter vector
space of θ.

With this definition, the “assurance” provides a bridge between the frequentists’ approach
in statistical power and the Bayesian paradigm of averaging or integrating out the conditional
statistical power with all possible (prior) values of parameter vector space of θ.This assurance
can then provide an unconditional probability or evidence to assess the success of a clinical
trial and therefore is more realistic and robust than that of the conventional statistical power.

As pointed out in O’Hagan et al. (2005), the concept of assurance can be dated back to the
1980s by Spiegelhalter and Freedman (1986) and later named as a “hybrid classical-Bayesian”
approach in Spiegelhalter et al. (2004). To our experience and knowledge in clinical trials, it is
very reasonable to use this hybrid frequentist-Bayesian approach in study design since prior
information has always been used to calculate sample size. Whenever this prior information
for the unknown parameter θ (i.e., treatment effect) is sufficiently strong such that the prior
variance would approach to zero, the assurance defined in Eq. (2) would approach the con-
ventional statistical power defined in Eq. (1). On the other hand, if the prior information is
weak, the prior variance would be large and the assurance defined in Eq. (1), which averages
all the potential values of this vague prior distribution, would be more appropriate than the
conventional statistical power to assess the probability of a successful trial.

2.3. Illustrations

Conceptually, assurance defined in Eq. (2) is the expected power to the parameter vector space
of θ . Depending on the dimension of this parameter vector space, the expected power can
be high-dimensional integration, which makes analytical formula virtually impossible. As an
illustration from the computational aspect, we use the simple case of normally distributed
data for two treatments to illustrate the transition process from statistical power to assurance.

Suppose that in a two-treatment clinical trial with ni patients randomized to treatment
i (i = 1, 2), the continuous outcome xij from jth patient is normally distributed as xi j ∼
N(μi, σ 2

i ). Assuming that σ 2
i are known and we estimate the population means with the

sample means as x̄i ∼ N(μi, σ
2
i /ni). Then the treatment difference δ = μ1 − μ2 can be esti-

mated by δ̂ = x̄1 − x̄2 and the standard deviation can be calculated as τ =
√

σ 2
1
n1
+ σ 2

2
n2
, that is,

δ̂ = x̄1 − x̄2 ∼ N(δ, τ 2). The statistical power is then calculated based on this distribution,
which is a conditional distribution on the unknown treatment difference δ.

The assurance is then defined based on the expected power with a prior distribution on this
unknown parameter δ. Using a commonly used conjugated prior normal distribution from



previous clinical trials as δ ∼ N(m, v ), the unconditional distribution can be obtained as
x̄1 − x̄2 ∼ N(m, τ 2 + v ). O’Hagan et al (2005) used this formulation and derived the analyt-
ical formula for one-sided superiority trial, two-sided superiority trial, non-inferiority trial,
and equivalence trial. For example, in a two-sided superiority trial to test the null hypoth-
esis H0: δ = 0 against the two-sided alternative Ha: δ �= 0, the null hypothesis is rejected if
|x̄2 − x̄1| > τZα/2, where Zα/2 is the upper α/2 significance point of the standard normal dis-
tribution. The assurance that the null hypothesis is rejected can be formulated based on the
unconditional distribution of x̄1 − x̄2 ∼ N(m, τ 2 + v ) as

γ = P
(
null hypothesis is rejected

) = P
(
x̄2 − x̄1 > τZα/2

) = 


(−τ Zα/2 +m√
τ 2 + v

)
. (3)

This analytical formulation can reconcile the numerical integration proposed in Chuang-
Stein (2006) where the assurance is defined as the probability to produce a successful trial.
This article elegantly conceptualizes the assurance from the biopharmaceutical aspects and
illustrates the calculations from the designing aspect of a clinical trial. It defines the “success”
as a “Trial produces a significant p-value.” With this definition, the assurance is given by the
Eq. (2) in Chuang-Stein (2006) as follows:

+∞∫
−∞

P
(
Trial produces a significant p− value|�)

P (�|d) d�, (4)

where P(Trial produces a significant p− value|�) in Eq. (4) above is in fact the conventional
statistical power, which is then “averaged” over the prior distribution of P(�|d) for all possible
values of � to obtain the assurance. Note that in the formulation defined in Chuang-Stein
(2006), as seen in Eq. (4), the notations of � and d are equivalent to δ andm in O’Hagan et al
(2005). The assurance given in Eq. (4) can be obtained only through a numerical integration
and a trapezoid role was used in Chuang-Stein (2006), which was coded in both R and SAS
in the appendix.

It can be shown that Chuang-Stein’s definition in Eq. (4) is a special case of O’Hagan’s
definition in Eq. (3)whenσ 2

1 = σ 2
2 = σ 2,n1 = n2 = n and then τ =

√
2
nσ . The prior variance

in O’Hagan et al. (2005), v, is specified as v =
√

2
mσ in Chuang-Stein (2006) (notice thatm is

the prior sample size in Chuang-Stein but used as the prior mean in O’Hagan et al.). We have
programmed this comparison in R (see Appendix A) using O’Hagan et al. (2005) formulation
in Eq. (3) (in Appendix A.2) and Chuang-Stein (2006) formulation in Eq. (4) (in Appendix
A.1). We reproduced Table 1 in Chuang-Stein (2006) to illustrate the conventional statistical
power and assurance calculation when there are 128 and 172 patients per group with prior
distribution of N(2.5, (2/m)7.142) with the prior sample sizem= 25 and 70.

It can be seen from Appendix A that O’Hagan et al. (2005)’s formulation can be easily
implemented using the standard normal cumulative distributionwhile theChuang-Stein’s for-
mulation will need to call the numerical integration routine in R (i.e., “integrate”) to obtain
the integration in Eq. (4). We reproduced the results in Table 1, which illustrate the differ-
ence between the conventional statistical power and assurance. One can use the R code in
Appendix A and find that the results from Chunag-Stein’s trapezoid numerical integration,
the R numerical integration (i.e., “integrate” in Appendix A.1) andO’Hagan et al. (2005) stan-
dard normal cumulative distribution (i.e., implemented in R function “pnorm” in Appendix
A.2) are exactly the same as seen in Table 1.



Table . Assurances calculated with “Known Variance” (in the middle column with boldface fonts), which
reproduced Table  in Chuang-Stein () by the R code fromAppendix A. and the corresponding assurance
with “Unknown Variance” fromMonte Carlo simulation-based approach (in the right column).

Sample sizes in prior clinical trials

Known variance Unknown variance

Sample size in future trials and associated statistical power m=  m=  m=  m= 

/group (% power) 0.633 0.692 . .
/group (% power) 0.677 0.756 . .

Notes: To further illustrate the conventional statistical power and assurance under different sample sizes, we provide Fig.  and
its range of sample sizes for clinical trials. It can be seen and expected that the assurance is typically smaller than the conven-
tional statistical power when sample sizes are larger (> in this figure where statistical power>.) because the assurance
is integrated over all possible parameter vector values. However, it is interesting to observe that when the sample sizes are
relatively small and the clinical trialswould be underpowered (<= %), the assurance and the conventional statistical power
are similar.

3. Assurance calculations

The illustration in Section 2.3 can only be done using some simple caseswith one-dimensional
parameter vector θ . Conceptually, assurance defined in Eq. (2) is the expected power to the
parameter vector space of θ , which could be high-dimensional. When the expected power
involves high-dimensional integration, it will be impractical to obtain the analytical formula
to be implemented in statistical software. With the computing technology, we can resolve
the assurance computations by Monte Carlo simulation-based approach. Simulation-based
computations for designing and analyzing clinical trials have been seen in Kimko and Duffull
(2002), Kimko and Peck (2010), and Chow and Chang (2012). Here our focus is for assurance
computations. We describe the Monte Carlo simulation-based computations in this section
by using R (in Appendix B).

3.1. Bayesian clinical trial simulation (BCTS) toMonte Carlo simulation-based (MCSB)
approach

As proposed inO’Hagan et al. (2005) for assurance calculation, the general principle for BCTS
is to incorporate sampling from the prior distribution of θ before sampling from the data.
Specifically, the general algorithm to compute the assurances of outcomes A1, A2, …, Ak is as
follows:

1. Define counters I for iteration and T1, T2, …, Tk for the assurances, and
set all counters to 0. Set the required number, N. Set I = 0 and start
looping,

2. Sample θ from the prior distribution,
3. Sample the data and calculate the sufficient statistics using the model and the sampled

value of θ from step 2,
4. For j= 1, 2,…,k, increment Tj by 1 if the outcome Aj has occurred,
5. Increment I: If I < N; go to step 2,
6. For j= 1, 2,…, k, estimate assurance γ j= P(Aj) by Tj/N.
In fact, this BCTS can be simplified with the followingMCSB approach (hereafter referred

as MCSB-General) for computing assurance that involves the following steps:
1. Define counter I for iteration and the required number of simulations, N, (say N =

1,000,000 simulations). Set I= 0 and start looping,
2. Sample θ from the joint prior distributions,



3. Calculate the conventional statistical power conditional on this sampled value of θ

from step 2 with the data or calculated test statistics using the associated model for
hypothesis testing,

4. The assurance can be estimated as the average of the statistical powers from step 3.
We illustrate this BCTS-General to normally distributed data and binary data in the fol-

lowing sections.

3.2. Assurance calculation for normally distributed datawhen variance is unknown

When the variances are unknown, the commonly used test statistic is the Student t. Under
the homogenous variance assumption, this test statistic is formulated as t = x̄2−x̄1

σ̂
√

1
n1+ 1

n2

, which

follows the Student t-distribution with degrees of freedom, d f = n1 + n2 − 2,where σ̂ is the
estimated pooled standard deviation. In the heterogenous variance assumption, the approxi-

mate Satterthwaite t = (x̄2 − x̄1)/
√

σ̂ 2
1
n1 +

σ̂ 2
2
n2

(where σ̂ 2
1 and σ̂ 2

2 are the estimated sample vari-
ances) is used with degrees of freedommatching the moments (see Chen and Peace, 2011, for
details).

The standard two-sided test for the null hypothesis of no treatment difference H0: δ = 0
against the two-sided alternative Ha: δ �= 0 is to reject the null hypothesis if |t| > tα/2,d f . The
statistical power can then be calculated based on this t-distribution. This distribution can
also be used to calculate the assurance by two-dimensional numerical integration over the
parameter space of δ and σ 2 with the non-central t-distribution. However, the Monte Carlo
simulation-based BCTS approach can be easily implemented for this purpose. Corresponding
to the general algorithm in Section 3.1, this approach (hereafter referred as MCSB-Normal)
can be implemented in the following steps:

1. Set counter I= 0 and the number of simulations, N (say, N= 1,000,000),
2. Sample δ and σ 2 from their joint prior distribution,
3. Sample x̄2 − x̄1 ∼ N(δ, (n−11 + n−12 )σ 2) and (n1 + n2 − 2)σ̂ 2/σ 2 ∼ χ 2

d f , calculate the
t-test statistic and statistical power,

4. Estimate the assurance with the average of the resulted sample of N statistical powers.
This MCSB-Normal approach is implemented in R as seen in Appendix B. We first imple-

mented thisMCSB-Normal in Appendix B.1 with known variance (i.e., the function “ANDks”
in short for “Assurance for Normal Data with Known Sigma”) to confirm the results given by
Chuang-Stein (2006) shown in themiddle column of Table 1.We then programed theMCSB-
Normal with unknown variance inAppendix B.2 (i.e., ANDus in short for “Assurance forNor-
mal Data with unknown sigma”) for the same scenarios and the estimated assurances from
this MCSB-Normal shown in the right column in Table 1. It can be seen from these results
that the assurances with unknown variance are smaller than the assurances with known vari-
ance. This is considered reasonable and consistent with general conclusion in the statistical
power.When the variance is known, then the calculations can be donemore precisely, whereas
when the variance is unknown, it needs to be estimated and therefore introduces additional
variability in assurance calculations.

3.3. Assurance calculation for binary datawith O’Hagan et al.’s (2005) formulation

In clinical trials with binary data with xi successes from total ni patients for treatment i
(i = 1, 2), denote pi as the population success rate for treatment i. Then the null hypoth-
esis to test the treatment efficacy is H0: p1 = p2. The classical statistical test is based on



approximated normality of the sample proportions p̂i = xi/ni (see, e.g., in Chen and Peace,
2011) and the null hypothesis is rejected in a two-sided test if |Z| > Zα/2 where Z =
( p̂2 − p̂1)/

√
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2
is approximately standard normally distributed. The conven-

tional statistical power can then be approximated by

P
(
R|p1, p2

) ≈ 


⎛
⎝−Zα/2 + p2 − p1√

p1(1−p1)
n1

+ p2(1−p2)
n2

⎞
⎠ , (5)

where φ(.) is the standard normal density function.
This definition of statistical power is a conditional probability conditional on two unknown

parameters p1 and p2 from both treatments. The assurance would then be calculated by inte-
grating these two unknown parameters p1 and p2 from their joint prior distributions, which
are typically beta conjugate prior distributions. This would not be feasible to obtain analyti-
cal formula based on Eq. (5). However, this can be easily implemented with MCSB approach
(hereafter referred as MCSB-Binary) as follows:

1. Set counter I= 0 and the number of simulations N (say, N= 1,000,000),
2. Sample p1 and p2 from their prior distributions that are typically beta-distributions,
3. Calculate the Z-statistic and then the statistical power using Eq. (5),
4. Estimate the assurance with the average of the resulted sample of N statistical powers.
This MCSB-Binary approach is implemented in R as seen in Appendix B.3. We make use

of Example 4 in sec. 5.1 from O’Hagan et al. (2005) for clinical trials in rheumatoid arthritis
where prior information for control drug is specified as E(p1) = 0.2 and sd(p1) = 0.08 from
the published results for methotrexate in Kremer et al. (2002). This prior information can be
represented by a beta-distribution as p1 ∼ Beta(5, 20). The new drug has more uncertainty as
specified by E(p2) = 0.4 and sd(p2) = 0.17, which corresponds to beta-distribution as p2 ∼
Beta(3, 4.5).

Recognizing the ineffectiveness, the development team used a weighting scheme with a
0.15 probability for Beta (2, 23) and 0.85 for Beta (3, 4.5). The trial was planned with unequal
sample size, n1 = 200 patients in the control (methotrexate) group and n2 = 400 in the treat-
ment group for a two-sided 5% significance level test for superiority. With these sample sizes
to detect an improvement from p1= 0.2 to p2= 0.3 (i.e., a 50% treatment effect), the statistical
power can be calculated by Eq. (5) to be 78%. Using theMCSB-Binary described above, which
is implemented in Appendix B.3, the assurance is 0.633, smaller than the conventional power
of 0.78.

3.4. Assurance calculation for binary datawith logit-normal formulation

In designing and analyzing binary data, it is common to consider the logit-normal transfor-
mation to the response rates that then lead to the logistic regression for categorical data. The
logit-normal formulation was introduced in Mead (1965) and Aitchison and Shen (1980). In
analyzing dose–response relationship incorporating historical control data, Chen (2010) used
this logit-normal formulation with an empirical Bayes approach.

Traditionally, this transformation is as follows: logit(pi) = log( pi
1−pi ) = αi for each treat-

ment i = 1 and 2. It is known that the ratio pi/(1 − pi) is the odds of success so that logit(pi)
is often called the log odds, which is used as logit link in generalized linear model for binary
or binomial data (see, e.g., Chen and Peace, 2011). Transforming this back, we would have
pi = eαi

1+eαi ; therefore, the typical null hypothesis H0: p1 = p2 is equivalent to H0: α1 = α2.



With this logit-normal transformation to pi, the αi is usually assumed to be normally dis-
tributed as

αi ∼ N
(
log

(
pi

1− pi

)
, σ 2

i

)
(6)

and then the MCSB approach can be implemented to sample the αi from the above distribu-
tion in Eq. (6).

The MCBS approach (hereafter referred as MCSB-Power) to estimate the statistical power
for testing treatment efficacy between two treatmentswith sample sizesn1,n2 andprobabilities
p1 and p2, can be implemented by the following steps:

1. Set counter I= 0 and the number of simulations, N (say, N= 1,000,000),
2. Sample xi ∼ Binomial(ni, pi) and perform logistic regression to test the null hypothe-

sis H0: α1 = α2, or essentially H0: p1 = p2,
3. If the associated p-value from this logistic regression is less than 0.05 for H0, increase

I by one,
4. Repeat steps 2 and 3 forN times and the statistical power can be then estimated by I/N.
Now this MCSB approach can be similarly implemented to calculate the assurance using

the logit-normal formulation (hereafter referred as “MCSB-LogitNormal”) for testing treat-
ment efficacy between two treatments with sample sizes ni, probabilities pi and σ 2

i (i = 1,2),
can be implemented by the following steps:

1. Set counter I= 0 and the number of simulations, N (say, N= 1,000,000),
2. Sample αi ∼ N(log( pi

1−pi ), σ
2
i ) from Eq. (6) and then calculate pi = eαi

1+eαi using the
sampled αi,

3. Sample xi ∼ Binomial(ni, pi) and perform logistic regression to test the null hypothe-
sis H0: α1 = α2, or essentially H0: p1 = p2,

4. If the associated p-value from this logistic regression is less than 0.05 for H0, increase
I by one,

5. Repeat steps 2 and 4 forN times and the statistical power can be then estimated by I/N.
Both MCSB-Power and MCSB-LogitNormal proposed above can be easily implemented

in any software that handles logistic regression. Appendix C is the R code for these two
approaches.

To illustrate these approaches, again we make use of sec. 5.1 in O’Hagan et al. (2005) for
clinical trials in rheumatoid arthritis where p1 = 0.2 and p2 = 0.3, which corresponds to
α1 = −1.386 and α2= −0.847, respectively. To simplify the illustration and without loss of
generality, we assume σ 2

1 = σ 2
2 = σ 2 and consider one case of small variance 0.01 and the

other case of large variance 0.1. In addition, we consider equal sample size for the two treat-
ments (i.e., n= n1 = n2). With these settings, we run these two MCSB approaches for sample
sizes from 50 to 800 and calculate the statistical power using MCSB-Power and assurance
using MCSB-LogitNormal. The results are summarized in Table 2 and graphically displayed
in Fig. 2.

It can be seen from Table 2 and Fig. 2 that the statistical power is generally larger than the
assurance for sufficient large sample size (>180 in this simulation) but similar for small sam-
ple size (< 180 in this simulation). This conclusion is consistent with the results in Table 1
and Fig. 1. It is observed that the statistical power is greater than 0.8 for sample size 300
per group. This power is similar to the result in Section 3.3 where it is 0.78 for sample size
of 200 for the control group and 400 for the treatment group. It is also observed that given
this sample of 300, the assurance (expected probability to have a successful trial) is 0.76 and
0.67 for variance= 0.01 and variance= 0.1, respectively, which are smaller but not by much.



Table . “MCSB-Power”approach for statistical power (the nd column) and “MCSB-LogitNormal”approach
for assurance with variance= . (the rd column) and assurance with variance= . (the th column) for
various sample sizes (st column).

Sample size /group (n= n = n ) Statistical power Assurance with variance= . Assurance with variance= .

 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .
 . . .

In order to have assurance to be 0.8 to ensure an absolute successful trial, the sample size
would have to be 350 (where the power is 0.85) for smaller prior variance (i.e., when variance
= 0.01) and an enormous 800 (where the power is 0.99) for large prior variance (i.e., when
variance= 0.1), as seen in Table 2 and Fig. 2.

With a further increase in the sample size from 300 to 400, the associated statistical power
increases from 0.8 to 0.9, roughly a 12% increase. Nonetheless, the assurance increase is about
10% from 0.76 to 0.84 for smaller variance of 0.01 and 6% from 0.66 to 0.70 for large variance
of 0.1. It is important to observe that the assurance is bounded. In our case with the larger
variance of 0.1, the assurance limit is roughly 0.7, no matter how big the sample size is. This
indicates that assurance is constrained by the variability of prior information, which is rea-
sonable because with uncertainty in the prior distribution and without collecting the actual
data, it is impossible to be 100% assured that a trial will be successful. In light of this, assur-
ance should be compared within the context, rather than in a vacuum or using the absolute
magnitude.

Figure . Statistical power and assurance fromdifferent sample sizes for clinical trials. The two vertical arrow
lines correspond to the sample sizes of  and  in Table  where the statistical powers are . and ., and
assurances are . and ., respectively.



Figure . Statistical power and assurance for a range of sample sizes under two different variances of .
and ..

4. Discussion

In this article, we illustrated the transition from the conventional statistical power to assur-
ance proposed in O’Hagan and Stevens (2001) in designing clinical trials. The conventional
statistical power is the probability of rejecting the null hypothesis conditional on the specified
treatment effect, whereas the assurance is the unconditional probability of a successful clin-
ical trial averaged over the parameter space of this pre-specified treatment effect. Then the
calculation of the assurance involved a high-dimensional integration would have to resort to
numerical integration. We promote the Monte Carlo simulation-based approach in this arti-
cle and illustrated its implementation in R for clinical trials with normally distributed data
given known or unknown variances, as well as clinical trials with binary data from beta and
logit-normal distributions.

It is common knowledge that a traditionally powered clinical trial at 80% to 90% does
not guarantee 80% to 90% of probability of success, as the power calculation is based upon
a pre-specified fixed treatment effect, which most likely will be different from the true treat-
ment effect. Typically, the assurance is lower than the statistical power for a sufficient sample
size, even though we observe that the assurance could be higher than the statistical power
for underpowered clinical trials as seen in Figs. 1 and 2. It is well known that as the sam-
ple size increases and approaches to infinity, the traditional statistical power will approach to
1. However, the assurance will be bounded by a value less than 1 even when the sample size
approaches to infinity. This can be analytically illustrated using the descriptions in Section 2.3.
As study sample sizes (e.g., n1 and n2 in our examples) approach to infinity, the standard error
(i.e., τ ) should approach to zero. The assurance defined in O’Hagan et al. (2005) would then
approach to γ = 
( m√

v
), which is the prior probability of success (positive outcomes).

In the real world of clinical trials, we believe that the assurance can provide a more realistic
and robust measure of probability of success than the traditional power can. Assurance does
depend on the prior distribution of treatment effects, which can be very subjective with vary-
ing Bayesian priors. Thus, the related issues in the Bayesian approach also apply to assurance.
Nevertheless, assurance typically will be used by the pharmaceutical industry sponsors for



internal decision-making and therefore it is the industry sponsor’s risk of using it. As such,
it will also be at the industry sponsor’s best interest to get the most relevant prior distribu-
tion for the treatment effect. This can be accomplished by various ways such as historical data
driven or expert elicitation or a hybrid of both. Good decision-making is important for clin-
ical development and therefore any method that can enhance good decision-making will be
beneficial to patients, sponsors and regulators, as well as society in general.
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Appendix A: R code to compare Chuang-Stein’s (2006) numerical integration
formulation with O’Hagan et al.’s (2005) formulation when prior variance is
known

#########################################################################
# A.1. Use R “integrate ” instead of the trapezoidal numerical integration # in Chuang-Stein
(2006), which can compute the assurance faster
#########################################################################
sprob.Chuang= function(prior.mean,prior.sd,prior.size,post.size){
prior.sdm= sqrt(2/prior.size)∗prior.sd # prior sd for the mean
post.sdm= sqrt(2/post.size)∗prior.sd # posterior sd for the mean
# fn for the Prob(trial produces a significant p-val)∗prior distribution
integrand← function(delta)
pnorm(1.96∗post.sdm,mean= delta,sd= post.sdm,lower.tail= FALSE,log.p= FALSE)∗

dnorm(delta,mean= prior.mean,sd= prior.sdm,log= FALSE)
# Numerical integration of delta from -Inf to Inf
avg= integrate(integrand, lower= -Inf, upper= Inf)$value
# output
avg
} # end of “sprob.Chuang”
## Run the function and Reproduce Table I in Chuang-Stein (2006)
> sprob.Chuang(2.5,7.14,25,128)
[1] 0.6330728
> sprob.Chuang(2.5,7.14,25,172)
[1] 0.6767027
> sprob.Chuang(2.5,7.14,70,128)
[1] 0.6915049
> sprob.Chuang(2.5,7.14,70,172)
[1] 0.7555993
#######################################################################
# A.2: O’Hagan’s formulation to call “pnorm”
#######################################################################
sprob.OHagan= function(prior.mean,prior.sd,prior.size,post.size){
tau= sqrt(2/post.size)∗prior.sd; v= sqrt(2/prior.size)∗prior.sd
sprob.OHagan= pnorm((qnorm(0.025)∗tau+prior.mean)/sqrt(tau^2+v^2))

# output



sprob.OHagan
} # end of “sprob.OHagan”
## Run the code and Reproduce Table I in Chuang-Stein with O’Hagan et al.
> sprob.OHagan(2.5,7.14,25,128)
[1] 0.6330783
> sprob.OHagan(2.5,7.14,25,172)
[1] 0.6767073
> sprob.OHagan(2.5,7.14,70,128)
[1] 0.6915124
> sprob.OHagan(2.5,7.14,70,172)
[1] 0.7556054

Appendix B: R code for BCTS

#####################################################################
# B.1: Assurance for Normal Data with Known Sigma (ANDks)
# to check with the results from Appendix A
#####################################################################
ANDks= function(nsimu,prior.mean,prior.sd,prior.size,post.size){
sim.pow= rep(0, nsimu)
for(i in 1:nsimu){
# calculate the standard deviation for the means
prior.sdm= sqrt(2/prior.size)∗prior.sd # prior sd for the mean
post.sdm= sqrt(2/post.size)∗prior.sd # posterior sd for the mean
# sample the prior
Delta= rnorm(1,prior.mean,prior.sdm)
# with the sampled prior, calculate the power
sim.pow[i]= pnorm(qnorm(1-alpha/2)∗post.sdm,
mean= Delta,sd= post.sdm,lower.tail= FALSE,log.p= FALSE)
} # end of i-loop
# average the simulated power
mean(sim.pow)
} # end of “ANDks” function
## run the code to check with the calculations in Appendix A
> ANDks(1000000,2.5,7.14,25,128)
[1] 0.6329084
> ANDks(1000000,2.5,7.14,25,172)
[1] 0.6761969
> ANDks(1000000,2.5,7.14,70,128)
[1] 0.6915248
> ANDks(1000000,2.5,7.14,70,172)
[1] 0.7555312
######################################################################
# B.2: Assurance for Normal Data with unknown sigma(ANDus)
######################################################################
ANDus= function(nsimu,prior.mean,prior.sd,prior.size,post.size){
sim.pow= rep(0, nsimu)
for(i in 1:nsimu){



# sample chisq for sigma since (n-1)∗s^2/sigma^2∼chisq(n-1)
sd= sqrt((prior.size-1)∗prior.sd^2/rchisq(1,df= prior.size-1))
# calculate the standard deviation for the mean
prior.sdm= sqrt(2/prior.size)∗sd # prior sd for the mean
post.sdm= sqrt(2/post.size)∗sd # posterior sd for the mean
# sample the prior
Delta= rnorm(1, prior.mean,prior.sdm)
# with the sampled prior, calculate the power
sim.pow[i]= pnorm(1.96∗post.sdm,mean= Delta,
sd= post.sdm,lower.tail= FALSE,log.p= FALSE)
} # end of i-loop
# assurance is the average of simulated power
mean(sim.pow)
} # end of “ANDus” function
#### run the function for assurance with unknown variance
> ANDus(1000000,2.5,7.14,25,128)
[1] 0.627181
> ANDus(1000000,2.5,7.14,25,172)
[1] 0.6700293
> ANDus(1000000,2.5,7.14,70,128)
[1] 0.687614
> ANDus(1000000,2.5,7.14,70,172)
[1] 0.7515066
#########################################################################
# B.3: Assurance with binary clinical trial in O’Hagan et al. Example 4
#########################################################################
library(Rlab) # for rbern
nsimu= 1000000;alpha= 0.05; post.size1= 200; post.size2= 400
sim.pow= rep(0,nsimu)
for (i in 1:nsimu){
# sample Beta for p1
p1= rbeta(1,5,20)
# sample Beta for p2 from a mixture
w= rbern(1,0.15);p2= w∗rbeta(1,2,23)+(1-w)∗rbeta(1,3,4.5)
# z-value in equation
z.val= (p2-p1)/sqrt(p1∗(1-p1)/post.size1+p2∗(1-p2)/post.size2)
# with the sampled prior, calculate the power
sim.pow[i]= pnorm(-qnorm(1-alpha/2)+z.val)
} # end of i-loop
# Assurance as the mean
mean(sim.pow)
[1] 0.6334372

Appendix C: MCSB approach for statistical power and assurance

########################################################
# MCSB function
########################################################



pow2assurance= function(nsimu,n1,n2,pA,pB,sig2A,sig2B,sig2A2,sig2B2,alpha){
# initializes the power and assurance
pow= assu1= assu2= 0
# loop for calculation
for(i in 1:nsimu){
### power simulation
xA= rbinom(n1,1,pA);xB= rbinom(n2,1,pB)
dd= data.frame(x= c(xA,xB),trt= c(rep(“A”,n1),rep(“B”,n2)))
md= glm(x∼trt,dd,family= “binomial”);
pval.md= summary(md)$coef[“trtB”,“Pr(>|z|)”]
pow= pow+sum(pval.md < alpha)
### assurance simulation for sigma1
alphaA= rnorm(1,log(pA/(1-pA)),sqrt(sig2A));
alphaB= rnorm(1,log(pB/(1-pB)),sqrt(sig2B))
pAs= exp(alphaA)/(1+exp(alphaA));pBs= exp(alphaB)/(1+exp(alphaB));
xA= rbinom(n1,1,pAs);xB= rbinom(n2,1,pBs)
dd= data.frame(x= c(xA, xB), trt= c(rep(“A”, n1), rep(“B”, n2)))
md= glm(x∼trt, dd, family= “binomial”);
pval.md= summary(md)$coef[“trtB”,“Pr(>|z|)”]
assu1= assu1+sum(pval.md < alpha)
### assurance simulation for sigma2
alphaA= rnorm(1,log(pA/(1-pA)),sqrt(sig2A2));
alphaB= rnorm(1,log(pB/(1-pB)),sqrt(sig2B2))
pAs= exp(alphaA)/(1+exp(alphaA));pBs= exp(alphaB)/(1+exp(alphaB));
xA= rbinom(n1,1,pAs);xB= rbinom(n2,1,pBs)
dd= data.frame(x= c(xA, xB), trt= c(rep(“A”, n1), rep(“B”, n2)))
md= glm(x∼trt, dd, family= “binomial”);
pval.md= summary(md)$coef[“trtB”,“Pr(>|z|)”]
assu2= assu2+sum(pval.md < alpha)
} #End of i-loop
# output
list(pow= pow/nsimu,assu1= assu1/nsimu,assu2= assu2/nsimu )
}# end of pow2assurance
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