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A B S T R AC T Objective: This article introduces Bayesian assurance as an alternative
to traditional power analysis in intervention research. Bayesian assurance is de-
fined as the unconditional probability of identifying an intervention effect.Method:

Assurance can be calculated as the expected statistical power based on a prior dis-
tribution of the unknown parameters related to the effect size. Using Monte Carlo
simulation methods, we demonstrate Bayesian assurance in 2 small-scale random-
ized trials: a trial of motivational interviewing for patients with behavioral health
disorders and a trial of a specialty mental health probation. Results: The findings
suggest that traditional statistical power is highly sensitive to misspecification. Be-
cause assurance can be calculated across all possible effect sizes, it controls the un-
certainty associated with the selection of a point effect size in traditional power es-
timation. Assurance usually produces larger sample-size estimates, and thus cutoff
values for assurance may be lower than those typically used in classical power esti-
mation. Conclusions: Compared to traditional power estimation, assurance appears
to be more robust against inaccurate prior information. Assurance may be a pre-
ferred method for estimating sample sizes when prior information is poor and the
costs of underpowering a study are great.
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A
defining feature of intervention research in the health and social services

is a design and development process in which one study informs the next

study. When successful, small pilot or feasibility studies often lead to effi-

cacy and effectiveness trials that, in turn, lead to cost-effectiveness and cost-benefit

studies (Fraser & Galinsky, 2010; Fraser, Richman, Galinsky, & Day, 2009). In this

process, determining the appropriate number of participants (i.e., sample size) for

each sequential trial is a practical challenge because, in the early stages of interven-

tion development, researchers often do not have good information on which to
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base effect size estimates. Because of the cost of trials and the implications of find-

ings for future studies, making efficient and accurate power calculations has high

practical value.

Statistical power is traditionally defined as the probability of rejecting the null

(i.e., identifying an effective intervention) if the true intervention effect equals a

specific value or effect size. Therefore, statistical power is a conditional probability

related to an expected value defined in the research design process (Cohen, 1988).

In practice, this value is typically obtained from pilot studies and previous research,

including systematic reviews and meta-analyses. However, the effect size value can

also be based on knowledge and prior experience, which could be very different

from the true unknown intervention effect size. In addition to leading to unneces-

sarily large samples, errors in estimating an expected effect size can lead to sample

sizes that are too small, and this can result in studies with inadequate power. An

inadequately powered study can produce findings that influence the decision to

cease development of an intervention, whereas a study with adequate statistical

power might have shown the intervention as promising.

Because of this imprecision, traditional statistical power analysis has been crit-

icized for failing to adequately consider the uncertainty associated with specifying

an expected effect size (Du &Wang, 2016). To calculate power in such a way that it

is less reliant on a single point effect size estimate, Bayesians developed the concept

of assurance. Assurance is defined as the unconditional probability of rejecting the

null hypothesis (Chen & Ho, 2016; Chuang-Stein, 2006; O’Hagan & Stevens, 2001;

O’Hagan, Stevens, & Campbell, 2005; Ren & Oakley, 2014). Assurance can be ob-

tained as the expected powerwith respect to the distribution of a pre-observed effect

size alongwith related parameters. This framework leads to the Bayesian paradigm.

Conceptualized this way, assurance is sometimes called Bayesian assurance.

Bayesian assurance, as an alternative to traditional statistical power, is a develop-

ing concept in social and health sciences research. The purpose of this paper is to in-

troduce assurance and demonstrate its computation with Monte Carlo simulations.

Conventional Statistical Power and Bayesian Assurance
In addition to the design of new interventions, the general objective of intervention

research is to test whether a new intervention is superior to treatment as usual. To

demonstrate the effectiveness of a new intervention, researchers determine how

many participants should be enrolled in each intervention arm of a trial (i.e., the

intervention or treatment arm and the treatment-as-usual or control arm). Typi-

cally, a sample size estimate is based on a power calculation. Translated into statis-

tical terms, the null hypothesis (H0) for intervention research is defined as the two

arms being no different versus the alternative hypothesis (Ha), defined as the new

intervention being superior to treatment as usual (i.e., a one-tailed test). Statistical

power (p) is then defined as the probability of rejecting the null hypothesis when it
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is false. Power is typically set at 0.80. The associated sample size can then be deter-

mined based on this power and the Type I error rate.

Following the notation fromO’Hagan et al. (2005) and from Chen and Ho (2016),

we denote R as the event of rejecting the null hypothesis (i.e., outcomes appear to

be in favor of a new intervention). Conventional statistical power can be then writ-

ten as follows:

p vð Þ 5 P Rjvð Þ (1)

where p(v) is the power function and v is a parameter vector including the treat-

ment effect, sample variance, and all possible other parameters. As defined in

Equation 1, power is the probability of R conditioned on a set of unknown param-

eters in vector v. The value of this conditional probability, as well as the associated

sample-size calculation, is then dependent on the unknown parameter vector v.

Generally, parameter v cannot be known precisely in practice, and it is rare that

observed data from systematic reviews, meta-analyses, and pilot studies will pro-

vide fully accurate estimates (Chen & Peace, 2013). Therefore, power estimation—

as one of the more important activities in intervention research—can lead to either

overpowering or underpowering an intervention study. Typically, overpowering

means that resources are likely wasted by recruiting more participants than needed.

However, underpowering is potentially worse. A study that is underpowered can

produce nonsignificant findings that mislead stakeholders into thinking that an

intervention, if taken to scale, will have no added benefit over treatment as usual.

Reformulating the Concept of Power: Assurance
Bayesians are reformulating the core idea of power in research design to address

the risk of overpowering or underpowering. Spiegelhalter and Freedman (1986) pro-

posed the concept of assurance as a predictive approach to estimating sample sizes

in clinical trials. Acknowledging that prior information has always been used to cal-

culate sample sizes, Spiegelhalter, Abrams, and Myles (2004) later conceptualized

assurance as a hybrid frequentist–Bayesian concept. O’Hagan and Stevens (2001)

also advanced assurance, naming the concept Bayesian assurance (denoted by g).

They conceptualized assurance as an alternative to statistical power—defining it

as an unconditional probability—by integrating all prior parameters (v) to reject the

null hypothesis; that is, g5 P(R), where R is rejection of the null hypothesis to con-

firm that a new intervention is superior to treatment as usual.

Assurance can then be defined as the expected power in the parameter space of

v. It can be seen that

g 5 P Rð Þ 5
ð
P Rjvð ÞP vð Þdv 5 Ev P Rjvð Þð Þ (2)

where the expectation is related to the prior distribution, P(v).
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With this definition, Bayesian assurance extends the frequentist approach to

statistical power by averaging (or integrating out) its conditionality across all plau-

sible prior values of v. Assurance can then provide an unconditional probability of

the success of a clinical trial regardless of prior parameters that might not be well

observed in the design and development of a new intervention. When derived in

this way, assurance is more realistic and robust than estimates based on conven-

tional statistical power calculations.

Assurance Calculations Using Monte Carlo Simulation
Conceptually, Bayesian assurance as defined in Equation 2 is the expected power

in the parameter space of v. Assurance is calculated by averaging/integrating across

all possible parameters in the space of v. Of course, this integration may be high

dimensional given that v could include the intervention effect size alongwith other

related parameters (e.g., covariates). When the expected power involves high-

dimensional integration, attempting to solve the analytical formula with routine

statistical software is impractical because the computations require high-capacity

computing. However, with routine computing technology, analysts can resolve the

Bayesian assurance computations using a Monte Carlo simulation-based approach.

Monte Carlo simulation is commonly used in designing and analyzing clinical tri-

als in medicine and pharmaceutical studies (Chen & Chen, 2017; Kimko & Peck,

2010).

Detailed implementation in the open-source software R (which can be freely

downloaded from http://www.r-project.org) can be found in Chen and Ho (2016).

For readers who are interested in reproducing the calculations in this paper and

using assurance in their own work, the R program can be requested from the au-

thors. These are the steps to estimate Bayesian assurance using Monte Carlo simu-

lation:

1. Define Counter I for iteration and the required number of simulations, N

(e.g., N 5 1,000,000). (Note, however, that other than the pragmatic limita-

tions inherent in available computing power, there are few guidelines for

the size of N. Typically, N is recommended to be sufficiently large so as to

stabilize the assurance distributions.) Set I 5 0 and start looping.

2. Sample v from the joint prior distributions.

3. Calculate conventional statistical power conditional on this sampled value

of v from Step 2 with the data or calculated test statistics using the associ-

ated model for hypothesis testing.

4. Estimate Bayesian assurance by averaging statistical power from Step 3.

In the next section, we have illustrated aMonte Carlo simulation-based approach

to estimate Bayesian assurance. We focused on continuous and binary data be-
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cause they are commonly used in research studies; however, other types of data

can be easily implemented with some modifications in Steps 2 and 3.

Assurance Calculation for Normally Distributed Data with Unknown Variances
When variances are unknown, a commonly used statistic is the t-test. Under the

homogeneous variance assumption, this test statistic is formulated as

t 5
�x2 2 �x1

ĵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1 1

1
n2

q ,

which follows the Student t-distribution with degrees of freedom, df5 n1 1 n2 2 2,

where ĵ is the estimated pooled standard deviation. Under the heterogeneous var-

iance assumption, the Satterthwaite approximation—

t 5 �x2 2 �x1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĵ2
1

n1
1 ĵ2

2

n2

r�

(where ĵ2
1 and ĵ2

2 are the estimated sample variances)—is used with degrees of free-

dom (df ) matching the moments (see Chen & Peace, 2011; Chen, Peace, & Zhang,

2017).

The standard test for the null hypothesis of no intervention effect—H0: d 5 0

against the one-sided alternative Ha: d > 0—is to reject the null hypothesis if t >

ta,df. Statistical power can then be calculated based on this t-distribution. This dis-

tribution can also be used to calculate a Bayesian assurance by two-dimensional

numerical integration over the parameter space of d and j2 with the noncentral

t-distribution. However, the Monte Carlo simulation-based approach is more easily

implemented in this setting. Corresponding to the steps previously described, this

approach (hereafter referred to asMC-Normal) can be implemented in the following

steps:

1. Set Counter I 5 0 and the number of simulations, N (e.g., N 5 1,000,000).

2. Sample d and j2 from their joint prior distribution.

3. Sample d̂ 5 �x2 2 �x1 ∼ Nðd, ðn21
1 1 n21

2 Þj2Þ and ðn1 1 n2 2 2Þĵ2

j2= ∼ x2
df , then

calculate the t-test statistic and statistical power.

4. Estimate the assurance with the average of the resulting sample of N statis-

tical powers.
Assurance Calculation for Binary Data
In any intervention research that produces binary data with xi successes from total

participants (ni) for intervention i (i5 1, 2), denote pi as the population success rate

for intervention i. Then the null hypothesis to test the intervention effectiveness is

H0: p1 5 p2. The classical statistical test is based on approximated normality of the
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sample proportions p̂i 5 xi
ni= (see, e.g., Chen & Peace, 2011; Chen et al., 2017). The

null hypothesis is rejected in a one-sided test if Z > Za, where

Z 5 p̂2 2 p̂1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1 1 2 p̂1ð Þ

n1

1 p̂2 1 2 p̂2ð Þ
n2

q.

is approximately standard normally distributed. The conventional statistical power

can then be approximated by

p Rjp1, p2ð Þ ≈ F 2Za 1
p2 2 p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1 12p1ð Þ
n1

1 p2 12p2ð Þ
n2

q
0
B@

1
CA, (3)

where F is the standard normal density function.

This definition of statistical power is a conditional probability that is based on

two unknown parameters (p1 and p2) from both treatments. By definition in Equa-

tion 2, Bayesian assurance would then be calculated by integrating these two un-

known parameters (p1 and p2) from their joint prior distributions. This integration

would not be feasible using the analytical formula in Equation 3. However, the cal-

culation can be implemented easily with a Monte Carlo simulation-based approach

(hereafter referred to as MC-Binary) in the following steps:

1. Set Counter I 5 0 and the number of simulations N (e.g., N 5 1,000,000).

2. Sample p1 and p2 from their prior distributions.

3. Calculate the Z-statistic and then the associated statistical power using

Equation 3.

4. Estimate the assurance with the average of the resulted sample of N statis-

tical powers.

Applications of MC-Normal and MC-Binary
We illustrate both the MC-Normal and MC-Binary approaches in this section. The

first example is from Martino, Carroll, Nich, and Rounsaville (2006)—a report of a

randomized controlled pilot study of motivational interviewing for individuals

with psychotic and drug-use disorders. We used mean days of alcohol use from the past

28 days as a continuous outcome. The second example comes from a small-scale ran-

domized controlled trial of a specialty probation program for people with serious

mental illness. For this analysis, we used a technical probation violation as a binary out-

come (i.e., presence or absence of probation violation).

A Randomized Controlled Pilot Study of Motivational Interviewing
As described in Martino et al. (2006), a randomized controlled pilot study was con-

ducted to examine the efficacy of a motivational interviewing intervention imple-

mented over two sessions and adapted for people dually diagnosed with psychotic
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and substance-use disorders (i.e., dual diagnosis motivational interviewing; DDMI).

DDMI was compared with a standard psychiatric interview (SI) conducted over two

sessions. For this study, 44 treatment-seeking participants were recruited and ran-

domly assigned to the two treatment conditions; 24 of the 44 participants were ran-

domized to receive DDMI, and 20 participants were randomized to the standard in-

take. The primary outcomes were “days of primary drug use, secondary drug use,

alcohol use and psychotropic medication adherence, proportion of participants ad-

mitted into the program and days of attendance” (Martino et al., 2006, p. 1479).

Participants were followed and assessed at four time points: baseline, and 4-, 8-

and 12-week follow-up. Martino et al. concluded that both DDMI and SI showed

improved treatment outcomes, but no statistically significant main effects were

found for the sample overall. Further, subgroup analysis revealed that DDMI re-

sulted in significantly better treatment outcomes for the subgroup whose primary

drug was cocaine, whereas SI resulted in significantly better treatment outcomes

for the subgroup whose primary drug was marijuana.

Data for this pilot study were reported in Table 1 of Martino et al. (2006). We

used the reported primary outcomemean days of alcohol use for the past 28 days to illus-

trate assurance as an estimate of sample sizes needed to sufficiently power a larger

study. Interested readers can use our R program for other outcomes inMartino et al.
Table 1
Bayesian Assurance and Statistical Power Calculations Under Different Scenarios for Different Sample
Sizes for Normally Distributed Data

Sample Size Assurance Power Power 1 Power 2 Power 3 Power 4

20 0.260 0.186 0.086 0.336 0.241 0.126
40 0.397 0.333 0.134 0.596 0.438 0.215
60 0.481 0.467 0.181 0.773 0.602 0.301
80 0.537 0.585 0.227 0.880 0.728 0.384
100 0.578 0.682 0.273 0.939 0.819 0.461
120 0.609 0.760 0.318 0.970 0.883 0.533
140 0.633 0.822 0.362 0.986 0.926 0.598
160 0.652 0.869 0.405 0.994 0.954 0.656
180 0.669 0.905 0.446 0.997 0.971 0.707
200 0.681 0.932 0.485 0.999 0.983 0.752
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Note. Assurance5 the Bayesian assurance calculated by Monte Carlo simulation; Power5 the
calculated statistical power with the observed data; Power 15 the calculated statistical power
with the observed mean difference decreased by 1 day; Power 2 5 the calculated statistical
power with the observed mean difference increased by 1 day; Power 3 5 the calculated sta-
tistical power with standard deviation decreased by 1 day; Power 45 the calculated statistical
power with standard deviation increased by 1 day.
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(2006). For the whole sample (N 5 44), the mean days for alcohol use for the past

28 days was 4.07 (SD 5 6.56). With respect to the two study arms (i.e., DDMI vs.

SI), the mean days for DDMI was 3.04 (SD 5 5.82), and for SI the mean was 5.30

(SD 5 7.31). Therefore, the mean difference between DDMI and SI was 2.26 days.

The pooled SD can be calculated as 6.536, which would give the effect size of 0.346.

The associated t-statistic is 1.142 (df5 42), which yields a one-sided p value of 0.130

indicating that DDMI is not significantly better than SI. This finding is consistent

with the conclusions from Martino et al. (2006).

According to Cohen (1988), an effect size of 0.346 is a small to medium effect. If

we used this effect size to design a future study to refine and further test DDMI, the

sample size would need to increase to 133 participants per arm (i.e., 266 partici-

pants total). This is the sample size generated from a classical power analysis with

a Type I error controlled at 2.5% (one-sided) with power of 0.80. With a population

SD of 6.536, the sample size is based on a population mean difference of 2.26,

which is the difference in days of alcohol use between the treatment and control

conditions.

Using the sample size of 133 per arm, we ran the MC-Normal procedure 1 mil-

lion times to estimate Bayesian assurance. So derived, assurance is 0.626 in com-

parison with the classical statistical power of 0.80 as designed. In other words, a

sample size of 133 per arm produces power at 0.80 only if an effect size of 0.346

or greater is observed. Conditioned on all possible effect sizes (i.e., conditioned on

greater uncertainty), the Bayesian perspective suggests that power with a sample

of 133 participants per arm is only 0.626. This difference is not a surprise because

Bayesian assurance is calculated as an average of classical statistical power over all

possible prior specifications of mean differences and standard deviations (cf. Equa-

tion 2).

To further illustrate Bayesian assurance and classical statistical power, we ran

the MC-Normal for sample sizes ranging from 20 to 200 participants and calculated

the Bayesian assurance and the statistical power with the observed values from

Martino et al. (2006). The findings are summarized in Table 1 and graphically illus-

trated in Figure 1. As seen in Table 1, Bayesian assurance is labeled as Assurance and

statistical power with the observed values is labeled as Power.

In addition, we have included four supplemental scenarios as sensitivity analy-

ses. These scenarios demonstrate the relationship between traditional statistical

power estimates under different specifications of mean differences and their asso-

ciated SDs. Scenarios 1 and 2 are designed to investigate sensitivity for mean differ-

ences with SDs fixed at the observed value. Labeled as Power 1, Scenario 1 decreases

the observed mean treatment difference by 1 unit, from 2.26 to 1.26, which corre-

sponds to a decrease in the effect size from the observed 0.346 to 0.193. Labeled as

Power 2, Scenario 2 increases the observed mean treatment difference from 2.26 to

3.26, which corresponds to an increase in the effect size from the observed 0.346 to
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0.499. Similarly, Scenarios 3 and 4 are designed to investigate sensitivity related to

SDs with the mean difference fixed at the observed value. Specifically, Scenario 3

(labeled as Power 3) decreases the observed SD by 1 unit, from 6.536 to 5.536, which

corresponds to an increase in the effect size from the observed 0.346 to 0.408. La-

beled as Power 4, Scenario 4 increases the observed SD by 2 units, from 6.536 to

8.536, which corresponds to a decrease in the effect size from the observed 0.346

to 0.265. Figure 1 illustrates the calculated statistical power and Bayesian assur-

ance with the observed mean difference and SD for different specifications of sam-

ple sizes in a hypothetical future intervention study with continuous data.

In Table 1 and Figure 1, Bayesian assurance across the scenarios increases as

sample sizes increase. Further, Bayesian assurance is generally smaller than statis-

tical power for relatively large sample sizes (e.g., for motivational interviewing

studies with sample sizes greater 60 participants per arm). However, Bayesian as-

surance is larger than classical power (column 3 in Table 1) in sample sizes that in-

clude fewer than 60 participants per arm. These larger values are expected because
Figure 1. Calculated statistical power (Power; solid black line) and Bayesian assurance (Assurance; red line)
with the observed mean difference and standard deviation for different specifications of sample sizes in a
hypothetical future intervention study with continuous data. Power 1, Power 2, Power 3, and Power 4 are the
statistical powers corresponding to the four scenarios of sensitivity runs reported in Table 1. The vertical
arrows indicate a sample size of 133 participants where Bayesian assurance is 0.626 (red arrow) and statistical
power is 0.8 (black arrow).
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assurance is the average effect for all possible specifications of distributions of the

mean difference and the SD.

Also shown in Table 1 and Figure 1, statistical power is sensitive to different

specifications of mean treatment differences and SDs. For example, for the impact

of the mean treatment difference as seen in Power 1 and Power 2, by decreasing or

increasing the mean treatment difference by 1 day on alcohol use, statistical power

changes from 0.18 to 0.77 for a sample size of 60, from 0.22 to 0.88 for a sample

size of 80, from 0.36 to 0.99 for a sample size of 140, and from 0.40 to 0.99 for

a sample size of 160. Similarly, for the influence of SDs as seen in Power 3 and

Power 4, by decreasing the observed SD from 6.536 by 1 unit in Power 3 and increas-

ing the observed SD from 6.536 by 2 units in Power 4, the resultant statistical power

could be dropped from 0.77 to 0.30 for a sample size of 60, from 0.879 to 0.394 for a

sample size of 80, from 0.986 to 0.598 for a sample size of 140, and from 0.993 to

0.657 for a sample size of 160.

Randomized Trial of Specialty Mental Health Probation
As an example of calculating assurance with a binary dependent measure, we used

data from a recently completed feasibility study as reported in Cuddeback (2016).

For this study, individuals with serious mental illnesses (e.g., schizophrenia, bipo-

lar disorder) who were on probation in two counties—one urban and one rural—in

a large southeastern state were randomly assigned to receive either standard pro-

bation or a specialty mental health probation (SMHP). Briefly, the core components

of SMHP included (a) a reduced probation caseload size, (b) an exclusively mentally

ill caseload, (c) a problem-solving supervision orientation, (d) ongoingmental health

training, and (e) greater connection to behavioral health and other community-

based resources. Criminal justice andmental healthoutcomeswere collected at base-

line, 6-month, and 12-month intervals.

For this article, the probability of a technical violation (a binary outcome) was

used to illustrate the calculation of assurance for binary data. Probationers are usu-

ally given a technical violation when they fail to meet the specific requirements

of their probation. In the pilot study, 46 participants were randomly assigned to

SMHP, and 50 were assigned to receive standard probation. Treatment and control

subjectswere balanced on all observed baseline covariates. Studyfindings suggested

that 62% (n 5 31) of the subjects who received standard probation had a technical

violation, and 50% (n 5 23) of those who received SMHP had a technical violation,

which corresponds to a 12% decrease among experimental subjects. Using these

values to design a future study with 160 participants per arm, statistical power

would be 70% and the Bayesian assurance fromMC-Binary would be 65%or slightly

smaller.

To further illustrate the MC-Binary approach for other specification of sample

sizes, we ran the Monte Carlo procedure for sample sizes from 50 to 300 partici-
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pants. The resulting statistical power and Bayesian assurance with the observed

values are labeled as Statistical Power and Bayesian Assurance in Table 2.

As with the continuous data, four additional analyses are included to demon-

strate the sensitivity of traditional statistical power to different specifications of

the number of participants who responded to the treatments. Scenarios 1 and 2 are

designed to investigate the sensitivity for the responses from the SMHP treatment

arm. Specifically, Scenario 1 (labeled as Power 1) decreases the observed response

from 23 participants to 20. Scenario 2 (labeled as Power 2) increases the observed re-

sponse from 23 to 26. Similarly, Scenarios 3 and 4 are designed to investigate the

sensitivity for the responses from the standard probation arm. Specifically, Sce-

nario 3 (labeled as Power 3) decreases the observed responses by 2 (from 31 to 29),

andScenario4(labeledasPower4) increasestheobservedresponsesfrom31to33.Fig-

ure 2 is an illustration of Table 2 depicting the calculated statistical power and

Bayesian assurance with the observed response rates for different specifications of

sample sizes in a hypothetical future intervention study with binary data.

Similar to the continuous data, Bayesian assurance increases as the sample size

increases. Statistical power at the observed value (i.e., Power in column 3 of Table 2)

is generally larger than the Bayesian assurance for a large sample size (> 100 in this

study) but smaller for a small sample size (< 100). For the sample size 200 partici-

pants per arm, statistical power is about 0.80, whereas Bayesian assurance (i.e.,
Table 2
Bayesian Assurance and Statistical Power Calculations Under Different Scenarios for Different Sample
Sizes for Binary Data

Sample Size Assurance Power Power 1 Power 2 Power 3 Power 4

50 0.388 0.330 0.585 0.138 0.199 0.490
100 0.525 0.526 0.840 0.196 0.305 0.744
150 0.630 0.674 0.945 0.248 0.399 0.881
200 0.713 0.782 0.982 0.298 0.484 0.947
250 0.777 0.857 0.995 0.345 0.560 0.978
300 0.828 0.908 0.998 0.390 0.626 0.991
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Note. Assurance5 the Bayesian assurance calculated by Monte Carlo simulation; Power5 the
calculated statistical power with the observed data; Power 15 the calculated statistical power
with the response from specialty mental health probation (SMHP) decreased from the ob-
served 23 participants to 20; Power 2 5 the calculated statistical power with the response
from SMHP decreased from the observed 23 participants to 26; Power 3 5 the calculated
statistical power with the response from the standard probation arm decreased from the
observed 31 participants to 29; Power 4 5 the calculated statistical power with the response
from the standard probation arm increased from the observed 31 participants to 33.
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the expected probability of identifying a successful SMHP to reduce technical viola-

tion over standard probation) is about 71%.

Likewise, as seen in Table 2 and Figure 2, statistical power is sensitive to differ-

ent specifications of the number of responses. Specifically, for the impact from the

SMHP treatment condition as seen in Power 1 and Power 2, by decreasing or in-

creasing the violation response by three participants, power could change from

0.58 to 0.14 for a sample size of 50, from 0.945 to 0.248 for a sample size of 150,

and from 0.995 to 0.345 for a sample size of 250. Similarly, for the influence from

the control condition as seen in Power 3 and Power 4, by decreasing or increasing

the violation response by two participants, the resultant statistical power could be

changed from 0.199 to 0.490 for a sample size of 50, from 0.399 to 0.881 for a sam-

ple size of 150, and from 0.560 to 0.978 for a sample size of 250.

Discussion
In this article, we introduced Bayesian assurance as an alternative to traditional

power analysis in intervention research. We drew, in part, from work on clinical
Figure 2. Calculated statistical power (Power; solid black line) and Bayesian assurance (Assurance; red line)
with the observed response rates for different specifications of sample sizes in a future intervention study
with binary data. Power 1, Power 2, Power 3, and Power 4 are the statistical powers corresponding to the
four scenarios of sensitivity analysis in Table 2. The vertical arrows indicate a sample size of 160 participants
where the Bayesian assurance is 0.65 (red arrow) and the statistical power is 0.70 (black arrow).
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trials (Du&Wang, 2016; O’Hagan & Stevens, 2001; O’Hagan et al., 2005; Ren &Oak-

ley, 2014). In conventional research design, statistical power is calculated as the

probability of rejecting the null hypothesis conditional on a specified intervention

effect. Under assurance, power is calculated as the unconditional probability of a

successful intervention averaged over theparameter space of a prior treatment effect

and other nuisance parameters. The calculation of Bayesian assurance involves a

high-dimensional integration that is computationally challenging. However, Monte

Carlo simulation provides an adequate alternative estimation procedure. TheMonte

Carlo simulation-based approach is illustrated inRwith continuous and binary data.

Bayesian assurance has an important advantage over traditional power estima-

tion in intervention research. A traditionally powered intervention at 80% does not

guarantee an 80% probability of success because the power calculation is based on

a single pre-specified, fixed treatment effect that might be different from the true

unobserved treatment effect. We demonstrated the sensitivity of traditional statis-

tical power in Tables 1 and 2 by making slight changes in the observed values (i.e.,

mean differences and SDs) in continuous data and the response rates in binary data.

The findings suggest that statistical power is sensitive to minimal misspecification,

and misspecification could easily lead to false confidence derived, in part, from er-

roneous power estimates. The sensitivity of traditional power calculations to varia-

tion in expected effect sizes and SDs could contribute to explanations for why seem-

ingly appropriately powered studies with well-conceived and well-implemented

interventions sometimes produce nonsignificant and inconclusive findings.

An emerging alternative to the traditional approach, Bayesian assurance can be

used for sample-size determination in the same way that classical statistical power

is used. The sample sizes determined fromBayesian assurance can be easily obtained

fromTables 1 and 2 (or in Figures 1 and 2). For example, using Table 1 or Figure 1, the

sample size for the first study would be 120 per intervention arm if a researcher

would like to have 60% assurance. Similarly, the sample size for the second study

would be 200 per arm if the researcher would like to have 71% assurance. Cutoffs—

60% for the first study and 71% for the second—are entirely determined by the re-

searcher and substantive issues (e.g., the degree of risk a funder is willing undertake).

Typically, assurance is lower than conventional power because assurance is es-

timated across all possible effect sizes. Calculated in thismanner, assurance usually

suggests that larger samples will be needed. Because it considers a wide range of ef-

fect sizes, assurance is more robust against inaccurate prior information.

Notwithstanding, Bayesian assurance is dependent on the goodness of the prior

distribution of effect sizes and other related design parameters. If the prior distri-

bution is misspecified, assurance can be incorrect. However, in this situation clas-

sical statistical power could produce worse estimates because it is calculated from a

single value from the misspecified distribution. In this sense, Bayesian assurance,

as result of averaging the range of prior values, provides amore leveraged protection
2017034.proof.3d 13 12/13/17 05:12Achorn International



against poor prior information. In high-stakes research, when the costs of making

an erroneous decision based on findings from an underpowered study are great, as-

surance may be a preferred method for estimating sample sizes.
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