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Abstract
The semiparametric accelerated failure time (AFT) model is a popular linear model 
in survival analysis. AFT model and its associated inference methods assume 
homoscedasticity of the survival data. It is shown that violation of this assumption 
will lead to inefficient parameter estimation and anti-conservative confidence interval 
estimation, and thus, misleading conclusions in survival data analysis. However, there 
is no valid statistical test proposed to test the homoscedasticity assumption. In this 
paper, we propose the first novel quasi-likelihood ratio test for the homoscedasticity 
assumption in the AFT model. Simulation studies show the test performs well. A real 
dataset is used to demonstrate the usefulness of the developed test.
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1 Introduction

The Cox proportional hazards model (Cox 1972) is the most popular method for
modeling and estimation of parameters in survival analysis because of the availability
of the efficient inference procedures implemented in all statistical softwares. However,
as noted byCox (Reid 1994, p. 450), the classical accelerated failure time (AFT)model
(Kalbfleisch and Prentice 1980) is more appealing in many ways due to its direct
physical interpretation. The classical AFT model regresses the logarithm of survival
time T , say Y ≡ logT , over the covariates Xi as follows,

Yi ≡ log(Ti ) = μi + ε#i , i = 1, . . . , n (1)

where μi = Xi
T β is the mean of Yi in which Xi is a nonrandom p-dimensional

vector of covariates and β is a vector of parameters; εi
#, i = 1, . . . , n, are indepen-

dently and identically distributed with unspecified distribution function F# and an 
assumed constant variance (homoscedasticity). Note the classical AFT model serves 
as a counterpart of the classical linear model for survival data. The differences between 
these two models include data transformation and censorship. For data transforma-
tion, the classical AFT model uses log transformation to make the data symmetric 
and homoscedastic, while the classical linear model uses some transformations (not 
just log transformation). For the censorship of the survival data, it adds complexity 
to the inference of the AFT model. The rank method (Lai and Ying 1992; Robins and 
Tsiatis 1992; Ying 1993; Lin and Ying 1995; Jin et al. 2003; Zhou 2005) and the least 
squares method (Buckley and James 1979; Ritov 1990; Lai and Ying 1991; Jin et al. 
2006) are proposed for the AFT model by accommodating the censorship of survival 
data. Both of them assume the log-transformed survival data are homoscedastic.

The next logic question is whether this log-transformation can really make the 
data homoscedastic as assumed in the classical AFT model. It is well known that if 
the model assumption is not satisfied, the inference may not be valid. For example, 
in the classical linear model, if data is heteroscedastic, the least squares estimate is 
inefficient and the estimated variance of the least squares estimate is not a consistent 
estimator anymore (Greene 2008). For the AFT model, Yu (2011), Yu et al. (2012, 
2013) and Yu and Peace (2012) showed if survival data violate the homoscedasticity 
assumption, the statistical inference of survival based on the AFT model and its asso-
ciated methodologies (e.g. the rank method and the least squares method) will lead to 
inefficient estimation. And most importantly, the variance estimates of the parameter 
estimators are mostly under-estimated with the homogeneous assumption of variance. 
Consequently, the 95% confidence intervals are anti-conservative and their coverage 
probabilities are much less than the nominal level 0.95. This will lead to inaccurate 
conclusions. Therefore, to handle the heteroscedastic data, Yu et al. (2013) proposed 
a weighted least squares method for the AFT model. They showed the weighted least 
squares method was more efficient for heteroscedastic data than either the rank method 
or the least squares method. Moreover, the coverage probabilities of parameter esti-
mators’ 95% confidence intervals obtained from the weighted least squares method 
are closer to the nominal level 0.95.



As an example, we estimated the conditional mean of the log survival time (in
days), given age (in years) and sex for the NCCTG Lung Cancer Data in R survival
package. In Sect. 5, we analyzed this data using both the methods that do not consider
the heteroscedasticity of the data (i.e., the rank method and the least squares method)
and themethod that considers the heteroscedasticity of the data (i.e., the weighted least
squares method). The results from these methods (shown in Sect. 5) are substantially
different. In order to choose an appropriate method to obtain efficient estimation and
accurate conclusions,we needed to know if the data is homoscedastic or not. Therefore,
a clear need exists for a formal statistical test to investigate the homoscedasticity
assumption in the AFT model.

There are many homoscedasticity tests for complete data in the literature as seen
in Breusch and Pagan (1980), Cook and Weisberg (1983), Muller and Zhao (1995),
Cai et al. (1998), Wang and Zhou (2005, 2007), among others. For censored data,
Zhou et al. (2012) proposed an empirical likelihood ratio test method to estimate
the coefficients β for both correlation and regression AFT models, but they assumed
equal variance of the data. To the best of our knowledge, no homoscedasticity test has
yet been proposed for the AFT model, probably due to the presence of a censoring
mechanism which poses major theoretical challenges in the semiparametric test of the
homoscedasticity in the AFT model. This paper is then aimed to fill this methodolog-
ical gap by proposing a powerful quasi-likelihood ratio test for the homoscedasticity
assumption in the AFT model for survival data.

The paper is organized as follows. In Sect. 2, we introduce the new test. Simulation
studies are conducted in Sect. 3 followed by a real data analysis in Sect. 4. Discussions
and conclusions are given in Sect. 5.

2 Quasi-likelihood ratio test for the AFTmodel

2.1 The novel quasi-likelihood ratio test

Let C be the log of the censoring time. Define Z = Y ∧C and δ = I (Y ≤ C), where
∧ is the minimum operator and I (.) is the indicator function. Then the observed
data are denoted by {Zi ,Xi , δi }, i = 1, . . . , n. The censoring time is assumed to be
independent of survival time given the covariates Xi .

In order to accommodate heteroscedasticity in the AFT model, we use the general
linear model for right-censored data (Yu et al. 2013),

Yi ≡ log(Ti ) = μi + σ(μi )ei , i = 1, . . . , n (2)

where ei , i = 1, . . . , n, are independent and identically distributed with unspecified
distribution function F which has mean 0 and variance 1; σ 2(μi ) is the variance of Yi .
Let εi = σ(μi )ei . Note the variances of Yi in model (2) are individual-specific which
represents the heteroscedasticity of the data. Additionally, this model (2) reduces to
the classical AFTmodel (1) when σ(μi ) are all equal. Therefore, the homoscedasticity
test for the AFT model tests whether the variance function σ 2(μi ) in (2) is constant;
that is,



H0 : σ 2(μi ) = σ 2 for i = 1, . . . , n

H1 : σ 2(μi ) �= σ 2 for at least one i = 1, . . . , n

for some unknown positive constant σ 2.
In developing our proposed homoscedasticity test, we used quasi-likelihood (Wed-

derburn 1974) defined as follows:

Q#(μ,Y, σ 2(μ)) = 1

n

n∑

i=1

∫ μi

Yi

Yi − a

σ 2(a)
da. (3)

Because the quasi-likelihood has similar properties to the log-likelihood, the test
statistic can be constructed as

QLR# = −2
(
Q(μ̃, Ỹ, σ̃ 2) − Q#(μ̂, Ŷ, Σ̂)

)

where Q(μ̃, Ỹ, σ̃ 2) is the quasi-likelihood function under H0, in which μ̃ is a vector
with elements μ̃i = XT

i β̃ and β̃, the least squares estimator (Buckley and James
1979), satisfies

β̃ =
(
(X − X̄)T (X − X̄)

)−1
(X − X̄)T Ỹ

where X̄ is the samplemean of X ; σ̃ 2 = 1/n
∑n

i=1(Ỹi − μ̃i )
2. Ỹ is a vector of synthetic

data with elements Ỹi = Yiδi + Ê#(Yi | Yi > Ci )(1− δi ) and Ê#(Yi | Yi > Ci ) is an
estimator of E(Yi | Yi > Ci ) based on the Kaplan–Meier estimate F̂#(ε#). Let r#(i)
be the ordered r#i = Zi − XT

i β̃, then

F̂#(ε#) = 1 −
∏

{i :r#(i)≤ε#}
((n − i)/(n − i + 1))δi .

If the largest observation is censored, we treat it as an uncensored observation (Meier
1975).

Q#(μ̂, Ŷ, Σ̂) is the quasi-likelihood function under H1, in which Σ̂ is a n × n
variance-covariance matrix with diagonal elements σ̂ 2

n (μ̂i ) as the estimators of the
σ ∗2(μi ), variances of synthetic data Y ∗

i = Yiδi + E(Yi | Yi > Ci )(1 − δi ), and μ̂

is a vector with elements μ̂i = XT
i β̂. The σ̂ 2

n (μ̂i ) and β̂ are values maximizing the

quasi-likelihood Q#(μ̂, Ŷ, Σ̂) under H1. We will describe how to calculate them in
detail below. Ŷ is composed of the elements Ŷi = Yiδi + Ê(Yi | Yi > Ci )(1 − δi ),
the estimators of the synthetic data Y ∗

i . Here Ê(Yi | Yi > Ci ) is an estimator of
E(Yi | Yi > Ci ). To be specific, let ri = (Zi − μ̂i )/σ̂n(μ̂i ). If r(i) is the ordered ri ,
then

F̂(e) = 1 −
∏

{i :r(i)≤e}
((n − i)/(n − i + 1))δi

When the largest observation is censored, we still treat it as uncensored (Meier 1975). 
Then Ê (Yi | Yi > Ci ) = μ̂i + σ̂n(μ̂ i )Ê (ei |ei > ri ) based on the Kaplan-Meier



estimate F̂(e). Note Ê(Yi | Yi > Ci ) depends on Ci through ri = (Zi − μ̂i )/σ̂n(μ̂i ),
because when the observation is censored, Zi = Ci .

To calculate Q(μ̃, Ỹ, σ̃ 2) under H0 (i.e., the data are homoscedasticity), iterative
procedure as in Buckley and James (1979) is used to obtain β̃ and Ỹ. Thenwe calculate
μ̃i and σ̃ 2. Therefore, the quasi-likelihood under H0 can be calculated as

Q(μ̃, Ỹ, σ̃ 2) = 1

n

n∑

i=1

∫ μ̃i

Ỹi

Ỹi − a

σ̃ 2 da.

To calculate Q#(μ̂, Ŷ, Σ̂) under H1 (i.e., the data are heteroscedasticity), we
estimateβ bymaximizing the quasi-likelihood Q#(μ̂, Ŷ, Σ̂) under H1,which is equiv-
alent to solving the corresponding quasi-score function U

β̂
= op(1), where

U
β̂

= XT Σ̂
−1

(Ŷ − XT β̂)

=
n∑

i=1

Xi

σ̂n(μ̂i )

{
Ŷi

σ̂n(μ̂i )
− XT

i

σ̂n(μ̂i )
β̂

}
,

=
n∑

i=1

Xi,new{Ŷi,new − XT
i,newβ̂}. (4)

Here we define Ŷi,new = Ŷi/σ̂n(μ̂i );Xi,new = Xi/σ̂n(μ̂i ). Note Uβ̂
is not monotone

and is not continuous, so U
β̂

= 0 may fail to have a solution. We are looking for
the solution to make U

β̂
closest to zero. Therefore, we use U

β̂
= op(1), not Uβ̂

= 0
(Ritov 1990).

To obtain σ̂ 2
n (.), we use the polynomial spline method to smooth the ‘observed’

variance values of Ŷ over the mean. Specifically, we consider the variance function
model,

ε̂2i = σ 2(μ̂i ) + τi , i = 1, . . . , n,

where ε̂2i = (Ŷi − XT
i β̂)2 is the ‘observed’ variance value, τi is an error term with

E(τi ) = 0.We use Ŷi instead of Zi to compute the residual because Ŷi is the estimated
complete data, i.e., when the observation is uncensored, Ŷi is equal to the true survival
time; when the observation is censored, Ŷi is the expected true survival time for this
observation.However, Zi is the observed data, i.e.,when the observation is uncensored,
Zi is equal to the true survival time; when the observation is censored, Zi is the
censored time, not the true survival time. Then the σ 2(μ̂i ) is expanded using B-spline
basis functions as

ε̂2i =
J∑

j=1

Bj (μ̂i )γ j + τi , i = 1, . . . , n,

where Bj , j = 1, . . . , J , are the B-spline basis functions (De Boor 1978) and γ j , j =
1, . . . , J , are unknown spline coefficients. In the algorithm, we use a cubic B-spline



and use the bs function in R software to choose the quantiles as knots for a given
number of knots. The number of knots can vary from 1 to 15 because it is adequate for
a smooth function (Huang 2006).We select the number that minimizes the Akaike-like
(AIC-like) criterion (Yu and Peace 2012) as follows

AIC − like =
n∑

i=1

Ŷi − μ̂i

σ̂ 2
n (μ̂i )

+ 2(J + 2 + d1 − 1).

We use this criteria because Yu and Peace (2012) showed through simulations that the
AIC-like criterion works well for the estimation of β and σ 2(μi ). Now least squares
method is applied to obtain γ̂ j , estimator of γ j . Hence, the σ̂ 2

n (.) can be calculated by
σ̂ 2
n (.) = ∑J

j=1 Bj (μ̂i )γ̂ j .

The following iterative procedure is used to obtain β̂, Ŷ and σ̂ 2
n (μ̂i ) in the quasi-

likelihood under H1:

1. Initialize β with the least squares estimator β̂
(0) = β̃ proposed by Buckley and

James (1979). The initial estimators of the variances are σ̂
2(0)
n (μ̂i ) = 1, i =

1, . . . , n and μ̂i = XT
i β̂

(0)
.

2. At the mth step, calculate the estimator of Ŷi as

Ŷi = δi Yi + (1 − δi )

(
XT
i β̂

(m) + σ̂ (m)
n (μ̂i )

∫ ∞

r̂i

td F̂(t)

1 − F̂(r̂i )

)

where F̂(e) = 1 − ∏
{i :r̂(i)≤e}

(
n−i

n−i+1

)δi
, μ̂i = XT

i β̂
(m)

and r̂(i) are the ordered

r̂i =
(
Zi − XT

i β̂
(m)

)
/σ̂

(m)
n (μ̂i ).

3. Update the variance estimator σ̂
2(m+1)
n (μ̂i ) by smoothing the “observed” variance

values ε̂2i =
(
Ŷi − XT

i β̂
(m)

)2
over the estimated mean using polynomial spline

method.
4. When variances are estimated, the coefficient estimators are updated by solving

Eq. (4) using the least squares method:

β̂
(m+1) = (XT

newXnew)−1XT
newŶnew

where Xnew is a matrix with elements Xi,new and Ŷnew is a vector with elements
Ŷi,new defined in (4).

5. Repeat Steps (2)–(4) till |β̂(m+1) − β̂
(k)| < d|β̂(m+1)| for any k ∈ {0, 1, . . . ,m}

and d is the prespecified convergence criterion. This stopping rule considers pos-
sible oscillation among iterations due to the discrete estimating function. The
oscillation of the estimator means the estimator oscillating between two or more
points, not converging to one point (Jin et al. 2006).



The values in the last step are used to calculate quasi-likelihood Q#(μ̂, Ŷ, Σ̂) under
H1 (i.e., the data are heteroscedasticity) as

Q#(μ̂, Ŷ, Σ̂) = 1

n

n∑

i=1

∫ μ̂i

Ŷi

Ŷi − a

σ̂ 2
n (a)

da. (5)

However, we observe that the variance σ̂ 2
n (a) in the integral in (5) depends on a with

the range in the integral from Ŷi to μ̂i . Because we use nonparametric smoothing to
estimate σ̂ 2

n (a), it would be time-consuming in computation at each a value. Therefore,
we propose a new form of quasi-likelihood as

Q(μ,Y,Σ) = 1

n

n∑

i=1

∫ μi

Yi

Yi − a

σ 2
n (μi )

da. (6)

Note the first derivative of (6) is (4), same as that in (3). In Theorem1 inWedderburn
(1974), it was proved that (3) has properties similar to those of log likelihoods based
on its score function. Now because (6) has the same score function as (3), (6) has
similar properties to those of log-likelihood as well. Hence, the parameter estimators
by maximizing (6) are same as those by maximizing (3). In addition, (6) has the same
value as (3) under H0. Now we use the quasi-likelihood under H1 based on (6) as
follows

Q(μ̂, Ŷ, Σ̂) = 1

n

n∑

i=1

∫ μ̂i

Ŷi

Ŷi − a

σ̂ 2
n (μ̂i )

da. (7)

Then the quasi-likelihood ratio test statistic is

QLR = −2 × 1

n

(
n∑

i=1

∫ μ̃i

Ỹi

Ỹi − a

σ̃ 2 da −
n∑

i=1

∫ μ̂i

Ŷi

Ŷi − a

σ̂ 2
n (μ̂i )

da

)

= −2 × 1

n

(
1

σ̃ 2

n∑

i=1

∫ μ̃i

Ỹi
(Ỹi − a)da −

n∑

i=1

1

σ̂ 2
n (μ̂i )

∫ μ̂i

Ŷi
(Ŷi − a)da

)

= 1

n

(
1

σ̃ 2

n∑

i=1

(Ỹi − μ̃i )
2 −

n∑

i=1

1

σ̂ 2
n (μ̂i )

(Ŷi − μ̂i )
2

)

= 1

n

n∑

i=1

(
1 − ε̂2i∑n

j=1 âi j ε̂
2
j

)

= 1

n

n∑

i=1

∑n
j=1 âi j ε̂

2
j − ε̂2i∑n

j=1 âi j ε̂
2
j

Remarks:

1. We use same estimates of β and σ̂ 2
n (.) as in (5) to calculate (7).



2. Using (7) instead of (5) will change the power of the test. Note the quasi-likelihood
under H0 is always equal to one. The difference between (7) and (5) is the integrand.
(5) uses (Ŷi − a)/σ̂ 2

n (a) and (7) uses (Ŷi − a)/σ̂ 2
n (μ̂i ). For different relationship

between σ̂ 2
n (a) and σ̂ 2

n (μ̂i ), (7) can be either larger or smaller than (5), in other
words, (7) can be either closer to or further away from the quasi-likelihood value
under H0 than (5), and hence either higher or lower test power.

3. Using (7) instead of (5) dramatically reduces the computational time. One reason
is that we use the variances at μ̂i , to avoid variations in its value in the integral.
Another reason is that unlike (5), the integration of (7) has closed form, so we do
not need to approximate the integration in the logarithm.

2.2 Bootstrap procedure for the critical values of the test

It is well known that for nonparametric smoothing test, the bootstrap method often
provides more accurate approximation to the distribution of the test statistic than the
asymptotic normal theory does when the sample size is small or moderate (Hardle and
Mammen 1993). On this basis, we propose a bootstrap procedure in order to approxi-
mate the critical values of the test in a practical application of theQLR.Notewe cannot
generate bootstrap samples from the residuals ε̂i and the estimated means μ̂i from the
main observed sample (Zi , Xi , σi ). The reason is that if the data is heteroscedastic,
the residuals ε̂i , i = 1, . . . , n have different variances. Therefore, if we generate the
bootstrap samples from the residuals ε̂i , we are generating heteroscedastic data. This
data cannot approximate the distribution of the test statistic under the null hypothesis,
which assumes data is homoscedastic. We generated the bootstrap sample using the
same way as in Wang and Zhou (2005), which consists of the following steps.

Denote B as the sufficient large number of bootstrapping (we used B = 200 in
the simulation study and the real data analysis since it performed very satisfactory).
Therefore for b = 1, . . . , B,

1. For i = 1, . . . , n,

– Let Y ∗
i,b = XT

i β̃ + ε∗
i , where ε∗

i is a bootstrap sample from centered ε̃i =
(Ỹi − μ̃i ),

– For the log of the censoring time Ci , i = 1, . . . , n, some Ci are not observed
when Ci > Yi . We use a similar approach for Y ∗

i,b to estimate the unknown Ci .
To be specific, we use the model

Ci = XT
i βc + εci

where εci , i = 1, . . . , n, are independent and identically distributed with
unspecified distribution. Then we use the least squares estimator (Buckley
and James 1979) described in Sect. 2.2 to obtain the estimator β̃c for βc, and
C̃i for Ci . Then C∗

i,b = XT
i β̃c + ε∗

ci , where ε∗
ci is a bootstrap sample from

centered ε̃ci = C̃i − XT
i β̃c

– Let Z∗
i,b = min(Y ∗

i,b,C
∗
i,b) and δ∗

i,b = I (Y ∗
i,b ≤ C∗

i,b).



Table 1 Empirical size of the
tests

n Censoring (%) Normal Extreme

100 10 0.057 0.042

100 30 0.047 0.046

200 10 0.055 0.047

200 30 0.053 0.048

2. With the resultant bootstrap sample {(Xi , Z∗
i,b, δ

∗
i,b), i = 1, · · · , n}, calculate

QLRb for each bootstrapping sample following the procedures in Sect. 2.2.
3. Let QLRη be the ηth order statistic of QLR1, . . . , QLRB , then QLR|(1−α)B|

approximates the (1 − α)-quantile of the distribution of QLR under the null
hypothesis.

3 Simulation studies

3.1 Evaluate size (type-I error) of the test

We generated homoscedastic right censored data under H0 from the following model
(8) to investigate the size of the test,

log(Ti ) = β0 + β1xi1 + β2xi2 + 1/2ei (8)

where β0 = 0, β1 = β2 = 1 and ei are generated from the standard nor-
mal distribution or standard extreme value distribution with mean 0 and variance
π2/6. xi1, i = 1, . . . , n, are simulated from the standard normal distribution and
xi2, i = 1, . . . , n, are simulated from the Binomial distribution with a success rate of
0.5. The log censoring times Ci are simulated from uniform distribution U (0, upper)
and the upper is determined to yield 10% or 30% censoring observations. The sample
size n is 100 or 200. The test is calculated with 1000 simulation runs and nominal
level 0.05. We use B=200 bootstrap samples per run to obtain the critical values. The
results are summarized in Table 1 and it can be seen from this table that the proposed
test satisfactorily maintains the specified nominal level.

3.2 Evaluate power of the test

We generate heteroscedastic right censored data under H1 from the following models
to investigate the power of the test. Let μi = β0 + β1xi1 + β2xi2,

Alternative I: log(Ti ) = μi + 1/2(μi )ei
Alternative II: log(Ti ) = μi + 1/2(1/μi )ei

Alternative III: log(Ti ) = μi + 1/2(μi + μ2
i )ei

The terms in the Alternatives are generated the same way as in (8), and we use the
same procedure as for (8) to obtain the critical values. Figure 1 shows the variance
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Fig. 1 The variance functions in Alternative hypotheses

Table 2 Empirical power of the
tests for Alternative I

n Censoring (%) Normal Extreme

100 10 0.625 0.497

100 30 0.202 0.275

200 10 0.861 0.677

200 30 0.354 0.325

functions in the Alternatives. The least heteroscedastic variance function is that in the 
Alternative I. The results are summarized in Table 2 (Alternative I), Table 3 (Alterna-
tive II) and Table 4 (Alternative III). These results show the test has satisfactory power, 
especially for large sample sizes and less censoring percentages. We observed that for 
the Alternative I (Table 2), the powers of the test decrease a lot when the censoring 
percentage is high (30%). Even when the sample size is 200 and censoring percentage 
is 30% and hence there are 140 uncensored observations, the power of the test is lower 
than the setting when sample size is 100 and censoring percentage is 10% and hence 
there are only 90 uncensored observations. The result indicates that when the data is 
closer to homoscedastic, the power of the test is lower for larger censoring percent-
age, even when the data has more information. Further research can be conducted to 
investigate how close to homoscedasticity and how large censoring percentage will 
have significant effect on the power of the test.

4 Real data analysis

We applied the newly developed test to NCCTG Lung Cancer Data in R survival 
package. This dataset reflects the survival of patients with advanced lung cancer 
from



Table 3 Empirical power of the
tests for Alternative II

n Censoring (%) Normal Extreme

100 10 0.634 0.568

100 30 0.597 0.529

200 10 0.698 0.672

200 30 0.686 0.666

Table 4 Empirical power of the
tests for Alternative III

n Censoring (%) Normal Extreme

100 10 0.727 0.618

100 30 0.666 0.552

200 10 0.860 0.698

200 30 0.742 0.619

the North Central Cancer Treatment Group. There are totally 228 observations with
63 right censored.

We are interested in estimating the conditional mean of the log survival time (in
days), given age (in years) and sex. Then the model is

Yi ≡ log(Ti ) = β0 + β1 × age + β2 × sex + εi .

In order to analyze this data appropriately, we should first test the assumption of
homoscedasticity of the data. We applied the test as proposed in Sect. 2 to this dataset
and found that the associated p value was< 0.01 indicating heterogeneity of variance.
Graphically, we plotted the estimated variances versus the estimated means μ (see in
Fig. 2). It clearly shows heteroscedasticity in the data. Therefore we concluded that
the homoscedasticity assumption was not satisfied for this dataset. Then the classical
AFTmodel and associatedmethodologies (e.g. least squaresmethod and rankmethod)
might provide inaccurate conclusions. We should apply a method that considers the
heteroscedasticity of the data, such as weighted least squares method (Yu et al. 2013).

We compare and report the results from theweighted least squaresmethod (WLSE),
the least squaremethod (LSE) and the rankmethod (Rank) for the point estimates, their
standard errors (SE) and 95% confidence intervals (Table 5). The point estimates from
WLSM differ from those obtained using the LSM and rank method. The SEs from
LSM and rank method are smaller than SEs from WLSE. Based on 95% confidence
intervals, LSE results indicate that both age and sex are significant factors; rank results
indicate that sex is the only significant factor; and WLSE results indicate that neither
age and sex are significant. From the simulation study in Yu et al. (2013), when the
data are heteroscedastic, both the LSM and rank method might have small SEs and the
coverage probabilities of 95% confidence intervals are much lower than the nominal
level 0.95. These findings indicate that these two methods might provide inaccurate
conclusions.



Fig. 2 Illustration of estimated variances versus estimated means: the curve is the estimated variance

Table 5 Real data analysis

β1 (age) β2 (sex)

Estimate Variance 95% CI Estimate Variance 95% CI

LSM −0.0249 0.00008 (−0.0424, −0.0074) 0.3652 0.0297 (0.0274, 0.7030)

Rank −0.0122 0.00006 (−0.0274, 0.0029) 0.3308 0.0207 (0.0488, 0.6128)

WLSM −0.0165 0.00008 (−0.0340, 0.0010) 0.2556 0.0316 (−0.0928, 0.6040)

5 Discussions and conclusions

This paper proposed the first homoscedasticity test for censored data for the AFT 
model. The simulation results showed the proposed test has satisfactory finite sample 
performance. The censoring has effect on the power of the test and indicates that the 
greater the percentage of censoring, the greater the number of observations needed 
to achieve high power. The real data analysis demonstrated the importance of the 
homoscedasticity test and that this test is necessary for accurate conclusions for the 
AFT model for survival data.

This novel test is a powerful quasi-likelihood ratio test for the homoscedastic-
ity assumption in the AFT model for survival data. Quasi-likelihood was introduced 
by Wedderburn (1974) to describe a function that has similar properties as the log-
likelihood function. It only requires assumptions on the first two moments which are 
much easier to postulate than the entire distribution of the data. In addition, we further 
simplified the quasi-likelihood by using fixed variance values in the integral. Given 
these properties, the quasi-likelihood ratio test has the potential to handle the complex-



ity posed by a censoring mechanism. This project opens a new research direction for
the AFT model that will make the inferences based on the AFT model more accurate.

As emphasized, using (7) instead of (5) can increase or decrease the power of the
test. The key advantage of using (7) is the substantial reduction in computational
time. Future research should investigate the effects of using (7) on the size, power and
computational time with different types of data.

If the test rejects the null hypothesis, we can find the pattern of the variances by
plotting the estimated variances versus the mean. If it shows that the variance is a
function of the mean, we can use weighted least squares method (Yu et al. 2013) to
analyze the data. If it shows sub-group of subjects who do not follow the constant
variance assumption, such as outliers, we may use least absolute deviations which
is robust to the outliers. The ability to show the patterns of the variances is another
advantage of this test.

The test we have proposed assumes variance is a function of the mean of the data.
This assumption is reasonable because many distributions for survival data satisfy this
assumption, such as exponential distribution, Weibull distribution, and extreme value
distribution. Future research can relax this assumption to propose tests for settings
of general nature. Moreover, this test can also be extended to the AFT model with
nonlinear regression functions. In such a case, we need to first estimate the mean
and variance in the quasi-likelihood based on the nonlinear function model. Then
construct the corresponding quasi-likelihood ratio test. The goal of this paper was
to fill the methodological gap by providing the first method and a new direction for
homoscedasticity tests for the AFT model.
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