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Abstract

Xenopus has been used to study a wide array of developmental processes, benefiting from vast 

quantities of relatively large, externally developing eggs. Xenopus is particularly amenable to 

examining the cardiac system because many of the developmental processes and genes involved in 

cardiac specification, differentiation, and growth are conserved between Xenopus and human and 

have been characterized in detail. Furthermore, compared with other higher vertebrate models, 

Xenopus embryos can survive longer without a properly functioning heart or circulatory system, 

enabling investigation of later consequences of early embryological manipulations. This biology is 

complemented by experimental technology, such as embryonic explants to study the heart, 

microinjection of overexpression constructs, and, most recently, the generation of genetic 

mutations through gene-editing technologies. Recent investigations highlight Xenopus as a 

powerful experimental system for studying injury/repair and regeneration and for congenital heart 

disease (CHD) modeling, which reinforces why this model system remains ideal for studying heart 

development.

Studies in amphibians have formed the basis of cardiac biology in vertebrates for >80 years, 

yielding many of our most important insights (Taylor 1931; Nieuwkoop 1947; Chuang and 

Tseng 1957; Jacobson 1960, 1961; Monnickendam and Balls 1973). The frog has several 

advantages over other species for studying heart development. For example, mice are 

genetically tractable but are difficult for live imaging or studying biochemistry of the heart. 

Fish are an outstanding system for live imaging, but their small size and clutch numbers 

make systems-level proteomic approaches difficult. Xenopus has an advantage over these 

species in that a suite of novel tools exists that will allow—in a single organism—integration 

of systems-level genomic and proteomic analyses with quantitative live imaging of cardiac 

cell behaviors.

Classical fate-mapping studies have shown that at a mere 3 hours after fertilization, at the 

32-cell stage, four blastomeres in the dorsal equatorial region of Xenopus are fated to 
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become the adult heart (Fig. 1; Dale and Slack 1987; Moody 1987a,b). As in all embryos 

with yolk-filled blastomeres, cells do not undergo extensive mixing before gastrulation. 

Instead, the descendants of the four blastomeres remain as a coherent group of cells that lie 

juxtaposed between the organizer and the underling endoderm; these two tissue types induce 

the cardiac lineage (Fig. 1). During gastrulation, the cardiac cells are the first cells to 

become specified and determined (Symes et al. 1994; Nascone and Mercola 1995; Mercola 

1999; Mohun and Leong 1999; Zhu et al. 1999; Kolker et al. 2000; Mohun et al. 2000).

During neurulation, the cardiac cells move as two distinct populations on either side of the 

embryo toward the forward end of the mesoderm sheet as it engulfs the yolk and 

encompasses the embryo (Fig. 1). The cells converge to form a single sheet at the ventral 

anterior midline, where they form a tube positioned along the anteroposterior axis (Figs. 1 

and 2). The linear heart tube is bilaminar, comprised of an outer myocardium and an inner 

endocardium (Fig. 2; Mohun and Leong 1999; Kolker et al. 2000; Mohun et al. 2000).

As with all vertebrates, the blood in Xenopus flows from the tail to the head. As 

development proceeds, the cardiac tube begins to undergo looping. Collectively, this activity 

folds the heart, bringing the inflow and outflow tracts near each other to make the proper 

connections with the developing vascular system and to place the two developing atria on 

top of the single ventricle. The atria will then undergo a slow septation process, leading to 

the formation of a three-chambered heart (Mohun and Leong 1999; Kolker et al. 2000; 

Mohun et al. 2000).

Underpinning classical embryology and experimental biology

The large amphibian embryos introduced above provide a distinct experimental advantage. 

The large embryos allow for observation of the conserved vertebrate body as it develops, and 

the associated large embryonic cells (called blastomeres) allow the experimental researcher 

to use lineage tracing and targeted tissue and organ-specific delivery of experimental 

reagents by microinjection (e.g., target the red blastomeres in the 32-blastomere embryo) 

(Fig. 1). The large embryos also lend themselves to powerful, so called “cut-and-paste” 

experiments to study the role of tissue interactions, particularly in heart development, and 

“just cut” embryonic explant experiments to study, for instance, the development of heart 

tissue in relative isolation. Such approaches can be used to separate cardiogenic from 

noncardiogenic mesoderm (i.e., dorsal marginal zone [DMZ], ventral marginal zone [VMZ]) 

(reviewed by Afouda 2012) to study the function of inducers and repressors of heart 

development (e.g., Fig. 3; Foley and Mercola 2005). Many of the fundamental discoveries 

made in Xenopus are a result of these intrinsic advantages of the experimental model. For 

instance, the important role of Wnt signaling in cardiogenesis, both canonical P-catenin-

mediated (Schneider and Mercola 2001) and noncanonical (Pandur et al. 2002), was 

discovered in Xenopus, as well as bone morphogenetic protein (BMP) (Breckenridge et al. 

2001) and later fibroblast growth factor (FGF) signaling (Deimling and Drysdale 2011). 

These discoveries, together with findings in other models such as chick (Marvin et al. 2001; 

Wittig and Munsterberg 2019), gave rise to an often reproduced figure in textbooks (Fig. 4) 

regarding signaling pathways, and also inhibition of signaling pathways, specifying anterior 

and posterior lateral plate mesoderm and subsequently cardiogenic versus hemangiogenic 
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tissue differentiation. Combined with state-of-the art molecular approaches, Xenopus 
research continues to provide unique opportunities for current and future pioneering 

discoveries relevant to cardiovascular biology and medicine.

Widening Access to Stem Cell(-Like) Experiments

One further type of Xenopus embryonic explant deserves further mention: the so-called 

“animal cap” and—specifically for the field of heart development—its use as an “activin 

cap.” The animal cap is the tissue from the animal pole of the Xenopus embryo, which is 

removed from the rest of the embryo before gastrulation by straightforward microdissection 

(Fig. 3). Importantly, this extracted tissue retains pluripotency and can be used in stem-cell 

approaches inexpensively (Furue and Asashima 2004). Remarkably, treatment of this 

pluripotent animal cap with activin (resulting in “activin caps”) leads to differentiation of 

autonomously beating heart tissue (Fig. 3; Kinoshita et al. 2010; Afouda 2012). This 

heterologous heart tissue differentiation stem-cell(-like) system can be combined with 

microinjection experiments and transcriptomics analysis to study the regulatory mechanisms 

driving vertebrate heart development (Afouda et al. 2018).

Complementary Approaches Using Xenopus laevis and Xenopus tropicalis

The traditional species associated with Xenopus research is X. laevis. It has particularly 

large embryos, even among Xenopus, and is robust in its husbandry and recovery of normal 

embryonic development after quite rough experimental manipulation. Its cousin, X. 
tropicalis, has a simpler genome organization, which benefitted many high-throughput 

genomic studies and transcriptome analyses (Table 1; Hellsten et al. 2010; Kashiwagi et al. 

2010; Owens et al. 2016). Genome sequencing and analysis has shown that X. laevis is not a 

tetraploid but rather is an allotetraploid frog possessing two diploid genomes, the L and S 

genomes, derived from the mating of two distinct ancestral species 17–18 million years ago 

(Session et al. 2016). Approximately 56% of genes in the present-day X. laevis genome are 

duplicated between the L and S genomes as a result of the allotetraploidy event (Session et 

al. 2016). Thus, the two species are very closely related and often can be used 

interchangeably because most probes work in both species. Possible subtle but consequential 

differences in regenerative potential in the heart, which are currently debated (see below) 

may further benefit from this two-species approach (Fig. 4).

Knockdown, Knockout, Knockin, and Transgenics

The use of Xenopus for gain- and loss-of-function experiments has been legendary because 

of its ease of experimental manipulation. This traditional strength has been complemented 

with efficient transgenesis approaches (see recent review in Horb et al. 2019) and gene 

editing (see recent reviews in Tandon et al. 2017; Deniz et al. 2018), including knock in 

(Aslan et al. 2017). These approaches have already proven particularly powerful in Xenopus, 
not least because analysis can begin in transheterozygotes of the F0 generation only hours 

after CRISPR-Cas9 technology application (Blitz et al. 2013) and in targeted mosaics (Naert 

et al. 2016).
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Regeneration

In their early stages, both X. tropicalis and X. laevis appear able to regenerate heart tissue. 

However, in adults, X. tropicalis but not X. laevis reportedly undergo cardiac regeneration 

on injury. Because side-by-side studies have not been conducted, the differences in adults 

may simply represent differences in protocols or the relative age of the adult frogs. However, 

they might instead be the result of genetic differences between the two species in abundance 

of proteins associated with antigen-specific adaptive immunity (Liao et al. 2017, 2018; 

Marshall et al. 2017, 2018, 2019).

Recently, Federspiel et al. (2019) conducted a direct comparison of the adult cardiac 

proteomes of four model vertebrates with dual circulatory systems: the pig (Sus scrofa), the 

mouse (Mus musculus), X. laevis, and X. tropicalis, which were all compared with human. 

Surprisingly, a significant increase in protein abundance in a vast array of cell-cycle proteins 

was observed in X. laevis versus X. tropicalis in age-matched female hearts. Thus, one 

alternative explanation for the ability of adult X. tropicalis to regenerate is their ability to 

induce cardiac cell-cycle genes on injury. Also noteworthy, the investigators further 

observed a significant increase in proteins that control metabolic growth including the TOR 

pathway in X. tropicalis versus X. laevis (Fig. 5). It will be exciting to learn whether these 

differences underlie the observed differences in the ability of the two species to undergo 

adult regeneration.

Heart disease modeling

Xenopus has proven to be a great asset for defining the molecular and cellular underpinnings 

of several human congenital heart disease states (CHD), including Holt-Oram disease (Horb 

and Thomsen 1999; Garg et al. 2003; Brown et al. 2005; Goetz et al. 2006; Puskaric et al. 

2010; Herrmann et al. 2011; Steimle et al. 2018), Tbx20-related CHD (Brown et al. 2003, 

2005; Stennard et al. 2003; Showell et al. 2006; Mandel et al. 2010; Kaltenbrun et al. 2013), 

and Nkx2.5-related heart disease (Biben and Harvey 1997; Jiang et al. 1999; Raffin et al. 

2000; Small et al. 2000; Jamali et al. 2001a,b; Shiratori et al. 2001; Kasahara et al. 2003; 

Small and Krieg 2003; Stennard et al. 2003; Bartlett et al. 2007). In addition, it has recently 

proven to be a powerful tool in defining the molecular source of CHD. One of the central 

issues facing clinicians in treating CHD is to try to decipher from massive patient data sets 

which human differences in DNA or RNA sequence represent naturally occurring single 

nucleotide polymorphisms (SNPs) and which are somatic mutations in coding regions of 

potential disease-causing genes (Musunuru et al. 2018). One approach in addressing this 

issue has come from pioneering work by the Khokha laboratory, which has used a high-

throughput CRISPR/Cas9 system to screen potential human mutations in Xenopus for those 

that affect essential cardiac genes (Fakhro et al. 2011; Boskovski et al. 2013; Duncan and 

Khokha 2016; Garfinkel and Khokha 2017; Griffin et al. 2018; Kulkarni and Khokha 2018; 

Kulkarni et al. 2018; Sempou et al. 2018; Robson et al. 2019; Sempou and Khokha 2019). 

This unbiased, patient-driven gene discovery approach has led to the identification of new 

genes and protein pathways that may have been missed through other approaches, as well as 

providing a genetic resource for studying the normal and disease states (Fakhro et al. 2011; 

Boskovski et al. 2013; Duncan and Khokha 2016; Garfinkel and Khokha 2017; Griffin et al. 
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2018; Kulkarni and Khokha 2018; Kulkarni et al. 2018; Sempou et al. 2018; Robson et al. 

2019; Sempou and Khokha 2019).

Conclusion

There is no single best model for studying heart development and disease. The accessibility 

of embryonic tissues and the bounty of experimental sample material available for state-of-

the-art analysis methods undoubtedly make Xenopus an important part of an approach that 

complements other model systems. Moreover, Xenopus has the unique advantage of 

combining a matchless suite of novel tools that will allow— in a single organism—

integrating systems level genomic and proteomic analyses with quantitative live imaging of 

cardiac cell behaviors. These studies can be conducted at the level of single cells, in stem-

cell-like and organoid-like explants, or even in whole embryos and animals. By applying this 

innovative experimental toolbox, Xenopus will continue its impressive track record as an 

important experimental system for groundbreaking novel discoveries in vertebrate heart 

development, regeneration, and disease.
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Figure 1. 
Schematic of early Xenopus laevis heart development. Stages are shown above embryos, and 

hours of development at room temperature are shown beneath. Blastomeres at the 32-cell 

stage fated to become heart tissue are labeled in red and their decedents labeled in red at 

gastrula, early neurula, and late neurula. (A) anterior, (P) posterior.
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Figure 2. 
(Top) A schematic of Xenopus laevis heart development at the 32-cell stage showing the 

position of the linear heart tube. (Middle) Specific relative positions of cell type along the 

heart tube outflow tract (OFT), left ventricle (LV), atrioventricular canal (AVC), and atrium 

(At). (Bottom) Section of the heart tube with black solid lines in the middle of the schematic 

showing that the heart is comprised of a bilaminar heart tube with an inner endocardium and 

an outer myocardium, which are separated by extracellular cardiac jelly.Q1
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Figure 3. 
Schematic of Xenopus animal cap assay. (Left-hand panel) a one-cell-stage embryo injected 

with mRNA or DNA is then allowed to develop to stage 9 (pre-gastrula) stage embryo, at 

which time point the ectodermal or animal cap is removed and placed in isolation, cultured, 

and assayed for the presence, absence, or type of cardiac 5 tissue.
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Figure 4. 
Schematic outlining role of signaling pathways and inhibition of signaling pathways in 

regulating cell fate specification in the mesoderm toward cardiac differentiation. (BMP) 

bone morphogenetic protein, (FGF) fibroblast growth factor. (Figure based on data in Gilbert 

and Barresi 2016.)
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Figure 5. 
Xenopus laevis flanked by smaller cousin Xenopus tropicalis. (Photo by Atsushi Suzuki.)
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