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Abstract

In GWAS, “generalization” is the replication of genotype-phenotype association in a population 

with different ancestry than the population in which it was first identified. Current practices for 

declaring generalizations rely on testing associations while controlling the Family Wise Error Rate 

(FWER) in the discovery study, then separately controlling error measures in the follow-up study. 

This approach does not guarantee control over the FWER or False Discovery Rate (FDR) of the 

generalization null hypotheses. It also fails to leverage the two-stage design to increase power for 

detecting generalized associations. We provide a formal statistical framework for quantifying the 

evidence of generalization that accounts for the (in)consistency between the directions of 

associations in the discovery and follow-up studies. We develop the directional generalization 

FWER (FWERg) and FDR (FDRg) controlling r-values, which are used to declare associations as 

generalized. This framework extends to generalization testing when applied to a published list of 

SNP-trait associations. Our methods control FWERg or FDRg under various SNP selection rules 

based on p-values in the discovery study. We find that it is often beneficial to use a more lenient p-

value threshold than the genome-wide significance threshold. In a GWAS of Total Cholesterol 

(TC) in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), when testing all 

SNPs with p-values< 5 × 10−8 (15 genomic regions) for generalization in a large GWAS of whites, 

we generalized SNPs from 15 regions. But when testing all SNPs with p-values< 6.6 × 10−5 (89 

regions), we generalized SNPs from 27 regions.

*Correspondence to: Tamar Sofer, Department of Biostatistics, University of Washington, UW Tower, 15th Floor, 4333 Brooklyn Ave. 
NE, Seattle, 98105, USA. tsofer@uw.edu. Tel: (206) 543-1490. 

HHS Public Access
Author manuscript
Genet Epidemiol. Author manuscript; available in PMC 2018 April 01.

Published in final edited form as:
Genet Epidemiol. 2017 April ; 41(3): 251–258. doi:10.1002/gepi.22029.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Multiple testing; Shared genetics; One-sided p-values

Introduction

When presenting results from genome-wide association studies (GWAS), current standards 

require a “two-stage design” in which possible discoveries in the first stage are replicated in 

an independent study in a second stage (Cohen, 1999). ‘Generalization’ is the replication of 

a genotype-phenotype association in a population with different ancestry (or other 

characteristics) than the population in which it was first identified. As GWAS expand into 

populations of diverse ancestry, generalization testing is becoming more common. First, 

with non-white discovery populations, there tend to be fewer similar studies available, so 

only generalization and not replication is feasible. Second, when the discovery study 

population is admixed (e.g. Hispanics/Latinos), it is customary to seek generalization in 

some of its parental populations.

Although the current standard for GWAS mandates replication, error-controlling multiple 

testing adjustment procedures are often applied separately in the discovery and follow-up 

stages, without employing a replication- or generalization- based statistical framework. 

Bogomolov and Heller (2013) have shown that such approaches do not guarantee control 

over false generalization claims. Let the generalization null hypothesis state that a SNP is 

not associated with the trait in the discovery population, the follow-up population or both. 

This null is rejected if evidence of association exists for both populations. Define 

generalization testing as any multiple testing adjustment procedure that controls measures of 

generalization error such as the Family-Wise Error Rate (FWERg) or the False Discovery 

Rate (FDRg). In this paper, we propose methods to test the generalization null hypotheses in 

GWAS, by expanding and adapting recent statistical methods developed for replication.

Bogomolov and Heller (2013) considered replication testing using discovery and follow-up 

studies. They developed multiple testing procedures with protection against erroneous 

replicability claims by controlling the FWERg or the FDRg. A key result is that one must 

account for multiple testing in both the discovery and the follow-up studies to avoid a high 

number of erroneous replicability claims. Heller et al. (2014) suggested improvements to 

these procedures when used for GWAS, and developed r-values to quantify the evidence for 

replication while controlling FWERg or FDRg in GWAS. However, the r-values in Heller et 

al. (2014) do not account for the direction of the observed association. In this work we 

extend the r-values approach to incorporate the direction of observed associations. This 

acknowledges that we do not want to claim that an association generalizes if the direction of 

effect is different in the two populations. Our procedures achieve directional control by 

using one-sided p-values to compute directional r-values at the generalization testing stage, 

despite using two-sided tests in the discovery stage. This makes our procedures more 

powerful than the procedures of Heller et al. (2014) for discovering associations with the 

same direction in both studies. We perform extensive simulations to study fixed and data-
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adaptive rules for selecting SNPs based on their p-values in the discovery study, and 

compare multiple-testing adjustment procedures in combination with these selection rules.

Methods

Measures of false generalization

In multiple testing, there are two common measures of error: the FWER, and the FDR. In a 

single-stage GWAS, FWER is the probability of rejecting at least one null hypothesis 

corresponding to a SNP not associated with the trait. FDR is the expected proportion of 

falsely detected SNPs out of all those reported as associated with the trait.

Define the left-sided (right-sided) alternative as the scenario in which a given SNP allele is 

negatively (positively) associated with the trait in a given population. Let

Let ℋj = {h = (h1j, h2j) : hij ∈ {−1, 0, 1}} be the set of 9 possible configurations of the 

vector Hj = (H1j, H2j) for two-sided alternatives for SNP j; these are depicted in Figure 1. 

The generalization null hypothesis for SNP j is true if Hj belongs to the set ℋ0 = {(−1, 1), 

(−1, 0), (1, −1), (1, 0), (0, 0), (0, −1), (0, 1)}. A SNP for which the generalization null is 

false has Hj ∈ ℋA = {(1, 1), (−1, −1)}. Thus, the generalization null hypothesis is rejected 

when a SNP is associated with the trait in both the discovery and the generalization 

populations, with the same directions of association.

Suppose that R generalization claims are made by an analysis. Denote by  and  the 

indicators of whether a generalization null rejection (“generalization claim”) is made in the 

right or left direction, respectively, for SNP j. The number of true generalization claims is

and R – S is the number of false generalization claims. The directional generalization (and 

replication) FWER and FDR are given by:
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Controlling for false generalizations

Definition: The directional FDRg/FWERg r-value for a SNP is the lowest FDR/FWER level 

at which we can say that the SNP association is generalized with the same direction of 

association in both the discovery and generalizing studies.

The directional p-values—Denote the left- and right-sided p-values for SNP association 

j in study i ∈ {1, 2} by ,  respectively. For continuous test statistics, . The 

p-values ( ) corresponding to variant j used in generalization analysis are defined as:

Thus, the one-sided p-values from both studies are guided by the estimated direction of 

association in the discovery study, so that if the evidence towards association is in the same 

direction in both studies, both ,  otherwise  while .

Data and parameters required for FDRg/FWERg r-values computation

1. m, the number of SNPs examined in the discovery study.

2. ℛ1, the set of SNPs selected for follow-up based on discovery study results. Let 

R1 = |ℛ1| be their number.

3. The directional p-values for the followed-up SNPs { ( , ) : j ∈ ℛ1}.

4. l00 ∈ [0, 1), the user-specified lower bound on the fraction of SNP associations, 

out of the m SNPs examined in the discovery study, that are null in both studies. 

Default value for a GWAS is l00 = 0.8, following Heller et al. (2014).

5. c2 ∈ (0, 1), the emphasis given to the follow-up study (see Section Variations in 

Heller et al. (2014)), default value is c2 = 0.5.

Computation of the FDRg/FWERg r-values

1. Defining functions , i ∈ ℛ1, x ∈ (0, 1):

(a) Compute , the inverse weight function for the p-

values from the discovery study.

(b) For every SNP j ∈ ℛ1 compute the following e-values:
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(C) [FDRg] Let , where 

rank[ej(x)] is the rank of the e-value for a SNP j ∈ ℛ1 (with maximum rank 

for ties).

(C) [FWERg] Let .

2. The FDRg (FWERg) r-value for SNP i ∈ ℛ1 is the solution to 

 if a solution exists in (0, 1), and 1 otherwise. The 

solution is unique, see Lemma S1.1 in Heller et al. (2014).

Establishing generalization with directional FDRg/FWERg control at level q—
Denote the set of SNPs having directional FDRg/FWERg r-value at most q by ℛ2. If a SNP j 

∈ ℛ2 has , it is declared as having a generalized left-sided alternative; otherwise, it 

is declared as having a generalized right-sided alternative.

Selection rules

In generalization analysis, SNP associations are first tested in the discovery study, and then a 

subset of these SNPs is selected for testing in the follow-up study, according to a selection 

rule. For instance, investigators often select SNPs with p-value< 5 × 10−8 in the discovery 

study. This is a Bonferroni correction for m = 106 tests, applied to control FWER in the 

single-stage design. We consider other selection rules for a generalization/replication-based 

study design.

1. Selection rule 1, recommended by Heller et al. (2014) for FDRg control. Apply 

the FDR controlling BH procedure (Benjamini and Hochberg, 1995) on all p-

values from the discovery study to obtain BH-adjusted p-values. Choose all 

SNPs with BH-adjusted p-value≤ t, where

(1)

Use q = 0.05 to control FDRg at the 0.05 level. The rationale here is that every 

SNP with BH-adjusted discovery p-value larger than t has no chance of 

generalizing. Heller et al. (2014) applied this selection rule in settings where 

either both discovery and replication used two-sided p-values, or both used one-

sided p-values with pre-determined directions. We can also apply it to one-sided 

p-values used for generalization testing when the discovery study hypothesis 

tests were two-sided.

2. Selection rule 2, recommended by Heller et al. (2014) for FWERg control. This 

rule selects all SNPs with discovery p-value< t′, where

(2)
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As in selection rule 1, SNPs with p-value> t′ have no chance of generalizing 

using the FWERg controlling procedure and selecting them can only reduce 

power. Again, we can apply this selection rule on the one-sided p-values used for 

generalization testing.

Selection rule 1 is data adaptive and depends on the distribution of signals in the discovery 

study. Selection rule 2 is fixed. In selection rule 2, if l00 = 0.8, q = 0.05, and m = 106, we get 

t′ = 1.14 × 10−7. When one-sided p-values are used for generalization testing, the original 

two-sided p-values passing this threshold are ≤ 2.28 × 10−7.

Linkage Disequilibrium (LD)

GWAS datasets may contain tens of millions of genotyped and imputed SNPs. Many of 

these SNPs are in linkage disequilibrium; that is, allelic variation within one SNP is 

correlated with allelic variation in another SNP. Often, when a discovery study association is 

detected, the region may contain tens of correlated SNPs with low p-values.

Since the patterns of LD vary between two different populations, and consequently different 

SNPs may best tag the underlying causal genetic variation, we recommend testing all SNPs 

satisfying the selection rule. This will increase the multiple testing burden for FWER-type 

control. However, this can be handled by calculating the effective number of independent 

SNPs based on the LD matrix of the SNPs in the generalization study. The increase in the 

number of tests is not a problem for FDR control, which is concerned with the fraction of 

discovered associations that are false positives.

Simulation studies: discovery and generalization GWAS

We assess our proposed methods in simulations. First, we simulated test statistics for two 

studies; second, we calculated p-values in the discovery study; third, we selected SNPs for 

generalization testing based on several selection rules; finally, we applied multiple testing 

adjustment procedures. We used selection rules 1 (for FDRg control) and 2 (for FWERg 

control), applied to both one- and two-sided p-values, and the selection rules that take all 

SNPs with p-values< 1 × 10−6, 1 × 10−7, and < 5 × 10−8 in the discovery study. The multiple 

testing adjustment procedures were FDRg r-values and BH on the follow-up study alone (for 

FDRg control), and FWERg r-values and Bonferroni on the follow-up study along (for 

FWERg control). We compared all methods with and without directional control.

In an additional simulation study provided in the supplementary material, we investigated 

GWAS of cohorts designed to mimic realistic data sets with differences in LD structure and 

MAFs between the discovery and the generalization cohorts in a smaller number of 

simulations. There, we also compared generalization testing of all SNPs satisfying the 

selection rule with a procedure that only tests the lead SNP from each detected region.

Simulating test statistics with null inflation

In each of 1,000 repetitions of the simulations, we sampled 106 independent test statistics for 

both the discovery and the follow-up studies. Of these SNPs, 100 were causal in the 

discovery study and 100 were causal in the follow-up study. 50 of the causal SNPs 

overlapped between the studies. We considered two common generalization scenarios. In the 
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first setting the discovery study had relatively low power, and the follow-up study had high 

power. This may happen when discovery is performed in the Hispanics Community Health 

Study/Study of Latinos (HCHS/SOL) with follow-up in a large meta-analysis GWAS in 

individuals of European ancestry. In the second setting the discovery study had high power, 

and the follow-up study had low power. This happens when HCHS/SOL investigators study 

whether associations reported from large meta-analyses of whites generalize to Hispanics/

Latinos. In both scenarios, we generated inflation (λgc = 1.21, Devlin and Roeder (1999)) in 

the test statistics of both the discovery and generalizing studies. Details of how test statistics 

were generated appear in the supplementary material, as well as details of additional 

simulation settings that vary the assumptions of the degree of overlap between the causal 

SNPs between the two populations, the number of causal SNPs, the powers of the two 

studies, and more.

The HCHS/SOL

The HCHS/SOL is a community based cohort study, following self-identified Hispanic/

Latino individuals. Almost 13,000 study participants consented for genotyping. For 

references to the HCHS/SOL study and descriptions of genotyping, imputation and quality 

control see Conomos et al. (2016).

Identifying SNP-Total Cholesterol associations in the HCHS/SOL

We performed a GWAS of Total Cholesterol (TC) in the HCHS/SOL followed by 

generalization testing using publicly available GWAS results. Our GWAS was adjusted for 

sex, age, 5 principal components of ancestry, and study design variables (study center, 

sampling weights). Analysis was performed using a linear mixed effect model, with random 

effects corresponding to block groups, households, and kinship. As advocated by Kraft et al. 

(2009), the analysis plan mimicked the published analyses. Thus, we first regressed TC 

values on covariates, and then applied a rank-based inverse normal transformation on the 

residuals. The transformed residuals were the outcome variable in the GWAS.

We compared multiple generalization analyses of TC. We used results from the Global 

Lipids Genetics Consortium (GLGC) TC GWAS (Willer et al., 2013), which conducted a 

large meta-analysis of multiple cohorts of European ancestry comprising of over 180,000 

individuals. First, we considered generalization geared towards establishing new 

associations, in which we perform a discovery GWAS in the HCHS/SOL, with 

generalization to whites. Second, we selected SNPs published by Teslovich et al. (2010) and 

Willer et al. (2013) and tested whether they generalize to Hispanics/Latinos.

We tested all SNPs satisfying the selection rule criterion, even if they were in LD with each 

other. However, we report generalization results both in terms of individual SNPs, and by 

genomic regions: after generalization testing, we identified the first region by taking the 

SNP with smallest discovery p-value (lead discovery SNP) to represent it. We then 

“removed” all SNPs in a region of 1Mbp around it, and continued to find other regions in a 

similar manner. A region with any SNP that generalized is declared a generalized region.
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Results

Simulations

For each simulation setting, selection rule, and multiple testing adjustment method, Table 1 

provides the power, defined as the average proportion of generalized SNPs, out of all 

generalizable SNPs in the simulation, and the estimated error control measure (  or 

). We omitted the selection rule based on discovery two-sided p-value≤ 10−7, as this 

resulted in “intermediate” results in terms of both power and error control between selection 

rules of higher and lower p-value thresholds. Additional results are provided in the 

supplementary material.

In general, directional control had higher generalization power compared to using two-sided 

p-values. The difference was smaller when the selection rule was more stringent, i.e. most 

followed up SNPs were true associations. Higher discovery power resulted in higher 

generalization power, but also slightly higher error rates. Importantly, both FDRg and 

FWERg r-values always protected their target error measures.

FDRg control: Focusing on directional FDRg r-values, selection rule 1 applied to two-sided 

p-values was most powerful. Applying selection rule 1 to one-sided p-values resulted in a 

large proportion of null followed-up SNPs, and consequently, generalization testing using 

BH on the follow-up study alone did not control FDRg. BH on the follow-up study alone 

controlled FDRg in most (but not all) other settings. While BH on the follow-up study alone 

is less stringent than directional r-values, and therefore more “powerful”, the power 

differences between the two procedures are small when the selection rules are stringent and 

fewer null SNPs are selected for follow-up.

FWERg control: The most powerful selection rule was always selection rule 2 applied to 

one-sided p-values. Applying Bonferroni correction to the follow-up study alone never 

controlled FWERg, and control was worse with two-sided p-values compared to one-sided p-

values.

The HCHS/SOL Total Cholesterol GWAS

HCHS/SOL as the primary discovery study in a two-stage design—In Table 2, 

for each combination of selection rule and multiple testing adjustment method, we report the 

number of SNPs followed-up that are available in both the HCHS/SOL and the GLGC TC 

GWAS, the number of regions they correspond to, the number of generalized SNPs and 

generalized regions, and the number of regions with none of the SNPs having p-value< 5 × 

10−8 in Willer et al. (2013)'s GWAS.

When the selection rule chose all SNPs with p-value< 5 × 10−8, the followed-up SNPs 

corresponded to 15 regions, all of which generalized under FWERg (and FDRg) control. For 

FWERg control, the highest number of generalized regions was obtained using both 

selection rule 2 (on one-sided p-values) and by choosing SNPs with p-value< 10−6. Indeed, 

SNPs with HCHS/SOL two-sided p-value> 2.28 × 10−7 (selection rule 2) cannot be 

generalized under FWERg control, so the higher threshold 10−6 could not increase power.
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In the FDRg-controlling analysis applied on SNPs satisfying selection rule 1 on two-sided p-

values, 21 regions generalized. These included a single generalized region that would not be 

reported in either the HCHS/SOL or the GLGC GWAS alone. The lead SNP, rs870992 on 

chromosome 5, had r-value= 0.008, HCHS/SOL p-value= 2 × 10−5, and GLGC p-value= 5.2 

× 10−5. This SNP was formerly associated with concentration of liver enzymes in plasma in 

a GWAS (Chambers et al., 2011). In the FDRg-controlling analysis applied to SNPs 

satisfying selection rule 1 with one-sided p-values, there were 22 generalized regions with 

strong evidence of association in the GLGC GWAS (SNPs with p-values< 5 × 10−8), and 5 

generalized regions that would not have been detected either in the HCHS/SOL or the 

GLGC GWAS alone. One of them was the region that includes rs870992. Another SNP, 

rs2072781 in chromosome 6, had r-value= 0.009 (HCHS/SOL p-value= 2.1 × 10−5, GLGC 

p-value= 1 × 10−4). This SNP is in the MYLIP gene, formerly associated with high TC in 

Mexicans (Weissglas-Volkov et al., 2011). Three additional regions had relatively higher p-

values in the GLGC GWAS (0.007-0.05) and r-values in the range 0.01-0.05. The five 

regions are reported in the supplementary material.

In all analyses, there was a generalized region in which the HCHS/SOL lead SNP did not 

generalize (p-value= 0.92 in Willer et al. (2013)) but a different SNP in the same region did 

generalize (p-value= 1.4 × 10−46 in Willer et al. (2013)). This supports a strategy that 

analyzes all SNPs satisfying the selection rule, rather than an LD-pruned set.

Generalizing previously reported TC-SNP associations—There are 74 SNPs 

previously reported as associated with TC with p-values≤ 5 × 10−8 and are available for 

generalization testing in the HCHS/SOL data set. 51 SNPs were reported by Teslovich et al. 

(2010) and replicated by Willer et al. (2013). For these SNPs, we performed generalization 

analysis by treating the meta-analysis of the results of Teslovich et al. (2010) and Willer et 

al. (2013) as the discovery study. 33 of the these SNPs generalized to the HCHS/SOL. We 

performed a second generalization analysis on 23 SNPs reported only in Willer et al. (2013). 

None of these SNPs generalized.

In the supplementary material, we provide an additional analysis in which we pursue 

generalization for all SNPs with p-value< 10−6 in the GLGC GWAS, without any SNP 

pruning. This analysis generalized 9 more regions than the analysis that tested only the 

published lead SNPs.

Discussion

In this work, we propose to leverage two-stage design to increase generalization power in 

GWAS. We introduce procedures for calculating directional FDRg and FWERg r-values, 

computed based on one-sided p-values. We prove that r-values control their directional error 

measures when there is no genomic inflation, and show via simulations that errors are 

controlled in the presence of inflation. These procedures are, by construction, more powerful 

than those based on two-sided p-values when the direction of association is consistent 

between discovery and follow-up populations. We studied SNP selection rules that are 

geared towards generalization-based designs. Our simulation studies found that by choosing 

SNPs for generalization testing based on p-values less conservative than the genome-wide 
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significance threshold, e.g. selection rules 1 and 2 for FDRg control and FWERg control, 

respectively, we are able to generalize more SNPs while controlling the desired error rate. 

Finally, we demonstrated our procedure on a GWAS of Total Cholesterol in the HCHS/SOL.

The proposed procedures require directional consistency between estimated associations for 

declaring generalization. Biologically, it makes sense that causal SNPs have the same effect 

direction in different populations. However, if a tag SNP has different direction of LD with 

the causal SNP in the discovery and follow-up populations, the estimated directions of 

association of the trait with this tag SNP will likely differ between the two populations and 

we could not declare generalization. Nevertheless, the gain in power and protection against 

false generalizations by requiring directional consistency outweighs such a rare possibility.

An approach that was promoted in the past to increase power in a two-stage design was to 

perform a joint analysis of the two studies via meta-analysis (Skol et al., 2006). However, 

this approach does not test the generalization null hypothesis, and an association may appear 

significant even if it exists only in one population. In contrast, our approach is focused on 

generalization testing, which allows for stronger conclusions about the underlying similarity 

in genetic associations between populations.

We provide practical recommendations based on our results. First, in terms of selection 

rules, we recommend selection rule 2 for FWERg control at the α level, which selects SNPs 

with two-sided discovery p-value< 2.28 × 10−7 for α = 0.05. For FDRg control at the α = 

0.05 level, we recommend selecting SNPs with discovery p-value≤ 10−6, or based on 

selection rule 1 if it is more conservative. That is because selecting SNPs with p-value larger 

than selection rule 1 can only reduce power under FDRg control. Second, we recommend 

follow-up on all SNPs satisfying the selection rule. Limiting follow-up to lead SNPs from 

the discovery study may reduce generalization power due to different LD patterns between 

the discovery and follow-up populations. Finally, while FDRg control allows for more false 

positive generalizations compared to FWERg control, it also allows for more generalizations. 

While the GWAS culture favors caution and prioritizes FWER control, FDRg control may be 

more appropriate in generalization testing. In this setting an investigator may be willing to 

tolerate a small fraction of false positives among the generalizations, as the overall number 

of reported false associations may already be dramatically reduced, compared to reported 

associations from a discovery GWAS alone.

We examined generalization testing of associations from European ancestry populations to 

Hispanics/Latinos, and vice versa. Hispanics/Latinos are admixed and have large proportion 

of European ancestry; therefore we expect a large overlap in genetic architecture between 

the two populations. However, we expect our conclusions to hold also when studying 

generalizations between other populations. We performed additional simulations studies 

with varying degrees of overlap between causal SNPs and distributions of test statistics, 

corresponding to many plausible generalization scenarios. The conclusions remained the 

same.

While our methodology focuses on generalization of variants, in the data analysis we also 

reported results by regions, where we reported a region as generalized if at least one of its 
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associated SNPs generalized. However, we did not offer a measure of region-generalization 

evidence. Assigning a r-value for this null hypothesis is a topic of future work.

Software

An R package to perform generalization analysis can be installed using the R commands

library(devtools)

install_github(“tamartsi/generalize”, subdir = “generalize”)

and the manual can be viewed in https://github.com/tamartsi/generalize/blob/

Package_update/generalize-manual.pdf. Also, a web applet that computes r-values based on 

one-sided p-values from the discovery and follow-up study, and does not require any 

software installation, is available in http://www.math.tau.ac.il/∼ruheller/App.html

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The set of possible configuration of the vector Hj = (H1j, H2j). The association of SNP j with 

the trait is defined as generalized association (marked as gray) when both alternatives are 

either left (negative direction of allele-trait association, Hj = (−1, −1)), or right (positive 

direction of allele-trait association, Hj = (1, 1)).
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