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Abstract

In this paper, we develop TWO‐SIGMA, a TWO‐component SInGle cell Model‐
based Association method for differential expression (DE) analyses in single‐cell
RNA‐seq (scRNA‐seq) data. The first component models the probability of

“drop‐out” with a mixed‐effects logistic regression model and the second com-

ponent models the (conditional) mean expression with a mixed‐effects negative
binomial regression model. TWO‐SIGMA is extremely flexible in that it: (i) does

not require a log‐transformation of the outcome, (ii) allows for overdispersed

and zero‐inflated counts, (iii) accommodates a correlation structure between

cells from the same individual via random effect terms, (iv) can analyze un-

balanced designs (in which the number of cells does not need to be identical for

all samples), (v) can control for additional sample‐level and cell‐level covariates
including batch effects, (vi) provides interpretable effect size estimates, and (vii)

enables general tests of DE beyond two‐group comparisons. To our knowledge,

TWO‐SIGMA is the only method for analyzing scRNA‐seq data that can si-

multaneously accomplish each of these features. Simulations studies show that

TWO‐SIGMA outperforms alternative regression‐based approaches in both type‐
I error control and power enhancement when the data contains even moderate

within‐sample correlation. A real data analysis using pancreas islet single‐cells
exhibits the flexibility of TWO‐SIGMA and demonstrates that incorrectly failing

to include random effect terms can have dramatic impacts on scientific
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conclusions. TWO‐SIGMA is implemented in the R package twosigma

available at https://github.com/edvanburen/twosigma.
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1 | INTRODUCTION

Advancements in single‐cell sequencing technologies
have created many exciting opportunities to researchers
yet have also posed many challenges relating to data
analysis. Expression profiles can now be analyzed at the
single‐cell level, providing new insights into the cellular
heterogeneity of gene expression. Three characteristic
features of single‐cell transcriptome sequencing data in-
clude excess zero counts, overdispersion of observed
counts, and a large number of cells that are sequenced
from a relatively small number of samples (Wills et al.,
2013). Technological limitations including low capture
rate and amplification failure lead to “drop‐out” events,
in which the data may capture only a fraction of the
transcriptome of a given cell and mistakenly generate
zero measurements for expressed genes. The presence of
these zeros creates a data set with an excess of zeros
(often called “zero‐inflation”) beyond those that occur
due to biological factors; these excess zeros often
necessitate special modelling approaches such as a
two‐component model (Finak et al., 2015; Hicks, Townes,
Teng, & Irizarry, 2017). Overdispersion, in which the
variance in expression exceeds the mean expression, is
commonly observed in count‐based quantitative sequen-
cing due to large variance in expression and within gene
variability over time or across samples. A within‐sample
correlation is also present because multiple cells are se-
quenced from the same biological sample. These chal-
lenges motivated us to develop the new statistical method
named TWO‐component SInGle cell Model‐based Asso-
ciation (TWO‐SIGMA). It is designed for association ana-
lyses where the primary interest is in performing statistical
inference on covariate(s) of interest, such as a treatment
effect. TWO‐SIGMA is not limited to a two‐group com-
parison and can test for more general kinds of differential
expression (DE) while simultaneously controlling for
multiple sample‐level and cell‐level covariates and
accounting for within‐sample correlation. As we will dis-
cuss, accounting for this within‐sample dependency is a
necessity to preserve type‐I error when cells from the
sample are even moderately correlated.

Most existing methods for DE analysis in single‐cell
RNA‐seq (scRNA‐seq) data are designed for a two‐group
comparison. As a result, benchmarking papers typically

limit themselves to two‐group comparisons (Soneson &
Robinson, 2018; Wang, Li, Nelson, & Nabavi, 2019). Three
of the most popular methods for two‐group comparisons
are single‐cell differential expression analysis (SCDE),
single‐cell differential distributions (scDD), and DESingle.
SCDE and scDD are both innovative Bayesian methods,
with the former utilizing a two‐component negative bino-
mial mixture method and the latter using a Dirichlet mix-
ture process (Kharchenko, Silberstein, & Scadden, 2014;
Korthauer et al., 2016). Although both methods show
strong performance, only the latter can adjust for con-
founding covariates, and this adjustment is indirect through
a residualized analysis. DESingle employs a zero‐inflated
negative binomial (ZINB) distribution to analyze DE in
scRNA‐seq data while accounting for excess zeros and
overdispersion (Miao, Deng, Wang, & Zhang, 2018). Like
SCDE and scDD, however, DESingle does not employ a
regression modeling framework to control for other cov-
ariates or account for within‐sample correlation.

MAST was introduced as a hurdle model for the
analysis of scRNA‐seq data (Finak et al., 2015), and is
considered to be one of the preferred methods for per-
forming DE analysis in scRNA‐seq data (Luecken &
Theis, 2019). Like TWO‐SIGMA, but unlike the methods
described above, MAST can test for DE in cases beyond a
two‐group comparison. There are several important dif-
ferences, however, between TWO‐SIGMA and MAST.
First, we fit a zero‐inflated model on the observed counts
while MAST fits a hurdle model (described in more detail
in the next section) on the log scale. The ability to avoid
log‐transforming the data is desirable given recent evi-
dence which suggests that log transformation can distort
many scRNA‐seq data sets by producing false variability
(Lun, 2018; Townes, Hicks, Aryee, & Irizarry, 2019).
Further recommendations for DE analysis in scRNA‐seq
data state that the observed counts should be modeled
directly while accounting for batch effects as covariates
rather than through normalization (Luecken & Theis,
2019). Second, TWO‐SIGMA allows the covariates in
each of the two components to differ. We will discuss
reasons that this flexibility can be appreciated by re-
searchers later. Third, and most importantly, although
the ability to include random effects in either component
of MAST is mentioned by its authors, they do not prior-
itize their inclusion for scRNA‐seq data and do not

https://github.com/edvanburen/twosigma


evaluate the impact of random effects on the model's
performance. We will revisit the comparison with MAST
in the methods section.

Several unsupervised methods, such as ZINB‐WaVE
(Risso, Perraudeau, Gribkova, Dudoit, & Vert, 2018) and
ZIFA (Pierson & Yau, 2015) have also been proposed for
scRNA‐seq analysis. Both ZINB‐WaVE and ZIFA are
primarily designed for settings in which dimension re-
duction, not association analysis, is the primary goal. One
interesting use of ZINB‐WaVE is to construct
observation‐level weights that can be incorporated into
the popular bulk RNA‐seq pipelines found in the
DESeq2 (Love, Huber, & Anders, 2014) or edgeR
(McCarthy, Chen, & Smyth, 2012) Bioconductor packages
(Van den Berge, Perraudeau et al., 2018; Van den Berge,
Soneson, Love, Robinson, & Clement, 2018). These pi-
pelines do not allow for random effects or model excess
zeros separately and can involve some transformation of
the data in processing or analysis.

The two‐component zero‐inflated model without ran-
dom effects has a long history in the analysis of count and
microbiome data (Chen & Li, 2016; Hall, 2000; Lambert,
1992), however its application in scRNA‐seq data is limited.
Furthermore, a zero‐inflated negative binomial mixed effects
model has previously been proposed for modelling zero‐
inflated count data (Min & Agresti, 2005). The focus of that
work was on typical repeated measures applications where
the number of repeated measures per individual is small, in
contrast to genomic applications which tend to include more
repeated measures than samples. Because attention is split
between zero‐inflated and a similar approach called a hurdle
model, and between the Poisson and negative binomial
distributions, details regarding the performance and robust-
ness of the zero‐inflated negative binomial mixed‐effects
model are not discussed in as much detail as we can here.

The rest of the article proceeds as follows: first, we
specify the TWO‐SIGMA model, discuss implications of
its parameterization, and provide details on parameter
estimation. Next, we describe both traditional methods
and a new ad hoc method to decide whether random
effects should be included in our zero‐inflated negative
binomial model. Then we show simulation results and an
application to a data set of pancreatic islet single‐cells,
respectively. Finally, we conclude with a discussion.

2 | MATERIALS AND METHODS

2.1 | Zero‐inflated negative binomial
distribution

For a given gene, let i index the samples sequenced and j

index the ni single cells from sample i. Consider the

following parameterization of the negative binomial
probability mass function (p.m.f.) at a nonnegative in-
teger yij corresponding to the observed read count

Y y f y μ ϕ

y

Pr( = ) = ( ; , )

= ,

= 0, 1, 2, …

ij ij ij ij

y ϕ

y ϕ μ

ϕ
μ

μ

y

ij

Γ( + )

Γ( + 1)Γ( )

1

1 + 1 +

ij

ij ϕ ij

ϕ ij

ϕ ij

ij

1

1

1

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

With this parameterization, E(Yij) = μij and YVar( ) =ij

μ μ+ij ϕ ij
1 2, such that ϕ is the overdispersion parameter

ϕ( > 0). This parameterization is appealing for interpret-
ability because as 0

ϕ

1 +→ , the density above approaches
the Poisson density with mean μ. Thus, the Poisson and
negative binomial distributions are asymptotically nested
(and nearly identical for large values of ϕ). One can
compare the fit of the Poisson model to the fit of the
negative binomial model by testing H : = 0

ϕ0
1 versus

H : > 0a ϕ

1 using the likelihood ratio test (p values
come from a 50:50 mixture of χ1

2 and a point mass at
zero). As seen in Table 2 in the real data analysis
below, the pvalue from such a test will often suggest a
significant deviation from the Poisson model in
scRNA‐seq data.

To accommodate the excess zeros often observed in
scRNA‐seq data, we employ the ZINB. This distribution
mixes a point mass at zero (from which observations are
considered “drop‐out”) with the negative binomial dis-
tribution. Let pij and μij be the probability of drop‐out and
the mean read count conditional on not being dropped‐
out for cell j from sample i, respectively. The p.m.f. of one
observation Yij under the ZINB distribution is given by:
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The ZINB distribution thus assumes that there are two
sources of zeros in the data: the first source is the process
that governs drop‐out and the second source is from the
negative binomial process for genes that are not dropped‐
out. This differs from hurdle models used for gene
expression data (Finak et al., 2015) which use a left‐
truncated or continuous distribution for the positive
expression component—meaning zeros can only
be generated from the drop‐out process. Thus, the hurdle
model does not allow zero expression measurements due
to biological variation.

Interpretations from the zero‐inflated model are quite
natural for single‐cell gene expression data because it is
reasonable to believe that some observed zeros are
“structural zeros” with bona fide zero expression due to



stochastic biological factors (e.g., transcriptional bursting,
cell cycle) and not due to technical drop‐out (Wills et al.,
2013). Although semantic, the distinction regarding the
source of zeros affects the interpretation of model coef-
ficients and is important because these models are often
misinterpreted by researchers (Preisser, Stamm, Long, &
Kincade, 2012; Todem, Kim, & Hsu, 2016).

2.2 | TWO‐SIGMA

We can now provide the full TWO‐SIGMA specification:
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The model is fit for each gene individually, so all para-
meters are gene‐specific. α and β are fixed effect coeffi-
cient vectors and the corresponding vectors of covariates
zij and xij can be different. ai and bi are sample‐specific
intercepts (discussed more in the next section). Predic-
tion of sample‐specific intercepts and estimation of
the variance components σa

2 and σb
2 allow us to in-

vestigate heterogeneity among individuals, and tests of
whether the variance components equal zero allow us to
separately (or jointly) evaluate the need for random
effects. Separate variance components are estimated be-
cause the different link functions in the two components
correspond to linear predictors with different scales. In-
cluding the random effects terms also helps control for
any within‐sample correlation, providing more accurate
estimates and standard errors of fixed effect parameters.

As part of our two sigma R package, we employ the
glmmTMB package (Brooks et al., 2017) to fit the model
specified in Equation (2). This package is well‐suited to fit
generalized linear mixed models (GLMMs) because the
user can easily specify an arbitrarily complex model
composed of fixed and random effects. More details re-
garding computational considerations can be found in
Section S5. To summarize, TWO‐SIGMA controls for
additional covariates in both components, incorporates
random effects to accommodate within‐sample
dependency, can analyze unbalanced data, and allows
for zero‐inflated and overdispersed counts. The regres-
sion modelling framework provides interpretable effect
size estimates and can examine any DE hypothesis that
can be expressed as a contrast of regression coefficients.
The implementation of the model strikes a balance
between computational accuracy and efficiency, even as
the number of random effects (number of samples in
the context of the scRNA‐seq data) or the number of
single cells per sample increases.

2.3 | Evaluating the need for random
effects

One primary methodological contribution of TWO‐SIGMA
for scRNA‐seq data analysis is the inclusion of random
effect terms in each of the two components, which is a
well‐established technique to account for within‐sample
correlation. Ignoring random effects in TWO‐SIGMA is
equivalent to assuming that cells from the same sample/
individual are independent. This assumption can lead to
underestimated standard errors and thus inflated type‐I
errors. An example is given in Table 3 in the real data
analysis section.

Evaluating the need for a random effect term involves a
hypothesis test of whether the corresponding variance
component(s) equal zero. For example, consider testing
whether random effects are needed in either component of
TWO‐SIGMA with σ σH : = = 0a b0 versus σH : > 0a a or
σ > 0b via the Likelihood Ratio Test (LRT). The test statistic
has an asymptotic χ2 distribution under the null, and can be
expressed as:−2 ( − )H Ho a

∗ ℓ ℓ , where Ho
ℓ and Ha

ℓ are the log‐
likelihoods of the model under the null and alternative hy-
potheses, respectively. The null hypothesis is on the
boundary of the parameter space, and the two variance
components in Equation (2) are estimated using a non-
separable marginal likelihood function and are therefore not
independent. Thus, to our knowledge, the true degrees of
freedom for this LRT χ2 statistic have not been derived
analytically. A conservative choice, however, would be to use
2 degrees of freedom for conducting the test, as discussed
elsewhere in the context of one component generalized lin-
ear mixed models (Zhang & Lin, 2008). If testing only one
component, one can use the LRT with p values coming from
a 50:50 mixture of a χ2 distribution with 1 degree of freedom
and a point mass at zero (Zhang & Lin, 2008).

Other less desirable postfitting options to compare
models with and without random effects include informa-
tion criteria like Akaike information criterion and Bayesian
information criterion or Wald tests of the variance compo-
nents (Fitzmaurice, 2003). Critically, all options discussed
require fitting the “full” model including the random effect
terms. The scRNA‐seq application is distinct from typical
repeated measures analyses in that the number of repeated
measures (cells) typically far exceeds the number of sam-
ples. Such designs can entail more extensive computational
time for each gene over scenarios involving a smaller
number of repeated measures from a modest number of
individuals. These computational burdens are especially
relevant given that scRNA‐seq data typically include thou-
sands of genes, each of which is fit separately using TWO‐
SIGMA. It would therefore be useful to identify the genes
that are most likely to need the random effect terms with-
out having to fit the full model to each gene.



2.3.1 | Ad hoc approach

First, define the Pearson's residuals from a ZINB regres-
sion model without random effects as follows, where yij is
the observed count for cell j from sample i:
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We employ the following ad hoc approach to determine
whether random effects are needed in Equation (2): using a
one‐way analysis of variance (ANOVA), we regress the
Pearson's residuals on an indicator of sample and take the
pvalue from the overall ANOVA F test. Use of the Pear-
son's residuals provides a convenient way to analyze the
residual variation unexplained by either component of the
model, and the ANOVA pvalue serves as a rudimentary
measure of whether this residual variation tends to differ
across samples. If this pvalue is significant, there is evi-
dence that residuals are not exchangeable across samples,
and thus that sample‐specific random effect terms may
exist. The full TWO‐SIGMA specification including random
effects in both components will then be fit to more formally
evaluate the need for random effect terms. In contrast,
when the residuals show no tendency of differing across
samples, we do not have evidence to believe that they are
structured/clustered within samples and thus will not fit the
full model with random effects. Because the Pearson re-
sidual combines both components, and seems sensitive to
presence of random effect terms in either component
(Figure S2) the ad hoc procedure is not designed to inform
which component suggests a presence of random effects.
Rather, formal testing can be used for this purpose as de-
scribed above. See Section S2 for more details, including
results that show that the ad hoc procedure demonstrates
good performance in a variety of simulation scenarios. Re-
sults from applying this proposed method to a real data set
of pancreatic islet cells are given in the data analysis section.
In simulations, computation runtime for TWO‐SIGMA was
the longest for models attempting to fit random effects
when variance components were truly zero (see Tables
S1–S4). Therefore, as discussed more in Section S3, the ad
hoc method can dramatically reduce overall computation
time over many genes in addition to increasing model
parsimony where most appropriate.

2.4 | Simulation studies

To evaluate the performance of TWO‐SIGMA, we simulated
data in a variety of scenarios. In each scenario, we simulated
10,000 independent genes using the R function

simulate_zero_inflated_nb_random_
effect_data in our twosigma R package. For each
gene, a drop‐out probability is simulated based on fixed effect
parameter values, simulated covariates, and the possible
presence of random effect terms. This probability is used to
simulate the drop‐out status of a given gene using the Ber-
noulli distribution. If the gene is not a drop‐out, the mean
expression value is then simulated from the negative bino-
mial distribution with mean varying according to simulated
covariates, parameter values, and the possible presence of
random effect terms. Simulated covariates mirrored our
pancreatic real data analysis and included a binary disease
status, age, and the cellular detection rate (CDR; see the real
data analysis section and Finak et al., 2015, for more details
including discussions of its usefulness as a surrogate for
batch effects and other technical artifacts). True parameter
values α and β for these covariates are specified in Sections
S3 and S4 and were designed to mimic realistic parameter
values as observed in the real data analysis of Section 3.4.
Type‐I error and power were evaluated using the likelihood
ratio test on the joint null hypothesis that the disease status
indicator is not associated with expression through either
drop‐out probability or the conditional mean
( α βH : = = 00 1 1 , α1 and β1 are set to 0 under the null and
are nonzero under the alternative hypothesis). We used 0.05
as the nominal significance rate to evaluate type‐I error and
power, but provide results for more stringent significance
thresholds, such as the Bonferroni threshold of 1/10,000, in
Figures S5 and S6. We consider two different ways of si-
mulating data: one in which the number of samples far ex-
ceeds the number of cells per sample, as is typical in most
repeated measures contexts, and the other in which the
number of cells far exceeds the number of samples, as is the
case in scRNA‐seq data. Although many methods exist for
DE analysis in scRNA‐seq data, as described above, we
chose to focus our comparison to MAST because, like
TWO‐SIGMA, it uses a regression modeling framework that
is suitable for designs beyond a two‐group comparison and
can simultaneously control for multiple cell‐level and
subject‐specific covariates. We also compare to a ZINBmodel
without random effects to highlight the impact random effect
terms can have on model performance. See Sections S3 and
S4 for additional simulation details, results, and discussion.

3 | RESULTS

3.1 | Type‐I error control

Table 1 shows results from simulations in which the true
values of the overdispersion parameter ϕ and the var-
iance components σa, σb vary. Type‐I error is well‐
controlled for TWO‐SIGMA in the scenarios involving



more individuals than cells. When the number of cells
increases, type‐I errors from TWO‐SIGMA are slightly
inflated over the nominal rate of 5%, but consistently
remain superior to the results from the ZINB model or
MAST in the presence of ignored nonzero variance
components. For example, the last row of Table 1 shows
that, when ϕ = 1 and σ σ= = 0.5a b , type‐I error for
TWO‐SIGMA increases from 0.05 to 0.053 to 0.074 as the
number of individuals decreases from 1000 to 100 to 25.
In contrast, the ZINB model and MAST have inflated
type‐I errors in every scenario that increase to nearly 1 as
the number of individuals decreases. This is not sur-
prising because both of the latter methods cannot ac-
count for any within‐sample dependency structure
among the single cells from the same sample. Ignoring
the dependency introduced by even a moderate random
effect size can thus have a drastic impact on the type‐I
error. When true variance components are zero, both
TWO‐SIGMA and the ZINB model preserve type‐I error
while MAST consistently has higher type‐I error, as seen
in the first three rows of Table 1. Coverage of confidence
intervals for α, β, and ϕ always approaches the nominal
level (Tables S1–S4). The reason for the slightly inflated
type‐I error for TWO‐SIGMA observed in the scenario
with 25 individuals is worth mentioning briefly. The
smaller number of individuals (25) provides less in-
formation to estimate the sample‐specific variance com-
ponents σa and σb and few unique values of the simulated
binary disease status indicator. The slightly lower cover-
age for variance components in the last six sets of Table
S4 is one illustration of the (relative) difficulty in getting

precise variance component estimates. TWO‐SIGMA
outperforms MAST or the ZINB model in preserving
type‐I error and estimating parameters under a variety of
sample size breakdowns and with a variety of true
parameter values.

3.2 | TWO‐SIGMA retains high power
under a variety of scenarios

Because the ZINB model and MAST both have heavily
inflated type‐I errors in many cases, using raw (or “ap-
parent”) power does not provide a fair comparison for
these two methods. For each method and each simula-
tion setting under the null, we therefore calculate the
empirical significance threshold, defined as the test sta-
tistic value at the quantile associated with 1 minus the
significance level. A percentage of statistics equal to the
nominal significance level will then be larger than this
threshold. For various alternative hypotheses, we calcu-
late “true” power for MAST and the ZINB model by using
the empirical significance threshold from the corre-
sponding setting under the null as the rejection threshold
instead of a usual theoretical threshold (e.g., 5.9915 from
χ2
2 at the 0.05 level). Figure 1 plots raw power for

TWO‐SIGMA and true power for MAST in the ZINB
model in the following four scenarios: effect in both
components, in either the same or opposite directions,
and effects in only one of the two components. In the first
three scenarios, MAST consistently has the lowest power,
while TWO‐SIGMA and the ZINB model have very

TABLE 1 Type‐I error evaluations in simulated data: Shows type‐I error using the LRT to test the joint null hypothesis of a simulated
binary disease status indicator, αH : = 00 1 , β = 01 versus αH : 0a 1 ≠ or β 01 ≠ , with a significance level of 0.05

Case 1 in Supp.: Case 3 in Supp.: Case 4 in Supp.:

Sim Params 50 cells per 1000 Ind. 500 cells per 100 Ind. 2000 cells per 25 Ind.

ϕ σa σb T‐S ZINB MAST T‐S ZINB MAST T‐S ZINB MAST

No R.E. 10 0 0 0.049 0.051 0.089 0.042 0.050 0.090 0.041 0.052 0.090

2 0 0 0.048 0.051 0.080 0.038 0.044 0.079 0.041 0.052 0.086

1 0 0 0.048 0.052 0.081 0.044 0.051 0.087 0.042 0.051 0.090

Small R.E. 10 0.1 0.1 0.051 0.132 0.144 0.056 0.534 0.313 0.077 0.795 0.487

2 0.1 0.1 0.051 0.078 0.089 0.057 0.323 0.176 0.072 0.643 0.361

1 0.1 0.1 0.049 0.066 0.095 0.053 0.224 0.174 0.075 0.548 0.361

Large R.E. 10 0.5 0.5 0.051 0.621 0.290 0.055 0.941 0.716 0.076 0.984 0.875

2 0.5 0.5 0.053 0.505 0.275 0.056 0.909 0.685 0.076 0.974 0.857

1 0.5 0.5 0.050 0.404 0.247 0.053 0.873 0.649 0.074 0.964 0.827

Note: 10,000 genes were simulated.
Abbreviations: MAST, the model described in Finak et al. (2015); R.E., random effects; Supp., Supporting Information file; T‐S, TWO‐SIGMA,
ZINB, zero‐inflated negative binomial model without random effects.



similar power in the first two scenarios, beginning at
around 20% and increasing to nearly 100%. The ZINB
model has higher power than TWO‐SIGMA in the third
scenario but the lowest power in the fourth scenario. In
simulation, computing the empirical significance
thresholds and true power is straightforward and com-
putationally included. In real data settings, however,
computationally intensive resampling approaches are
needed for reliable estimates of the empirical significance
thresholds. Because TWO‐SIGMA preserves type‐I error,
we can rely on raw power and can therefore bypass the
need for any resampling approach for valid inference.
This is a key advantage and shows that TWO‐SIGMA is
more robust and flexible than the ZINB model while both
preserving the type‐I error and having high power with-
out any additional computation. When the effect is only
in the zero‐inflation component, power is lower for all
methods than in the first three scenarios. Such effects
present only in the zero‐inflation component are known
to be more difficult to detect, as seen in Chen and Li
(2016). For full power results, including more detailed
comparisons to the ZINB model with additional discus-
sion, see Section S4, Figures S7–S9 and Tables S5–S12.

3.3 | Sensitivity of the ad hoc method for
random effect screening in simulated data

We evaluated the ad hoc screening procedure used to
select genes possibly in need of random effect terms using
the simulated data. We found it to be effective as a
screening procedure: for the data used in Table 1, most
genes with nonzero variance components had p values
less than 0.05 and were flagged as in need of estimating
variance components using TWO‐SIGMA. When the
variance components are zero, however, the p values
from the ad hoc method are close to uniformly dis-
tributed, indicating that the procedure is not too liberal
under the null. See Section S2 and Figures S2–S4 for
more details and some example results.

3.4 | Pancreas real data analysis

For illustrative purposes we applied TWO‐SIGMA to a
data set of pancreatic islet cells isolated from nine in-
dividuals (see Section S1 and Fang et al., 2019, for full
details on the data processing and generation steps).

(a) (b)

(c) (d)

FIGURE 1 Power evaluations in simulated data: Shows the power to test α βH : = = 00 1 1 by varying the effect size with 500 cells
from each of 100 individuals. Values of ϕ σ, a, and σb were all set to 0.1 to mimic the “Small R.E.” section of Table 1 and 10,000
genes were simulated. Because of the type‐I error inflation from the ZINB model and MAST seen in Table 1, true power was
calculated and plotted for these methods using the empirical significance threshold from the corresponding setting under the null.
TWO‐SIGMA can bypass the need for computationally expensive resampling procedures needed to generate true power
because it preserves the type‐I error as seen in Table 1. See the discussion at the beginning of Section S4 for more details about
computing true power and discussion regarding power trends across the different methods. MAST, the model described in
Finak et al. (2015); R.E., random effects; ZINB, zero‐inflated negative binomial



To focus on the most informative cells and genes, we
applied rather aggressive filtering of the data to keep the
top 2000 genes by number of transcripts observed and
only keep cells with more than 1000 transcripts across
these genes. After merging across all nine individuals, we
were left with 1290 genes and 10,269 single cells of which
we used only the 7774 for which cell type information
was available based on the expression of signature genes.
Here we focus our attention on α and β cells, which
compose the majority (55% and 34%, respectively) of the
cells in our data set. Type‐II diabetes (T2D) status is of
primary interest, and age is included as an additional
subject‐level covariate given its potential to confound the
relationship between T2D status and gene expression.
The CDR is defined in Finak et al. (2015) as the per-
centage of genes expressed over some background level of
expression (often chosen to be zero). The CDR therefore
has a biological interpretation as a cellular scaling factor
and is a surrogate for both technical and biological var-
iation. This confirms the conclusions of Hicks, Teng, and
Irizarry (2015) that the CDR can explain a substantial
proportion of observed expression variability and should
be included in any association analysis of scRNA‐seq
data. As such, we include CDR in all analyses performed
and stratified by cell type. For more details about the
pancreas data processing, see Section S1 and Figure S1.

Figure 2 plots the relationship of mean versus var-
iance for the 1290 genes we used in our analysis. It shows
that the Poisson and zero‐inflated Poisson models cannot
adequately account for the overdispersion observed in
many genes. In contrast, TWO‐SIGMA can accommodate
these mean–variance pairs in a quadratic relationship via
the overdispersion parameter ϕ. Because we have only
nine individuals, we chose to focus on analyses excluding
the zero‐inflation random effect terms ai to improve
convergence and overall model fit. Some genes still
showed convergence issues–partly indicative of a mis-
specified or overparameterized model and partly due to
the small number of cells and samples in the data set. As
a general guideline, we recommend that users with
concerns or limited computational resources begin in-
cluding random effects in the mean component, and
scale upwards to include random effects in the zero‐
inflation component if performance is satisfactory.

Table 2 shows the proportions of genes showing sta-
tistically significant results at the 0.05 level for three types
of hypothesis tests: the joint test of significance for the
binary disease indicator α βH : = = 00 1 1 , the test of the
mean model variance component σH : = 0b0 , and the test
for the presence of overdispersion H : = 0

ϕ0
1 . For ex-

ample, when fitting the TWO‐SIGMA model without the
zero‐inflation variance component to α cells, 73.8% of
genes had statistically significant variance components in

the mean model. Most genes showed the need for a
random effect term or the negative binomial distribution
(or both).

3.4.1 | Impact of ignoring within‐sample
correlation

Models for genes that mistakenly exclude the bi random
effect term often show highly significant results for cov-
ariates; this significance can disappear when including
the random intercept term—possibly indicative of a false
positive due to failing to account for within‐sample cor-
relation. For example, gene RPS29 demonstrates this
pattern in α cells. Table 3 shows that failing to include
random effects—and thereby assuming independence of

FIGURE 2 Presence of overdispersion in real data: Shows
the need of a nonlinear mean–variance relationship in the
pancreatic islet data. Each point represents the mean–variance
relationship for one gene. In the legend ϕ represents the
overdispersion parameter of the negative binomial distribution
and p represents the drop‐out probability. ZINB, zero‐inflated
negative binomial

TABLE 2 Rejection summaries from the pancreas data: Shows
the proportion of genes in the pancreatic islet data with rejected
nulls for various hypotheses related to T2D

α cells β cells

Hypothesis No ZIVC No ZIVC

Overall disease status 0.161 0.111

Overall R.E. test 0.738 0.724

NB versus Poisson 0.627 0.555

Note: The TWO‐SIGMA model as specified in Equation (2) was fit with
no ZIVC.
Abbreviation: R.E., random effects; zero‐inflation variance component.



all single cells—can lead to vastly underestimated stan-
dard errors. T2D status and age change from highly sig-
nificant to insignificant when including a random
intercept term. The standard error for the coefficient of
T2D increases by a factor of 9 from 0.032 to 0.292, and the
magnitude of the point estimate is halved from −0.605 to
−0.349. Individual covariates such as T2D can thus ex-
hibit dramatically increased type‐I error when random
effects are incorrectly ignored. In contrast, the coefficient
and associated standard error for the CDR are nearly
identical in the two models. This result is expected given
that CDR is a cell‐level covariate and shows that in-
cluding sample‐specific random effects leads to very
minor changes in the estimation of any covariates that
are not sample‐specific. Our emphasis in this section is
not to draw conclusions about any association between
RPS29 and T2D, but rather to illustrate that ignoring
random effects has the potential to alter scientific
conclusions.

3.4.2 | Cell‐type specific genes often
show a need for random effect inclusion

We matched 234 and 120 genes in our data that were
identified in previous studies as cell‐type specific in α
or β cells, respectively (Lawlor et al., 2017; Table S10).
After stratifying the data by cell type and removing
genes with more than 90% or less than 10% zeros, we
fit TWO‐SIGMA (excluding ai as mentioned pre-
viously) to the remaining 222 α cell‐specific and 111 β
cell‐specific genes to α cells and β cells, respectively.
Of these, 93 α cell‐specific genes and 85 β cell‐specific
genes had statistically significant variance components
σb. This suggests that nonnegligible between‐sample
variation—not attributable to cell‐type—is present for
these cell‐type specific genes. As discussed in Lawlor
et al. (2017), cell‐type specific expression profiles are
often of primary interest to study (dis)function at the
cellular level and reveal novel approaches to treat and
manage diseases such as T2D. Thus, it is critical to
have reliable inference for these genes. As seen in the
previous section, incorrectly excluding random effect
terms can provide very misleading results and can
thereby misdirect attempts to understand disease
etiology at a cellular level.

We also used α cells to test the overall effect of T2D
using both TWO‐SIGMA to MAST. Table 4 shows
that MAST rejects in many more instances than
TWO‐SIGMA. Of the 273 genes that were rejected with
MAST but not with TWO‐SIGMA, 234 have statistically
significant variance components in TWO‐SIGMA. This
further illustrates the possibility that fixed effect

coefficients can be mistakenly deemed significant in the
presence of within‐sample correlation.

3.4.3 | The ad hoc method successfully
separates genes that need random effects

Finally, we used all 1290 genes from the islet data set to
demonstrate the usefulness of the ad hoc method to de-
termine the need for the random effects terms bi. Figure 3
shows that likelihood ratio statistics from formal testing
of bi are consistently larger for genes selected by the
procedure than those not selected. This pattern suggests
that the ad hoc procedure described earlier can effectively
identify genes that will exhibit nonzero variance com-
ponents in real data.

4 | DISCUSSION

We have developed TWO‐SIGMA, a two‐component
ZINB model with random effects for association analy-
sis of scRNA‐seq data. The model builds on the

TABLE 3 Influence of failing to include needed random
effects: Gives mean component estimates for gene RPS29

with (top panel) and without (bottom panel) random effects

Effect Estimate SE z value p value

Intercept 0.521 0.207 2.515 .012

T2D −0.349 0.292 −1.197 .231

Age −0.284 0.256 −1.109 .267

CDR 0.394 0.011 36.284 <.001

σb 0.490

Intercept 0.833 0.021 40.094 <.001

T2D −0.605 0.032 −19.090 <.001

Age −0.057 0.017 −3.324 <.001

CDR 0.390 0.015 26.611 <.001

Abbreviations: CDR, cellular detection rate; T2D, Type‐II diabetes

TABLE 4 Agreement between TWO‐SIGMA and MAST:
Shows the agreement in rejecting the omnibus null hypothesis of an
association between T2D status and gene expression in α cells using
a Bonferroni adjusted significance level of 5 × 10−5

MAST

TWO‐SIGMA No reject Reject

No reject 1013 273

Reject 1 3



well‐established literature in both zero‐inflated models
and generalized linear mixed models. It keeps the data on
the original scale while simultaneously allowing for zero‐
inflation, overdispersion, and random effects to account
for within‐sample correlation. As compared to existing
methods, its flexibility is demonstrated both in the use of
random effect terms and the ability to test any hypothesis
of DE that can be expressed as a contrast of regression
coefficients while controlling for multiple sample‐level
and individual‐level covariates. To our knowledge,
TWO‐SIGMA is the only method for scRNA‐seq DE
analysis that accounts for within‐sample dependency to
protect type‐I error given the presence of many cells
sequenced from the same sample.

Including random effects explicitly controls for within‐
sample correlation, and can improve mean parameter and
standard error estimates. Given that many scRNA‐seq stu-
dies have few samples, it would be reasonable to consider
controlling for sample as a fixed effect rather than a random
effect. However, there are two reasons to prefer incorporat-
ing a random effect to a fixed effect approach. First, we are
interested in estimating a variance component that can apply
to all samples in the population. Second, the random inter-
cepts explicitly control for the within‐sample correlation,
rather than only providing adjusted parameter estimates for
included covariates. An alternative approach to accounting
for such sample‐level repeated measures would be to fit a
marginal model with the generalized estimating equations
(GEE) approach instead of a mixed effects model (Agresti,
2013). We chose not to do so for two main reasons: first, we
retain the flexibility for sample‐level prediction. Second, gi-
ven that many scRNA‐seq experiments are conducted over a
small number of samples, it is likely that the empirical
(sandwich) covariance estimate would underestimate the
true standard errors (Agresti, 2013).

Incorrectly excluding random effects and assuming
independence of cells can lead to underestimated stan-
dard errors of fixed effects and can therefore increase the
type‐I error of hypothesis tests relating to fixed effects
parameters. See Table 3 for an example. If the random
effect terms do not contribute to the model fit, as judged
by a statistical test or practical significance, they can be
removed easily within the general framework of
TWO‐SIGMA. Random intercepts can also be useful even
when they are not of direct interest: they often capture
the effects of omitted sample‐specific covariates, and can
limit the bias of fixed effect coefficients caused by mis-
specification. For example, if cell‐type information is
missing, and varies between individuals, a random in-
tercept term can limit the resulting bias and p value in-
flation observed in fixed effects parameters. Our ad hoc
method proves to be a useful tool to both select genes that
could benefit from including random effect terms and

reduce overall computation time by suggesting genes that
do not need to be fit including random effect terms.

Because we expect a priori that zero‐inflation will
occur in scRNA‐seq, it is beneficial to include a compo-
nent dedicated to it. The zero‐inflation component in
TWO‐SIGMA is flexible in that it allows for a different set
of covariates from the mean model or no covariates at all.
For example, one might be interested in using zero‐
inflation only to improve mean parameter estimation. In
this scenario, a constant probability of drop‐out could be
assumed via an intercept‐only regression model. This
would prevent coefficient estimates in the mean model
from being overly shrunk towards zero, as would occur if
drop‐out was not accounted for, but would also limit the
total number of parameters estimated and maximize
model parsimony. Even if the data are not truly generated
from a zero‐inflated process, or if drop‐out is viewed as a
“nuisance,” using the two component model in Equation
(2) can be a convenient choice to improve model fit and
fixed effect parameter estimation. See Section S6 and
Figure S10 for more discussion regarding the zero‐
inflation component.

Finally, our experience suggests that variance com-
ponent estimates are often much smaller in the zero‐
inflation component than in the mean component.

FIGURE 3 Ability of the ad hoc method to identify genes
in need of random effects: Shows boxplots of the LR statistics
from the joint test of the need for random effects,
H σ σ: = = 0a b0 , using TWO‐SIGMA. Genes that our ad hoc
procedure suggests need random effects (“Need RE”) and genes
the procedure suggests do not (“Don't Need RE”) are compared.
Both panels were created using TWO‐SIGMA as specified in
Equation (2) but with no ZIVC). ZIVC, zero‐inflation variance
component



Therefore, as we did in the real data analysis, it might be
a pragmatic choice to exclude random effects from the
zero‐inflation component of TWO‐SIGMA. A key
strength of TWO‐SIGMA is the flexibility to easily cus-
tomize the model within the general framework either a
priori or via iterative removal based on statistical hy-
pothesis tests of features such as random effects, over-
dispersion, or the drop‐out component.
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