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ABSTRACT Choline metabolism is important for
very low-density lipoprotein secretion, making this nu-
tritional pathway an important contributor to hepatic
lipid balance. The purpose of this study was to assess
whether the cumulative effects of multiple single nu-
cleotide polymorphisms (SNPs) across genes of cho-
line/1-carbon metabolism and functionally related
pathways increase susceptibility to developing hepatic
steatosis. In biopsy-characterized cases of nonalcoholic
fatty liver disease and controls, we assessed 260 SNPs
across 21 genes in choline/1-carbon metabolism. When
SNPs were examined individually, using logistic regres-
sion, we only identified a single SNP (PNPLA3 rs738409)
that was significantly associated with severity of hepatic
steatosis after adjusting for confounders and multiple
comparisons (P�0.02). However, when groupings of
SNPs in similar metabolic pathways were defined using
unsupervised hierarchical clustering, we identified groups

of subjects with shared SNP signatures that were signifi-
cantly correlated with steatosis burden (P�0.0002). The
lowest and highest steatosis clusters could also be differ-
entiated by ethnicity. However, unique SNP patterns
defined steatosis burden irrespective of ethnicity. Our
results suggest that analysis of SNP patterns in genes of
choline/1-carbon metabolism may be useful for predic-
tion of severity of steatosis in specific subsets of people,
and the metabolic inefficiencies caused by these SNPs
should be examined further.—Corbin, K. D., Abdel-
malek, M. F., Spencer, M. D., da Costa, K.-A., Galanko,
J. A., Sha, W., Suzuki, A., Guy, C. D., Cardona, D. M.,
Torquati, A., Diehl, A. M., Zeisel, S. H. Genetic signatures
in choline and 1-carbon metabolism are associated
with the severity of hepatic steatosis. FASEB J. 27,
1674–1689 (2013). www.fasebj.org

Key Words: single nucleotide polymorphisms � nutrition � non-
alcoholic fatty liver disease � metabolic syndrome � obesity

Nonalcoholic fatty liver disease (NAFLD) is a
common disorder, affecting �30% of people in the
general population and up to 96% of obese individuals.
It encompasses a spectrum from steatosis to advanced
liver injury (1). The prevalence of steatosis has in-
creased in parallel to obesity and metabolic syndrome,
and it is often a concurrent phenotype. Single nucleo-
tide polymorphisms (SNPs) in several genes have been
individually associated with steatosis, but these associa-
tions only explain a small percentage of the risk and
often fail to be replicated (2). It is unclear whether
steatosis is a cause, predisposing factor, or consequence
of metabolic disease, although many regard it as the
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hepatic manifestation of metabolic syndrome. In many
cases, NAFLD maintains a benign course, but some
individuals progress to fibrosis, cirrhosis, liver failure,
and cancer (1). Increasing evidence indicates that
hepatocellular carcinoma (HCC) may be partially at-
tributable to metabolic disease, suggesting common
pathogenic mechanisms (3). Improving our under-
standing of the factors that modify the risk of hepatic
steatosis is of great value, from both metabolic and
disease progression perspectives.

Steatosis occurs when there is an imbalance between
the rate of formation of triglycerides in liver and the
capacity to remove those triglycerides by oxidation or
by secretion as lipoproteins. Many factors contribute to
this imbalance (4). Choline metabolism is one key
mediator of hepatic lipid homeostasis and intersects
with multiple pathways that also mediate deposition of
lipids in the liver (Fig. 1). Perturbations in choline/1-
carbon metabolism that decrease the synthesis of phos-
phatidylcholine (PtdCho) reduce capacity to secrete
very low density lipoprotein (VLDL) and thereby im-
pair secretion of triglycerides from liver (5). Humans
eating choline-deficient diets, or fed parenterally with
solutions low in choline, develop fatty liver, and specific

SNPs in choline/1-carbon metabolism increase suscep-
tibility (6–9). Recent evidence indicates that choline/
1-carbon metabolism intersects with energy metabolism
pathways (4), suggesting that choline could be an
important contributing factor in the metabolic imbal-
ances associated with hepatic steatosis.

Because of the role of choline metabolism in mech-
anisms relevant to both hepatic lipid balance and
obesity, we hypothesized that patterns of SNPs in genes
that span choline/1-carbon metabolism and related
pathways mediate susceptibility to steatosis (Fig. 1). To
identify this genetic signature for steatosis, we began
with an assessment of individual SNP effects in biopsy-
characterized hepatic steatosis case and control subjects
with a comprehensive range of body weights. To inves-
tigate the contribution of the combined effects of multi-
ple SNPs on severity of steatosis, we implemented a novel
unsupervised hierarchical clustering approach to group
subjects by shared genotypes and asked whether these
SNP patterns in choline/1-carbon genes and functionally
related pathways correlated with steatosis burden. Our
findings suggest that the interaction of these genetic
variants results in metabolic inefficiency due to alterations
in protein function that cumulatively alters flux through
metabolic pathways.

MATERIALS AND METHODS

Human subjects

The Duke University Health Systems NAFLD Clinical Data-
base and Biorepository includes subjects (age �18) with risk
factors for NAFLD who underwent clinical evaluation and
standard of care percutaneous liver biopsy for assessment of
this presumed diagnosis. Informed consent of participants
and Duke Institutional Review Board approval for genetic
analysis were obtained for the purpose of this study. Our study
includes 446 subjects for whom both histological data and
DNA were available. Of these subjects, 263 (63%) had biop-
sies due to metabolic or biochemical risk factors for NAFLD,
and 183 (37%) had biopsies during bariatric surgery. The
subjects who underwent bariatric surgery were typically not
required to undergo weight-loss interventions prior to sur-
gery. Any patient who reported alcohol consumption in
excess of 20 g/d or had positive serologic studies for chronic
viral hepatitis B or C was excluded. Demographic, anthropo-
metric, and clinical data were obtained at the time of liver
biopsy. Whole blood for serum, plasma, DNA, and RNA was
collected at the time of liver biopsy. Laboratory studies (i.e.,
lipids, glucose, liver aminotransferases, and measures of liver
synthetic function) were obtained within 6 mo of liver biopsy
or 1-2 wk prior to bariatric surgery. The presence of diabetes
mellitus was defined by known diagnosis in the medical
record, use of any antidiabetic agent or insulin, fasting
glucose value of �126 mg/dl, 2 h glucose tolerance test of
�200 mg/dl, and/or a glycosylated hemoglobin value of
�6.5%. All liver biopsies were reviewed and graded for
steatosis according to the Nonalcoholic Steatohepatitis Clin-
ical Research Network (NASH CRN) scoring system (10).

Candidate gene selection and genotyping

Twenty-one candidate genes were identified for study: ATP-
binding cassette, subfamily B (MDR/TAP), member 4

Figure 1. Genes in choline/1-carbon metabolism and related
pathways influence hepatic lipid balance. One factor that
influences accumulation of fat in the liver is excess calorie
intake, as fatty acids are taken up by the liver and glucose is
converted to lipids in the liver. At the same time, lipids are
secreted from the liver, mainly as very low density lipoproteins
(VLDLs). The net balance between lipid inputs and outputs
determines whether hepatic steatosis develops. Secretion of
VLDL requires synthesis of a lipid envelope containing
apoproteins and phosphatidylcholine (PtdCho). APOC3 is
needed for apolipoprotein synthesis. PtdCho is formed from
choline, or from methyl-groups in S-adenosylmethionine
(AdoMet) that can be derived from choline or from 1-carbon
pool (via methyl-tetrahydrofolate; MTHFR encodes for the
enzyme that forms 5-methyl-terahydrofolate). Choline trans-
port into the hepatocyte and then into the mitochondria is
mediated by the gene product of SLC44A1. CHDH, BHMT,
and PEMT are important genes for the pathway forming
PtdCho. PtdCho can be used to make VLDL, or can be
hydrolyzed in a pathway involving PNPLA3, or secreted in bile
by a flippase encoded for by ABCB4. We found that SNP
patterns across multiple genes, including ABCB4, APOC3,
CHDH, PEMT, PNPLA3, MTHFR, and SLC44A1, were associ-
ated with hepatic steatosis burden.
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(ABCB4), adiponectin (ADIPOQ), apolipoprotein C-III (APOC3),
betaine-homocysteine methyltransferase (BHMT), cystathio-
nine-� synthase (CBS), choline dehydrogenase (CHDH), cho-
line kinase � (CHKA), choline kinase � (CHKB), fatty acid
desaturase 2 (FADS2), methylenetetrahydrofolate desaturase
1 (MTHFD1), 5,10-methylenetetrahydrofolate reductase (MTHFR),
5-methyltetrahydrofolate-homocysteine methyltransferase (methio-
nine synthase; MTR), phosphate cytidylyltransferase 1, cho-
line, � (PCYT1A), phosphate cytidylyltransferase 1, choline,
� (PCYT1B), phosphatidylethanolamine-N-methyltransferase
(PEMT), patatin-like phospholipase domain containing 3
(PNPLA3), peroxisome proliferator-activated receptor �
(PPARG), stearoyl-CoA desaturase (SCD), serine hydroxym-
ethyltransferase 1 (SHMT1), solute carrier family 44, member
1 (SLC44A1), and signal transducer and activator of transcrip-
tion 3 (STAT3). Gene selection was based on the hypothesis
that choline metabolism influences hepatic steatosis. Thus,
selected genes are involved in choline/lipid metabolism
and/or are involved in pathways believed to influence the
pathophysiology of NAFLD and that intersect functionally
with the 1-carbon pathway. For all genes except ADIPOQ,
APOC3, CBS, MTR, PPARG, PNPLA3, and STAT3, SNPs to be
genotyped were selected with HaploView Tagger 4.2 (Broad
Institute, Cambridge, MA, USA; ref. 11) in order to compre-
hensively map SNPs within our genes of interest. Pairwise
tagging with an r2 threshold of 0.8 was utilized to generate a
list of tag SNPs. To enrich for functional SNPs, this list was
then supplemented with data from the National Human
Genome Research Institute Catalog of Published Genome-
Wide Association Studies (GWASs; http://www.genome.gov/
gwastudies/) and SNPs that have been identified in the
literature to be associated with NAFLD or related metabolic
phenotypes. To further enrich for functional SNPs, we prior-
itized SNP selection to favor SNPs in exons or other regula-
tory regions (intronic enhancers, promoter regions). We
included SNPs that met the criteria above that were within 5
kb of the gene boundary to include SNPs that could be in
nearby regulatory regions. Gene boundaries were determined
with the University of California–Santa Cruz Genome Browser
[National Center for Biotechnology Information (NCBI)
Genome Build 36.1; ref. 12]. For ADIPOQ, APOC3, CBS, MTR,
PPARG, PNPLA3, and STAT3, a small number of SNPs with
published roles in NAFLD or choline metabolism were in-
cluded. A total of 260 SNPs were included in this study, and
these were genotyped using a custom Illumina GoldenGate
array (Illumina, Inc., San Diego, CA, USA; ref. 13), Seque-
nom (San Diego, CA, USA; ref. 14), or real-time PCR (15).
Genotyping was initially conducted on the Illumina Golden-
Gate array. However, because of failures in that platform or
design-related constraints, Sequenom and real-time PCR
methods were also used. Methods and rationale for the use of
these platforms are described in more detail below.

Oligo-specific extension-ligation assay

300 SNPs were genotyped with an Illumina GoldenGate array
(13) at the University of North Carolina Mammalian Geno-
typing Core (Chapel Hill, NC, USA) with a design based on
dbSNP reference SNP (rs) numbers from genome build 128
(NCBI Genome Build 36.1). The raw Illumina genotyping
data were analyzed by GenomeStudio 2010 data analysis
software (Illumina) for automated genotype calling. Parent/
child trios from the Centre d’Étude du Polymorphisme
Humain (CEPH) pedigree were obtained from the Coriell
Cell Repository (Camden, NJ, USA; http://ccr.coriell.org/)
and were included on each plate, including one replicate
sample. Quality control (QC) procedures were implemented
as per standard Illumina procedures, with additional manual
review of SNP clusters to ensure data integrity. Twenty-one

SNPs did not pass QC, and 30 had a minor allele frequency of
�1%, leaving 249 SNPs that were included in the analysis.

Matrix-assisted laser desorption/ionization–time-of-flight
(MALDI-TOF) primer extension assay

A subset of SNPs (n�17) was assayed using a multiplexed
MALDI-TOF primer extension assay (MassArray iPLEx
Gold; Sequenom; ref. 14) per the manufacturer’s instructions
(David H. Murdock Research Institute, Genomics Core Facil-
ity, Kannapolis, NC, USA) for the following reasons: failure
on the Illumina platform; SNPs could not be genotyped with
Illumina due to design constraints; SNPs were believed to be
tri- or tetra-allelic on newer versions of dbSNP but still passed
the design score for Illumina (i.e., these were measured on
both platforms); or SNPs were not included in the original
Illumina design but were subsequently identified as having an
important role in NAFLD. Primers were designed using the
MassArray 4.0 assay designer software (Sequenom). The assay
was validated using samples from the Coriell Cell Repository
and 2 samples from the population being studied. Coriell
samples were also run with each assay (6 samples from various
ancestries, run in replicates). Genotyping data were gener-
ated by MassArray Typer 4.0 (Sequenom). Genotyping quality
was assured by manual inspection. Out of all the putative tri-
or tetra-allelic SNPs, a third allele was found for two SNPs, but
each of these appeared in only one subject. Inspection of
these data showed comparable genotype calls (except at the
two loci with a third allele). This validates our multiplatform
approach. Also, because of the very small incidence of addi-
tional alleles and the superior call rate with Illumina, all
duplicated SNP data (n�3) were used from the Illumina
platform. One SNP failed on this platform, and 3 had minor
allele frequencies of �1%, leaving 10 SNPs that were in-
cluded in the analysis.

Real-time PCR genotyping for PEMT rs12325817

This SNP was essential in our analysis due to its relevance to
choline deficiency-mediated fatty liver in humans, but did not
pass the design score for the Illumina or Sequenom assays.
We previously developed and validated a SYBR green-based
allele-specific PCR method to genotype this SNP (15). The
same method was utilized, with the exception that it was
optimized for real-time PCR. Forward primers specific to each
allele were designed so that the SNP is located at the 3=-end
of the priming sequence (forward for C allele: 5=-CCTGGA-
CAACATGGTGACACTCC-3=; forward for G allele: 5=-CCTG-
GACAACATGGTGACACTCG-3=; reverse common: 5=-GTGGGCC-
CTGTACTTTTACATC-3=). The conditions used (initial
denaturation: 98°C for 20 s; 35 cycles: denaturation 95°C for
30 s, annealing 68°C for 30 s, extension 72°C for 30 s, final
extension 72°C for 10 min; melt curve: 95°C for 15 s, 58°C for
15 s, ramp 20 min, 95°C for 15 s) allow for specific PCR
products to be synthesized only if the primer is 100% com-
plementary to its template DNA. Real-time PCR was per-
formed on an Eppendorf Realplex 4.0 (Eppendorf North
America, Westbury, NY, USA). We were able to verify the
validity of merging these data with the data generated from
other two platforms by confirming the linkage disequilibrium
of this SNP with two other loci across the other two platforms
(rs4646343, Sequenom; rs3760188, Illumina). After including
this SNP in the data set, the final number of SNPs analyzed
was 260 (See Supplemental Fig. S1 for list of SNPs).

Statistical analyses

To examine SNP-steatosis associations, 4 groups were used:
non-NAFLD (no histological evidence of fatty liver; n�85;
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considered our controls) and 3 groups with increasing levels
of hepatic fat accumulation [�34% (n�183; combination of
�5% and 5-33% groups), 34-66% (n�118), and �66%
(n�60)]. Proportional odds and generalized logit methods
were implemented (each allele was assumed to have an
additive effect). The generalized logit method was used only
if the proportional odds assumption was violated. We built 3
models: model 1 was unadjusted for confounders; model 2
was adjusted for age (�50 or �50), sex, and diabetes diagno-
sis; and model 3 was adjusted for age, sex, diabetes, and body
mass index (BMI). The Benjamini-Hochberg method for false
discovery rate (FDR) was used to adjust for multiple tests
utilizing the minimum number of independent tests ap-
proach or by adjusting for the number of variables tested (see
details in figure legends and table notes; ref. 16). This was
done separately for each of the models generated. Continu-
ous and categorical variables were analyzed by ANOVA and
Kruskal-Wallis test, respectively. A �2 test was used to compare
genotype frequencies between ethnicities and clinics. FDR-
corrected values of P � 0.05 were considered statistically
significant.

Unsupervised 2-way hierarchical clustering (Ward’s meth-
od; ref. 17) was conducted to group subjects by shared
genotype patterns. SNPs were coded as 0, 1, or 2 (represent-
ing 0, 1, or 2 copies of the SNP, respectively). We constructed
2 models: model 1 included all 260 SNPs minus highly
correlated SNPs (r2�0.95; n�225). Model 2 included SNPs
that had a raw value of P � 0.1 in the individual SNP analysis
(model 1) minus highly correlated SNPs (n�55). The second
model was selected to refine steatosis burden predictability
and reduce noise from uninformative SNPs. Numbers of
clusters in both models were selected by identifying the points
at which dissimilarity between clusters substantially increased
at each clustering step (measured by the error sum of squares;
ref. 17) and by selecting the number of clusters preceding
such increase that also provided a large enough sample size.
A �2 test and pairwise comparisons were used to compare
steatosis burden between clusters. To identify SNPs that
distinguished clusters from one another, we evaluated distri-
butions of SNP genotypes between clusters using the �2 test
for marginal response homogeneity (likelihood ratio).

Genotypes within cluster 1 that differentiated subjects
based on steatosis level were identified with supervised step-
wise ordinal logistic regression. The scores for our model
were derived by totaling the number of alleles associated with
higher steatosis (0, 1, or 2) for the identified SNPs. In some
cases, there were no subjects with two copies of the SNP, so
the scores were 0 or 1. The scores were weighted depending
on whether each allele had an additive effect on steatosis or
whether having 0/1 or 1/2 had equivalent effects as deter-
mined by the ordinal regression model. If an SNP was
associated with higher steatosis and the effects were additive,
the scores were 0, 1, or 2 if the subject had 0, 1 or 2 copies of
the SNP, respectively. If, on the other hand, having an SNP
was associated with lower steatosis, the scores were 2, 1, or 0,
if the subject had 0, 1, or 2 copies of the SNP, respectively,
since having higher steatosis was associated with having fewer
alleles. If having 1 or 2 copies of the SNP was associated with
an equivalent effect on higher steatosis, having either 1 or 2
copies received a score of 2, while having 0 copies received a
score of 0. If, on the other hand, having 1 or 2 copies of the
SNP was associated equivalently with having less steatosis,
having 0 copies of the SNP received a score of 2, while having
1 or 2 copies received a score of 0. The sum of alleles for each
subject was the assigned score. Table 1 provides the details.

A logistic regression fitting model was used to assess the
accuracy of SNP scores to predict steatosis burden. Model
discrimination was evaluated using receiver operating curve

analysis (Supplemental Fig. S2). Analyses were conducted
using SAS 9.2 or JMP 8.0 (SAS Institute, Cary, NC, USA).

RESULTS

Population characteristics

Although all subjects who were enrolled in the biore-
pository were suspected to have NAFLD based on the
presence of traditional risk factors, biopsies from 19%
showed normal liver histology, and we considered this
group our non-NAFLD controls. Characterization of
our study population as a whole (Table 2) and by fatty
liver groups (Table 3) revealed a pattern consistent
with what is known about clinical and demographic
parameters associated with NAFLD (1). About 1/3 of
our cohort consisted of subjects who had biopsies done
during bariatric surgery, as opposed to subjects who
were seen in the liver clinic. There were notable
differences between these two subpopulations (Table
2), as would be expected based on the criteria for
eligibility for bariatric surgery (i.e., morbid obesity or
obesity with metabolic complications) and the ex-
pected demographics of patients who choose to have
bariatric surgery (18). Specifically, all subjects from the
bariatric clinic had BMI � 34, steatosis was less severe,
and there was an overrepresentation of females and
African Americans (Table 2). However, the propor-
tions of case and control subjects were not different
(FDR, P�0.3), the diagnosis of NAFLD was made
concomitant with bariatric surgery, and, notably,
SNP frequency was highly correlated between the two
groups (r2�0.96; Fig. 2). Our purpose was to study the
role of genetic variants on hepatic steatosis over a wide
range of BMIs because we hypothesize that obesity pro-
vides a challenge to hepatic lipid secretion capacity that
augments metabolic inefficiencies associated with SNPs.
For this reason, we included patients from both clinics to
allow us to study a comprehensive spectrum of steatosis
and obesity with sufficient power.

TABLE 1. Cluster 1 model scoring algorithm

Gene SNP Risk allele

SNP copies

0 1 2

ABCB4 rs31672 T 2 2 0
APOC3 rs2854117 C 2 2 0
CHDH rs4563403 C 2 2 0
MTHFR rs7525338 C 2 0 NA
PEMT rs13342397 T 2 2 0
PEMT rs7946 T 2 0 0
PEMT rs8068641 A 2 0 0
PEMT rs936108 G 2 2 0
PNPLA3 rs2281135 G 0 1 2
PNPLA3 rs738409 T 0 1 2
SLC44A1 rs10820799 A 2 2 0
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Associations of individual polymorphisms with
hepatic steatosis severity

After adjusting for a full complement of confounders,
only PNPLA3 rs738409 was significantly associated with
increased steatosis burden (FDR, P�0.02; Table 4).
However, a number of other SNPs did show associa-
tions before adjusting for BMI. The APOC3 promoter
SNP rs2854117 (T allele) was associated with lower
steatosis (model 2; FDR, P�0.04; Table 4). We identi-
fied 9 novel SNPs in choline/1-carbon metabolism that
were associated with lower steatosis (model 2; FDR, P �
0.05): MTHFR (rs7525338, rs868014), CHDH (rs4563403,
rs881883), PEMT (rs8068641, rs7214988), and SLC44A1
(rs10820799, rs440290, rs328006) (Table 4). We were
unable to confirm the previously reported fatty liver
associations of individual SNPs in ADIPOQ rs1501299
(19), CHDH rs9001 and rs12676 (7), MTHFD1 rs2236225
(8), PEMT rs12325817 (7) and rs7946 (20), PPARG
rs1801282 (21), and STAT3 rs9891119 (22) (FDR,
P�0.05; not shown).

Steatosis is related to both ethnicity and genotype

African-American individuals are reported to have re-
duced risk for developing NAFLD (23), making ethnic-

ity a potential confounder in our analysis, and our
results confirm this lower incidence (Table 3). Most of
the SNPs with fatty liver associations were differentially
distributed in Caucasians and African Americans
(Table 5). Out of all the SNPs analyzed in this study,
78% were differentially distributed in African Ameri-
cans vs. Caucasians (P�0.05; not shown); the overall
lack of correlation in SNP frequency is shown in Fig. 3
(r2�0.08). Data from 1000 genomes (24) shows that the
discordance in SNP frequency of the SNPs individually
associated with steatosis in our study between African
Americans and Caucasians is not unique to our study
(not shown). Other ethnic groups in 1000 genomes,
such as those of Asian and Caribbean descent, do not
show the same level of discordance in the SNPs indi-
vidually associated with steatosis in our study (not
shown). Because lower steatosis could be related to
both ethnicity and genotype, we did not adjust for
ethnicity in any of our models.

Genetic signatures improve prediction of steatosis
severity

To determine whether combinations of SNPs that
influence hepatic lipid balance are more predictive
than single SNPs, we began by asking whether having

TABLE 2. Histological, clinical, and demographic characteristics of cohort

Characteristic Cohort, n � 446 Liver clinic, n � 283 Bariatric clinic, n � 163

Liver vs. bariatric (P)

Raw FDR

NAFLD 81% 83% 78% 0.3a 0.3a

Non-NAFLD 19% 17% 22%
�34% 41% 40% 71% �0.0001b �0.0001b

34–66% 26% 42% 16% �0.0001b �0.0001b

�66% 13% 18% 13% �0.0001b �0.0001b

Age 48 (39, 56) 50 (40, 58) 47 (38, 54) 0.02 0.02
BMI 38 (31, 45) 33 (29, 38) 47 (43, 53) �0.0001 �0.0001
Lean 5% 7% 0% �0.0001 �0.0001
Overweight 15% 24% 0% �0.0001 �0.0001
Obese 34% 48% 10% �0.0001 �0.0001
Morbidly obese 29% 16% 49% �0.0001 �0.0001
Super obese 17% 4% 40% �0.0001 �0.0001
African American 15% 10% 23% 0.0001 0.0003
Caucasian 85% 90% 77% 0.0001 0.0003
Nondiabetic 65% 64% 66% 0.8 0.8
Diabetic 35% 36% 34% 0.8 0.8
Females 63% 52% 80% �0.0001 �0.0001
Males 37% 48% 20% �0.0001 �0.0001
AST 39 (26, 59) 47 (32, 73) 27 (21, 36) �0.0001 �0.0001
ALT 47 (28, 83) 63 (40, 98) 24 (19, 34) �0.0001 �0.0001
Total cholesterol 187 (158, 217) 191 (155, 220) 181 (158, 204) 0.1 0.2
HDL 41 (33, 49) 40 (32, 49) 43 (35, 49) 0.08 0.1
LDL 113 (87, 135) 115 (86, 138) 112 (91, 128) 0.5 0.6
Triglycerides 133 (95, 196) 138 (99, 215) 122 (84, 166) 0.02 0.02
Systolic BP 134 (123, 146) 132 (122, 141) 142 (131, 152) �0.0001 �0.0001
Diastolic BP 80 (72, 87) 77 (71, 83) 84 (79, 90) �0.0001 �0.0001

Variables are shown for the cohort as a whole (n�446) and with comparisons between bariatric and liver clinics. Data are presented as
median and 25th and 75th percentile or as a percentage. Only African-American and Caucasian ethnicities are compared, since the remaining
subjects (n�16; 4%) were of several ethnicities, and the cell size was too small to make a useful comparison. AST, aspartate aminotransferase;
ALT, alanine aminotransferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein; BP, blood pressure. For continuous measures,
Kruskal-Wallis test was used. For categorical variables, Fisher’s exact test was used. P values were adjusted for the number of variables tested
(n�15) using the FDR procedure; values of P � 0.05 were considered significant. aP vs. non-NAFLD. bP for distribution of steatosis groups.
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multiple SNPs in PNPLA3 (the gene most consistently
associated with steatosis; ref. 25) was associated with
more severe fatty liver. We found that carriers of �1
copy of both rs738409 and rs2281135 (n�197), when
compared to people who had an SNP in only one locus
or neither locus (n�249), had significantly higher
levels of steatosis (P�0.0002; Fig. 4).

To investigate whether combinations of SNPs across
multiple choline/1-carbon metabolism genes and
genes in functionally related pathways might indicate
additive metabolic inefficiencies contributing to steato-
sis risk, we used unsupervised hierarchical clustering to
group subjects with similar genotype patterns across all
SNPs in our data set (n�225; 35 SNPs removed due to
high linkage disequilibrium correlation; r2�0.95). On
the basis of the criteria for cluster partitioning, 5
clusters were identified (not shown). We then asked

whether the genetic signatures that pulled together the
clusters had any association with the degree of steatosis.
There was an overall difference in level of steatosis
across the clusters (P�0.008), with cluster 1 having
significantly lower steatosis than all other clusters
(P�0.007) and the remaining clusters having similar
levels of steatosis (not shown).

To improve our ability to distinguish between the
SNPs that contributed most to clusters that had subjects
with higher steatosis burden, we created a second
model containing only SNPs with raw values of P � 0.1
from the individual SNP association analysis (n�55
after removing highly correlated SNPs due to high
linkage disequilibrium). Similarity-based cluster parti-
tioning resulted in 5 clusters (Fig. 5 and Supplemental
Fig. S1). Overall, the clusters differed significantly in
their steatosis burden (P�0.0002; Fig. 6). Subjects in
cluster 1 were significantly more likely to have a lower
steatosis burden than did all the other clusters
(P�0.007), while those in cluster 2 had a higher
steatosis burden than did clusters 3A and 3B (P�0.05).
Clusters 3A–3C were not significantly different from
each other, and we considered them jointly to repre-
sent an intermediate amount of steatosis.

We carefully phenotyped the clusters to determine
which characteristics coincided with the shared geno-
type pattern (Table 6). The vast majority of the African-
American subjects in our study (94%) shared the
cluster 1 genotype pattern. Although cluster 1 subjects
had the lowest liver fat, they had the highest BMI.
Cluster 2 had the highest liver enzyme markers for
hepatic damage and elevated triglycerides. Subjects
from the liver and bariatric clinics were distributed
throughout all 5 clusters. Because clusters 1 and 2
represented the most obvious phenotypic outliers, we
focused on defining the SNP patterns of those two

TABLE 3. Characteristics of control vs. NAFLD subjects

Characteristic

Level of steatosis P

Non-NAFLD, n � 85 �34%, n � 183 34-66%, n � 118 �66%, n � 60 Raw FDR

Age 45 (33, 60) 50 (41, 58) 49 (40, 57) 48 (40, 53) 0.07 0.1
BMI 37 (27, 46) 42 (33, 50) 35 (31, 43) 38 (32, 45) 0.0004 0.0009
Female, n � 279 20% 42% 23% 15% 0.2 0.2
Male, n � 167 18% 40% 32% 10%
Nondiabetic, n � 288 19% 42% 25% 14% 0.9 0.9
Diabetic, n � 158 18% 40% 28% 13%
African-American, n � 64 30% 50% 11% 9% 0.003 0.005
Caucasian, n � 366 18% 39% 29% 14%
AST (IU/L) 32 (22, 49) 31 (24, 47) 46 (31, 69) 53 (40, 82) 0.0001 0.0003
ALT (IU/L) 32 (20, 62) 33 (21, 63) 57 (35, 90) 70 (46, 110) 0.0001 0.0003
Total cholesterol (mg/dl) 182 (158, 209) 182 (156, 208) 191 (154, 225) 204 (155, 235) 0.4 0.4
HDL (mg/dl) 51 (42, 64) 43 (34, 48) 38 (31, 45) 39 (33, 47) 0.0001 0.0003
LDL (mg/dl) 113 (83, 129) 114 (93, 134) 110 (82, 138) 122 (85, 135) 0.8 0.9
Triglycerides (mg/dl) 106 (65, 151) 126 (92, 172) 142 (99, 232) 169 (106, 294) 0.0001 0.0003
Systolic BP 130 (121, 139) 140 (131, 149) 135 (120, 146) 133 (126, 143) 0.0001 0.0003
Diastolic BP 79 (72, 84) 82 (76, 89) 78 (72, 84) 81 (74, 89) 0.001 0.002

Table is similar to Table 2, except that clinical and demographic characteristics were compared across the cohort (n�446) based on groupings
indicating histological steatosis burden per the NASH CRN scoring system. FDR adjustment for multiple comparisons was based on the number of
variables tested (n�13). Data are presented as median and 25th and 75th percentile or as a percentage. BMI, body mass index; AST, aspartate
aminotransferase; ALT, alanine aminotransferase; HDL, high-density lipoprotein; LDL, low-density lipoprotein; BP, blood pressure.

Figure 2. SNP distributions are highly correlated in liver and
bariatric clinics. Diamonds represent frequency of distribu-
tion in the subjects from the liver clinic vs. the bariatric clinic
for all 260 SNPs included in this study. The majority of SNPs
were distributed similarly between the two clinics (r2�0.96).
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clusters, since that would provide the most likely set of
candidate SNPs for defining low vs. high steatosis risk.

Next, we aimed to define the SNPs that most clearly
distinguished clusters 1 and 2. Since clusters were
defined by both ethnicity and SNPs, we asked whether
cluster 2, which had a similar ethnic distribution as
clusters 3A–3C (i.e., primarily Caucasian), had a unique
genetic signature. We found that 32 SNPs in ABCB4,
CHDH, PEMT, PNPLA3, MTHFR, and SLC44A1 were
distributed differentially in cluster 2 vs. clusters 3A–3C
(FDR, P�0.05; Table 7). Cluster 1 was significantly
different from all other clusters, so we compared its
genotype distributions to those in all other clusters.
Forty-nine SNPs in ABCB4, APOC3, CHDH, CHKB,
FADS2, PEMT, MTHFD1, MTHFR, PCYT1A, PCYT1B,
SCD, and SLC44A1 were differentially distributed in

cluster 1 compared to all other clusters (FDR, P�0.05;
Table 8). Notably, the previously reported NAFLD-
associated alleles in CHDH rs12676 (7) and PEMT
rs7946 (20), which in our study did not retain statistical
significance individually, were enriched in cluster 2 and
depleted in cluster 1 (FDR, P�0.05).

We found that SNP pattern and being African Amer-
ican were highly correlated, making it difficult to
determine whether the lower steatosis seen in cluster 1
was due to SNPs or to another property associated with
being African American. To address this, we asked
whether SNP patterns within cluster 1 could distinguish
the subjects with higher steatosis from those with less
disease. Stepwise ordinal regression identified 11 SNPs
within cluster 1 that were associated with degree of
steatosis (ABCB4 rs31672; APOC3 rs2854117; CHDH

TABLE 4. SNPs in 1-carbon and lipid metabolism are associated with NAFLD severity

Gene, rs,
and SNP Region

SNP frequency
Model 1,

unadjusted for
confounders (P)

Model 2, adjusted
for age, sex,
diabetes (P)

Model 3,
adjusted for

age, sex,
diabetes,
BMI (P)Non-NAFLD,

n � 85
�34%,

n � 183
34–66%,
n � 118

�66%,
n � 60 Raw FDR Raw FDR Raw FDR

PNPLA3
rs738409 Exon 0.212 0.291 0.377 0.483 �0.0001 0.0002 �0.0001 0.0002 0.0001 0.02
C¡G
rs2281135 Intron 0.194 0.24 0.305 0.375 0.001 0.035 0.009 0.03 0.007 0.3
C¡T

APOC3
rs2854117 US 0.435 0.309 0.241 0.242 0.0005 0.041 0.004 0.04 0.004 0.3
C¡T

PEMT
rs8068641 Intron 0.228 0.201 0.107 0.092 0.0006 0.032 0.0005 0.03 0.007 0.3
A¡G
rs7214988 Intron 0.171 0.145 0.068 0.092 0.002 0.042 0.002 0.04 0.02 0.3
C¡G

CHDH
rs4563403 DS 0.235 0.205 0.111 0.092 0.0008 0.035 0.0007 0.03 0.1 0.5
C¡T
rs881883 DS 0.288 0.268 0.169 0.142 0.002 0.042 0.002 0.04 0.03 0.3
T¡C

MTHFR
rs7525338 DS 0.035 0.019 0 0 0.003 0.042 0.003 0.04 0.5 0.6
C¡T
rs868014 3=UTR 0.065 0.033 0.013 0.025 0.002 0.042 0.002 �0.05 0.01 0.3
C¡T

SLC44A1
rs10820799 Intron 0.129 0.112 0.047 0.042 0.003 0.042 0.003 0.04 0.2 0.5
A¡C
rs440290 US 0.241 0.186 0.114 0.178 0.002 0.042 0.003 0.04 0.02 0.3
T¡C
rs328006 Intron 0.218 0.128 0.11 0.125 0.003 0.042 0.003 0.04 0.05 0.4
G¡C

Association of SNPs and degree of steatosis was tested across our cohort (n � 446). The SNP is defined by the dbSNP reference SNP (rs)
number. Allele change is shown underneath. Region refers to the sequence location: within an exon or intron, upstream (US) or downstream
(DS) of the gene (within the 5-kb cutoff for our study), or in the 3= untranslated region (UTR). SNP frequency: proportion of people carrying
either 1 or 2 copies of the SNP [(2 	 no. of people with 2 copies of SNP) 
 (1 	 no. of people with 1 copy of SNP)/(no. of subjects 	 2)].
Model 1, unadjusted for confounders; model 2, adjusted for age (�50 vs. �50), sex, and diabetes diagnosis; and model 3, adjusted for age, sex,
diabetes, and BMI. Proportional odds models or generalized logit models were used depending on whether the proportional odds assumption
was satisfied (assuming an additive SNP effect). SNPs are organized by raw P value and gene. P values were adjusted for multiple tests utilizing
the FDR procedure. The FDR P value was derived by adjusting the raw P value for the number of SNPs tested (n�170 after accounting for the
minimum number of effective tests); values of P � 0.05 were considered significant.
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rs4563403; MTHFR rs7525338; PEMT rs13342397, rs7946,
rs8068641, and rs936108; PNPLA3 rs2281135, rs738409;
SLC44A1 rs10820799), and they were used to construct
a scoring model that summed alleles associated with
increased steatosis. We could accurately classify individ-
uals within cluster 1 with higher steatosis based on their
SNP score (P�1.0	10�10; Fig. 6, inset). The receiver
operator curve demonstrated that scores from this

combination of SNPs discriminated between subjects
with high steatosis with a high degree of sensitivity and
specificity (area under the curve by steatosis level:
�34%�0.83, 33-66%�0.94, �66%�0.93; Supplemental
Fig. S2B).

DISCUSSION

Our study highlights a novel approach to maximize our
understanding of how genetic variations influence he-
patic steatosis: grouping individuals by shared patterns
of SNPs in pathways functionally linked to the pheno-
type of interest, rather than using traditional single
SNP or genome-wide approaches. In the postgenomic
era, the identification of individual SNPs that are
associated with risk for chronic disease has been disap-
pointing. This is not surprising, given that GWASs
usually must make statistical adjustments for testing vast
numbers of SNPs (thereby losing power) and because a
single gene, much less a single SNP, is unlikely to fully
define risk for common complex diseases (2). In sup-
port of this, it is becoming increasingly clear that
gene-gene interactions are much more likely to be
relevant in defining disease risk, especially between
interrelated pathways that influence phenotype (26).
Our approach may become a fundamental first step in
identifying epistatic relationships between genes that
will allow for stronger hypotheses and increasingly
targeted studies. This approach is also highly amenable
to studies that merge advanced phenotyping platforms,
such as metabolomics, in order to maximize our utili-
zation of genetic signatures to define disease risk.

TABLE 5. SNP frequency is discordant in African Americans vs.
Caucasians

Gene rs and SNP

SNP frequency

P
African

Americans Caucasians

PNPLA3 rs738409 0.242 0.341 0.03
C¡G
rs2281135 0.242 0.272 0.5
C¡T

APOC3 rs2854117 0.754 0.229 �0.0001
C¡T

MTHFR rs7525338 0.102 0.000 �0.0001
C¡T
rs868014 0.206 0.003 �0.0001
C¡T

CHDH rs4563403 0.453 0.123 �0.0001
C¡T
rs881883 0.609 0.157 �0.0001
T¡C

PEMT rs8068641 0.563 0.102 �0.0001
A¡G
rs7214988 0.414 0.075 �0.0001
C¡G

SLC44A1 rs10820799 0.320 0.051 �0.0001
A¡C
rs440290 0.651 0.096 �0.0001
T¡C
rs328006 0.508 0.075 �0.0001
G¡C

Distribution of SNPs found to be significantly associated with
steatosis severity across the cohort (n�446; Table 4) was compared in
African Americans (n�64) vs. Caucasians (n�366) using a �2 test.
Values of P �0.05 were considered significant.

Figure 3. Overall SNP distribution is not correlated in African
Americans vs. Caucasians. Figure shows the lack of correla-
tion of SNP distribution between African Americans and
Caucasians (r2�0.08). Diamonds represent the frequency of
each of the 260 SNPs included in this study.

Figure 4. Synergistic effect on steatosis severity of having SNPs
at both rs738409 and rs2281135 in PNPLA3. To assess
whether having �1 copy of an SNP at both rs738409 and
rs2281135 in the PNPLA3 gene was associated with higher
steatosis, we used proportional odds models (adjusted for
age, sex, diabetes, and BMI as in Table 4). Carrying SNPs at
both PNPLA3 loci (n�197) was associated with higher steato-
sis burden than carrying an SNP at only one PNPLA3 locus
(n�249; P�0.0002).
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Choline/1-carbon metabolism intersects with pathways
that are important for liver function, including lipid/
apolipoprotein and homocysteine (Hcy) metabolism
(Fig. 1), making it plausible that interactions between
SNPs across multiple genes may lead to cumulative inef-
ficiencies that contribute to steatosis risk. This is sup-
ported by data in humans showing that dietary choline
deprivation leads to the development of fatty liver differ-
entially depending on sex and genetic variations in 1-car-

Figure 5. Unsupervised 2-way hierarchical clustering groups
subjects with distinct genetic patterns. Genotypes are coded
as 0 (no SNP), 1 (1 copy of SNP), or 2 (2 copies of SNPs)
based on distributions across the cohort and are color coded
as black, gray, and white, respectively. Clusters 1 and 2 are
enlarged; inset shows a small image of all 5 clusters. (Supple-
mental Fig. S1 shows a large image of all 5 clusters.)

Figure 6. Steatosis burden can be predicted by clustering
subjects by shared SNP patterns, and this prediction can be
refined with scoring models that account for the biological
association of SNPs on steatosis. Using a �2 test, we first
identified an overall difference in steatosis between the 5
clusters generated based on 55 SNPs (P�0.0002). To identify
which individual clusters were different, subsequent pairwise
comparisons showed that cluster 1 had lower steatosis than all
other clusters, cluster 2 had higher steatosis than clusters 3A
and 3B, and clusters 3A–3C were not significantly different
from each other. Steatosis is defined as non-NAFLD (no
histological evidence of fatty liver), �34%, 34–66%, �66%.
Inset: given that cluster 1 consisted primarily of African-
American individuals, we asked whether SNP patterns within
cluster 1 could distinguish the subjects with higher steatosis
from those with less disease by implementing a scoring
model. The model was built by summing the number of
alleles associated with higher steatosis for SNPs that were
selected due to their association with steatosis within the
cluster (see Materials and Methods for full description). Inset
shows how the cluster 1 scoring model performed. Discrimi-
natory capacity of the scoring model was evaluated with a
logistic fit model and was highly significant (P�1.0	10�10).
*P � 0.05, **P � 0.01, ***P � 0.001.
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bon genes (6–8). A recent publication showed that, in
biopsy-characterized postmenopausal women, low cho-
line intake was associated with worse fibrosis (27), high-
lighting choline as an important nutrient in NAFLD
progression. Our study provides novel insights into the
contributions of choline-related SNPs to steatosis severity.

Individual SNPs involved in hepatic steatosis

We confirmed the association between PNPLA3 rs738409
and steatosis severity in a cohort with histologically de-
fined hepatic lipid status (Table 4). Although PNPLA3
rs738409 is a well-replicated marker of hepatic steatosis,
this SNP only explains a small proportion of the risk.
Indeed, in our study, 37% of individuals who did not have
any degree of steatosis had �1 copy of the rs738409 SNP,
while 43% of people with any degree of steatosis did not
carry this SNP (not shown). Thus, we hypothesized that
understanding combinations of shared SNPs in our co-
hort might give us better information about our pheno-
type of interest. In support of this notion, we noted an
apparent synergism between PNPLA3 rs738409 and
rs2281135 SNPs (Fig. 4). This suggests that measuring
both SNPs improves their utility as predictive tools. Inter-
estingly, another PNPLA3 SNP we genotyped, rs6006460,
which has been reported to be common in African
Americans and associated with decreased risk for NAFLD
(25), was not found to be polymorphic in this population
and thus had no effect on steatosis risk. PNPLA3 is a
phospholipase A2 family member that hydrolyzes glycer-
olipids, including PtdCho, in vitro (28) and also has been
shown to promote lipid synthesis due to its function as a

lysophosphatidic acid acyltransferase (29). Given the in-
volvement of PNPLA3 in the metabolism of choline-
containing phospholipids, deciphering the crosstalk be-
tween PNPLA3 and choline/1-carbon metabolism may
result in a deeper understanding of the mechanisms
regulating hepatic lipid balance.

Excess lipid influx coupled with genetically defined
diminished lipid export synergistically influence
hepatic lipid burden

Accumulation of fat in the liver is a function of the
balance between lipid input (driven largely by excess
calorie intake) and the rate of lipid output (mainly as
VLDL; Fig. 1). Obesity and hepatic steatosis frequently
occur in the same individuals because the inputs to
hepatic lipid production are increased, thereby challeng-
ing the capacity of liver to secrete lipids. Indeed, excess
caloric intake is one important cause of increased rates of
formation of hepatic triglycerides, and reduction in in-
take has been shown to diminish hepatic lipid burden
(30). Choline metabolism is essential for the export of
hepatic lipids, since its metabolite, PtdCho, is necessary
for VLDL formation. Choline deficiency in humans and
mice is associated with increased hepatic lipid stores.
Although obesity is generally associated with higher ste-
atosis (1), this is not the case in all individuals, and this
may be because of differential capacity to secrete lipid due
to metabolic inefficiencies caused by SNPs in choline and
1-carbon metabolism. In addition, some individuals may
reach a threshold BMI in which lipid input is severely
increased, and genetic contributions may become irrelevant.

TABLE 6. Phenotype characteristics of clusters

Characteristic

Cluster P

1, n � 64 2, n � 86 3A, n � 113 3B, n � 137 3C, n � 46 Raw FDR

Age 46 (38, 53) 52 (40, 57) 48 (39, 59) 49 (39, 56) 48 (42, 56) 0.08 0.1
BMI 45 (36, 54) 37 (31, 45) 38 (32, 45) 37 (30, 47) 35 (31, 43) 0.0008 0.004
Female, n � 279 16% 17% 27% 30% 10% 0.4 0.4
Male, n � 167 11% 23% 23% 32% 10% 0.4 0.4
Nondiabetic, n � 288 13% 18% 25% 33% 11% 0.3 0.4
Diabetic, n � 158 18% 22% 26% 26% 9% 0.3 0.4
African American,

n � 64
94% 0% 5% 2% 0% �0.0001 �0.0001

Caucasian, n � 366 1% 23% 29% 36% 12% �0.0001 �0.0001
AST (IU/L) 28 (21, 59) 45 (29, 72) 37 (26, 53) 36 (26, 56) 41 (27, 59) 0.02 0.04
ALT (IU/L) 29 (18, 60) 51 (30, 97) 42 (27, 77) 46 (25, 79) 47 (30, 71) 0.005 0.01
Total cholesterol

(mg/dl)
187 (167, 212) 187 (154, 215) 186 (157, 217) 183 (153, 215) 198 (162, 239) 0.6 0.7

HDL (mg/dl) 44 (37, 58) 40 (31, 45) 39 (33, 47) 43 (34, 49) 44 (33, 58) 0.06 0.09
LDL (mg/dl) 117 (98, 131) 116 (85, 135) 115 (85, 137) 109 (88, 125) 117 (78, 155) 0.7 0.7
Triglycerides (mg/dl) 111 (69, 136) 137 (99, 211) 143 (101, 231) 136 (99, 193) 131 (99, 236) 0.003 0.009
Systolic BP 139 (128, 150) 135 (125, 146) 134 (129, 145) 137 (126, 145) 128 (118, 138) 0.01 0.02
Diastolic BP 85 (77, 91) 78 (72, 83) 79 (75, 88) 81 (74, 86) 80 (71, 83) 0.0002 0.001
Liver clinic, n � 283 10% 22% 25% 32% 12% 0.003 0.009
Bariatric clinic,

n � 163
23% 15% 26% 29% 8% 0.003 0.009

Table is similar to Table 3, except the variables were compared between clusters generated from shared genotypes (Fig. 5 and Supplemental
Fig. S1). FDR adjustment for multiple comparisons was based on the number of variables tested (n�14). Data are presented as median and 25th
and 75th percentile or as a percentage. BMI, body mass index; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HDL,
high-density lipoprotein; LDL, low-density lipoprotein; BP, blood pressure.
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Genetic signatures are associated with steatosis severity
and may provide insight into disease disparities

The major finding in this study is that an unsupervised
hierarchical clustering approach revealed patterns of
SNPs across multiple functionally relevant genes that
were highly associated with steatosis burden. Our ap-
proach defined SNP signatures, based on the number
of copies of SNP alleles carried across a panel of 55
SNPs, which were associated with steatosis severity in
specific groups of people that share other characteris-
tics, such as ethnicity and biochemical indicators of
NAFLD (Figs. 5 and 6). The genetic signatures that we
identified span pathways that are known to be mecha-
nistically related to NAFLD (Fig. 1). This supports our
hypothesis that additive metabolic inefficiencies, driven

at least in part by SNP patterns, contribute to steatosis
severity.

Among the multiple choline/1-carbon genes we
identified that defined low vs. high steatosis burden
(Tables 7 and 8), many have biologically plausible links
to hepatic steatosis. For example, we found that SNPs in
CHDH and PEMT were associated with steatosis, and
this is in agreement with previous studies (7, 20). We
also uncovered SNPs in several genes not previously
linked to steatosis, including ABCB4, MTHFR, and
SLC44A1. ABCB4 encodes for an enzyme that flips
PtdCho from the inner to the outer hepatocyte cana-
licular membrane, so that this phospholipid is available
for incorporation into bile micelles (31). Bile salts can
act as signaling agents that modulate glucose and
energy metabolism (32), and our observations suggest

TABLE 7. SNP frequency of cluster 2 vs. clusters 3A–3C

Rank Gene SNP

SNP frequency P

Cluster 2 Clusters 3A–C Raw FDR

1 PEMT rs936108 0.767 0.414 2.12E-17 1.16E-15
2 PEMT rs6502603 0.233 0.578 7.89E-17 2.17E-15
3 ABCB4 rs2071645 0.017 0.242 4.57E-15 8.38E-14
4 ABCB4 rs4148811 0.017 0.240 6.76E-15 9.29E-14
5 PEMT rs4244593 0.198 0.497 1.31E-13 1.45E-12
6 ABCB4 rs31672 0.035 0.262 2.83E-13 2.23E-12
7 ABCB4 rs1149222 0.041 0.267 9.23E-13 6.34E-12
8 ABCB4 rs1202283 0.733 0.507 2.68E-07 1.64E-06
9 ABCB4 rs9655950 0.058 0.208 1.87E-06 1.03E-05

10 PEMT rs1109859 0.058 0.209 3.55E-06 1.77E-05
11 SLC44A1 rs193008 0.006 0.101 6.11E-06 2.80E-05
12 SLC44A1 rs443094 0.006 0.100 8.12E-06 3.43E-05
13 SLC44A1 rs328006 0.006 0.098 1.08E-05 4.23E-05
14 PEMT rs4479310 0.145 0.294 2.31E-05 8.48E-05
15 PNPLA3 rs738409 0.448 0.307 2.45E-05 8.41E-05
16 PEMT rs13342397 0.006 0.093 2.48E-05 8.04E-05
17 PEMT rs8068641 0.017 0.120 3.13E-05 9.57E-05
18 PEMT rs7946 0.855 0.709 3.60E-05 1.04E-04
19 PEMT rs16961845 0.012 0.095 1.63E-04 4.48E-04
20 PEMT rs7214988 0.012 0.095 1.63E-04 4.27E-04
21 CHDH rs12676 0.413 0.265 2.24E-04 5.61E-04
22 SLC44A1 rs440290 0.029 0.120 3.50E-04 8.38E-04
23 CHDH rs881883 0.081 0.193 6.64E-04 0.002
24 PNPLA3 rs2281135 0.378 0.243 0.002 0.004
25 SLC44A1 rs7018875 0.000 0.041 0.002 0.005
26 SLC44A1 rs10820799 0.006 0.059 0.002 0.005
27 CHDH rs6807783 0.076 0.171 0.003 0.01
28 SLC44A1 rs10120572 0.000 0.027 0.004 0.01
29 CHDH rs4687591 0.087 0.169 0.009 0.02
30 CHDH rs4563403 0.064 0.142 0.010 0.02
31 MTHFR rs2066471 0.116 0.182 0.020 0.03
32 CHDH rs7634578 0.000 0.012 0.06 0.1
33 MTHFR rs4846048 0.238 0.292 0.06 0.1
34 PCYT1B rs4898190 0.012 0.047 0.09 0.1
35 CHDH rs2289209 0.017 0.051 0.1 0.2
36 MTHFD1 rs10135928 0.006 0.020 0.1 0.2
37 CHKB rs470117 0.523 0.454 0.2 0.2
38 MTHFR rs1801133 0.297 0.372 0.2 0.3
39 FADS2 rs526126 0.215 0.194 0.3 0.4
40 MTHFR rs4846052 0.349 0.373 0.3 0.4

Distribution of SNPs used to generate clusters (n�55) was compared in cluster 2 vs. 3A–3C using a heterogeneity test. Raw P values were
adjusted for multiple tests (FDR method) based on the number of SNPs tested (n�55). Top 40 SNPs are shown for space considerations.
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that this metabolic pathway, and its intersection with
choline/1-carbon metabolism, should be explored fur-
ther as a modulator of NAFLD. Recently, Abcb4 was
shown to modulate glucose metabolism in mice, likely
via a PtdCho-dependent pathway, and ABCB4 SNPs in
humans were also associated with glucose levels (33).
This novel metabolic link to ABCB4 strengthens the
biological plausibility of our findings and also suggests
that this gene needs to be studied further in the context
of metabolic disease. MTHFR is important for the
formation of methionine via the remethylation of Hcy.
Functional SNPs in this gene have been linked to
elevated Hcy (34) and central adiposity (35), and both
of these mechanisms could underlie a functional role
of MTHFR in steatosis. The use of choline as a methyl
group donor requires conversion of choline to betaine
in the mitochondria (36). SLC44A1 is a plasma mem-

brane and mitochondrial choline transporter (37).
SNPs in the gene could impair choline’s entry into
mitochondria, potentially influencing choline availabil-
ity. Our results suggest that choline/1-carbon and
functionally interrelated pathways should be investi-
gated further to better define their role in hepatic
steatosis and to determine whether nutritional inter-
ventions might be beneficial.

The SNPs that encompassed the signatures for high
vs. low steatosis included genes with functional roles in
hepatic steatosis beyond those associated directly with
choline metabolism. One notable example is APOC3.
The rs2854117 SNP has previously been associated with
hepatic steatosis, although subsequent publications
were unable to replicate the original finding. In our
study, an association is seen with the C allele, not the T
allele, which is different from the original finding

TABLE 8. SNP frequency of cluster 1 vs. all other clusters

Rank Gene SNP

SNP frequency P

Cluster 1 All others Raw FDR

1 CHKB rs7238 0.594 0.080 2.32E-33 1.28E-31
2 SLC44A1 rs440290 0.633 0.099 5.52E-33 1.52E-31
3 CHDH rs7634578 0.367 0.009 6.27E-33 1.15E-31
4 SLC44A1 rs193008 0.586 0.080 6.52E-33 8.97E-32
5 SLC44A1 rs10120572 0.414 0.021 1.93E-32 2.13E-31
6 SLC44A1 rs7018875 0.430 0.031 1.05E-29 9.63E-29
7 CHDH rs6807783 0.703 0.149 3.52E-29 2.76E-28
8 CHDH rs4687591 0.695 0.151 1.06E-28 7.30E-28
9 SLC44A1 rs328006 0.516 0.077 7.90E-26 4.83E-25

10 PEMT rs8068641 0.555 0.097 7.74E-25 4.25E-24
11 ABCB4 rs1202283 0.086 0.558 9.13E-25 4.56E-24
12 ABCB4 rs2071645 0.641 0.191 2.29E-23 1.05E-22
13 MTHFR rs868014 0.219 0.001 3.22E-23 1.36E-22
14 APOC3 rs2854117 0.727 0.233 9.25E-23 3.63E-22
15 MTHFR rs4846052 0.836 0.368 1.87E-21 6.85E-21
16 SLC44A1 rs443094 0.453 0.079 9.65E-21 3.32E-20
17 ABCB4 rs1149222 0.648 0.216 2.44E-20 7.90E-20
18 SCD rs12247426 0.250 0.009 3.41E-20 1.04E-19
19 CHDH rs881883 0.594 0.168 2.46E-19 7.13E-19
20 ABCB4 rs31672 0.617 0.211 2.06E-18 5.68E-18
21 FADS2 rs526126 0.617 0.199 2.31E-18 6.06E-18
22 SLC44A1 rs10820799 0.336 0.047 1.73E-17 4.31E-17
23 CHKB rs1557502 0.594 0.186 8.92E-17 2.13E-16
24 CHKB rs470117 0.102 0.470 2.46E-16 5.64E-16
25 PEMT rs7214988 0.398 0.076 5.30E-16 1.17E-15
26 ABCB4 rs4148811 0.516 0.190 8.24E-15 1.74E-14
27 PEMT rs4479310 0.648 0.260 1.70E-14 3.47E-14
28 ABCB4 rs9655950 0.500 0.174 1.83E-13 3.60E-13
29 CHDH rs4563403 0.445 0.124 2.81E-13 5.34E-13
30 MTHFR rs7525338 0.102 0.000 3.45E-13 6.32E-13
31 PEMT rs12103822 0.125 0.000 3.20E-12 5.68E-12
32 MTHFR rs1801133 0.070 0.355 2.54E-11 4.36E-11
33 MTHFD1 rs10135928 0.148 0.017 4.31E-10 7.18E-10
34 PEMT rs7946 0.445 0.742 2.06E-09 3.34E-09
35 PEMT rs16961845 0.297 0.076 4.61E-09 7.25E-09
36 PEMT rs13342397 0.273 0.073 1.14E-08 1.74E-08
37 CHDH rs2289209 0.203 0.043 1.39E-07 2.07E-07
38 CHDH rs12676 0.086 0.298 1.80E-07 2.61E-07
39 SCD rs7849 0.414 0.212 3.99E-06 5.62E-06
40 PEMT rs4244593 0.203 0.429 9.01E-06 1.24E-05

Table is similar to Table 7, except the distribution of SNP used to generate clusters (n�55) was compared in cluster 1 vs. the rest of the
clusters.
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(Tables 4 and 8 and ref. 38) and implies a protective
effect of the SNP. APOC3 is a major constituent of
VLDL and inhibits lipoprotein lipase. The rs2854117 T
allele abolishes insulin-mediated down-regulation of
the gene, leading to elevated levels of APOC3 and
triglycerides (39). In mice, overexpression of ApoC3
promotes hepatic steatosis (40). Because the T allele is
responsible for the detrimental gain of function of
APOC3, it is difficult to explain why it appears protec-
tive in our study. Obesity has been identified as a factor
that modulates observed effects of APOC3 SNPs, and
perhaps this is playing a role in our study (41). Further-
more, two other studies have identified a weak effect in
the same direction as our results with an SNP that is in
linkage disequilibrium with the one we measured
(rs2854116; refs. 42, 43). It is reasonable to expect
altered VLDL metabolism via APOC3 to be involved in
steatosis, possibly through mechanisms involving 1-car-
bon metabolism, and more studies are needed to clarify
the potential role of this gene in hepatic steatosis.
Other examples of genes with functional links to 1-car-
bon metabolism, which were associated with steatosis in
our clustering algorithm, include SCD and FADS2,
both of which are involved in lipid metabolic processes
with relevance to NAFLD (44–47).

The fact that clustering unmasked the association of
SNPs that have previously been functionally linked with
steatosis (e.g., CHDH rs12676 and PEMT rs7946; refs. 7,
20) but did not show effects individually, suggests that
stratifying cohorts into groups of people with shared
SNPs helps to reveal the subsets of individuals for whom
particular SNPs are important. If our approach can be
replicated and refined, it may prove instrumental in
understanding why many SNPs with disease associations
are often not replicated in subsequent studies. In
support of this, a GWAS by Speliotes et al. (48),
published after the conclusion of our studies, identified
several SNPs to be associated with NAFLD in addition
to PNPLA3. In that study, some of the identified SNPs
had distinct effects on metabolic traits that are com-
mon in individuals with NAFLD. They concluded that
hepatic steatosis is not uniformly influenced by dysfunc-
tion in metabolic traits, such as glucose metabolism and
obesity, and that understanding functional SNP cluster-
ing could prove valuable for defining metabolic heter-
ogeneity in the etiology of hepatic steatosis. Our find-
ings are concurrent with their conclusions, and the
SNPs identified in their study should be included in
future studies aimed at understanding gene-gene inter-
actions in NAFLD. Previous attempts to assess the
combined effects of SNPs in complex diseases have
been only marginally successful (49, 50), perhaps be-
cause those approaches, which were based mainly on
SNPs with reported disease associations from GWASs,
missed the subtle cumulative effect of SNPs that we
identified with our hypothesis-driven, cluster-defined
approach.

We identified an SNP signature that clustered most
of the African-American subjects, and they had much
less steatosis than would be expected for a given BMI.

This is in agreement with previous reports of lower
incidence of NAFLD in African Americans (23). We
hypothesize that this genotype difference, and the
likely alteration in choline/1-carbon metabolism, helps
to explain the apparent protection from steatosis. This
is supported by other studies that have identified
differences in energy expenditure (51) and choline
status (52) in African Americans. Utilizing a scoring
model, where we summed the SNP alleles associated
with higher steatosis, we could identify the subgroup of
individuals within cluster 1, who had high, not low,
steatosis. This specific 11-SNP score could be useful for
identifying African-American individuals who deviate
from the expected low steatosis risk and are in need of
more aggressive interventions. It is also possible that
this signature can identify African-American individuals
with greater risk of liver disease progression, and this
warrants further study. In the remaining population,
which was composed primarily of Caucasian subjects,
the SNP pattern within cluster 2 was able to distinguish
high vs. intermediate levels of hepatic steatosis (clusters
3A–3C). Therefore, the 55-SNP signature also may be
quite useful for identifying high-risk Caucasian individ-
uals. A similar clustering approach recently demon-
strated that gene expression patterns in breast tumors
segregated subjects into clusters almost perfectly by
ethnicity (53), suggesting that there are key metabolic
differences that are related to both ethnicity and dis-
ease status. In addition, despite having a lower inci-
dence of NAFLD, African Americans have a higher risk
of HCC than Caucasians. A recent study found that
African Americans have a very high prevalence of an
SNP in the epidermal growth factor receptor that is
associated with higher HCC risk (54). This study high-
lights that ethnically defined genetic differences can
also be relevant for phenotype. Our findings suggest
that metabolic inefficiencies revealed by SNP patterns
in choline/1-carbon genes, and not another property
of ethnicity, underlie the differential steatosis burden
identified by our clustering algorithm.

Strengths and limitations

A major strength of our study is the availability of liver
biopsies, the gold standard in defining hepatic lipid
burden, in both case and control subjects. This allowed
us to map the contribution of SNPs to steatosis across a
comprehensive spectrum of disease burden. Another
strength is the validation of previous SNPs with individ-
ual effects on hepatic steatosis, which both confirms the
role of those SNPs and supports the validity of our
experimental design. One key feature of this study that
allowed for meaningful results was the inclusion of
SNPs across pathways known to be relevant for NAFLD
physiology (Fig. 1). This hypothesis-driven approach
allowed a focused, yet in-depth study, of the genetic
contribution of 1-carbon/choline pathways to steatosis.
Our unique method for utilizing SNP data to under-
stand the risk of complex disease may prove to be quite
useful, since a single SNP is not sufficient to define a
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phenotype in all individuals and the role of SNPs may
be mitigated by the presence or absence of other SNPs.
Notably, our approach may help clarify the often
contradictory SNP association data reported in the
literature, since it helps to define the specific sub-
groups within a population for whom disease-causing
alleles may be most important.

Our study also has several limitations. Given that this
is the first study to attempt SNP-based clustering to
interrogate NAFLD phenotypes, validation studies are
necessary. In future studies, we will genotype multiple
ethnically and phenotypically diverse cohorts with well-
defined NAFLD to provide sufficient power for training
and validation sets. This will allow us to better define
clusters, remove uninformative SNPs, add SNPs to our
panel that improve predictive power and better under-
stand genetic differences with functional implications
in different ethnic groups. The exact function of all the
SNPs identified in our panel is not known. However, we
designed our study with specific hypotheses related to
pathways that are relevant for hepatic steatosis and
designed our SNP selection approach to maximize
inclusion of functional variants. Indeed, bioinformatic
analyses identified that 51% of the SNPs included in
our final clustering model are in regions with regula-
tory potential (not shown). In addition, SNPs without
obvious functional implications might be quite impor-
tant for human disease, and this is highlighted in a
recent study in which the authors found that synony-
mous SNPs and SNPs in the 3= untranslated region
(UTR) of genes are highly likely to be involved in
disease mechanisms and should be investigated further
(55). These factors, and the fact that SNP patterns were
highly associated with phenotype, suggest that the
genetic signatures that we identified may be function-
ally relevant. Once SNP patterns are validated, future
studies will utilize metabolomics analyses to define how
the SNP patterns are associated with flux through
specific metabolic pathways. This will allow us to iden-
tify disease-relevant metabolic inefficiencies that are
potentially amenable to nutritional or pharmacological
interventions. Although the inclusion of subjects from
both a bariatric and liver clinic may be viewed as a
limitation due to the differences between these groups,
this heterogeneity was not a factor in the unsupervised
cluster analysis since the SNPs did not group individu-
als by clinic. We also note that other studies assessing
genetic variants in hepatic disease also combined simi-
lar groups of individuals (43, 56). A key element that
needs to be considered in future studies is the role of
diet in revealing SNP-mediated metabolic inefficien-
cies. Finally, our study was limited to hepatic steatosis,
and studies are in progress to address whether our
approach could be useful for characterizing genetic
factors associated with advanced liver disease.

CONCLUSIONS

The understanding of genetic polymorphisms and dis-
ease risk is rapidly developing, and we have demon-

strated the value of utilizing unsupervised hierarchical
clustering to gain additional insight into genetic vari-
ants that are associated with steatosis in well-pheno-
typed subjects. Our approach may bring us one step
closer to personalized medicine by allowing individuals
within a cohort to be stratified by SNP patterns to better
understand disease risk. If the utility of the genetic
signatures identified in this work can be replicated and
refined, it could provide a noninvasive mechanism to
improve the risk stratification currently achieved with
traditional clinical biomarkers.
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