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ABSTRACT
Choline is an essential nutrient for proper liver, muscle, and brain
functions as well as for lipid metabolism and cellular membrane
composition and repair. Humans can produce small amounts of cho-
line via the hepatic phosphatidylethanolamine N-methyltransferase
pathway; however, most individuals must consume this vitamin
through the diet to prevent deficiency. An individual’s dietary
requirement for choline is dependent on common genetic variants
in genes required for choline, folate, and one-carbon metabolism.
Both the American Academy of Pediatrics and American Medical
Association have recently reinforced the importance of maternal cho-
line intake during pregnancy and lactation and recognize that failure
to provide choline and other key essential nutrients during the first
1,000 days postconception may result in lifelong deficits in brain
function despite subsequent nutrient repletion. Given that dietary
intake for the majority of the US population, including subpopula-
tions such as pregnant women, women of childbearing age, and
vegetarians, falls well below the current adequate intake, there is a
need to develop better policies and improve consumer education
around the importance of this essential nutrient for human health.
This comprehensive expert review summarizes the current scientific
evidence on choline and health in relation to interests of obstetri-
cians and gynecologists.

KEY MESSAGES
There is compelling evidence that demonstrates obtaining the cur-
rent adequate intake (AI) for choline is problematic for the majority
of the US population; excessive intakes above the tolerable upper
intake level (UL) are absent.
The dietary requirement for choline is dependent on common gen-
etic variants in genes required for choline, folate, and one-carbon
metabolism. Continuing education is needed for health professionals
on the importance of choline-rich foods in the diet. Choline must be
integrated into the prenatal supplement regimen.
Research suggests not achieving the AI is likely detrimental to cogni-
tive function in the developing fetus and infant. Adverse neuro-
logical consequences due to suboptimal maternal intakes are likely
to be identified in future clinical research.
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Introduction

Choline (2-hydroxyethyl-trimethyl-ammonium) is a trimethylated, positively charged,
quaternary, saturated amine that is an essential micronutrient with critical structural
and regulatory roles in the body (Institute of Medicine 1998). It is a source of methyl
groups needed to make the primary methyl donor S-adenosylmethionine (SAM), a part
of the neurotransmitter acetylcholine, and a major component of the phospholipids that
compromise cell membranes (sphingomyelin and phosphatidylcholine), thus contribu-
ting to their fluidity and structural integrity (Institute of Medicine 1998). The choline
derivative, phosphatidylcholine, is a main constituent of very low-density lipoproteins
(VLDLs) and is required for hepatic VLDL secretion and thus the removal of fat from
the liver (Institute of Medicine 1998; Yao and Vance 1988). Choline is a precursor for
betaine, an important osmolyte in the kidney glomerulus that facilitates water resorption
from the kidney tubule (Kempson and Montrose 2004). Humans can endogenously pro-
duce small amounts of choline via the hepatic phosphatidylethanolamine N-methyl-
transferase (PEMT) pathway; however, most people must consume this nutrient
exogenously to prevent deficiency (Institute of Medicine 1998). In premenopausal
women, the gene for the enzyme catalyzing biosynthesis of endogenous choline is
induced by estrogen (Resseguie et al. 2007), and some premenopausal nonpregnant
women may have lower than average requirements for dietary choline (Fischer et al.
2007). Genetic polymorphisms can increase the choline requirement (Ganz, Cohen et al.
2017; Ganz, Klatt et al. 2017); almost half of premenopausal women have a gene poly-
morphism that makes biosynthesis of choline unresponsive to estrogen (Fischer et al.
2007). Thus, these women have a similar choline requirement as men (Zeisel and
Caudill 2010).
Choline and esters of choline are ubiquitous in food; however, animal products typic-

ally contain higher amounts of choline compared to plant foods. The most common
forms of choline in foods are fat-soluble phosphatidylcholine and sphingomyelin, as
well as water-soluble phosphocholine, glycerophosphocholine, and free choline (USDA
2008). The bioavailability of free choline appears to be high: studies of cytidine-50-
diphosphocholine (CDP-choline) show virtually complete absorption of free choline
after hydrolysis in the small intestine (Secades and Lorenzo 2006). Pancreatic and
mucosal enzymes liberate free choline from about half of the fat-soluble forms and
from some water-soluble forms (Hollenbeck 2012). Bioavailability of phosphatidylcho-
line varies depending on the food source, from about 100% in soybeans to 24% in can-
ola meal (Emmert and Baker 1997).
Foods naturally containing choline include chicken liver (3 oz: 247mg); salmon (3 oz:

187mg); eggs (1 large egg with yolk: 147mg); shiitake mushrooms (1/2 cup: 58mg);
chicken, broilers or fryers (3 oz: 56mg); beef, grass-fed strip steak (3 oz: 55mg); wheat
germ (1 oz toasted: 51mg); milk (8 oz: 38mg); brussels sprouts (1/2 cup: 32mg); and
almonds (1 oz: 15mg). Select plant foods such as cruciferous vegetables and certain
beans are good sources of choline, contributing approximately 10% of the daily recom-
mended intake (Zeisel and da Costa 2009). Foods, particularly plant foods, also contain
betaine, which cannot be converted to choline but can be used as a methyl donor,
thereby sparing some of the choline requirement. In animal models, a minimum 50% of
the dietary requirement of choline is still needed, but the remaining 50% can be spared



by intake of betaine (Craig 2004; Dilger et al. 2007). Choline is available commercially
as an ingredient in many fortified foods and dietary supplements as choline bitartrate
or choline chloride. The US Food and Drug Administration (2017) has mandated forti-
fication of non-milk-based infant formula to the level present in human breast milk
since 1985.
The National Academy of Medicine (NAM; formerly the Institute of Medicine

[IOM]) Food and Nutrition Board (FNB) has recognized choline as an essential nutrient
since 1998 and established dietary reference intakes (DRIs) for individuals in the United
States and Canada (Institute of Medicine 1998) (Table 1). The adequate intake (AI) is
425 and 550mg/day for women and men, respectively, based on prevention of liver
damage. The AI for infants was derived by calculating intake from mature human breast
milk (Institute of Medicine 1998; Zeisel and Caudill 2010); however, the colostrum has
a much greater concentration of choline. Obtaining the current AI for choline seems to
be problematic for the majority of the US population (Wallace and Fulgoni 2016, 2017;
Moshfegh 2018); furthermore, adequacy goals for choline cannot currently be achieved
using food patterns described by the 2015–2020 Dietary Guidelines for Americans (US
Department of Health and Human Services & US Department of Agriculture 2015).
This reinforces the need for public guidance that highlights choline-containing foods
and/or dietary supplements to help fill the gap. The American Medical Association
recently specified the importance of choline during fetal and infant development by rec-
ommending that prenatal vitamins include choline, which is a technical challenge
because the inclusion of choline in these formulations would significantly increase their
physical size (Berg 2017). Similarly, the American Academy of Pediatrics recently stated
that although all nutrients are necessary for brain growth, there are key nutrients such
as choline, among others, that support neurodevelopment; failure to provide these key
nutrients during the first 1,000 days postconception, a critical period for brain develop-
ment, may result in lifelong deficits in brain function despite subsequent nutrient

Table 1. Mean intakes of choline from foods and beverages in the United States, 2011–2014.
Age (y) Mean intake (mg/d)a AI (mg/d)b Above AI (%)a UL (mg/d)b Above UL (%)

Males
1–3 221 ± 7.6 200 61 ± 4.9 1000 0.0 ± 0.0
4–8 242 ± 4.2 250 42 ± 2.5 1000 0.0 ± 0.0
9–13 290 ± 5.2 375 14 ± 1.8 2000 0.0 ± 0.0
14–18 346 ± 11.1 550 5 ± 2.1 3000 0.0 ± 0.0
19–30 412 ± 7.5 550 17 ± 2.2 3500 0.0 ± 0.0
31–50 421 ± 9.1 550 14 ± 2.5 3500 0.0 ± 0.0
51–70 391 ± 7.8 550 10 ± 1.6 3500 0.0 ± 0.0
�71 351 ± 8.2 550 4 ± 1.1 3500 0.0 ± 0.0

Females
1–3 205 ± 4.8 200 40 ± 4.1 1000 0.0 ± 0.0
4–8 211 ± 4.7 250 20 ± 3.3 1000 0.0 ± 0.0
9–13 231 ± 7.2 375 <3 2000 0.0 ± 0.0
14–18 223 ± 7.9 400 <3 3000 0.0 ± 0.0
19–30 271 ± 6.6 425 <3 3500 0.0 ± 0.0
31–50 280 ± 5.5 425 5 ± 1.5 3500 0.0 ± 0.0
51–70 275 ± 5.4 425 4 ± 1.0 3500 0.0 ± 0.0
�71 253 ± 6.0 425 <3 3500 0.0 ± 0.0

AI, adequate intake; NHANES, National Health and Nutrition Examination Survey; UL, tolerable upper intake level.
aData source: What We Eat in America, NHANES 2011–2014, individuals aged �1 year, excluding breast-fed children and
pregnant or lactating females. Provided courtesy of Moshfegh (2018).

bCurrent gender and life-stage AI as defined by the Institute of Medicine (1998).



repletion (Schwarzenberg and Georgieff 2018). Choline requirements are also important
to consider from a clinical standpoint; up to 84% of patients who receive total paren-
teral nutrition (TPN) have been shown to have low plasma choline, as well as fatty liver
and liver damage. Patients who received TPN with 2 g of choline chloride showed
improvements in hepatic steatosis after 4weeks compared with those who received TPN
without choline chloride. Recurrent hepatic steatosis was noted at week 34 (10weeks
after discontinuation of the choline chloride) (Buchman et al. 2001).

Current dietary intakes of choline in the United States

When the AI for choline was established by the NAM FNB in 1998, it was not known
whether there were significant numbers of individuals who were choline deficient; until
recently, food composition databases provided little data on the choline content of foods
to calculate dietary intakes across the population (Institute of Medicine 1998). In 2004,
the US Department of Agriculture (USDA) in collaboration with the University of
North Carolina released the USDA Database for the Choline Content of Common
Foods. This database was updated in 2008 and can currently be used to estimate the
choline content of over 630 food items (US Department of Agriculture 2008). Using
this USDA database along with consumption data from the National Health and
Nutrition Examination Survey (NHANES), researchers have estimated usual choline
intakes in the United States to be just over 300mg/d for nonpregnant, nonlactating
individuals (Wallace and Fulgoni 2016, 2017; Moshfegh 2018). Only about 10% of
Americans and 8% of pregnant women currently meet their gender- and life-stage-spe-
cific AI for choline (Wallace and Fulgoni 2016, 2017; Moshfegh 2018). Table 1 shows
the average usual intakes, as well as the percentage of the US population above the AI
and tolerable upper intake level (UL) for choline, grouped by gender and life stage.
Young children are more likely to meet the AI for choline, although the DRIs for this
population are extrapolated from studies based on body mass in adults and may not be
optimal. Premenopausal adult women are the least likely gender and life-stage subpopu-
lation to meet the AI: usual intake of choline in this subpopulation is 319 ± 6mg/d,
which is only approximately 71% of the AI. The 25th percentile in this subpopulation
has a usual intake of 254 ± 11mg/d, which is roughly 60% of the AI (Wallace and
Fulgoni 2017). Vegetarians have the lowest intakes among the US population, estimated
at 192 ± 7mg/d (Wallace 2015); choline intakes have been shown to be driven by egg
intake and secondarily protein food intake (i.e., meat, poultry, and seafood) (Wallace
and Fulgoni 2017). It should again be noted that choline is a precursor to betaine,
another “methyl donor” largely present in plant foods such as wheat bran, beets, and
spinach. Higher intakes of betaine may spare some of the potential negative consequen-
ces of low choline intake among vegetarian populations. Incorporating one to two eggs
per day as a substitution for processed and/or red meat in the USDA Healthy US-Style
2000-Kilocalorie Eating Pattern increases choline intakes to current recommended lev-
els, without altering other essential nutrients, and maintains cholesterol intakes within a
safe range for healthy individuals (Wallace and Fulgoni 2017). Dietary supplements pro-
vide less than 5% of dietary choline in relation to recommended intakes since choline
salts are bulky and vastly increase the size of the supplemental product (Wallace and



Fulgoni 2017). Choline status (e.g., plasma choline) is not a reliable indicator of moder-
ate changes in dietary choline intake since it is homeostatically regulated by the body.
No optimal method for clinical assessment of choline status exists.

Consequences of deficiency and excess

Deficiency

Choline deficiency causes clinical illness in humans. Healthy men and women with nor-
mal folate and vitamin B12 status who were fed a choline-deficient diet developed liver
damage, characterized by elevated liver enzymes in the blood, as well as muscle damage
as indicated by increased circulating creatine phosphokinase (CK) concentrations, which
resolved when choline was restored to the diet (Zeisel et al. 1991; da Costa et al. 2004).
Phosphatidylcholine is essential for the normal assembly and secretion of VLDLs that
transport triacylglycerol (TAG) out of the liver; hepatic steatosis during deficiency
results in accumulation of TAG in hepatocytes (Cole et al. 2012), causing release of the
liver enzymes alanine aminotransaminase and aspartate aminotransferase into the blood,
likely due to loss of phosphatidylcholine from the plasma membrane (Li et al. 2005).
The susceptibility to develop liver damage has been shown to be related to polymor-
phisms of the gene phosphatidylethanolamine N-methyltransferase (PEMT) (Song et al.
2005) with loss of estrogen receptor binding, as well as polymorphisms in other
enzymes involved in choline metabolism (Resseguie et al. 2007, 2011). Only a portion
(44%) of premenopausal women develop such problems when choline deficient because
estrogen induces the PEMT gene and allows for an increase in de novo production of
choline (Resseguie et al. 2007).
During pregnancy, estrogen concentrations rise from approximately 1 to 60 nmol/L at

term (Sarda and Gorwill 1976; Adeyemo and Jeyakumar 1993), suggesting that endogen-
ous choline production may be higher during this critical period for fetal development.
Despite this potential enhanced capacity to synthesize choline, fetal/infant demand is so
high that maternal stores are depleted during pregnancy and lactation in animal models
(Zeisel and Caudill 2010), while pregnant women exhibit a marked depletion of cho-
line-derived methyl donors (Yan et al. 2012) secondary to enhanced partitioning of cho-
line toward the CDP-choline pathway (as opposed to betaine synthesis) (Yan et al.
2013) along with greater use of betaine as a methyl donor (Yan et al. 2013). Women
with lower choline intakes during pregnancy have been shown to be at greater risk of
having an infant with a neural tube defect (NTD) or cleft palate (Shaw et al. 2004,
2006; Carmichael et al. 2010); this may be more frequent in women with the rs7946G
allele of PEMT (Mills et al. 2014). A very common genetic variation in folate metabol-
ism that has been linked to risk of NTDs is the 5,10-methylenetetrahydrofolate dehydro-
genase 1958A (MTHFD1) allele (rs2236225). Premenopausal women carrying this allele
have been shown to be 15 times as likely as noncarriers to develop signs of choline defi-
ciency on a low-choline diet (Kohlmeier et al. 2005). It is likely that the variant
MTHFD1 gene decreases the availability of the methyltetrahydrofolate, thereby increas-
ing the metabolic use of choline as a methyl donor.
Elevations in markers of DNA damage, as well as alterations in lymphocyte gene

expression, are also commonly observed during the deficiency state (da Costa et al.



2006; Niculescu et al. 2007; Zeisel 2012). DNA methylation can strongly influence gene
expression; alterations in DNA methylation have been linked to diseases such as cancer
and syndromes involving chromosomal instabilities (Egger et al. 2004). DNA methyla-
tion is also responsible for imprinting during the perinatal period, which may influence
disease susceptibility later in life (Waterland and Jirtle 2004). It is important to note
that lack of dose-response studies and reliance on an AI make it difficult to assess con-
sequences between insufficiency versus deficiency.

Toxicity

High intakes of choline are associated with a fishy body odor, vomiting, excessive sweat-
ing and salivation, hypotension, and liver toxicity. The NAM defined a UL for adults
based on a study in seven patients with Alzheimer’s disease, where oral administration
of 7.5 g/d of choline resulted in a hypotensive effect accompanied by nausea and diar-
rhea (Boyd et al. 1977). Similar gastrointestinal effects and a fishy body odor were
observed among participants in studies administering 8–20 g/d (Growdon et al. 1977;
Gelenberg et al. 1979; Lawrence et al. 1980). The NAM considered 7.5 g/d of choline as
the lowest observed adverse effect level; after application of an uncertainty factor of 2
and rounding, the NAM set a UL of 3.5 g/d for adults. The NAM FNB was unable to
establish ULs for infants due to the lack of data on adverse effects in this age group,
and the ULs for children were derived from the adult value by allometric scaling (expo-
nent 0.75) according to reference body weights (Institute of Medicine 1998) (Table 1).
The European Food Safety Authority Nutrition Dietetics and Allergies Panel (2016) did
not define a UL for choline in 2016.
Consumption has been shown to increase production of trimethylamine N-oxide

(TMAO), a gut-derived choline metabolite (naturally abundant in fish), which has
recently emerged as a candidate risk factor for heart disease and other adverse health
outcomes. One purported mechanism involves microbial production of trimethylamine
(TMA) from dietary substrates and its subsequent conversion to TMAO in the liver.
Considerable interindividual variations in circulating and urinary TMAO concentrations
have been reported in response to egg and supplemental choline. However, the relation
between TMAO and chronic disease can be confounded by several factors, including
kidney function, the gut microbiome, and flavin-containing monooxygenase 3 (FMO3)
genotype. A recent crossover feeding trial in healthy young men consuming meals con-
taining TMAO (fish), its dietary precursors, choline (eggs), and carnitine (beef) versus a
fruit control showed that fish consumption, widely known for its cardioprotective attrib-
utes, yielded higher circulating and urinary concentrations of TMAO (42–62 times;
p< 0.0001) than eggs, beef, or the control (Cho et al. 2017). High TMAO producers
(�20% increase in urinary TMAO in response to eggs and beef) were found to have a
higher ratio of Firmicutes to Bacteroidetes and a less diverse gut microbiome (Cho
et al. 2017); this is consistent with previous reports that suggested trimethylamine pro-
duction is noted in Firmicutes but not Bacteroidetes (Falony et al. 2015). Notably, a
greater ratio of Firmicutes to Bacteroidetes has previously been associated with an
increased risk of obesity and metabolic syndrome (Ley et al. 2005). As such, higher cir-
culating concentrations of TMAO in a disease versus a nondisease state may reflect



differences in gut microbe composition rather than indicate a causative role of TMAO
in the disease process (Cho et al. 2017).

Genetic variants that alter metabolism and influence dietary requirements
for choline

Nutrient needs vary depending upon a number of modifiable and nonmodifiable fac-
tors; current DRIs for nutrients consider the impact of sex, age, and reproductive life
stage on nutrient needs. However, additional variation in nutrient needs still remains,
and many researchers hypothesize that genetic variants contribute to this variation. For
dietary choline, a large and growing body of research has supported the notion that
common genetic variants in genes required for choline, folate, and one-carbon metabol-
ism influence dietary choline requirements. Several single nucleotide polymorphisms
(SNPs) have been shown to predict the likelihood of developing signs of choline

Table 2. Summary of the associations between single nucleotide polymorphisms and the odds of
developing choline deficiency–associated organ dysfunction (i.e., liver and/or skeletal muscle).
Gene Function SNP Choline deficiency risk

MTHFR Converts 5,10-methyleneTHF
to 5-methylTHF; rate-limiting
step in use of folate as
methyl donor

rs1801133 Not significant
rs1801131 Not significant

MTHFD1
10-formyl-, 5,10-methenyl,
and 5,10-methylene-THFs;
SNP resides in the enzymatic
activity associated with 10-
formyl-THF synthesis

rs2236225 " odds organ dysfunction

Reduced-folate carrier (RFC) Transports reduced folates
with high affinity at a
physiological pH

rs1051266 Not significant

MTR Vitamin B12- and folate-
dependent conversion of
homocysteine to methionine

rs1805087 Not evaluated

MTRR Regenerates Metrifonate
(MTF) after oxidation

rs1801394 Not evaluated

CHKA Phosphorylates choline, first
step in CDP-choline pathway

rs10791957 # odds organ dysfunction

CHDH First step in oxidation of
choline to betaine

rs9001 # odds organ dysfunction
rs12676 " odds organ dysfunction

BHMT Converts homocysteine to
methionine using betaine as
a methyl donor

rs3733890 Not significant

PEMT Uses S-adenosylmethionine to
triply methylate
phosphatidylethanolamine to
form phosphatidylcholine
(endogenous
choline synthesis)

rs12325817 " odds organ dysfunction
rs4646343 " odds organ dysfunction
rs2266782 Not significant

SLC44A1 Transports choline across the
cellular and
mitochondrial membranes

rs7873937 " odds muscle damage
rs3199966 " odds muscle damage

Adapted with permission from Ganz, Klatt, and Caudill (2017a). BHMT, betaine homocysteine S-methyltransferase; CDP-
choline, cytidine 50-diphosphocholine; CHDH, choline dehydrogenase; CHKA, choline kinase alpha; MTHFD1, methylene-
tetrahydrofolate dehydrogenase 1; MTHFR, methylenetetrahydrofolate reductase; MTR, methionine synthase; MTRR,
methionine synthase reductase; PEMT, phosphatidylethanolamine N-methyltransferase; SLC44A1, solute carrier family
44 member 1; SNP, single nucleotide polymorphism; THF, tetrahydrofolate.



deficiency in controlled laboratory settings where dietary choline intake is low, as
recently reviewed by Ganz, Cohen et al. (2017) and Ganz, Klatt et al. (2017) (Table 2).
These variants also impact the metabolic fate of choline, influencing the relative amount
of choline that is used to make phosphatidylcholine through the CDP-choline pathway
or oxidized to the methyl donor, betaine.
Several SNPs are worth highlighting for their pronounced impact on the risk of cho-

line inadequacy and metabolic partitioning of choline. These SNPs occur in genes for
both folate and choline metabolism, owing to the closely interconnected metabolism of
these nutrients and their critical role in methyl metabolism. Choline, through its metab-
olite, betaine, and folate can serve as sources of methyl donors to convert homocysteine
to methionine, which is then used to generate SAM, the universal methyl donor. SAM
is used by more than 100 methyltransferase enzymes throughout metabolism. When an
individual has low folate status and/or harbors a genetic variant that alters folate metab-
olism, the metabolic use of choline is altered. Women with variants in genes encoding
folate-metabolizing enzymes partition more dietary choline toward phosphatidylcholine
biosynthesis via the CDP-choline pathway (at the expense of betaine synthesis), possibly
due to impaired phosphatidylcholine biosynthesis via the PEMT pathway, which is
dependent on folate-mediated one-carbon metabolism (Ganz et al. 2016). A G!A sub-
stitution (rs2236225) in the methylenetetrahydrofolate dehydrogenase 1 (MTHFD1)
gene has been found to be associated with 7-fold increased odds of developing organ
dysfunction when fed an experimental low-choline diet and no supplemental folic acid;
in premenopausal women with this variant consuming the low-choline diet, the odds of
developing organ dysfunction were 15-fold higher (Kohlmeier et al. 2005; da Costa
et al. 2006; Ganz, Cohen et al. 2017; Ganz, Klatt et al. 2017). MTHFD1 polymorphisms
have been shown to lead to higher homocysteine levels during folate restriction, a
marker of cardiovascular disease, and reduce the amount of choline that is oxidized to
betaine (Ganz et al. 2016). About 15%–30% of humans possess genetic polymorphisms
that alter the activity of MTHFD1, resulting in a greater requirement for folate and
potentially for choline, even when dietary intake of folate is high (Ganz et al. 2016). An
additional variant with a substantial impact on choline needs and metabolism is a poly-
morphism in the promoter region of PEMT (�744G!C; rs12325817), a gene that enc-
odes the enzyme PEMT, which produces phosphatidylcholine from another
phospholipid, phosphatidylethanolamine. This pathway allows the body to make phos-
phatidylcholine without a direct need for choline (although choline can contribute to
this pathway by donating methyl groups to SAM to be used by the PEMT enzyme).
Individuals with the PEMT rs12325817 C variant consuming an experimental low-cho-
line diet have been shown to have 25-fold higher odds of developing symptoms of
organ dysfunction. Genetic variants in the promoter region of the PEMT gene disrupt
the typical upregulation of this gene in response to estrogen, increasing the dependence
on dietary choline to meet the need for synthesis of phosphatidylcholine through the
CDP-choline pathway (Resseguie et al. 2007). Other PEMT SNPs (rs7946, rs4646343)
have also been identified in the promoter region for the PEMT gene and are found to
impact circulating homocysteine concentration and the metabolic fate of choline. For
other genetic variants in folate and choline metabolism that impact choline needs and
metabolism, the reader is referred to the recent review by Ganz, Klatt et al. (2017).



Dietary choline and placental health

Increasing evidence has demonstrated that, similar to the developing fetal brain, the pla-
centa is sensitive to choline supply throughout pregnancy. Optimal development and
functioning of the placenta are critical for maternal and fetal health, and impairments
result in maternal disease, such as preeclampsia, and undesirable fetal outcomes, includ-
ing intrauterine growth restriction. In a randomized controlled feeding trial with choline
intakes of 480 versus 930mg/day, placentas from third-trimester pregnant women con-
suming higher amounts of dietary choline exhibited significant changes in the expres-
sion of genes regulating placental vascularization and angiogenesis (Jiang, Bar et al.
2012; Jiang, Yan et al. 2012). Of note, higher choline intakes lowered the placental
expression and circulating protein levels of soluble fms-like tyrosine kinase-1 (sFLT1), a
vascular endothelial growth factor decoy receptor causally implicated in the pathogen-
esis of preeclampsia. This finding spurred several preclinical investigations into the
impact of choline availability and dietary choline supplementation on placenta develop-
ment and function. In cultured immortalized extravillous trophoblasts, a model of the
placental cell type that invades the maternal decidua, lower choline availability induced
a proinflammatory, antiangiogenic phenotype (Jiang et al. 2014). These results suggest
that choline supply may impair early placental development and arterial remodeling,
which is required for placental perfusion and nutrient transfer (Jiang et al. 2014). These
effects in cultured cells were largely confirmed in mouse models: higher dietary choline
intakes, comparable to the levels shown to improve cognitive outcomes in rodents,
beneficially impacted placental markers of inflammation, oxidative stress, and arterial
morphology while also modulating nutrient transport across the placenta, including
transfer of the critical omega 3 fatty acid, docosahexaenoic acid (Kwan, King, Yan,
Jiang et al. 2017; Kwan, King, Yan, Wang et al. 2017); notably, these effects appear to
be sex dependent, a finding that requires further consideration in human studies.
Choline’s effect on placental function may be, in part, mediated through its impact on
the placental epigenome. Higher dietary choline intakes in third-trimester pregnant
women are associated with global changes in placental DNA and histone methylation
and site-specific increases in promoter methylation at the locus for the cortisol-regulat-
ing gene, corticotropin-releasing hormone (CRH); these site-specific changes were asso-
ciated with reduced placental CRH transcript abundance and lower fetal cord blood
cortisol concentrations (Jiang, Yan et al. 2012). Preliminary investigations in mice have
also suggested that higher dietary choline intakes impact global DNA methylation, site-
specific methylation of several imprinted genes, and placental microRNA expression
(Kwan et al. 2018).

Higher prenatal choline intake may decrease the risk of neural tube defects

A small number of human studies have assessed maternal choline intake or status in
regard to risk of neurological birth defects in the offspring (reviewed in Wallace 2018).
Higher maternal choline intakes, estimated using food frequency questionnaires, in both
case-controlled and longitudinal studies, have suggested an inverse relationship with
spina bifida (Shaw et al. 2004, 2009; Carmichael et al. 2010; Lavery et al. 2014). The
only study to examine maternal plasma total choline concentrations during the first



prenatal visit found no associations with the development of spina bifida at birth; how-
ever, cases of NTDs were significantly more prevalent among offspring whose mothers
expressed the G allele of PEMT rs9746 (Mills et al. 2014), consistent with genetic sus-
ceptibilities discussed earlier. Elevated NTD risk was associated with the lowest decile of
choline intake (odds ratio, 2.4; 95% confidence interval, 1.3–4.7) and reduced risk was
seen in the highest decile of intake (odds ratio, 0.14; 95% confidence interval, 0.02–1.0)
among women in a large California cohort who were sufficient in folate due to folic
acid fortification and/or supplementation of the food supply (Shaw et al. 2009). The
variance in findings may be suggestive of genetic differences among populations as pre-
viously mentioned; a descriptive study found rates of NTDs to be 50%–200% higher
among Mexican Americans residing along the Texas-Mexico border as compared to
non-Hispanic whites and African Americans in other states such as North Carolina
(Hendricks et al. 1999). In rodents, dietary choline is needed for normal neural tube
closure in early pregnancy (Fisher et al. 2001, 2002).

Neurocognitive actions of dietary choline

The mechanisms and clinical evidence in regard to neurodevelopmental and neuropro-
tective actions of choline were recently extensively reviewed by Blusztajn et al. (2017)
and Wallace and Fulgoni (2017). High choline intakes during gestation and early child-
hood have been shown to enhance cognition across the lifespan in multiple animal
models (Blusztajn et al. 2017; Wallace 2018; Zeisel and Caudill 2010) and some short-
term longitudinal human studies (Wallace and Fulgoni 2017). The maternal choline
supply in rats during pregnancy modifies fetal DNA methylation (Kovacheva et al.
2007, 2009) and histone methylation (Davison et al. 2009), suggesting a possible epigen-
etic mechanism for the long-term effects of choline intake seen in animal models and
in longitudinal human studies.

Neuroprotective actions of prenatal choline against epilepsy, fetal alcohol
syndrome, and inherited conditions

High choline intake during gestation and early postnatal development in rat and mouse
models protects the brain from neurological damage associated with epilepsy (Yang
et al. 2000; Holmes et al. 2002; Glenn et al. 2008; Wong-Goodrich et al. 2011), fetal
alcohol syndrome (Thomas et al. 2000; Thomas et al. 2007; Ryan et al. 2008; Otero
et al. 2012; Thomas and Tran 2012; Schneider and Thomas 2016; Thomas et al. 2007),
and inherited conditions such as Down syndrome (Moon et al. 2010; Velazquez et al.
2013; Ash et al. 2014; Kelley et al. 2014, 2016; Strupp et al. 2016; Powers et al. 2017)
and Rett syndrome (Nag and Berger-Sweeney 2007; Nag et al. 2008; Ricceri et al. 2011;
Ricceri et al. 2013). These effects are correlated with modifications in histone and DNA
methylation in the brain, as previously reviewed by Blusztajn et al. (2017). A human
intervention study examined supplemental intake of 625mg/d choline in children aged
5–10 years with diagnosed fetal alcohol spectrum disorders but failed to find any effect
on cognitive outcomes after 6 weeks (Buhusi et al. 2008). A separate randomized con-
trolled trial (RCT) of phosphatidylcholine supplementation conducted in 100 women



from the second trimester through the third postnatal month observed that a CHRNA7
rs3087454 genotype, associated with schizophrenia, diminished P50 cerebral evoked
response inhibition in placebo-treated, but not in choline-treated, infants. This suggests
that perinatal choline activates timely development of cerebral inhibition, even in the
presence of gene mutations that would otherwise delay it (Ross et al. 2013). Choline
supplementation when administered together with routinely recommended multivita-
min-multimineral prenatal supplements during pregnancy recently showed beneficial
impacts on basic learning mechanisms involved in encoding and memory of environ-
mental events in alcohol-exposed pregnancies as well as in non- or low-alcohol-exposed
pregnancies in a prospective study, possibly due to prevention of fetal alcohol-related
depletion of dimethylglycine, a metabolic nutrient that can protect against overproduc-
tion of glycine, during critical periods of neurogenesis (Coles et al. 2015; Kable
et al. 2015).

Prenatal and childhood neurocognitive development

High choline intake during the perinatal period has been demonstrated to have a lasting
neuroprotective effect in both animal and human studies. Caudill et al. (2018) reported
effects of human maternal choline supplementation (480 or 930mg/d) during the third
trimester on infant processing speed and visuospatial memory at 4, 7, 10, and
13months of age (n¼ 24). This controlled feeding study found that maternal consump-
tion of approximately twice the AI for choline during the third trimester (i.e., 930 ver-
sus 480mg/d) improved infant information processing speed. There was also a linear
effect of exposure duration (i.e., infants exposed longer showed faster reaction times) in
the lower intake group (i.e., 480mg/d), suggesting that even modest increases in pre-
natal choline intake may produce cognitive benefits in humans (Caudill et al. 2018). To
evaluate the persistence of the cognitive benefits observed by Caudill et al. (2018), the
Strupp and Canfield laboratory recently conducted a follow-up study of the children in
this cohort at 7 years of age. Results of the cognitive assessment revealed lasting benefits
of the higher maternal choline intake on child attention, memory, and problem-solving
areas of cognition previously shown to be sensitive to maternal choline supplementation
(Bahnfleth et al. 2019). Although these findings must be confirmed in a larger sample,
they provide compelling evidence that maternal choline intake during pregnancy has
lasting effects on a child’s cognitive function. An older RCT found null effects of
750mg/d choline supplementation (as phosphatidylcholine) from 18weeks of gestation
to 90 days postpartum on infant cognitive function (Cheatham et al. 2012). It is unclear
why this study did not observe similar cognitive effects as the study by Caudill et al.
(2018); however, poor participant adherence and/or uncontrolled variations in intake of
choline and other nutrients have been suggested to play a role (Caudill et al. 2018;
Wallace 2018). Data from observational studies are somewhat mixed but tend to also
support that higher choline intakes during pregnancy enhance cognitive outcomes of
the offspring (Boeke et al. 2013; Signore et al. 2008; Villamor et al. 2012; Wu et al.
2012). Consistent with the findings from the Strupp and Canfield laboratory, data
obtained from Project Viva in Massachusetts demonstrated that maternal choline intake
within the AI range during pregnancy was associated with better memory function in



children 7 years of age compared with children of mothers whose consumption was
approximately 50% of the AI (Boeke et al. 2013). A narrative review by McCann et al.
(2006) highlighted 34 rodent studies that examined the relationship of choline during
early development and suggested that supplementation during pregnancy may strongly
contribute to changes in neurological function in the fetus, as well as improvement in
postnatal cognitive behavioral tests across the lifespan. In rats, high maternal choline
intake at specific times during the pregnancy and lactation periods enhances cognitive
ability of the offspring throughout life. There are two sensitive periods in rat brain
development during which supplementation with choline produces long-lasting
enhancement of spatial memory that is lifelong. The first occurs during embryonic days
12–17 (rats give birth on day 21) and the second during postnatal days 16–30 (Cermak
et al. 1999; Loy et al. 1991; Meck and Williams 1997a,b,c, 1999; Pyapali et al. 1998;
Williams et al. 1998; Tees 1999a,b; Zeisel 2000). Supplementation during these critical
periods elicited a major improvement in memory performance of rats at all stages of
training on a 12-arm radial maze (Meck et al. 2007). In rats, the additional choline
induced an increase in spatial memory that correlated with changes in the birth, death,
and migration of cells in the hippocampus during fetal brain development and with the
distribution and morphology of neurons involved in memory storage throughout the
lifespan (Meck and Williams 1997c, 1999). It is not known whether these effects persist
into adulthood and old age in humans (Blusztajn et al. 2017).

Choline call to action for the obstetrics and gynecology community

Choline has been ranked last among common nutrients to recommend for a healthy
diet, and only about 10% of health professionals indicate moderate familiarity with cho-
line. Among obstetricians and gynecologists, only 6% report they are likely to recom-
mend choline-rich foods to pregnant women (StrategyOne Health Professionals Survey
2017). Our knowledge and understanding of choline have increased exponentially
between the development of the DRIs in 1998 and today (Institute of Medicine 1998).
Data from nationally representative surveys in the United States clearly demonstrate
that suboptimal choline intakes are widespread in vulnerable subpopulations, including
pregnant women (Wallace and Fulgoni 2017), women of childbearing age (Moshfegh
2018; Wallace and Fulgoni 2016, 2017), and vegetarians (Wallace 2015). In addition, a
rapidly growing body of evidence relating inadequate maternal intakes to potential
health consequences in the offspring warrants a need for health professionals to better
communicate the need for choline-rich foods and supplementation, when appropriate.
Choline seems to be a critical nutrient involved with neurocognitive development dur-
ing gestation and lactation with lasting effects in children, although studies elucidating
the dietary requirement for choline or whether it has lasting effects into adulthood are
still in their infancy. Additional dose-response data by genotype are greatly needed to
fully elucidate dietary requirements for choline before new DRIs can be developed;
observational data will likely play a key role in this effort since ethical barriers prohibit
clinical deprivation of any known essential nutrient in humans. Currently, the USDA is
undertaking a “Birth to 24 Months and Pregnant Women Project” to support the
Agricultural Act of 2014 (i.e., the Farm Bill) mandate for the 2020–2025 Dietary



Guidelines for Americans to sizably expand past dietary guidance for pregnant women
and, for the first time, guidance for infants younger than 24months of age. The obstet-
rics and gynecology community must play a central role in these discussions so that sci-
ence-based policies and consumer education strategies can be effectively implemented.
Health professionals must advocate meeting the AIs for choline as there is a high likeli-
hood that adverse neurological consequences due to suboptimal intakes will be con-
firmed in future human clinical research and because of the absence of harm of
consuming choline at this level. Utilizing current government tools that assist
Americans in selecting nutrient-dense foods that are within daily calorie goals is vital to
helping to increase intake of all shortfall nutrients that promote cognitive development
during the first thousand days postconception. Data indicate that increasing consump-
tion of plant foods may offer many health benefits; however, this means consumers
need to include more plant foods in the diet but not necessarily eliminate nutrient-
dense animal-derived foods such as eggs, lean meat, and low-fat/nonfat dairy. The food
industry will be instrumental in developing new product innovations and formulations
that are targeted to the needs of the individual subpopulations at risk.
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