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LITERATURE REVIEW  

Introduction 

Hospital Acquired Pressure Injuries (HAPIs) adversely affect patient outcomes, increase 

health care costs, and despite considerable efforts to avoid, are increasing among 

critically ill patients (Darvall et al., 2018). 

Pressure injuries (PI) occur when pressure over skin and underlying tissue results in 

localized areas of damage. Bony prominences and areas under medical devices are 

particularly susceptible. Pressure injuries are categorized by stage: Stage 1 (non-

blanchable erythema of intact skin) through stage 4 (full-thickness skin and tissue loss), 

plus categories of unstageable, deep tissue, and mucus membrane PIs (National Pressure 

Ulcer Advisory Panel, n.d.). 

A pressure injury is considered hospital acquired when it is discovered and documented 

24 hours after admission to an inpatient unit. If it is discovered and documented within 

the 24-hour time frame, it is considered community acquired and not due to quality of 

care received from the hospital. Hospital acquired pressure injuries increase length of 

stay for patients, increase suffering, and increase morbidity and mortality (Padula et al., 

2015). Furthermore, stage 3 HAPIs add an average additional cost of $43,180 per injury 

(Edger, 2017; Zaratkiewicz et al., 2010), and are not reimbursed by the Centers for 

Medicare & Medicaid Services (CMS) since HAPIs are considered avoidable and were 
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added to the list of non-reimbursable hospital acquired conditions (Padula et al., 2015). 

Further, the Patient Protection and Affordable Care Act (PPACA) penalizes hospitals 

with high HAPI rates. In Fiscal Years 2018 and 2019, 137 pressure injuries assessed as 

stage 3 or higher occurred at a large academic medical center in the southeast, resulting in 

an estimated $5,915,660 lost revenue. Despite this hospital’s considerable investment and 

efforts to reduce HAPIs, their HAPI rates continue to be among the highest in the nation. 

There are considerable incentives, both to the patient and the institution, to accurately 

predict HAPIs and provide tailored prevention interventions based on the patient’s risk. 

Pressure Injuries 

Many factors contribute to the development and advancement of pressure injuries in 

acute and critical care settings. Intrinsic patient characteristics affect the architecture and 

integrity of the skin and include factors such as disease or injury status, sensory 

perception, and age. Extrinsic factors reduce tissue tolerance (the ability of the skin and 

underlying tissue to avoid adverse effects of pressure) to pressure through exposure to 

moisture, friction, and/or shearing forces (Braden & Bergstrom, 1987; Edsberg et al., 

2014). Hospital staff can apply interventions to prevent pressure injuries; however, the 

additional cost of prevention is passed to the patient during their stay at the hospital. For 

this reason, PI risk assessment tools are critical to identify patients who need 

interventions. The widely adopted risk assessment tool is the Braden Scale, which was 

developed in 1987.  

The Braden Scale score is developed by assessing the patient on 6 sub-scales and then 

summing for a total score. The sub-scales include sensory perception, activity, mobility, 
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moisture, nutrition, with scores ranging from 1 to 4, and friction/shear with scores 

ranging from 1 to 3 (Cox, 2012). Clinicians must physically assess the patient and assign 

a subscale score that most closely aligns with the descriptors. 

Since the development of the Braden Scale, advances in critical care technologies now 

save sicker and more compromised patients who would not have survived in the past 

(Cox & Roche, 2015). However, these same technologies, unavoidable due to their life-

saving attributes, may contribute to the development of HAPIs. Assessment tools, such as 

the Braden Scale, intended to identify patients at risk for PIs, were developed prior to 

technological advancement of critical care settings, and do not reliably and specifically 

predict which patients will develop HAPIs (Cox, 2017). Cox and Tescher et al. have 

found the Braden Scale score to be useful in predicting pressure injuries in non-critical 

care areas but cannot account for the complexities in critical care settings, and it is not 

useful in helping the clinicians target prevention treatments (2012). The academic 

medical center that is partnering with this project struggles to apply targeted interventions 

in their large critical care population. New knowledge is needed to identify which 

combinations of intrinsic and extrinsic, modifiable and non-modifiable risk factors lead to 

HAPIs. 

Machine learning is a useful approach for complex questions because it’s able to quickly 

handle statistical computations across a vast number of independent variables. The 

application of machine learning in health care is growing due to rapid analysis of 

routinely collected data and has increasingly demonstrated its value in hospital quality 

improvement (Tran et al., 2014). Machine learning techniques have been utilized in 
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healthcare settings for the purpose of developing predictive models, which we will 

explore in the next section.  

Machine Learning 

There is a growing burden on nurses to document repetitive assessments in the electronic 

health record (EHR). Due to the manual nature of the Braden Scale tool, nurses spend a 

significant amount of time assessing and documenting findings on patients. Using a 

statistical approach, there is an opportunity to automate pressure injury risk assessment as 

well as improve accuracy by assessing variables that are already documented within the 

patient’s electronic health record. An automated risk assessment tool would alleviate the 

burden on nurses and create more time to care for patients. 

 

Machine learning is grounded in the field of statistical learning, which is the application 

of quantitative methods to explain a phenomenon through data. Machine learning is a 

method of positivist research, in which the assumptions are that the phenomenon exists 

independently of observation and that it can be simplified and predicted (Wildemuth, 

2017). Machine learning is made possible by accessible and powerful software that is 

designed to predict simple linear and complex non-linear relationships (James et al., 

2017). Machine learning works by rapidly measuring the relationship between input 

variables (or a combination of input variables) and the output variable, and then 

calculating a formula to predict the output variable.  

 

There are a variety of predictive models that can be employed by machine learning, either 

linear or non-linear. The most common form of predictive model is the linear regression. 
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In a linear model the predictors and response variables move together in a straight line. 

This type of model is very stable with low variation, but also has high bias, because it 

assumes a linear relationship (Hastie et al., 2009). Non-linear models can calculate highly 

accurate predictions of non-linear relationships with low bias because they easily adapt to 

the input data. However, the adaptability of a non-linear model risks becoming unstable 

with high variation (Hastie et al., 2009). In machine learning, if a model accommodates 

too much variation in the training data, it loses it predictive power when applied to the 

test data. Determining best fit for a model is balancing bias and variance in order to 

produce consistent and reliable results that represent the true form of the data (James et 

al., 2017). 

 

Prior to Lou et al.’s work in expanding learning Generalized Additive Models (GAMs), 

interpretability was lost at the expense of higher accuracy complex models (2012). 

Interpretability in this context means that users can understand how each variable 

contributes to and impacts the predictor in the model. Lou et al.’s original work did not 

model interactions between variables, which limited the accuracy compared to full 

complexity models. They later adapted GAM to include pairwise interactions, calling it 

Generalized Additive Models with Pairwise Interactions (GA2M), in order to achieve 

higher accuracy, while maintaining intelligibility (2013). Then, Caruana et al. 

demonstrated the application of the GA2M in constructing useful models in healthcare 

(2015).  
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Automated risk assessments are the most common application of machine learning in 

medicine (Deo, 2015). Machine learning is currently applied in predicting a patient’s risk 

of acquiring pneumonia, sepsis, central line-associated bloodstream infections, heart 

disease, and recently pressure injuries (Caruana et al., 2015; Yee et al., 2019; Parreco et 

al., 2018; Nahar et al., 2013; Alderdan et al., 2018). 

 

Alderden et al. demonstrated that a machine learning approach predicted pressure injuries 

with greater accuracy than the Braden Scale despite being limited in aspects of study 

design and scope (2018). A predictive modeling that accurately identifies critically or 

acutely ill patients at risk for developing HAPIs remains greatly underdeveloped. The 

intention of this study is to extend the work they initiated and develop a more robust 

prediction tool, using GA2M, for a wider patient population.
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GUIDING QUESTION 

Can an algorithm identify patients at risk of developing a pressure injury better than the 

manual risk assessment tool by using available clinical data? 

 

METHODS 

Data Collection 

The institutional review board at the University of North Carolina at Chapel Hill 

approved the study. Data was extracted from an enterprise data warehouse for Electronic 

Health Record (EHR) data, the Carolina Data Warehouse for Health (CDW-H). Two data 

sets were developed using the same query, but each data set had a different time period. 

The first data set gathered patient information within the first 48 hours of admission with 

56,726 records. And the second data set gathered patient information within 72 hours of 

admission with 43,629 records. The first data set accounted for the largest sample size as 

its time criteria fit a larger number of patients. The number of records in the second data 

set was reduced, because patients either were discharged or deceased between the 48-

hour or 72-hour interval. The query used to build the data set was refined in an iterative 

fashion, where each variable was validated by clinical experts before developing the next 

variable, which then informed necessary updates to the query. Provided in the Appendix, 

Table 1 lists the variable names and definitions. The final two data sets were validated by 
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randomly sampling 10 patients, 5 with pressure injuries and 5 without from each data set, 

and manually comparing the results to the clinicians view in the EHR. The final data sets 

were compiled and stored in a SQL database. 

 

Sample Selection Procedure 

The sample consisted of all patients admitted to critical care and acute care units at UNC 

Hospitals, an academic medical center with a level one trauma center, from January 2017 

- December 2018. All patients under the age of 18 were excluded, due to this patient 

population needing a different risk assessment scale, the Braden QD Scale (Curley et al., 

2018). HAPIs that were indicated as present on admission, documented within 24 hours 

of admission, were excluded from the target variable to avoid misattribution of 

community acquired pressure injuries as HAPIs. Only the first encounter was recorded 

when a patient had repeated encounters during the sample time period regardless of HAPI 

status. 

 

Variable Selection Procedure 

Variables were selected and engineered based on relevant publications, and interviews 

with clinical experts, staff nurses, and Wound Ostomy and Continence Nurses 

(WOCNS). Interviews with clinicians were critical in development of the data set as it 

guided the selection of known and suspected contributing factors based upon their 

experience caring for patients with pressure injuries, and to better understand their 

workflow and patient population. There was a total of 139 variables describing each 

patient in the data set. Variables ranged from patient history such as age and gender to 
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continuously monitored variables like heart rate and blood pressure, to lab tests like 

Hemoglobin and Creatinine levels, to duration of hospital stay and procedures or 

therapies. Necessary steps to protect privacy were taken including, de-identification of all 

medical records and storage on a secured database in the health system’s secured 

network. The target was a binary variable of either a HAPI occurring or not occurring 

during the sample time period. A HAPI occurring included HAPIs stage 1 to 4, deep 

tissue injury, or unstageable. Only stage 2 and above HAPIs have financial repercussions, 

but stage 1 HAPIs were included in this study due to positive benefits of early 

identification and intervention. In the 48-hour data set, 222 patients developed a HAPI 

(0.39%), and in the 72-hour data set, 384 developed a HAPI (0.88%). 

 

Analysis 

The analysis described below was applied to each of the two data sets separately, in order 

to develop two independent models that produced predictions at 48 hours and 72 hours of 

admission to the hospital. 

 

The purpose of developing two models with varying time intervals was to identify key 

predictive variables as a patient’s condition changes over time. The time intervals were 

chosen as a first step to establish a need for time series predictions. The current manual 

risk assessment system has a protocol to conduct a full skin assessment to identify 

pressure injuries and determine risk within 24 hours of admission, and then once per day 

for the entire length of stay at the hospital. The sample data sets were designed to closely 

mimic the current manual system for comparison purposes. If a pressure injury is 
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discovered within the first 24 hours, it is considered a community acquired pressure; this 

is considered a predictor variable instead of the target variable, as it is impossible to 

predict community acquired pressure injuries. For this reason, we did not include a 

separate 0-24-hour model in this study. 

 

This study will train two separate models.  

• The first model will predict the first hospital acquired pressure injury from data 

collected between 0-48 hours of admission. 

Pr(first HAPI in 0-48 hours) 

Along with HAPI predictions, this model will display the interactions between predictor 

variables and the target variable, so clinicians can determine which interventions to apply 

within the first 48 hours of admission in order to prevent a pressure injury from 

occurring.  

• The second model will predict the first pressure injury between 0-72 hours of 

admission.  

 Pr(first HAPI in 0-72 hours) 

Compared to the first model, this model will offer insights into new variables that alter 

the patient’s risk for acquiring a HAPI in a longer time interval after admission.  

Explainable Boosting Machine 
In health care, the most useful models are the ones where clinicians find the predictions 

accurate but also explainable. For this reason, the Explainable Boosting Machine (EBM) 

model was selected. EBM is a generalized additive model with pairwise Interaction that 

balances the intelligibility of a linear model, like logistic regression, with the 
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performance of a non-linear model, like random forest (Caruana et al, 2015). EBM is 

considered an intelligible model because the direction and magnitude of the predictor 

variables’ interactions with the predicted outcome can be graphed as line graphs, and the 

pairwise interactions can be graphed as heat maps. These learned interactions can be 

edited based on clinical knowledge, which again contributes to the intelligibility of EBM. 

 

Overfitting is troublesome to a model, because it will follow the training data set too 

closely and will lower the accuracy of the model when used on test data sets. Bagging 

refers to the collection of many random subsamples of data with replacement, and each 

subsample is referred to as a bag. Bagging is used widely in machine learning because it 

reduces variance in the data while retaining bias, which improves the accuracy of the 

model (James et al., 2017). For these reasons, Caruana et al’s EBM model integrated into 

an open source InterpretML python package was utilized for this analysis (Nori et al., 

2019). The EBM model utilizes techniques like bagging, gradient boosting, and 

automatic interaction detection, so no additional bagging or boosting was done at this 

time. 

Data Processing and Missing Value Imputation 
Data processing and model creation were executed in python. The same data processing 

steps were utilized for both the 48-hour and 72-hour data sets. The Pandas python 

package has a profiling report function, which I executed first to explore data types, 

descriptive statistics, correlations, and missing values and potentially erroneous values 

(Brugman, 2021). From this report, variables that needed preprocessing were identified. 

The clinical team was consulted when defining the logic to impute values for each 
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variable. Below is the plan that was followed to impute missing values and handle 

erroneous values. 

 

For lab value variables, an out-of-range value of “9999999” was recorded if a patient’s 

lab value was incorrect. This recording was done in the lab, and no other values could be 

retrieved from the data warehouse. The out-of-range value is significantly higher than 

actual lab values, which skewed the data. For this reason, out-of-range values were 

replaced with the max value within the range. For example, excluding the out-range-

value, if hemoglobin values in the data sets range between 1.7 - 20.3, then the out-of-

range value of “9999999” would be replaced with 20.3.  

 

Null values for continuous or categorical features like, Recovery Time, First BMI, First 

Weight, Severity of Illness, Total Urine Output, and lab values were replaced with the 

mean value of that feature. Null values in indicator fields, like Has Diabetes, Has 

Anemia, Has GI Bleed, etc. were replaced with zero, which indicate that they were not 

present during the patient’s encounter. Patient sex was encoded as zero for male and one 

for female. Null values in Lowest Glasgow Score were replaced with 15, which indicates 

that the patient has no brain injury. Null values in Average RASS were replaced with 

zero, which indicates that the patient is not sedated. Finally, the Average Braden Score 

was encoded as either zero, not at risk, or one, at risk, using 16 as the cutoff (Hyun et al., 

2013; Alderden et al., 2018). The encoded Average Braden Score was not used in the 

training of the model but used in the evaluation of the model.  
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To ensure that there was independence between predictor variables, the Variance 

Inflation Factor (VIF) was reviewed for each variable. The VIF is widely used to assess 

multicollinearity between variables and was calculated for continuous variables in python 

using the variance_inflaction_factor from the statsmodels package (Hastie et al., 2009; 

Perktold, 2019). I then removed the variables with the largest VIF one at a time and reran 

the analysis. I repeated that process for all variables with a VIF over ten. Ten is the 

recommended cutoff point (Hastie et al., 2009). 

 

Finally, 105 independent variables remained for model creation. 

 

Model Creation 
The data set was divided into training and test data sets using a 70:30 train:test split 

(Caruana et al, 2015). To divide the data set the train_test_split function from the scikit-

learn Python package was utilized (Pedgrosa et al., 2011). A sampling seed was set, so 

that results could be replicated, and the shuffle parameter was set to true. The target in the 

48-hour data set was the “HAS_HAPI_48” variable and the target in the 72-hour data set 

was the “HAS_HAPI_72” variable. The 48-hour train data set contained 39,708 records 

while the 48-hour test data set contained 17,018 records. The 72-hour train data set 

contained 30,540 records while the 72-hour test data set contained 13,089 records. 

 

The test data sets were set aside and were not used to train the model. The EBM model 

was developed using the InterpretML Python package on the training data sets. The test 

data sets were then used to evaluate the model’s performance.  
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Evaluation 

The EBM model used on the test data set produced true-positive and false-positive results 

that were fitted to the receiver operating curve (ROC curve) using the scikit-learn Python 

package. The area under the curve (AUC) was calculated as a score of accuracy. Models 

that have a larger AUC do a better job of predicting true-positives while minimizing 

false-positives (Hasite et al., 2009). That same information can be produced from Braden 

Scale scores on the same sets of data using the encoded “AVERAGE_BRADEN” feature 

and the target feature. AUC scores of both models for each time frame (48-hour and 72-

hour) were compared to evaluate stronger performance (Alderden et al., 2018). 

 

The benchmark AUC score for the 48-hour Braden Scale was 0.70 and the 72-hour 

Braden Scale was also 0.70, as displayed in Figures 1 and 2. 

 

The first iteration of the EBM model was developed using 103 independent predictor 

variables. The results of the first model returned an Area Under the Curve (AUC) of 0.77. 

To identify useful variables, reduce variance and improve AUC of the EBM model, 

variables were systematically removed one by one, a model was created, and AUC 

measured. If the resulting AUC was higher or remained consistent with the first 0.77, 

then the variable was kept out, if the AUC was lowered then the variable was added back 

in. This process was repeated until 34 variables were identified to improve AUC to 0.79, 

these variables were used in the final model creation and are identified in Table 1 in the 

Appendix.  
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To further evaluate the performance of the EBM model, I built two other models in the 

InterpretML Python package, a Decision Tree model with a max depth of 10, and a 

Logistic Regression model, using the same 34 features. The performance of each model 

is depicted in the ROC Curve graph in Figures 1 and 2. 
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Figure 1: 

 
 
Figure 2: 
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In review of Figures 1 and 2, the final EBM model had the best performance, with an 

AUC of 0.79. At the 48-hour and 72-hour time periods, the Braden Scale Score had an 

AUC of 0.70, which required time dedicated to manual patient assessments at regular 

intervals during each period. In this study, the EBM model performed better than the 

Braden Scale Score and has the additional benefit of being automated, which could free 

up care time from the nursing team. 
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DISCUSSION 

The EBM model’s relatively strong performance suggests that the model would be a 

useful replacement to the Braden Scale Score. A reliable and automated risk prediction 

system for pressure injuries offers many advantages over the current manual assessments. 

The first major advantage would be time savings for the nursing care teams by removing 

the need for manual assessments at regular intervals. At the hospital in this study, patients 

must be assessed every twelve hours if they are not at risk and then every four hours if 

they are to be found at risk using the Braden Scale Score. If the patient is at risk, then the 

nursing care team must implement additional prevention strategies, like turning every 2-4 

hours, nutrition changes, pressure redistribution, etc., which increases time and cost 

passed on to the patient. The EBM model has a higher true positivity rate and lower false 

positivity rate, which means that additional time and cost will only be dedicated to 

patients who need the care. Similarly, if prevention strategies are targeted to patients who 

are truly at risk, then hopefully rates of HAPI will reduce and lower the financial burden 

for the hospital. Another advantage of the EBM model is the flexibility to adapt to 

different patients and settings. As discussed later in this section, the model can easily be 

trained for different units and levels of care to provide better predictions of risk. A final 

advantage of an implemented automated EBM model would be its real timeliness. As 

discussed earlier, nurses must assess for pressure injuries at regular intervals, and in the 

time between assessments a patient’s risk factors can change and put them at risk of 
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developing a pressure injury. Since the EBM model uses some continuously monitored 

variables, it has the potential to provide an updated prediction of risk as soon as the 

patient’s condition changes. 

In Figures 3 and 4, the most predictive variables are ranked by the EBM model. In the 

48-hour model, the six most important variables were age (at time of admission), the 

interaction between age and the number of community acquired pressure injuries, BUN 

level, BUN creatinine ratio, diabetic, and receiving blood thinners subcutaneously. In the 

72-hour model, the six most important variables shifted to BUN creatinine ratio, diabetic, 

BUN level, receiving skeletal muscle relaxant orally, age (at time of admission), and 

alkaline phosphatase level. 

Figure 3: 48-hour EBM
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Figure 4: 72-hour EBM 

 
 

Surprisingly, variables that were found to be predictive of pressure injuries in other 

studies, like BMI or weight, were excluded from these models due to their high 

multicollinearity. Similarly, I initially included medications, like vasopressors, since they 

have been predictive of pressure injuries in other research, but ultimately removed them 

because they did not improve the accuracy of these models.  

To improve the model performance and prepare them for implementation in a hospital 

setting, I would like to train an EBM model for each major adult care level, like Intensive 

Care Unit (ICU), Stepdown, and Acute. I believe this would be beneficial as patients in 

Stepdown and ICU have more complex cases and likely different predictive variables 

influencing pressure injury risk.  

This study supports the need for a time series predictive model as patients’ risk factors 

change during the length of their admission. Time series predictions would also improve 

the accuracy of the model during implementation in a hospital setting.
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CONCLUSION 

I developed two models to predict risk for pressure injuries among all adult patients 

within 48 hours and 72 hours of admission by using a machine learning Explainable 

Boosting Machine approach. These models rely on information that is readily available in 

an Electronic Health Record and does not require clinicians to manually assess patient 

against a tool, like the Braden Scale. The next step will be to review the interactions 

learned by the models with the clinical team and retrain ICU, Stepdown, and Acute 

models to optimize their predictive power. Finally, a time series approach will be 

explored as part of implementing the model in a hospital setting. 
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APPENDIX 

Table 1: Variable List 

 Variable List Definition 

Used in 
48-
hour 
Model 

Used in 
72-
hour 
Model 

1 
PATIENT_ENCOUNTER_N
UMBER 

Unique identifier for patient 
admission 

  

2 ADMISSION_INSTANT Date/time of hospital admission   

3 
INPATIENT_ADMISSION_I
NSTANT 

Date/time for Inpatient Admission 
(when the patient is classified as 
inpatient) 

  

4 LOS_ED_MINUTES 
Length of stay in the Emergency 
Department (ED) 

✓ ✓ 

5 DISCHARGE_INSTANT Date/time of hospital discharge   

6 ADMISSION_AGE Patient's age at time of admission ✓ ✓ 

7 PATIENT_SEX Patient's sex   

8 HAS_HAPI_48 
Indicates if the patient had a HAPI 
within 48 hours of admission 

  

9 HAS_HAPI_72 
Indicates if the patient had a HAPI 
within 72 hours of admission 

  

10 HAS_HAPI 
Indicates if the patient had a HAPI 
within their entire admission 

  

11 HAS_CAPI 

Indicates if the patient arrived with 
a community acquired pressure 
injury 

✓ ✓ 

12 CAPI_COUNT 

The number of community 
acquired pressure injuries the 
patient arrived with 

✓ ✓ 

13 TOTAL_SURGERY_TIME 
Length of time in minutes spent in 
the Operating Room 

✓ ✓ 

14 TOTAL_RECOVERY_TIME 
Length of time in minutes spent in 
Recovery 

✓ ✓ 

15 HAS_DM 

Indicates if the patient had 
diabetes during the time period. 
ICD-10 codes were used. Codes 
that start with E08, codes that start 

✓ ✓ 
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with E09, codes that start with 
E10, codes that start with E11, 
codes that start with 024, codes 
that start with E13 

16 HAS_ANEMIA 

Indicates if the patient had anemia 
during the time period. ICD-10 
codes were used. Consider all 
ICD-10 codes that start with D50, 
D51, D52, D53 

✓ ✓ 

17 HAS_GI_BLEED 

Indicates if the patient had anemia 
during the time period. ICD-10 
codes were used. Consider ICD-10 
Codes = K92.0, K92.1, K92.2 

✓ ✓ 

18 HAS_PVD 

Indicates if the patient had 
Peripheral Vascular Disease 
during the time period. ICD-10 
codes were used. Consider all 
ICD-10 codes that start with I73 

✓ ✓ 

19 HAS_ARF 

Indicates if the patient had Acute 
Renal Failure during the time 
period. ICD-10 codes were used. 
Consider all ICD-10 codes that 
start with N17 

  

20 HAS_CRF 

Indicates if the patient had Chronic 
Renal Failure during the time 
period. ICD-10 codes were used. 
Consider all ICD-10 codes that 
start with N18 

  

21 HAS_TXP 

Indicates if the patient received a 
transplant during the time period. 
ICD-10 codes were used. Consider 
all ICD-10 codes that start with 
Z94 

  

22 HAS_SEPSIS 

Indicates if the patient had sepsis 
during the time period. ICD-10 
codes were used. Consider all 
ICD-10 codes that start with A41 

✓ ✓ 

23 HX_NICOTINE 
Indicates if the patient had a 
history of nicotine use 

✓ ✓ 

24 TOBACCO_USE 
Indicates if the patient had a 
history of tobacco use 

  

25 FIRST_BMI First BMI recorded of encounter   

26 FIRST_WEIGHT First weight recorded of encounter   

27 LOWEST_GLASGOW 
Lowest Glasgow Coma Scale 
score within time period 
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28 HAD_DELIRIUM 

Indicates if the patient was 
delirious during the time period. 
Used the Confusion Assessment 
Method (CAM). 

✓ ✓ 

29 WAS_HYPOTENSIVE 

Indicates if the patient was 
hypotensive during the time 
period. The Mean Arterial 
Pressure (MAP) was reviewed. If 
MAP was less than 60 mm Hg 
then the patient was indicated to 
be hypotensive, otherwise not 
hypotensive 

✓ ✓ 

30 
ALTERED_OXYGENATIO
N 

Indicates if the patient had altered 
oxygenation during time period. If 
oxygen saturation was less than 
90% by pulse oximetry, then the 
patient was indicated to have 
altered oxygenation, otherwise not 

✓ ✓ 

31 AVERAGE_RASS 

The average value recorded within 
time period for Richmond 
Agitation Assessment Scale 
(RASS) 

✓ ✓ 

32 SEVERITY_OF_ILLNESS 
Maximum Mew's Score recorded 
within time period 

✓ ✓ 

33 FEVER 

Indicates if the patient had a fever, 
if temperature was greater than 
thirty-eight degrees Celsius during 
time period 

  

34 HYPOTHERMIA 

Indicates if the patient had 
hypothermia, if temperature was 
less than thirty-six degrees Celsius 
during time period 

  

35 RECEIVED_CRRT 

Indicates if the patient received 
Continuous Renal Replacement 
Therapy (CRRT) during time 
period 

  

36 DROP_IN_SBP 

Indicates if the patient experienced 
a drop in systolic blood pressure 
during time period. If systolic 
blood pressure was less than 90 
mmHg, then the patient was 
indicated to have a drop in blood 
pressure. 

  

37 TOTAL_URINE_OUTPUT 
Total measure urine output from 
patient during time period 
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38 AVERAGE_BRADEN 

Average Braden Scale Score 
recorded during time period. Used 
for evaluation of model, and not 
used in the model training. 

  

39 MIN_HGB 
Minimum Lab Value: Hemoglobin 
within time period 

  

40 MIN_HCT 
Minimum Lab Value: Hematocrit 
within time period 

  

41 MAX_A1C 

Maximum Lab Value: 
Hemoglobin A1C within time 
period 

  

42 MIN_ALBUMIN 
Minimum Lab Value: Albumin 
within time period 

  

43 MAX_LACTATE 
Maximum Lab Value: Lactate 
within time period 

✓ ✓ 

44 MAX_CREATININE 
Maximum Lab Value: Creatinine 
within time period 

✓ ✓ 

45 MAX_GLU_POC 
Maximum Lab Value: Glucose 
within time period 

✓ ✓ 

46 MAX_SODIUM 
Maximum Lab Value: Sodium 
within time period 

✓ ✓ 

47 MIN_SODIUM 
Minimum Lab Value: Sodium 
within time period 

  

48 MAX_POTASSIUM 
Maximum Lab Value: Potassium 
within time period 

  

49 MIN_POTASSIUM 
Minimum Lab Value Potassium 
within time period 

  

50 MAX_CHLORIDE 
Maximum Lab Value: Chloride 
within time period 

  

51 MIN_CHLORIDE 
Minimum Lab Value: Chloride 
within time period 

  

52 MAX_CO2 
Maximum Lab Value: CO2 within 
time period 

  

53 MAX_BUN 
Maximum Lab Value: BUN within 
time period 

✓ ✓ 

54 MIN_BUN 
Minimum Lab Value: BUN within 
time period 

  

55 MAX_BUNCREAT_RATIO 

Maximum Lab Value: 
BUN/Creatinine Ratio within time 
period 

✓ ✓ 

56 MAX_ANION_GAP 
Maximum Lab Value: Anion Gap 
within time period 

✓ ✓ 

57 MAX_CALCIUM 
Maximum Lab Value: Calcium 
within time period 

  

58 MAX_MAGNESIUM 
Maximum Lab Value: Magnesium 
within time period 

  



 27 

59 MIN_MAGNESIUM 
Minimum Lab Value: Magnesium 
within time period 

  

60 MAX_PHOSPHOROUS 
Maximum Lab Value: 
Phosphorous within time period 

  

61 MIN_TOTAL_PROTEIN 
Minimum Lab Value: Total 
Protein within time period 

  

62 MAX_TOTAL_BILI 
Maximum Lab Value: Total 
Bilirubin within time period 

✓ ✓ 

63 MAX_AST 
Maximum Lab Value: AST within 
time period 

  

64 MAX_ALT 
Maximum Lab Value: ALT within 
time period 

✓ ✓ 

65 MAX_ALK_PHOS 
Maximum Lab Value: Alkaline 
Phosphatase within time period 

✓ ✓ 

66 
ANTIDEPRESSANT_ORAL/
ORAL TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

67 ANTIDIABETIC_INHALED 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

68 
ANTIDIABETIC_IV/IM/IRR
IGATION/EPIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

69 
ANTIDIABETIC_ORAL/OR
AL TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

70 ANTIDIABETIC_OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

71 ANTIDIABETIC_SUBQ 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

72 
ANTIPSYCHOTIC_IV/IM/IR
RIGATION/EPIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

73 
ANTIPSYCHOTIC_ORAL/O
RAL TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 
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74 ANTIPSYCHOTIC_OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

75 
ANTIPSYCHOTIC_RECTA
L 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

76 
BARBITURATE_IV/IM/IRR
IGATION/EPIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

77 
BARBITURATE_ORAL/OR
AL TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

78 BARBITURATE_OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

79 

BLOOD 
THINNER_ET/INTRA-
PLACES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

80 

BLOOD 
THINNER_IV/IM/IRRIGATI
ON/EPIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

81 

BLOOD 
THINNER_ORAL/ORAL 
TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

82 BLOOD THINNER_OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

83 
BLOOD 
THINNER_PERITONEAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

84 BLOOD THINNER_SUBQ 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

✓ ✓ 
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85 

BLOOD 
THINNER_TOPICAL/MISC/
OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

86 BZD_ET/INTRA-PLACES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

87 
BZD_IV/IM/IRRIGATION/E
PIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

88 BZD_NOSE 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

89 BZD_ORAL/ORAL TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

90 BZD_OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

91 
GENERAL_ANESTHETIC_I
NHALED 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

92 

GENERAL_ANESTHETIC_I
V/IM/IRRIGATION/EPIDUR
AL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

93 
GENERAL_ANESTHETIC_
NOSE 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

94 
GENERAL_ANESTHETIC_
ORAL/ORAL TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

95 
GENERAL_ANESTHETIC_
OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

96 
LAXATIVE_ET/INTRA-
PLACES 

Indicates if the patient received 
this medication and route 
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combination within the time 
period 

97 
LAXATIVE_IV/IM/IRRIGA
TION/EPIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

98 
LAXATIVE_ORAL/ORAL 
TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

99 LAXATIVE_OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

100 LAXATIVE_RECTAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

101 LAXATIVE_SUBQ 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

102 
LAXATIVE_TOPICAL/MIS
C/OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

103 
NONBZD_HYPNOTIC_OR
AL/ORAL TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

104 
NONBZD_HYPNOTIC_OTH
ER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

105 OPIOID_INHALED 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

106 OPIOID_INTRATHECAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

107 
OPIOID_IV/IM/IRRIGATIO
N/EPIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

✓ ✓ 
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108 OPIOID_NERVE BLOCK 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

109 OPIOID_NOSE 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

110 
OPIOID_ORAL/ORAL 
TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

111 OPIOID_OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

112 OPIOID_RECTAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

113 OPIOID_SUBQ 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

114 
OREXIN_ANTAGONIST_O
RAL/ORAL TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

115 
SKELETAL_MUSCLE_REL
AXANT_INTRATHECAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

116 

SKELETAL_MUSCLE_REL
AXANT_IV/IM/IRRIGATIO
N/EPIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

117 

SKELETAL_MUSCLE_REL
AXANT_ORAL/ORAL 
TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

✓ ✓ 

118 

SKELETAL_MUSCLE_REL
AXANT_TOPICAL/MISC/O
THER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

119 STEROID_EARS 
Indicates if the patient received 
this medication and route 
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combination within the time 
period 

120 
STEROID_ET/INTRA-
PLACES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

121 STEROID_EYES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

122 STEROID_INHALED 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

123 STEROID_INTRATHECAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

124 
STEROID_IV/IM/IRRIGATI
ON/EPIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

125 STEROID_NOSE 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

126 
STEROID_ORAL/ORAL 
TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

127 STEROID_OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

128 STEROID_RECTAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

129 
STEROID_TOPICAL/MISC/
OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

130 
VASOPRESSOR_ET/INTRA
-PLACES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 
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131 VASOPRESSOR_EYES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

132 VASOPRESSOR_INHALED 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

133 
VASOPRESSOR_INTRATH
ECAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

134 
VASOPRESSOR_IV/IM/IRR
IGATION/EPIDURAL 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

135 VASOPRESSOR_NOSE 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

136 
VASOPRESSOR_ORAL/OR
AL TUBES 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

137 VASOPRESSOR_OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

138 VASOPRESSOR_SUBQ 

Indicates if the patient received 
this medication and route 
combination within the time 
period 

  

139 
VASOPRESSOR_TOPICAL/
MISC/OTHER 

Indicates if the patient received 
this medication and route 
combination within the time 
period 
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