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Introduction

Several neurodegenerative disorders (e.g., Alzheimer and prion 
diseases) are related by improper folding and aggregation of 
specific proteins into similar types of β-sheet rich, oligomeric 
structures.1,2 However, Prion diseases are unique among confor-
mational disorders since the mammalian prion protein PrP mis-
folds into infectious β-sheet rich, aggregated conformers that are 
linked to several fatal infectious diseases in mammals (transmis-
sible spongiform encephalopathies).2,3 Many prions in yeast and 
other fungi have also been identified,4-16 the most-well studied of 
which is Sup35.5-8 Sup35 is a yeast translation-termination fac-
tor whose switch to its aggregated prion conformation reduces 
its activity, leading to an increase in read-through of stop codons 
and multiple phenotypic changes (e.g., change in colony color on 
adenine-deficient media).5-8,17-19 Sup35’s N-terminal (N) domain 
is highly amyloidogenic, and essential for prion formation and 
propagation.5-8 This domain is rich in glutamine and asparagine 
residues, and contains 5.5 imperfect oligopeptide repeats ([P/Q]
QGGYQ[Q/S]YN) reminiscent of the mammalian PrP’s oli-
gopeptide repeats (P[H/Q]GGGWGQ).20-23 The middle (M) 
domain is rich in charged residues and acts to solubilize the N 
domain.5-8,10 Sup35’s C-terminal domain encodes its transla-
tion termination function.5-8,10 Together, the N and M domains 
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(NM) can form infectious prion conformers with or without the 
C-terminal domain of Sup35.24,25

Both PrP and Sup35 display two of the most important and 
puzzling aspects of prion biology. First, both proteins adopt not 
just one aggregated prion conformation,26 but rather several 
related yet structurally distinct strain conformations.19,24,27-37 
Each strain conformation self-perpetuates and confers a distinct 
biological phenotype.24,27-31,33,38,39 Second, the transmission of the 
prion state between proteins of different species is limited by a 
species barrier that can be occasionally crossed.40-55 Interestingly, 
the ability to establish and overcome species barriers in both yeast 
and mammals appears to be linked to the ability of prions to 
form distinct strains,5,37,40,44,47,49,54-63 yet the structural mecha-
nisms linking prion strains and species barriers are poorly under-
stood. In yeast, transmission of Sup35 prions from S. cerevisiae 
(Sc) to C. albicans (Ca) and vice versa is limited by a species bar-
rier.43,46,56,60 However, a promiscuous chimeric Sup35 prion con-
sisting of domains of Sc and Ca Sup35 (Fig. S1) can form two 
strain conformations with unique specificities to overcome this 
species barrier.37,43,56,60

Towards understanding how prion amyloid structure governs 
the selective infection of one species relative to another, we pre-
viously asked whether the nucleation of each strain conforma-
tion of the NM portion of the Sup35 chimera (herein referred 
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The partial protection of the Sc recognition 
element suggests that it may be aggregated 
within the C. albicans strain conformation 
of the Sup35NM chimera. Since we64 and 
others56,65 had previously found that the 
S17R mutation in the Sc recognition ele-
ment inhibited nucleation of the S. cerevi-
siae strain conformation of the Sup35NM 
chimera, we hypothesized that the S17R 
mutation would prevent aggregation of the 
Sc recognition element in the C. albicans 
strain conformation. Herein, we report our 
site-specific structural analysis of each prion 
recognition element within the C. albicans 
strain conformation of the S17R Sup35NM 
chimera.

Results and Discussion

We first sought to define the solvent-shielded 
residues within the folded prion core relative 
to those excluded from the core. As a site-
specific approach for identifying residues 
within the amyloid core, we synthesized a 
panel of single cysteine variants of the S17R 
Sup35NM chimera that could be used to 
report the extent of solvent accessibility via 
cysteine-specific labeling after folding each 

mutant into prion amyloids. We generated 24 single cysteine sub-
stitution mutants distributed throughout the prion (N) and non-
prion (M) domains (Fig. S1). Each purified Sup35NM chimera 
mutant was templated specifically into prion amyloids via seeding 
with CaNM fibrils (37°C). All mutants formed SDS-resistant 
amyloids that were indistinguishable via SDS-PAGE analysis 
(Fig. S2 and data not shown). We evaluated the templating activ-
ity of each cysteine mutant for specifically converting monomeric 
CaNM into prion fibrils relative to monomeric ScNM to evaluate 
if the cysteine mutations alter the biochemical activity of the chi-
meric prion amyloids. Importantly, all mutants display similar, 
significant seeding activity for CaNM monomers and negligible 
seeding activity for ScNM monomers (Figs. 1 and S3).

Once each cysteine mutant of the S17R Sup35NM chimera 
was assembled into the C. albicans strain conformation, we 
labeled the amyloids with a cysteine-specific dye (Lucifer yellow  
iodoacetamide) to identify solvent-shielded residues that are 
poorly reactive due to inclusion within the amyloid core.39,66 
We also labeled monomers of each mutant to evaluate the fibril-
to-monomer labeling ratio as a measure of the extent of solvent 
accessibility of each residue. Importantly, we first confirmed that 
Lucifer yellow fails to label the original S17R Sup35NM chi-
mera that lacks cysteine (<5%; data not shown). In Figure 2A, 
we report the extent of labeling of each cysteine mutant in the  
C. albicans strain conformation of the S17R Sup35NM chi-
mera. We find that residues within and near to the Ca recog-
nition element (residues 59–86) are the most protected (<50% 
solvent exposed except for Q68), while those residues that 

to as the Sup35NM chimera) could be localized to one or more 
small sequence segments within the chimeric prion protein.64 
Using peptide microarrays that displayed hundreds of overlap-
ping 20mer peptides from Sc and Ca Sup35, we identified two 
prion recognition sequences that regulated the nucleation of each 
strain conformation. We found that a mutation (S17R) in the S. 
cereviase prion recognition element which favored nucleation of 
a prion strain conformation specific for infecting C. albicans43,56 
led to a highly specific interaction between the Sup35NM chi-
mera and Ca peptides (residues 59–86).64 In contrast, we found 
that mutations in the C. albicans recognition element (G70A, 
G71A, G80A, G81A) which promoted nucleation of a prion 
strain specific for infecting S. cerevisiae43,56 led to specific associa-
tion between the Sup35NM chimera and Sc peptides (residues 
9–39).64

Our discovery of two prion recognition elements within the 
Sup35NM chimera led us and others37 to hypothesize that the 
structural basis of the species-specific infectivities of its two chi-
meric prion strains is selective inclusion of one recognition ele-
ment within the amyloid core, while the other one is excluded 
from the core. Indeed, recent amide exchange and proteolysis 
experiments for the wild-type Sup35NM chimera revealed that 
the S. cerevisiae strain conformation contains the Sc recogni-
tion sequence within its amyloid core, while the Ca recogni-
tion element is excluded from the amyloid core.37 However, the 
C. albicans strain conformation was found not only to contain 
the Ca recognition sequence within its amyloid core, but the Sc 
prion recognition element was also partially solvent protected. 

Figure 1. Templating specificity of the C. albicans prion strain conformation of the S17R 
Sup35NM chimera. The S17R Sup35NM chimera (Chim) and cysteine mutants thereof were as-
sembled into prion amyloids and their templating specificity was analyzed using ThT fluores-
cence. The reported seeding activity of the chimeric Sup35NM fibrils is after subtraction of the 
contribution from the residual CaNM fibrils used to template the assembly of the Sup35NM 
chimera.
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of proline mutations on prion templating activity (Fig. 3) is in 
excellent agreement with the cysteine labeling analysis (Fig. 2). 
These results suggest that residues in the Ca recognition ele-
ment that are folded within the amyloid core directly mediate 
the species-specific templating activity of the C. albicans strain 
conformation.

A key outcome of our studies is site-specific structural details 
regarding the differential folding of the Sc and Ca prion rec-
ognition elements within one strain conformation of the pro-
miscuous Sup35 prion chimera. There are several plausible 
structural models for how each recognition sequence could 
be differentially folded in the two strain conformations of 
the Sup35 chimera to yield unique capacities to overcome the  
S. cerevisiae/C. albicans species barrier. It is logical that the 

flank this recognition element (including most of those in the 
Sc recognition element) are >50% solvent exposed (Fig. 2A).  
Notably, we find that residue Q38 in the Sc recognition element 
is protected (~20% solvent exposed), suggesting that the edge of 
the Sc recognition element folds within the amyloid core along 
with the Ca recognition element. Moreover, we find that other 
residues flanking the Ca recognition element (residues 88–142) 
also display a similar level of solvent exposure as the Sc recog-
nition element. Finally, residues in the middle domain of the 
NM chimera (residues 168 and 213) are highly solvent acces-
sible (>90% solvent exposed), consistent with the highly charged 
nature of this domain.67,68

We next evaluated the impact of the S17R mutation on the 
folding of the Sc prion recognition element within the C. albi-
cans chimeric strain conformation by analyzing the wild-type 
Sup35NM chimera that lacks this mutation. We expected that 
the lack of the S17R mutation would decrease the solvent expo-
sure of the Sc recognition element. Therefore, we repeated the 
labeling analysis for residues within the S. cerevisiae recognition 
element of the wild-type Sup35NM chimera in the C. albicans 
conformation. As expected, we find that the residues within the 
Sc recognition element are less solvent exposed for the wild-type 
Sup35NM chimera than for the S17R mutant (Fig. 2B).

Next, we investigated the functional significance of the sol-
vent-shielded residues within the C. albicans strain conformation 
of the S17R Sup35NM chimera using proline substitution muta-
genesis. We sought to identify residues in the Sup35NM chimera 
involved in β-sheets (or other related folds) that are incompat-
ible with proline residues.38,69 Thus, we evaluated the templat-
ing activity of the C. albicans strain conformation for converting 
single proline mutants of the Sup35NM chimera from monomers 
into fibrils. We hypothesized that residues normally folded within 
the amyloid core will be inefficiently folded into the core when 
mutated to proline.38,69,70 Therefore, we synthesized a panel of 22 
single proline substitution mutations in the N and M domains of 
the prion chimera, and evaluated the rate at which each mutant is 
templated into the prion state by the C. albicans strain conforma-
tion of the S17R Sup35NM chimera (Fig. 3).

We find that proline mutations within or near the Ca rec-
ognition element (residues 38–99) are most disruptive to the 
seeding activity of the S17R Sup35NM chimera (>20% defect;  
Fig. 3). In contrast, proline mutations flanking the Ca recog-
nition element (including most of those in the Sc recognition 
element) show little defect in templating activity, in agreement 
with the cysteine labeling experiments (Fig. 2). Mutating residue 
Q38 (at the edge of the Sc recognition element) to proline is also 
disruptive (~25% seeding defect), consistent with the fact that it 
is typically folded within the amyloid core of this strain confor-
mation. Finally, we find that some proline mutations, especially 
residues in the Sc recognition element (residues 10, 12 and 33), 
accelerate the templating activity of fibrils of the S17R Sup35NM 
chimera. This finding suggests that the wild-type Sc recognition 
element participates in interactions that lower the templating 
activity of the C. albicans strain conformation of the Sup35NM 
chimera, and these interactions are attenuated via proline muta-
tions in the Sc recognition sequence. Overall, the relative impact 

Figure 2. Solvent accessibility of cysteine residues in the C. albicans 
prion strain conformation of the Sup35NM chimera. (A) S17R Sup35NM 
chimera fibrils in the C. albicans strain conformation (as well as the 
corresponding monomers) were labeled using Lucifer yellow iodo-
acetamide. (B) Comparison of cysteine labeling of S17R and wild-type 
Sup35NM chimera fibrils in the S. cerevisiae domain. Each measurement 
is the average (±standard deviation) of at least three independent 
experiments.
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Moreover, we find that the charged mutation S17R modestly 
increases the extent of solvent exposure of the Sc domain, espe-
cially within the Sc recognition element (Fig. 2B). This finding 
is consistent with other reports that the S17R mutation prevents 
aggregation of Sc Sup35NM56,64 and Sup35,65 and that this muta-
tion strongly favors formation of the C. albicans strain confor-
mation of the Sup35NM chimera.56,64,65 Our results suggest that 
this charged mutation minimizes non-specific aggregation of 
the S. cerevisiae recognition element that otherwise occurs in the  
C. albicans strain conformation.37 Our work reveals that prion 
amyloid structure is sensitive to single mutations within prion 
recognition elements.

Our findings also contribute to the broader understand-
ing of how prion sequence, strain variation and species barriers 
are related. The amino acid sequence of a prion determines the 
spectrum of allowed strain conformations, and the ability of a 
donor prion to transmit its prion state to an acceptor prion is 
determined by whether their sequences encode compatible strain 
conformations.5,37,41,49,51,60,70-74 Our work (combined with that of 
Weissman and coworkers37) provides a structural mechanism for 
defining the compatibility of prion strains formed by donor and 
acceptor prions. We find that inclusion of the Ca recognition ele-
ment within the amyloid core of the Sup35NM chimera (donor) 
encodes its specific infectivity for CaNM (acceptor), and we 
posit that the Ca recognition element must be included within 
the CaNM amyloid core to form infectious C. albicans prions. 
Conversely, we find that partial exclusion of the Sc recognition 
sequence from the amyloid core of the prion chimera eliminated 
prion transmission to ScNM, which is consistent with previ-
ous findings that inclusion of the Sc recognition element within 
the amyloid core of ScNM is required for formation of infec-
tious S. cerevisiae prions.38,39 Thus, we posit that the spectrum 
of allowed strain conformations is determined by proper folding 
of prion recognition elements within the amyloid core of donor 
prion strains that are complementary to the prion recognition 
sequences of the acceptor prion. This hypothesis would predict 
mutations in highly localized peptide segments (but not outside 
these segments) that impact the folding of prion recognition ele-
ments in the donor prion will govern the ability of such prions 
to cross species barriers. Indeed, we find that the S17R muta-
tion impacts the folding of the non-complementary prion rec-
ognition element within the C. albicans strain conformation of 
the Sup35NM chimera. Moreover, additional point mutations in 
Sup35,56,65,69,75,76 as well as in PrP54,58,77 have been identified that 
both prevent and promote interspecies prion transmission. We 
expect that future structural studies aimed at investigating how 
mutations impact allowed strain conformations for closely related 
prions (such as PrP78,79 and Sup3553,71 variants) will reveal further 
insights into the role of the folding of small sequence elements 
within the prion amyloid core on the efficiency of interspecies 
prion transmission.

Materials and Methods

Mutagenesis and protein purification. We used standard site-
directed mutagenesis to generate single cysteine mutants of the 

Figure 3. Impact of proline substitution mutants on the templating 
activity of the C. albicans strain conformation of the S17R Sup35NM 
chimera. S17R Sup35NM fibrils in the C. albicans strain conformation 
were evaluated for their activity to template proline substitution 
mutants of the Sup35NM chimera into prion fibrils. Each seeding rate 
(k) was calculated from the initial slope of the ThT measurements, and 
expressed as percent defect [100 x(1 - kmut/kwt)], as described previously 
in reference 38.

Ca recognition sequence is folded within the amyloid core of 
the C. albicans strain conformation (as reported previously in  
ref. 37), yet it is less clear how the highly amyloidogenic  
S. cerevisiae recognition sequence is inactive in this strain con-
formation. Prior to performing these experiments, we envisioned 
at least four potential structural mechanisms for the inactivity 
of the Sc recognition sequence in the C. albicans strain confor-
mation of the Sup35 chimera: (1) all residues within the Sc rec-
ognition element are unfolded; (2) a subset of the Sc residues are 
unfolded while the rest are folded within the amyloid core; (3) Sc 
residues are in an alternative non-β-sheet folded conformation 
in which they can participate in intermolecular contacts; and 
(4) Sc residues are folded in an alternative β-sheet conformation 
in which they do not participate in intermolecular contacts nec-
essary for templating activity. Our combined cysteine labeling 
and proline seeding results are most consistent with the Sc recog-
nition element being largely unstructured except for the edge of 
this region (residue Q38) being folded within the amyloid core  
(Fig. 4).

Our results are complementary to those of Weissman and 
coworkers, who showed that the S. cerevisiae domain of the chi-
meric prion is partially solvent protected.37 Importantly, this 
previous study demonstrated that the selective seeding of the 
C. albicans chimeric strain conformation does not require the S. 
cerevisiae domain, as it could be removed without altering seeding 
specificity or activity. Therefore, Weissman and coworkers con-
clude that the S. cerevisiae domain is in an aggregated, partially-
protected conformation that is not competent for templating.37 
We also observe partial solvent protection of the Sc domain in 
the C. albicans strain conformation of the wild-type Sup35NM. 
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Sup35NM chimera (both wild-type and S17R), as well as single 
proline mutants of the wild-type Sup35NM chimera. Each pro-
tein was purified via its C-terminal 7xHis tag, as described in ref-
erences 64 and 68. Purified NM proteins were buffer exchanged 
into guanidinium hydrochloride (4 M, pH 7.4, 100 mM phos-
phate, 0.5 mM EDTA, 2 mM DTT) and stored at -80°C.

Fibril assembly, solubility and templating analysis. We 
assembled fibrils of the Sup35NM chimera into the conforma-
tion specific for C. albicans by mixing monomeric wild-type 
or mutant chimeric protein of C. albicans NM (CaNM) fibrils 
overnight (20% w/v seed, PBS, 37°C, 1,200 rpm). Afterward, 
the chimeric fibrils were sedimented (110,000x g for 30 min at 
4°C) and reconstituted in PBS. The SDS-resistance of fibrils 
was evaluated using a denaturing gel (NuPAGE 10% Bis-
Tris gel) for prion samples before and after heating (100°C,  
30 min). We evaluated the prion templating activity by fol-
lowing the rate at which chimeric prion fibrils (10% w/v) con-
vert ScNM and CaNM monomers (2.5 μM) into Thioflavin T 
(ThT) positive conformers. We evaluated the ThT fluorescence 
(40 μM ThT) in 96-well plates using a Safire2 plate reader 
(Tecan; λex = 450 nm, λem = 482 nm) to obtain initial seeding 
rates (~10 min).

Cysteine accessibility measurements. Fibrils of each cysteine 
chimera mutant (5 μM) were reduced with tris(2-carboxyethyl)
phosphine (TCEP, 25 μM) and labeled with Lucifer yellow iodo-
acetamide (0.1 mM, PBS, pH 7.4) for 12 h at 25°C. Afterward, 
the labeled fibrils were centrifuged (110,000x g for 30 min at 
4°C), dissociated (4 M GuHCl, 100°C, 5 min) and excess dye 
was removed (Zeba 96-well spin-desalting plates, Pierce Thermo 
Scientific). As a control, fibrils were also dissociated into mono-
mers (4 M GuHCl, 100°C, 5 min) prior to labeling, and then 
monomers were labeled in the same manner as fibrils. The extent 
of labeling for both fibrils and monomers was evaluated using 
fluorescence (λex = 426 nm, λem = 531 nm) and protein (micro 
BCA assay kit, Pierce Thermo Scientific) assays.

Proline mutant seeding defect analysis. Fibrils of the S17R 
Sup35NM chimera (10% w/v) were mixed with monomeric pro-
line mutants (2.5 μM, PBS, pH 7.4), and their ThT fluorescence 
was monitored (12 h). The initial seeding rates of each proline 
mutant were compared to the wild-type Sup35NM chimera and 
reported as % defect as described previously in reference 38.
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Figure 4. Selective folding of prion recognition elements within the 
Sup35NM chimera enciphers species-specific infectivity. The Sup35NM 
chimera contains two prion recognition sequences (green for the  
S. cerevisiae recognition element and red for C. albicans recognition 
element) that selectively nucleate each prion strain conformation. For 
the C. albicans strain conformation, we find that the Ca recognition 
sequence is folded within the prion amyloid core, while most of the Sc 
recognition sequence is excluded from the core. The resulting prion 
strain conformation is specific for infecting C. albicans Sup35 since its 
cognate recognition element is folded within the amyloid core and 
active for templating.
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