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ABSTRACT

Yue Shan: Statistical Methods for Brain Imaging Genomics
(Under the direction of Hongtu Zhu and Yun Li)

Brain Imaging genetic studies examine genetic basis of brain images to better understand

the genetic impact on behavior and disease phenotypes. Methods for identifying genetic

associations with voxelwise brain imaging data have evolved from parallel analysis on each

voxel to incorporating spatial smoothness and correlation to increase statistical detection

power. Challenges still exist on the joint analysis of imaging data and genetic data, including

imperfect alignment of affected regions and registration error, low signal to noise ratio in

high-dimensional data, complex relationships, high computation complexity, and between-

study heterogeneity. To address these issues, the following methods are proposed.First, to

deal with imperfect alignment and registration error in brain imaging data, we proposed

a region-based functional genome-wide association detection method, which also reduces

computation burden as compared to standard voxelwise methods. The method summarizes

regional voxelwise measurements into density curves. The non-parametric ball covariance test

is then used to detect association between the log-quantile transformed regional densities and

genetic markers. We compared the ball covariance test with other state-of-the-art methods on

simulated datasets and demonstrate good sensitivity and specificity of our method. Second,

we combined functional partial least squares with distance correlation to reduce computation

burden of high dimensional data and allow flexible characterization of the imaging-genetic

relationship. Third, given imaging-genetic data from more than one studies, we theoretically

compared the ensembled learner and merged learner in the prediction problem, where learners

are trained using the multivariate varying coefficient model and multi-study data are assumed

to come from a mixed model, where the mixed effect represents inter-study heterogeneity.
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CHAPTER 1: INTRODUCTION

Brain Imaging genetic studies reveal genetic basis of brain images. Methods for identifying

genetic associations with voxelwise brain imaging data have evolved from parallel analysis

on each voxel to incorporating spatial smoothness and correlation to make better use of

the information in voxelwise brain-imaging data and increase statistical detection power.

Meanwhile, there are still issues to account for in imaging genetic data analysis, such as

imperfect alignment of affected regions and registration error, low signal to noise ratio in

high-dimension data, high computation complexity due to high-dimension in both imaging

and genetic data, and between-study heterogeneity. To address the above issues, we propose

the following methods in my dissertation building on current work in the field.

First, to deal with imperfect alignment and registration error in brain imaging data, we

propose a region-based functional genome-wide association detection (rfGWAD) method,

which also reduces computation burden at the same time as compared to standard voxelwise

methods. In particular, our method first summarizes voxelwise measurements in the brain

imaging in each small region into a density curve for each subject, while the region slides across

the entire brain image in a sliding-window scheme as similar to that applied in genetic analysis.

The density curves are then transformed using log-quantile-density transformation so as to

apply commonly used functional methods that are designed for analyzing functions in the

Hilbert space. The non-parametric ball covariance test is used to detect association between

the transformed regional densities and genetic markers. We compare the ball covariance test

with other state-of-the-art methods on simulated datasets and demonstrate good sensitivity

and specificity of our method. We also apply the rfGWAD method to the hippocampal

surface data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.

Second, we proposed a weighted distance covariance method to extract SNP-related signal
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from the image data. In particular, dimension reduction is first performed on the image data

w.r.t. each SNP, where correlation with the dimension-reduced image is maximized. Then, the

distance covariance with the SNP is maximized to find an optimal linear combination of the

reduced dimensions of the image. A voxelwise local test, as well as a global test is proposed.

For genome-wide analysis, a screening procedure is proposed to reduce computational burden.

A simulation study is performed on each step of the proposed method. Then, the proposed

method is applied to the genome-wide SNPs and the hippocampus surface radial distance

data from the ADNI study.

Third, in order to train a prediction model with data available from more than one studies,

one can either obtain the final trained learner (i.e. prediction model) by combining learners

trained from different studies or train a single learner based on the merged data of all studies.

The question of which strategy would achieve better prediction accuracy is discussed in a

recent work by Guan et al. (2019), where learners were trained using modeles such linear

regression and ridge regression. The theorems derived therein provide a useful guideline for

the decision making. We extended their idea to the brain imaging setting and derived similar

guidelines. While the response variable for linear regression models are one dimensional,

brain imaging data is usually high-dimensional and modeled as functional responses. One

commonly used model for brain imaging data is the multivariate varying coefficient model

(MVCM) (Zhu et al., 2012), which takes into consideration the smoothness feature of the

voxelwise brain imaging data. In this chapter, we derived the training strategy choosing

guideline for learners modeled by MVCM, validated the theorems through simulations, and

applied the derived guideline to neuroimaging datasets.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we review existing statistical methods on the three topics in the dissertation.

In Section 2.1, we review popular genome-wide association methods (GWAMs) testing one

marker at a time or a set of markers at a time, as well as functional frameworks for analyzing

imaging-genetic data. In Section 2.2, we review nonparametric association measurements

and methods for extracting signal in the presence of vast majority of the dimensions being

noise through high-dimensional projection. In Section 2.3, we review methods related to

meta-analysis.

2.1 Statistical Methods for Association Detection

We review popular GWAMs and functional framework for imaging-genetic data analysis

in this section. Boosting the development of statistical methods in brain imaging genomics,

GWAMs are borrowed into brain imaging genetic frameworks by duplicating the analysis

on each dimension of the imaging response and accounting for intrinsic nature of brain

images, such as spatial smoothness and correlation. For example, GWAS is implemented

on each voxel of brain imaging phenotype in vGWAS (Stein, 2010) and FVGWAS (Huang,

2015), SKAT (Liu, 2007; Wu, 2011) is embedded in Ge’s (2012) and FMEM (Lin, 2014), and

GEMMA (Zhou and Stephens, 2012) and simplified REML (Lippert, 2014) are implemented

in Ganjgahi’s framework (2018). In our proposed rfGWAD framework, GWAMs or general

association testing methods can be easily embedded into the pipeline. In section 2.1.1, we

review the popular GWAMs that have been implemented in imaging genetic methods or can

be embedded in imaging genetic frameworks in the current or future projects; in section 2.1.2,

we review functional framework for imaging-genetic data analysis.
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2.1.1 Association Testing Methods Used in Genomics

In GWAMs, the simplest case is where we test the association between one phenotype and

one marker or a set of markers, assuming independence between subjects. The single-marker

strategy genome-wide association study (GWAS) implements a simple linear regression model

for each genetic marker throughout the genome. This is usually implemented for common

variants, since rare variants tend to yield low power in GWAS. Marker-set methods are

proposed to analyze rare variants for a power boost or integrate the collective contribution of

a set of markers. Markers are usually grouped according to their locations into a gene set.

The set of markers are then tested together in a linear regression model, which can be either

a fixed effect model or a linear mixed model (LMM) (e.g. SKAT (Wu, 2011)). With a fixed

effect model, burden test (Asimit, 2012; Morgenthaler, 2007; Li, 2008; Morris, 2010; Madsen,

2009) collapses a set of variants into genetic scores. One can perform the burden test with the

set of markers selected based on data-adaptive weights or thresholds, termed adaptive burden

tests (Han, 2010; Hoffmann, 2010; Lin, 2011; Price, 2010; Liu, 2010; Ionita-Laza, 2011). With

fixed effect model, one can also regress the phenotype of interest on polygenic risk scores

(PRS) (Dudbridge, 2013; Dima, 2015; Chasioti, 2019), which is often calculated as the sum of

dosages of the markers weighted by their effect sizes on a phenotype (e.g. case-control status).

Fixed-effects models have higher power as compared to LMM when the effects of the grouped

markers are in the same direction. Using LMM models, variance-component tests (Wu, 2011;

Pan, 2009; Neale, 2011) examine the variance of genetic effects and reveal nonlinear effects

introduced by the interaction among SNPs. The model in sequence kernel association test

(SKAT) (Wu, 2011) accommodates the least-square kernel machine (LSKM) (Liu et al., 2007)

provides a general framework that can accommodate other variance-component tests:

yi = zzz
T
i ααα +xxx

T
i βββ + εi, (2.1)

4



where zzzi is a q×1 vector of covariates that can include a column of 1’s for the intercept, ααα is a

q×1 vector of coefficients for the covariates, xxxi is a p×1 vector of genotypes, βββ = (β1, . . . , βp)T

is a p × 1 vector of random effects where each βj follows an arbitrary distribution with a

mean of zero and a variance of wjτ under H0 ∶ βββ = 000 (τ is a variance component and wj is

a prespecified weight for variant j), and εi is an error term with mean 0 and variance σ2.

Testing H0 is thus equivalent to testing H0 ∶ τ = 0. The proposed score statistic is thus

TSKAT = (yyy − µ̂̂µ̂µ)TK(yyy − µ̂̂µ̂µ), (2.2)

where yyy = (y1, . . . , yn)T , Z = (zzz1, . . . ,zzzn)T , X = (xxx1, . . . ,xxxn)T , K = XWXT , and µ̂̂µ̂µ = ZT α̂̂α̂α

is the predicted mean of yyy under H0. There are also methods that combine burden and

variance-component tests (Lee, 2012; Derkach, 2013; Sun, 2013). Lee et. al. (2014) reviewed

a list of popular methods with their pros and cons summarized .

There are a range of methods for genetic trait mapping that account for related individuals

(RI) in the sample. Traditional linkage methods examines the flow of mutants from ancestors

down the pedigree. Linkage analysis can be conducted using Sequential Oligogenic Linkage

Analysis Routines (SOLAR) (https://hpc.nih.gov/docs/solar-8.1.1/) (Almasy, 1998), which

is now a part of SOLAR-Eclipse (An Imaging Genetics Analyses Software, available at

http://solar-eclipse-genetics.org), based on identity by descent (IBD) matrices. Multipoint

engine for rapid likelihood inference (Merlin) (Abecasis, 2002) is widely used to perform a

combined linkage and association analysis based on pedigree data, where large pedigree can

be broken down using external algorithm (Scuteri, 2007). As association screening such as

GWAS becomes more popular, RI methods are developed under the association screening

framework by modifying the simple linear regression into LMM or generalized estimating

equations (GEE). SUGEN (Genetic Association Analysis Under Complex Survey Sampling,

available at http://dlin.web.unc.edu/software/sugen/) (Lin, 2014) accounts for relatedness

between subjects by grouping related subjects into families and is implemented through GEE.
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LMM methods account for sample relatedness based on a genetic relationship matrix (GRM)

or kinship matrix, where relationship between subjects are measured by a value between 0

and 1 (in GRM) or a number between 0 and 0.5 (for kinship coefficient). The LMM model to

account for RI is as follows (Kang, 2008):

yyy =Xβββ +Zuuu + ε, (2.3)

where yyy is a n×1 vector of observed phenotypes, X is an n×q matrix of fixed effects including

mean, SNPs, and other confounding variables. βββ is a q × 1 vector representing coefficients of

the fixed effects. Z is an n × r incidence matrix mapping each observed phenotype to one

of r inbred strains. uuu is the random effect of the mixed model with V ar(uuu) = σ2
gK where

K is the r × r kinship matrix inferred from genotypes, and ε is an n × 1 vector of residual

effect such that V ar(ε) = σ2
ε I. The overall phenotypic variance-covariance matrix can be

represented as equation V = σ2
gZK

TZT +σ2
ε I. Algorithms are developed to accelerate LMM in

GWAS, such as fastGWA (Jiang, 2019) in GCTA (https://cnsgenomics.com/software/gcta),

genome-wide efficient mixed model association (GEMMA) (Zhou and Stephens, 2012),

EMMA (Kang, 2008), and EMMAX (Kang, 2010). Other software that can be used to

perform LMM in association studies to account for RI are EPACTs with EMMAX option

(https://genome.sph.umich.edu/wiki/EPACTS), BOLT-LMM (Loh, 2015), the bioconductor

package GENESIS (https://www.bioconductor.org/packages/release/bioc/html/GENESIS.html),

and R packages such as cpgen (https://cran.r-project.org/web/packages/cpgen/index.html).

Association testing methods are also developed for multivariate response. Dutta et.

al. (2014) extended the SKAT method (Wu, 2011) to the multivariate response scenario,

named multi-SKAT. The generalized Berk-Jones (GBJ) test (Sun, 2019) can also work with

multi-dimensional response by combining a set of p-values and their correlation matrix and to

obtain an overall p-value for the global null hypothesis. The ball covariance (BCov) test (Pan,

2019) is a nonparametric rank-based test of associations, which allows multi-dimensional

6



variables on both sides of the association relationship. The ball covariance equals to 0 if and

only if the two variables are unrelated. Ball covariance is described in more details in section

2.2 in the literature review. Methods for multivariate response also include RdCov (Deb and

Sen, 2019), adaptive Mantel test (Pluta, 2018), and sKPCR (Gong, 2018). Those methods

are compared in the simulation study of project 1 in section 3.3, thus we give more details on

them as follows.

The adaptive Mantel (AdaMant) test (Pluta, 2018) considers a set of linear model score

tests in a unified Mantel test framework, where each type of model is represented by a distinct

similarity metric. The Mantel test statistic is in the following form:

T (X,Y ) = tr(HK) =
n

∑
i=1

n

∑
j=1

HijKij, (2.4)

where X is n × p, Y is n ×M , H = Y Y T , and K =XWXT for a weight matrix W . Pluta et.

al. derived that the score test statistics for fixed effects linear regression model TF , variance

components model TV , and ridge regression Tλ can all be written in the form of 2.4 with

different W . In particular,

TF = tr(HKF ), KF =XWFX
T , WF = I (2.5)

TV = tr(HKV ), KV =XWVX
T , WV = (XTX)−1

Tλ = tr(HKλ), Kλ =XWλX
T , Wλ = (XTX + λI)−1

For high-dimensional Y , tests can also be calculated to with weight matrix W similar to

K. After calculating J individual test statistics based on different similarity metrics, the

AdaMant test statistic is defined as the minimum p-value of the J tests

TAdaMant ∶= min
m∈1,...,J

pm. (2.6)

The p-value of the AdaMant test is then calculated through permutation. AdaMant is
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implemented in the AdaMant R package available at https://github.com/dspluta/adamant.

Currently, the AdaMant R package supports multi-dimensional X and one-dimensional Y .

Data with multi-dimensional response is also analyzed using principal-component-based

methods, such as probablistic PCA (Tipping and Bishop, 1999; Bishop, 2006) and kernel

principal component analysis (kPCA) (Schölkopf, 1997). Building on those methods, Gong et.

al. (2019) proposed a structured kernel principal component regression (sKPCR) that allows

user-defined covariance structure between features and samples and accommodates nonlinear

dimension reduction through kPCA. For the purpose of notation consistency, let Y denote

the n ×M high-dimensional imaging data matrix, and xxx is a n × 1 numeric variable that we

are interested to test the association against Y . The first step of sKPCR is a structured

principal component analysis (sPCA), which extracts the first L principal components of Y .

The sPCA extends probablistic PCA by allowing covariance structures between rows and

columns of Y :

Y =W TU +E, where E ∼MNM,n(0,R,Q), (2.7)

where R is the covariance matrix between columns of E and Q is the covariance matrix

between rows of E. Adopting the maximum likelihood estimation (MLE) approach in

probablistic PCA, sPCA is solved by maximizing the following log-likelihood:

logP (Y,U ∣W ) = −
1

2
tr [Q−1(Y −W TU)TR−1(Y −W TU)] −

1

2
tr(UTU) +Const (2.8)

= −
1

2
tr [(R̃Y Q̃ − R̃W TUQ̃)T (R̃Y Q̃ − R̃W TUQ̃)] −

1

2
tr(UTU) +Const

= −
1

2
tr [(Ỹ − W̃ T Ũ)T (Ỹ − W̃ T Ũ)] −

1

2
tr(UTU) +Const,

where Q−1 = Q̃Q̃T , R−1 = R̃R̃T , Ỹ = R̃Y Q̃, W̃ = WR̃, and Ũ = UQ̃. Hence, the solution of

sPCA is equivalent to the standard PCA or probabilistic PCA problems using the ’weighted’

data matrix Ỹ . After extracting the first L PCs through sPCA, the association between
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first k PCs and xxx is measured by Sk = ∑ki=1 r
2
i , where ri is the correlation between the ith

PC and Y and k = 1, . . . , L. Then, the p-value of Sk, denoted as pk, is calculated through

permutation. Lastly, the test statistic for sKPCR is defined as

TsKPCR = min
m∈1,...,L

pm, (2.9)

and the p-value for TsKPCR is obtained through permutation.

Deb and Sen (2019) proposed a framework that includes testing for mutual independence

between random vectors by constructing rank-based measurements such as rank-based

distance covariance (RdCov), which builds on distance covariance (dCov) (Székely, 2007).

These measurements are based on multivariate ranks and thus distribution-free, i.e. the null

distributions of the test statistics are free of the underlying data generating distributions.

The use of ranks to perform distribution-free statistical inference is ubiquitous in one-

dimensional problems in nonparametric statistics, such as Spearman’s rank-correlation,

Wilcoxon signed-rank test, Mann-Whitney rank-sum test, and Kruskal-Wallis test. In

particular, one-dimensional ranks can be interpreted as

σ̂ ∶= arg max
σ=(σ(1),...,σ(n))∈Sn

n

∑
i=1

∣yi −
σ(i)

n
∣
2

, (2.10)

where Sn is the set of all permutations of {1, 2, ..., n} and yi ∈ R. Extending it to multivariate

setting where yyyi ∈ RM , replace the discrete uniform numbers {i/n ∶ 1 ≤ i ≤ n} by the set of

multivariate rank vectors {ccc1, . . . , cccn} ⊂ [0, 1]M – a sequence of “uniform-like” points in [0, 1]M

(a recommended choice is the Halton sequences). The multivariate rank is then defined as

σ̂ ∶= arg max
σ=(σ(1),...,σ(n))∈Sn

n

∑
i=1

∣∣yyyi − cccσ(i)∣∣
2, (2.11)

where ∣∣ ⋅ ∣∣ denotes the Euclidean norm in RM . This optimization problem can be viewed as

an assignment problem, which can be solved by the Hungarian algorithm. Then, to calculate
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a rank-based statistic, such as RdCov, we calculate dCov based on the multivariate ranks

inferred from data. Deb and Sen derived the asymptotic null distributions of the proposed test

statistics and showed that their proposed tests are consistent against all fixed alternatives, i.e.

the probability of rejecting the null, calculated under the alternative, converges to 1 as the

sample size increases. Moreover, the proposed tests are tuning-free, computationally feasible

and are well-defined under minimal assumptions on the underlying distributions (e.g. no

moment assumptions is needed). The proposed framework for multivariate distribution-free

nonparametric testing is general and is also applicable for comparing two distributions and

beyond. The algorithm can be easily implemented using a combination of existing tools

(example R scripts available at https://github.com/NabarunD/MultiDistFree).

Other genetic methods that can be carried into imaging-genetic setting include tran-

scriptome wide association study (TWAS) (Gusev, 2016) and linkage disequilibrium score

regression (LDSC) (Bulik-Sullivan, 2015). A comprehensive review of recent statistical

methods in brain imaging genomics are given by Shen and Thompson (2019). The review

focuses on association testing methods in brain imaging genomics, including voxelwise GWAS,

multi-marker methods, multivariate/functional methods, and sparse canonical correlation

analysis (SCCA) methods.

2.1.2 Functional Frameworks

Analysis frameworks for detecting the association between voxelwise brain images and

genetic markers throughout the whole genome has been evolving in recent years. Voxelwise

genome-wide association study (vGWAS) was first carried out by Stein et. al. (2010) to

perform single-voxel-single-marker analysis across all voxels and genome-wide genetic markers.

This idea has been carried out in fast voxelwise GWAS (FVGWAS) (Huang, 2015), which

improved computation efficiency in a pipeline combining a heteroscedastic linear model,

global sure independent screening (GSIS) (Fan and Lv, 2008), and a detection procedure

based on wild bootstrap. Functional frameworks are then developed to account for intrinsic

spacial structure and correlation in brain imaging data. Suppose that yi(s) is the functional
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imaging response for subject i (i = 1, . . . , n) and s ∈ S denote a point on the image domain,

e.g. a voxel in a 3D image (or a pixel in a 2D image). s is continuous in nature but discrete

in the observed data. Suppose M is the total number of pixels (or voxels in 2D image) in

the observed image, then we have the observed image domain S = {s1, . . . , sM}. Therefore,

the observed functional response yi(s) can also be viewed as a multivariate response yij

(j = 1, . . . ,M), with yij = yi(sj). The single-voxel-single-marker strategy analyzes yij one

voxel at a time, i.e. for each j parallelly, while the functional methods treats yi(⋅) as a single

functional response on S.

Fan and Gijbels (1996) proposed the local polynomial model (LPM) to analyze functional

response that accounts for the smooth nature in the functional coefficient β(s) such as in the

following simplest functional linear regression model:

yi(s) = xiβ(s) + ε(s), (2.12)

where β̂(s) is estimated through local polynomial kernel (LPK) smoothing by integrating

nearby information through a kernel on distances in the functional domain. This gives a

smooth β̂(s) on S, which coincides with the smoothness assumption of functional effect

in brain images. Although we assume smoothness in the true imaging response ỹi(⋅), the

observed values yi(⋅) are usually not smooth due to noise:

yi(s) = ỹi(s) + ε(s). (2.13)

A usual conduct in imaging data analysis is to first obtain a smoothed representation of

yi(⋅), denoted as fi(⋅), and then perform further statistical inference on fi(⋅). Comparing to

directly analyzing yi(⋅), Zhang and Chen (2007) proved that, under some mild conditions,

smoothing the imaging first with LPK has an asymptotically ignorable effect on the statistical

inference that follows.

Zhu et. al. (2012) proposed the multivariate varying coefficient model (MVCM) building

11



on LPM to incorporate multiple modes of measurements on the imaging domain:

yij(s) = xxx
T
i βββj(s) + ηij(s) + εij(s) for j = 1, . . . , J, (2.14)

where xxxi is a p × 1 covariate vector, βββj(s) is the p × 1 functional coefficients characterizing

covariates effect, j ∈ {1, . . . , J} indicates the jth imaging measurement. εij(s) represents the

measurement error, and ηij(s) characterizes individual curve deviation from xxxTi βββj(s) and

within-curve dependencies. Let εεεi(s) = (εi1, . . . , εiJ)T and ηηηi(s) = (ηi1, . . . , ηiJ)T ; εεεi(s) and

ηηηi(s) are independent and identical copies of SP (000,Σε) and SP (000,Ση), respectively, where

SP (µ,Σ) denotes a stochastic process vector with mean function µ(s) and covariance function

Σ(s, t). Σε(s, t) = Sε(s)I(s = t), where Sε(s) = (rε,jj′(s)) is a J × J matrix of functions of s

and I(⋅) is an indicator function.

Huang (2017) developed a functional GWAS (FGWAS) pipeline that employs the MVCM

(Zhu, 2012) and techniques in FVGWAS (Huang, 2015). In particular, the MVCM model

accounts for spatial smoothness, spatial correlation, and low-dimensional representation of

the voxelwise brain imaging phenotype. Spatial smoothness is assumed on both βββj(s) and

ηij(s) in (2.14), estimated using local linear regression (Fan and Gijbels, 1996). In local

linear regression, local information is synthesized through a weighted sum, where “local”

and “weights” are defined by bandwidth and kernel function of spatial distance, respectively.

Spatial correlation is accounted for through ηij(s) in (2.14). Low-dimensional representation

is achieved by functional principal analysis on ηij(s) through spectral decomposition of

Ση(s, t) and approximating ηij(s) by a low number of principal components. The GSIS

procedure based on global test statistic is used to select promising SNPs from genotype

data and thus reduce computation complexity by focusing only on the set of promising

SNPs. In particular, GSIS selects the top-ranking SNPs based on global test statistic or

the corresponding p-value. Lastly, cluster-size inference (Ge, 2012) with wild-bootstrap is

used to identify region associated with a SNP, which reduces computation complexity and
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boosts power at the same time. A parallel algorithm is developed to reduce computation

time. FGWAS is suitable for analyzing 1D curves, 2D surfaces, or 3D images.

Marker-set analysis is implemented through least-squares kernel machines (Liu, 2007;

Wu, 2011) for high-dimensional imaging response. Ge et. al. (2012) developed a pipeline to

identify imaging regions associated with genetic markers by applying the marker-set model

on each voxel. Cluster size inference is then performed based on random field theory, making

use of the spatial smooth nature of brain images. On the other hand, Lin et. al. (2014)

extended the least-squares kernel machine (Liu, 2007; Wu, 2011) into a functional mixed

effects model (FMEM) to test the association between the imaging response and a set of

genetic markers. The FMEM is as follows: for i = 1, . . . , n,

yi(s) = zzz
T
i ααα(s) +xxx

T
i βββ(s) + ε(s), (2.15)

where zzzi is a q × 1 vector for covariates as fixed effects, ααα(s) is the q × 1 vector of functional

coefficients, xxxi is a p×1 vector the random genetic effect, βββ(s) is the p×1 vector of coefficients

that follows N(0, σ2
β(s)IIIp), and εi(s) ∼ N(0, σ2

ε (s)) is independent across i and independent

of β(s) for all s. Lin et. al. (2014) also implemented a jumping surface model on the variance

components of the genetic random effects and fixed effects as piecewise smooth functions of

the voxels.

In order to account for RI and population structure for the high-dimension imaging

response setting, a simple conduct is to apply LMM for each genetic marker and on each voxel

in the image. However, the computation complexity of this conduct becomes a challenge.

In order to reduce computation burden, Ganjgahi et. al. (2018) applied transformation of

the data and model, such as in GEMMA (Zhou and Stephens, 2012) and simplified REML

(Lippert, 2014), and proposed a non-iterative variance component estimator. This largely

reduces the computation and makes permutation tests feasible, which allows inference on

powerful spatial tests like the cluster size statistic.
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Another functional framework, named low-rank linear regression model (L2RM), is

proposed by Kong et. al. (2019) to detect association between high-dimensional response (i.e.

imaging response) and high-dimensional covariates (e.g. genetic markers) when coefficient

matrices have low-rank structures. L2RM consists of two steps: screening and estimation.

The screening procedure is developed to select promising covariates when the number of

covariates is extremely large, such as the number of SNPs in the genome. The screening

is based on the spectral norm of each coefficient matrix, which is fast and efficient. The

estimation procedure is based on trace norm regularization, which explicitly imposes a low

rank structure on the coefficient matrices. The sure independence screening property of the

screening procedure is investigated when the dimension of the response and the dimension of

the covariates diverge at the exponential order of the sample size. Asymptotic properties of

the estimation procedure are investigated, such as estimation consistency, rank consistency,

and nonasymptotic error bound under. For the two-step screening and estimation procedure,

a theoretical guarantee for the overall solution is established.

Method is also proposed (Zhang, 2018) to extract signal from noisy high-dimensional brain

imaging data through functional linear regression model. In this method, Zhang optimizes

the weight projection of the imaging response to achieve maximum power of the association

test. Details of this method is discussed in section 2.2 in the literature review.

2.2 Covariance Measurements and High-Dimensional Projection

2.2.1 Covariance and Correlation Measurements

Correlation coefficients have been widely developed to measure statistical dependence

between objects in Hilbert spaces. Pearson correlation (Pearson, 1895) is commonly used to

detect monotonic dependence between two random variables. Distance correlation (Székely,

2007) and projection correlation (Zhu, 2017) have been proposed to detect nonlinear and

nonmonotonic dependence between two random vectors of arbitrary dimension, with the

independence-zero equivalence property for random vectors in metric spaces of strong negative
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Categories Name Method
Single-marker GWAS Simple linear regression

Marker-set
Fixed
model

Burden test Collapse a set of variants into genetic scores

PRS Sum of dosages of markers weighted by effect
sizes

LMM SKAT yi = zzzTi ααα +xxx
T
i βββ + εi

TSKAT = (yyy − µ̂̂µ̂µ)T ,K(yyy − µ̂̂µ̂µ)

RI
Linkage SOLAR Sequential Oligogenic Linkage Analysis

Routines
Merlin Multipoint engine for rapid likelihood inference

Association SUGEN GEE grouping related subjects into families
LMM yyy =Xβββ +Zuuu + ε

Multivariate response

Multi-SKAT Multivariate extension of SKAT

GBJ Combination a set of p-values and their
correlation

BCov nonparametric rank-based test
RdCov Rank-based dCov
AdaMant T (X,Y ) = tr(HK) = ∑

n
i=1∑

n
j=1HijKij

sKPCR Y =W TU +E, where E ∼MNM,n(0,R,Q)

Table 2.1: Summary of methods reviewed in Section 2.1.1

Categories Name Method

Voxelwise
Single-
marker

vGWAS Voxelwise GWAS
FVGWAS Fast Voxelwise GWAS

Marker-
set

Ge et al
2012

Voxelwise genome-wide association studies:
the random field theory, least square kernel
machines and fast permutation procedures

Functional

Single-
marker

LPM yi(s) = xiβ(s) + ε(s)
Smoothing
first yi(s) = ỹi(s) + ε(s)

MVCM yij(s) = xxxTi βββj(s) + ηij(s) + εij(s)

FGWAS Functional GWAS, with MVCM, GSIS, and
cluster-size inference through wild-bootstrap

Zhang
2018

Optimal weight projection of the imaging
response to achieve maximum power of the
association test

Marker-
set

FMEM yi(s) = zzzTi ,,,α(s) +xxx
T
i βββ(s) + ε(s)

L2RM Spectral-norm-based screening and
trace-norm-based regularization

RI Ganjgahi et al
2018

Transformation (e.g. GEMMA, simplified
REML) and non-iterative variance
component estimator

Table 2.2: Summary of methods reviewed in Section 2.1.2
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type. Since complex objects (e.g., different brain subcortical structures) often reside in Banach

spaces, Pan et. al. (2019) developed ball covariance as a generic nonparametric and model-free

measure of dependence for Banach spaces as well as metric spaces. It is nonnegative and

independence-zero equivalent. The Heller-Heller-Gorfine (HHG) measure (Heller, Heller, and

Gorfine 2013) is a special case of ball covariance by choosing a proper weight.

Pearson correlation (Pearson 1895), or the product moment correlation coefficient, is a

measure of the linear correlation between two variables X and Y. It has a value between -1

and 1, where 1 is total positive linear correlation, 0 is no linear correlation, and -1 is total

negative linear correlation. The population Pearson’s correlation coefficient is

ρX,Y =
Cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
, (2.16)

where σX and σY are the standard deviations of X and Y , respectively, and µX and µY are

the corresponding means. The sample Pearson correlation correlation is

rxy =
∑
n
i=1(xi − x̄)(yi − ȳ)√

∑
n
i=1(xi − x̄)

2
√
∑
n
i=1(yi − ȳ)

2
, (2.17)

where n is the sample size and x̄ and ȳ are the sample means.

The Spearman’s ρ (Spearman 1904) is a nonparametric measure of rank correlation,

which measures monotonic relationship and ranges from -1 to 1. It equals to the Pearson’s

correlation coefficient applied to the ranks of the variables rs = ρrX ,rY ,where rX and rY are

the ranks of X and Y respectively. The Spearman’s rank correlation coefficient is appropriate

for both continuous and discrete ordinal variables.

The Kendall’s τ coefficient (Kendall 1938) is also rank-based, which is defined as follows:

τ =
∑
n
i,j=1 I{(xi − xj)(yi − yj) > 0} −∑

n
i,j=1 I{(xi − xj)(yi − yj) < 0}

(n
2
)

. (2.18)

two special types of correlation, two Cramér-von Mises criterion dependence measures
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based on the empirical distribution function

Cramér-von Mises criterion for comparing two distribution functions F1(x) and F2(s):

ω2 = ∫
∞

−∞
[F1(x) − F2(x)]

2dF1(x) (2.19)

Hoeffding’s dependence measure (?) and the one propsed by Blum, Kiefer, and Rosenblatt

(1961) can be used to measure nonlinear dependence without moment conditions. In particular,

Hoeffding’s dependence measure (?) is defined as follows:

H = ∫ [Fxy(x, y) − Fx(x)Fy(y)]
2dF (x, y); (2.20)

and the dependence measurement introduced by Blum, Kiefer, and Rosenblatt (1961) is as

follows: for xxx = (xi, . . . , xm) ∈ Rm,

Bn = ∫ [Fn(xxx) −
m

∏
j=1

Fnj(xj)]
2dFn(xxx). (2.21)

To measure the dependence of X and Y of arbitraty dimensions p and q, respectively, the

empirical distance covariance (Szekely et al., 2007) is proposed as follows: let A and B be the

n × n double-centered Euclidean distance matrices of X and Y , respectively. In particular,

define pairwise distance between subject i and subject j based on X and Y , respectively, as

follows:

aij = ∣∣Xi −Xj ∣∣p, bij = ∣∣Yi − Yj ∣∣q, (2.22)

for i, j = 1, . . . , n, where ∣∣ ⋅ ∣∣p and ∣∣ ⋅ ∣∣q stand for Euclidean norms. Let āi⋅ = 1
n ∑

n
j=1 aij,

ā⋅j =
1
n ∑

n
i=1 aij, ā⋅⋅ = 1

n2 ∑
n
i,j=1 aij, and b̄i⋅, b̄⋅j and b̄⋅cdot defined analogously, then

Aij = āij − āi⋅ − ā⋅j + ā⋅⋅, Bij = b̄ij − b̄i⋅ − b̄⋅j + b̄⋅⋅. (2.23)
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The empirical distance covariance is thus

dCov2
n(X,Y ) =

1

n2

n

∑
i,j=1

AijBij, (2.24)

which is based on the agreement of X and Y in terms of pairwise distance between subjects

(i, j), while ball covariance is based on the empirical distribution differences of joint distri-

bution and product of marginal distributions at all points for all resolutions, which will be

defined later. (The intuition of this empirical measurement can be seen from Theorem 1

of (Szekely et al., 2007) for how it is associated with its theoretical definition based on the

squared difference between characteristic functions ∣∣φX,Y (t, s) − φX(t)φY (s)∣∣2.)

The distance covariance (and correlation) and a projection correlation to be propsed

by Zhu et. al. (2017) are powerful in detecting nonlinear and nonmonotonic dependence

between two random vectors of arbitrary dimension. The projection correlation (Zhu et

al. 2017) "first projects the multivariate random vectors into a series of univariate random

variables, then detects nonlinear dependence by calculating the Pearson correlation between

the dichotomized univariate random variables." It is defined as follows:

PC(X,Y ) = ∫ ∫ ∫ [FU,V (u, v) − FU(u)FV (v)]
2dFU,V (u, v)dαdβ, (2.25)

where U = αTX, V = βTY , and F ’s are the corresponding distribution functions. We can see

that the projection covariance is also based on the previously mentioned Cramér-von Mises

criterion. Mathematical simplification of the above definition of the the projection covariance

is applied.

The Heller-Heller-Gorfine (HHG) measure (Heller, Heller, and Gorfine 2013) of dependence

is based on the ranks of aij’s and bij’s as defined in the distance covariance. The motivation

of HHG is very similar to that of ball covariance: "if X and Y are dependent and have a

continuous joint density, then there exists a point (x0, y0) in the sample space of (X, Y ) and

radii Rx0 and Ry0 around x0 and y0, respectively, such that the joint distribution of X and
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Y differs from the product of the marginal distributions in the Cartesian product of balls

around (x0, y0). " For S(i, j) being the Pearson’s test for the following 2 × 2 contingency

table

d(yi, ⋅) ≤ d(yi, yj) d(yi, ⋅) > d(yi, yj)

d(xi, ⋅) ≤ d(xi, xj) A11(i, j) A12(i, j) A1⋅(i, j)

d(xi, ⋅) > d(xi, xj) A21(i, j) A22(i, j) A2⋅(i, j)

A⋅1(i, j) A⋅2(i, j) N − 2

the HHG measure is defined as follows:

T = ∑
i≠j

S(i, j). (2.26)

The HHG measure can be derived from Ball Covariance by choosing a proper weight (Zhu et

al. 2019).

Hilbert-Schmidt covariance (aka Hilbert-Schmidt independence criterion [HSIC] [Gretton

et al. (2008)]) is defined as the squared Hilbert-Schmidt norm (the sum of squared singular

values) of the cross-covariance operator. The test based on HSIC costs O(n2), where n is the

sample size.

Ball covariance is defined by using the projection-type method and Hoeffding’s dependence

measure (Hoeffding, 1948) on the corresponding one-dimensional space of radial distance: for

random variables X and Y ,

BCov2
w(X,Y ) ∶=∫ (θ − µ⊗ ν)2[B̄ρ(x1, x2) × B̄ζ(y1, y2)] (2.27)

w1(x1, x2)w2(y1, y2)θ(dx1, dy1)θ(dx2, dy2),

where (X , ρ) and (Y , ζ) are two Banach spaces, where the norms ρ and ζ also represent

their induced distances. θ is a Borel probability measure on X ×Y , µ and ν are two Borel

probability measures on X and Y , respectively, and (X,Y ) is a B-valued random variable

defined on a probability space such that (X,Y ) ∼ θ, X ∼ µ, and Y ∼ ν. B̄(x1, x2) is the closed
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ball with the center x1 and the radius ρ(x1, x2) in X and B̄(y1, y2) is the closed ball with

the center y1 and the radius ζ(y1, y2) in Y . {Wi = (Xi, Yi), i = 1, 2, . . .} is an infinite sequence

of i.i.d. samples of (X,Y ), and ω = (ω1, ω2) is the positive weight function on the support set

of θ. [θ − µ⊗ ν]2(A ×B) ∶= [θ(A ×B) − µ(A)ν(B)]2 for A ∈ X and B ∈ Y . Positive weights

w1 amd w2 allow flexibility and connection with HHG.

The empirical ball covariance is defined as

BCov2
w,n(X,Y ) ∶=

1

n2

n

∑
i,j=1

(∆XY
ij,n −∆X

ij,n∆Y
ij,n)

2ŵ1(Xi,Xj)ŵ2(Yi, Yj), (2.28)

where

∆XY
ij,n =

1

n

n

∑
k=1

δXij,kδ
Y
ij,k, ∆X

ij,n =
1

n

n

∑
k=1

δXij,k, ∆Y
ij,n =

1

n

n

∑
k=1

δYij,k, (2.29)

where δXij,k ∶= I{Xk ∈ B̄ρ(Xi,Xj)} and δYij,k ∶= I{Yk ∈ B̄ζ(Yi, Yj)}. Bρ(Xi,Xj) denotes the

ball with center Xi and radius d(Xi,Xj). Bζ(Yi, Yj) denotes the ball with center Yi and

radius d(Yi, Yj). Besides measuring dependence, empirical ball covariance is also used as a

test statistic of independence. Its asymptotic distributions under both null and alternative

hypotheses are derived (Pan, 2019). Several choices of weights wk (k = 1,2) are proposed by

Zhu et. al. (2019). For example, for k = 1, the probability weight ŵ1(Xi,Xj) = [∆X
ij,n]

−1 and

the Chi-square weight ŵ1(Xi,Xj) = [∆X
ij,n(1 − ∆X

ij,n)]
−1; the corresponding ball covariance

are denoted as BCov2
∆,n and BCov2

χ2,n
, respectively. BCov2

∆,n focuses on smaller balls, while

BCov2
χ2,n

standardizes (∆XY
ij,n −∆X

ij,n∆Y
ij,n)

2 by the variance of δXij,k. Furthermore, BCov2
χ2,n

is

asymptotically equivalent to HHG (Pan et al. 2018). Denote BCov2
w,n(X,Y ) when w1 = w2 = 1

as BCov2
n(X,Y ). The performance of those three types of weighted ball covariance differ

under different scenarios as discussed in (Zhu et al. 2019).
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2.2.2 Weight Projection for High-Dimensional Imaging Response

Brain imaging data is high-dimensional: there are 15,000 vertices on the left or right

hippocampus surface from the ADNI study or 208 × 256 × 256 ≈ 13 million voxels in the UK

Biobank T1 brain image. It is thus hard to detect the association between brain image and

genetic markers, if the association signal exists only in a small part of the image while the

vast majority of the image is noise. Therefore, it is of interest to assign higher weights to

voxels with signals during the association detection procedure.

Zhang (2018) carried out this idea in (2.14) for J = 1. For testing

H0 ∶CCCβββ(s) = b0(s) ∀s ∈ S v.s. H1 ∶CCCβββ(s) ≠ b0(s) ∃s ∈ S, (2.30)

Zhang emphasizes signal over noise by maximizing the power of the global test. In particular,

a weight function ω(s) is introduced to project the image to a scalar: yω,i = ∫S y(s)ω(s)ds.

The MVCM in (2.14) then becomes a scalar model

yω,i = xxx
T
i βββω + ηω,i, (2.31)

where βββω = ∫S βββ(s)ω(s)ds and ηω = ∫S η(s)ω(s)ds. εω,i = ∫S εi(s)ω(s)ds vanishes because it

converges to 0 in probability under local kernel smoothing. After projection, a standard

wald-type statistic is thus

Tn(ω) =
β̂ββ
T

ωCCC
T [CCC(XXXTXXX)−1CCCT ]−1CCCβ̂ββω

∬ Σ̂η(s, s′)ω(s)ω(s′)dsds′
. (2.32)

The test statistic Tn(ω) is also the signal-to-noise ratio that dominates the asymptotic power

and thus is set as the objective function to optimize ω. However, maximizing Tn(ω) is an

ill-conditioned problem, because the eigenvalues of Σ̂η(s, s′) usually decrease to zero very

fast, which yields a ∞ value of Tn(ω̂). To address this issue, a ridge penalty term is added to
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the objective function

L(ω) =
β̂ββ
T

ωCCC
T [CCC(XXXTXXX)−1CCCT ]−1CCCβ̂ββω

∬ Σ̂η(s, s′)ω(s)ω(s′)dsds′ + λ∣∣ω(s)∣∣22
, (2.33)

where ∣∣ω(s)∣∣22 = ∫S ω
2(s)ds. A closed-form solution of ω̂ is derived and the global test statistic

is based on the optimal projection ω̂. The p-value of the test statistic is obtained based on

wild-bootstrap.

Hu et. al. (2019) proposed distance canonical correlation analysis (DCCA), which

maximizes the distance correlation (Székely, 2007) between two high-dimensional vectors

X ∈ Rn×p and Y ∈ Rn×M by solving the optimization problem

(v̂1, v̂2) = arg max
v1,v2

⎡
⎢
⎢
⎢
⎢
⎣

v′1k(X,Y )v2
√
v′1k(X,X)v1

√
v′2k(Y,Y )v2

⎤
⎥
⎥
⎥
⎥
⎦

1
2

, (2.34)

where k(X,Y ) is the (p ×M) distance kernel matrix with the (i, j)th element

k(X,Y )i,j = k(xi, yj) ∶=
n

∑
k,l=1

∣xi,k − xi,l∣∣yj,k − yj,l∣, (2.35)

where xi ∈ Rn×1 is a single feature from data X, yj ∈ Rn×1 is a single feature from data Y , xi,k

is the kth element of xi, and yj,l is the lth element of yj . v̂1 and v̂2 can be solved by applying

the solution of canonical correlation analysis (CCA):

v̂1 = k(X,X)−
1
2k(X,Y )k(Y,Y )−1k(Y,X)k(X,X)−

1
2 (2.36)

v̂2 = k(Y,Y )−
1
2k(Y,X)k(X,X)−1k(X,Y )k(Y,Y )−

1
2 .

The maximized association measurement through weight projection between image and

genetic markers can be viewed as the amount of available information (Wang, 2020) in

the image, with regard to the genetic markers of interest. Ball covariance is a generic

measurement of associations with good performance. We therefore aim to develop a ball
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Categories Name Method

2.2.1 Hilbert space dCov
dCov2

n(X,Y ) = 1
n2 ∑

n
i,j=1AijBij

where A and B are n × n double-centered
Euclidean distance matrices of X and Y , respectively

HHG A special case of ball covariance

Banach space BCov
BCov2

w,n(X,Y ) =
1
n2 ∑

n
i,j=1(∆

XY
ij,n −∆X

ij,n∆Y
ij,n)

2ŵ1(Xi,Xj)ŵ2(Yi, Yj)

2.2.2 MVCM Zhang
2018

yω,i = xxxTi βββω + ηω,i

L(ω) = β̂ββ
T

ωCCC
T [CCC(XXXTXXX)−1CCCT ]−1CCCβ̂ββω

∬ Σ̂η(s,s′)ω(s)ω(s′)dsds′+λ∣∣ω(s)∣∣22

dCov DCCA (v̂1, v̂2) = arg max
v1,v2

[
v′1k(X,Y )v2

√
v′1k(X,X)v1

√
v′2k(Y,Y )v2

]

1
2

Table 2.3: Summary of methods reviewed in Section 2.2.

canonical correlation analysis based on ball correlation (Pan, 2019) with similar strategies

from DCCA.

2.3 Statistical Methods for Between-Study Heterogeneity in NeuroImaging Ge-
netic Studies

There is an increasing need to combine the analysis of multiple brain imaging genetic

datasets as the number of such studies increase. Brain imaging genetic cohorts with large

sample sizes are available in UK Biobank (Sudlow, 2015), ADNI (Weiner, 2017), Philadelphia

Neurodevelopmental Cohort (PNC) (Satterthwaite, 2016), the Pediatric Imaging, Neurocog-

nition, and Genetics (PING) Data Repository (Jernigan, 2017), the Human Connectome

Project (HCP) (Glasser, 2016), the Adolescent Brain Cognitive Development (ABCD) Study

(https://abcdstudy.org), and the Enhancing NeuroImaging Genetics through Meta-Analysis

(ENIGMA) consortium (Thompson, 2014; Thompson, 2019). The ENIGMA consortium took

the lead in meta-analysis of neuroimaging genetics cohorts. Studies (Hibar, 2015; Satizabal,

2019) combined the analysis of ENIGMA cohorts using fixed-effect methods from METAL

(Willer, 2010), through inverse-variance-weighted model (Hibar, 2015) or sample-size-weighted

model (Satizabal, 2019). Although, the neuroimaging responses considered are volumes of

particular regions of interest (ROI) in the brain that are summarized from voxelwise neu-

roimage data. Our goal for project 3 is to apply meta-analysis on high-dimensional (e.g.
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voxelwise) neuroimaging data and account for heterogeneity between studies. Therefore, we

review the existing meta-analytic approaches in section 2.3.1 and discuss approaches beyond

meta-analysis to account for between-study heterogeneity in section 2.3.2.

2.3.1 Meta-Analysis

Meta-analysis is widely used to integrate analysis from multiple studies. It is particularly

useful when it is inappropriate to pool data from different studies for a mega-analysis because

of constraints in sharing of individual level data or differences in study design, modeling

method, or phenotype distribution. Meta-analysis results in little or no loss of efficiency

compared to mega-analysis (Lin, 2010). There are two types of models for meta-analysis:

the fixed-effects models and the random-effects models (DerSimonian and Laird, 1986).

Suppose there are K studies, from which we would like to summarize the analysis results.

For k = 1, . . . ,K, let βk be the parameter of interest, e.g. treatment or genetic effects. In

fixed-effects models, we assume homogeneous predictor effect across studies: βk = β for all

k = 1, . . . ,K. In random-effects models, we assume that the predictor effect varies across

models: βk = β + ξk, where ξk ∼ N(0, τ 2).

Random-effects models address the between-study heterogeneity, which may be due to

population structure or other measured or unmeasured variables that are not accounted for in

the model. Work has been done to further investigate random-effects meta-analysis models.

Han and Eskin (2011) pointed out that previous random-effects models have been using τ̂ 2
MA

under the null hypothesis H0 ∶ β = 0, which gave rise to the phenomenon that fixed-effects

models are almost always more powerful than random-effects models, even with sufficient

heterogeneity between studies. They found that previous mixed-effects models conducts a

test equivalent to a likelihood ratio test using τ̂ 2
MA in the null model. Therefore, they made a

correction by assuming τ 2 = 0 under the null, i.e. using a joint null hypothesis: H0 ∶ β = τ 2 = 0.

This idea is taken by Tang and Lin (2014), where random-effects meta-analysis models

are developed for commonly used gene-level (i.e. multi-marker) association tests, including

burden test, variable threshold test, and variance-component test. They demonstrated that
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their proposed random-effects tests under the corrected null hypothesis are substantially more

powerful than the fixed-effects tests in the presence of moderate and high between-study

heterogeneity and achieve similar power to the latter when the heterogeneity is low. Their

methods are implemented in the software MASS (Tang, 2013).

In order to address between-study heterogeneity arising from trait-dependent sampling

(TDS) in sequencing studies, which is usually adopted for economic feasibility, Lin, Zeng, and

Tang (2013) proposed a maximum likelihood estimation (MLE) approach to test the genetic

association with the primary trait and with the secondary trait that is usually associated

with the primary trait. This work corrects the inflated type I error and possibly decreased

power caused by ignoring the trait-dependent sampling. A meta-analysis strategy is proposed

to properly combine the association results from multiple studies with measurements of a

trait, on which the sampling is based. Their proposed meta-analysis is substantially more

powerful than the analysis of any single study, and the meta-analysis of results from standard

linear regression (ignoring trait-dependent sampling) can be less powerful than the analysis

of a single study. The method supports score test, Wald test, and likelihood ratio test, and

the score test, referred to as SCORE-SeqTDS, is implemented in the software MASS (Tang,

2013; Tang, 2017).

Besides MASS (Tang, 2013), other commonly used meta-analysis software for sequencing

studies (accounting for multiple markers in each model and its test) include RAREMETAL

(Liu, 2014) and MetaSKAT (Lee, 2013). RAREMETAL implements methods under fixed-

effects models and MetaSKAT implements methods under both fixed-effects models and

random-effects models. One of the mostly-used software for association scans is METAL

(Willer, 2010). It combines across studies either the p-values or the test statistics and the

corresponding standard errors, where sample sizes and directions of effect can be taken into

account.

2.3.2 Refined Meta-Analysis

DerSimonian and Laird (2015) reviewed meta-analysis in clinical trials and mentioned
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Han and Eskin (2011)’s work on the alternative null hypothesis H0 ∶ β = τ = 0. For the refined

method, it recommended the robust variance estimate (Sidik and Jonkman, 2005): instead of

assuming var(Yi) = (wi)−1, V ar(Yi) is replaced by (Yi − µ̂)2, i.e.

var(µ̂) = ∑ ŵi(Yi − µ̂)
2/∑ ŵi(K − 1) (2.37)

Jackson and Riley (2014) extended this robust variance estimate from univariate case to

multivariate meta-analysis and meta-regression. They showed through simulation that this

refined method performed better than standard method when the number of studies n = 2,3.

Ito and Sugasawa (2019) addresses the problem of underestimating standard error using

standard method due to the small number of studies. The proposed method does not depend

on bootstrap, has a relatively simple expression, and is theoretically justified.

2.3.3 Meta-Analysis for Functional Models

On sequencing meta-analysis, Chiu et al. (2017) proposed a method to combine multivariate

response (Wang et al., 2015) with a functional model for meta-analysis (Fan et al., 2015). In

particular, the genetic effect from sequencing data is modeled through a fixed-effect functional

model. Aimed for neuroimaging data modeling, Sørensen et al. (2020) developed meta-analysis

for generalized additive models (GAM) (Hastie and Tibshirani, 1986) g(µ) = β0 +∑
S
s=1 fs(X)

for both fixed effect meta-analysis and random effect meta-analysis in a pointwise manor

through standard approaches. Software implementation of this method is available as an R

package metagam.

2.3.4 Comparison with Mega-Analysis

Mega-analysis is an alternative approach to integrate information across studies by pooling

data from multiple studies. Although imaging-genetic studies may collect similar types of data

such as T1 images, functional MRIs, and genotypes for each individual, the protocol of data

collection and processing usually differ across studies. In addition, the population composition

could also vary across studies, such as age, disease status, and ethnicity. Mega-analytic
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approaches have been applied to address between-study heterogeneity, such as analysis of

large clusters (Bellamy, 2005), direct surrogate variable analysis (dSVA) (Lee, 2017), and

the confounder adjusted testing and estimation (CATE) approach (Wang, 2017). These

methods are also extended to the high-dimensional space. The massive-univariate analysis

of neuroimaging data (Guillaume, 2018) modeled the unknown covariates via adopting and

modifying the CATE, and Huang (2019) embedded surrogate variable analysis (or latent

effect adjustment, confounder adjustment) in a functional regression model, treating images

as functional responses.

Lin and Zeng (2010) compared the efficiency of meta-analysis versus mega-analysis

and found that for all commonly used parametric and semiparametric models, there is

no asymptotic efficiency gain by analyzing original data if the parameter of main interest

has a common value across studies, the nuisance parameters have distinct values among

studies, and the summary statistics are based on maximum likelihood. Zeng and Lin (2015)

derived asymptotic properties of the estimated parameters (β̂MA, τ̂ 2
MA) under random-effects

meta-analysis model and compared their efficiency with MLE estimators (β̂MLE, τ̂ 2
MLE) from

mega-analysis using analysis of large clusters (Bellamy, 2005). The surprising finding from

Zeng and Lin (2015) is that the former is always at least as efficient as the latter.

As for prediction instead of hypothesis testing, Guan et. al. (2019) compared ensembling

(i.e. cross-study learning or meta-analysis) and merging (i.e. mega-analysis) in terms of

prediction accuracy, measured by mean squared prediction error (MSPE). The comparison is

considered in the linear regression setting using random-effects meta-analysis model, where

coefficients are assumed to vary across studies. They show analytically and confirm via

simulation that merging yields lower prediction error than cross-study learning when the

predictor-outcome relationships are relatively homogeneous across studies; as heterogeneity

increases, there exists a transition point beyond which cross-study learning (i.e. meta-analysis)

outperforms merging. The above discussion is considered in two scenarios: (1) least squares

(LS) modeling when the number of predictors is less than the sample size; (2) ridge regression
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Categories Name Method

2.3.1

fixed-effects model βk = β

random-
effects
models

Original DerSimonian
& Laird, 1986 βk = β + ξk

Corrected
Han & Eskin
2011 H0 ∶ β = τ 2 = 0

Tang & Lin
2014

For multi-marker association tests:
burden test, variable threshold test,
variance-component test

TDS Lin et al
2013

MLE approach for TDS in sequencing
studies

2.3.2

Mega-
analysis

Analysis of
large clusters

Bellamy et al
2005 Analysis of large clusters

dSVA Lee et al
2017 Direct surrogate variable analysis

CATE Wang et al
2017

Confounder adjusted testing and
estimation

Functional Huang
2019

Surrogate variable analysis in
functional framework

Meta
vs
mega

Hypothesis
testing

Lin & Zeng
2010
Zeng & Lin
2015

No asymptotic efficiency gain
by analyzing original data

Prediction Guan et al
2019

Mega-analysis yields lower MSPE
than meta-analysis when V ar(ξk)
is small

Table 2.4: Summary of methods reviewed in Section 2.3.

modeling when the number of predictors is larger than the sample size. Under each scenario,

the author derived the corresponding transition points for equal and unequal variances of

elements in the random coefficient vector, respectively.

Methods for ensembling are similar to those for meta-analysis in the way that they both

integrate results from each study through a weighted average. Therefore, theories from

ensembling can potentially be extended to statistical testing meta-analysis. The difference

between the two is that, prediction accuracy (e.g. MSPE) is used to compare ensembling

versus merging, while statistical efficiency (e.g. variance of the coefficient of interest) is

usually examined when comparing meta-analysis against mega-analysis.
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CHAPTER 3: REGION-BASED FUNCTIONAL METHOD

3.1 Introduction

As technology advances in data acquisition for brain images and genetic data, the number

of brain imaging genetic studies are growing with increasing sample sizes. Such studies build

on our knowledge in health-related mechanism and contribute in disease prevention and

treatments. Therefore, efficient approaches are in need to learn important information from

imaging-genetic data. It is of wide interest to detect association between brain images and

genetic markers. In particular, one is interested in identifying region in the brain image that

is associated with a genetic marker or a set of genetic markers from a pool of thousands

or millions of genetic markers. This association detection was first handled by performing

analysis for each voxel (or pixel for 2D image) in the image and for each marker or marker

set throughout the whole genome (Stein, 2010). Recent approaches improved detection power

through making use of intrinsic spatial smoothness and correlation in brain images (Huang,

2017; Lin, 2014; Zhang, 2018; Kong, 2019).

There are still problems unsolved that motivate our proposed approach: in brain images,

the region associated with a predictor may not be well aligned across subjects and tend to

be heterogeneous across subjects (Liu, 2018; Huang, 2019); in addition, registration errors

also arise from the image preprocessing, while most existing approaches assume perfect

alignment and registration across subjects. We propose a region-based functional genome-

wide association detection (rfGWAS) approach to address the above problems. In particular,

we move a small region (i.e. a 2D or 3D window) across the image domain and perform

functional genome-wide association detection on the small region at each location as it moves.

We consider the probability distribution of measurements on all voxels in the region as the

functional response in rfGWAS. The association is then tested between the distribution
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function and genetic markers. This approach can then be used to detect regions that contain

genetically-associated regions (GARs) that vary in location and size.

Compared to traditional voxel-based methods, treating a small region as the finest unit

reduces computation complexity from Ng ×M to Ng ×m, where Ng is the number of markers

(or marker sets), M is the number of voxels in the entire image, and m is the number of

small regions (i.e. window locations) on which we test the association. The high computation

complexity of voxel-based methods, including single-voxel methods and functional methods,

may not be necessary, because one is not necessarily interested in whether a single voxel is

associated with a predictor. The detected association is regarded interesting and meaningful

only if it is larger than a certain size. Although several methods (Ge et al., 2012; Gong et al.,

2018) use cluster-size analysis with random field theory to summarize voxelwise results into

clusters (i.e. regions) in the image, those approaches are still based on computation on each

voxel.

In the method section below, we elaborate on how rfGWAS works. In the simulation

section, we tested the method in several scenario with multiple choices of the association

testing method. We then apply rfGWAS5r to the hippocampus surface data from the ADNI

study (Weiner et al., 2017) and present the detected signals. Lastly, we discuss pros and cons

of rfGWAS, as well as future directions to pursue.

3.2 Method

We propose the region-based functional genome-wide association (rfGWAS) approach:

first cover the entire image with small regions, then summarize the voxelwise values in each

region by its estimated distribution function and transform it to a function in a Hilbert space,

and lastly test the association of the transformed distribution function with the predictor of

interest.

Consider a sample of n individuals, where each individual i (i = 1, . . . , n) has an image

{yi(s) ∶ s ∈ D}, D = {s1, . . . , sM}, and a (p × 1) vector of predictors of interest (e.g. genetic

markers) xxxi.
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Figure 3.1: Steps in the region-based functional genome-wide association (rfGWAS) pipeline.

The following subsections describes in details the components of our pipeline: (i) summarize

the image using regional distributions and the log-quantile transformation; and (ii) pin down

the predictor (e.g. genetic marker) - subregion pairs as signals identified in the association

test.

3.2.1 Regional Distributions and Transformation

The rfGWAS approach is inspired by the sliding-window strategy (Hudson et. al., 1988)

in genetic data analysis, where a window of a certain length slide along the sequence of

markers in disjoint steps with a certain step size. Each analysis is done with all markers in

the window included. In genetic analysis, markers lie in a linear sequence and the window is

one dimensional (1D). In rfGWAS, we take a similar approach to slide a 2D window across

the entire 2D image or a 3D window across the entire 3D image with a particular step size, so

that the entire image is fully covered by all the possible window locations and there are some

overlap between adjacent window locations. In this chapter, we refer each window location

as a "region" in the image, and the entire imaging domain D is thus covered by multiple

overlapping regions {D1, . . . ,Dm}: D = ∪k=1,...,mDk. From now on, we assume the image is 3D

in our following discussion for simple wording; the 2D scenario will be similar.

After the division, we analyze each region for each marker (set) parallelly. For each

marker, we treat each region as a smallest/finest distinguishable unit and do not distinguish

voxels within this unit region. In particular, we focus on the distribution of the measurement

on all voxels within this region and estimate the distribution function fij(y) for the region in
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the image {yi(s) ∶ s ∈ Dj} of each subject i. We are then interested to test the association

between fij(y) and marker (set) xxxi across i = 1, . . . , n.

This conduct of treating a small region on the image as a finest unit instead of distinguishing

each unit in the image can also deal with registration imperfectness. In voxelwise-treating

scheme, each voxel is assumed to be aligned perfectly across subjects, while in reality, the

registration of a voxel across subjects would jitter around the perfect-registration locus.

Specifically, given a region D ∈ D, the corresponding region measured in subject i is Di =

φi(D0), where the map φi(⋅) is random. Then, the voxelwise method performed on voxel sk

is in reality performing the analysis on φ−1
i (sk) in the perfect registration scenario. This is

not clinically rigorous if we assume biological significance vary across voxels.

Now let us discuss the scheme of treating a region as the finest distinguishable unit in the

analysis. We would like to detect a signal at D0. Suppose the sliding region at this area Dk is

large enough s.t. it covers D0 ∪ (∪i=1,...,nD0,i) ∈ Dk. Then, the distribution fik(⋅) would solely

rely on the signal with some random noise, and the registration error would not affect fik(⋅).

Therefore, we continue with our signal-detection pipeline based on the regional distribution

fik(⋅).

As addressed by Petersen and Müller (2016), the density histogram integrates to 1 and and

thus does not lie on the Hilbert space where the common statistical methods are developed;

thus, they propose to transform the density function fij to the Hilbert space using the

log-quantile density (LQD) transformation:

gij(t) = −log{fij(Qij(t))}, where t ∈ [0,1], (3.1)

where Qij = F −1
ij is the quantile function, and Fij(y) = ∫

y

−∞
fij(u)du is the cumulative

distribution function of {yi(s) ∶ s ∈ Dk}. We then transform the problem to testing the

association between gij(t) and xxxi.

When dealing with functional data, there are two general approaches (Liu, 2018): one
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approach is to treat it as the sum of weighted base functions, and the other approach is

to see it as a set of interpolated values of the function, in our case, {gij(t) ∶ t ∈ T}, where

T = {t1, . . . , tr}. Here, we adopt the second approach, where r can be a relatively small integer,

such as 9 and an example of T is {0.1,0.2, . . . ,0.9}. Then, qijk = Qij(tk) is the (100 × tk)th

percentile (or the kth quantile). Therefore, the LQD is also a function of the quantiles qijk,

k = 1, . . . , r:

g̃ij(q) ∶= −log{fij(q)}, where q ∈ R. (3.2)

We choose constants a and b s.t. a < 0 and aC + b > 0, where C = max(q). This gives

∂g̃

∂f
= −

1

af + b
∈ [−

1

aC + b
,−

1

b
], (3.3)

s.t. g̃ does not explode for values of f(⋅) close to 0, and ∆g(⋅) is more sensitive to changes

when the values of f(⋅) are large.

3.2.2 Region-based Statistical Test

As a result, the problem is now testing the association between multivariate variable

gggij ∶= (gij(t1), . . . , gij(tr))T and single- or multi-variate variable xxxi. There are a full class

of statistical methods to deal with this problem. In particular, we will choose the ball

covariance test (Pan, 2019), which is based on the comparison between the two inter-subject

similarity/distance matrices looking at the two variables respectively, regardless the whether

the dimension of each of the variable equals to 1. This nonparametric method stand out from

the commonly used linear-regression-based models in two ways: firstly, this ball covariance

measurement does not restrict the relationship to be measured between the two variables

to be linear; secondly, this ball covariance test directly addresses the interest of association

detection and does not force one variable to be the response and the other to be a predictor,
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thus avoid the hassle to decide between an image-on-scalar model and a scalar-on-image

model, where we are not interested in prediction using some estimated coefficients.

H0 ∶ gggij is not associated with xxxi. (3.4)

H1 ∶ gggij is associated with xxxi.

GBJ Test The input of the GBJ test are: (1) a test on each t ∈ T ; (2) the correlation

between t’s. Using the GBJ function of the GBJ R package, we obtain the output, which is

the global test across t ∈ T .

The GBJ package is designed for correlated tests in GWAS, where the correlation between

tests are due to correlated predictors (genetic markers) in each linear model. We use the GBJ

test slightly different in the way that our correlation between tests are due to the correlation

between response variables, denoted as Yj and Yj′ .

Now we derive the correlation between test statistics at tj and tj′ . Suppose a t-test is

used.

In a linear model, the estimated effect

β̂j = (XTX)−1XTYj, (3.5)

and its variance is

V ar(β̂j) = V ar((X
TX)−1XTYj) = σ

2
j (X

TX)−1. (3.6)

The t-test statistic at tj is

Tj =
β̂j

ŝe(β̂j)
=

√
(XTX)−1XTYj

σj
, (3.7)
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where sigmaj is the standard error of the error term in the linear model at tj.

Therefore, the correlation between the t-test statistics

Corr(Tj, Tj′) = Cov(Tj, Tj′) (3.8)

= Cov(

√
(XTX)−1XTYj

σj
,

√
(XTX)−1XTYj′

σj′
)

= Cov(
Yj
σj
,
Yj′

σj′
)

Ball Covariance Test For a genetic marker (group) xxxi, let XXX = (xxx1, . . . ,xxxn)T denote

the matrix of markers (or marker groups), i.e. predictors, for all individuals and GGGj =

(ggg1j, . . . ,gggnj)T the matrix of transformed regional density of the image for all individuals.

Using the ball covariance (BCov) test, H0 is

BCovw,n(GGGj,XXX) = 0, (3.9)

where BCorw,n is a measure of association introduced by Pan, et al. (2019) and it equals to 0

if and only if there is no association between xxxi and GGGj. Ball covariance is defined as follows:

For random variables X and Y ,

BCov2
w(X,Y ) ∶=∫ (θ − µ⊗ ν)2[B̄ρ(x1, x2) × B̄ζ(y1, y2)] (3.10)

w1(x1, x2)w2(y1, y2)θ(dx1, dy1)θ(dx2, dy2),

where ρ and ζ are distance measures for X and Y , respectively; (X,Y ) ∼ θ, X ∼ µ, and Y ∼ ν.

Here, we use the Euclidean distance for the distance measures.

The empirical ball covariance is defined as

BCov2
w,n(X,Y ) ∶=

1

n2

n

∑
i,j=1

(∆XY
ij,n −∆X

ij,n∆Y
ij,n)

2ŵ1(Xi,Xj)ŵ2(Yi, Yj), (3.11)
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where

∆XY
ij,n =

1

n

n

∑
k=1

δXij,kδ
Y
ij,k, ∆X

ij,n =
1

n

n

∑
k=1

δXij,k, ∆Y
ij,n =

1

n

n

∑
k=1

δYij,k, (3.12)

where δXij,k ∶= I{Xk ∈ B̄ρ(Xi,Xj)} and δYij,k ∶= I{Yk ∈ B̄ζ(Yi, Yj)}. Bρ(Xi,Xj) denotes the ball

with center Xi and radius d(Xi,Xj). Bζ(Yi, Yj) denotes the ball with center Yi and radius

d(Yi, Yj).

In our case, we can use Euclidean distance when calculating the distance between two

subjects in XXX and in GGG:

d(xxxi,xxxi′) =

¿
Á
ÁÀ

p

∑
k=1

(xik − xi′k)2 (3.13)

d(gggij,gggi′j) =

¿
Á
ÁÀ

r

∑
k=1

[gij(tk) − gi′j(tk)]2 (3.14)

A PC-based Euclidean distance can be used alternatively to account for correlation between

dimensions in X or G.

Under H0,

nBCovw,n(Gj,X)
nÐ→∞
ÐÐÐ→

d

∞

∑
v=1

λvZ
2
v ,

where Zv’s are independent standard normal random variables, and λv’s are non-negative

constants that depend on the distribution of (Gj,X). P-value is calculated through paramet-

rically as in (Pan, et. al., 2019). The test is conducted using the "ballgamma" package in

R.

Cluster Size Test Besides regional tests that favors strong region-marker association that

passes the multiple-adjustment threshold, another type of test that favors a moderate strength

of region-marker association but across a significantly large area also provides meaningful

insights in the phenotype-marker relationship. The latter is typically examined using the
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so-called "cluster-size analysis", which is a common conduct in imaging genomics (Ge et al.,

2012; Huang et al., 2017).

We implement the cluster-size test here to provide insight on whether a large area in the

image is associated with a marker, where each (small) region in the area has association with

the marker that passes a user-defined threshold αC .

For marker g and a region j, let pj(g) be the p-value of the regional test between region

j and marker g. Then, obtain S(g) = {j ∶ pj(g) < α}, which is the set of regions with

p-value pj(g) passing the threshold α. The regions in S(g) can be isolated or connected

(termed "clustered" in the cluster-size analysis). Group the connected regions in S(g) into

"mega-regions": Sm(g) = {AAAk ∶AAAk = {Aj (j = 1, . . . ,mgk) ∶ Aj and Aj′ are connected}}, where

AAAm can be a single region Aj if Aj is isolated (not connected to any other region Aj′), i.e.

we allow mgk = 1. Let A(g,α) be the area of the largest mega-region in Sm(g). Then, the

p-value associated with A(g,α) can be obtained through wild bootstrap, which controls for

the FWE (Huang et al., 2017, 2015).

3.2.3 Global Screening

In order to reduce computation, we propose a global screening procedure to subset the

large number of markers before formal statistical tests on each region and each marker.

Subsample-based Screening For the purpose of screening to reduce computation, we

implement an approximated Tj based on subsampling. Given the fact that Tj based on

ball correlation requires a computational complexity O(n2 logn) under our multivariate

case, the most efficient way to reduce computation complexity is to reduce n. We have

considered another possibility of simplifying the algorithm based on the fact that the response

is unchanged when testing against all markers, although the computation reduction using

relevant technique does not change the order of the computation complexity and only result in

a minor reduction in computation. Besides the fact that computation of Tj is a high order of

n, the major reason we consider using the subsampling scheme to reduce computation resides
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in the nature of genotype data – most markers have low minor allele frequencies (MAFs).

Given a marker, let p be its MAF and q = 1 − p, and let A and B be its major and minor

allele, respectively. Under Hardy-Weinberg equilibrium, the number of individuals with two

mutation alleles, i.e. with genotype BB, is expected to be np2; the number of individuals with

one mutation allele, i.e. with genotype AB (or BA), is expected to be npq; and the number

of individuals with both alleles non-mutated, i.e. with genotype AA, is expected to be nq2.

Let’s look at a real example: for the UK Biobank imaging cohort, currently there are

nearly 40,000 individuals with images available. For a SNP with MAF 0.1, i.e. p = 0.1, the

number of individuals in the three genotype groups BB, AB, and AA are 400, 7,200, and

32,400, respectively. Statistical methods model the relationship between the genotype and

the response of interest, denoted as y, to investigate the difference between these three groups

in terms of y. Given the large difference in the sample sizes between the three groups, our

intuition is that the power of a statistical test would not suffer much if we reduce the sample

size in the genotype-AA group (or also in the genotype-AB group). For a most conservative

sample size reduction – reducing the sample size of genotype-AA group to 7,200, our total

sample size ñ becomes 14,800. With a computation complexity to the order of n2 log(n), the

computation is reduced by 8 times as a result. If we further reduce the sample size in each

group to 400, the resulting total sample size of 1,200 would give a computation reduction of

1,660 times.

In genomic analyses, a large sample size enables signal detection given a large number of

markers for multiple comparison adjustment; but for the purpose of screening, we include

a conservative large pool markers to allow the computation complexity for the next-step

analysis. Therefore, a smaller sample size would not be a problem for the use of screening, and

a smaller sample size should not largely affect the rank of the test statistics. Therefore, we

propose a screening procedure using a simplified test statistic based on a subset of individuals.

In particular, we conduct the subsampling by setting a total subsample size ñ. Suppose

we have x in integer dosage values 0, 1, and 2. Let ñ0, ñ1, ñ2 be the corresponding sample size
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in each dosage group in the subsample (and let n0, n1, n2 be the corresponding sample sizes

in the entire sample with size n). We propose a simple subsampling strategy for the tentative

testing stage, which can potentially be improved and optimized in later work. The ideal

case of testing the difference between the group for optimized power would to have balanced

sample size ñ0 = ñ1 = ñ2 = ñ/3, but given the fact of Hardy-Weinberg equilibrium, we expect

ñ2 ≤ ñ1 ≤ ñ0, and it is even likely that tilden/3 > n2, which is the total number of individuals

with dosage level x = 2 available in the entire cohort. Therefore, we take ñ2 = min(n2, ñ/3),

and then from the remaining sample size ñ − ñ2, subsample ñ1 = min(n1, (ñ − ñ2)/2) and

ñ0 = ñ − ñ2 − ñ1. Samples are randomly drawn in each dosage group with the designated

subsample size (i.e. ñk samples randomly drawn from nk subjects in dosage group x = k,

for k = 0,1,2). This subsample technique pushes the subsample sizes to the optimal case of

ñ0 = ñ1 = ñ2 = ñ/3, and when the sample sizes in dosage groups are strongly unbalanced that

this optimal scheme cannot be fulfilled, the above proposed subsampling strategy results in

ñ0, ñ1, ñ2 tilted towards the distribution of sample size in dosage groups, s.t. the resulting

statistic tilded towards the statistic based on the entire sample, given that the value of the

statistic could be influenced by the sample size distribution (n0, n1, n2) in the dosage groups.

A Global Statistic Let TTT = (T1, . . . , Tm)T be the vector of test statistics for regions

1, . . . ,m. Let ej = I{Tj > αG}, where j = 1, . . . ,m and αG is a global-screening threshold; let

JαG = (e1, . . . , em). Construct a global statistic as the average of large elements in TTT that

pass the global-screening threshold αG:

TG =
JαGTTT

JαGJ
T
αG

=
1

m̃
∑

j∶Tj>αG

Tj, (3.15)

where m̃ = JαGJ
T
αG

is the number of regions with Tj > αG. The distribution of TG is not

derived for its complexity when Tj’s are ball correlations and also for the reason that in

global screening, markers with top-ranked TG’s are selected without the need to calculate the

corresponding p-values.

39



The Screening Procedure Sort TG’s for all markers and select the n0-top-ranking markers.

A simplified calculation of BCor for SNP screening is presented in the Appendix.

3.3 Simulation

3.3.1 Compare association testing methods on one region or one voxel

We simulated 10 settings as in section 4.1 of Pan et. al. (2018) to compare the statistical

testing methods on one region or one voxel. The first 4 settings are generated under the null

hypothesis, where X and Y are independent. In settings 6 to 10, X and Y are related. The

10 settings are described as follows:

1. X,Y are independent from the standard normal distribution N(0,1).

2. X,Y are independent from the binomial distribution B(10,0.5).

3. Z1, Z2 are independent from the binomial distribution B(10,0.5), and

X = Z2
1 +Z1, Y = Z2

2 +Z2.

4. (X,Y ) are from the 10-dimensional multivariate normal distribution with µ = 0,

cov(Xi,Xi) = cov(Yi, Yi) = 1, i = 1, . . . ,5, cov(Xi,Xj) = cov(Yi, Yj) = 0.2, 1 ≤ i < j ≤ 5

and cov(Xi, Yj) = 0, i, j = 1, . . . ,5.

5. Z1, . . . , Z4 are independent from the binomial distribution B(10,0.5), Z5 ∼ B(20,0.5),

Y = sin(Z1)(Z2 +Z5)
2/(Z3 + 1) + log(Z4 +Z5 + 1),

where X = (Z1, . . . , Z4).
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6. Z1, Z2, Z3, Z4 are independent from the standard normal distribution N(0,1), and

Y1 = (4 −Z2
1)Z3Z4 +Z2Z

2
4 ,

Y2 = (4 −Z2
2)Z3Z4 +Z1Z

2
4 ,

where X = (Z1, Z2, Z3), Y = (Y1, Y2).

7. X,Y are from the 10-dimensional multivariate normal distribution with mean µ =

0, cov(Xi,Xi) = cov(Yi, Yi) = 1, i = 1, . . . ,5, cov(Xi,Xj) = cov(Yi, Yj) = 0.2, 1 ≤ i < j ≤ 5

and cov(Xi, Yj) = 0.2, i, j = 1, . . . ,5.

8. Z1, . . . , Z6 are independent from the standard normal distribution N(0,1),

Y1 =
√

∣Z1 +Z2
4 ∣ +Z

2
5 ,

Y2 = Z2Z5 + tanh(Z6),

where X = (Z1, Z2, Z3, Z4, Z6), Y = (Y1, Y2) and tanh(⋅) is the hyperbolic tangent

function.

9. Z1, . . . , Z5 are independent from the t distribution with 3 degrees of freedom and

Y1 = (Z1 +Z2)
3 +Z2

5 ,

Y2 = Z3Z4 + tanh(Z5),

Y3 = Z
2
1 +Z5,

where X = (Z1, Z5), Y = (Y1, Y2, Y3) and tanh(⋅) is the hyperbolic tangent function.
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Setting Dim of X Dim of Y BCov RdCov sKPRC AdaMant lm
1 1 1 x x x x
2 1 1 x x x x
3 1 1 x x x x
4 5 5 x x x
5 4 1 x x x x
6 3 2 x x x
7 5 5 x x x
8 6 2 x x x
9 2 3 x x x
10 7 2 x x x
SNP 1 1 x x x x

Table 3.1: Dimensions of variables and applicable statistical testing methods.

10. Z1, . . . , Z7 are independent from the t distribution with 1 degree of freedom and

Y1 = tanh(Z1Z2Z6),

Y2 = cos[I(Z4 > 0)Y1 + I(Z4 < 0)Z2],

where X = (Z1, . . . , Z7), Y = (Y1, Y2) and I(⋅) is the indicator function.

The dimensions of X and Y of the 10 settings, as well as a setting to mimic the dosage

values of genetic markers in X (detailed in the next subsection), are summarized in table

and methods applicable are summarized in Table 3.1.

For each of the 10 settings, we simulated 1,000 random datasets with sample size 30, 50,

70, 100, respectively. Then we applied all applicable methods in each setting to test the

association between X and Y . The null hypothesis is rejected at level of 0.05. Rejection

rates among the 1000 repeats are listed in Table 3.2. Settings 1 to 4 reflects the type I errors

under different scenario.

As can be seen from the above table, BCov with p-values calculated using parametric

methods has large type I errors. We think that this is due to the small sample sizes (n ≤ 100).

In order to test this, we increased the sample size to 300, 500, 700, and 1,000, and generated

1,000 random samples for each setting and each sample size. The rejection rates (type I
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s n BCov Rd-
Cov

sK-
PCR

Ada-
Mant

lm
const. prob. chisq sw hbe lpb4

1

30 0.049 0.061 0.051 0.158 0.149 0.153 0.045 0.049 0.055
50 0.05 0.043 0.045 0.112 0.097 0.1 0.04 0.046 0.049
70 0.056 0.053 0.059 0.115 0.101 0.105 0.048 0.048 0.049
100 0.056 0.048 0.05 0.085 0.072 0.078 0.052 0.051 0.049

2

30 0.051 0.057 0.047 0.07 0.067 0.068 0.045 0.043 0.043
50 0.049 0.053 0.041 0.067 0.063 0.065 0.042 0.059 0.054
70 0.039 0.042 0.039 0.052 0.048 0.05 0.045 0.039 0.042
100 0.041 0.031 0.046 0.051 0.044 0.047 0.055 0.051 0.057

3

30 0.046 0.052 0.043 0.076 0.071 0.072 0.045 0.038 0.045
50 0.054 0.057 0.052 0.077 0.07 0.072 0.042 0.05 0.05
70 0.037 0.042 0.039 0.059 0.053 0.053 0.045 0.042 0.049
100 0.04 0.038 0.046 0.064 0.053 0.056 0.055 0.047 0.051

4

30 0.05 0.055 0.058 0.243 0.237 0.24 0.049 0.08
50 0.055 0.049 0.059 0.172 0.16 0.166 0.049 0.08
70 0.053 0.053 0.058 0.124 0.12 0.122 0.055 0.078
100 0.059 0.061 0.06 0.118 0.109 0.112 0.051 0.062

5

30 0.866 0.934 0.935 0.975 0.97 0.972 0.187 0.217 0.221
50 0.991 0.999 0.999 0.999 0.998 0.999 0.43 0.3 0.308
70 1 1 1 1 1 1 0.69 0.352 0.36
100 1 1 1 1 1 1 0.939 0.474 0.485

6

30 0.506 0.631 0.574 0.792 0.777 0.787 0.55 0.149
50 0.745 0.909 0.845 0.879 0.867 0.872 0.857 0.156
70 0.873 0.991 0.961 0.945 0.935 0.938 0.97 0.15
100 0.962 1 0.994 0.98 0.979 0.98 0.993 0.192

7

30 0.448 0.355 0.457 0.725 0.715 0.717 0.1 0.089
50 0.712 0.569 0.723 0.849 0.837 0.845 0.15 0.06
70 0.866 0.739 0.876 0.936 0.931 0.931 0.289 0.081
100 0.97 0.913 0.977 0.99 0.988 0.988 0.49 0.074

8

30 0.725 0.746 0.738 0.913 0.91 0.912 0.326 0.116
50 0.955 0.967 0.963 0.983 0.982 0.983 0.672 0.148
70 0.984 0.997 0.992 0.996 0.995 0.995 0.943 0.181
100 0.999 1 1 0.999 0.999 0.999 0.997 0.216

9

30 0.993 1 0.998 0.999 0.999 0.999 0.949 0.628
50 1 1 1 1 1 1 1 0.782
70 1 1 1 1 1 1 1 0.858
100 1 1 1 1 1 1 1 0.889

10

30 0.377 0.447 0.394 0.639 0.609 0.627 0.082 0.098
50 0.634 0.757 0.656 0.774 0.755 0.765 0.104 0.093
70 0.77 0.914 0.832 0.862 0.845 0.852 0.171 0.103
100 0.913 0.983 0.943 0.952 0.936 0.949 0.181 0.097

Table 3.2: Rejection rates of 10 simulation settings to compare different methods on only one
region or voxel. The first three BCov methods are based on bootstrap.
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s n p.sw p.hbe p.lpb4

1

200 0.07 0.059 0.062
300 0.07 0.055 0.065
500 0.065 0.058 0.061
700 0.063 0.057 0.06
1000 0.051 0.045 0.048

2

200 0.073 0.068 0.071
300 0.06 0.052 0.054
500 0.075 0.069 0.071
700 0.063 0.054 0.057
1000 0.038 0.036 0.038

3

200 0.08 0.073 0.075
300 0.054 0.052 0.053
500 0.067 0.063 0.065
700 0.061 0.059 0.06
1000 0.043 0.038 0.04

4

200 0.073 0.061 0.066
300 0.079 0.07 0.073
500 0.069 0.06 0.064
700 0.063 0.052 0.055
1000 0.071 0.056 0.062

Table 3.3: Type I error rate of BCov, with p-values calculated using parametric methods, for
larger sample sizes.

errors) for settings 1 to 4 for larger sample sizes are shown in Table 3.3.

3.3.2 Compare association testing methods on SNP dosages for different MAFs

Furthermore, we also tested the performance of the methods when X takes values 0, 1, or

2 to mimic the dosages of genotype data. We varied MAFs from 0.05, 0.1, 0.25, to 0.5. 1,000

repeated datasets are generated for each MAF level. The model used to generate the data is

Yi = 0.4Xi + εi, (3.16)

where εi ∼ N(0,1) and Xi ∼ Binom(2, p). For p = 0.05,0.1,0.25, and 0.5, the variation

explained by the marker is 1.5%,2.8%,5.7%, and 7.4%, respectively. The statistical testing

methods applicable in this setting is listed in Table 3.1, and rejection rates (powers) are

shown in Table 3.4. Number of valid datasets simulated are also listed for each setting and
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MAF n #Repeats BCov.sw BCov.hbe BCov.lpb4 RdCov AdaMant lm
0.05 100 1000 0.10 0.10 0.10 0.09 0.23 0.22
0.05 200 1000 0.23 0.22 0.23 0.15 0.37 0.40
0.05 500 1000 0.55 0.53 0.54 0.25 0.77 0.78
0.05 750 1000 0.76 0.75 0.76 0.39 0.91 0.92
0.05 1000 1000 0.87 0.87 0.87 0.50 0.97 0.97
0.1 100 1000 0.20 0.20 0.20 0.19 0.35 0.37
0.1 200 1000 0.43 0.42 0.42 0.33 0.62 0.63
0.1 500 1000 0.83 0.82 0.82 0.69 0.96 0.96
0.1 750 1000 0.95 0.95 0.95 0.86 0.99 0.99
0.1 1000 1000 0.99 0.99 0.99 0.96 1.00 1.00
0.25 100 1000 0.41 0.40 0.41 0.51 0.64 0.67
0.25 200 1000 0.71 0.69 0.70 0.80 0.92 0.93
0.25 500 1000 0.98 0.98 0.98 1.00 1.00 1.00
0.25 750 999 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1000 1000 1.00 1.00 1.00 1.00 1.00 1.00
0.5 100 1000 0.42 0.40 0.41 0.67 0.80 0.81
0.5 200 1000 0.73 0.72 0.72 0.94 0.97 0.98
0.5 500 1000 0.99 0.99 0.99 1.00 1.00 1.00
0.5 750 1000 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1000 1000 1.00 1.00 1.00 1.00 1.00 1.00

Table 3.4: Compare power of methods for smaller effect size and including larger sample size.

sample size, because when MAF is low and when the sample size is small, there are cases

where all subjects are assigned dosage value 0. We excluded those cases in the association

testing using different statistical methods and calculation of rejection rates. The numbers of

valid repeats (≤ 1,000) are listed in column 3 of Table 3.4.

For a non-linear model

Yi = −0.4(Xi − 1.2)2 + εi, (3.17)

where εi ∼ N(0,1) and Xi ∼ Binom(2, p). For p = 0.05,0.1,0.25, and 0.5, the variation

explained by the marker is 2.6%, 4.5%, 6.6%, and 5.0%, respectively. The resulting powers of

different methods are compared in Table 3.5.
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MAF n #Repeats BCov.sw BCov.hbe BCov.lpb4 RdCov AdaMant lm
0.05 100 1000 0.16 0.16 0.16 0.13 0.33 0.35
0.05 200 1000 0.37 0.36 0.37 0.21 0.57 0.59
0.05 500 1000 0.81 0.80 0.80 0.42 0.93 0.94
0.05 750 1000 0.95 0.95 0.95 0.64 0.99 0.99
0.05 1000 1000 0.99 0.99 0.99 0.78 1.00 1.00
0.1 100 1000 0.35 0.34 0.35 0.27 0.50 0.51
0.1 200 1000 0.63 0.62 0.63 0.51 0.79 0.81
0.1 500 1000 0.98 0.98 0.98 0.91 1.00 1.00
0.1 750 1000 1.00 1.00 1.00 0.98 1.00 1.00
0.1 1000 1000 1.00 1.00 1.00 1.00 1.00 1.00
0.25 100 1000 0.56 0.54 0.55 0.56 0.55 0.56
0.25 200 1000 0.85 0.84 0.84 0.86 0.86 0.87
0.25 500 1000 1.00 1.00 1.00 1.00 1.00 1.00
0.25 750 1000 1.00 1.00 1.00 1.00 1.00 1.00
0.25 1000 1000 1.00 1.00 1.00 1.00 1.00 1.00
0.5 100 1000 0.38 0.37 0.37 0.25 0.22 0.22
0.5 200 1000 0.68 0.66 0.67 0.46 0.35 0.35
0.5 500 1000 0.97 0.97 0.97 0.87 0.66 0.69
0.5 750 1000 1.00 1.00 1.00 0.99 0.83 0.86
0.5 1000 1000 1.00 1.00 1.00 1.00 0.92 0.92

Table 3.5: Power comparison between methods for nonlinear dosage relationship.
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3.3.3 Compare association testing methods on multiple regions with registra-
tion error

We simulate the imaging response with the effect from a single (genetic) predictor of

interest. The imaging response is simulated to represent the left hippocampus surface data

from ADNI with a total number of M = 15,000 grid points, with sample size n = 100, 200,

or 500, which produces the response matrix with dimension n ×M . The coordinates of

M = 15,000 voxels of the hippocampus surface is mapped to a 150 × 100 2-D rectangle. We

thus work on this 2-D rectangle for subregion division and characterization of the connected

affected region. We suppose the mechanism of how the predictor (genetic marker) affect a

subregion of the response (image) as follows: there is a region A in the brain image that is

affected by the genetic marker. In order to mimic the inaccurate registration of the images,

we allow A to vary across subjects and let Ai be the affected region in subject i. Simulate Ai

to be a round area with center (xj, yi) and radius ri, and let xi ∼ N(x0, σ2
x), yi ∼ N(y0, σ2

y),

and ri ∼ N(10, σ2
r). Let (x0, y0) = (50,50), σ2

x = σ
2
y ∈ {1,2,2.5,3,4,5}, and σ2

r ∈ {0,1,2,3}.

This yields a region with 317 voxels on average, which is approximately 2% of the entire

rectangle (representing the hippocampus surface) area.

At each grid point d in the imaging response, simulate a y(d) as the observed value of

the functional response, which follows the model

yi(d) = ziγ(d) + xiβi(d) + εi(d) (3.18)

and let βi(d) = aβ0(d), where β0i(d) = 1 for d ∈ Ai and equals to 0 otherwise, and a =

{0,0.25,0.5}, which allows us to evaluate the type I error and power at different effect sizes

through the rejection rate among the 1000 simulating runs under each of these three scenario.

In this simulation study, we generate the response as a smooth function of d, so as to avoid

the task of adding noise in the simulated data and then smooth the data in the preprocessing
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step. Therefore, εi(d) is simulated as

εi(d) = ξ1,iψ1(d) + ξ2,iψ2(d), (3.19)

where

ψ1(d) =
√

0.5 sin(
2πxd
150

)

ψ2(d) =
√

0.5 cos(
2πyd
100

)

and

ξ1,i = λ1Z1,i, ξ2,i = λ2Z2,i; with

λ1 =
√

1.2, λ2 =
√

1.0,

where Z1,i and Z2,i are independent standard normal random variables; i = 1, . . . , n. This yields

εi(d) to range from (−6.29,6.29), with sample variance 2.03, which is close to 2.2 = λ2
1 + λ

2
2.

We assume that the response is already adjusted for the covariates and that xi is a scalar

that takes values 0, 1, and 2. Thus, xi’s are simulated from Binom(2,0.2). In summary, we

simulate the data in the 13 settings as listed in Table 3.5.

We analyzed the simulated datasets using the rbGWAD pipeline. Firstly, cover the entire

image with overlapping regions. Set b = 10 for the analysis in all the 13 settings, then each

squared region with side length 2b would include (2b)2 = 400 grid points. In the case of

M = 15, 000 and b = 10, the number of regions m = 126 = (150
b − 1)(100

b − 1). Among which, we

expect around 9 subregions to detect significant effect. Secondly, for region j (j = 1, . . . ,126)

of subject i (i = 1, . . . , n), summarize the measurements of all voxels into the LQD function

gij(t) (t ∈ T = [0,1]). In the analysis, we set T to be r = 21 equivalently spaced points on

[0,1] to numerically represent gij(t): T = {0,0.05,0.10,0.15, . . . ,0.95,1}. Lastly, test the

association between gij(t) (t ∈ T ) and xi for j = 1, . . . ,126.
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β n σ2
x = σ

2
y σ2

r

1 0 200 2 0
2 0.25 200 2 0
3 0.5 200 2 0
4 0.25 100 2 0
5 0.25 500 2 0
6 0.25 200 1 0
7 0.25 200 2.5 0
8 0.25 200 3 0
9 0.25 200 4 0
10 0.25 200 5 0
11 0.25 200 3 1
12 0.25 200 3 2
13 0.25 200 3 3

Table 3.6: A summary of the 13 settings for the simulated hippocampus surface data.

We mainly compared the BCov test and GBJ test on all 13 settings, and the rejection

rates on each region are listed in heatmaps. Figure 3.1 compared the type I errors of BCov

test and GBJ test, Figure 3.2 lists the rejection rates in settings 2-13 by BCov, and Figure

3.3 lists the rejection rates in settings 2-13 by GBJ. As can be seen from Figure 3.1, type

I errors are well controlled for both BCov test and GBJ test, although GBJ may have a

deflated type I error. Comparing Figure 3.2 and Figure 3.3, we can see that BCov tend to

give a more accurate detected region.

We also compared BCov and GBJ with other testing methods, including AdaMant, RdCov,

and sKPCR, on a setting with registration errors in terms of both location shift and size

variation of the affected region. Those rfGWAS implementations are also compared with the

voxelwise method using simple linear regression. The rejection rates of those methods are

compared in heatmaps in Figure 3.4.

3.3.4 Global Screening

The SNP data is simulated using COSI (Schaffner et al. 2005). First, 9880 haplotypes are

simulated using COSI for 100 1Mb regions. Then, the SNPs are ascertained/thinned to match

HapMapII SNP frequency distribution. Those haplotypes are randomly combined in pairs
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Figure 3.2: The type I errors using BCov (left) and GBJ (right).

to generate 9880/2 = 4940 individuals and 1000 individuals. Then, in each cohort, SNPs

are filtered for MAF>0.05. We end up with 77,603 SNPs for the cohort with sample size

N=4940 and 77,100 SNPs with the cohort with sample size N=1000. Randomly select 100

causal SNPs from the two cohorts, respectively, and generate y based on their additive effect

yi(d) = ∑
100
g=1 x

(g)
i β(g)(d)+εi similar to the generating procedure in the third simulation setting.

The SNP data X remains the same across the 100 repeats and all the testing scenarios. Use

a = 0.25 as the effect size, which is the medium effect size in simulation setting 3 (0, 0.25, or

0.5) and about half of the dosage simulation effect size (0.4).

For the subsample-based screening, the subsample sizes for N=4940 are n=2000, 1000,

and 500, and the subsample sizes for N=1000 are n=1000, 500, and 200. The inclusion set

size from 100 to 2,000 (100, 300, 600, 900, 1200, 1500, 1800, 2000 as in FGWAS).

For the 100 causal SNPs (g = 1, . . . ,100), simulate the affected regions as in section ??

(add section number for simulation 3). In particular, denote the affected region of marker g

in individual i as A(g)
i , which is a round area with center (x

(g)
i , y

(g)
i ) and radius r(g)i , where

x
(g)
i ∼ N(x

(g)
0 , σ2

x), y
(g)
i ∼ N(y

(g)
0 , σ2

y), and r
(g)
i ∼ N(10, σ2

r). Use the values of the parameters
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Figure 3.3: Rejection rates using BCov for settings 2-13 (plots ordered by row).
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Figure 3.4: Rejection rates using GBJ for settings 2-13 (plots ordered by row).
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Figure 3.5: Comparison of the rejection rates using different methods to analyze simulated
hippocampus surface data under setting 11.
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as in setting 12 of simulation 3, i.e. effect size a = 0.25, σ2
x = σ2

y = 3, and σ2
r = 2. Allow

(x
(g)
0 , y

(g)
0 ) to be different across g = 1, . . . , 100 so that marker effects do not lay over the same

region, which could add a layer of detection difficulty; different (x
(g)
0 , y

(g)
0 )’s also mimic the

real scenario that different markers affect different regions. The entire image is simulated

by a 150 × 100 rectangle. If A(g)
i touches the boarder, let A(g)

i be the part that is within the

image. If (x
(g)
0 , y

(g)
0 ) is near the edge of the 150 × 100 image s.t. A(g)

i crosses the boarder,

the resulting size of A(g)
i would shrink and the effect of marker g is thus different from other

markers due to the location of (x(g)
0 , y

(g)
0 ), and thus resulting an unfair comparison with other

markers in the global screening. Therefore, restrict (x
(g)
0 , y

(g)
0 ) to stay away from the image

boarder s.t. given the variation in (x
(g)
i , y

(g)
i ) and r(g)i , A(g)

i would still largely remain in the

150 × 100 image. Generally, we expect only few realizations of a normal random variable

to be more than 2 times standard errors away from its mean. So the most distant points

in A(g)
i should stay within 2σx + (10 + 2σr) = 2σy + (10 + 2σr) ≈ 16.3 to (x

(g)
0 , y

(g)
0 ). Extend

this "safe range" to 20 for ease of specification and for a safer range. Therefore, restrict

x
(g)
0 ∈ [20,130] and y

(g)
0 ∈ [20,80]. Randomly scatter (x

(g)
0 , y

(g)
0 ) in [20,130] × [20,80] for

g = 1, . . . ,100 (Figure "Center Means of Affected Regions").

Use 100 Monte Carlo realizations to calculate the average causal SNP inclusion rate for

each setting, and summarize the result in Figure 3.6, where the causal SNP inclusion rate is

calculated as the ratio of number of causal SNPs included in the top G0 SNPs over the total

number of 100 causal SNPs.

From Figure 3.6, we can see that for the same total sample size N , the inclusion rate

increases with the subsample size n and the number of top SNPs included for screening.

Also, for the same subsample size n, the inclusion rate increases as the total sample size N

increases. This is because when the total sample size increases, the number of subjects with

alternative alleles also increases. These subjects are likely to be included into the subsample

and create a larger effective sample size for the evaluation. Therefore, a true signal becomes

more likely to be detected in such cases.
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3.4 Real Data Application

The brain imaging genetic data used in this analysis is from ADNI. We used the hip-

pocampus surface data as described in (Huang, 2017). Number of SNPs in this analysis is

503,892. In this analysis, we included 730 individuals. In either the left or right hippocampus

surface data, each individual has 15,000 data points, which was covered by 126 overlapping

regions in the same manner as described in section 3.3.3 in the simulation. The p-value

threshold under Bonferroni correction is 7.875e-10 = 0.05/126/503,893. The analysis using

rfGWAS is the same as described in section 3.3.3, with BCov test used in the association

testing step. We discovered 47 signals as shown in Tables 3.7-3.8, with p-values sorted from

smallest to largest.

Figure 3.7 displays the density curves of region 47 on the left hipopcampus surface by

dosage levels (0, 1, or 2, representing genotypes CC, TC or CT, and TT, respectively) of

SNP rs2736372 (at chromosome 8, position 11143451) with 30 samples randomly selected for

each dosage level. This region-SNP combination is selected because it is the most significant
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Figure 3.6: Inclusion rates
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Chr SNP Pos Reg. P-value
8 rs2736372 11143451 47 3.78E-13
2 rs2218495 193450323 77 7.09E-13
3 rs7625888 55886177 3 3.00E-12
3 rs212016 59956565 68 5.49E-12
5 rs6875999 95496745 36 1.45E-11
13 rs1361576 103206029 117 1.55E-11
1 rs6663218 94176826 82 1.84E-11
9 rs9407756 16321304 18 3.05E-11
9 rs10780800 88699264 55 3.35E-11
9 rs10780800 88699264 66 5.05E-11
15 rs11629621 75867792 54 5.48E-11
20 rs1077577 56520675 37 5.90E-11
1 rs7525764 50617284 114 9.41E-11
1 rs6424278 231284033 29 1.16E-10
11 rs1901843 5922991 100 1.18E-10
8 rs958648 11141305 47 1.26E-10
4 rs1902859 81376727 49 1.36E-10
16 rs4580141 8555210 87 1.56E-10
4 rs13152105 77962544 122 1.62E-10
5 rs16771 103605382 51 1.87E-10
11 rs10790680 123820969 62 2.10E-10
3 rs1320288 21777300 45 2.17E-10
11 rs12789966 98547209 124 2.22E-10
4 rs10029313 40044904 113 2.57E-10

Table 3.7: 47 significant SNPs identified by rfGWAS on the left hippocampus surface (a).
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Chr SNP Pos Reg. P-value
15 rs1869258 41590913 124 2.78E-10
14 rs6572493 22042795 118 2.80E-10
6 rs9457760 157889784 90 2.87E-10
8 rs4840969 8385081 23 2.99E-10
8 rs12676771 126603006 108 3.11E-10
4 rs1365488 100889738 47 3.17E-10
6 rs16900289 157926844 26 3.22E-10
8 rs10505101 108353121 5 3.25E-10
20 rs4812716 41569181 59 3.43E-10
15 rs11852746 53771557 76 3.68E-10
9 rs10961291 13866562 45 3.90E-10
2 rs1975583 200934147 85 4.16E-10
10 rs183827 83098389 88 4.20E-10
17 rs181246 53561087 85 4.39E-10
8 rs7816304 142558176 65 4.41E-10
15 rs2118157 32769236 8 4.86E-10
21 rs233232 44792782 75 5.35E-10
6 rs17053280 128837580 77 5.35E-10
17 rs202581 10732458 77 5.82E-10
12 rs12312219 50837457 105 7.07E-10
18 rs163221 22763991 67 7.37E-10
10 rs11257127 11570878 66 7.47E-10
4 rs13101823 26784600 89 7.87E-10

Table 3.8: 47 significant SNPs identified by rfGWAS on the left hippocampus surface (b).
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association detected as can be seen from Table 3.6.

73 signals are discovered for the right hippocampus surface as listed in Tables 3.9-3.10.

3.4.1 Comparison with FGWAS

We then applied FGWAS (Huang et al., 2017) to the same data, i.e. the same set of

SNPs on the hippocampus surface of the same imaging modality (radius) from ADNI with

the same set of subjects and same set of covariates adjusted.

For the top SNP for each side from our method, extract and plot their local signals of

adjusted p-values, as well as the signal pattern from our method as comparison (Figure 3.8).

We also plotted the top SNP for each side from FGWAS in Figure 3.9.

A detailed description of the FGWAS result can be found in Appendix 2.

3.5 Discussion

In this chapter, a regional functional GWAS (rfGWAS) framework is developed for

imaging-genetic data to detect associations between genetic markers and brain regions,

while taking into consideration registration errors across individual images. This purpose

is accomplished by sliding a window across the entire brain and examining the strength of

association between genetic markers and the brain region at each location of the window.

The regions are overlapped and cover the entire brain, each summarized by a selected set of

quantiles from the smoothed density curve of the distribution of the voxelwise values in the

region. The association between each target region and the genetic markers is examined in a

GWAS manner, where the genetic markers can either be examined one by one, or in groups,

depending on the association detection method of choice. One can select methods from the

pool of both linear and nonlinear method to examine the association strength between genetic

markers and the region of interest. The method we propose is the ball covariance (Pan et al.,

2019), which can capture nonlinear associations between two arbitrarily-dimensional variables,

with good power and type I error control. We then examined our method by using simulation

studies and applied it to the hippocampus surface radial distance data from the ADNI cohort.

Significant SNP-region pairs are identified and reported, and the results from our method are
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Chr SNP Pos Reg. P-value
6 rs9381225 42987267 38 9.95E-14
11 rs4603268 95454068 68 1.75E-13
11 rs7944077 11488123 65 2.77E-13
21 rs2834215 33718756 98 1.55E-12
15 rs2036349 95944662 84 2.88E-12
22 rs878734 41993678 100 3.06E-12
13 rs719103 49894661 76 8.60E-12
14 rs9323434 62777402 80 8.87E-12
8 rs406800 88604177 52 1.07E-11
11 rs7108440 1630212 64 1.63E-11
8 rs445448 88604096 52 2.15E-11
22 rs739079 47977447 100 2.51E-11
14 rs10150375 62761025 80 3.48E-11
21 rs1059293 33731563 98 3.62E-11
11 rs7109505 36245328 66 4.49E-11
13 rs9568431 49953648 76 4.69E-11
4 rs1382658 164256751 29 4.73E-11
3 rs4077972 72079519 20 4.88E-11
19 rs4802867 56991697 95 5.07E-11
1 rs12132073 110965216 4 5.21E-11
1 rs1055565 209672320 7 5.56E-11
1 rs2131562 110968762 4 6.36E-11
19 rs17305227 58986294 95 6.96E-11
12 rs4764764 99787007 73 7.09E-11
21 rs1044213 33743561 98 7.89E-11
5 rs17088025 97451359 33 8.16E-11
11 rs7107470 11506226 65 8.85E-11
22 rs4821512 35343640 100 8.98E-11
11 rs12293070 131668714 69 9.94E-11
13 rs1924373 49843707 76 1.12E-10
2 rs7597214 109311672 12 1.14E-10
12 rs7313843 15102438 70 1.20E-10
9 rs2477518 27589746 56 1.23E-10
5 rs12188891 163535330 35 1.42E-10
12 rs10860647 99766229 73 1.44E-10
22 rs4821513 35343765 100 1.46E-10
3 rs7643459 7979828 17 1.51E-10

Table 3.9: 73 significant SNPs identified by rfGWAS on the right hippocampus surface (a).
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Chr SNP Pos Reg. P-value
3 rs9808938 61524608 19 1.57E-10
4 rs6449435 18517616 24 1.83E-10
13 rs9568430 49950822 76 1.91E-10
4 rs2314137 162485246 29 2.06E-10
11 rs522616 102220258 68 2.07E-10
8 rs391916 88581402 52 2.17E-10
11 rs7944077 11488123 65 2.27E-10
1 rs497870 213178768 7 2.38E-10
8 rs12386970 22741098 50 2.69E-10
5 rs6555554 8611215 30 2.81E-10
16 rs251108 67608709 86 3.00E-10
3 rs2695642 22105396 18 3.17E-10
8 rs452325 88574482 52 3.21E-10
11 rs1944936 74096811 67 3.28E-10
14 rs12435524 21204085 78 3.43E-10
6 rs1132643 123088715 41 3.73E-10
10 rs2084882 33905831 61 3.83E-10
20 rs1927333 20206395 96 3.89E-10
8 rs12676238 117640909 53 3.90E-10
14 rs6571976 21182434 78 4.00E-10
17 rs16848 73174851 90 4.23E-10
10 rs6481857 33903912 61 4.44E-10
2 rs999890 208898877 15 4.87E-10
2 rs13407268 208922184 15 4.87E-10
2 rs10177810 208926434 15 4.87E-10
4 rs1154968 66956730 26 5.37E-10
14 rs1997916 62821120 80 5.78E-10
11 rs10500662 6734213 65 5.86E-10
13 rs9529822 70394210 76 6.02E-10
3 rs6789391 1827696 17 6.61E-10
13 rs9542535 70391150 76 6.65E-10
9 rs10733310 16454980 55 6.89E-10
2 rs10190458 208919295 15 7.20E-10
4 rs10034869 167770230 29 7.33E-10
2 rs1077583 6868481 9 7.54E-10
1 rs10888541 151476212 5 7.63E-10

Table 3.10: 73 significant SNPs identified by rfGWAS on the right hippocampus surface (b).
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Figure 3.7: Density curves of region 47 by dosage levels (0, 1, or 2, representing genotypes CC,
TC or CT, and TT, respectively) of SNP rs2736372 (at chromosome 8, position 11143451)
with 30 samples randomly selected for each dosage level.
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Figure 3.8: Comparison with FGWAS local testing results for the top SNP on each side
of hippocampus from our result: a) Left hippocampus surface heatmap of − log10(p-value)
for SNP rs2736372 (chr8:1,114,345) from our BCov-based method; b) right hippocampus
surface heatmap of − log10(p-value) for SNP rs9381225 (chr6:4,298,726) from our BCov-based
method; Voxelwise p-values at each voxel is the average of its corresponding p-values in all
subregions that cover this voxel. c) left hippocampus surface heatmap of − log10(p-value) for
SNP rs2736372 (chr8:1,114,345) from FGWAS (sprinkled highlights on the cutting line due to
lack of smoothing on the edge); and d) right hippocampus surface heatmap of − log10(p-value)
for SNP rs9381225 (chr6:4,298,726) from FGWAS (all blue). The hippocampus in the plots
are rotated so that highlighted regions can be visible. The coordinates are the same across
plots from our method and FGWAS.
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Figure 3.9: Comparison with FGWAS local testing results for the top SNP on each side of
hippocampus from our result: a) Left hippocampus surface heatmap of − log10(p-value) for
SNP rs592629 (chr18:74,186,483) from our BCov-based method; b) right hippocampus surface
heatmap of − log10(p-value) for SNP rs4681527 (chr3:145,483,129) from our BCov-based
method; Voxelwise p-values at each voxel is the average of its corresponding p-values in all
subregions that cover this voxel. c) left hippocampus surface heatmap of − log10(p-value) for
SNP rs592629 (chr18:74,186,483) from FGWAS (almost all p-value equal to 0, of which the
− log10(p-value) were set to 165); and d) right hippocampus surface heatmap of − log10(p-
value) for SNP rs4681527 (chr3:145,483,129) from FGWAS (almost all p-value equal to 0,
of which the − log10(p-value) were set to 165). The hippocampus in the plots are rotated so
that highlighted regions can be visible. The coordinates are the same across plots from our
method and FGWAS.
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compared with that from FGWAS (Huang et al., 2017).

The regional analysis strategy not only reduces computation cost, but also detects regional

signal allowing registration error in the data. These two aspects advance the voxelwise

methods, such as FGWAS (Huang et al., 2017). rfGWAS is a flexible framework that can

incorporate both linear and nonlinear association testing methods. The association test can

accommodate either a single-marker test or a marker-set test, based on the statistical test

selected. The user-defined window size gives another layer of flexibility, as well as space

for future research. One draw back of using the Ball Covariance test as compared to the

linear-regression-based test is that we are not informed of how the genetic markers influence

target regions, e.g. the effect sizes. The ball covariance only indicates the strength of the

association. Covariates can be adjusted by regressing them out on the original voxelwise data

or the transformed density curves. In the real-data analysis for ADNI, we regressed out the

covariates on the voxelwise data so that the result is comparable with that from FGWAS

(Huang et al., 2017).

The simulation study took a reasonable amount of computation time. For simulation

implemented in Section 3.3.1, the computation time is summarized in Table 3.11. As for the

parametric BCov methods, it took 3 hours to analyze 20k simulated datasets with sample

sizes 200,300,500,700, and 1000, which is 540 seconds / 1k runs, or 0.54 seconds per run. For

the simulation implemented in section 3.3.2, it took 33.5 minutes to run the 16k simulated

datasets using all four methods (BCov, RdCov, AdaMant, and simple linear regression).

Computation time for each of the 1,000 simulated datasets on all 126 regions implemented in

section 3.3.3 is summarized in Table 3.12.

In future research, theoretical discussion on registration error can be done, including

forming the theoretical assumption that describes the registration error and how the method

in our proposed framework can improve power in capturing signals with registration error in

the given data. The size of the sliding region can also be discussed.
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BCov BCovbs GBJ AdaMant RdCov sKPRC lm
Time (minutes) 6.7 21 NA 2.4 68 10 31
# simulated datasets 40k 40k 24k 16k 40k 24k 16k
Seconds / 1k runs 10.05 31.5 NA 9 102 25 116.25

Table 3.11: Computation time (in minutes) for all simulated datasets (n=30,50,70,100), for
simulation implemented in section 3.3.1. BCovbs is the BCov test with p-values calculated
using bootstrap. lm represents the voxelwise method with simple linear regression model
applied on each voxel.

BCov GBJ AdaMant RdCov sKPRC Voxelwise (lm)
Time (s) 8∼9 30∼40 3∼4 180∼330 4.2 18∼47

Table 3.12: Computation time (in seconds) for each of the 1,000 replicates on all 126 regions
as implemented in section 3.3.3.

66



CHAPTER 4: FPLS WITH DISTANCE CORRELATION

4.1 Introduction

Alzheimer’s Disease (AD) is one of the most common dementia that affects memory,

cognitive abilities and behavior. The AD patient gradually loses the body functions and

ultimately goes to death, which withdraws from family and society. Thus, the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) aims to improve clinical trials for the prevention

and treatment of AD. The ADNI was launched in 2003 by the National Institute on Aging,

National Institute of Biomedical Imaging and Bioengineering, Food and Drug Administration,

private pharmaceutical companies and non-profit organizations as a $60 million, 5-year

public-private partnership. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography, other biological markers,

and clinical and neuropsychological biomarkers can be combined to measure the progression

of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Determination of

sensitive and specific markers of very early AD progression is intended to aid researchers

and clinicians in developing new treatments and monitoring their effectiveness, as well as

lessening the time and cost of clinical trials.

As of 2012, Apolipoprotein E4 (apoE4) was found to be the most prevalent genetic risk

factor of Alzheimer’s Disease in a variety of ethnic group (Sadigh-Eteghad et al., 2012). Thus,

it is great interest to examine the dependence between the brain structure and the gene. The

challenge is that the high dimensionality of imaging data in detecting the association. A

functional linear model (FLM) and its variations as the popular prediction models based on

functional predictor have gained extensive attention recently. Many estimation methods have

been developed to estimate the coefficient function of FLM. The most common method is the

functional principal component (FPCA). As an alternative to FPCA, functional partial least
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squares (FPLS) was introduced to estimate the coefficient function (Preda et al., 2007). FPLS

can explicitly incorporates the information from response thus achieving better prediction

accuracy. However, computational and theoretical complexity of FPLS make it difficult to

implement. Thus, alternative partial least squares (APLS) was proposed by Delaigle and

Hall (2012) to overcome this difficulty. The APLS algorithm gives an explicit formulae to

estimate the basis function which can reduce the intensity of computation.

Inspired by the satisfactory performance of APLS , we consider the distance correlation,

first proposed by Székely et al. (2007), to extend the APLS algorithm. Compared to the

Pearson’s correlation, distance correlation has three major advantages. First, distance

correlation is zero if and only if two random vectors are independent. Second, distance

correlation can deal with random vectors of arbitrary dimension. Third, distance correlation

does not rely any model assumption, thus it is robust to the model misspecification. In this

chapter, we generalise the APLS algorithm and propose a Non-parametric functional partial

least squares through distance correlation (FPLS-DC). The major contributions of this chapter

are threefold: (a) We extend APLS to a complex and general FPLS-DC framework; (b) we

develop a computationally efficient algorithm based on Sequential Quadratic Programming to

estimate the coefficients; (c) we show by the simulation and real data analysis that FPLS-DC

can yield more accurate and robust results than APLS in different scenarios, especially the

non-linear relationship.

The rest of the chapter is organized as follows. Section 2 introduces the APLS algorithm

and FPLS-DC algorithm. Section 3 presents the Monte Carlo simulation results. Section

4 provides a through real data analysis of ADNI. Section 5 discussed the extensions and

possible future research.

4.2 Methods

Let Y (⋅) be a random functional data defined on compact space S ⊂ RK , where K is

a positive integer, and X is a scalar variable of interest. For i = 1, . . . , n, the independent

observation {(xi,yyyi):1, . . . , n} is given such that yyyi = (yi(s) ∶ s ∈ S) and xi’s are the independent
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realizations of Y (⋅) and X, respectively.

4.2.1 The APLS algorithm

The functional linear model is usually used to access the association between Y (⋅) and X,

that is,

X = a0 + ∫
S
Y (s)b(s)ds + ε, (4.1)

where ε is a scalar random variable with E(ε ∣ X) = 0, a0 is a scalar parameter, and b(⋅) is

an unknown coefficient function on S. FPLS algorithm can be used to find the orthogonal

basis function {ψj(s)}j≥1 to approximate the functional coefficient b(s). However, we intro-

duce APLS algorithm, due to the difficulty of theoretical justification and computational

implementation of FPLS algorithm.

Let K(s, t) = Cov(Y (s), Y (t)) and

K(b)(t) = ∫
S
K(s, t)b(s)ds

be the functional operator, then we obtain the first p non-orthogonal basis functions

ψj(s) =K
j(b)(s) = ∫

S
Kj−1(b)(t)K(s, t)dt

for j = 2, . . . , p. b(s) can be approximated by the linear combination of the first p bases ψj(s),

that is ∑pj=1 γjψj(s), where γj = ∫S b(s)ψj(s)ds. Model (4.1) is equivalent to

X = a0 +
p

∑
j=1

γj ∫
S
Y (s)ψj(s)ds + ε,

Thus, the estimation of b(s) can be approximated in two steps. We can estimate ψ̂j(s) and

obtain γ̂j through linear regression. An efficient APLS algorithm is summarised in Algorithm

1.

Actually, the estimator γ̂j in Algorithm 1 can also be obtained by maximizing the
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Algorithm 1 APLS algorithm
Input: Given the sample (xi, yi(⋅))i=1,...,n.

Output: b̂(s).
1: K̂(s, t) = n−1∑

n
i=1[yi(s) − ȳ(s)][yi(t) − ȳ(t)], where ȳ(s) = n−1∑

n
i=1 yi(s) and ψ̃1(s) =

K̂1(b)(s) = n−1∑
n
i=1[yi(s) − ȳ(s)][xi − x̄];

2: for j = 2,⋯, p do
3: ψ̃j(s) = K̂j(b)(s) = ∫S K̂

j−1(b)(t)K̂(s, t)dt;

Orthogonalize ψ̃j(s) to obtain ψ̂j(s);
4: for i = 1, . . . , n do
5: for j = 1, . . . , p do
6: zij = ∫S yi(s)ψ̂j(s)ds;

7: for j = 1, . . . , p do
8: Estimate γ̂j through linear regression xi = a0 +∑

p
j=1 γjzij + εi, i.e. γ̂γγ = (ZTZ)−1ZT X̂,

where (Z)ij = zij, X̂ = (x1, . . . , xn)T , and γ̂γγ = (γ̂1, . . . , γ̂p)T ;

9: return b̂(s) is approximated by ∑pj=1 γ̂jψ̂j(s).

correlation function, and the sample form of this model can be obtained as follows

max
{γj}j=1,...,p

Corn (X,
p

∑
j=1

γj ∫
S
Y (s)ψ̂j(s)ds) . (4.2)

However, correlation cannot fully capture the nonlinear relationship between X and

∫S Y (s)ψ̂j(s)ds, which means APLS algorithm can not be applied to estimate γγγ = (γ1, . . . , γp)

directly. Therefore, we propose a nonlinear estimation method based on the APLS algorithm to

substitute the linear coefficient estimation method, which is described in the next subsection.

4.2.2 The FPLS-DC algorithm

In this subsection, we introduce distance correlation and its unbiased empirical version

before presenting the FPLS-DC algorithm.

Definition 4.2.1. The distance covariance (dCov) between random vectors X and Y with

finite first moments is the nonnegative number dCov(X,Y ) defined by

dCov2(X,Y ) =
1

cpcq
∫
Rp+q

∣fX,Y (t, s) − fX(t)fY (s)∣
2

∣t∣1+pp ∣s∣1+qq

dtds,

where fX and fY are the characteristic functions of X and Y, and cd = π(1+d)/2

Γ((1+d)/2) .

70



Definition 4.2.2. The distance correlation (dCor) between random vectors X and Y with

finite first moments is the nonnegative number dCor(X,Y ) defined by

dCor2(X,Y ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

dCov2(X,Y )
√
dCov2(X,X)dCov2(Y,Y )

, dCov2(X,X)dCov2(Y,Y ) > 0,

0, dCov2(X,X)dCov2(Y,Y ) = 0.

The unbiased version of the squared sample distance covariance and distance correlation

is defined as follows.

Definition 4.2.3. Let (xi, yi), i = 1, . . . , n denote a sample of observations from the joint

distribution (X,Y) of random vectors X and Y. Let A =(aij) be the Euclidean distance

matrix of the sample x1, . . . , xn, and B= (bij) be the Euclidean distance matrix of the sample

y1, . . . , yn. Then if E(∣X ∣ + ∣Y ∣) < ∞, for n > 3, the following

dCov2
n(X,Y ) =

1

n(n − 3)
∑
i≠j

ÃijB̃ij

is an unbiased estimator of squared population distance covariance dCov2(X,Y ), where

Ãij =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

aij −
1
n−2 ∑

n
`=1 ai` −

1
n−2 ∑

n
k=1 akj +

1
(n−1)(n−2) ∑

n
k,`=1 ak`, i ≠ j

0, i = j

and the form of B̃ij is similar to that of Ãij.

Definition 4.2.4. The empirical distance correlation dCorn(X,Y ) is the square root of

dCor2
n(X,Y ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

dCov2n(X,Y )
√
dCov2n(X,X)dCov2n(Y,Y )

, dCov2
n(X,X)dCov2

n(Y,Y ) > 0,

0, dCov2
n(X,X)dCov2

n(Y,Y ) = 0.

Distance correlation has an encouraging performance at detecting the nonlinear relationship

between X and ∑pj=1 γj ∫S Y (s)ψ̂j(s)ds. Thus, we can substitute correlation with distance

correlation and obtain the following model
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max
b̂
dCor2

n(X,
p

∑
j=1

γj ∫
S
Y (s)ψ̂j(s)ds). (4.3)

The estimation of b(s) can be divided two parts. First, we obtain p basis functions

ψ̂j(s) (j = 1, . . . , p) through the APLS algorithm described in the previous subsection.

Second, we estimate γj for j = 1, . . . , p by maximizing dCorn(X,∑pj=1 γj ∫S Y (s)ψ̂j(s)ds).

For convenience , we can simplify the form of model (4.3). Denote the projected image of

Y (⋅) along the jth direction ψ̂j(s) as

Zj = ∫
S
Y (s)ψ̂j(s)ds

for j = 1, . . . , p. Then the projected image Ỹb̃ of Y (⋅) along b̃(⋅) is approximated by

∫
S
Y (s)

p

∑
j=1

γjψ̂j(s)ds =
p

∑
j=1

γjZj.

Let Z = (Z1, . . . , Zp) and γγγ = (γ1, . . . , γp)T , then Ỹb̃ is approximated by Zγγγ = ∑
p
j=1 γjZj.

Following above discussion, we can maximize the squared empirical distance correlation

dCor2
n(X,Zγγγ) =

dCov2
n(X,Zγγγ)√

dCov2
n(X,X)dCov2

n(Zγγγ,Zγγγ)
. (4.4)

to obtain γ̂γγ .

The maximization of (4.4) is equivalent to maximize the squared dCov2
n(X,Zγγγ) under a

constraint of γγγ, that is

max
γγγ

dCov2
n(X,Zγγγ) s.t. γγγTγγγ = 1. (4.5)

Denote aaai,j = Zi −Zj and bi,j = ∣xi − xj ∣, the lagrange function of (4.5) can be written as

L(γγγ, λ) = ∑
i≠j

∣aaaTi,jγγγ∣[
bi,j

n(n − 3)
−

2∑k≠i bi,k
n(n − 2)(n − 3)

+
∑k≠l bk,l

n(n − 1)(n − 2)(n − 3)
] − λ(γγγTγγγ − 1).g
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Algorithm 2 FPLS-DC algorithm
Input: Given the sample (xi, yi(⋅))i=1,...,n,1000 unit vectors that follow a normal distribution.
Output: b̂(⋅).
1: K̂(s, t) = n−1∑

n
i=1[yi(s)− ȳ(s)][yi(t)− ȳ(t)], ȳ(s) = n−1∑

n
i=1 yi(s) and ψ̂1(s) = K̂1(b)(s) =

n−1∑
n
i=1[xi(s) − x̄(s)][yi − ȳ];

2: for j = 2, . . . , p do
3: ψ̂j(s) = K̂j(b)(s) = ∫S K̂

j−1(b)(t)K̂(s, t)dt;

Orthogonalize ψ̃j(s) to obtain ψ̂j(s);
4: for i = 1, . . . , n do
5: for j = 1, . . . , p do
6: zij = ∫S yi(s)ψ̂j(s)ds;

Select the vector, which corresponds to the largest dCov2, as the starting point γ(0) of
the SQP algorithm;

7: while γγγ(k+1) is not close to γγγ(k) do
8: Searching the iterative direction dγ given the current iterate (γγγ(k), λ(k)), it can be

obtained by solving Quadratic Programming (QP) subproblem which is

minimize
dγ

− (∇L(γ(k), λ(k))
T
dγ +

1
2d

T
γH

(k)dγ)

subject to ∇l (γ(k))
T
dγ + l (γ(k)) = 0;

The step length α should be determined to update γγγk in the next iteration that is
γ(k+1) = γ(k) + αdγ, λ(k) should be updated too;

9: Choosing the convergent value of γγγ(k) as the estimator γ̂γγ;
10: return b̂(s) is approximated by ∑pj=1 γ̂jψ̂j(s).

Sequential Quadratic Programming can be used to maximize L(γγγ, λ). Let’s give some

definitions, γ(k)
u is the value of γu in step k, and γγγ(k) = (γ

(k)
1 , . . . , γ

(k)
p )T is the value of γγγ in step k.

dγ = γγγ−γγγ(k), l(γγγ) = γγγTγγγ−1. ∇l(γγγ(k)) is the gradient of l at γγγ(k) and ∇L(γγγ(k), λ(k)) = (∂L(γ
γγk)

∂γ
(k)
u

)p×1

is the gradient of L(γγγ(k), λ(k)) at γγγ(k). H(k) is the Hessian of L(γ(k), λ(k)) at γγγ(k). FPLS-DC

algorithm is summarized in Algorithm 2.

4.2.3 Hypothesis Testing

The global test of the whole image with regard to each SNP can be implemented through

the dCov test between the SNP and the projected image with respect to this SNP. Under the

hypothesis that the X and the projected image Y (⋅) along the direction b̂(s) is unrelated,
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then we get the hypothesis testing

H0 ∶X á Y (⋅) vs H1 ∶X á Y (⋅),

we would expect dCov(X, ∫S Y (s)b̂(s)ds) to be zero at all s ∈ S under the hypothesis, the

p-value of a dCov test is usually obtained through permutation. In order to reach the

significant p-value after Bonferroni correction, one needs at least 1
0.05
nG

= 20 nG permutations,

where nG is the total number of top SNPs obtained from screening. If nG = 4000, then we

need at least 8×104 permutations. Increase the number of permutations to 3 times, we would

need 2.4 × 105 permutations to calculate the p-value of each SNP. Therefore, the number of

permutations is not computationally affordable. Actually, a gamma function can be used to

approximate the null distribution, and the mean and variance of the gamma function can be

estimated using a smaller number of permutations. We use dcov.gamma() function in the

’kpcalg’ R package to approximate dCov test, which is applied directly to the SNP and the

projected image along a thresholded b̃(s) = b̂(s) I{∣T (s)∣ > Φ−1(1 − α)} that filters out the

noise at non-related voxels, where T (s) is the local test statistic at s voxel to be introduced

next, Φ−1 is the inverse cdf of the standard normal distribution, and α is the significance level

adjusted for the number of voxels in the image, e.g. α = 0.05
m , where m is the number of voxels.

Therefore, the p-value of dCov test can be approximated through dcov.gamma() function.

Actually, the Type I Error can be influenced by p, Type I Error is high for large p, the

reason may come from two sources: 1) the base functions ψ̂j(s) extracted as correlated to

x using the APLS algorithm; and 2) the coefficients γ̂γγ estimated as most correlated to x

through maximized distance covariance. Both of these two procedures move the projected

image to the direction to be related to x. Therefore, the test of independence between the

projected image and x is likely to be rejected. By decreasing p, we should expect a lowered

Type I Error. However, the choice of p may depend on the data, and in the real scenario

when the truth is unknown, it is hard to select a best p and therefore this direct dCov test
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is not recommended.The diminished power in the quadratic case is likely due to using the

linear method in base-function extraction through APLS.

The local test at each voxel can be obtained through b̂(sm) for m = 1, . . . ,M , where M is

the number of voxel. Since b̂(⋅) maximizes the sample distance covariance between X and

the projected image ∫S Y (s)b̂(s)ds, and puts a weight at each voxel s of the image Y (s), the

weighted sum across S is most closely related to X. Therefore, b̂(⋅) represents the signal

pattern across S that is related to X. Under the null hypothesis of independence between X

and Y (⋅), b̂(⋅) is close to zero . Then we can get the hypothesis testing

H0 ∶ b̂(sm) = 0 vs H1 ∶ b̂(sm) ≠ 0, for m = 1, . . . ,M.

Since we did not assume any parametric model for the data generation of X and Y (⋅)

related to b(⋅), in the freedom without any other assumptions, we assume that b̂(sm) follows

a zero-mean normal distribution. We can use bootstrap to estimate V ar[b̂(sm)] at each

voxel, which can then be used to construct the test statistic, under the assumption of signal

independence between any two voxels in S. The bootstrap procedure is proposed as follows,

Step 1. Randomly choose n samples {x∗i , y∗i (⋅)}i=1,...,n from the observation {xi, yi(⋅)}i=1,...,n

with replacement.

Step 2. Obtain the estimator b̂∗(sm) based on the sample {x∗i , y
∗
i (⋅)}i=1,...,n.

Step 3. Repeat Step1 and Step2 K times to get K estimates {b̂∗k(sm)}k=1,...,K , for

m = 1, . . . ,M .

Step 4. Calculate the sample variance of {b̂∗k(sm)}k=1,...,K as the estimate of V ar[b̂(sm)].

After obtaining V̂ ar[b̂(sm)], the test statistic at each voxel is

T (sm) =
b̂(sm)

√
V̂ ar[b̂(sm)]

,
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which follows the standard normal distribution under the null. The p-value for T (sm) is thus

calculated as

2(1 −Φ(∣T (sm)∣)),

where Φ(⋅) is the cumulative distribution function of the standard normal distribution.

4.2.4 Two step estimation algorithm

The dimension of SNPs and image is high so that the computational cost of FPLS-DC

algorithm is unaffordable. In order to relieve the computational intensity, we propose a two

step algorithm to estimate the functional coefficient. Firstly, We select the first FPLS-derived

base to decrease the dimension of image, then we use APLS algorithm to decrease the

dimensional of SNPs based on the selected base. In the estimation algorithm, SNP is the

response variable and the projected image along the first direction is the explanatory variable,

when Bonferroni-adjusted p-value is less 0.05, SNPs can be selected for further investigation.

Secondly, the FPLS-DC algorithm is used to estimate b̂(⋅) corresponding to each of the

screened SNPs after screening the SNPs.

4.3 Simulation

4.3.1 Data Generation

In this section, we examine our proposed method by some numerical studies. We simulate

SNP data through coalescent simulation (COSI) (Schaffner et al. 2005). 2000 haplotypes are

simulated using COSI for 100 1Mb regions. Then, the SNPs are ascertained and thinned to

match HapMapII SNP frequency distribution. Those haplotypes are randomly combined in

pairs to form the genotype data of 1000 individuals. Then, the SNPs are filtered with minor

allele frequency (MAF) bigger than 0.05. After filtering, we end up with 77,100 SNPs.

We randomly select 100 SNPs as causal and generate the imaging data, which is a 150×100

rectangle for each subject i (i = 1, . . . , n), based on their additive effect

yi(s) =
100

∑
g=1

f(x
(g)
i )β(g)(s) + εi(s),
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where g = 1, . . . ,100 is the SNP indicator, f(x) = x or (x − 0.4)2, s = (sx, sy), and β(g)(s) =

0.25 ⋅ I{(sx − c
(g)
x )2 + (sy − c

(g)
y )2 ≤ 102}. Let (c

(g)
x , c

(g)
y ) vary across g = 1, . . . ,100, so that

marker effects do not lay over the same location. Restrict c(g)x ∈ [20,130] and c(g)y ∈ [20,80]

such that the affected region of each SNP is entirely contained within the image. εi(s) is

simulated as εi(s) = ξ1,iφ1(s)+ξ2,iφ2(s), where φ1(s) =
√

0.5 sin(2πsx
150 ), φ2(s) =

√
0.5 cos(

2πsy
100 ),

ξ1,i = λ1Z1,i, ξ2,i = λ2Z2,i, λ1 =
√

1.2, λ2 =
√

1.0, and Z1,i and Z2,i are independent standard

normal random variables; i = 1, . . . , n. This yields εi(s) to range from (−6.29,6.29), with

sample variance 2.03, which is close to 2.2 = λ2
1 + λ

2
2.

4.3.2 Screening

Global screening is performed for p = 1, . . . ,10, p is the number of bases function. All

SNPs are sorted according to the p-value in the linear regression model, where the SNP

dosage is the response variable and the image projected along each base are the explanatory

variables. Causal SNP inclusion rate was averaged over the 100 replicates and summarized

in Table 3.6, where the causal SNP inclusion rate was calculated as the percentage of the

number of causal SNPs included in the top SNPs among the total number of 100 causal

SNPs.

In each section of f(x) in Table 4.1, as ngs increases, the inclusion rate increases given

the same p. This is what we would expect, because the more SNPs included, the more causal

SNPs are likely to be covered. As p increases, the inclusion rate increases for ngs ≥ 1000;

but for smaller ngs ’s, the causal SNP inclusion rate drops to 0 when p is large enough. This

informs us the distribution of causal SNP rankings with different values of ngs and p. The

causal SNPs may not rank at the very top in the screening. For each p, the distribution

interval of the cuasal SNP rankings is between the ngs ’s corresponding to 0 inclusion rate

and 100% inclusion rate. We can see that as p increases, the distribution interval shrinks.

For p = 7, . . . ,10, the distribution interval is constrained within ngs = 500 to 3000; for p = 6,

the interval expanded to (100,4000); and for p = 5 and 4, the interval further expanded to

(0, 5000). For p shrinks down from 3 to 1, the upper bound of the interval goes beyond 5000,
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f(x) p
Number of Top SNPs (ngs)

100 250 500 1000 2000 3000 4000 5000

x

1 0.38 0.93 1.66 2.93 5.40 7.51 9.70 11.67
2 9.42 16.54 26.60 39.83 53.92 61.70 66.81 69.42
3 10.83 21.82 37.20 58.42 79.57 87.80 91.63 93.69
4 9.99 26.22 42.99 68.25 87.16 95.34 100.00 100.00
5 10.00 28.97 52.00 72.05 89.00 98.00 99.00 100.00
6 0.00 39.19 61.87 79.15 94.06 99.00 100.00 100.00
7 0.00 0.00 0.00 84.58 97.00 100.00 100.00 100.00
8 0.00 0.00 0.00 89.00 98.00 100.00 100.00 100.00
9 0.00 0.00 0.00 89.05 98.00 100.00 100.00 100.00
10 0.00 0.00 0.00 89.19 98.01 100.00 100.00 100.00

(x − 0.4)2

1 0.58 1.10 2.01 3.42 5.95 8.30 10.53 12.65
2 6.78 16.59 24.61 35.64 44.47 47.59 49.77 51.30
3 5.03 14.63 24.75 40.44 51.25 56.96 60.60 63.36
4 11.01 20.01 32.78 46.10 64.09 72.01 77.21 80.05
5 13.00 23.00 35.98 52.97 69.00 76.36 79.24 83.04
6 12.00 25.00 41.76 56.41 72.61 79.08 81.11 88.25
7 16.00 33.00 45.10 59.15 78.00 82.01 86.49 90.54
8 0.00 33.55 47.00 65.19 78.17 86.09 89.72 93.00
9 0.00 33.19 47.27 65.79 80.38 87.81 90.61 94.14
10 0.00 33.26 47.44 66.38 81.34 88.14 91.02 94.53

Table 4.1: Inclusion rates of causal SNPs: the percentage of the number of causal SNPs
included in the top SNPs within the total number of 100 causal SNPs, for p = 1, . . . ,10.
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where we did not examine in the simulation. As p increases to 6, we can see that the top

100 SNPs from screening do not include any causal SNPs, the reason is that all of the top

100 SNPs are non-causal due to noise introduced from the additional bases, or due to those

top-ranking non-causal SNPs being correlated with the causal SNPs.

If we use 80% inclusion rate as the criteria for good screening performance, ngs = 3000 and

p = 6 can give good screening results according to Table 4.1 to detect SNPs with roughly linear

effect. Using only the top base ψ̂1(s) with ngs = 2000 for screening, although computationally

affordable, may include only a small proportion of true causal SNPs. Using the University

cluster by running 200 jobs simultaneously, the screening procedure with p = 6 is estimated to

take 21 days to screen all 503,892 SNPs for both the left side and right side of the hippocampus

surface radial distance data (m = 15,000), while with p = 1 it only took 40 to 60 minutes

with 50 simultaneous jobs, which is 2419 times faster. Users can choose their p and ngs to

balance the computation cost and the true causal-SNP inclusion rate referencing Table 4.1.

The computation time can be calculated by running a few SNPs on a machine of choice by

the user.

4.3.3 FPLS-DC and Statistical Tests

A causal SNP and a non-causal SNP were selected for this simulation. The non-causal

SNP is selected so that it is not correlated to any of the 100 causal SNPs, where a significant

correlation is indicated by a p-value smaller than 0.05 in a Pearson’s correlation test performed

in R using the cor.test() function. The FPLS-DC algorithm was implemented with p = 10.

Then, the local test was implemented on b̂(s), with the V ar[b̂(s)] estimated using the sample

variance of b̂(s) over the 100 replicates from the non-causal SNP, which is used to calculate

the test statistics for both the causal and non-causal SNPs. The null hypothesis is rejected if

the local p-value is less than 3.33 × 10−6 = 0.05
15000 .

In order to evaluate the effectiveness of the FPLS-DC method, We compare the linear

regression method (FPLS) , the modified dCor-based method (wdCor) (Wen et al., 2020),

and PC-based method for γγγ estimation with our proposed method. The original wdCor (Wen
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et al., 2020) estimates γγγ by optimizing the exponential of distance correlation, since we are

aiming for a linear combination of ψ̂j(s)’s eventually, therefore modify dCor-based method

to estimate γγγ: for j = 1, . . . , p,

γ̂j = w
opt
j =

β
ropt
j

∣∣βββropt ∣∣2

with βj = dCor(X,Zj), wj =
βrj

∣∣βββr∣∣2
, and

ropt = arg max
r∈{1,3,...,15}

dCor(X,
p

∑
j=1

wjZj).

where ∣∣ ⋅ ∣∣2 stands for the Euclidean norm and Zj = ∫S Y (s)ψ̂j(s)ds.

For the above three comparable methods, after obtaining γ̂γγ and thus b̂(s), the same local

statistical test as proposed in section 4.2.3 is conducted at each voxel. Then, the type I

errors and power are calculated and summarized in Table 4.3. The Type I Errors for local

tests are family-wise error rates for the entire image across 15,000 voxels, estimated using

average rejection rates over the 100 replicates, where the family-wise rejection is made if

any of the voxelwise local test is rejected for a p-value < 3.33 × 10−6 ≈ 0.05
15000 according to the

Bonferroni correction for multiple testings. The theoretical family-wise error rate in this case

is 0.049 ≈ 1 − (1 − 0.05
15000)

15000.

From Table 4.3, we can see that our proposed method FPLS-DC gives good control

of local Type I Error when tested on the non-causal SNP under f(x) = x, while under

f(x) = (x − 0.4)2, the local Type I Error is inflated. For all methods, the Type I Error in the

unaffected region of the causal SNP is larger than their corresponding Type I Error tested

with the non-causal SNP and likely to be inflated. The Type I Error for global tests are well

controlled, and power is mostly suffered in the quadratic case.

The high Type I Error for large p may come from two sources: 1) the base functions

ψ̂j(s) extracted as correlated to x using the APLS algorithm; and 2) the coefficients γ̂γγ

estimated as most correlated to x through maximized distance covariance. Both of these two

procedures move the projected image to the direction to be related to x. Therefore, the test
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Type I
Error f Method p

1 2 3 4 5 6 7 8 9 10

Local
Test:
Non-
Causal
SNP

f1

FPLS-DC 1.00 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.02 0.04
FPLS 1.00 <0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 0.19 0.23
wdCor 1.00 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.12 0.19
PC <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

f2

FPLS-DC 1.00 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.03 0.02
FPLS 1.00 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.15 0.12
wdCor 1.00 <0.01 <0.01 <0.01 <0.01 0.02 0.06 0.11 0.24 0.29
PC <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Local
Test:
Causal
SNP

f1

FPLS-DC 1.00 <0.01 <0.01 <0.01 <0.01 0.04 0.20 0.35 0.48 0.45
FPLS 1.00 0.12 0.71 0.88 1.00 1.00 1.00 1.00 1.00 1.00
wdCor 1.00 <0.01 <0.01 <0.01 0.02 <0.01 0.03 0.02 0.09 0.12
PC <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.11 0.05 0.02

f2

FPLS-DC 1.00 <0.01 <0.01 <0.01 0.03 <0.01 <0.01 0.02 0.12 0.07
FPLS 1.00 <0.01 0.13 0.91 1.00 1.00 1.00 1.00 1.00 1.00
wdCor 1.00 0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.23 0.31
PC <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Global
Test

f1

FPLS-DC 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

FPLS 0.02 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01

wdCor 0.02 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.02 0.04
PC <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

f2

FPLS-DC 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

FPLS 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

wdCor 0.02 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.03 0.03
PC 0.26 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 4.2: Type I Error for Local and Global Tests. f1(x) = x and f2(x) = (x − 0.4)2.

of independence between the projected image and x is likely to be rejected. The number

of base functions used here is p = 10. By decreasing p, we should expect a lowered Type

I Error. However, the choice of p may depend on the data, and in the real scenario when

the truth is unknown, it is hard to select a best p and therefore this direct dCov test is not

recommended. The diminished power in the quadratic case is likely due to using the linear

method in base-function extraction through APLS.

81



Power f Method p
1 2 3 4 5 6 7 8 9 10

Local
Test

f1

FPLS-DC 1.00 <0.01 0.41 0.45 0.28 0.29 0.23 0.18 0.16 0.16
FPLS 1.00 0.30 0.80 1.00 1.00 0.97 0.94 0.91 0.89 0.87
wdCor 1.00 <0.01 0.34 0.31 0.27 0.28 0.31 0.30 0.29 0.29
PC 1.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.02 0.01

f2

FPLS-DC 0.98 <0.01 0.06 0.10 0.09 0.09 0.06 0.05 0.04 0.05
FPLS 0.97 <0.01 0.13 0.46 0.68 0.78 0.81 0.82 0.79 0.79
wdCor 0.98 <0.01 0.02 0.04 0.05 0.04 0.05 0.07 0.06 0.05
PC 0.53 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Global
Test

f1

FPLS-DC 0.05 <0.01 0.69 0.77 0.71 0.75 0.69 0.80 0.80 0.77
FPLS 0.05 0.81 0.90 0.94 1.00 1.00 1.00 1.00 1.00 1.00
wdCor 0.05 <0.01 0.73 0.70 0.68 0.68 0.66 0.63 0.64 0.65
PC 1.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.07 0.15 0.12

f2

FPLS-DC 0.04 <0.01 0.08 0.06 0.05 0.04 0.03 0.02 0.02 0.05
FPLS 0.04 0.03 0.14 0.16 0.14 0.22 0.86 1.00 1.00 1.00
wdCor 0.04 0.01 0.08 0.09 0.08 0.08 0.09 0.09 0.11 0.11
PC 1.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 4.3: Power for Local and Global Tests. f1(x) = x and f2(x) = (x − 0.4)2.

4.4 ADNI Application

4.4.1 Data Description

In this section, we apply our pipeline to the hippocampus surface dara from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). ADNI is a longitudinal multicenter study designed

to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and

tracking of Alzheimer’s disease (AD). AD is known to affect the hippocampus, which plays a

major role in memory and learning. The purpose of the real data analysis is to examine the

genetic effect of SNPs on hippocampus. The initial ADNI study (ADNI-1) were followed by

ADNI-GO and ADNI-2 under different image acquisition protocols. Our analysis focuses on

data acquired from ADNI-1, which includes 818 healthy, AD, and mild cognitive impaired

(MCI) subjects with genotype data.

We used the hippocampus surface radial distance data from the baseline image measure-

ment of ADNI-1 that are processed by Huang et al. (2017). Radial distance, the distance

from the medial core to each surface point, informs us the deformation along the surface
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normal direction (Pizer et al., 1999; Thompson et al., 2004; Styner et al., 2004). The ADNI-1

images are obtained from 1.5 T MRI scanners with a 256 x 256 x 170 acquisition matrix,

where each voxel is of size 1.25 × 1 ∶ 26 × 1.2 mm3. The raw MRI images are pre-processed

using standard pipelines as described by Huang et al. (2017), including alignment correction,

skull-stripping, cerebellum removing, intensity inhomogeneity correction, segmentation, and

registration. Then, all voxels in the brain image are labelled by regions of interest (ROI). As

one of the 93 ROIs, the hippocampus is extracted and its surface registered (Huang et al.,

2017; Shi et al., 2013) prior to obtaining the surface statistics, including the radial distance

that is used in our analysis.

The genotype data from ADNI-1 were acquired using the Illumina Human 610-Quad

BeadChip platform and includes 620,901 SNPs. We restricted the analysis to only Caucasians.

After quality control and SNP filtering for miner allele frequency (MAF) > 0.05, the pre-

processed imaging-genetic data for our analysis contains 503,892 SNPs and 730 subjects.

Those subjects age from 54 to 91, with 431 males and 299 females. To remove potential

effects from covariate, we regressed out age, gender, APOE-ε4 (the strongest known genetic

risk factor for AD), and the top five genetic principal components from the processed radial

distance hippocampus data prior to performing the analyses proposed in this chapter.

4.4.2 Analysis Procedure

Using the imaging-genetic data described above, we first implemented a global screening

to filter promising SNPs. For this smaller set of SNP, APLS and dCov optimization are

applied to estimate b̂(s). Then, we demonstrate the application of voxelwise local test and

global test on the screened SNP that yields that largest distance correlation between the

SNP and the projected image along b̂(s), for each side of the hippocampus.

The global screening was performed using only one base (p = 1), i.e. the first base function

ψ̂1(s) extracted from the FPLS algorithm, for the left hippocampus and the right hippocampus,

respectively. In particular, for each of the 503,892 SNPs, first, calculate ψ̂1(s) and project the

image of each subject along ψ̂1(s) to get the projected image ỹi = ∫S yi(s)ψ̂1(s)ds for each
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subject i; then, fit a linear regression SNP ∼ Ỹ and obtain the model p-value. After obtaining

the p-values corresponding to all the SNPs, select the SNPs with p-value < 4.96×10−8 = 0.05
503,892×2

as the screened SNPs to proceed into the next steps, the refined analyses using more bases

and enhanced coefficient estimation algorithm, which more computationally intensive.

After the screening step, the screened SNPs are analyzed as follows for the left hippocampus

and right hippocampus, respectively. For each of the screened SNPs for the corresponding side

of the hippocampus, use FPLS to extract the first 10 base functions ψ̂j(s) for j = 1, . . . ,10.

Next, use the SQP to estimate γγγ = (γ1, . . . , γ10)T that maximizes dCov under the constraint

∣γγγ∣ = 1, as described in the method section. Then, estimate b̂(s) = ∑10
j=1 γjψ̂j(s) for this SNP.

After computing b̂(s) for each of the screened SNPs corresponding to the left and right

hippocampus, respectively, perform the local test at each voxel s for the targeted SNPs. As a

demonstration, we perform the statistical tests on the SNP that yields the maximum distance

correlation with the projected image, for the left hippocampus and right hippocampus,

respectively. First, compute the local test statistics T (s) = b̂(s)
√

V̂ ar[b̂(s)]
, where V̂ ar[b̂(s)] is

estimated using the sample variance of 50 bootstrap samples. For each bootstrap sample, b̂(s)

is estimated. Permutation is added in each bootstrap to mimic the distribution of b̂(s) under

the null. After obtaining the local test statistics T (s) at each voxel s ∈ S, where ∣S∣ = 15, 000,

the p-value at each voxel is calculated as 1 − 2Φ(∣T (sm)∣) as proposed in the method section.

Two significance levels are considered: t1 = 0.05
15000×ngs

, where ngs is the total number of screened

SNPs of the left and right hippocampus, and a more relaxed t2 = 0.05
15000 = 3.33 × 10−6.

After applying the local test, the global test is applied based on the local test results. In

particular, a dCov test with gamma approximation for the dCov distribution (Szekely et al.,

2007) is performed to test the independence between the target SNP and the projected image

along the thresholded b̂(s): b̃(s) = b̂(s) I{∣T (s)∣ > Φ−1(1 − α)}, where T (s) is the local test

statistic at s, Φ−1 is the inverse cdf of the standard normal distribution, and α = 0.05
15000 . This

dCov test was implemented using the dcov.gamma() function from the ’kpcalg’ R package.

The minimum non-zero p-value that dcov.gamma() can give is 1.11 × 10−16; p-values smaller
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than that are output as 0.

The global test depends on the voxelwise local test p-values, as well as b̂(s), and therefore

requires performing the local test prior to performing the global test. The local test, which

includes a bootstrap procedure to estimate the variance of b̂(s) at each voxel s, took around

four hours on the University cluster. Therefore, to perform the refined analysis, including

b̂(s) estimation and the local and global tests, the estimated run time on 2000 screened SNPs

for each side of the hippocampus is about one week, by submitting 100 parallel jobs to the

University cluster. More computation resource should be required in order to perform the

formal bootstrap-based global test to obtain a legal p-value as proposed at the beginning of

section 4.2.3.

4.4.3 Results and Interpretations

The analysis results are described as follows. After screening the 503,892 SNPs for the

left and right hippocampus, respectively, 1358 genome-wide significant SNPs are included

for the left hippocampus and 2083 for the right, which gives ngs = 3441 screened SNPs in

total. After estimating b̂(s), − log1 0(p-value)’s from screening and the distance correlations

between each SNP and its corresponding projected image along b̂(s) are compared in the

scatter plots in Figure 4.1. From this figure, We can see that most of the screened SNPs

have low dCor values. Among the 1358 screened SNPs for the left hippocampus, rs5996980

(chr22:25,819,296 in GRCh38.p13) yields the maximum distance correlation with the projected

image long its corresponding b̂(s). Among the 2083 screened SNPs for the right hippocampus,

rs8108292 (chr19:57,201,927 in GRCh38.p13) yields the maximum distance correlation with

the projected image long its corresponding b̂(s). Local tests are performed on these two

SNPs w.r.t. their corresponding projected images. The voxelwise p-values are calculated and

plotted in Figure 4.2.

SNP rs5996980 has minimum voxelwise p-value 1.21 × 10−10. Out of the 15,000 voxels

on the left hippocampus surface, there are only 2 voxels at the bottom of the hippocampus

with significant p-values using the more stringent threshold t1. If using threshold t2, the
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Figure 4.1: Top SNP Ranking: Screening VS Opt. dCor. − log1 0(p-value) obtained from
the model in screening is plotted against the distance correlation between each SNP and the
projected image along b̂(s). p = 1 is used in screening. There are 1358 screened SNPs on the
left and 2083 on the right.

Figure 4.2: − log10(p-value) for the top screened SNP for each side of the hippocampus.
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number of significant voxels increase to 19, including a total of 6 voxels at the bottom tip of

the hippocampus, 3 voxels near the top tip, and 10 voxels on the Fimbria in two connected

clusters of 5 voxels. An anatomy of the hippocampus can be found in Figure 4.4, which is

used in (Huang et al., 2017). The global test was also performed on rs5996980 and the left

hippocampus, yielding a p-value of 0.257. The large p-value is probably due to only a small

number of voxels (19 out of 15,000) being locally significant to pass the threshold t2. rs5996980

is an intron variant located inside gene MYO18B. Although intron variants are not transcribed

and translated to form proteins, they may play a regulatory role. This SNP is not reported in

the GWAS Catalog. In NCBI, it is indicated as not reported in ClinVar for clinical significance

and no citations in publications. MYO18B, myosin XVIIIB, is a protein-coding gene. In the

GWAS Catalog, it is reported to include SNPs associated with brain functions (schizophrenia,

bipolar disorder and depression combined, cognitive performance, mathematical ability, and

neurofibrillary tangles), heart functions (atrial fibrillation, left ventricular mass to end-diastolic

volume ratio, left ventricle wall thickness, and llectrocardiogram morphology), metabolism

(trans fatty acid levels, urinary calcium excretion, and urate levels in lean individuals) , and

other traits (adolescent idiopathic scoliosis, gut microbiome measurement, eye morphology

measurement, uterine fibroids, and acute myeloid leukemia). These functions of MYO18B is

related to the function of the hippocampus such as learning and memory, as well as the role

related to neurological and psychiatric disorders. In particular, the fimbria-fornix volume

is associated with spatial memory and olfactory identification in humans (Dahmani et al.,

2020).

SNP rs8108292 has minimum voxelwise p-value 3.65 × 10−97. Out of the 15,000 voxels on

the left hippocampus surface, there are 160 voxels (shown in the top row of Figure 4.3) with

significant p-values using the more stringent threshold t1. If using threshold t2, the number

of significant voxels increase to 340 (shown in the second row of Figure 4.3). The global test

was also performed on rs8108292 and the right hippocampus, yielding a p-value of 2.79× 10−4.

This relatively small p-value is probably contributed by the relatively large number of voxels
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(340 out of 15,000) being locally significant to pass the threshold t2. rs8108292 is an intron

variant located within gene ZNF264. This SNP is not reported in the GWAS Catalog. In

NCBI, it is indicated as not reported in ClinVar for clinical significance and no citations

in publications. ZNF264, zinc finger protein 264, is a protein-coding gene. In the GWAS

Catalog, it is reported to include SNPs associated with body mass index through an intergenic

SNP rs11670527 (chr19:57,182,570 in GRCh38.p13) upstream of gene ZNF264 (Kusic et al.,

2020). According to the review paper on zink finger proteins (ZNFs) by Cassandri et al.

(2017), the wide varieties of ZNFs are abundant in the human body and able to interact with

DNA, RNA, PAR (poly-ADP-ribose) and other proteins, and thus involved in regulation

processes such as transcriptional regulation, ubiquitin-mediated protein degradation, signal

transduction, actin targeting, DNA repair, and cell migration.

4.5 Discussion

In this article, we developed a new FPLS-DC algorithm for FLM to estimate the coefficient

function. FPLS-DC algorithm has great performance on nonlinear model and high-dimensional

data. We propose the test statistic to evaluate the effectiveness of FPLS-DC algorithm through

Monte Carlo method in the simulation and to apply it on the real data analysis of ADNI.

The result in simulation and real data analysis shows that FPLS-DC algorithm plays a great

role in functional data analysis.

FPLS-DC is proposed under the assumption that the moment exists, when this assumption

can not hold, ball covariance, which is constructed by indicator function, can be used to

estimate the coefficient for each direction, similar to maximizing the distance covariance.

Local test is obtained under the assumption of independence between two voxels in S, the

power may be influenced by interaction between two SNPs, and unobserved casual SNPs.

These influence factors should be considered in the test. The comparison between FPLS-DC

and APLS is not considered in simulation and real data analysis, in terms of computational

efficiency and the statistical performance, so we can elaborate the difference in the two

models. The idea of generating bases in FPLS-DC is based on APLS algorithm, and the bases
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Figure 4.3: − log10(p-value) for significant regions (w.r.t t1 and t2, respectively) for the SNP
with maximum dCor with the right hippocampus.
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Figure 4.4: Subregions of the hippocampus surface.

90



constructed in APLS is nonorthogonal, we can find a novel method of generating orthogonal

bases directly in the future research. We also can explore a more effective algorithm in

comparison of FPLS-DC in the future.
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CHAPTER 5: ENSEMBLE- VS MERGE-BASED LEARNERS

5.1 Introduction

Efforts in utilizing multi-study neuroimaging data extends from the Enhancing Neu-

roImaging Genetics through Meta-Analysis (ENIGMA) consortium (Thompson et al., 2014;

Thompson and et. al., 2019) to the combination of recent large-scale studies such as UK

Biobank (UKB) (Sudlow et al., 2015), the Adolescent Brain Cognitive Development (ABCD)

Study (Casey et al., 2018), the Alzheimer’s Disease Neuroimaging Initiative(ADNI) (Weiner

et al., 2017), the Human Connectome Project (HCP) (Somerville et al., 2018), Philadelphia

Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2016), and the Pediatric Imaging,

Neurocognition, and Genetics (PING) Data Repository (Jernigan et al., 2016). These studies

collect not only brain images but also genetic and other health-related information, providing

valuable data for researchers to study brain structures and functions. Utilizing data from

more than one studies can not only gain us power and prediction accuracy from increased

sample size, but also help us identify more reliable factors and reach more general conclusions

by accounting for inter-study heterogeneity. Inter-study heterogeneity may come from various

sources such as differences in data collection centers, study environment, population composi-

tion (e.g., race), study design, data collection and processing protocol, and other study-specific

factors (Zhang et al., 2020; Fortin et al., 2017; Leek and Storey, 2007; Mirzaalian et al.,

2016). For the purpose of prediction, one can train the prediction model based on data from

multiple studies using one of the two following strategies: 1) obtain the final trained learner

(i.e. prediction model) by combining the learners each trained from one of the studies, or 2)

train a single learner based on the merged data from all the studies.

In the first strategy, the final prediction is usually calculated as a weighted average of

predictions made using learners trained on different studies, which is equivalent to making the
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final prediction using a learner, of which the parameters are weighted average of parameters

from the different learners, if a linear regression model is used. Call this final learner an

ensemble-based learner. This multi-study ensemble strategy was proposed by Patil and

Parmigiani (2018) to leverage information from multiple studies using ensemble learning

methods Dietterich (2000), which combine predictions from multiple models. This is similar

to the combination of results for statistical inference, where meta-analysis average summary

statistics from different studies by applying different weights (Cochran, 1954; DerSimonian and

Laird, 2015; Jackson and Riley, 2014; Tang and Lin, 2014), and fusion learning (Cheng et al.,

2017; Cai et al., 2020) combines the confidence distributions, rather than point estimates, for

the parameter of interest from different studies.

The second strategy merge data from all studies and train a single learner based on

the merged data. Call this learner a merge-based learner. Fixed-effect or random-effect

models can be used to train the learner, where inter-study heterogeneity can be accounted for

using methods such as analysis of large clusters (Bellamy et al., 2005), principal components

analysis (Price et al., 2006), confounder adjusted testing and estimation (CATE) (Wang et al.,

2017), and direct surrogate variable analysis (dSVA) (Lee et al., 2017). For neuroimaging

data, Zhu et al. (2012); Huang et al. (2017) developed a fixed effects multivariate varying

coefficient model (MVCM) to account for the smooth property of brain imaging data, Lin

et al. (2014) developed a functional mixed effects model inspired by MVCM, Guillaume et al.

(2018) modified CATE to better suit the analysis of neuroimaging data, and Huang et al.

(2021) developed a functional hybrid factor regression model based on MVCM and modified

CATE to account for inter-study heterogeneity.

Deciding between the two strategies is a critical decision for the final learner to achieve

better prediction accuracy. The merge-based learner can sometimes perform better (Xu et al.,

2008; Taminau et al., 2014; Kosch and Jung, 2019), and the ensemble-based learner can perform

better in other cases (Bravata and Olkin, 2001), e.g. when the studies are heterogeneous

(Patil and Parmigiani, 2018), while Lagani et al. (2016) found the two strategies comparable
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in reconstruction of gene interaction networks. The question of which strategy is expected

to achieve better prediction accuracy is discussed by Guan et al. (2019), where learners

were trained by modeles such as linear regression and ridge regression. Theorems derived

therein provide a useful guideline for deciding which strategy to choose. A mixed effects

model is assumed to be the data-generating model for heterogeneous studies. It is shown

that merge-based learner yields lower prediction error than ensemble-based learner when

heterogeneity is low; but as heterogeneity increases, there exists a transition point beyond

which the ensemble-based learner outperforms the merge-based learner. The transition point

was characterized analytically, and optimal ensemble weights are derived. The two strategies

were also compared in the problem of hypothesis testing, where meta-analysis was compared

with mega-analysis (Lin and Zeng, 2010a,b; Zeng and Lin, 2015).

In this chapter, we extended the guideline by Guan et al. (2019) to the brain imaging

setting and derived similar guidelines. While the response variable for models in Guan et al.

(2019) are real valued, brain imaging data is usually voxelwise and modeled as functional

responses. We therefore use the model MVCM to train both the ensemble-based learner and

the merge-based learner with data from more than one neuroimaging studies and compare

their performance w.r.t. prediction accuracy. We derived the strategy-decision guideline

for the MVCM learners in the method section (section 2), validated the theorems through

simulation studies (section 3), and demonstrated our theoretical conclusions in neuroimaging

studies (section 4).

5.2 Method

We use the following notations: denote numbers with lower-case letters, denote vectors

with bold lower-case letters, and denote matrices with upper-case letters. “ IN is the N ×N

identity matrix, 0N×M is an N ×M matrix of 0’s, 000N is a vector of 0’s with length N , 111N is

a vector of 1’s with length N , tr(A) is the trace of matrix A, diag(uuu) is a diagonal matrix

with uuu along its diagonal, (A)ij is the entry in row i and column j of matrix A (Guan et

al. 2019)", A ⊗ B is the Kronecker product of two matrices A and B, ∣∣A∣∣F =
√
∑i,j a

2
ij
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the Frobenius norm of a matrix A, and vec(A) is the vectorization of matrix A, i.e. for an

N ×M matrix A = (aij), vec(A) = (a11, . . . , aM1, . . . , a1N , . . . , aMN)T is the stack of columns

of A. SP (µµµ(⋅),Σ(⋅, ⋅)) denotes a stochastic process vector with mean function µµµ(⋅) and

covariance function Σ(⋅, ⋅), I{⋅} is an indicator function, B ○C denotes Hadamard product of

equal-dimension matrices B and C, i.e. (B ○C)ij = (B)ij(C)ij, and the bias of an estimator

θ̂ of parameter θ is defined as bias{θ̂} = E[θ̂] − θ. Notations used throughout this chapter are

summarized at the end of this chapter in section 6.

First, I will present the MVCM model for one general study, as well as its varying-

coefficient estimation and prediction (section 2.1). Then, we will discuss the scenario when

we have multiple studies and lay out the underlying model that generates the multi-study

data, with parameter estimation and prediction accuracy comparison introduced (section

2.2). Section 2.3 presents the theoretical conclusions for prediction error comparisons under

different assumptions on the variances of the random effects, as well as the optimal ensemble

weight. The theoretical details and proofs are relegated to the Appendix.

5.2.1 MVCM for One Study

For i = 1, . . . , n, j = 1, . . . , J , and sss ∈ S0 ⊂ IRd, where n is the sample size, J is the number

of responses, and S0 is the common domain of all functional responses,

yij(sss) = xxx
T
i βββj(sss) + ηij(sss) + εij(sss) (5.1)

where yij(sss) is the jth functional response for subject i, xxxi = (xi1, . . . , xip)T are the co-

variates, and βββj(sss) = (β1j(sss), . . . , βpj(sss))
T
are the functional coefficients. Denote ηηηi(sss) =

(ηi1(sss), . . . , ηiJ(sss))
T
and εεεi(sss) = (εi1(sss), . . . , εiJ(sss))

T
, ηηηi(⋅)

i.i.d.
∼ SP (000J(⋅),Ση(⋅, ⋅)) and εεεi(⋅)

i.i.d.
∼

SP (000J(⋅),Σε(⋅, ⋅)), where Σε(sss,ttt) = Sε(sss)I{sss = ttt}. ηi(⋅) and εi′(⋅) are independent ∀i, i′ ∈

{1, . . . , n}.

The above model can also be written in matrix form:

Y (sss) =XB(sss) +H(sss) +E(sss), (5.2)
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where (Y (sss))ij = yij(sss), (X)il = xil, (B(sss))lj = βlj(sss), (H(sss))ij = ηij(sss), and (E(sss))ij = εij(sss),

for i = 1, . . . , n, j = 1, . . . , J , and l = 1, . . . , p.

∀sss ∈ S0, βββj(sss) is estimated using the idea of least squares estimation, with smoothing

done by a weighted sum of local information near sss through a kernel function K(∣sss − sss′∣),

derived based on Taylor expansion of βββj(⋅) near sss (MVCM).

In collected data, S0 contains finite number of elements. Denote the number of elements

in S0 as V ; ∀v ∈ {1, . . . , V }, denote sssv ∈ S0. Define R =XTX, the scaled kernel function for

distance d and bandwidth h (d, h ∈ IR+) being Kh(d) =
1
hK( dh), the 2 × 2 matrix Dh(sss) =

∑
V
v=1Kh(∣sssv −sss∣) (1, ∣s

ssv−sss∣
h )

T
(1, ∣s

ssv−sss∣
h ), the first-order smoothing coefficient ch(sss,sssv) =Kh(∣sssv −

sss∣)(1, 0)Dh(s)−1 (1, ∣s
ssv−sss∣
h )

T
, the second-order smoothing coefficient ah(sss,sssv1 ,sssv2) = ch(sss,sssv1) ⋅

ch(sss,sssv2), and smoothed response Ỹ (sss) = ∑
V
v=1 ch(sss,sssv)Y (sssv). The estimator of the varying

coefficient is as follows:

B̂(sss) = R−1XT Ỹ (sss). (5.3)

Note that the original MVCM (ref), with equations laid out for d = 1, allows a unique

bandwidth hj for each response j. For simplicity, here we assume a common h = hj across

all responses j = 1, . . . , J . While FGWAS (ref) also extends the original MVCM (ref) to

d > 1, they consider unique bandwidths {hjk}, not only for each response j, but also for each

dimension k ∈ {1, . . . , d}, which constitute their bandwidth matrix H.

Let X0 denote a design matrix, we then make prediction of its corresponding functional

response Y0(sss) as

Ŷ0(sss) =X0B̂(sss). (5.4)

If we have both X0 and Y0(sss) available, then (X0, Y0(sss)) can serve as testing data to

evaluate how well Ŷ0(sss) =X0B̂(sss) predicts Y0(sss).

In order to measure the prediction accuracy, define the mean prediction error (MPE) on
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S ⊂ S0 as the square root of the mean squared errors:

MPE(S) =

¿
Á
Á
ÁÀ∑sss∈S ∣∣Y0(sss) − Ŷ0(sss)∣∣

2

F

n0J ∣S∣
(5.5)

=

¿
Á
Á
ÁÀ∑sss∈S∑

n0
i=1∑

J
j=1 [y0ij(sss) − ŷ0ij(sss)]

2

n0J ∣S∣
,

where y0ij(sss) = (Y0(sss))ij, xxx0i is the ith column of XT
0 , and ŷ0ij(sss) = (Ŷ0(sss))ij = xxx

T
0iβ̂ββj(sss). A

higher MPE indicates lower prediction accuracy.

5.2.2 MVCM for Multiple Studies

Consider K comparable independent studies that measure the same functional outcomes

and the same p predictors, and the datasets have been harmonized so that emasurements

across studies are on the same scale (Guan et al. 2019). For study k ∈ {1, . . . ,K}, let nk

denote the number of observations, Yk(⋅) the functional response in study k, and Xk the

design matrix. Assume the data is generated from the following mixed effects model

Yk(sss) =XkB(sss) +ZkΓk(sss) +Hk(sss) +Ek(sss), (5.6)

where B(⋅) is the common varying coefficient of predictor effect shared among studies,

Zk = XkU ∈ IRnk×q, where (U)ij = I{the ith predictor is the jth random effect}, consists

of subcolumns of Xk, and Γk(⋅) is the study-specific effect that is assumed to be random

for the q predictors in Zk (q ≤ p): Γk(⋅) ∼ SP (0q×J ,G(⋅, ⋅)), where 0q×J is a q × J matrix of

0’s, and G(sss,ttt) is a four dimensional tensor with (G(sss,ttt))
ll′jj′

= Cov[(Γk(sss))lj, (Γk(ttt))l′j′]

(l, l′ ∈ {1, . . . , q}; j, j′ ∈ {1, . . . , J}). The noise terms Hk(sss) and Ek(sss) are assumed to inherit

their assumptions from the original MVCM and independent between the K studies.

The above model in matrix format can be equivalently written as follows:

ykij(sss) = xxx
T
kiβββj(sss) + zzz

T
kiγγγkj(sss) + ηkij(sss) + εkij(sss), (5.7)
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where xxxki and zzzki are the ith rows of Xk and Zk, respectively; βββj(sss) and γγγkj(sss) are the

jth columns of B(sss) and Γk(sss), respectively; ykij(sss) = (Yk(sss))ij, ηkij(sss) = (Hk(sss))ij, and

εkij(sss) = (Ek(sss))ij. Denote the q × q matrix Gj(sss,ttt) = Cov[γγγkj(sss),γγγkj(ttt)]. Assume Gj(sss,ttt)

is diagonal: Gj(sss,ttt) = diag(σ2
j1(sss,ttt), . . . , σ

2
jq(sss,ttt)).

Given data from multiple studies (Xk, Yk(⋅)) (k = 1, . . . ,K), the estimation of B(⋅) is

commonly pursued through one of the two competing schemes:

1. EnsembleEnsembleEnsemble: estimate B(⋅) based on data from each study k:

B̂k(sss) = R
−1
k X

T
k Ỹk(sss), (5.8)

where Rk =XT
k Xk, and combine all the K estimators

B̂e(sss) =
K

∑
k=1

wkB̂k(sss) (5.9)

with wk ∈ (0,1),∀k ∈ {1, . . . ,K} and ∑Kk=1wk = 1.

2. MergeMergeMerge: estimate B(⋅) based on merged data from the K studies:

B̂m(sss) = R−1
mX

T
mỸm(sss), (5.10)

where Xm = (XT
1 , . . . ,X

T
K)T , Rm =XT

mXm, and Ym(sss) = (Y1(sss)T , . . . , YK(sss)T )T ;

The two estimation schemes above can each define a learner for prediction:

Ŷ0,e(sss) =X0B̂e(sss), (5.11)

Ŷ0,m(sss) =X0B̂m(sss). (5.12)

In order to compare the prediction accuracy of the learners, introduce a separate set of data,

(X0, Y0(sss)) (for sss ∈ S0), as the testing set. For each learner, calculate the prediction accuracy
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in terms of MPE as defined in (5.5):

MPEe(S) =

¿
Á
Á
ÁÀ∑sss∈S ∣∣Y0(sss) − Ŷ0,e(sss)∣∣

2

F

n0J ∣S∣
, (5.13)

MPEm(S) =

¿
Á
Á
ÁÀ∑sss∈S ∣∣Y0(sss) − Ŷ0,m(sss)∣∣

2

F

n0J ∣S∣
. (5.14)

Then, we can compare the prediction accuracy of the two learners B̂m(⋅) and B̂e(⋅) by

comparing MPEm(S) and MPEe(S), which is equivalent to comparing

∑
sss∈S

∣∣Y0(sss) − Ŷ0,e(sss)∣∣
2

F
VS ∑

sss∈S

∣∣Y0(sss) − Ŷ0,m(sss)∣∣
2

F
. (5.15)

Therefore, it is of interest to investigate: under what condition does ensembling asymptotically

give better prediction than merging:

E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,e(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

≤ E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,m(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

, (5.16)

where Y0(⋅) is treated as given and fixed and Yk(⋅) as random, for k = 0,1, . . . ,K.

5.2.3 Theoretical Conclusions

Denote the sum of smoothed residual errors σ2
r,S = ∑sss∈S∑v1,v2 ah(sss,sssv1 ,sssv2)tr(Ση(sss,ttt) +

Σε(sss,ttt)), the sum of smoothed variation for the lth (l ∈ {1, . . . , q}) random effect σ2
⋅l,S =

∑sss∈S∑v1,v2 ah(sss,sssv1 ,sssv2)∑
J
j=1 σ

2
jl(sssv1 ,sssv2), and the mean variation of the q random effects

(smoothed and summed over sss ∈ S) σ2
S
= 1
q ∑

q
l=1 σ

2
⋅l,S . Then, the comparison in (5.16) can be

represented by the relationship between the two sources of variation in the estimated varying

coefficient: the mean variation of the random effect σ2
S
and the variation of the residual terms

σ2
r,S , as presented in the following two theorems.
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For the simplicity of notations, we define the following terms: for l = 1, . . . , q,

b0 =
K

∑
k=1

w2
k tr(R

−1
k R0) − tr(R

−1R0),

b1l = tr(R
−1
m

K

∑
k=1

XT
k Zkuuuluuu

T
l Z

T
k XkR

−1
mR0) − (

K

∑
k=1

w2
k) ⋅uuu

T
l Z

T
0 Z0uuul,

b2 = tr(R
−1

K

∑
k=1

XT
k ZkZ

T
k XkR

−1R0) − (
K

∑
k=1

w2
k) tr(Z

T
0 Z0),

τ1a =
b0

q ⋅minl b1l

, τ1b =
b0

q ⋅maxl b1l

, and τ2 =
b0

b2

.

The comparison of prediction accuracy of the learners from ensembling and merging has

the property in the theorems below. It is assumed that b1l > 0 (l = 1, . . . , q) for theorem 1 and

b2 > 0 for theorem 2. Conditions and proofs of b’s > 0 are delegated to the Appendix.

Theorem 1 (a) Suppose minl b1l > 0. A sufficient condition for

E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,e(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

≤ E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,m(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

is

σ2
S ≥ σ

2
r,S ⋅ τ1a. (5.17)

(b) Suppose maxl b1l > 0. A sufficient condition for

E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,e(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

≥ E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,m(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

is

σ2
S ≤ σ

2
r,S ⋅ τ1b. (5.18)

We therefore have the following asymptotic conclusion when equal ensemble weights are used:

Corollary 1: Suppose wk = 1
K and there exist positive definite matrices A1,A2,A(l) ∈ IRp×p

such that as K →∞,
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1. 1
K ∑

K
k=1Rk → A1

2. 1
K ∑

K
k=1R

−1
k → A2

3. 1
K ∑

K
k=1X

T
k Zkuuuluuu

T
l Z

T
k Xk → A(l) for l = 1, . . . , q.

(a) If minl {tr(A−1
1 A(l)A

−1
1 R0) −uuuTl Z

T
0 Z0uuul} > 0, then

τ1a →
tr(A2R0) − tr(A−1

1 R0)

minl {tr(A−1
1 A(l)A

−1
1 R0) −uuuTl Z

T
0 Z0uuul}q

. (5.19)

(b) If maxl {tr(A−1
1 A(l)A

−1
1 R0) −uuuTl Z

T
0 Z0uuul} > 0, then

τ1b →
tr(A2R0) − tr(A−1

1 R0)

maxl {tr(A−1
1 A(l)A

−1
1 R0) −uuuTl Z

T
0 Z0uuul}q

. (5.20)

If the variance of the random effect γkjl(sss) remains the same across l = 1, . . . , q, where

γkjl(sss) is the lth element in the q × 1 vector γγγkj(sss), then σ2
⋅l,S = σ

2
S
for l = 1, . . . , q.

Theorem 2: Suppose σ2
⋅l,S = σ

2
S
(for l = 1, . . . , q) and b2 > 0, then

E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,e(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

≤ E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,m(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

is equivalent to

σ2
S ≥ σ

2
r,S ⋅ τ2. (5.21)

Similar to Corollary 1, we have the following conclusion following from the above theorem:

Corollary 2: Suppose the random effects have equal variances σ2
⋅l,S = σ

2
S
(for l ∈ {1, . . . , q})

and there exist positive definite matrices A1,A2,A3 ∈ IRp×p such that as K →∞,

1. 1
K ∑

K
k=1Rk → A1

2. 1
K ∑

K
k=1R

−1
k → A2

3. 1
K ∑

K
k=1X

T
k ZkZ

T
k Xk → A3
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4. tr(A−1
1 A3A−1

1 R0) − tr(ZT
0 Z0) > 0

where → denotes almost sure convergence. If we set wk = 1
K , then

τ2 →
tr(A2R0) − tr(A−1

1 R0)

tr(A−1
1 A3A−1

1 R0) − tr(ZT
0 Z0)

. (5.22)

Optimal Ensemble Weights: With the ensembled learner B̂e(sss) = ∑
K
k=1wkB̂k(sss), it is

of interest to derive the ensembling weights wk (k = 1, . . . ,K) that achieve the minimum

expected prediction error

E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,e(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

.

The optimal ensemble weights

wk,opt =
ak

∑
K
k=1 ak

, (5.23)

where

ak = [tr(GSZ
T
0 Z0) + σ

2
r,Str(R

−1
k R0)]

−1
. (5.24)

5.3 Simulation

Simulation study is conducted to verify the theoretical transition points in Theorem

1 and Theorem 2, by simulating data with different levels of random effect variance σ2
S

and comparing MPEe(S) vs MPEm(S). We consider two scenarios: the general scenario

corresponding to Theorem 1 and the homogeneous scenario corresponding to Theorem 2.

5000 replicated datasets are generated for each scenario with 10 levels of the variance for the

random effects, which include the theoretical transition points and 0.

In particular, let the domain of the functional response S0 be a set of 50 equally-spaced real

numbers from 0.02 to 1 by 0.02, and the region of interest S = S0. Let K(s) = 3
4(1−s

2)I{s ≤ 1}

(the the Epanechnikov kernel) and bandwidth h = 0.07, which will include 3 points to the left
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and 3 points to the right of the target point for smoothing. The number of training studies

K = 4, with nk = 100 for k = 1,2,3,4 and n0 = 400. The number of predictors p = 3, with

all elements in the first column of the design matrix Xk equal to 1. The number of random

effects q = 2, with the second and third column of the design matrix corresponding to random

effects, i.e. U = (
0 0
1 0
0 1

). We use the same Xk’s across all replicates, scenarios, and settings.

Since the theoretical transition points are based on Xk, σ2
r,S , and h, the theoretical transition

point will remain the same within each scenario. This will give us a guideline for choosing the

values of σ2
S
that remain unchanged across replicates within each scenario. For the purpose

of simplicity, we also use the same Xk’s for both scenarios. Therefore, a total number of five

sets of Xk’s are simulated, k = 0, 1, 2, 3, 4. Since the first column of Xk’s are 1’s, we only need

to generate the second and third columns of Xk’s. We randomlly sample columns 2 and 3

from a bivariate normal distribution, with mean (0,0)T and covariance matrix ( 1 rk
rk 1 ), for

k = 1, . . . ,4. To introduce variation in the design matrix structure between training studies,

let r1 = −0.75, r2 = −0.25, r3 = 0.25, and r4 = 0.75. To generate the testing study X0, generate

Xk’s (k = 1,2,3,4) one more time, and combine them as X0.

For s ∈ S0, Yk(s)’s are generated according to model (5.6). Therefore, in order to generate

Yk(s), B(s), Γk(s), Hk(s) and Ek(s) are generated first. Let the number of responses J = 1

for the purpose of simplicity, then the dimensions of G(s, t), Ση(s, t) and Σε(s, t) are now

2×2 , 1×1, and 1×1, respectively. For replicates b = 1, . . . , 5000, let Bb(s) denote the varying

coefficient B(s) in replicate b. Allow Bb(s) to vary across b. In particular, for l = 0,1,2, let

βlb(s) = (Bb(s))l1 = clb ⋅ βl0(s), where c0b ∼ N(1,0.052), c1b ∼ N(1,0.052), c2b ∼ N(0.4,0.022),

and β00(s) = s2, β10(s) = (1 − s)2, β20(s) = 4s(1 − s). Denote ηi(s) = (Hk(s))i1. Let

ηi(s) = ξi1ψ1(s) + ξi2ψ2(s), where ξi1 ∼ N(0, λ1) and ξi2 ∼ N(0, λ2), with λ1 = 0.4, λ2 = 0.2,

ψ1(s) =
√

2 sin(2πs), and ψ2(s) =
√

2 cos(2πs). Therefore, Ση(s, t) = Cov(ηi(s), ηi(t)) =

λ12 sin(2πs) sin(2πt) + λ22 cos(2πs) cos(2πt). Let εi(s) ∼ N(0,0.2). Therefore, σ2
ε (s, t) =

+0.2I{s = t}. Then, σ2
r,S = ∑s∈S∑v1,v2 ah(s, sv1 , sv2)(Ση(s, t) + Σε(s, t)) can be calculated

accordingly. Let the random effect Γk(s) = Γk remain unchanged across s. Therefore, the
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variance of the random effects becomes a constant matrix G(s, t) = G = diag(σ2
1, σ

2
2). For the

homogeneous scenario, σ2
1 = σ

2
2 = σ

2. For the heterogeneous case, let σ2
1 =

2
3σ

2 and σ2
2 =

4
3σ

2

s.t. the mean random effect variance is still σ2. For the homogeneous scenario, calculate the

theoretical transition point σ2
t = σ

2
r,S ⋅ τ2 according to Theorem 2, and set the 10 levels of σ2

values as (0, 1, . . . , 9) ×σ2
t /4. For the heterogeneous scenario, two theoretical transition points

σ2
ta and σ2

tb are calculated according to part (a) and part (b) of Theorem 1, respectively, with

σ2
tb ≤ σ

2
ta; the 10 levels of σ2 = 1

2(σ
2
1 +σ

2
2) values are set as (0, 1, . . . , 3)×σ2

t1/3, (σ2
t1+σ

2
t2)/2, σ2

t2,

and (1, . . . , 4)×σ2
t1/3+σ

2
t2, which include both transition points and 0. For studies k = 1, . . . , 4

and b = 1, . . . ,5000, generate γγγbk(s) = (γ1bk(s), γ2bk(s))T , where γ1bk(s) = γ1bk ∼ N(0, σ2
1) and

γ2bk(s) = γ2bk ∼ N(0, σ2
2). Then, Ybk(s) is generated as

Ybk(s) =Xkβb(s) +Zkγbk(s) + ηbk(s) + εbk(s). (5.25)

The above procedure is repeated to generate another four sets of Y for k = 1, . . . , 4, which are

combined as the response for the test set.

For b = 1, . . . ,5000 under each of the 10 levels of σ2 in each scenario (homogeneous and

heterogeneous), B̂e,b(s) and B̂m,b(s) are estimated based on (Xk, Ybk(s)) (for k = 1, . . . ,4)

according to (5.8), (5.9), and (5.10), with equal weights wk = 1
4 for k = 1,2,3,4. Then,

prediction is made for the test set according to (5.11) and (5.12) for each estimated B̂e,b(s)

and B̂m,b(s), with prediction errors MPEe(S) and MPEm(S) calculated following (5.13)

and (5.14) accordingly. For each replicate b under each σ2 in each scenario, log MPE2
e(S)

MPE2
m(S)

is

calculated. Then, a sample means of log MPE2
e(S)

MPE2
m(S)

over every 100 replicates is calculated to

estimate the expected MPE’s in the theorem, and the boxplot of the 50 averaged log MPE2
e(S)

MPE2
m(S)

is plotted for each σ2 in each scenario in Figure 1. The theoretical transition points on σ2,

calculated as
σ2
r,S ⋅τ

∑s,sv1 ,sv2
a(s,sv1 ,sv2)

, where τ = τ1a, τ1b, or τ2, are indicated by the red dashed lines.

We can see from Figure 1 that, in both the plot for homogeneous scenario and the plot for

heterogeneous scenario, the averaged log MPE2
e(S)

MPE2
m(S)

decreases as σ2 increases. Since a smaller
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Figure 5.1: Boxplots of means of log MPE2
e(S)

MPE2
m(S)

over 100 replicates for homogeneous scenario
(top) and heterogeneous scenario (bottom). The theoretical transition points are indicated
by the red dashed lines.
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MPE(S) indicates better prediction, this means that the ensemble-based estimator B̂e(s)

gradually over-performs the merge-based estimator B̂e(s) in prediction accuracy as the random

effect variance σ2 increases. The empirical transition point, indicated by log MPE2
e(S)

MPE2
m(S)

= 0, i.e.

MPEe(S) =MPEm(S), coincides with the theoretical transition point indicated by the red

dashed line in the homogeneous scenario (top plot in Figure 1). While in the heterogeneous

scenario, transition from merge-based learner gives better performance to ensemble-based

learner gives better performance is to happen in the interval [σ2
r,S ⋅ τ1b, σ2

r,S ⋅ τ1a] according to

Theorem 1. This theoretical transition point coincides with the empirical transition point

indicated by the boxplot with log MPE2
e(S)

MPE2
m(S)

near 0. Hence, this simulation study verifies our

theoretical conclusions derived in Theorem 1 and Theorem 2.

5.4 Imaging Genomic Application

In this section, we illustrate a practical example with brain imaging genetic datasets

used for learners training and testing, where genetic information are used as predictors and

voxelwise imaging feature as the functional response. The prediction accuracy of merge-based

and ensemble-based learners are compared both by calculating the actual MPE’s on the testing

data, and through comparing their expected MPE’s utilizing the general-case conclusion in

Theorem 1, by estimating related terms therein from data. This allows us to take a glance

at whether the theory-based guidance indicates a better multi-study learner (ensemble v.s.

merging) in a real-world example. To compare the performance of the learners in the presence

of potential between-study variation, we consider the following two scenarios:

A. train the learners using different subsets of the same study and test the learners on a

held out subset;

B. train the learners using different studies and test them on an independent study.

After training and testing the learners, the prediction accuracy is compared between merge-

and ensemble-based learners, with the theoretical transition point estimated and referenced.
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5.4.1 Data Description

We consider the following three studies for this illustration: UK Biobank (UKB) (Sudlow

et al., 2015), which includes elder individuals aged from 45 to 80, Adolescent Brain Cognitive

Development (ABCD) (Casey et al., 2018), which includes adolescents aged from 9 to 11,

and the Human Connectome Project (HCP) (Somerville et al., 2018), which includes young

adults aged from 22 to 35. Besides age range, the variation between the three studies may

also come from their differences in image quality, protocol implementations, etc.

The functional imaging response data used in this application is introduced as follows. In

recent brain imaging-genetic studies (Zhao et al., 2019, 2020, 2019, 2020, 2019), brain white

matter connectivity is shown to present more signals of significant association with genetic

markers (Zhao et al., 2020) as compared to other commonly considered brain imaging features

such as cortical volume in subregions of the brain. Therefore, we target on diffusion magnetic

resonance images (dMRIs), which capture brain white matter microstructural connectivity

that can be quantified by diffusion tensor imaging (DTI) models (Basser et al., 1994). Among

all the DTI-derived parameters, the fractional anisotropy (FA), highly sensitive to general

connectivity changes, is a feature of interest in many studies (Grieve et al., 2007). A recent

recent study investigated the genome-wide association with the top five imaging PCs of

multiple DTI-derived parameters in 21 pre-defined brain white matter tracts (Zhao et al.,

2020) generated from the ENIGMA-DTI pipeline (Jahanshad et al., 2013; Kochunov et al.,

2014). Among all the parameters and white matter tracts investigated, FA in genu of corpus

callosum (GCC) is significantly linked to the maximum number of SNPs. Therefore, we

target on GCC FA as our imaging functional response variable in this application. We used

the GCC FA data from Zhao et al. (2020) for the three studies introduced above, which is

measured on the functional domain S0 that contains V = 1834 voxels in a 3D space (S0 ⊂ IR3).

The number of responses J = 1, and functional response values Yki(sss) ∶= Yki1(sss) ∈ (0,1) ⊂ IR,

for sss ∈ S0, i = 1, . . . , nk, and k = 0,1, . . . ,K.

The predictor data is described as follows: SNPs rs12653308 and rs2237077 are selected
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as predictors because they are significantly associated with FA through both GWAS with the

top five GCC FA PCs and voxelwise regression using MVCM with voxelwise GCC FA, besides

being mutually uncorrelated and available in all the three studies introduced above. The

SNPs are modeled as a quantitative variable, with value equal to its number of alternative

alleles (0, 1, or 2) (i.e. the additive model is implemented w.r.t. each SNP). The number of

alternative alleles are extracted from imputed genotype data, with ABCD and HCP genotype

data imputed (Zhao et al., 2020) using the 1000 Genomes reference panel and UKB genotype

data imputed using Haplotype Reference Consortium and UK10K + 1000 Genomes reference

panels (Bycroft et al., 2018). Age and gender were initially considered as predictors, as well,

but finally dropped because of their estimated MVCM varying coefficients being close to zero

across sss ∈ S0.

Individual filtering in the three study cohorts are implemented for the following aspects.

For all the three studies mentioned above, their original cohorts include siblings or families.

Therefore we filter for only independent individuals to be included into our analysis. In

particular, ABCD is know to have twins in the cohort, therefore, a random individual from

each pair of twins is excluded. The HCP cohort include both twins and non-twin siblings, and

the mother and father IDs are available for each individual. Therefore, individuals are filtered

so that non of the individuals included share the same mother or father. General family

structure is possible in the UKB cohort, and genetically-derived kinship coefficient is released

with the genotype data for each pair of individuals that are related up to the third degree.

Therefore, we group individuals related up to the third degree into families and selected a

largest set of unrelated individuals in each family for inclusion using the igraph R package

(Csardi and Nepusz, 2006) following the procedure by Bycroft et al. (2018). Furthermore,

we also filtered for individuals based on their self-reported race. For HCP and ABCD, only

individuals with European ancestry are included, and only British individuals are included

for UKB. After further excluding the individuals with missing data, the final number of

individuals included for HCP, ABCD and UKB are 298, 5,088 and 16,703, respectively.
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5.4.2 Study Design and Implementation

Using data described above, we apply the following procedure to each of the two scenarios:

1) estimate the variances of random effect and noise terms using linear mixed model, and

calculate the optimal weights and the terms in Theorem 1 accordingly;

2) train the merge-based and ensemble-based learners to predict the functional response

in the testing data, and calculate the MPE corresponding to each learner;

3) repeat step 2) on 100 bootstrap samples.

Each of the above steps are elaborated as follows:

Step 1) makes use of both the training datasets and the testing dataset, which are

designated as follows: for scenario A, randomly split the UKB cohort into five subsets with

approximately equal sizes, with K = 4 sets of size nk = 3341 (k = 1,2,3,4) used for training

and one set of size n0 = 3339 for testing; for scenario B, use ABCD (n1 = 5,088) and UKB

(n2 = 16,703) for training (K = 2) and HCP for testing (n0 = 298). In this step, the training

sets and testing set are treated equally within each scenario. Our goal is to estimate the

variance of the random effects G and the variance of the noise terms Ση +Σε in model (5.6),

or equivalently (5.7), which are needed to calculate σ2
S
, σ2

r,S , τ1a and τ1b in Theorem 1, which

provides insights on whether ensemble or merging is better for prediction without putting

homogeneous assumption on the random effect variance. For the ensemble-based learner, we

would like to combine study-specific learners (for k = 1, . . . ,K) based on both equal weights

wk =
1
K and the optimal weights wk,opt as in (5.23) and (5.24). The calculation of the optimal

ensemble weights wk,opt are also based on the estimated G and σ2
r,S .

We estimate G(sss,ttt), Ση(sss,ttt) and Σε(sss,ttt) for sss,ttt ∈ S0 using the following strategy. Since

the MVCM coefficient estimator B̂(sss) = R−1XT Ỹ (sss) in (5.3) takes the form of the coefficient

estimator in a linear regression model with the smoothed response Ỹ (sss), defined above

equation (2.3), as the response variable, we estimate G(sss,ttt) and Ση(sss,ttt) for model (5.6),

or equivalently model (5.7), by fitting a mixed regression model at each voxel sss ∈ S0 with
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the response being Ỹ (sss). The smoothed response Ỹ (sss) is obtained using bandwidth h

equal to the median of the Euclidean distances between each voxel and its closest voxel:

h =mediansss1 minsss2 ∣∣sss1 − sss2∣∣, and the Epanechnikov kernel function Kh(x) =
1
hK(xh), ∀x ∈ IR,

so that adjacent voxels of each target voxel is considered during the smoothing procedure.

At each voxel sss, the following linear mixed model is fit using the “lmer” function in the lme4

R package (Bates et al., 2015):

ỹki(sss) = xxx
T
kiβββ(sss) + zzz

T
kiγγγk(sss) + ηki(sss), (5.26)

for i = 1, . . . , nk and k = 1, . . . ,K, where the response indicator j is dropped as compared to

model (5.7) in our case of J = 1, xxxki = zzzki is a 3 × 1 vector (p = q = 3), with the first element

equal to 1 for intercept and the second and third elements as the number of alternative

alleles for SNPs rs12653308 and rs2237077, respectively, and ηki(sss) is the individual-specific

variation that are not explained by the predictors. The final measurement error term εki(sss)

is not included in this model because of the cancellation of the measurement error by the

smoothing procedure, under the assumption that the functional imaging response and the

varying coefficients are smooth by nature. Therefore, estimate εki(sss) by yki(sss) − ỹki(sss) and

estimate Σε(sss) as the sample variance of {εki(sss)}k,i. With this estimating strategy, G(sss,ttt) is

assumed to take the form G(sss,sss)I{sss = ttt}, i.e. Cov(γγγ(sss),γγγ(ttt)) = 0. Ĝ(sss,sss) and the residual

η̂ki are extracted from the “lmer” function output, then Ση(sss,ttt) is estimated using the sample

covariance of η̂ki’s.

After obtaining Ĝ(sss,sss), we calculate Σ̂η(sss,ttt) and Σ̂ε(sss,sss) accordingly. Their values in

each scenario are shown as follows:
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Scenario A Scenario B

Training Data 4 UKB subsamples (nk = 3341) ABCD (n1 = 5088)

UKB (n2 = 16,703)

Testing Data a UKB subsample (n0 = 3339) HCP (n0 = 298)

σ̂2
S

1.31 × 10−3 0.569

σ̂2
r,S 4.101 4.364

wk =
1
K

σ̂2
r,S ⋅ τ1a 1.83 × 10−6 4.13 × 10−4

σ̂2
r,S ⋅ τ1b 8.14 × 10−7 2.16 × 10−4

wk,opt

wk,opt w1,opt = 0.250,w2,opt = 0.249

w3,opt = 0.250,w4,opt = 0.251

w1,opt = w2,opt = 0.500

σ̂2
r,S ⋅ τ1a 1.77 × 10−6 4.10 × 10−4

σ̂2
r,S ⋅ τ1b 7.84 × 10−7 2.15 × 10−4

From the above table, we can see that σ̂2
S
is greater than σ̂2

r,S ⋅ τ1a for both scenarios, no

matter using equal ensemble weights or optimal ensemble weights. According to Theorem

1, ensemble-based learner yields a smaller expected MPE, i.e. better prediction accuracy

to be expected given testing data of which the study-specific coefficient has expectation 0.

Therefore, we move on to Step 2) to calculate the MPE’s from the learners.

Step 2) - 3) For each scenario, estimate B̂m(sss) according to (5.10) using merged data

across all training datasets and B̂k(sss) according to (5.8) for each training dataset k = 1, . . . ,K.

Then, according to (5.9), calculate B̂e(sss) using equal ensemble weights wk = 1
K and B̂e,opt(sss)

using optimal ensemble weights wk,opt that are obtained in step 1). Lastly, use the estimated

varying coefficients B̂m(sss), B̂e(sss) and B̂e,opt(sss) to predict Y0 based on predictor data X0 in the

testing set and calculate the corresponding MPE’s following (5.13) and (5.14). Repeat step

2) for 100 bootstrap samples, with each bootstrap sample randomly drawn with replacement

from the original training data. The testing data remain unchanged.
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Figure 5.2: Boxplots of 100 bootstrap MPE’s, with original MPE’s indicated by the blue
line segments. The boxplot on the left is for scenario A, and the boxplot on the right is for
scenario B.

5.4.3 Result

For each scenario, the bootstrap MPE’s calculated in step 3) are summarized into boxplots

in Figure 2, with MPE’s calculated in step 2) drawn as blue line segments on those boxplots.

From Figure 2, we can see that for scenario A, we have the three similar boxplots of MPE’s

for ensemble-based learner using equal weights, ensemble-based learner using optimal weights

and merge-based learners. The similarity between the three boxplots can be explained by the

similarity of signals B(⋅) within the UKB cohort. This similarity can be explained by the

small σ̂2
S
= 1.31 × 10−3 calculated for scenario A in step 1), as compared to σ̂2

S
= 0.569 for the

three different studies in scenario B. For the comparison of expected MPE’s for scenario A,

although σ̂2
S
is greater than σ̂2

r,S ⋅ τ1a, which guides the preference in ensemble-based learners

as indicated by Theorem 1, we notice that both sides of the inequality (5.17) are very close

to 0. For scenario B, we can see from Figure 2 that ensemble-based learners give better

performance than merge-based learners. This aligns with the preference in the ensemble-based
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learners according to Theorem 1, since σ̂2
S
is greater than σ̂2

r,S ⋅ τ1a. The similarity between

the ensemble based learners with equal weights v.s. optimal weights can be explained by

the optimal weights being very close to 0.5 (the wk,opt values listed in the table above are

rounded to the third decimal place).

5.5 Discussion

We extended Guan et al. (2019) ’s guideline of whether the ensembled learner or merged

learner gives better prediction given data from multiple studies to the scenario of brain

imaging data modeled by MVCM (Zhu et al., 2012). Transition points of whether ensembled

learner or merged learner gives better prediction are derived allowing unequal variances

for the random effects (Theorem 1) and assuming equal variances across all random effects

(Theorem 2). We estimated the transition points based on simulated data under different

variances of the random effects and observed that the MPE comparisons match the guideline

provided by the theorems. As random effect variances increase, the ensembled learner gives

increasingly better prediction. We then tried to apply the learner-choosing guideline to brain

imaging data and examined guideline comparing to learner performances on a testing cohort,

The comparison results align with our derived theoretical conclusions, demonstrating the

usefulness of the learner-choosing guideline for imaging data using MVCM. When using the

guideline given by the theoretical conclusions, please take caution that when the predictors

in the model tend to have no signal or weak signals, the theoretical conclusion may not align

with actual behavior due to noise.

Notice that the transition points τ1a, τ1b and τ2 is not invariant with regard to sample

size or the scale of the predictors in Xk. Therefore, one should take caution to harmonize

the predictors to the same scale across the K cohorts. With regard to the transition point

varying with sample size, one may understand the transition point as a comparison between

ensembled learner and merged learner on two terms: A) variance of the random effect, i.e.

between-study variation, and B) variance of the error terms, i.e. within-study variation. The

above two terms are the source of variation in hatB(sss), and hence Ŷ (sss) and MPE. Given
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the same testing data, term A is invariant w.r.t. sample size and term B decreases as sample

sizes increase. As a result, the transition point decreases with larger sample size in this case.

An illustration can be seen in the top row of Figure 3. When the sample size is infinitely

large, B̂(sss) → B(sss), and the comparison (5.16) reduces to the comparison of terms Ae versus

Am, i.e. the sign of d1l or d2, which are assumed to be positive. So, the assumption of d1l or

d2 > 0 can be interpreted as the ensembled learner is always better than the merged learner

given infinite sample size. Therefore, the comparison of the MPE’s (5.16) is in essence the

balance between the comparisons of terms A (for between-study variation) and terms B (for

within-study variation), given finite sample size. In the appendix, a simple simulation study

is conducted to observe the trend of the transition points as sample size increases.

In this chapter, the theorems give conclusions on the comparison of the expected MPE’s.

This is different from the expectation of the differences between the MPE’s since MPEe

and MPEm depend on data from the same studies or cohorts. If the difference between the

MPE’s are examined w.r.t. its distribution, e.g. expectation, variance, and the approximated

distribution family, a statistical test would be possible to compare the prediction accuracy

between the two families of learners. As this chapter focuses on the problem of prediction,

given multiple studies, an equally interesting problem at need is statistical testing, or meta-

analysis, in the realm of brain imaging data, which is a potential direction for future research.
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CHAPTER 6: DISCUSSION

Future research with regard to each of the three projects is described as follows.

6.1 Future Research for Project 1

In future research, questions such as how to determine an optimal window (i.e. subregion)

can be discussed, including the optimal size and shape of the subregion. On the other hand,

we can explore how to define overlapping subregions on a non-regular closed surface, such as

the hippocampus surface or surface of other ROIs in the brain. Data on the hippocampus

surface in the real data application was reshaped to a 150 × 100 rectangle. The limitation

is that the voxels on the two opposite sides of the rectangle do not have a chance to be

included into the same subregion, and relative distances between voxels cannot be retained

in the reshaped rectangle. For example, voxels on the top and bottom of the hippocampus

may have to lay out in different subregions along the top and bottom edges of the rectangle.

If we can design a strategy to move a circled or rectangular region across the surface of

the ROI, not only those problems will be resolved, maintaining the relative position and

distances between voxels, but the step of registering voxels on a non-regular closed shape to

a rectangle on a flat surface can also be saved. Furthermore, the question rises as whether

we can define subregions in the image based on the correlations between adjacent voxels,

s.t. nearby voxels with their corresponding measurements closely related to each other are

more likely to be grouped into the same subregion. This conduct gives the possibility to

define more biologically meaningful subregions, and can potentially enhance computation

and performance.

In order to further reduce computation, we can group nearby SNPs into blocks based

on their correlations, and perform test of associations only on the representing SNP in each

block. We can explore method to infer the image-SNP association of non-representing SNPs
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based on the inter-SNP correlation and the association between image and the representing

SNP in the corresponding SNP block. Since tests such as dCov and BCov allow multivariate

variables, there is also a possibility to screen the SNPs using multiple SNPs at a time, or

even multiple, if not all, image subregions at one time. For example, for all the SNPs on

each chromosome, split them into two halves, and perform a BCov test on each group of the

SNPs. Assume that a BCov test on a group of SNPs would be significant if a significant SNP

is included in the group of SNPs tested, then one can zoom into this group, e.g. split this

group of SNPs into smaller groups until a fine-enough group (e.g. defined based on inter-SNP

correlations) or a single SNP is detected significant enough for inclusion in the screening.

To fully address the problem of local alignment and registration error and how the

proposed method and future research can address this issue, theoretical discussions can be

pursued in future research.

6.2 Future Research for Project 2

Rather than using distance covariance for coefficient optimization and global test, other

measures such as ball covariance can be used instead. If possible, we can consider extracting

bases s.t. they maximize distance covariance or ball covariance, instead of maximizing

Pearson’s covariance as aimed by APLS. Bootstrap-based statistical tests will give more

rigorous p-values, although more computationally intensive, and can be potentially used when

computation power evolve. Otherwise, it is of interest to develop computationally efficient

tests that are more rigorous. The cluster-size analysis as implemented by Huang et al. (2017)

can also be implemented on b̂(s) to detect significantly large regions with signals above a

certain threshold. Rather than doing linear combination of the bases, a multivariate test for

dCov or BCov on all extracted bases can be implemented to investigate their association

with the SNP. The multivariate tests such as dCov and BCov tests also allow the testing of

multiple markers at the same time. Rather than using the dosage value of the SNP, other

type of response values and other variables of interest can also fit in this framework, such

as gene expression levels. Additionally, the subregion-based screening strategy can also be
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applied in this framework.

Other questions for future investigation are as follows: 1) Can registration error be

accounted for similar to project 1? 2) How is it useful to reduce the image dimension w.r.t.

each variable of interest through APLS? In genomic studies, genetic PCs can be used to

adjust for population structure. Can the APLS-extracted bases also be used to adjust for

structural effects that are related to images, such as in causal-inference models?

6.3 Future Research for Project 3

In future research, other models besides MVCM can be considered. Empirical conclusions

can even be generated for deep learning methods. Besides prediction, statistical inference

can also be discussed to compare meta- v.s. mega-analysis.
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APPENDIX 1: METHOD 1 - ACCELERATED BCOR

Calculating the Ball Covariance (BCov) and the corresponding p-value can be compu-

tationally expensive. It took approximately one week to run BCov-based GWAS on one

phenotype from UK Biobank (sample size n ∼ 10,000) using the R package "ballgamma".

This GWAS calculates a BCov-based p-value for each of the 10 million genetic markers. The

run time is based on running the full-load number of parallel jobs (100+) on the Longleaf

University cluster. The implementation of rfGWAS on the hippocampus surface includes

126 × 2 = 252 phenotypes. It would already be computationally challenging to implement

GWAS on one region of interest in the brain, not to say the implementation of this algorithm

to the entire brain and the full imaging sample size of 40,000. The main computation burden

of rfGWAS comes from the repeated computation of BCov for each genetic marker, of which

the computation complexity is O(n2 logn). This makes the implementation of rfGWAS

non-realistic, especially on a large cohort such as UK Biobank. In the case of GWAS, where

a genetic marker is recorded by the number of alternative alleles (0, 1, or 2) for an individual,

and the phenotype of interest remains the same across all genetic markers, the computation

of BCov has a great potential to be simplified. For the purpose of SNP screening, we only

need to rank the BCov statistic, without needing to obtain the p-value corresponding to the

BCov calculated for each SNP, which further decreased the computation burden of rfGWAS.

In this section, we give the simplified calculation of BCov for SNP screening.

Empirical BCov

We use the empirical BCov (Pan et al. 2019) to estimate the relationship between two

random variables X and Y . Define B-valued random variables (X,Y ) on a probability space

such that (X,Y ) ∼ θ, X ∼ µ, and Y ∼ ν, where (X , ρ) and (Y , ζ) are two Banach spaces

with norms ρ and ζ representing their induced distances, θ is a Borel probability measure

on X × Y , µ and ν are two Borel probability measures on X and Y , respectively. For

i = 1, . . . , n, let (Xi, Yi) be a random realization of (X,Y ). Then, the empirical BCov between
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X and Y is defined as follows:

BCov2
w,n(X,Y ) ∶=

1

n2

n

∑
i,j=1

(∆XY
ij,n −∆X

ij,n∆Y
ij,n)

2ŵ1(Xi,Xj)ŵ2(Yi, Yj), (6.1)

where

∆XY
ij,n =

1

n

n

∑
k=1

δXij,kδ
Y
ij,k, ∆X

ij,n =
1

n

n

∑
k=1

δXij,k, ∆Y
ij,n =

1

n

n

∑
k=1

δYij,k,

with δXij,k ∶= I{Xk ∈ B̄ρ(Xi,Xj)} and δYij,k ∶= I{Yk ∈ B̄ζ(Yi, Yj)}. B̄ρ(Xi,Xj) denotes the closed

ball with center Xi and radius ρ(Xi,Xj). B̄ζ(Yi, Yj) denotes the closed ball with center Yi

and radius ζ(Yi, Yj). When ŵ1 = ŵ2 = 1, the empirical BCov simplifies to

BCov2
n(X,Y ) =

1

n2

n

∑
i,j=1

(∆XY
ij,n −∆X

ij,n∆Y
ij,n)

2. (6.2)

The above definition of the empirical BCov can be interpreted as follows: The ∆’s describe

the empirical density defined on the gradient defined by each pair of subjects (i, j), and

the empirical BCov is the difference between the joint density and the product of marginal

densities, which equals to zero when independence holds between X and Y ; while the w’s add

weights on each pair of subjects for X and Y , respectively. In particular, ∆X
ij,n is the local

empirical density of X at Xi with resolution ρ(Xi,Xj), because it equals to the proportion of

subjects with X falling in B̄ρ(Xi,Xj): ∆X
ij,n =

1
n ∑

n
k=1 δ

X
ij,k, where δ

X
ij,k ∶= I{Xk ∈ B̄ρ(Xi,Xj)}

denotes whether subject k fall into B̄ρ(Xi,Xj) in terms of X. The meanings of ∆Y
ij,n and ∆XY

ij,n

follow similarly. Generally speaking, ∆n’s represent the local empirical densities at all data

points i = 1, . . . , n across all possible resolutions (i, j) (j = 1, . . . , n), and the expression of

BCov2
n(X,Y ) is an average of all local empirical density differences (squared) corresponding

to [θ(X,Y ) − µ(X)ν(Y )]2 across all locations and resolutions defined by data points in the

sample.

For the purpose of simplicity, we use the simplified empirical BCov, and therefore only
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need to calculate ∆XY
ij,n , ∆X

ij,n, and ∆Y
ij,n for each pair of subjects (i, j). We use Euclidean

distance (d) for ρ and ζ. Since in our case Xi is a number and Yi = (Yi1, . . . , Yir) is an

r-dimensional vector for i = 1, . . . , n, the distances between subjects (i.j) w.r.t. X and Y ,

respectively, are thus

ρ(XXX i,XXXj) = d(XXX i,XXXj) =
√

(Xi −Xj)2 = ∣Xi −Xj ∣

ζ(YYY i,YYY j) = d(YYY i,YYY j) =

¿
Á
ÁÀ

r

∑
k=1

(Yik − Yjk)2

on which all the δ’s, thus ∆’s and finally BCovn, are based. As to be demonstrated later,

BCovn is based on the rank of the distances between all pairs of subjects. Since d2 preserves

the rank of distances between subjects calculated under d, we use d2 as the distance measure

to save the calculation of taking the square root, which further simplifies the computation:

ρ(XXX i,XXXj) = d
2(XXX i,XXXj) = (Xi −Xj)

2

ζ(YYY i,YYY j) = d
2(YYY i,YYY j) =

r

∑
l=1

(Yil − Yjl)
2

Simplified Calculation of BCov(X,Y)

Now, we discuss the calculation of δij,k and ∆ij,n and how it can be simplified for X, Y ,

and (X,Y ) in the following three subsections, respectively.

Simplified Calculation of ∆X
ij,n Using ρ = d2,

δXij,k = I{Xk ∈ B̄ρ(Xi,Xj)}

= I{ρ(Xi,Xk) ≤ ρ(Xi,Xj)}

= I{(Xk −Xi)
2 ≤ (Xj −Xi)

2}
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For SNP screening, let Xi represent the dosage values of the target SNP for the ith subject

(i = 1, . . . , n), which takes values 0, 1, or 2. Therefore, pairwise distance between subjects

(i, j) in terms of X has the following possible situations:

ρ(Xi,Xj)
Xj

0 1 2

Xi

0 0 1 4

1 1 0 1

2 4 1 0

Therefore, ρ(Xi,Xj) = 0,1 or 4.

For x = 0,1,2, calculate the number and proportion of subjects with dosage value x,

respectively: sx = ∑ni=1 I{Xi = x} and ax = sx
n . Note that s0 + s1 + s2 = n and a0 + a1 + a2 = 1.

Then, given subject pair (i, j), ∆X
ij,n =

1
n ∑

n
i=1 δ

X
ij,k takes one of the following forms:

• if ρ(Xi,Xj) = 0Ô⇒ δXij,k = I{Xk =Xi} Ô⇒∆X
ij,n = aXi

• if ρ(Xi,Xj) = 4Ô⇒ δXij,k = 1Ô⇒∆X
ij,n = 1

• if ρ(Xi,Xj) = 1Ô⇒ δXij,k = I{Xk =Xi or Xk =Xi ± 1}, and therefore ∆X
ij,n takes one of

the following forms listed in the following table:

δXij,k

Xk

∆X
ij,n =

1
n ∑

n
i=1 δ

X
ij,k

0 1 2

Xi

0 1 1 0 a0 + a1 = 1 − a2

1 1 1 1 1

2 0 1 1 a1 + a2 = 1 − a0

Therefore, based on the values of Xi and Xj, the value of ∆X
ij,n are as follows:
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∆X
ij,n

Xj

0 1 2

Xi

0 a0 1 − a2 1

1 1 a1 1

2 1 1 − a0 a2

For i, j = 1, . . . , n, we expect the majority of ∆X
ij,n’s fall into this upper-left corner of the table,

which represents non-mutants.

All the ∆X
ij,n’s can be stored in an n×n matrix ∆X

n , with the (i, j)th element (∆X
n )i,j = ∆X

ij,n.

One possible way to save computation resource is to save the n × n matrix ∆X
n in the above

collapsed 3 × 3 matrix, rather than saving an n × n matrix, while also saving the subject IDs

in each dosage group: g0 = {i ∶ Xi = 0}, g1 = {i ∶ Xi = 1}, and g2 = {i ∶ Xi = 2}. g0, g1, and g2

can be obtained when calculating s0, s1, and s2.

Simplified Calculation of ∆Y
ij,n Using ζ = d2,

δYij,k = I{Yk ∈ B̄ζ(Yi, Yj)}

= I{ζ(Yi, Yk) ≤ ζ(Yi, Yj)}

= I{
r

∑
l=1

(Ykl − Yil)
2 ≤

r

∑
l=1

(Yjl − Yil)
2}

Our goal is to calculate ∆Y
ij,n =

1
n ∑

n
k=1 δ

Y
ij,k across all i, j = 1, . . . , n, which is based on δYij,k

across all i, j, k = 1, . . . , n. In order to make pairwise distance comparisons in δYij,k, we first

need to calculate all pairwise distances ζ(Yi, Yj) for i, j = 1, . . . , n, which can be saved in an

n × n matrix Z.

Notice that δYij,k means whether Yk falls into ball B̄ζ(Yi, Yj), and thus n∆Y
ij,n = ∑

n
k=1 δ

Y
ij,k

means the number of Yk’s that fall into ball B̄ζ(Yi, Yj). By sorting {ζ(Yi, Yj) ∶ j = 1, . . . , n}

for indicator i, δYij,k can be obtained for all j, k = 1, . . . , n. Therefore, for each ball center Yi

(i = 1, . . . , n), obtain the ranks of {ζ(Yi, Y1), . . . , ζ(Yi, Yn)}, denoted as {ri1, . . . , rin}, where
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rank rij = 1 denotes the smallest element. Then, the number of Yk’s that fall into ball

B̄ζ(Yi, Yj) equals to rij, i.e.

n∆Y
ij,n = rij. (6.3)

With the n × n distance matrix Z, this procedure is equivalent to sorting each row of Z.

Then, the values of ∆Y
ij,n’s can be stored in an n × n matrix ∆Y

n , with the (i, j)th element

(∆Y
n )i,j =

rij
n . Since Y remain unchanged for each SNP in the screening, we only need to

calculate ∆Y
n once for the screening of all SNPs. The distance matrix Z is also saved for

calculating ∆XY
ij,n at each SNP X.

Simplified Calculation of ∆XY
ij,n Let ∆XY

n be an n × n matrix with (∆XY
n )i,j = ∆XY

ij,n . We

discuss the calculation of n∆XY
ij,n = ∑

n
k=1 δ

X
ij,kδ

Y
ij,k in three scenarios: ρ(Xi,Xj) = 0, 1, and 4.

The simplest case is when ρ(Xi,Xj) = 4, where δij,k = 1 for all k = 1, . . . , n. Therefore,

n∆XY
ij,n =

n

∑
k=1

δYij,k = n∆Y
ij,n = rij (6.4)

according to equation (6.3). This happens when {i ∈ g0 and j ∈ g2} or {i ∈ g2 and j ∈ g0}.

When i and j are from the same group gx (x = 0, 1, or 2), we have ρ(Xi,Xj) = 0 and thus

δXij,k = I{Xk = x}. Therefore,

n∆XY
ij,n =

n

∑
k=1

I{Xk = x}δ
Y
ij,k = ∑

k∈gx

δYij,k, (6.5)

which is the number of subjects in gx with distance to Yi no larger than ζ(Yi, Yj). This

equals to the rank of ζ(Yi, Yj) among {ζ(Yi, Yj) ∶ j ∈ gx} given i, denoted as r̃x,ij. Therefore,

equation (6.5) becomes

n∆XY
ij,n =

n

∑
k=1

I{Xk = x}δ
Y
ij,k = ∑

k∈gx

δYij,k = r̃x,ij. (6.6)

123



n∆XY
ij,n = r̃x,ij can be calculated for all {(i, j) ∶ i ∈ gx and j ∈ gx, for x = 0,1,2} = {(i, j) ∶

Xi = Xj} as follows: Given x (x ∈ {0,1,2}), extract the submatrix Zxx from Z s.t. the row

indicators and column indicators of Zxx are both from gx. Then, obtain the ranks r̃ij in each

row of Zxx as the (i, j)th element of n∆XY
n .

If ρ(Xi,Xj) = 1, then δXij,k = I{Xk = Xi or Xk = Xi ± 1}. The calculation of n∆XY
n =

∑
n
k=1 δ

X
ij,kδ

Y
ij,k is discussed for Xi = 0,1, and 2, respectively, as follows:

• If Xi = 1, then δXij,k = 1 for all k = 1, . . . , n. Therefore, equation (6.4) holds and

(n∆XY
n )i,j = rij.

• If Xi = 0, then δXij,k = I{Xk = 0 or 1} = I{Xk ≠ 2}. Therefore,

n∆XY
ij,n =

n

∑
k=1

I{Xk = 0 or 1}δYij,k = r̃01,ij (6.7)

where r̃01,ij denotes the rank of element j in row i in the group g01 = g0∪g1. To calculate

r̃01,ij in row i, extract elements with column indicator in g01 from row i and compute

their ranks.

• If Xi = 2, then δXij,k = I{Xk = 1 or 2} = I{Xk ≠ 0}. Therefore,

n∆XY
ij,n =

n

∑
k=1

I{Xk = 1 or 2}δYij,k = r̃12,ij (6.8)

where r̃12,ij denotes the rank is the rank of element j in row i in the group g12 = g1 ∪ g2.

Summarize n∆XY
ij,n as follows:

n∆XY
ij,n

Xj

0 1 2

Xi

0 r̃0,ij r̃01,ij rij

1 rij r̃1,ij rij

2 rij r̃12,ij r̃2,ij
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Compute BCovn

According to equation (2),

n2BCov2
n(X,Y ) =

n

∑
i,j=1

(∆XY
ij,n −∆X

ij,n∆Y
ij,n)

2. (6.9)

Let DXiXj
ij = n∆XY

ij,n −∆X
ij,n ⋅ n∆Y

ij,n and the n × n matrix D = n∆XY
n −∆X

n ⋅ n∆Y
n = {D

XiXj
ij },

then

n4BCov2
n(X,Y ) = 111TnD

2 111n = 111Tn(n∆XY
n −∆X

n ⋅ n∆Y
n )

2 111n =
n

∑
i,j=1

D2
ij, (6.10)

where A2 = {aij} for a matrix A = {aij}.

According to the table of ∆X
ij,n and the table of n∆XY

ij,n ,

D10
ij =D

20
ij =D

12
ij =D

02
ij = rij − 1 × rij = 0 (6.11)

Dxx
ij = r̃x,ij − axrij, for x =∈ {0,1,2} (6.12)

D01
ij = r̃01,ij − a01rij (6.13)

D21
ij = r̃12,ij − a12rij, (6.14)

where a01 = a0 + a1 and a12 = a1 + a2. Summarize DXiXj
ij as follows:

D
XiXj
ij

Xj

0 1 2

Xi

0 r̃0,ij − a0rij r̃01,ij − a01rij 0

1 0 r̃1,ij − a1rij 0

2 0 r̃12,ij − a12rij r̃2,ij − a2rij

In the algorithm implementation, some ranks only need to be calculated for particular

rows and columns. For example, to obtain r̃01,ij ’s for subject pair (i, j) where i ∈ g0 and j ∈ g1,

we only need to sort the g0 rows (with columns in g01). For the efficiency of the algorithm,

subjects are sorted by dosage values (0, 1, 2) before input into the xBCov algorithm.
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The computation time of xBCov is only 1/4 of the original BCov (both implemented in

C and called from R) for sample size n = 1000, and the fraction further lowers to 1/10 for

sample size n = 4940. The run time of n = 2k is averaged across 10 runs. The run times are

summarized in the following table:

Run Time (s)
Average of m Runs

BCov/xBCov
BCov xBCov

n=1k 0.68361 0.15963 4.3

n=2k 4.3445 0.6402 6.8

n=5k 51.8925 4.8999 10.6

2k/1k 6.4 4.0 —

5k/1k 75.9 30.7 —

Compute BCorn

Since ∆XX
ij,n = 1

n ∑
n
k=1 δ

X
ij,k = ∆X

ij,n,

BCov2
n(X) =

1

n2

n

∑
i,j=1

[∆X
ij,n − (∆X

ij,n)
2
]

2

=
1

n2

n

∑
i,j=1

[∆X
ij,n (1 −∆X

ij,n)]
2

=
1

n2

n

∑
i,j=1

D2
ij, (6.15)

where Dij = ∆X
ij,n (1 −∆X

ij,n). According to the table for ∆X
ij,n, we have

Dij

Xj

0 1 2

Xi

0 D0 D2 0

1 0 D1 0

2 0 D0 D2
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where D0 = a0(1 − a0), D1 = a1(1 − a1), and D2 = a2(1 − a2). Therefore,

BCov2
n(X) = [(n2

0 + n1n2)D
2
0 + n

2
1D

2
1 + (n2

2 + n0n1)D
2
2] /n

2. (6.16)

Since n∆Y
ij,n = rij,

BCov2
n(Y ) =

1

n2

n

∑
i.j=1

[∆Y
ij,n (1 −∆Y

ij,n)]
2

=
1

n2

n

∑
i.j=1

[
rij
n

(1 −
rij
n

)]
2

=
1

n6

n

∑
i.j=1

[rij(1 − rij)]
2. (6.17)

Then, the empirical Ball correlation is calculated as follows:

BCor2
n(X,Y ) =

BCov2
n(X,Y )

√
BCov2

n(X)BCov2
n(Y )

. (6.18)
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APPENDIX 2: METHOD 1 - FGWAS RESULT DETAILS

The details of the FGWAS results run on surface radial distance of both the left and right

hippocampus from the ADNI cohort are reported as follows.

GSIS

Of the top 2000 SNPs selected by the GSIS step for the right hippocampus, only one SNP

rs17305227 (chr19:58,986,294) is among the SNPs involved in the 73 significant SNP-region

pairs identified by our method for the right hippocampus. This SNP ranked 884 in the

top 2000 SNPs from the GSIS step of FGWAS, with global p-value equal to 0.0016; in our

method, the SNP-region pair p-value of this SNP is 6.96 × 10−11. For the left hippocampus,

the top 2000 SNPs selected by the GSIS step include no SNP involved in the 47 significant

SNP-region pair detected on the left hippocampus by our method.

Among the top 2000 SNPs from GSIS of FGWAS for each side of the hippocampus, none

of their global test is significant after adjusting for the total number of SNPs using wild

bootstrap based on 500 bootstrap samples for each side of the hippocampus. The maximum

global test statistic reported from GSIS is 0.067 (with raw p-value 3.56 × 10−7) for the right

side and 0.078 (with raw p-value 1.15 × 10−6) for the left side. The range of global test

statistics (gstat) and their bootstrap distributions for each side of the hippocampus are listed

below:

Left Right

Global Test Statistics (gstat) 2.08 × 10−4 to 7.81 × 10−2 2.58 × 10−4 to 6.73 × 10−2

gstat from Wild Bootstrap 1.45 to 1.52 1.37 to 1.46

The global test statistic is the averaged local test statistics across all voxels. Therefore,

the global signal could be diluted by regions with weak or no signal. On the other hand, the

global test answers the question of whether a marker is associated with the entire surface of

the hippocampus, which is of less interest to use than a local test, which answers the question

of whether a given marker is associated with a region of the hippocampus surface.
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Local Tests

Local test is also performed at each voxel in FGWAS. No significant local signal was

found among the screened SNPs after adjusting for the number of SNPs and number of voxels

through wild bootstrap based on 500 bootstrap samples for each side of the hippocampus.

The adjusted p-values equal to 1 for all top SNPs across all 15,000 voxels on both left and

right sides of the hippocampus surface. The range of local test statistics (lstat) and their

bootstrap distributions are listed below for the left and right hippocampus, respectively:

Left Right

Local Test Statistics (lstat) 0 to 31 0 to 27

lstat from Wild Bootstrap 33 to 58 34 to 53

Cluster-Size Analysis

The p-value of cluster-size is based on the size of the largest connected region with raw

local p-value below 0.005, rather than the strength of the association at each voxel. That is

to say, strong association on a small region may be ignored in cluster-size analysis.

Of the cluster-size analysis for the screened SNPs, 382 significant SNPs were found for

the left hippocampus after adjusting for the number of SNPs through wild bootstrap, with

the smallest p-value 0.004 for 290 SNPs; while no significant SNPs was found for the right

hippocampus. With 500 bootstrap samples, the bootstrap-based p-value of 0.004 means that

there are 2 bootstrap samples with A(g)
bstp ≥ A

(g). For the right hippocampus, A(g) ranges from

0 to 3, and A(g)
bstp ranges from 3 to 6. For the left hippocampus surface, A(g)

bstp ranges from 3 to

7.
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APPENDIX 3: METHOD 2 - EVALUATION OF ESTIMATION

For γγγ = γγγ0 = (0.5,−0.2,0.3,0,0,0,0,0,0,−0.7)T and γγγ = 4γγγ0, simulate data under the

following 6 models:

1. xi = zzziγγγ + εi

2. xi = ∣zzziγγγ∣ + εi

3. xi = sin(zzziγγγ) + εi

4. xi = exp(zzziγγγ) + εi

5. xi = log ∣zzziγγγ∣ + εi

6. xi = 1
1+∣zzziγγγ∣

+ εi

where εi ∼ N(0,0.2), zij ∼ N(0,1) for i = 1, . . . , n and j = 1, . . . , p, sample size n = 1000, and

p = 10. 100 repeated datasets are generate for each of the above 12 settings.

Apply the dCor-optimization coefficient estimation algorithm to estimate γ̂γγ by maximizing

dCor(Zγγγ,X) for the above 12 sets of simulated data. The boxplots of γ̂γγ estimated across

the 100 replicates for each setting is shown in Figure 6.3. We can see that γ̂γγ coincides with

γγγ0 for most of the settings, except for model 3 with γγγ = 4γγγ0. The number of iterations are

mostly below 100 and run time approximately half a minute, except for model 4 with γγγ = 4γγγ0

that has the number of iterations reaches the maximum for most of the replicates and run

time around 7 minutes.
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Figure 6.1: Boxplots of γ̂γγ vs γγγ under different settings. The red dot stands for values of true
γγγ.
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APPENDIX 4: METHOD 2 - VOXELWISE TYPE I ERROR

f Method p
1 2 3 4 5 6 7 8 9 10

f1

FPLS-DC 0.46 0 0 0 2.6×10−6 0 0 0 2.0×10−6 4.0×10−5

FPLS 0.46 0 3.7×10−4 0 0 0 0 0 1.1×10−3 6.0×10−4

wdCor 0.46 0 0 0 0 1.3×10−6 0 0 1.9×10−4 3.0×10−4

PC 0.014 0 0 0 0 0 0 0 0 0

f2

FPLS-DC 0.43 0 0 0 0 0 4.0×10−6 0 1.0×10−5 4.7×10−6

FPLS 0.43 0 2.5×10−5 0 0 0 0 0 4.5×10−5 3.1×10−5

wdCor 0.43 0 0 0 0 1.9×10−5 4.7×10−5 9.0×10−5 2.8×10−4 3.6×10−4

PC 0.51 0 0 0 0 0 0 0 0 0

Table 6.1: Raw Voxelwise Type I Error Rates tested under the non-causal SNP. The 0’s in
the table means no rejection is found across all 15,000 voxels in the 100 replicates, and thus
has an estimated rejection rate of less than 6.67 × 10−7.

f Method
p

1 2 3 4 5 6 7 8 9 10

f1

FPLS-DC 0.43 0 0 0 0 2.9×10−5 1.1×10−4 2.3×10−4 2.8×10−4 2.7×10−4

FPLS 0.42 6.2×10−4 0.076 0.083 0.064 0.043 0.043 0.044 0.14 0.16
wdCor 0.42 0 0 0 1.1×10−5 0 1.7×10−5 1.6×10−5 5.0×10−4 6.4×10−4

PC 0.61 0 0 0 0 0 0 2.3×10−4 1.6×10−5 1.1×10−5

f2

FPLS-DC 0.40 0 0 0 1.3×10−5 0 0 1.8×10−5 4.6×10−5 3.5×10−5

FPLS 0.40 0 6.4×10−3 1.9×10−3 4.1×10−3 0.012 0.027 0.031 0.14 0.12
wdCor 0.40 1.4×10−6 0 0 0 0 6.5×10−4 7.9×10−4 6.9×10−4 1.3×10−3

PC 0.64 0 0 0 0 0 0 0 0 0

Table 6.2: Raw Voxelwise Type I Error Rates in the non-affected region for the causal SNP.
The 0’s in the table means no rejection is found across all 14,683 non-affected voxels in the
100 replicates, and thus has an estimated rejection rate of less than 6.81 × 10−7.
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APPENDIX 5: METHOD 2 - NON-THRESHOLDED GLOBAL TEST

We examine the Type I Error and power of the non-thresholded global test using the same

selected causal SNP and non-causal SNP. The p-value of the global test was calculated using

the dcov.gamma() function in the R package ’kpcalg’. The rejection rates are calculated

from 100 replicates, and the results are shown in Table 6.3. The first 10 rows of the table

shows the rejection rates based on the dCov test performed directly on the projected image

along b̂(s) and the SNP, while the last row shows the rejection rates based on the dCov test

performed on the projected image long the thresholded b̂(s) and the SNP as proposed in

section 4.2.3. From the table, we can see that the thresholded test gives good control of the

Type I Error, while does not suffer too much in power.
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Type I Error Power
f(x) x (x − 0.4)2 x (x − 0.4)2

p = 1 0.02 0.00 0.04 0.04
p = 2 0.03 0.03 0.06 0.04
p = 3 0.09 0.10 0.71 0.18
p = 4 0.41 0.44 0.98 0.51
p = 5 0.42 0.48 0.98 0.51
p = 6 0.42 0.48 0.98 0.50
p = 7 0.42 0.49 0.98 0.49
p = 8 0.41 0.49 0.98 0.52
p = 9 0.40 0.47 0.98 0.53
p = 10 0.42 0.48 0.98 0.50
p = 10* 0.00 0.00 0.84 0.11

Table 6.3: Type I Error and Power for p = 1, . . . , 10 and f(x) = x or (x−0.4)2. p = 10* denotes
the thresholded global test with p = 10, where the image is projected along b(s)I{∣T (s)∣ >
Φ−1(1 − 3.33 × 10−6)} to test its dependency with the SNP through dCov test using gamma
approximation, where T (s) is the local test statistic at s, Φ−1 is the inverse cdf of standard
normal distribution, and 3.33 × 10−6 = 0.05

15000 is the significance level adjusting for the number
of 15000 voxels in the simulated image.
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APPENDIX 6: METHOD 3 - THEORETICAL DETAILS

Theoretical Properties for One Study

Treat Y (⋅) as random and Y0(⋅) given and fixed, then the expected sum of squared errors

(SSE) at sss is

E[∣∣Y0(sss) − Ŷ0(sss)∣∣
2

F
] = E[∣∣Y0(sss) −X0B̂(sss)∣∣

2

F
]

=E[
n0

∑
i=1

J

∑
j=1

{y0ij(sss) −xxx
T
0iβ̂ββj(sss)}

2
]

=
n0

∑
i=1

J

∑
j=1

{V ar[xxxT0iβ̂ββj(sss)] + [y0ij(sss) −xxx
T
0iE{β̂ββj(sss)}]

2
}

=tr(R0

J

∑
j=1

V ar[β̂ββj(sss)]) + ∣∣Y0(sss) −X0E[B̂(sss)]∣∣
2

F
(6.19)

with

E[B̂(sss)] = R−1XTE[Ỹ (sss)] =
V

∑
v=1

ch(sss,sssv)B(sssv) (6.20)

V ar[β̂ββj(sss)] = V ar[R
−1XT ỹyyj(sss)] = R

−1XTV ar[ỹyyj(sss)]XR
−1, (6.21)

where ỹyyj(sss) is the jth column of Ỹ (sss) and

V ar[ỹyyj(sss)] = V ar[
V

∑
v=1

ch(sss,sssv) yyyj(sssv)]

=
V

∑
v1=1

V

∑
v2=1

Cov[ch(sss,sssv1) yyyj(sssv1), ch(sss,sssv2) yyyj(sssv2)]

=
V

∑
v1=1

V

∑
v2=1

ah(sss,sssv1 ,sssv2) Cov[yyyj(sssv1),yyyj(sssv2)], (6.22)

with the second-order smoothing coefficient ah(sss,sssv1 ,sssv2) = ch(sss,sssv1) ⋅ ch(sss,sssv2).
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Theoretical Properties for Multiple Studies

Since

E[B̂e(sss)] = E[B̂m(sss)] =
V

∑
v=1

ch(sss,sssv)B(sssv) and (6.23)

V ar[β̂ββe,j(sss)] =
K

∑
k=1

w2
k V ar[β̂ββk,j(sss)], (6.24)

according to (6.19), (5.16) is equivalent to

∑
sss∈S

tr(R0

J

∑
j=1

K

∑
k=1

w2
k V ar[β̂ββk,j(sss)]) ≤ ∑

sss∈S

tr(R0

J

∑
j=1

V ar[β̂ββm,j(sss)]), (6.25)

where β̂ββe,j(sss), β̂ββk,j(sss), and β̂ββm,j(sss) are the jth columns of B̂e(sss), B̂k(sss), and B̂m(sss), respec-

tively.

Let Σr(sss,ttt) = Ση(sss,ttt) +Σε(sss,ttt) and yyyk,j(sss) denote the jth column of Yk(sss), then

Cov[yyyk,j(sss),yyyk,j(ttt)] = ZkGj(sss,ttt)Z
T
k + (Σr(sss,ttt))jjInk . (6.26)

Utilizing (6.21) and (6.22), in the left hand side of (6.25)

tr(R0V ar[β̂ββk,j(sss)]) (6.27)

=tr(R0R
−1
k X

T
k ∑
v1,v2

ah(sss,sssv1 ,sssv2)[ZkGj(sssv1 ,sssv2)Z
T
k + (Σr(sssv1 ,sssv2))jjInk]XkR

−1
k ])

=tr(ZT
0 Z0 ∑

v1,v2

ah(sss,sssv1 ,sssv2)Gj(sssv1 ,sssv2)) + ∑
v1,v2

ah(sss,sssv1 ,sssv2)(Σr(sssv1 ,sssv2))jjtr(R
−1
k R0)

Let G̃⋅(sss) = ∑v1,v2 ah(sss,sssv1 ,sssv2)∑
J
j=1Gj(sssv1 ,sssv2), which is also a q × q diagonal matrix, with

diagonal elements σ̃2
⋅l(sss) = ∑v1,v2 ah(sss,sssv1 ,sssv2)∑

J
j=1 σ

2
jl(sssv1 ,sssv2) (l = 1, . . . , q), and σ̃2

r(sss) =
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∑v1,v2 ah(sss,sssv1 ,sssv2)tr(Σr(sssv1 ,sssv2)); denote GS = ∑sss∈S G̃⋅(sss) and σ2
r,S = ∑sss∈S σ̃

2
r(sss), then

∑
sss∈S

tr(R0

J

∑
j=1

K

∑
k=1

w2
k V ar[β̂ββj,k(sss)])

=∑
sss∈S

(
K

∑
k=1

w2
k)tr(G̃⋅(sss)Z

T
0 Z0) + σ̃

2
r(sss)

K

∑
k=1

w2
ktr(R

−1
k R0)

=(
K

∑
k=1

w2
k)tr(GSZ

T
0 Z0) + σ

2
r,S

K

∑
k=1

w2
ktr(R

−1
k R0). (6.28)

Let yyym,j(sss) denote the jth column of Ym(sss), and nm = ∑
K
k=1 nk. Cov[yyym,j(sss),yyym,j(ttt)] is

an nm × nm block diagonal matrix, with the kth block being Cov[yyyk,j(sss),yyyk,j(ttt)], and

XT
mCov[yyym,j(sss),yyym,j(ttt)]Xm =

K

∑
k=1

XT
k [ZkGj(sss,ttt)Z

T
k + (Σr(sss,ttt))jjInk]Xk. (6.29)

Therefore, the right hand side of (6.25)

∑
sss∈S

tr(R0

J

∑
j=1

V ar[β̂ββm,j(sss)]) (6.30)

=∑
sss∈S

J

∑
j=1

∑
v1,v2

ah(sss,sssv1 ,sssv2)tr(R0R
−1
m

K

∑
k=1

XT
k [ZkGj(sssv1 ,sssv2)Z

T
k + (Σr(sssv1 ,sssv2))jjInk]XkR

−1
m )

=∑
sss∈S

tr(R−1
m

K

∑
k=1

XT
k ZkG̃⋅(sss)Z

T
k XkR

−1
mR0) + σ̃

2
r(sss)tr(R

−1
mR0)

=tr(R−1
m

K

∑
k=1

XT
k ZkGSZ

T
k XkR

−1
mR0) + σ

2
r,Str(R

−1
mR0).

The two sides of (6.25) are (6.28) and (6.30), respectively, both of which are consist of a

term related to GS and a term multiplied by σ2
r,S :

GS term σ2
r,S term

Ensemble Ae = (∑
K
k=1w

2
k) tr(GSZ

T
0 Z0) Be = ∑

K
k=1w

2
k tr(R

−1
k R0)

Merge Am = tr(R−1∑
K
k=1X

T
k ZkGSZ

T
k XkR−1R0) Bm = tr(R−1R0)

Therefore, the comparison of the prediction accuracy of the two learners from ensembling

and merging in (5.16) can be reduced to the relationship between GS and σ2
r,S through terms
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of the design matrix, i.e. (6.25) is equivalent to

Ae + σ
2
r,S ⋅Be ≤ Am + σ2

r,S ⋅Bm

i.e. Am −Ae ≥ σ
2
r,S(Be −Bm) (6.31)

Proof of Theorem 1

Denote σ2
⋅l,S = ∑sss∈S σ̃

2
⋅l(sss) for l ∈ {1, . . . , q}, then GS = diag(σ2

⋅1,S , . . . , σ
2
⋅q,S). We can further

reduce the relationship between GS and σ2
r,S from (6.13) to a simpler form. ∀l ∈ {1, . . . , q}, let

uuul be a q × 1 vector with all elements equal to 0 except for the l-th element which equals to 1,

s.t. Zkuuul gives the lth column of Zk. Therefore, uuuluuuTl is a q × q matrix with all elements equal

to 0 except for the lth diagonal element which equals to 1, and ∑ql=1uuuluuu
T
l = Iq. Therefore,

GS = ∑
q
l=1 σ

2
⋅l,S uuuluuu

T
l ,

Ae =(
K

∑
k=1

w2
k)tr(GSZ

T
0 Z0)

=(
K

∑
k=1

w2
k)tr(

q

∑
l=1

σ2
⋅l,S uuuluuu

T
l Z

T
0 Z0)

=(
K

∑
k=1

w2
k)

q

∑
l=1

σ2
⋅l,S uuu

T
l Z

T
0 Z0uuul, (6.32)

and

Am =tr(R−1
m

K

∑
k=1

XT
k ZkGSZ

T
k XkR

−1
mR0)

=tr(R−1
m

K

∑
k=1

XT
k Zk[

q

∑
l=1

σ2
⋅l,S uuuluuu

T
l ]Z

T
k XkR

−1
mR0)

=
q

∑
l=1

σ2
⋅l,S tr(R

−1
m

K

∑
k=1

XT
k Zkuuuluuu

T
l Z

T
k XkR

−1
mR0). (6.33)
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Denote σ2
S
= 1
q tr(GS) =

1
q ∑

q
l=1 σ

2
⋅l,S , for l ∈ {1, . . . , q}, Ael = (∑

K
k=1w

2
k) ⋅ uuu

T
l Z

T
0 Z0uuul and Aml =

tr(R−1
m ∑

K
k=1X

T
k Zkuuuluuu

T
l Z

T
k XkR−1

mR0), then the left hand side of (6.31)

Am −Ae =
q

∑
l=1

σ2
⋅l,S (Aml −Ael). (6.34)

Therefore,

qσ2
S min

l
{Aml −Ael} ≤ Am −Ae ≤ qσ

2
S max

l
{Aml −Ael}. (6.35)

Therefore, a sufficient condition for (6.31) ⇐⇒ (6.25) ⇐⇒ (5.16) is

qσ2
S min

l
{Aml −Ael} ≥ σ

2
r,S(Be −Bm). (6.36)

Similarly, a sufficient condition for

E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,e(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

≥ E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,m(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

, (6.37)

i.e.

Am −Ae ≤ σ
2
r,S(Be −Bm), (6.38)

is therefore

qσ2
S max

l
{Aml −Ael} ≤ σ

2
r,S(Be −Bm). (6.39)

Write σ2
S
on the left of the inequality, we have the conclusions in Theorem 1.

Proof of Theorem 2

If the variance of the random effect γγγkjl(sss) remains the same across l = 1, . . . , q, where

γγγkjl(sss) is the lth element in the q×1 vector γγγkj(sss), then σ2
⋅l,S = σ

2
S
for l ∈ {1, . . . , q}. Therefore,
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GS = σ2
S
⋅ Iq, and

Am = σ2
S ⋅ tr(R

−1
K

∑
k=1

XT
k ZkZ

T
k XkR

−1R0) (6.40)

Ae = σ
2
S ⋅ (

K

∑
k=1

w2
k) tr(Z

T
0 Z0). (6.41)

Let Am0 = tr(R−1∑
K
k=1X

T
k ZkZ

T
k XkR−1R0) and Ae0 = (∑

K
k=1w

2
k) tr(Z

T
0 Z0), then

Am −Ae = σ
2
S ⋅ (Am0 −Ae0). (6.42)

Therefore, given (5.16) ⇐⇒ (6.25) ⇐⇒ (6.31), we have the conclusion in Theorem 2.

Derivation of Optimal Ensembling Weights

With the ensembled learner B̂e(sss) = ∑
K
k=1wkB̂k(sss), it is of interest to derive the ensembling

weights wk (k = 1, . . . ,K) that achieve the minimum expected prediction error

E

⎡
⎢
⎢
⎢
⎢
⎣
∑
sss∈S

∣∣Y0(sss) − Ŷ0,e(sss)∣∣
2

F

⎤
⎥
⎥
⎥
⎥
⎦

.

According to (6.19), the expected prediction error above is equivalent to

∑
sss∈S

tr(R0

J

∑
j=1

V ar[β̂ββe,j(sss)]) +∑
sss∈S

∣∣Y0(sss) −X0

V

∑
v=1

ch(sss,sssv)B(sssv)∣∣
2

F
,

where the second term is constant given (X0, Y0(⋅)) and h. Therefore, we aim to minimize

the first term above w.r.t. wk’s. According to (6.28), our objective of minimization

∑
sss∈S

tr(R0

J

∑
j=1

V ar[β̂ββe,j(sss)]) = (
K

∑
k=1

w2
k)tr(GSZ

T
0 Z0) + σ

2
r,S

K

∑
k=1

w2
ktr(R

−1
k R0).
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Denote

f(w1, . . . ,wK) = (
K

∑
k=1

w2
k)tr(GSZ

T
0 Z0) + σ

2
r,S

K

∑
k=1

w2
ktr(R

−1
k R0),

g(w1, . . . ,wK) =
K

∑
k=1

wk.

Since ∑Kk=1wk = 1, we can write this optimization problem as

minimize f(w1, . . . ,wK)

subject to g(w1, . . . ,wK) = 1.

Using Lagrange multipliers, we get the system of equations

∂

∂wk
f(w1, . . . ,wK) = λ

∂

∂wk
g(w1, . . . ,wK) (for k = 1, . . . ,K)

g(w1, . . . ,wK) = 1.

Since

∂

∂wk
f(w1, . . . ,wK) = 2wk[tr(GSZ

T
0 Z0) + σ

2
r,Str(R

−1
k R0)],

∂

∂wk
g(w1, . . . ,wK) = 1,

the system of equations leads to

wk = 0.5λ[tr(GSZ
T
0 Z0) + σ

2
r,Str(R

−1
k R0)]

−1

for k = 1, . . . ,K, with ∑Kk=1wk = 1. Therefore, the optimal ensembling weights

wk,opt =
ak

∑
K
k=1 ak

, (6.43)
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with

ak = [tr(GSZ
T
0 Z0) + σ

2
r,Str(R

−1
k R0)]

−1
(6.44)

is the wk-related term ∑sss∈S tr(R0∑
J
j=1 V ar[β̂ββk,j(sss)]) in ∑sss∈S ∣∣Y0(sss) −X0B̂k(s)∣∣

2

F
.

Proof of b’s > 0

1. Prove b1l = tr(R−1
m ∑

K
k=1X

T
k Zkuuuluuu

T
l Z

T
k XkR−1

mR0)−(∑
K
k=1w

2
k) ⋅uuu

T
l Z

T
0 Z0uuul > 0 under equal

ensemble weights wk = 1
K for k = 1, . . . ,K:

For k = 1, . . . ,K, suppose the columns of Xk are linearly independent. Let Rk = VkDkV −1
k

be an eigendecomposition where Dk = diag(d
(k)
1 , . . . , d

(k)
p ) (d(k)l > 0 for l = 0,1, . . . , p) and Vk

is an orthonormal matrix of eigenvectors, and Rm = V DV −1 be an eigendecomposition where

D = diag(d1, . . . , dp) (dl > 0 for l = 1, . . . , p) and V is an orthonormal matrix of eigenvectors.

Assume Vk = V for k = 1, . . . ,K, i.e. the relationship between the p covariates remain the same

across studies, then D = ∑
K
k=1Dk, i.e. dl = ∑Kk=1 d

(k)
l for l = 1, . . . , p, because Rm = ∑

K
k=1Rk.

Since Zk =XkU ,

tr(R−1
m

K

∑
k=1

XT
k Zkuuuluuu

T
l Z

T
k XkR

−1
mR0)

=
K

∑
k=1

uuuTl Z
T
k XkR

−1
mR0R

−1
mX

T
k Zkuuul

=
K

∑
k=1

uuuTl U
TV DkD

−1D0D
−1DkV

−1Uuuul

=uuuTl U
TV D0 diag(. . . ,

∑
K
k=1 [d

(k)
l′ ]

2

d2
l′

, . . .) V −1Uuuul

and

uuuTl Z
T
0 Z0uuul = uuu

T
l U

TV D0V
−1Uuuul.

Since ∑Kk=1w
2
k reaches its minimum value 1

K at equal ensemble weights wk = 1
K for k = 1, . . . ,K,

we reduces to comparing K∑
K
k=1 [d

(k)
l′ ]

2

and d2
l′ = [∑

K
k=1 d

(k)
l′ ]

2
for l = 1, . . . , p. Suppose
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d
(k)
l′ ≠ d

(k′)
l′ for some k, k′ = 1, . . . ,K and l′ = 1, . . . , p. then,

K
K

∑
k=1

[d
(k)
l′ ]

2

− [
K

∑
k=1

d
(k)
l′ ]

2

= ∑
k=2

K
k−1

∑
k′=1

[d
(k)
l′ − d

(k′)
l′ ]

2
> 0,

i.e.
∑
K
k=1 [d

(k)
l′ ]

2

d2
l′

>
1

K
.

Therefore,

uuuTl U
TV D0 diag(. . . ,

∑
K
k=1 [d

(k)
l′ ]

2

d2
l′

, . . .) V −1Uuuul >
1

K
uuuTl U

TV D0V
−1Uuuul,

i.e. b1l > 0 under equal ensemble weights wk = 1
K for k = 1, . . . ,K.

b2 = tr(R−1∑
K
k=1X

T
k ZkZ

T
k XkR−1R0) − (∑

K
k=1w

2
k) tr(Z

T
0 Z0) > 0 can be proved similarly.

2. Prove b0 = ∑
K
k=1w

2
k tr(R

−1
k R0) − tr(R−1R0) > 0:

Using the same eigendecomposition above,

b0 =
K

∑
k=1

w2
k tr(R

−1
k R0) − tr(R

−1R0)

=
K

∑
k=1

w2
k tr(D

−1
k D0) − tr(D

−1D0)

=tr(diag( . . . ,

⎡
⎢
⎢
⎢
⎢
⎣

K

∑
k=1

w2
k

d
(k)
l

⎤
⎥
⎥
⎥
⎥
⎦

−
1

dl
, . . . )D0)

=
p

∑
l=1

⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎣

K

∑
k=1

w2
k

d
(k)
l

⎤
⎥
⎥
⎥
⎥
⎦

−
1

dl

⎫⎪⎪
⎬
⎪⎪⎭

d
(0)
l .

According to Jensen’s inequality,

K

∑
k=1

w2
k

d
(k)
l

≥ [
K

∑
k=1

w2
kd

(k)
l ]

−1

.
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Since 0 < wk < 1 for k = 1, . . . ,K, w2
kd

(k)
l < d

(k)
l ,

K

∑
k=1

w2
k

d
(k)
l

> [
K

∑
k=1

d
(k)
l ]

−1

= d−1
l .

Therefore, b0 > 0.

144



APPENDIX 7: METHOD 3 - MORE ON TRANSITION POINT

Under equal variance (i.e. homogeneous) and equal weights (wk = frac14), using the same

correlation structure as in the main simulation setting, we examined the values of tau2 under

different sample sizes. Let nk vary from 100 to 10,000 by 100 for k = 1, . . . ,4. Consider at 2

scenarios of n0: 1) n0 = n1 + n2 + n3 + n4, and 2) n0 = 500. For each scenario, the change of

Am,Ae,Bm,Be, d0, d1, and τ2 are plotted below. We can see that as n increases, τ2 decreases

in both scenario.
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Figure 6.2: Values of terms in τ2 for varied sample size.
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