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ABSTRACT

Kevin O’Connor: Computation and Consistent Estimation of Stationary Optimal Transport Plans
(Under the direction of Kevin McGoff and Andrew B Nobel)

Informally, the optimal transport (OT) problem is to align, or couple, two distributions of

interest as best as possible with respect to some prespecified cost. A coupling that achieves the

minimum cost among all couplings is referred to as an OT plan; the cost of the OT plan is referred to

as the OT cost. Researchers in statistics and machine learning have expended a great deal of effort

to understand the properties of OT plans and costs. The motivation for this work stems partly from

the fact that, unlike many other divergence measures and metrics between distributions, OT plans

and costs describe relationships between distributions in a manner that respects the geometry of

the underlying space (by way of the specified cost). However, this advantage does not necessarily

carry over when standard OT techniques are applied to distributions with specific structure. In

the case that the two distributions describe stationary stochastic processes, the OT problem may

ignore the differences in the sequential dependence of either process. One must find a way to make

the OT problem account for the stationary dependence of the marginal processes.

In this thesis, we study OT for stationary processes, a field that we refer to as stationary optimal

transport. Through example and theory, we argue that when applying OT to stationary processes,

one should incorporate the stationarity into the problem directly – constraining the set of allowed

transport plans to those that are stationary themselves. In this way, we only consider transport

plans that respect the dependence structure of the marginal processes. We study this constrained

OT problem from statistical and computational perspectives, with an eye toward applications in

machine learning and data science. In particular, we

1. develop algorithms for computing stationary OT plans of Markov chains.

2. extend these tools for Markov OT to the alignment and comparison of weighted graphs.

3. propose estimates of stationary OT plans based on finite sequences of observations.
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We build upon existing techniques in OT as well as draw from a variety of fields including Markov

decision processes, graph theory, and ergodic theory. In doing this, we uncover new perspectives

on OT and pave the way for additional applications and approaches in future work.
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CHAPTER 1

Introduction

Optimal transport has captured the interest of researchers in a wide range of fields for more

than two centuries now. What began as a straightforward optimization problem motivated by the

transportation of physical goods has evolved into a robust framework for developing statistical tools

and analyzing data. Indeed, optimal transport has led to new approaches in statistical estimation

(Chen et al., 2021; Janati et al., 2019; Frogner et al., 2015; Bassetti et al., 2006; Bernton et al.,

2019), deep generative modeling (Arjovsky et al., 2017; Bousquet et al., 2017; Tolstikhin et al., 2018;

Salimans et al., 2018), clustering (Ho et al., 2017; Laclau et al., 2017; Mi et al., 2018), and other

tasks. Ideas from optimal transport have also found their way into applications such as image

processing (Rabin et al., 2014; Papadakis, 2015; Rabin and Papadakis, 2015) and cell modeling

(Schiebinger et al., 2019; Demetci et al., 2020; Tong et al., 2020; Yang et al., 2020; Moriel et al.,

2021). Why has the optimal transport problem so captivated the statistical community? What

advantages do transport-based techniques offer in statistical applications? And finally, what can

go wrong when one naively applies optimal transport to stationary processes? After introducing

the optimal transport problem, we will spend the rest of this chapter addressing these questions

and setting the stage for our exploration into stationary optimal transport.

1.1 What is Optimal Transport?

An early form of the optimal transport problem was first posed by Gaspard Monge in 1781

(Monge, 1781). Monge was interested in the problem of transporting dirt to form embankments

with as little work as possible. In particular, if one wishes to construct an embankment in a certain

shape and location, what is the rule for moving each piece of dirt from an excavation site to the

embankment that requires the minimum total transportation distance? Despite its roots in the
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literal transportation of mass, we will see that Monge’s question and the questions that follow have

useful interpretations and applications in mathematics more generally.

Monge’s problem may be formulated mathematically by thinking of the collection of dirt to be

excavated and embankment to be constructed as probability measures µ and ν on spaces X and Y,

respectively. In a sense, dµ(x) describes the amount of dirt to be excavated at a point x ∈ X and

dν(y) describes the amount of dirt to be piled at a point y ∈ Y. The cost of moving a piece of dirt

between each pair of points is encoded by a real-valued cost function c on X × Y, so that c(x, y)

represents the cost of moving dirt from x to y. Finally, Monge’s problem is to find a map T from

X to Y minimizing the total cost ∫
c(x, T (x)) dµ(x), (1.1)

subject to the constraint that µ ◦ T−1 = ν. In this context, any map T satisfying the constraint

above may be thought of as a map for transporting the pile described by µ to form that described

by ν. To minimize the quantity (1.1) is to minimize the total cost of transportation from µ to ν.

In his memoir, Monge considered the properties of such optimal transport rules but was not

able to provide an explicit solution at the time. In fact, even though the problem above has a

simple formulation and clear interpretation, it need not have a solution. To see this, one may take

the simple case of µ = δ0 and ν = 1
2δ−1 + 1

2δ1. In other words, one wishes to transport a pile

at a single point to form a pile concentrated on two points. Despite µ and ν describing two very

benign distributions, it is clear that no map T satisfying the transport constraint µ ◦ T−1 = ν

can exist. More generally, one may observe this same phenomenon when transporting between any

discrete and continuous distributions. This phenomenon aligns with the intuition that the act of

transportation cannot create or destroy matter and thus the number of objects before transport

must be the same as the number of objects after transport.

Over a century and a half later, Leonid Kantorovich proposed an alternative optimal transport

problem in the 1940’s. As we have described optimal transport above, it is implicitly assumed

that the transport map takes mass at each point x to a single point y. While this makes sense

when physically transporting discrete objects, this restriction is not necessary when working with

probability measures. Instead, we may add to our consideration transport plans that take mass at
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a point x and distribute it in some way across points in Y. This is precisely the problem Leonid

Kantorovich studied in the 1940’s (Kantorovich, 2006a,b).

Mathematically, the transport plans considered by Kantorovich are formalized as couplings. A

coupling of µ and ν is a joint probability measure π on X × Y such that πX = µ and πY = ν.

Informally, a coupling may be thought of as a joint distribution admitting µ and ν as X and Y

marginals, respectively. We will use Π(µ, ν) to refer to the set of couplings of µ and ν. The problem

posed by Kantorovich is

minimize

∫
c(x, y) dπ(x, y)

subject to π ∈ Π(µ, ν)

(1.2)

We will denote the optimal value attained in (1.2) by T (c;µ, ν). Problem (1.2) is similar in spirit to

Monge’s problem with the exception that the former minimizes the transport cost over couplings

while the other minimizes the transport cost over transport maps. Monge’s problem may even

be seen as a constrained form of (1.2) by noting that any map T from X to Y satisfying the

transport constraint µ◦T−1 = ν may be used to construct a coupling dπ(x, y) = dµ(x)δ(T (x) = y).

Throughout this dissertation, we will be most interested in Kantorovich formulation of the optimal

transport problem (1.2). However, we expect that interesting insights may be gained by considering

the Monge problem in the context of stationary optimal transport in future work.

By construction, optimal transport plans describe a certain joint distribution of the distribu-

tions of interest. As a minimizer of the expected cost, the particular joint distribution specified by

an optimal transport plan is one in which the distributions are coupled as closely as possible with

respect to the specified cost. In this sense, optimal transport plans define alignments of the two

marginal distributions. Viewed differently, optimal transport plans are constructed so that if one

draws paired samples iid from the joint distribution they define, then these pairs (X,Y ) will have

low cost c(X,Y ) on average. In contrast, drawing the realizations X and Y independently of one

another might yield arbitrarily high cost on average.

On the other hand, the optimal transport cost describes the minimum cost of transportation

between the marginal distributions. For similar distributions, the optimal transport cost will be

small, while for distributions that differ in shape or assign most of their mass to regions far apart
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from one another, the optimal transport cost will be large. Note that the notions of similar,

different, and far apart are with respect to the cost function c that is specified between the spaces

X and Y. Specifically, the cost function in the optimal transport problem encodes the similarities

and differences of interest for comparing the two marginal distributions. For example, when one is

working in Euclidean space, one commonly uses the standard Euclidean metric as a cost function.

In this way, the optimal transport cost may be thought of as lifting a cost between points to a cost

between distributions. This allows one to use the optimal transport cost as a means of comparing

distributions in a way that incorporates the ambient geometry of the spaces of interest or any

additional geometric information specific to the problem at hand.

1.2 Why Optimal Transport?

As we have tried to make clear above, the optimal transport problem provides a natural means

of comparing and aligning probability distributions. But what advantages does this approach

offer over existing methods for comparing distributions? One key advantage touched upon in the

previous section was the fact that the optimal transport problem incorporates the geometry of

the spaces of interest via the cost function. When the spaces being considered are identical, it

is common practice to use their metric as the cost function. At a high level, this ensures that

nearness in samples gives nearness in distribution. As an example, the optimal transport cost

between the Gaussian distributions N (0, 1) and N (m, 1) with respect to the squared Euclidean

distance is simply m. When additional information is available, the cost function also offers a

means for the practitioner to tune the optimal transport problem to emphasize features of interest

when comparing the distributions. We leverage this flexibility in the experiments detailed in both

Chapters 3 and 4.

A second favorable property of optimal transport is that it allows one to compare discrete and

continuous distributions. This is not the case for, say, the Kullback-Leibler (KL) divergence, which

requires that one of the measures be absolutely continuous with respect to the other. This can

cause the KL divergence to fail in very simple examples, such as comparing a point mass at −1

to the uniform distribution on the interval [0, 1]. This feature of optimal transport is particularly

useful for comparing an empirical probability measure derived from data with elements in a family
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of models over a continuous space. This is a common consideration in statistical optimal transport

described in Chapter 2 and we exploit this feature heavily in our work on estimation described in

Chapter 5.

Finally, unlike most other divergences and metrics for probability distributions, the optimal

transport problem offers both a transport plan and a cost. In addition to being of interest itself,

the optimal transport plan implicitly describes how the optimal transport problem arrived at the

cost it did. It also illustrates the parts of the space in which the distributions are most similar or

different. This is an incredibly valuable feature that is absent in many other distribution metrics

and divergences. We use this feature of optimal transport throughout our work, with a particular

emphasis in Chapter 4.

These advantages of optimal transport over other probability divergences and metrics makes

transport-based techniques especially attractive for researchers in statistics and machine learning.

A wide array of statistical problems may be recast in terms of comparing or aligning distributions

and thus lend themselves to transport-based approaches. For example, the task of model fitting may

be viewed as selecting an element from a family of distributions that is “closest” to the empirical

distribution associated with the data observed up to that point. The optimal transport cost offers a

natural measure for quantifying the closeness between the empirical distribution and elements in the

family of model distributions that incorporates the geometry of the space of interest. Importantly,

with the optimal transport cost, there is no issue considering continuous model distributions despite

the empirical distribution being discrete. Similarly, the task of generative modeling may be viewed

as learning a map from a simple distribution with low-dimensional support to a more complicated

distribution described by some observed data. One may use the optimal transport plan between

these two distributions to find a map or alignment for these two distributions. By drawing samples

conditionally on the points in the low-dimensional space, one obtains a generative model that fits

the observed distribution of the data by construction.

In general, by simply viewing the statistical objects of interest as distributions, one avails

herself of the powerful toolkit of optimal transport. This paradigm has given rise to a myriad of

new tools in statistics and machine learning. These new tools have made it especially important

to understand the properties and behavior of the optimal transport problem in different settings.

At a high level, this has been the focus of the optimal transport community in recent years. As we
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will elaborate upon in Section 1.4, this dissertation is focused on understanding and adapting the

optimal transport problem to the case when the distributions of interest are stationary processes.

In the next section, we begin to explore this setting through example.

1.3 Two Motivating Examples

In most existing work on optimal transport, the objects under study (for example, images,

text documents, graphs, and point clouds) are regarded as static and do not evolve over time.

Accordingly, the distributions and cost functions appearing in the optimal transport problem cap-

ture the behavior of these objects at a fixed point in time. When multiple samples are available,

these are typically iid replicates of the fixed time behavior. In this static setting the statistical

properties of the optimal transport problem, such as definition of estimators, consistency, and rates

of convergence, have been well-studied (see Chapter 2 for an overview).

In contrast with the static situation, we are interested in optimal transport problems in settings

where the objects of interest are processes that evolve dynamically over time. Examples include

the alignment or generative modeling of text sequences or musical scores, or hybrid settings in-

volving dynamic text and images. Other examples include transportation of goods between a set

of manufacturers and a set of retailers when supply and demand vary over time in a stochastic

fashion, or the comparison of brain networks observed at multiple points in time. While standard

optimal transport techniques are applicable to problems such as these, they do not account for the

structure of the underlying measures, which reflect dynamic processes rather than static quantities.

In order to illustrate this, we provide an example below in which a coupling of stationary

processes does not share the same dependence structure as the marginal processes.

Example 1.1. Let X and Y be iid Bernoulli(1/2, 1/2) processes, independent of each other, defined

on the same probability space. For i ≥ 0 let X̃i = Xi, and let Ỹi = Xi if i is a power of 2 and

Ỹi = Yi otherwise. Then the joint process (X̃, Ỹ ) = (X̃0, Ỹ0), (X̃1, Ỹ1), . . . is a coupling of X and

Y , but it is not stationary.

In Example 1.1, we find that despite being a coupling of iid processes, the coupling (X̃, Ỹ )

exhibits long-range, non-stationary behavior. In this sense, couplings of relatively simple processes

may have complicated dependence structure themselves. Given this example, it is natural to wonder
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whether optimal couplings of stationary processes are always stationary? In the next example, we

show that this is not the case.

Example 1.2. Let X = X0, X1, ... and Y = Y0, Y1, ... be stationary Markov processes on {0, 1} with

transition matrices

P =


0 1

0 1/2 1/2

1 1/2 1/2

 and Q =


0 1

0 0 1

1 1 0

,
respectively. Note that the process X corresponding to P is iid, while the process Y corresponding

to Q is deterministic (after conditioning on the initial symbol Y0). Moreover, note that both pro-

cesses have identical one-dimensional stationary distributions on {0, 1} coinciding with the (1/2, 1/2)

measure. Stated differently, for any i ≥ 0, Xi = 0 or 1 each with probability 1/2 and similarly for

Yi.

Let c be the cost function on {0, 1}N × {0, 1}N defined by c(x, y) = δ(x0 6= y0). It is easy to

see that since the stationary distributions of X and Y are identical, the optimal transport distance

between X and Y is zero. In particular, let (X̃0, Ỹ0) be the coupling of X0 and Y0 such that

(X̃0, Ỹ0) = (0, 0) or (1, 1) each with probability 1/2. Moreover let (X̃, Ỹ ) = (X̃0, Ỹ0), (X̃1, Ỹ1), ...

be the coupling of X and Y obtained by initializing (X̃0, Ỹ0) as above and then letting X̃i and Ỹi

evolve independently of one another for i ≥ 1. One will find that (X̃, Ỹ ) has expected cost equal

to zero and is thus optimal despite being non-stationary.

In Example 1.2, we find that the optimal transport cost may fail to capture differences in the

sequential dependence of the two processes, focusing entirely on their one-dimensional distributions.

Moreover, an optimal coupling of stationary processes need not be stationary itself. These two

problems present serious obstacles to the application of optimal transport to stationary processes.

As we will see in the next section, these issues are intertwined and may be resolved by incorporating

stationarity directly into the optimal transport problem.

1.4 Adapting Optimal Transport for Stationary Processes

Based on the examples above, it is clear that couplings and the optimal transport problem

do not necessarily capture the stationary dynamics of stationary processes. This is because the
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standard optimal transport problem is formulated in terms of static distributions. On the other

hand, stationary processes evolve through time. A transport plan which is optimal initially, need

not remain optimal as the processes evolve. In fact, an optimal transport plan between stationary

processes can have arbitrarily high expected cost in the long run. As such, naively applying standard

optimal transport to measures evolving dynamically through time can give one a false sense of

closeness between the two systems.

A simple reason why optimal transport falls short in this setting is that it does not take the

dynamics of the marginals into account. It is greedy by construction, looking for an optimal plan

in a single time step. In a dependent setting, one needs to consider instead optimality over the

lifetime of the system. In order to do this, one necessarily needs to take the stationary dependence

into account, finding a plan that performs best over time.

A natural approach to incorporate the stationary dependence into the optimal transport prob-

lem is to consider only couplings that are also stationary, referred to as joinings. We will refer

to the set of joinings of two stationary processes µ and ν as J (µ, ν). Note that the independent

coupling µ ⊗ ν of two stationary processes is stationary so the set J (µ, ν) is always non-empty.

Joinings were first introduced by Furstenberg (Furstenberg, 1967) and have been studied at length

in the ergodic theory literature (Glasner, 2003; de la Rue, 2006, 2020). Additional background on

joinings may be found in Chapter 2.

The optimal transport problem may be adapted for stationary processes in a straightforward

manner by optimizing the expected cost over the set of joinings rather than couplings:

minimize

∫
c(x, y) dλ1(x, y)

subject to λ ∈ J (µ, ν).

(1.3)

We refer to Problem (1.3) as the optimal joining problem or equivalently the stationary optimal

transport problem and denote the optimal value attained in (1.3) by S(c;µ, ν). Note that since λ

is a probability measure over the product space XN × YN, we integrate the cost with respect to

the one-dimensional distribution λ1 of λ. Note also that the optimal joining problem is simply a

constrained form of the optimal transport problem. It follows that T (c;µ, ν) ≤ S(c;µ, ν).
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The optimal joining problem may be motivated further by previewing the following result

detailed in Chapter 5.

Theorem 1.3. Let c be a real-valued cost function defined on XN × YN by c(x, y) =

lim supn→∞
1
n

∑n
`=1 c(x`, y`). Then under appropriate assumptions the optimal joining cost sat-

isfies S(c;µ, ν) = T (c;µ, ν).

The function c captures the long-run average cost of a paired sequence (x, y) ∈ XN × YN.

Thus, the theorem above states that the optimal joining cost is equivalent to performing optimal

transport with respect to the long-run average cost c. In this sense, the optimal joining problem

minimizes long-run average cost rather than the expected cost at a fixed time point. Considering

the optimal joining problem associated with S(c;µ, ν) rather than the long-run average optimal

transport problem associated with T (c;µ, ν) is much simpler since the set of joinings has nice

properties such as compactness and convexity while the function c may be highly irregular even if

c is well-behaved.

1.5 Overview of Contributions

The optimal joining problem has been studied to some extent (see Chapter 2 for an overview).

However, some important questions remain. How can one solve for optimal joinings? How can one

estimate optimal joinings from data? And how might one apply the optimal joining problem to

tasks in machine learning and data science?

In this dissertation, we take a step toward answering these questions, exploring stationary op-

timal transport from both computational and statistical perspectives. Our primary aim is to adapt

tools from optimal transport and other fields to draw insights about stationary optimal transport

plans in a variety of settings. A secondary objective of this dissertation is to draw attention to new

applications and future research directions in the field. Our particular contributions are as follows:

1. We develop tractable algorithms for computing stationary optimal couplings of Markov chains.

By example, we demonstrate that stationary couplings of Markov chains need not be Markov

or stationary themselves. To remedy this, we propose a constrained problem called the

optimal transition coupling problem that accounts for both Markovity and stationarity in a

9



natural manner. In studying this problem, we draw a novel connection to Markov decision

processes and exploit this connection to develop tractable algorithms for solving the optimal

transition coupling problem. As a proof-of-concept, we apply the optimal transition coupling

problem to the task of synchronizing and comparing computer generated music.

2. We leverage the tools developed for Markov OT to the alignment and comparison of weighted

graphs. In particular, by noting that a weighted graph may be associated with a Markov chain

by means of a simple random walk on its nodes, one may immediately apply Markov OT to

weighted graphs. We find that optimal transition couplings of these simple random walks

provide soft alignments of the nodes and edges of the two graphs. Moreover, the expected

cost of the optimal transition coupling provides a measure of dissimilarity between the two

graphs that incorporates differences in global and local structure. This represents a novel

approach to graph optimal transport that improves upon existing approaches theoretically

and empirically.

3. We propose estimates of stationary optimal transport plans and the stationary optimal trans-

port cost based on finite sequences of observations from the marginal processes. We prove

that these estimates are consistent in the large sample limit, extending previous work in

ergodic theory to more general cost functions. Under strong mixing assumptions, we also

establish a finite-sample upper bound on the expected error of the estimated optimal joining

cost. As a special case, we obtain new insights into the estimation of existing joining-based

metrics such as Ornstein’s d-distance and the ρ-distance introduced by Gray, Neuhoff, and

Shields. Finally, we introduce an entropically regularized optimal joining problem and extend

our estimation scheme and results to this new problem.

1.6 Organization

In Chapter 2, we cover preliminaries and existing work related to optimal transport and sta-

tionary processes. In Chapter 3, we develop and study the optimal transition coupling problem

for joining Markov chains. In Chapter 4, we extend the optimal transition coupling problem to

weighted graphs. Finally, in Chapter 5, we study the problem of estimating optimal joinings from

data. Appendices for each chapter may be found at the end of bibliography.
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CHAPTER 2

Background and Related Work

The work described in this dissertation draws upon ideas from several areas of interest within

optimal transport. In this chapter, we lay the groundwork for these results by covering some

background on these areas. We begin by discussing some general results and references in optimal

transport. We then shift our focus to computational and algorithmic considerations for the optimal

transport problem. Next, we address some relevant work regarding the statistical aspects of optimal

transport. Finally, we conclude with a discussion of existing results in stationary optimal transport.

Notation. Let R+ denote the non-negative real numbers and R>0 denote the positive real numbers.

For a metric space U , let M(U) denote the set of probability measures on U . We will say that a

function f : U → R is O(g) for some function g : U → R if limu→∞ f(u)/g(u) = C for some C ∈ R.

We will say that f = o(g) if limu→∞ f(u)/g(u) = 0. We will use the shorthand Un1 for a sequence

U1, ..., Un ∈ U .

2.1 Optimal Transport

As mentioned in Chapter 1, the study of optimal transport dates back to the work of Monge

(Monge, 1781) who proposed the optimal transport problem motivated by the efficient transporta-

tion of earth to form embankments. Little progress was made on Monge’s problem until Kantorovich

(Kantorovich, 2006b) introduced his formulation of the optimal transport problem in 1942, copied

below for the convenience of the reader.

T (c;µ, ν) = inf
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y).

In the case that X and Y are equal and compact metric spaces, Kantorovich proved that optimal

solutions π ∈ Π(µ, ν) are characterized by the existence of potential functions f : X → R such that
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|f(x) − f(y)| ≤ c(x, y) for every x, y ∈ X and f(x) − f(y) = c(x, y) with π-probability one. This

result is generally referred to as Kantorovich duality. It was only in 1948 that Kantorovich noticed

the connection to Monge’s problem (Kantorovich, 2006a).

(Beiglböck and Schachermayer, 2011) present the proof of Kantorovich duality in the most

general setting necessary for our purposes. In particular, it is proven that if X and Y are Polish

spaces and c : X × Y → R+ is non-negative, measurable, µ⊗ ν-almost surely finite, then

T (c;µ, ν) = sup
f⊕g≤c

{∫
f(x) dµ(x) +

∫
g(y) dν(y)

}
, (2.1)

where f ⊕ g is the function on X × Y satisfying f ⊕ g(x, y) = f(x) + g(y). Kantorovich duality

provides a useful alternate perspective from which to study the optimal transport problem. For one,

it provides a means of easily lower bounding the optimal transport cost, i.e. by carefully choosing

potential functions f : X → R and g : Y → R satisfying f ⊕ g ≤ c and adding their expectations.

Secondly, it provides a new avenue for solving optimal transport problems numerically. As we

discuss in Section 2.2, one may derive efficient algorithms for obtaining optimal transport plans via

the dual problem for a regularized variant of the optimal transport problem.

Under the additional assumption that there is a finite transport plan, (Beiglböck and Schacher-

mayer, 2011) prove that optimality in this setting is characterized by a property of the transport

plan called c-cyclical monotonicity. A set measurable set Γ ⊂ X × Y is said to be c-cyclically

monotone if for every n ≥ 1 and every collection (x1, y1), ..., (xn, yn) ∈ X × Y,

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yi+1),

where we use the convention that yn+1 = y1. A transport plan π ∈ Π(µ, ν) is said to be c-

cyclically monotone if there exists a c-cyclically monotone set Γ ⊂ X × Y such that π(Γ) = 1.

The significance of the relationship between c-cyclical monotonicity and the optimal transport plan

is that it provides a simple condition that one may check to verify or disprove optimality of a

transport plan. In Chapter 5, we show that ergodic optimal joinings also satisfy a type of cyclical

monotonicity and use this to establish an analogue to Kantorovich duality for the optimal joining

problem. We remark that an interesting connection between cyclical monotonicity and ergodic
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theory was established when Beiglböck gave a succinct proof that cyclical monotonicity for a finite

transport plan implies optimality of the plan using the pointwise ergodic theorem (Beiglböck, 2015).

For a comprehensive treatment of the theoretical aspects of optimal transport, we refer the

reader to (Villani, 2008), particularly the first six chapters. A number of other texts on optimal

transport (Villani, 2003; Santambrogio, 2015; Ambrosio et al., 2008; Rachev and Rüschendorf, 1998,

2006; Peyré and Cuturi, 2019) have been written from a variety of perspectives that may also appeal

to the curious reader.

2.2 Computational Optimal Transport

Over the past decade or so, researchers have become increasingly interested in understanding

computational aspects of the optimal transport problem. This focus area within the field is referred

to as computational optimal transport. Computational optimal transport is focused on developing

algorithmic approaches to solving the optimal transport problem, particularly in the case that the

spaces of interest are finite. In this setting, probability measures may be encoded as vectors and

couplings as matrices. The optimal transport problem then becomes a linear program and may

be solved using standard solvers such as the network simplex algorithm (Peyré and Cuturi, 2019).

Unfortunately, these algorithms do not typically scale well with the dimension d of the marginal

probability vectors, with the best solvers exhibiting runtimes scaling like O(d3 log d).

In his seminal paper (Cuturi, 2013), Cuturi demonstrated that one may improve upon this

runtime by adding a negative entropy term to the discrete optimal transport problem. Letting

H(π) = −
∑

x,y π(x, y) log π(x, y) be the Shannon entropy of a coupling π ∈ Π(µ, ν), the entropic

optimal transport problem with coefficient η > 0 is defined as

T η(c;µ, ν) = inf
π∈Π(µ,ν)

{∫
c dπ − ηH(π)

}
. (2.2)

Using Lagrangian duality, one may show that optimal solutions π to (2.2) are unique and have the

form

π(x, y) = u(x) exp

{
−1

η
c(x, y)

}
v(y), (2.3)
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for some u : X → R>0 and v : Y → R>0. Cuturi recognized that this problem can be solved

by a matrix scaling algorithm known as the Sinkhorn-Knopp algorithm (Sinkhorn, 1967). This

approach is much more efficient than using standard linear program solvers and has opened the

door to larger scale applications of optimal transport. Later on, we develop adaptations of the

Sinkhorn-Knopp algorithm for performing optimal transport between Markov chains (Chapter 3)

and weighted graphs (Chapter 4).

In general, the addition of the negative entropy penalty does cause a discrepancy between

T η(c;µ, ν) and T (c;µ, ν). However, in the limit as η → 0, this discrepancy goes to zero (Cuturi

and Peyré, 2018). On the other hand, in the limit η → ∞, the unique solution to (2.2) is the

coupling of µ and ν with maximal entropy: the independent coupling µ ⊗ ν. As is clear from

the form (2.3) of solutions to (2.2), when η > 0, each element of an entropic optimal transport

plan is positive. When viewing couplings as probability measures rather than matrices, this is

equivalent to saying that entropic optimal transport plans have full support. This is in contrast

with unregularized optimal transport plans which, as solutions of linear programs, are comprised

mostly of zeroes. Finally, we note that problem (2.2) does admit a dual problem akin to (2.1) (see

e.g. (Cuturi and Peyré, 2018)). We defer a more detailed discussion of the entropic dual problem

to Chapter 5, where it plays a key role in our results.

(Altschuler et al., 2017) provided a more refined analysis of the Sinkhorn-Knopp algorithm for

entropic optimal transport. It was shown that this algorithm (with an additional rounding step) pro-

duces a coupling of µ and ν with expected cost within ε of T (c;µ, ν) in time O(d2(log d)‖c‖3∞ε−3).

This result provided theoretical confirmation that one could use entropic optimal transport to ap-

proximate the optimal transport cost in time which is effectively linear in the dimension d2 of the

couplings of interest. Compared to the O(d3 log d) complexity observed in standard optimal trans-

port solvers, this is a significant improvement. Additionally, the authors introduced the Greenkhorn

algorithm, a greedy version of the Sinkhorn algorithm which has the same complexity but runs faster

in practice. Later work (Dvurechensky et al., 2018; Lin et al., 2019) has explored refinements of

the complexity bounds for the Sinkhorn-Knopp and Greenkhorn algorithms. In particular, this

new analysis has shown that variants of either algorithm are able to achieve O(d2(log d)‖c‖2∞ε−2)

runtime complexity.
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More recent work (Dvurechensky et al., 2018; Lin et al., 2019; Guo et al., 2020) has considered

alternative algorithms for solving entropy-regularized optimal transport problems based on gradient

descent. At a high level, this body of work proposes to use variants of gradient descent to solve the

Lagrangian dual of the entropic optimal transport problem. While we do not explore the extension

of gradient-based algorithms to stationary optimal transport in this dissertation, we believe this

may be a promising direction for future research.

A selection of other work has proposed adaptations of the optimal transport problem and

associated algorithms for application to sequential data. (Muskulus and Verduyn-Lunel, 2011)

considered one of the earliest extensions of computational optimal transport to dynamical systems.

Given two observed sequences of length n, they proposed that one capture the sequential dependence

of the sequences via empirical k-block measures. The k-block measure corresponding to a sequence

X1, ..., Xn is the probability measure on X k defined by placing equal mass on each observed k-

block, Xk
1 , X

k+1
2 , ..., Xn

n−k+1. The authors proposed that one compare the observed sequences via

the optimal transport cost between their respective empirical k-block measures. As we discuss in

Chapter 5, this approach is closely related to the problem of estimating optimal joinings. However,

this connection was not addressed by the authors.

(Cazelles et al., 2020) studied an extension of computational optimal transport techniques to

stationary time series. To every such time series, one can associate a normalized power spectral

density (NPSD). Previous work had suggested comparing time series via the Kullback-Leibler di-

vergence between their NPSD’s, but this is only valid if one of them is absolutely continuous with

respect to the other. Instead, they argue that one should use the Wasserstein distance between the

NPSD’s of the marginal time series in order to compare the two.

(Su and Hua, 2017, 2018) also studied an extension of the computational optimal transport

problem to sequences. Given two observed sequences X1, ..., Xn and Y1, ..., Ym, they proposed to

constrain the set of couplings in the optimal transport problem to those that do not disturb the

relative order of the sequences too much. The degree to which a coupling π preserves the ordering

of the two sequences is quantified by the inverse difference moment,

n∑
i=1

m∑
j=1

π(Xi, Yj)

(i/n− j/m)2 + 1
.
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This quantity is large when the coupling π puts most of its mass on points (Xi, Yj) such that i/n is

close to j/m, indicating that the order of the sequences is preserved.

Another line of work (Cohen et al., 2021; Cuturi and Blondel, 2017; Janati et al., 2020) has

explored distances between time series based on dynamic time warping. Similar in spirit to the

optimal transport problem, the dynamic time warping problem seeks an alignment of two observed

sequences that respects the ordering of the respective sequences and minimizes an expected cost.

2.3 Statistical Optimal Transport

It is well-known (see e.g. (Villani, 2008)) that for certain choices of cost function, the optimal

transport cost satisfies the conditions of a metric on a certain space of probability measures. In

particular, for any Polish space (X , d), the optimal transport cost (µ, ν) 7→ T 1/p(dp;µ, ν) for any

p ∈ [1,∞) defines a metric on the space Pp(X ) of probability measures µ ∈M(X ) satisfying

∫
dp(x, x0) dµ(x) <∞,

where x0 ∈ X is arbitrary. For example, letting c be the Euclidean metric on R2, (µ, ν) 7→ T (c;µ, ν)

defines a metric on the subset P1(R2) of probability measures on R2.

Under the same conditions, one may also establish that the optimal transport cost actually

metrizes the weak topology. In other words, one may show that the weak convergence µn ⇒ µ

holds if and only if T (c;µn, µ) → 0. This result has a particular significance when µn is defined

as an empirical measure based on observations X1, ..., Xn drawn iid according to the distribution

µ, i.e. µn = 1
n

∑n
i=1 δXi . Then the convergence T (µn, µ) → 0 follows from Varadarajan’s theorem

(Varadarajan, 1958) which establishes the convergence µn ⇒ µ with probability one.

These features of the optimal transport problem naturally lead to several questions: How fast

does the convergence T (c;µn, µ) → 0 occur? May one establish T (c;µn, νn) → T (c;µ, ν)? If so,

how fast does this convergence occur? And finally, under what conditions can one obtain finite

sample bounds for E| T (c;µn, νn)−T (c;µ, ν)|? Recent work in statistics has aimed to answer these

questions, building new intuition about the application of optimal transport techniques to data.

One of the earliest results regarding the speed of convergence for T (c;µn, µ) was established

by Dudley (Dudley, 1969), who showed that the optimal transport cost suffers from a “curse of
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dimensionality.” For example, if µ ∈M(Rd) is absolutely continuous with respect to the Lebesgue

measure, the mean optimal transport cost between µn and µ goes to zero no faster than n−1/d (up

to a constant factor). Subsequent work has sought conditions under which this exponential scaling

in dimension is alleviated. (Boissard and Le Gouic, 2014) prove an upper bound the expectation of

T (c;µn, µ) under a covering number condition on the support of µ. Similarly, (Fournier and Guillin,

2015) provide an upper bound on the same quantity under moment conditions. Finally, (Weed and

Bach, 2019) showed that one may obtain faster rates of convergence when the probability measure

of interest is supported on some low-dimensional subset of the ambient space. In Chapter 5, we

make explicit use of a result of (Boissard and Le Gouic, 2014) establishing a bound on E T (c;µn, µ)

in the case that µn is derived from dependent observations.

A collection of other work has focused on estimating T (c;µ, ν) by means of the plug-in estimator

T (c;µn, νn) where µn and νn are derived from n observations from µ and ν, respectively. Much

of this work (Rippl et al., 2016; Sommerfeld and Munk, 2018; Bigot et al., 2019; Del Barrio et al.,

2019; Tameling et al., 2019; Berthet et al., 2020) has focused on proving central limit theorems for

the T (c;µn, νn) under increasingly general conditions on the spaces of interest. We do not explore

central limit theorems for the optimal joining problem in this dissertation but acknowledge that it

may be of interest in future work. Rather, we focus on showing that the analogous plug-in estimator

for the optimal joining cost is consistent and proving finite sample error bounds on this estimated

cost (see Chapter 5).

Finally, a more recent collection of work has studied the statistical aspects of the entropic

optimal transport problem. Remarkably, it was shown that under suitable conditions like sub-

Gaussianity, the entropic optimal transport cost circumvents the curse of dimensionality that the

standard optimal transport cost falls victim to (Genevay et al., 2019; Mena and Niles-Weed, 2019).

Other work (Mena and Niles-Weed, 2019; Klatt et al., 2020; Hundrieser et al., 2021) has also

explored central limit theorems for T η(c;µn, νn). We describe a consistent estimation scheme and

finite sample error bound for a regularized optimal joining problem in Chapter 5.
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2.4 Stationary Optimal Transport

As discussed in Chapter 1, this dissertation considers the optimal transport problem when the

marginal distributions are stationary processes. Before formally defining a stationary process, it

is helpful to define the more general concept of a dynamical system. A dynamical system is a

triple (U , T, µ) where U is a Polish space, µ is a probability measure on U , and T : U → U is a

map satisfying µ ◦ T−1 = µ. When this condition on T is satisfied, it is said that T is a measure-

preserving map for µ. Dynamical systems are the primary subject of interest in ergodic theory

(see e.g. (Shields, 1996) and (Walters, 2000)) and are used as models for population growth (Zhao,

2003), cell development (Furusawa and Kaneko, 2012), economic systems (Medio and Gallo, 1995;

Zhang, 2006), and other phenomena that evolve over time.

Stationary processes, on the other hand, offer a means of modeling evolving systems in a manner

more suited to statistical analysis. A stochastic process with alphabet X is a random variable

X = X1, X2, ... taking values in set XN. The process X is said to be stationary if for every k ≥ 0,

the joint distribution ofX`+k
` is independent of `. In this dissertation, we will primarily be interested

in the distributions of stationary processes, which are described by stationary process measures.

Formally, a probability measure µ ∈M(XN) is a stationary process measure if µ(X×[ak1]) = µ([ak1])

for any k ≥ 1 and any cylinder set [ak1] = {x ∈ XN : xi = ai, ∀1 ≤ i ≤ k}. We will use Ms(XN)

to denote the set of stationary process measures with alphabet X . The correspondence between

a stationary process X and the stationary process measure µ describing its distribution is made

explicit by recognizing the P(X ∈ A) = µ(A) for every measurable A ⊂ XN. Whenever there is no

risk of confusion, we will use “stationary process” and “stationary process measure” interchangeably

throughout the rest of the dissertation.

One may show that a stationary process µ ∈ Ms(XN) is a special case of a dynamical system

(U , T, µ) by letting U = XN and the map T be the map that maps sequences like (x1, x2, ...) 7→

(x2, x3, ...), known as the left-shift map on XN. While this dissertation focuses on stationary

processes rather than dynamical systems, we highlight this connection to give context to related

work in the ergodic theory and dynamical systems literature. In particular, the optimal joining

problem may be defined for dynamical systems and has been considered for example in (Rüschendorf

and Sei, 2012) and (McGoff and Nobel, 2020).
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2.4.1 Origins of Stationary Optimal Transport

Stationary couplings, or joinings, of dynamical systems were first introduced by Furstenberg

(Furstenberg, 1967). Among other things, Furstenberg used joinings to study questions related

to the filtering of stochastic processes. For example, under what conditions can one recover a

stationary process X1, X2, ... from the corrupted process X1 +Y1, X2 +Y2, ... where Y1, Y2, ... is also

stationary? Furstenberg showed that this was possible if the two processes were integrable and

the only joining of the two was the independent joining, a property referred to as disjointness. A

detailed treatment of joinings and their role in ergodic theory can be found in the text (Glasner,

2003). For a more high-level overview, the reader may consult the surveys (de la Rue, 2006, 2020).

The first example of a stationary optimal transport problem or optimal joining problem was

introduced by Ornstein (Ornstein, 1973). Ornstein proposed a distance between discrete-alphabet

stationary processes measures µ and ν on a common space X called the d-distance, defined as

d(µ, ν) = inf
λ∈J (µ,ν)

∫
δ(x 6= y) dλ1(x, y).

In particular, we have d(µ, ν) = S(δ;µ, ν). In his paper, Ornstein studied the properties of the class

of B-processes in relation to the d-metric. For example, he establishes that the class of B-processes

is closed under convergence in d. Later work (Ornstein and Weiss, 1990) studied how processes can

be recovered from a finite number of observations in a d-consistent manner. Similarly, (Ornstein

and Shields, 1994) considers the question of when a process can be recovered in d-distance from a

finite number of observations.

Shortly after Ornstein introduced the d-distance, (Gray et al., 1975) proposed a generalization

to continuous alphabets known as the ρ-distance. For stationary process measures µ and ν with a

common Polish alphabet (X , d), the ρ-distance is defined by

ρ(µ, ν) = sup
k≥1

1

k
T (dk;µk, νk),

where we remind the reader that dk is the map (xk1, y
k
1 ) 7→

∑k
`=1 d(x`, y`). Through a subadditivity

argument, the authors show that in fact ρ(µ, ν) = S(d;µ, ν). This fact plays a key role in our

results in Chapter 5. In particular, it provides a means of approximating the optimal joining cost
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through a series of k-step optimal transport costs. In Chapter 5, we also generalize this result to

incorporate entropic penalization as described in Section 2.2.

2.4.2 Existing Results in Stationary Optimal Transport

Several decades after the introduction of the ρ-distance, (Rüschendorf and Sei, 2012) explored

conditions under which an optimal joining of dynamical systems (U , T, µ) and (V, S, ν) could be

found explicitly. The authors defined a class of functions φ : U → V in which the optimal joining

of measures µ and ν = µ ◦ φ−1 was achieved by the joining λ ∈ J (µ, ν) satisfying dλ(x, y) =

dµ(x)δ(φ(x) = y). Proof of this result relies on an extension of the gluing lemma (see e.g. (Villani,

2008)) to stationary couplings. The authors also extended the ρ-distance to random fields.

(Lopes and Mengue, 2012) studied the optimal joining problem for dynamical systems in the

topological setting with compact spaces, continuous transformations, and continuous cost. They

prove a duality result in this setting via Fenchel-Rockafellar duality and study conditions which

guarantee uniqueness of the optimal joining. Later work (Lopes et al., 2015) studied a variant of the

optimal joining problem with an entropy penalty, subsequently connecting it to the thermodynamic

formalism. The authors also proved that a duality result holds for this problem as well.

(Moameni, 2016) studied the optimal transport problem in the case that the cost function and

marginal measures are invariant under a given transformation. The author proved that in this

setting (with some additional conditions on the cost function), the optimal transport plan may be

chosen to be invariant with respect to that same transformation. We establish a similar result in

Chapter 5 where the transformation of interest is the left-shift map.

Further work (Zaev, 2015) studied the more general problem of optimal transport with addi-

tional linear constraints. Given a subspaceW of real-valued functions defined on U ×V, the author

considered the constrained set of couplings

ΠW(µ, ν) =

{
π ∈ Π(µ, ν) :

∫
w(u, v) dπ(u, v) = 0, ∀w ∈ W

}
,

and the associated constrained optimal transport problem,

inf
π∈ΠW (µ,ν)

∫
c(u, v) dπ(u, v). (2.4)
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Note that by letting U = XN, V = YN, σ : XN → XN and τ : YN → YN be the left-shift

maps, and W = {f − f ◦ (σ × τ) : f : XN × YN → R continuous and bounded}, we have that

ΠW(µ, ν) = J (µ, ν). In other words, the optimal joining problem can be written as an optimal

transport problem with additional linear constraints. Under certain conditions on the cost c, the

author proved that the problem (2.4) satisfies the duality

inf
π∈ΠW (µ,ν)

∫
c(u, v) dπ(u, v) = sup

f⊕g+w≤c

{∫
f(u) dµ(u) +

∫
g(v) dν(v)

}
, (2.5)

where the supremum is taken over bounded and continuous f : U → R and g : V → R and w ∈ W.

While similar, the duality (2.5) differs slightly from that which we show in Chapter 5 for the optimal

joining problem. In particular, one instead takes a supremum over f and g satisfying f ⊕ g ≤ c

where c is the long-run average cost (xk1, y
k
1 ) 7→ lim supk→∞

1
kck(x

k
1, y

k
1 ).

(Zaev, 2015) also introduced a generalization of cyclical monotonicity called (c,W)-cyclical

monotonicity. While we do not include the definition here, we note that for W = {0}, it reduces

to the original definition of c-cyclical monotonicity. In general it is distinct from the notion of c-

cyclical monotonicity which plays a role in our results in Chapter 5. Using (2.5), the author showed

that solutions to (2.4) are necessarily (c,W)-cyclically monotone, though the reverse implication

does not hold in general.

(Zaev, 2016) studied a decomposition of the optimal joining problem for dynamical systems

in terms of the ergodic decomposition. Specifically, one can write the optimal joining problem as

an optimal transport problem with respect to a cost derived from the optimal joining cost of the

ergodic components of the marginal processes.

In other work, (Kolesnikov and Zaev, 2017) studied the existence of optimal transport maps (in

the sense of (1.1)) between process measures on R∞. The authors provided conditions under which

such a measure admits a map that pushes forward to a Gaussian process and is a limit of finite

dimensional optimal transport maps. Interestingly these conditions involve the relative entropy of

the finite dimensional distributions, which plays an active role in optimal transport as described in

Section 2.2 and is an active area of interest for the optimal joining problem (see Chapter 5).

More recently, it has been shown that optimal joinings arise naturally as limiting objects of

inferential procedures for dynamical systems. (McGoff and Nobel, 2020, 2021) consider the problem
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of fitting dynamical models to observed data via empirical risk minimization. In the large sample

limit, they show that minimization of the empirical risk is equivalent to solving an optimal joining

problem for the observed process and the family of dynamical models. Similarly, (McGoff et al.,

2021) consider the problem from a Bayesian perspective, performing Gibbs posterior inference for

a family of Gibbs processes. It is shown that the partition function has a rate function given by an

optimal joining cost.

In parallel with optimal stationary transport, researchers have considered related questions

about dynamical systems in a field known as ergodic optimization. Given a map T : U → U and a

real-valued function β : U → R, the general problem of interest in ergodic optimization is to find

a measure µ ∈ M(U) that is invariant under T and maximizes
∫
β dµ. One may view the optimal

joining problem as a constrained version of this problem on the space XN × YN by letting T be

the left-shift, β = −c, and constraining the optimization problem further to invariant measures

satisfying the coupling condition. For more details, we refer the reader to the surveys (Jenkinson,

2006, 2019).

2.4.3 Stationary Optimal Transport for Markov Chains

A collection of other work has considered stationary optimal transport problems specifically for

Markov chains. In a series of papers (Ellis, 1976, 1978, 1980a,b), Ellis considered the d-distance

in the case of Markov chains as well as the optimal Markovian joining problem. In particular,

he showed that the d-distance between two Markov chains was not always achieved by a Markov

joining. This follows from the fact that the optimal Markovian joining cost does not satisfy the

triangle inequality. This result plays a role in our study of optimal transition couplings in Chapter

3, proving that the optimal transition coupling cost is not equal to the optimal Markovian joining

cost in general.

Other work has considered couplings specifically tailored to Markov processes called Markovian

couplings. A Markovian coupling of finite-state, stationary Markov processes µ and ν with transition

matrices P and Q is a joining λ ∈ J (µ, ν) that is Markov with a transition matrix R satisfying

R((x, y), ·) ∈ Π(P (x, ·), Q(y, ·)) for every (x, y) ∈ X × Y. We denote the set transition matrices

satisfying the condition above by Π(P,Q) and the set of Markovian couplings of µ and ν by

ΠTC(µ, ν). In the interest of precision, we refer to such couplings as transition couplings. Transition
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couplings feature prominently in Chapters 3 and 4. In particular, we define the optimal transition

coupling problem,

min
λ∈ΠTC(µ,ν)

∫
c(x, y) dλ1(x, y). (2.6)

As we will discuss later on, this problem incorporates the stationarity and Markovity directly into

the optimal transport problem.

Existing work has considered an alternative to the optimal transition coupling problem that we

refer to as the one-step optimal transition coupling problem. Rather than problem (2.6), this other

work considers the problem of finding R ∈ Π(P,Q) minimizing
∑

x′,y′ R((x, y), (x′, y′))c(x′, y′) for

every (x, y) ∈ X × Y. In other words, the transition matrix R is chosen to minimize the expected

cost after one step rather than the long-term average cost as in the optimal transition coupling

problem.

(Mufa, 1994) considered one-step optimal transition couplings in both discrete and continuous

time. In particular, they illustrated how one may obtain lower bounds on the spectral gap of a

Markov process via one-step optimal transition couplings. Along the same lines, (Zhang, 1999)

proved the existence of a one-step optimal transition coupling for Markov processes with Polish

alphabets. The author also provided conditions under which a Markov process possesses and con-

verges to a unique stationary distribution with respect to the one-step optimal transition coupling

cost. (Zhang, 2000) later proved the existence of a one-step optimal transition coupling to non-

negative, lower semicontinuous costs. The author also proved a result characterizing the stochastic

dominance of one transition kernel by another in terms of the existence of a certain transition

coupling.
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CHAPTER 3

Optimal Transport for Stationary Markov Chains via Policy Iteration

In this chapter, we study the optimal transport problem for pairs of stationary finite-state

Markov chains, with an emphasis on the computation of optimal transition couplings. Transition

couplings are a constrained family of transport plans that capture the dynamics of Markov chains.

Solutions of the optimal transition coupling (OTC) problem correspond to alignments of the two

chains that minimize long-term average cost. We establish a connection between the OTC problem

and Markov decision processes, and show that solutions of the OTC problem can be obtained

via an adaptation of policy iteration. For settings with large state spaces, we develop a fast

approximate algorithm based on an entropy-regularized version of the OTC problem, and provide

bounds on its per-iteration complexity. We establish a stability result for both the regularized

and unregularized algorithms, from which a statistical consistency result follows as a corollary.

We validate our theoretical results empirically through a simulation study, demonstrating that the

approximate algorithm exhibits faster overall runtime with low error. Finally, we extend the setting

and application of our methods to hidden Markov models, and illustrate the potential use of the

proposed algorithms in practice with an application to computer-generated music.

3.1 Introduction

In this chapter, we study the optimal transport (OT) problem in the case where the objects

of interest are stationary Markov chains or processes possessing hidden Markov structure. The

problem of interest to us is distinct from traditional applications of coupling to Markov chains, e.g.,

to establish convergence to a stationary distribution. Our interest is in the computation of optimal

transport plans for Markov chains that explicitly account for both stationarity and Markovian

structure. In particular, we develop algorithms for computing solutions to a Markov-constrained
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form of the OT problem. The algorithms leverage recent advances in computational OT as well as

techniques from Markov decision processes.

The principled extension of computational OT techniques to classes of distributions that possess

additional structure, such as martingales or dependent processes, is an important direction of

research. Indeed, some variations of constrained OT have been considered in recent work (Beiglböck

et al., 2013; Zaev, 2015; Forrow et al., 2019; Moulos, 2021; Backhoff et al., 2020), and several recent

applications of OT have focused on dependent observations (Schiebinger et al., 2019; Xu et al.,

2018). Extensions of OT to dependent processes open the door to new applications in climate

science, finance, epidemiology and other fields, where it is common for observations to possess

temporal or spatial structure. The OT problem that we consider is tailored to the alignment and

comparison of Markov chains and hidden Markov models (HMMs). As an illustration, we describe

in Section 4.5 an application of the proposed techniques to the analysis of computer-generated

music.

The primary contributions of this chapter are as follows:

• We formulate a constrained version of the OT problem for stationary Markov chains, referred

to as the optimal transition coupling (OTC) problem. The OTC problem aims to align the

two chains of interest so as to minimize long-term average cost while preserving Markovity

and stationarity.

• We detail an extension of the OTC problem to HMMs. In particular, we describe how one

may couple a pair of HMMs via a coupling of their hidden chains using a cost that is derived

from the OT cost between their emission distributions.

• We establish a useful connection between the OTC problem and Markov decision processes

(MDPs) that provides a means of computing optimal solutions in an efficient manner. Lever-

aging this connection, we arrive at an algorithm combining policy iteration (Howard, 1960)

with OT solvers that we refer to as ExactOTC (Algorithm 1). We state in Theorem 3.7 that

if the two Markov chains of interest are irreducible, then ExactOTC converges to a solution

of the OTC problem in a finite number of iterations.
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• We introduce an entropically-constrained OTC problem and an associated regularized algo-

rithm, referred to as EntropicOTC (Algorithm 2), that exhibits improved computational

efficiency in theory and in practice. In Theorems 3.9 and 3.12, we establish upper bounds

on the computational complexity of this algorithm, demonstrating that the runtime of each

iteration is nearly-linear in the dimension of the couplings under study. This dependence is

comparable to the state-of-the-art for computational OT.

• We prove a stability result for the OTC problem, stated formally in Theorem 3.13. Consis-

tency of the plug-in estimate of the optimal transition coupling and its expected cost follows

as a corollary (see Corollary 3.14).

The rest of this chapter is organized as follows: We begin by providing some background on

optimal transport and define the OTC problem in Section 3.2. In Section 3.3, we detail our ex-

tension of the OTC problem to HMMs. In Section 3.4, we establish the connection between the

OTC problem and MDPs and state our result regarding ExactOTC for obtaining optimal transi-

tion couplings. A faster, regularized algorithm EntropicOTC for computing optimal transition

couplings is described in Section 3.5. In Section 3.6 we present our result regarding the stabil-

ity of the OTC problem and the statistical consistency of optimal transition couplings computed

from data. In Section 3.7 we describe a simulation study and an application of our algorithms to

computer-generated music. We close with a discussion of our results in Section 3.8. Proofs for all

stated results may be found in Section 3.9. Finally, an appendix containing some supplementary

results and information may be found at the end of this dissertation.

Notation. Let R+ be the non-negative reals and ∆n = {u ∈ Rn+|
∑n

i=1 ui = 1} denote the proba-

bility simplex in Rn. Given a metric space U , letM(U) denote the set of Borel probability measures

on U . For a vector u ∈ Rn, let ‖u‖∞ = maxi |ui| and ‖u‖1 =
∑

i |ui|. Occasionally we will treat

matrices in Rn×n as vectors in Rn2
.

3.2 The Optimal Transition Coupling Problem

Let U and V be metric spaces and µ ∈M(U) and ν ∈M(V) be probability measures. Moreover,

let c : U × V → R+ be a non-negative function on U × V. Recall from Chapter 1 that the optimal
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transport problem associated with µ, ν, and c is the program

minimize

∫
c dπ

subject to π ∈ Π(µ, ν),

(3.1)

where Π(µ, ν) is the set of couplings of µ and ν. As a natural first step toward computational OT

for dependent processes, we consider the case where the marginal probability measures of interest µ

and ν represent stationary Markov chains X = (X0, X1, ...) and Y = (Y0, Y1, ...) with values in finite

sets X and Y, respectively. Markov chains are a natural choice: their simple dependence structure

is conducive to computation, and they can be studied in terms of transition matrices. Without loss

of generality, assume that X and Y both contain d points. Let P,Q ∈ [0, 1]d×d be the transition

matrices, and let p, q ∈ ∆d be the corresponding stationary distributions, of the chains X and Y ,

respectively. For a brief overview of the necessary background on Markov chains, we refer the reader

to Section 3.9.1. For a more in-depth review of Markov chain theory, we refer the reader to (Levin

and Peres, 2017). The extension of the OTC problem to hidden Markov models, detailed in Section

3.3, enables us to apply our approach to non-Markovian processes with long-range dependence and

Polish alphabets.

Remark 3.1. The optimal transport problem traces its roots back to the physical transportation

of goods. In particular, the optimal coupling offers a means of stochastically matching a supply of

some goods to their demand so as to minimize the expected cost of transporting the goods. In his

book on the topic, Villani (Villani, 2008) offers an example of transporting loaves of bread between

bakeries and cafés to build intuition for the optimal transport problem:

Consider a large number of bakeries, producing loaves, that should be transported each

morning to cafés where consumers will eat them. The amount of bread that can be

produced at each bakery, and the amount that will be consumed at each café are known in

advance, and can be modeled as probability measures ... on a certain space ... (equipped

with the natural metric such that the distance between two points is the shortest path

joining them). The problem is to find in practice where each unit of bread should go, in

such a way as to minimize the total transport cost.
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In our setting, the collections of bakeries and cafés correspond to the finite sets X and Y.

However, unlike the static problem described by Villani, we consider a dynamic problem in which

the number of loaves produced and consumed at the bakeries and cafés evolves over time. Indeed, we

suppose that the amounts produced and consumed are determined by the distributions of stationary

Markov chains X and Y . As we now have dependence over time to consider, the new problem is

to synchronize the supply with the demand so as to minimize the total cost of transportation over

the long term while still ensuring that the bakery and cafe owners are satisfied. To make things

easier for the delivery driver, one might agree to consider only transport plans that do not change

over time (stationary) and under which the deliveries tomorrow only depend on the deliveries today

(Markov).

In principle, one may apply the standard optimal transport problem in the Markov setting by

taking U = X , V = Y and identifying an optimal coupling of the stationary distributions p and

q. However, this marginal approach does not capture the dependence structure of the chains X

and Y . This is made evident when revisiting Example 1.2 from Chapter 1. Recall the setting:

X = Y = {0, 1} with single-letter cost c(x, y) = δ(x 6= y), and

P =


0 1

0 1/2 1/2

1 1/2 1/2

 and Q =


0 1

0 0 1

1 1 0

.
In particular, the process X corresponding to P is iid, while the process Y corresponding to Q

evolves deterministically after the initial symbol Y0 is drawn randomly. Nevertheless, under a

marginal analysis, the optimal transport distance between X and Y is zero since their stationary

distributions p and q each coincide with the (1/2, 1/2) measure. In general, optimal coupling of

stationary distributions yields a joint distribution on the product X × Y, but it does not provide a

means of generating a joint process having X and Y as marginals. We seek a variation of (3.1)

that captures and preserves the stochastic structure, namely stationarity and Markovity, of the

processes X and Y .

As an alternative to a marginal analysis, one may consider instead the full measures P ∈M(XN)

and Q ∈ M(YN) of the processes X and Y . Formally, P is the unique probability measure on XN
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such that for any cylinder set [aji ] := {(x0, x1, ...) ∈ XN : xk = ak, i ≤ k ≤ j},

P([aji ]) := p(ai)

j−1∏
k=i

P (ak, ak+1).

The measure Q is defined similarly in terms of q and Q. By definition, the measures P and Q are

stationary, and Markovian. However, a coupling of P and Q on the joint sequence space XN × YN

need not be stationary or Markovian. To illustrate, we may revisit Example 1.1 from Chapter 1:

let X ′ and Y ′ be iid Bernoulli(1/2, 1/2) processes, independent of each other, defined on the same

probability space. For i ≥ 0 let X̃i = X ′i, and let Ỹi = X ′i if i is a power of 2 and Ỹi = Y ′i otherwise.

One may establish that the joint process (X̃, Ỹ ) = (X̃0, Ỹ0), (X̃1, Ỹ1), . . . is a coupling of X ′ and Y ′,

but it is neither stationary nor Markovian. For further examples and discussion of non-Markovian

couplings of Markov processes, see (Ellis, 1976, 1978, 1980b,a).

A joint process (X̃, Ỹ ) arising from a non-stationary or non-Markovian coupling of P and Q has

a very different stochastic structure than the processes X and Y themselves, and will be difficult

to work with computationally. Thus we wish to exclude such couplings from the feasible set of

an optimal transport problem. An obvious fix is to consider the family ΠM(P,Q), defined as the

set of couplings P and Q that are stationary and Markovian. Viewed as processes, elements of

ΠM(P,Q) correspond to joint processes (X̃, Ỹ ) that are stationary, Markov, and satisfy X̃ ∼ X and

Ỹ ∼ Y . While this is a natural choice, the optimal transport cost associated with ΠM may violate

the triangle inequality, even when the underlying cost function c is itself a metric, see (Ellis, 1976,

1978). Moreover, the family ΠM(P,Q) is not characterized by a simple set of constraints (Boyle and

Petersen, 2009). Motivated by the need for ready interpretation and tractable computation, we

consider the set of stationary Markov chains on X ×Y whose transition distributions are couplings

of those of X and Y . A formal definition is given below. The resulting set of couplings, called

transition couplings, is characterized by a simple set of linear constraints involving P and Q, and

one may show (see Appendix A.1) that the resulting OT cost does satisfy the triangle inequality

as long as the underlying cost c does.

In order to reduce notation when considering vectors and matrices indexed by elements of X×Y,

we will indicate only the cardinality of the index set and adopt an indexing convention whereby

a vector u ∈ Rd2 is indexed as u(x, y) and a matrix R ∈ [0, 1]d
2×d2 is indexed as R((x, y), (x′, y′))
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for (x, y), (x′, y′) ∈ X × Y. Note also that vectors of the form R((x, y), ·) will be regarded as row

vectors.

Definition 3.2. Let P and Q be transition matrices on finite state spaces X and Y, respectively.

A transition matrix R ∈ [0, 1]d
2×d2 is a transition coupling of P and Q if for every paired-state

(x, y) ∈ X × Y, the distribution R((x, y), ·) is a coupling of the distributions P (x, ·) and Q(y, ·),

formally R((x, y), ·) ∈ Π(P (x, ·), Q(y, ·)). Let ΠTC(P,Q) denote the set of all transition couplings

of P and Q.

Standard results in Markov chain theory ensure that each transition coupling R ∈ ΠTC(P,Q)

admits at least one stationary distribution r ∈ ∆d2 . Using r and R, one may construct a stationary

Markov chain (X̃, Ỹ ) = {(X̃i, Ỹi)}i≥0 taking values in X × Y. We will also refer to couplings

constructed in this way as transition couplings, as stated in the following definition.

Definition 3.3. Let X and Y be stationary Markov chains with transition matrices P and Q on

the finite state spaces X and Y, respectively. A stationary Markov chain (X̃, Ỹ ) = {(X̃i, Ỹi)}i≥0

taking values in X × Y with transition matrix R ∈ [0, 1]d
2×d2 is a transition coupling of X and

Y if (X̃, Ỹ ) is a coupling of X and Y and R ∈ ΠTC(P,Q).

Each transition coupling of X and Y may be associated with a process measure π ∈Ms(XN×YN);

let ΠTC(P,Q) denote the set of all such measures induced by transition couplings of X and Y . As

the notation suggests, one may readily show that the process measure π induced by a transition

coupling of X and Y is itself a coupling of the process measures P and Q associated with X and

Y , respectively. As all elements of ΠTC(P,Q) are also stationary and Markovian, it follows that

ΠTC(P,Q) ⊂ ΠM(P,Q).

The couplings defined in Definition 3.3 are sometimes referred to as “Markovian couplings” in

the literature (Levin and Peres, 2017), and they have been used, for example, to study diffusions

(Banerjee and Kendall, 2018, 2016, 2017). We refer to such couplings as “transition couplings” in

order to distinguish them from elements of ΠM(P,Q). Note that ΠTC(P,Q) 6= ∅ since it contains the

independent coupling, namely, the stationary Markov chain on X × Y with transition matrix P ⊗

Q((x, y), (x′, y′)) = P (x, x′)Q(y, y′) for all (x, y) and (x′, y′). The independent coupling corresponds

to a paired chain (X̃, Ỹ ) = {(X̃i, Ỹi)}i≥0 where X̃ and Ỹ are equal in distribution to X and Y ,

respectively, and evolve independently of one another.
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A key advantage of considering ΠTC(P,Q) over ΠM(P,Q) is that the constraints defining

ΠTC(P,Q) are linear and thus computationally tractable (the constraints defining ΠM(P,Q) are

not). As we prove in Proposition 3.4 below, the set ΠTC(P,Q) of transition matrices actually char-

acterizes the set ΠTC(P,Q) of transition couplings if X and Y are irreducible. Stated differently,

the condition R ∈ ΠTC(P,Q) is sufficient to ensure that a chain (X̃, Ỹ ) with transition matrix R is

a transition coupling of X and Y . On the other hand, if X or Y is reducible, a stationary Markov

chain with a transition matrix in ΠTC(P,Q) need not be a coupling of X and Y as the stationary

distributions of P and Q are not unique. This follows from the fact that a transition coupling of

reducible chains may admit as marginals any of the chains with transition matrices P or Q. So

in order to solve the OTC problem by optimizing over ΠTC(P,Q) instead of ΠTC(P,Q), we must

be careful to avoid this situation. Proposition 3.4 ensures that this cannot occur if X and Y are

irreducible.

Proposition 3.4. Let X and Y be irreducible stationary Markov chains with transition matrices

P and Q, respectively. Then any stationary Markov chain with a transition matrix contained in

ΠTC(P,Q) is a transition coupling of X and Y .

As a result of Proposition 3.4, we may avoid working explicitly with transition couplings of X and

Y and work instead with the set of matrices ΠTC(P,Q).

Letting c : XN×YN → R be a cost function defined on sample sequences of X and Y , we define

the optimal transition coupling (OTC) problem for X and Y with cost c to be the program

minimize

∫
c dπ

subject to π ∈ ΠTC(P,Q).

(3.2)

The minimum in (3.2), referred to as the OTC cost, assesses the degree to which the two chains

may be “synced up” with respect to c. Any solution to (3.2) describes the joint distribution of the

synchronized chains. Moreover, as a consequence of the pointwise ergodic theorem, any optimal

transition coupling π ∈ ΠTC(P,Q) in Problem (3.2) is also optimal with respect to the averaged

cost ((x0, x1, ...), (y0, y1, ...)) 7→ lim supn→∞
1
n

∑n−1
i=0 c((xi, xi+1, ...), (yi, yi+1, ...)). In this sense, the

quality of an alignment (equivalently, transition coupling) of the two chains X and Y is assessed

based on its long-term average cost.
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In the remainder of the chapter we assume that c is a single-letter cost, i.e., c((x0, x1, ...),

(y0, y1, ...)) = c̃(x0, y0) for some cost function c̃ : X × Y → R+. In most of what follows we

identify c and c̃, regarding c as a function on X × Y and writing c(x0, y0) when no confusion

will arise. The consideration of single-letter costs is motivated by our focus on computation and

reflects existing work on computational OT, where a cost or metric is defined a priori on static

observations. Single letter costs have also been the focus of previous work on optimal transport

problems for stationary processes (Ornstein, 1973; Gray et al., 1975). Our arguments may be easily

adapted to the case when the cost depends on a finite number of coordinates. In particular, any

k-letter cost c : X k ×Yk → R+ may be regarded as single-letter for the chains X̃ = (Xk−1
0 , Xk

1 , ...)

and Ỹ = (Y k−1
0 , Y k

1 , ...) on X k and Yk, respectively. For single-letter costs, we show in Appendix

A.1 that optimal transition couplings exist, and that the OTC cost satisfies the triangle inequality

whenever c does. Note that c is necessarily bounded, as X and Y are finite. Moreover, there is

no loss in generality in assuming that c is non-negative since our results also hold after adding a

constant to c.

A primary contribution of this chapter, and the focus of Sections 3.4 and 3.5, is the development

of efficient algorithms for computing solutions to the OTC problem (3.2). Note that this problem

involves the minimization of a linear objective over the non-convex set ΠTC(P,Q), which makes it

difficult to find a solution with off-the-shelf methods. Proposition 3.4 shows that one may optimize

instead over the convex polyhedron ΠTC(P,Q): informally, the program (3.2) can be reformulated

as minimizing Ec(X̃0, Ỹ0) over R ∈ ΠTC(P,Q), where (X̃, Ỹ ) is a stationary Markov chain generated

by R. However, this reformulation has a non-convex objective, so some care is needed in order to

obtain global solutions.

3.2.1 Related Work

For general references related to computational and stationary optimal transport, we refer

the reader to Chapter 2. In the context of Markov chains, coupling methods have been widely

used as a tool to establish rates of convergence (see for instance (Griffeath, 1976) or (Lindvall,

2002)). Examples of optimal Markovian couplings of Markov processes are studied in (Ellis, 1976,

1978, 1980a,b). Another line of work has explored total variation-type distances for models with

Markovian structure. For example, (Chen and Kiefer, 2014) and (Kiefer, 2018) develop algorithms
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for and consider the computability of the total variation distance between hidden Markov models

and labeled Markov chains. Similarly, (Daca et al., 2016) studies the inestimability of the total

variation distance between Markov chains. More recent work has proposed direct adaptations of

the optimal transport problem for processes with Markovian structure. (Moulos, 2021) studied

the bicausal optimal transport problem for Markov chains and its connection to Markov decision

processes. Unlike the OTC problem, in the bicausal transport problem, couplings are not required

to be stationary or Markov themselves. We also remark that the optimal transition coupling

problem appears in the unpublished manuscript (Aldous and Diaconis, 2009).

Recall from Chapter 2 that some existing work (Song et al., 2016; Zhang, 2000) has studied

a modified form of the OTC problem that we refer to as the one-step optimal transition coupling

problem. In the one-step OTC problem the expected cost is measured with respect to the one-

step transition probabilities rather than the stationary distribution of the transition coupling. In

particular, a transition coupling R ∈ ΠTC(P,Q) is one-step optimal if for every (x, y) ∈ X × Y,

R((x, y), ·) ∈ argmin
r∈Π(P (x,·),Q(y,·))

∑
x′,y′

r(x′, y′) c(x′, y′).

Loosely, one can view the OTC problem (3.2) as an infinite-step version of the one-step OTC

problem, wherein a transition coupling is chosen that minimizes the expected cost averaged over an

infinite number of steps. The one-step transition coupling problem appears in (Song et al., 2016)

where it is used to assess the distance between Markov decision processes. In another direction,

(Zhang, 2000) show that solutions to the one-step transition coupling problem exist for Markov

processes on Polish state spaces and lower semicontinuous cost functions. While the one-step

problem is computationally convenient, in some situations it will yield poor alignments of the two

chains of interest. We provide an example to illustrate this in Appendix A.3, showing that the

one-step approach can yield a transition coupling with arbitrarily high expected cost over time.

3.3 Extension of OTC to Hidden Markov Models

Markov models are often employed as components of more complex models for sequential ob-

servations. Hidden Markov models (HMMs) are a widely used variant of the Markov model in

which observations are modeled as conditionally independent random emissions arising from a la-
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tent Markov chain. HMMs have been applied successfully to a variety of problems including speech

recognition (Bahl et al., 1986; Varga and Moore, 1990), text segmentation (Yamron et al., 1998),

and modeling disease progression (Williams et al., 2020). For a detailed overview, we refer the

reader to the text (Zucchini et al., 2017).

Formally, a HMM may be characterized by a pair (X,φ) where X = (X0, X1, ...) is an unob-

served Markov chain taking values in a finite set X , and a function φ : X → M(U) that maps

each state x ∈ X to a distribution on a fixed observation space U . The pair (X,φ) gives rise to

a stationary process U = (U0, U1, ...) where U0, U1, . . . ∈ U are conditionally independent given

X with Ui ∼ φ(Xi) for i ≥ 0. Note that the process U may exhibit long-range dependence. In

this way, HMMs provide a simple means of modeling sequences with more complex dependence

structures.

The OTC problem may be extended to processes with hidden Markov structure as follows.

Let (X,φ) and (Y, ψ) be a pair of HMMs with observation spaces U and V, respectively, and let

c : U × V → R+. Note that the cost c is specified on the observed spaces U and V rather than the

state spaces of the unobserved Markov chains X and Y . However, one may extend c to a cost on

X ×Y by optimally coupling the emission distributions φ(x) and ψ(y) for every pair (x, y) ∈ X ×Y.

In more detail, let θ : X × Y →M(U × V) and c′ : X × Y → R+ be defined by

θ(x, y) ∈ argmin
π∈Π(φ(x),ψ(y))

∫
c dπ and c′(x, y) = min

π∈Π(φ(x),ψ(y))

∫
c dπ.

In other words, we define the functions θ : X × Y → M(U × V) and c′ : X × Y → R+ such that

for every (x, y) ∈ X × Y, θ(x, y) is an optimal coupling and c′(x, y) is the OT cost of the emission

distributions φ(x) and ψ(y) with respect to c. One may then find an optimal transition coupling

(X ′, Y ′) of X and Y with respect to c′ as in problem (3.2). The expected cost of this transition

coupling corresponds to a cost between the HMMs (X,φ) and (Y, ψ) taking the original cost c into

account. Moreover, the pair ((X ′, Y ′), θ) defines an optimal joint HMM of (X,φ) and (Y, ψ) from

which samples in U × V may be drawn.

Leveraging the intuition from the standard OTC problem, the optimal transition coupling

((X ′, Y ′), θ) may be thought of as an alignment of the two HMMs (X,φ) and (Y, ψ) with respect

to c. In this way, we may apply the OTC problem to any processes that can be embedded as
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or are well-approximated by HMMs. Before proceeding, we remark that (Chen et al., 2019) also

proposes an OT problem for HMMs based on coupling the emission distributions of the two HMMs

of interest. However, the latent Markov chains of either HMM are coupled using standard OT after

a registration step. Our approach captures the Markovity of the latent sequences more directly and

allows one to generate new samples from the coupled HMM.

3.4 Computing Optimal Transition Couplings

In this section, we turn our attention toward our primary goal of developing tractable algorithms

for solving the OTC problem (3.2). As discussed in Section 3.2, the OTC problem is a non-convex,

constrained optimization problem and thus there is little hope of obtaining global solutions via

generic optimization algorithms. Adopting a more tailored approach, we draw a connection between

the OTC problem and Markov decision processes (MDP). Having established this connection, we

may leverage the wealth of algorithms for obtaining global solutions to MDPs to solve the OTC

problem. As we will show, the framework of policy iteration naturally lends itself to our problem

and leads to a computationally tractable algorithm combining standard MDP techniques with OT

solvers.

3.4.1 Connection to Markov Decision Processes

A Markov decision process is characterized by a 4-tuple (S,A,P, c′) consisting of a state space

S, an action space A =
⋃
sAs where As is the set of allowable actions in state s, a set of transition

distributions P = {p(·|s, a) : s ∈ S, a ∈ A} on S, and a cost function c′ : S ×A → R. At each time

step the process occupies a state s ∈ S and an agent chooses an action a ∈ As; the process incurs

a cost c′(s, a) and then moves to a new state according to the distribution p(·|s, a). Informally, the

goal of the agent is to choose actions to minimize her average cost. The behavior of an agent is

described by a family γ = {γs(·) : s ∈ S} of distributions γs(·) ∈ M(As) on the set of admissible

actions, which is known as a policy. An agent following policy γ chooses her next action according

to γs(·) whenever the system is in state s, independently of her previous actions.

It is easy to see that, in conjunction with the transition distributions P, every policy γ induces a

collection of Markov chains on the state space S indexed by initial states s ∈ S. In the average-cost
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MDP problem the goal is to identify a policy for which the induced Markov chain minimizes the

limiting average cost, namely a policy γ minimizing

cγ(s) := lim
T→∞

1

T

T∑
t=1

Eγ
[
c′(st, at)

∣∣∣∣s0 = s

]
, (3.3)

for each s ∈ S. Note that the expectation in (3.3) is taken with respect to the Markov chain induced

by γ. In general, the limiting average cost cγ(s) will depend on the initial state s, but if γ induces

an ergodic chain then the average cost will be constant. If all policies induce ergodic Markov chains,

the MDP is referred to as “unichain”; otherwise the MDP is classified as “multichain”. We refer

the reader to (Puterman, 2005) for more details on MDPs.

The OTC problem (3.2) may readily be recast as an MDP. In detail, let the state space S =

X×Y, and let s = (x, y) denote an element of S. Define the set of admissible actions in state s to be

the corresponding set of row couplings As = Π(P (x, ·), Q(y, ·)). For each state s and action rs ∈ As

define the transition distribution p(·|s, rs) := rs(·), and the cost function c′(s, rs) = c(s) = c(x, y).

Note that c′ is independent of the action rs. We refer to this MDP as TC-MDP.

Any policy γ for TC-MDP specifies distributions over Π(P (x, ·), Q(y, ·)) for each (x, y) ∈ X ×Y

and thus corresponds to a single distribution over ΠTC(P,Q) that governs the random actions

of the agent. In TC-MDP it suffices to consider only deterministic policies γ, namely policies

such that for each state s = (x, y) the distribution γs(·) is a point mass at unique element of

As = Π(P (x, ·), Q(y, ·)).

Proposition 3.5. Let γ be a policy for TC-MDP. Then there exists a deterministic policy γ̃ such

that cγ(s) = cγ̃(s) for every s ∈ S.

Thus optimization over ΠTC(P,Q) is equivalent to optimization over deterministic policies.

Importantly, a deterministic policy corresponds to a fixed transition coupling matrix R ∈ ΠTC(P,Q).

Going forward, we refer to R ∈ ΠTC(P,Q) directly instead of the equivalent deterministic policy γ̃

in our notation. We note that, even when X and Y are ergodic, the same may not be true of the

stationary Markov chain induced by a transition coupling matrix R ∈ ΠTC(P,Q) (see Appendix

A.2). Specifically, a single element of ΠTC(P,Q) may have multiple stationary distributions and

thus give rise to multiple stationary Markov chains depending on the initial state s ∈ S. Thus
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TC-MDP is classified as multichain. Finally, we may formalize the relationship between the OTC

problem and TC-MDP.

Proposition 3.6. If X and Y are irreducible, then any R ∈ Π(P,Q) that is an optimal policy for

TC-MDP corresponds to an optimal coupling πR ∈ ΠTC(P,Q) with expected cost mins∈S cR(s).

3.4.2 Policy Iteration

Now that we have shown that the OTC problem can be viewed as an MDP, we can leverage

existing algorithms for MDPs to obtain solutions. To this end, we propose to adapt the framework

of policy iteration (Howard, 1960). To facilitate our discussion, in what follows, we regard the cost

function c and limiting average cost cR as vectors in Rd2+ . For each R ∈ ΠTC(P,Q), standard results

(Puterman, 2005) guarantee that the limit R := limT→∞ T
−1
∑T−1

t=0 Rt exists. When R is aperiodic

and irreducible, the Perron-Frobenius theorem ensures that R = limT→∞R
T and the rows of R are

equal to the stationary distributions of R.

In policy iteration, one repeatedly evaluates and improves policies. In the context of TC-MDP,

for a given transition coupling matrix R ∈ ΠTC(P,Q) the evaluation step computes the average

cost (gain) vector g = Rc and the total extra cost (bias) vector h =
∑∞

t=0R
t(c− g). In practice, g

and h may be obtained by solving a linear system of equations rather than evaluating infinite sums

(see Algorithm 1a) (Puterman, 2005). The improvement step selects a new transition coupling

matrix R′ that minimizes R′ g or, if no improvement is possible, R′ h in an element-wise fashion

(see Algorithm 1b). In more detail, we may select a transition coupling R′ such that for each (x, y)

the corresponding row r = R′((x, y), ·) minimizes rg (or rh) over couplings r ∈ Π(P (x, ·), Q(y, ·)).

To denote the element-wise argmin, we write elem-argminR∈ΠTC(P,Q)Rg (or Rh). The improved

matrix R′ is obtained by solving d2 OT problems with marginals P (x, ·) and Q(y, ·) and cost g (or

h). This special feature of TC-MDP enables us to find improved transition coupling matrices in a

computationally efficient manner despite working with an infinite action space. Once a fixed point

in the evaluation and improvement process is reached, the procedure terminates. The resulting

algorithm will be referred to as ExactOTC (see Algorithm 1). We initialize Algorithm 1 to the

independent transition coupling P ⊗Q, defined in Section 3.2.
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Algorithm 1: ExactOTC

R0 ← P ⊗Q, n← 0
while not converged do

/* transition coupling evaluation */
(gn, hn)← ExactTCE(Rn)
/* transition coupling improvement */
Rn+1 ← ExactTCI(gn, hn, Rn,ΠTC(P,Q))
n← n+ 1

return Rn

Algorithm 1a: ExactTCE

input: R
Solve for (g, h, w) such that I −R 0 0

I I −R 0
0 I I −R

 g
h
w

 =

 0
c
0


return (g, h)

Algorithm 1b: ExactTCI

input: g, h,R0,Π
/* element-wise argmin

*/
R′ ← elem-argminR∈ΠRg
if R′g = R0g then

R′ ← elem-argminR∈ΠRh
if R′h = R0h then

return R0

else
return R′

else
return R′

For finite state and action spaces, policy iteration is known to yield an optimal policy for the

average-cost MDP in a finite number of steps (Puterman, 2005). While policy iteration may fail

to converge for general compact action spaces (Dekker, 1987; Schweitzer, 1985; Puterman, 2005),

as is the case for TC-MDP, we may exploit the polyhedral structure of ΠTC(P,Q) to establish the

following convergence result.

Theorem 3.7. Algorithm 1 converges to a solution (g∗, h∗, R∗) of TC-MDP in a finite number

of iterations. Moreover, if X and Y are irreducible, R∗ is the transition matrix of an optimal

transition coupling of X and Y .

Recall from Proposition 3.6 that an optimal solution to TC-MDP necessarily yields an optimal

solution to (3.2). Thus Theorem 3.7 ensures that a solution to the OTC problem can be obtained

from Algorithm 1 in a finite number of iterations. A proof of this result can be found in Section

3.9.3.3.

Remark 3.8. One may in principle adapt other MDP algorithms to solve the OTC problem. How-

ever, the standard alternatives to policy iteration either do not admit a computationally tractable
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implementation (e.g. linear programming) or are not as conducive to a convergence analysis (e.g.

value iteration). We choose policy iteration because it balances both of these features, admitting a

practical implementation while also enabling a theoretical convergence analysis. We acknowledge

that OTC solvers based on policy iteration may not be preferable in every scenario and leave a

detailed exploration of other MDP algorithms for the OTC problem to future work.

3.5 Fast Approximate Policy Iteration

The simplicity of Algorithm 1 in conjunction with the theoretical guarantee of Theorem 3.7

make it an appealing method for solving the OTC problem when the cardinality d of the state

spaces of X and Y is small. However, each call to Algorithm 1a involves solving a system of 3d2

linear equations, requiring a total of O(d6) operations. Furthermore, each call to Algorithm 1b

entails solving d2 linear programs each with O(d) constraints, which can be accomplished in a

total time of O(d5 log d). We note that a similar dependence on the dimension of each coupling

is observed in exact OT algorithms, such as the network simplex algorithm in (Peyré and Cuturi,

2019). For even moderate values of d, this may be too slow for practical use.

To alleviate the poor scaling with the dimension of the couplings in the standard OT problem,

one may use entropic regularization, whereby a negative entropy term is added to the OT objective.

Briefly, we review some related work regarding entropic regularization in OT from Chapter 2.

(Cuturi, 2013) showed that solutions to the entropy-regularized OT problem may be obtained

efficiently via Sinkhorn’s algorithm (Sinkhorn, 1967). More recently, (Altschuler et al., 2017) proved

that Sinkhorn’s algorithm yields an approximation of the OT cost with error bounded by ε in near-

linear time with respect to the dimension of the couplings under consideration. Subsequent work

(Dvurechensky et al., 2018; Lin et al., 2019; Guo et al., 2020) has proposed and studied alternative

algorithms for approximating the optimal transport cost, each with runtime scaling at least linearly

with the dimension of the couplings in the problem. One might hope that a similar dependence

on the size of the elements of ΠTC(P,Q) may be achievable for the OTC problem by employing

regularization.

In this section, we extend entropic regularization techniques to the OTC problem. This exten-

sion leads to an approximate algorithm that runs in Õ(d4) time per iteration, where Õ(·) omits
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non-leading poly-logarithmic factors. This complexity is nearly-linear in the dimension d4 of the

transition couplings. We first propose a truncation-based approximation of the ExactTCE tran-

sition coupling evaluation algorithm, which we call ApproxTCE. When the transition coupling to

be evaluated satisfies a simple regularity condition, we show that one can obtain approximations

of the gain and bias from ApproxTCE with error bounded by ε in Õ(d4 log ε−1) time.

Mirroring the derivation of entropic OT, we then propose an entropy-regularized approximation

of the ExactTCI transition coupling improvement algorithm, called EntropicTCI. We perform

a new analysis of the Sinkhorn algorithm (described in Section 3.5.3) that is tailored to transition

coupling improvement to show that EntropicTCI yields an improved transition coupling with er-

ror bounded by ε in Õ(d4ε−4) time. Combining these two algorithms, we obtain the EntropicOTC

algorithm, which runs in Õ(d4ε−4) time per iteration. We provide empirical support for these the-

oretical results through a simulation study in Section 3.7. We find that the improved efficiency

at each iteration of EntropicOTC leads to a much faster runtime in practice as compared to

ExactOTC. Our experiments also show that EntropicOTC yields an expected cost that closely

approximates the unregularized OTC cost.

3.5.1 Constrained Optimal Transition Coupling Problem

We begin by defining a constrained set of transition couplings. Let K(·‖·) be the Kullback-

Leibler (KL) divergence defined for u, v ∈ ∆d2 by K(u‖v) =
∑

s u(s) log(u(s)/v(s)) with the con-

vention that 0 log(0/0) = 0 and K(u‖v) = +∞ if u(s) > 0 and v(s) = 0 for some index s. For every

η > 0 and (x, y) ∈ X × Y, define the set

Πη(P (x, ·), Q(y, ·)) =
{
r ∈ Π(P (x, ·), Q(y, ·)) : K

(
r‖P ⊗Q((x, y), ·)

)
≤ η

}
,

and the subset of transition coupling matrices

Πη
TC(P,Q) = {R ∈ ΠTC(P,Q) : R((x, y), ·) ∈ Πη(P (x, ·), Q(y, ·)), ∀(x, y) ∈ X × Y}.

Elements of Πη
TC(P,Q) have rows that are close in KL-divergence to the rows of the independent

transition coupling P ⊗Q. When P and Q are aperiodic and irreducible, the same is true of P ⊗Q.
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Fix η > 0 and let Πη
TC(P,Q) be the set of transition couplings with transition matrices in Πη

TC(P,Q).

The entropic OTC problem is

minimize

∫
c dπ

subject to π ∈ Πη
TC(P,Q).

(3.4)

For completeness, we establish in Appendix A.1 that a solution to (3.4) exists. As the divergence

K(r‖P ⊗Q(s, ·)) is bounded for r ∈ Π(P (x, ·), Q(y, ·)) and s = (x, y) ∈ X × Y (Cuturi, 2013), the

program (3.4) coincides with the unconstrained OTC problem for sufficiently large η. Finally, note

that (3.4) corresponds to an MDP in the same way that (3.2) does but with a constrained set of

policies. In the rest of the section, we develop computationally efficient alternatives to Algorithms

1a and 1b for this constrained MDP.

3.5.2 Fast Approximate Transition Coupling Evaluation

Next, we propose a fast approximation of Algorithm 1a. Recall from our previous discussion

that the gain vector g corresponding to any aperiodic and irreducible R ∈ ΠTC(P,Q) is constant

and thus may be written as g = g01 for a scalar g0. Fixing such an R ∈ ΠTC(P,Q) and L, T ≥ 1,

we approximate the gain g by averaging the cost over L steps of the Markov chain corresponding

to R from each possible starting point in X ×Y. Moreover, we approximate the bias h by summing

the total extra cost over T steps with respect to the approximate gain g̃. Formally, let g̃ :=

(d−2(RLc)>1)1 and h̃ :=
∑T

t=0R
t(c−g̃). The resulting algorithm, which we refer to as ApproxTCE,

is detailed in Algorithm 2a.

Algorithm 2a: ApproxTCE

input: R, L, T
g̃ ← (d−2(RLc)>1)1

h̃←
∑T

t=0R
t(c− g̃)

return (g̃, h̃)

The approximations g̃ and h̃ can be computed in O(Ld4) and O(Td4) time, respectively. Since g

and h are equal to the limits of g̃ and h̃ as L, T →∞, we expect that larger L and T will yield better

approximations. One must ensure that the L and T that are required for a good approximation do
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not grow too quickly with d. We show that this is the case in Theorem 3.9 below. We will say that

a transition matrix R ∈ [0, 1]d
2×d2 with stationary distribution λ ∈ ∆d2 is mixing with coefficients

M ∈ R+ and α ∈ [0, 1) if for every t ∈ N, maxs∈X×Y ‖Rt(s, ·)−λ‖1 ≤Mαt. Recall that R is mixing

whenever it is aperiodic and irreducible.

Theorem 3.9. Let R ∈ ΠTC(P,Q) be aperiodic and irreducible with mixing coefficients M ∈ R+

and α ∈ [0, 1) and gain and bias vectors g ∈ Rd2 and h ∈ Rd2, respectively. Then for any ε > 0,

there exist L, T ∈ N such that ApproxTCE(R,L, T ) yields (g̃, h̃) satisfying ‖g̃ − g‖∞ ≤ ε and

‖h̃− h‖1 ≤ ε in Õ
(

d4

logα−1 log
(

M
ε(1−α)

))
time.

In particular, ApproxTCE does approximate ExactTCE in time scaling like Õ(d4). Explicit choices

of L and T are given in the proof of Theorem 3.9, which may be found in Section 3.9.4.

Remark 3.10. In practice, values of L and T satisfying the conclusion of Theorem 3.9 are unknown.

In our experiments, we found that running Algorithm 2a with large, fixed values of L and T yields

a high approximation accuracy while still running significantly more quickly than Algorithm 1a.

Alternatively, L and T may be chosen adaptively by computing vectors g̃ and h̃ iteratively for

larger and larger values of L and T until some convergence criterion is satisfied or L and T hit

some prespecified thresholds. For example, letting g̃L and h̃T be the iterates of this procedure, one

may iterate until ‖g̃L − g̃L−1‖∞ < ε and ‖h̃T − h̃T−1‖∞ < ε. This approach achieves the same

worst-case complexity as Algorithm 2a but allows for time-savings when the chain R mixes quickly.

For a set U ⊂ Rn, let Bε(u) ⊂ Rn be the open ball of radius ε > 0 centered at u ∈ U , and let

aff(U) denote the affine hull, defined as aff(U) = {
∑k

i=1 αiui : k ∈ N, u1, ..., uk ∈ U ,
∑k

i=1 αi = 1}.

Let ri(·) denote the relative interior, defined as ri(U) = {u ∈ U : ∃ε > 0 s.t. Bε(u) ∩ aff(U) ⊂ U}.

Proposition 3.11. If P and Q are aperiodic and irreducible then every R ∈ ri(ΠTC(P,Q)) is also

aperiodic and irreducible, and thus mixing.

As a consequence of Proposition 3.11, we need only verify that R ∈ ri(ΠTC(P,Q)) to ensure that

Theorem 3.9 holds and that we may perform fast transition coupling evaluation via ApproxTCE.

As we show in Theorem 3.12, this condition is naturally guaranteed when employing entropic OT

techniques for speeding up the transition coupling improvement step.
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3.5.3 Entropic Transition Coupling Improvement

Next we describe a means of speeding up Algorithm 1b. For the MDP corresponding to the

entropic OTC problem, exact policy improvement can be performed by calling ExactTCI with

Π = Πη
TC(P,Q). However, no computation time is saved by doing this. Instead, we settle for

an algorithm that yields approximately improved transition couplings with better computational

efficiency. To find such an approximation, we reconsider the linear optimization problems that

comprise the transition coupling improvement step. Namely, for each (x, y) ∈ X × Y,

minimize 〈r, h〉

subject to r ∈ Πη(P (x, ·), Q(y, ·)).
(3.5)

By standard arguments, (3.5) is equivalent to

minimize 〈r, h〉+
1

ξ

∑
s′

r(s′) log r(s′)

subject to r ∈ Π(P (x, ·), Q(y, ·)),
(3.6)

for some ξ ∈ [0,∞] depending on (x, y), η and h. The reformulation (3.6) suggests that one use

computational techniques for entropic OT in the place of linear programming to perform transition

coupling improvement for the constrained OTC problem. In particular, we use the ApproxOT

algorithm of (Altschuler et al., 2017), detailed in Appendix 3.9.4. Using ApproxOT instead of

solving (3.6) exactly, we obtain the EntropicTCI algorithm detailed in Algorithm 2b.

Algorithm 2b: EntropicTCI

input: h, ξ, ε
for (x, y) ∈ X × Y do

R(s, ·)← ApproxOT(P (x, ·)>, Q(y, ·)>, h, ξ, ε)
return R

To provide further intuition for Algorithm 2b, it is helpful to consider the constrained

OTC problem from an alternate perspective. For a probability measure r ∈ ∆d2 , let H(r) =

−
∑

s r(s) log r(s) be its entropy. Then by duality theory, the constrained OTC problem (3.4) may
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be written as the finite-dimensional optimization problem

minimize 〈c, λ〉 −
∑
s

1

ξ(s)
H(R(s, ·))

subject to R ∈ ΠTC(P,Q)

λR = λ

〈1, λ〉 = 1,

(3.7)

for some ξ ∈ [0,∞]d
2
. In order to solve the problem above, we study its Lagrangian. Let α, β ∈ Rd3 ,

γ ∈ Rd2 , and δ ∈ R be Lagrange multipliers. The Lagrangian may be written as

L(R, λ, α, β, γ, δ) = 〈c, λ〉 −
∑
x,y

1

ξ(x, y)
H(R((x, y), ·))

+
∑
x,y,x′

α(x, y, x′)

∑
y′

R((x, y), (x′, y′))− P (x, x′)


+
∑
x,y,y′

β(x, y, y′)

(∑
x′

R((x, y), (x′, y′))−Q(y, y′)

)

+
∑
x′,y′

γ(x′, y′)

(∑
x,y

λ(x, y)R((x, y), (x′, y′))− λ(x′, y′)

)

+ δ

(∑
x,y

λ(x, y)− 1

)
.

Taking the partial derivative of L with respect to R((x, y), (x′, y′)) and setting it equal to zero, we

find that

R(s, (x′, y′)) = exp

{
−ξ(s)α(s, x′)− 1

2

}
exp

{
−ξ(s)λ(s)γ(x′, y′)

}
exp

{
−ξ(s)β(s, y′)− 1

2

}
,

where we have used s = (x, y) to reduce notation. When viewed as a d × d matrix, R((x, y), ·)

can be written as UKV where U and V are both non-negative diagonal matrices. Note that when

ξ(x, y) <∞, this implies that R is aperiodic and irreducible since R lies in the relative interior of

ΠTC(P,Q) (see Theorem 3.12).
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A similar matrix form appears in the analysis of (Cuturi, 2013). An important difference is the

matrix K ∈ Rd×d+ , which satisfies

K(x′, y′) = exp
{
−ξ(x, y)λ(x, y)γ(x′, y′)

}
.

In (Cuturi, 2013), one finds that K = e−ξC where C is the cost matrix. To better understand this

difference, it is helpful to look at the partial derivative of the Lagrangian with respect to λ(x, y).

Evaluating this partial derivative and setting it equal to zero, we find

γ(x, y) = c(x, y) +
∑
x′,y′

R((x, y), (x′, y′))γ(x′, y′) + δ.

Absorbing the scalar δ into c to obtain an augmented cost c̃ = c+ δ, we have

γ(x, y) = c̃(x, y) +
∑
x′,y′

R((x, y), (x′, y′))γ(x′, y′).

Letting g be the gain of the policy R with respect to c̃, we recognize that the equation above is the

Bellman recursion for the bias of R with respect to the cost c̃+g. As R is aperiodic and irreducible,

g is a constant vector. Moreover, as the bias is invariant under constant shifts in cost, γ is exactly

the bias h that appears in EntropicTCI. Returning to the form of R((x, y), ·) established earlier,

we find that

R((x, y), ·) = U exp {−ξ(x, y)λ(x, y)h}V = U exp{−ξ̃(x, y)h}V,

for non-negative diagonal matrices U and V and the constant ξ̃(x, y) := ξ(x, y)λ(x, y). In this way,

the bias h plays the role of the cost matrix C of (Cuturi, 2013).

In order to solve the program (3.7), one must grapple with the interdependence between the

bias h and the policy R. A natural approach for doing so is to consider an alternating optimization

algorithm in which one repeatedly solves for the bias h from a given policy R, then solves for a new

policy R given the bias h. Indeed, this is the procedure one follows in ExactOTC. In practice, given

a policy R, one approximately computes the bias h (ApproxTCE) in order to save time. Given a

bias vector h, one solves for a new policy R by performing Sinkhorn iterations with the bias h as

a cost matrix for each R((x, y), ·) (EntropicTCI).
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It was shown in (Altschuler et al., 2017) that ApproxOT yields an approximation of the OT

cost in near-linear time with respect to the size of the couplings of interest. However, in order to

control the approximation error of EntropicTCI, we rely on a different analysis showing that one

can obtain an approximation of the entropic optimal coupling in near-linear time (see Lemma 3.18)

. To the best of our knowledge, this result does not exist in the literature, so we provide a proof in

Section 3.9.4. Using this result, we show the complexity bound below.

Theorem 3.12. Let P and Q be aperiodic and irreducible, h ∈ Rd2, ξ > 0, and ε > 0. Then

EntropicTCI(h, ξ, ε) returns R̂ ∈ ri(ΠTC(P,Q)) with maxs ‖R̂(s, ·) − R∗(s, ·)‖1 ≤ ε for some

R∗ ∈ argminR′∈ΠTC(P,Q)R
′h− 1/ξH(R′) in Õ(d4ε−4) time.

To summarize, this result states that EntropicTCI yields an approximately improved transition

coupling in Õ(d4) time rather than Õ(d5) as previously discussed. In practice, further speedups

are possible by utilizing the fact that the d2 entropic OT problems to be solved are decoupled and

thus may be computed in parallel.

3.5.4 EntropicOTC

Finally, using Algorithms 2a and 2b, we define the EntropicOTC algorithm, detailed in Al-

gorithm 2. Essentially, EntropicOTC is defined by replacing ExactTCE and ExactTCI by the

efficient alternatives, ApproxTCE and EntropicTCI. As stated in Theorem 3.12, EntropicTCI

returns transition couplings in the relative interior of ΠTC(P,Q), so the iterates of EntropicOTC

are not restricted to the finite set of extreme points of ΠTC(P,Q). Thus, convergence for Algo-

rithm 2 must be assessed differently than in Algorithm 1. In our simulations we found that the

element-wise inequality g̃n+1 ≥ g̃n works well as an indicator of convergence.
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Algorithm 2: EntropicOTC

input: L, T, ξ, ε
n← 0
while n = 0 or g̃n+1 < g̃n do

/* transition coupling evaluation */

(g̃n, h̃n)← ApproxTCE(Rn, L, T )
/* transition coupling improvement */

Rn+1 ← EntropicTCI(h̃n, ξ, ε)
n← n+ 1

return Rn+1

3.6 Consistency

The computational and theoretical results presented above assume that one has complete knowl-

edge of the transition matrices P and Q of the Markov chains X and Y under study. In practice,

one may not have direct access to P and Q, but may instead have estimates P̂n and Q̂n derived

from n observations of the chains X and Y . In the simplest case, P̂n and Q̂n may be obtained

from the observed relative frequencies of each transition between states. In Theorem 3.13 below,

we show that the cost and solution sets of the standard and regularized optimal transition coupling

problems possess natural stability properties with respect to the marginal transition matrices. As

a corollary, we obtain a consistency result for the OTC problem applied to the estimates P̂n and

Q̂n.

Recall that we use ∆d to denote the probability simplex in Rd and note that the set of d× d-

dimensional transition matrices may be written as ∆d
d. Likewise, the set of d2 × d2-dimensional

transition matrices may be written as ∆d2

d2 . Note that we endow the sets of d × d- and d2 × d2-

dimensional transition matrices with the topologies they inherit as subsets of Rd×d and Rd2×d2 ,

respectively, and adopt the same convention for the set ∆d2 × ∆d2

d2 . Now, we may reformulate

Problems (3.2) and (3.4) as follows:

minimize 〈c, λ〉

subject to R ∈ Π(P,Q)

λR = λ

λ ∈ ∆d2 .

(I)

minimize 〈c, λ〉

subject to R ∈ Πη(P,Q)

λR = λ

λ ∈ ∆d2 .

(II)
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Let ρ(P,Q) and ρη(P,Q) denote the optimal values of Problems (I) and (II), respectively, and

let Φ∗(P,Q) and Φ∗η(P,Q) denote the associated sets of optimal solutions (λ,R) ∈ ∆d2 × ∆d2

d2

to Problems (I) and (II), respectively. For metric spaces U and Z, we will say that a function

F : U → 2Z is upper semicontinuous at a point u0 ∈ U if for any neighborhood V of F (u0), there

exists a neighborhood U of u0 such that F (u) ⊂ V for every u ∈ U .

Theorem 3.13. Let P,Q ∈ ∆d
d be irreducible transition matrices. Then the following hold:

• ρ(·, ·) is continuous and Φ∗(·, ·) is upper semicontinuous at (P,Q)

• For any η > 0, ρη(·, ·) is continuous and Φ∗η(·, ·) is upper semicontinuous at (P,Q)

Theorem 3.13 states that the optimal values and optimal solution sets of the OTC and entropic

OTC problems are stable in the marginal transition matrices P and Q. We may use this result to

prove a consistency result for either problem when applied to estimates P̂n and Q̂n derived from

data. In stating the following result, we make use of the following definition: For a sequence of sets

{An}n≥0 in a topological space A, let lim supn→∞An =
⋂∞
n=0 cl (

⋃∞
m=nAm), where cl(·) denotes

the closure with respect to topology of A. Note that the presence of cl(·) in our definition of limit

superior of a sequence of sets differs from that commonly used in probability but is consistent with

the definition appearing, for example, in (Rockafellar and Wets, 2009).

Corollary 3.14. Let X = {Xi}i≥0 and Y = {Yi}i≥0 be stationary, ergodic processes taking values

in X and Y, and defined on a common Borel probability space. Suppose further that X and Y have

marginal, one-step transition matrices P and Q, respectively. Let P̂n and Q̂n be the one-step tran-

sition matrices estimated via relative frequencies from the sequences X0, ..., Xn−1 and Y0, ..., Yn−1.

Then with probability one, the following hold:

• ρ(P̂n, Q̂n)→ ρ(P,Q) and lim sup
n→∞

Φ∗(P̂n, Q̂n) ⊆ Φ∗(P,Q)

• For any η > 0, ρη(P̂n, Q̂n)→ ρη(P,Q) and lim sup
n→∞

Φ∗η(P̂n, Q̂n) ⊆ Φ∗η(P,Q)

Corollary 3.14 allows us to apply the computational tools described above to real data in a

principled manner. In particular, when the marginal transition matrices P and Q are unknown,

we may use P̂n and Q̂n as proxies in the OTC problem to estimate the set of optimal transition

couplings and their expected cost when n is large. Note that we do not require the generating
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processes themselves to be Markov: they need only be stationary and ergodic, so that the estimates

P̂n and Q̂n converge to the true one-step transition matrices P and Q as n tends to infinity.

3.7 Experiments

In this section, we validate the proposed algorithms empirically by applying them to stationary

Markov chains derived from both synthetic and real data. We begin by comparing the runtime

of the proposed algorithms and approximation error of EntropicOTC via a simulation study.

Subsequently, we illustrate the potential use of the OTC problem in practice through an application

to computer-generated music.

We remark that an application of the OTC problem to graphs is studied in Chapter 4. In

particular, a weighted graph may be associated with a stationary Markov chain by means of a

simple random walk on its nodes with transition probabilities proportional to its edge weights.

Leveraging this perspective, we propose to perform OT on the graphs of interest by applying the

OTC problem to their associated Markov chains. In the aforementioned work, we demonstrate

that this approach performs on par with state-of-the-art graph OT methods in a variety of graph

comparison and alignment tasks on real and synthetic data.

Matlab implementations of ExactOTC and EntropicOTC as well as code for reproducing

the experimental results to follow are available at https://github.com/oconnor-kevin/

OTC. For ApproxOT and related OT algorithms, we used the implementation found at https:

//github.com/JasonAltschuler/OptimalTransportNIPS17.

3.7.1 Simulation Study

In order to validate the use of Algorithm 2 as a fast alternative to Algorithm 1, we performed a

simulation study to compare their runtimes and the error of the entropic OTC cost as an approxi-

mation of the OTC cost. For each choice of the marginal state space size d ∈ {10, 20, ..., 100}, we

perform five simulations, obtaining estimates of the runtimes and approximation error in each. In

each simulation, we generate transition matrices P ∈ [0, 1]d×d and Q ∈ [0, 1]d×d and a cost matrix

c ∈ Rd×d+ by drawing each element of the matrix of interest independently from a standard normal

distribution and then applying an appropriate normalization to the matrix. In the case of the
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Figure 3.1: A comparison of total runtimes between ExactOTC and EntropicOTC and approximation
errors of EntropicOTC for a range of d and ξ via simulation. Error bars show the minimum and maximum
values observed over five simulations. Note that the error bars for the runtimes of EntropicOTC are not
visible because little variation in runtime was observed over the simulations performed. Runtime is reported
in units of 103 seconds while error is reported in units of 10−3 relative to the maximum value of the cost
function c.

transition matrices, we apply a softmax normalization with weight 0.1 to each row of P and Q:

P (x, x′) 7→ e0.1P (x,x′)∑
x̃ e

0.1P (x,x̃)
, Q(y, y′) 7→ e0.1Q(y,y′)∑

ỹ e
0.1Q(y,ỹ)

.

For the cost matrix, we apply an absolute value element-wise so that c ∈ Rd×d+ and then divide

each element by the maximum element in the matrix so that ‖c‖∞ = 1. After generating both

the transition matrices and cost matrix, we run both ExactOTC and EntropicOTC for each

ξ ∈ {75, 100, 200} until convergence. In all runs of EntropicOTC, we choose L and T adaptively

as described in Remark 3.10 with tolerance (ε) equal to 10−12 and upper bounds of 100 and 1000,

respectively. For each choice of ξ ∈ {75, 100, 200}, we use 50, 100, and 200 Sinkhorn iterations,

respectively. Runtimes of ExactOTC and EntropicOTC in a given iteration are measured from

the start to convergence and thus correspond to total runtime rather than the runtime of individual

iterations. The approximation error of EntropicOTC in a given iteration is measured by taking

the absolute difference between the expected cost returned by EntropicOTC and that returned

by ExactOTC. Note that after randomization, the cost function c is scaled to ‖c‖∞ = 1 and the

error is reported on that scale.

The results of the simulation study are shown in Figure 3.1. The error bars in either plot denote

the maximum and minimum values observed for each choice of parameters over the five repeated

simulations. In our simulations, we found that the time savings in each iteration of EntropicOTC
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(a) ExactOTC (b) EntropicOTC

Figure 3.2: Heatmap of costs for all pairs of pieces as computed by ExactOTC and EntropicOTC. Lower
cost (indicated by blue) indicates a better correspondence between the two pieces. The list of pieces and
composers considered may be found in Table 3.1.

resulted in substantial time savings over the entire runtime of the algorithm without substantial

loss of accuracy. For example, when d = 100 and ξ = 100, we observed that EntropicOTC yielded

a time savings of roughly 80% compared to ExactOTC. Moreover, weakening the regularization by

increasing ξ reduces the error of EntropicOTC with little additional runtime. This supports our

theoretical findings, indicating that EntropicOTC is a good alternative to ExactOTC when d is

large.

3.7.2 Application to Computer-Generated Music

Next we illustrate the OTC problem in practice through an application to aligning and com-

paring computer-generated music. HMMs and other state-space models have been explored as a

tool for modeling musical arrangements (Ames, 1989; Liu and Selfridge-Field, 2002; Weiland et al.,

2005; Allan and Williams, 2005; Pikrakis et al., 2006; Ren et al., 2010; Bell, 2011; Yanchenko and

Mukherjee, 2017; Das et al., 2018). In this line of work, sequences of notes are commonly modeled

as a stationary processes with latent Markovian structure. As described in Section 3.2, the OTC

problem easily extends to this setting, allowing one to apply OT methods to analyzing generative

models for music. We utilize the computational tools developed above for two tasks: comparing
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pieces based on the sequences of notes they contain and generating paired sequences of notes based

on existing pieces.

We analyzed a dataset of 36 pieces of classical music from 3 different classical composers (Bach,

Beethoven and Mozart) downloaded from https://www.mfiles.co.uk/classical-midi.htm. The pieces

considered along with the composer, musical key, and reference number between 1 and 36 may be

found in Table 3.1. For each piece, a 3-layer HMMs with 5 hidden states was trained using the code

provided in (Yanchenko and Mukherjee, 2017). We refer the reader to (Yanchenko and Mukherjee,

2017) and (Oliver et al., 2004) for details on layered HMMs but note that once a layered HMM is

trained it may be recast as a standard HMM and thus the extension of OTC to HMMs described

in Section 3.3 still applies. We considered two different cost functions between notes. The first cost

function equal to 0 if the two notes are equal or some number of octaves (intervals of 12 semitones)

apart, and 1 otherwise. The second cost function is 0 when the first cost function is 0, 1 when

the two notes are 5 or 7 semitones apart (perfect consonance), 2 when the two notes are 4 or 9

semitones apart (imperfect consonance) and 10 otherwise. This tiered cost function incorporates a

preference for unison over perfect consonance, perfect consonance over imperfect consonance, and

imperfect consonance over dissonance.

In the first task, we computed the OTC cost for every pair of pieces, obtaining a pairwise cost

matrix. Note that when running EntropicOTC, we use L = 100, T = 1000, ξ = 50, and 20

Sinkhorn iterations. The cost matrices obtained using ExactOTC and EntropicOTC are both

depicted in Figure 3.2. The correspondence between rows and columns of the two heatmaps and

the musical pieces considered can be found in Table 3.1. We remark that pieces in the same key

tended to have lower OTC cost. For example, Bach’s Fugue 2 from Book 1 (2 in Figure 3.2) and

Fugue 2 from Book 2 (12 in Figure 3.2), both in C minor, had the lowest OTC and entropic OTC

costs among all pairs considered. We observe that pairwise costs obtained by either algorithm only

differ by 8×10−3 on average. In other words, EntropicOTC approximates the result of ExactOTC

with high accuracy.

In the second task, we explored the samples generated from the optimal transition coupling of

each pair of fitted HMMs. The optimal transition coupling maximizes the probability of generating

consonant pairs of notes while preserving the distributions of the two sequences. This results in

sequences that sound harmonious together more frequently. In Figure 3.3, we provide a paired
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Figure 3.3: An illustration of samples drawn from an optimal transition coupling of Bach’s Book 1, Fugue 2
and Beethoven’s Sonata Pathétique, Movement 2, both in C minor. The color of each sampled note denotes
its consonance with the other note played at the same time.

sequence drawn from the output of ExactOTC applied to pieces from Bach and Beethoven. Note

that no dissonant pairs of notes were sampled in this sequence. Audio files for this sequence and

sequences drawn from other pairings may be found in the accompanying supplemental materials.

3.8 Discussion

In this chapter, we introduced an optimal transport problem for stationary Markov chains that

takes the Markovian dynamics into account called the optimal transition coupling (OTC) problem.

54



Intuitively, the OTC problem aims to synchronize the Markov chains of interest so as to minimize

long-term average cost. We demonstrated how this problem may be easily extended to formulate

an OT problem for HMMs. In the interest of computation, we recast this problem as a Markov

decision process and leveraged this connection to prove that solutions can be obtained via an

adaptation of the policy iteration algorithm, referred to as ExactOTC. Mirroring the development

of entropic OT in (Cuturi, 2013), we also proposed an entropic OTC problem and an associated

approximate algorithm, EntropicOTC, which scales better with dimension. For cases when the

marginal Markov chains must be estimated from data, we showed that the plug-in estimates for

either problem are consistent. We showed empirically that EntropicOTC approximates the OTC

cost with high accuracy and substantially faster runtime than ExactOTC in large state space

regimes. Finally, we illustrated the use of the OTC problem and the proposed algorithms in

practice via an application to computer-generated music.

Future work may consider extending the ideas of the OTC problem to processes with more

flexible structure such as Gibbs processes or dynamical linear models. We expect that the extension

of our work to processes with richer temporal structure will present interesting computational

challenges. Alternatively, future work may explore further applications of the OTC problem in

practice. Our approach to analyzing computer-generated music may be easily transferred to any

data that may be modeled by an HMM. HMMs and other sequence models with hidden Markov

structure are commonly used in a variety of fields including genomics, speech recognition, protein

folding, and natural language processing.

3.9 Proofs

3.9.1 Overview of Proofs

In what follows, we detail the proofs of our results. We begin by introducing some additional

notation, covering some preliminaries on Markov chains, and remarking on some technical aspects

relating to our results.

Additional Notation. We adopt the following additional notation: For a finite set U ⊂ R, we

define min>0 U = min{u ∈ U : u > 0}. We define the inner product 〈·, ·〉 for matrices U, V ∈ Rn×n

by 〈U, V 〉 :=
∑

i,j UijVij . All vector and matrix equations and inequalities should be understood
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Composer Piece Key

1 Bach Toccata and Fugue D minor

2 Bach Book 1, Fugue 2 C minor

3 Bach Book 1, Fugue 10 E minor

4 Bach Book 1, Fugue 14 F# minor

5 Bach Book 1, Fugue 24 B minor

6 Bach Book 1, Prelude 1 C major

7 Bach Book 1, Prelude 2 C minor

8 Bach Book 1, Prelude 3 C# major

9 Bach Book 1, Prelude 6 D minor

10 Bach Book 1, Prelude 14 F# minor

11 Bach Book 1, Prelude 24 B minor

12 Bach Book 2, Fugue 2 C minor

13 Bach Book 2, Fugue 7 D# major

14 Bach Book 2, Prelude 2 C minor

15 Bach Book 2, Prelude 7 D# major

16 Bach Book 2, Prelude 12 F minor

17 Bach Bourrée in E minor E minor

18 Bach 2 Part Invention, No. 13 A minor

19 Bach 2 Part Invention, No. 4 D minor

20 Bach Prelude in C major C major

21 Beethoven Für Elise A minor

22 Beethoven Minuet in G G major

23 Beethoven Moonlight Sonata, Movement 1 C# minor

24 Beethoven Sonata Pathétique, Movement 2 C minor

25 Beethoven Symphony No. 7, Movement 2 A minor

26 Beethoven Symphony No. 9, Movement 4 D minor

27 Beethoven Violin Sonata 1, Movement 1 D major

28 Mozart Piano Sonata No. 11, Movement 3 A major

29 Mozart Horn Concerto 4, Movement 3 D# major

30 Mozart Minuet and Trio, K.1 G major

31 Mozart Minuet in F major, K.2 F major

32 Mozart Österreichische Bundeshymne D# major

33 Mozart Piano Concerto No. 21, Movement 2 C major

34 Mozart Piano Sonata No. 13, Movement 1 A# major

35 Mozart Piano Sonata No. 16 C major

36 Mozart Symphony No. 40, Movement 1 G minor

Table 3.1: Pieces considered in the application of OTC to computer-generated music.

to hold element-wise. For i ≤ j, we let uji = (ui, ..., uj) and we will denote infinite sequences by

boldface, lowercase letters such as u = (u0, u1, ...). For a collection of sets Us ⊂ Rd
2

indexed by

s ∈ X × Y, we define
⊗

s Us to be the set of matrices U ∈ Rd2×d2 such that for every s ∈ X × Y,

U(s, ·) ∈ Us. In particular, we write ΠTC(P,Q) =
⊗

(x,y) Π(P (x, ·), Q(y, ·)).
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Preliminaries on Markov Chains. For a finite metric space U , we say that a measure µ ∈

M(UN) is Markov or corresponds to a Markov chain taking values in U if for any cylinder set

[u0 · · ·uk] ⊂ UN, µ([u0 · · ·uk])/µ([u0 · · ·uk−1]) = µ([uk−1uk])/µ([uk−1]), where we let 0/0 = 0. We

say that µ is stationary if µ = µ◦σ−1, where σ : UN → UN is the left-shift map defined such that for

any u ∈ UN, σ(u)i = ui+1. When U has cardinality n ≥ 1, we define the transition matrix U ∈ Rn×n

of µ such that for every uk−1, uk ∈ U , U(uk−1, uk) = µ([uk−1uk])/µ([uk−1]). If µ is also stationary,

its stationary distribution λU ∈ ∆n is defined such that λU (u) = µ([u]) for any u ∈ U . We say that µ

or U is irreducible if for every u, u′ ∈ U , there exists k ≥ 1, possibly depending on u and u′, such that

Uk(u, u′) > 0. We call µ or U aperiodic if gcd{k ≥ 1 : U t(u, u′) > 0} = 1 for every u, u′ ∈ U . Note

that if µ is irreducible, its stationary distribution λU is unique. Furthermore, if µ is also aperiodic,

there exists M < ∞ and α ∈ (0, 1) such that for any t ≥ 1, maxu ‖U t(u, ·) − λU‖1 ≤ Mαt. For

more details on basic Markov chain theory, we refer the reader to (Levin and Peres, 2017).

Technical Considerations. We endow the finite set X×Y with the discrete topology and XN×YN

with the corresponding product topology. For each (x, y) ∈ X × Y and η > 0, we endow both

Π(P (x, ·), Q(y, ·)) and Πη(P (x, ·), Q(y, ·)) with the subspace topology inherited from the Euclidean

topology on Rd2 . Similarly, we endow ΠTC(P,Q) and Πη
TC(P,Q) with the subspace topologies in-

herited from the Euclidean topology on Rd2×d2 . Unless stated otherwise, continuity of any function

will be understood to mean with respect to the corresponding topology above.

3.9.2 Proofs from Section 3.2

Proposition 3.4. Let X and Y be irreducible stationary Markov chains with transition matrices

P and Q, respectively. Then any stationary Markov chain with a transition matrix contained in

ΠTC(P,Q) is a transition coupling of X and Y .

Proof. Let π ∈ M((X × Y)N) be the distribution of a stationary Markov chain with transition

matrix R ∈ ΠTC(P,Q) and stationary distribution r ∈ ∆d2 . Furthermore, let rX and rY ∈ ∆d

be the X and Y marginals of r, respectively. For a metric space U and a probability measure

µ ∈M(UN), we define µk ∈M(Uk) as the k-dimensional marginal distribution of µ. Formally, for

any cylinder set [ak−1
0 ] = {u ∈ UN : uj = aj , 0 ≤ j ≤ k − 1}, µk(ak−1

0 ) := µ([ak−1
0 ]).
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We wish to show that π ∈ ΠTC(P,Q). Since π corresponds to a stationary Markov chain and

R ∈ ΠTC(P,Q) by assumption, it suffices to show that π ∈ Π(P,Q). We will do this by showing

that πk ∈ Π(Pk,Qk) for every k ≥ 1. Starting with k = 1, for any y ∈ Y,

rY(y) =
∑
x

r(x, y)

=
∑
x

∑
x′,y′

r(x′, y′)R((x′, y′), (x, y))

=
∑
x′,y′

r(x′, y′)
∑
x

R((x′, y′), (x, y))

=
∑
x′,y′

r(x′, y′)Q(y′, y)

=
∑
y′

rY(y′)Q(y′, y).

We have proven that rY is invariant with respect to Q. Since Q is irreducible, the stationary

distribution q of Q is unique. Thus, rY = q. A similar argument will show that rX = p. Thus,

r ∈ Π(p, q) and therefore, π1 ∈ Π(P1,Q1).

Now suppose that πk ∈ Π(Pk,Qk) for some k ≥ 1. Fixing yk0 ∈ Yk+1, it follows that

∑
xk0

πk+1(xk0, y
k
0 ) =

∑
xk0

πk(x
k−1
0 , yk−1

0 )R((xk−1, yk−1), (xk, yk))

=
∑
xk−1
0

πk(x
k−1
0 , yk−1

0 )Q(yk−1, yk)

= Qk(yk−1
0 )Q(yk−1, yk)

= Qk+1(yk0 ).

Again the proof for the other marginal is identical. So we find that πk+1 ∈ Π(Pk+1,Qk+1) and since

k ≥ 1 was arbitrary, we conclude that π ∈ ΠTC(P,Q).
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3.9.3 Proofs from Section 3.4

3.9.3.1 Existence of a Deterministic Policy

Proposition 3.5. Let γ be a policy for TC-MDP. Then there exists a deterministic policy γ̃ such

that cγ(s) = cγ̃(s) for every s ∈ S.

Proof. Before proving the result, it will be helpful to fix some additional notation. Let γ = {γs(·) :

s ∈ X × Y} be a policy for TC-MDP. Recall that for each s = (x, y), γs(·) describes a distribution

on As = Π(P (x, ·), Q(y, ·)). Define the deterministic policy γ̃ = {γ̃s(·) : s ∈ X × Y} such that for

every s, γ̃s(·) assigns probability one to

r̃s :=

∫
As
rsγs(drs).

Here, r̃s is the expected action taken by the agent while occupying a state s and following the

policy γ. Note that r̃s ∈ As due to the convexity of As. As such, we may collect the row vectors

{r̃s : s ∈ X × Y} into a single transition matrix R̃ ∈ ΠTC(P,Q) where R̃(s, ·) = r̃s(·) for every

s ∈ X × Y. In what follows, let Probγ(·|s0) and Probγ̃(·|s0) ∈ M({A × (X × Y)}N) be the

probability measures corresponding to the action-state processes with initial state s0 induced by γ

and γ̃, respectively. In particular,

Probγ(drs0 , s1, ..., drst−1 , st|s0) = γs0(drs0)rs0(s1) · · · γst−1(drst−1)rst−1(st)

and the analogous statement holds for Probγ̃(·|s0). In the case of γ̃, one may also show that

Probγ̃(st|s0) = R̃t(s0, st). Finally, let Eγ [·|s0] and Eγ̃ [·|s0] denote expectation with respect to

Probγ(·|s0) and Probγ̃(·|s0), respectively.

Now, we can prove the result. For any s0 ∈ X × Y and t ≥ 1,

Eγ [c(st)|s0] =
∑
st

c(st) Probγ(st|s0)

=
∑
st

c(st)

∫
As0

∑
s1

· · ·
∫
Ast−1

Probγ(drs0 , s1, ..., drst−1 , st|s0)

=
∑
st

c(st)

∫
As0

∑
s1

· · ·
∫
Ast−1

γs0(drs0) rs0(s1) · · · γst−1(drst−1) rst−1(st)

59



=
∑
st1

c(st)

∫
As0
· · ·
∫
Ast−1

γs0(drs) rs0(s1) · · · γst−1(drst−1) rst−1(st)

=
∑
st1

c(st)r̃s0(s1) · · · r̃st−1(st)

=
∑
st1

c(st)R̃(s0, s1) · · · R̃(st−1, st)

=
∑
st

c(st)R̃
t(s0, st)

=
∑
st

c(st) Probγ̃(st|s0)

= Eγ̃ [c(st)|s0] .

Thus, for every s ∈ X × Y,

cγ(s) = lim
T→∞

1

T

T∑
t=1

Eγ [c(st)|s0 = s] = lim
T→∞

1

T

T∑
t=1

Eγ̃ [c(st)|s0 = s] = cγ̃(s).

3.9.3.2 Correspondence between TC-MDP and the OTC problem

Next, we prove Proposition 3.6 showing that optimal solutions to TC-MDP necessarily provide

optimal solutions to the OTC problem. We rely on the basic idea of recurrent classes of states

for finite-state Markov chains. For details on recurrence for Markov chains, we refer the reader

to (Levin and Peres, 2017). For any R ∈ ΠTC(P,Q), let Λ(R) := {λ ∈ M(X ) : λR = λ} denote

the set of stationary distributions for R and let
⊔

denote a disjoint union. Before proving the

proposition, we require a lemma stating that for a given transition coupling matrix R ∈ ΠTC(P,Q),

the stationary distribution of R that incurs the least expected cost may be chosen to be the unique

stationary distribution of one of R’s recurrent classes.

Lemma 3.15. Let R ∈ ΠTC(P,Q) and let Sr be the set of states belonging to some recurrent

class of R. Moreover, for every s ∈ Sr, let λR,s ∈ Λ(R) denote the stationary distribution of R
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corresponding to the recurrent class in which s lies. Then λR,s is uniquely defined and

min
s∈Sr
〈c, λR,s〉 = min

λ∈Λ(R)
〈c, λ〉.

Proof. The uniqueness of λR,s follows from the fact that the chain obtained by restricting R to

the recurrent class of s is necessarily irreducible. Now suppose that R has m recurrent classes

{Sir}mi=1 and thus Sr =
⊔m
i=1 S

i
r. Then by (Puterman, 2005, Theorem A.5), there exist m linearly

independent stationary distributions of R. Note that necessarily, the unique stationary distributions

{λi}mi=1 corresponding to the m recurrent classes of R are linearly independent and constitute such

a choice. Moreover, it is straightforward to show that Λ(R) is equal to the convex hull of {λi}mi=1

and is thus compact. Then since minima of linear functions over a compact, convex set occur at

the extreme points of the feasible set,

min
s∈Sr
〈c, λR,s〉 = min

i=1,...,m
〈c, λi〉 = min

λ∈Λ(R)
〈c, λ〉.

Proposition 3.6. If X and Y are irreducible, then any R ∈ Π(P,Q) that is an optimal policy for

TC-MDP corresponds to an optimal coupling πR ∈ ΠTC(P,Q) with expected cost mins∈S cR(s).

Proof. For every R ∈ ΠTC(P,Q) and s ∈ S, let λR,s ∈ Λ(R) be the stationary distribution of R

defined by

λR,s := lim
T→∞

1

T

T∑
t=1

Rt(s, ·).

Note that λR,s is well-defined by (Puterman, 2005, Theorem A.5). Moreover, we will use Sr(R) to

refer to the set of all states in S that belong to a recurrent class of R. Since the space S is finite,

Sr(R) is necessarily non-empty for every R ∈ ΠTC(P,Q). Finally, note that whenever s ∈ Sr(R),

λR,s is the unique stationary distribution of R associated with the recurrent class in which s lies.

Now let R∗ ∈ ΠTC(P,Q) be optimal for TC-MDP. We will construct a transition coupling π∗ ∈

ΠTC(P,Q) from R∗ that is optimal in the OTC problem. Note that by definition, cR(s) = 〈c, λR,s〉.

Then by the optimality of R∗ in TC-MDP, 〈c, λR∗,s〉 = minR∈ΠTC(P,Q)〈c, λR,s〉 for every s ∈ S. So
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by Lemma 3.15,

min
s∈Sr
〈c, λR∗,s〉 = min

s∈S
〈c, λR∗,s〉 = min

R∈ΠTC(P,Q)
min
s∈S
〈c, λR,s〉 = min

R∈ΠTC(P,Q)
min

λ∈Λ(R)
〈c, λ〉. (3.8)

Let s∗ ∈ argmins∈Sr〈c, λR∗,s〉 and define π∗ ∈ ΠTC(P,Q) to be the transition coupling with transition

matrix R∗ and stationary distribution λs∗ . Then by (3.8),

∫
c dπ∗ = 〈c, λR∗,s∗〉 = min

R∈ΠTC(P,Q)
min

λ∈Λ(R)
〈c, λ〉.

But at this point, we recognize that the quantity on the right is exactly the OTC cost. To see this,

note that by Proposition 3.4 every π ∈ ΠTC(P,Q) is uniquely characterized by a transition matrix

R ∈ ΠTC(P,Q) and a stationary distribution λ ∈ Λ(R), and
∫
c dπ = 〈c, λ〉. Thus

∫
c dπ∗ = min

R∈ΠTC(P,Q)
min

λ∈Λ(R)
〈c, λ〉 = min

π∈ΠTC(P,Q)

∫
c dπ,

and we conclude that π∗ is optimal for the OTC problem. Finally, by construction,
∫
c dπ∗ =

mins∈S〈c, λR∗,s〉 = mins∈S cR∗(s).

3.9.3.3 Convergence of ExactOTC

Next, we prove the convergence of Algorithm 1 to a solution of TC-MDP. For any polyhedron

P ∈ Rn×n, let E(P) denote the extreme points of P. Recall that if P is bounded, a linear function on

P achieves its minimum on E(P) (Bertsimas and Tsitsiklis, 1997). Note that for every (x, y) ∈ X×Y,

since Π(P (x, ·), Q(y, ·)) is a bounded subset of Rd2 defined by a finite set of linear equality and

inequality constraints, it is a bounded polyhedron.

Theorem 3.7. Algorithm 1 converges to a solution (g∗, h∗, R∗) of TC-MDP in a finite number

of iterations. Moreover, if X and Y are irreducible, R∗ is the transition matrix of an optimal

transition coupling of X and Y .

Proof. We will first show that Algorithm 1 converges to some (g∗, h∗, R∗) and then argue that this is

a solution to TC-MDP. Recall that for every s = (x, y), As = Π(P (x, ·), Q(y, ·)) and A =
⋃
sAs. In

this proof, it is most convenient to consider the concatenatation of the state-action spaces instead of
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the union
⋃
sAs. Abusing notation, we let A =

⊗
sAs for the remainder of the proof. Furthermore,

let A′s = E(As) be the set of extreme points of As. As As is a bounded polyhedron, A′s is finite.

For every n ≥ 1, let (gn, hn, Rn) be the n’th iterate of Algorithm 1. Since the rows of Rn are

solutions of the linear programs in Algorithm 1b,Rn(s, ·) ∈ E(A′s) for every s. Thus the iterates of

Algorithm 1 are the same as the iterates of the policy iteration algorithm for the restricted MDP

(X × Y,
⋃
sA′s, {p(·|s, a)}, c) constructed by restricting the state-action spaces As of TC-MDP to

A′s for each s. Since A′s is finite for every s, standard results (Puterman, 2005, Theorem 9.2.3)

ensure that the iterates {(gn, hn, Rn)} of Algorithm 1 will converge to a solution (g∗, h∗, R∗) in a

finite number of iterations. Thus, we need only show that any stationary point of Algorithm 1 is

necessarily a solution to TC-MDP.

Let (g∗, h∗, R∗) be a stationary point of Algorithm 1. Then R∗ = ExactTCI(g∗, h∗, R∗,
⊗

sA′s)

and consequently, R∗(s, ·) ∈ argminr∈A′s rh
∗ for every s. Since As is a bounded polyhedron,

minr∈As rh
∗ = minr∈A′s rh

∗ and we find that R∗(s, ·) ∈ argminr∈As rh
∗. Since A =

⊗
sAs, we

may write R∗ ∈ argminR∈ARh
∗ where the minimum is understood to be element-wise. Using the

assumption that (g∗, h∗, R∗) is a stationary point of Algorithm 1 again, (g∗, h∗) = ExactTCE(R∗).

It follows that

g∗ + h∗ = R∗h∗ + c. (3.9)

Since R∗ ∈ argminR∈ARh
∗, we obtain

g∗ + h∗ = min
R∈A

Rh∗ + c.

Then by (Puterman, 2005, Theorem 9.1.2 (c)), g∗ is the optimal expected cost for TC-MDP.

Moreover, by (3.9) and (Puterman, 2005, Theorem 8.2.6 (b)), g∗ = R
∗
c = cR∗ , where we remind

the reader that R
∗

= limT→∞ 1/T
∑T−1

t=0 R∗t. Thus R∗ has optimal expected cost among policies for

TC-MDP and we conclude that (g∗, h∗, R∗) is a solution to TC-MDP.

If X and Y are irreducible, then by Proposition 3.4, every transition coupling matrix in

ΠTC(P,Q) induces a transition coupling in ΠTC(P,Q). Since R∗ has minimal expected cost over all

elements of ΠTC(P,Q), it attains the minimum in Problem (3.2) and is thus an optimal transition

coupling.
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3.9.4 Proofs from Section 3.5

3.9.4.1 Complexity of Approximate Transition Coupling Evaluation

Theorem 3.9. Let R ∈ ΠTC(P,Q) be aperiodic and irreducible with mixing coefficients M ∈ R+

and α ∈ [0, 1) and gain and bias vectors g ∈ Rd2 and h ∈ Rd2, respectively. Then for any ε > 0,

there exist L, T ∈ N such that ApproxTCE(R,L, T ) yields (g̃, h̃) satisfying ‖g̃ − g‖∞ ≤ ε and

‖h̃− h‖1 ≤ ε in Õ
(

d4

logα−1 log
(

M
ε(1−α)

))
time.

Proof. Briefly, we remind the reader that g = Rc and h =
∑∞

t=0R
t(c − g), and that for integers

L, T ≥ 1 to be chosen later,

g̃ = 〈1/d2RLc,1〉1 and h̃ =
T∑
t=0

Rt(c− g̃).

Note that the expression for g̃ may also be written as

g̃ =

(
1

d2

∑
s

RL(s, ·)c

)
1.

We begin by studying the approximation error for h̃ by first considering the intermediate quantity

h′ :=
∑T

t=0R
t(c− g). By the triangle inequality,

‖h̃− h‖1 ≤ ‖h̃− h′‖1 + ‖h′ − h‖1, (3.10)

so it suffices to control the two terms on the right hand side. Using Hölder’s inequality, it follows

that

‖h̃− h′‖1 =

∥∥∥∥∥
T∑
t=0

Rt(g̃ − g)

∥∥∥∥∥
1

≤
T∑
t=0

∥∥Rt(g̃ − g)
∥∥

1

≤ d2
T∑
t=0

max
s

∣∣Rt(s, ·)(g̃ − g)
∣∣

(∗)
≤ d2

T∑
t=0

‖g̃ − g‖∞
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= (T + 1)d2‖g̃ − g‖∞,

where (*) uses the fact that ‖Rt(s, ·)‖1 = 1 for every t ≥ 1 and s ∈ X ×Y. Next we wish to bound

‖h′ − h‖1. Since RtR = R for any t ≥ 1, we may write h and h′ as

h =

∞∑
t=0

(Rt −R)c and h′ =

T∑
t=0

(Rt −R)c.

Moreover, since R is aperiodic and irreducible, the Perron-Frobenius theorem implies that R(s, ·) =

λR for every s ∈ X×Y, where λR ∈ ∆d2 is the unique stationary distribution of R. Now by Hölder’s

inequality and the mixing assumption on R,

‖h′ − h‖1 =

∥∥∥∥∥
∞∑

t=T+1

(Rt −R)c

∥∥∥∥∥
1

≤
∞∑

t=T+1

‖(Rt −R)c‖1

≤ d2
∞∑

t=T+1

max
s

∣∣(Rt(s, ·)− λR)c
∣∣

≤ ‖c‖∞d2
∞∑

t=T+1

max
s

∥∥Rt(s, ·)− λR∥∥1

≤ ‖c‖∞d2
∞∑

t=T+1

Mαt

= M‖c‖∞
αT+1

1− α
d2.

Thus by (3.10),

‖h̃− h‖1 ≤ (T + 1)‖g̃ − g‖∞d2 +M‖c‖∞
αT+1

1− α
d2. (3.11)

So in order to bound ‖h̃ − h‖1, we require a bound on ‖g̃ − g‖∞. Using the fact that g̃ and g are

constant vectors, Hölder’s inequality and the mixing assumption on R,

‖g̃ − g‖∞ =

∥∥∥∥∥
(

1

d2

∑
s

RL(s, ·)c

)
1−Rc

∥∥∥∥∥
∞

=

∣∣∣∣∣ 1

d2

∑
s

RL(s, ·)c− λRc

∣∣∣∣∣
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≤ 1

d2

∑
s

∣∣(RL(s, ·)− λR)c
∣∣

≤ 1

d2

∑
s

‖c‖∞‖RL(s, ·)− λR‖1

≤ 1

d2

∑
s

MαL‖c‖∞

≤MαL‖c‖∞.

Plugging this into (3.11),

‖h̃− h‖1 ≤MαL‖c‖∞(T + 1)d2 +M‖c‖∞
αT+1

1− α
d2.

Then choosing

T + 1 ≥ 1

logα−1
log

(
2M‖c‖∞d2ε−1

(1− α)

)
= Õ

(
1

logα−1
log

(
M

ε(1− α)

))
(3.12)

and

L ≥
log
(
2(T + 1)M‖c‖∞d2ε−1

)
logα−1

= Õ
(

1

logα−1
log

(
M

ε

))
, (3.13)

we obtain ‖h̃ − h‖1 ≤ ε. Note that for this choice of L, ‖g̃ − g‖∞ ≤ ε/2(T + 1). Since T + 1 ≥ 1,

this implies that ‖g̃ − g‖∞ ≤ ε. So the error for g̃ is controlled at the desired level as well.

Now consider the cost of computing g̃ and h̃. Computing g̃ requires L multiplications of

a vector in Rd2 by R ∈ Rd2×d2 , which takes O(Ld4) time, followed by an inner product with

1 ∈ Rd2 , multiplication with 1 ∈ Rd2 and multiplication by 1/d2, each in O(d2) time. This requires

O(Ld4) + O(d2) + O(d2) + O(d2) = O(Ld4) time. Letting L be the minimum integer satisfying

(3.13), this takes time

O(Ld4) = Õ
(

d4

logα−1
log

(
M

ε

))
.

On the other hand, given g̃, computing h̃ requires computing c− g̃ ∈ Rd2 in O(d2) operations then

multiplying by R ∈ Rd2×d2 T + 1 times in O(Td4) time. Finally, the sum may also be evaluated in

O(Td4), requiring a total time of O(d2) +O(Td4) +O(Td4) = O(Td4). Letting T be the minimum
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integer satisfying (3.12), this takes time

O(Td4) = Õ
(

d4

logα−1
log

(
M

ε(1− α)

))
. (3.14)

In total, we find that ApproxTCE(R,L, T ) takes time

Õ
(

d4

logα−1
log

(
M

ε

))
+ Õ

(
d4

logα−1
log

(
M

ε(1− α)

))
= Õ

(
d4

logα−1
log

(
M

ε(1− α)

))
.

3.9.4.2 Aperiodicity and Irreducibility of Elements of ri(ΠTC(P,Q))

Next we prove Proposition 3.11 regarding the aperiodicity and irreducibility of elements of

ri(ΠTC(P,Q)). We begin with two elementary lemmas about the independent transition coupling.

Lemma 3.16. For any k ≥ 1, (P ⊗Q)k = P k ⊗Qk.

Proof. The result clearly holds for k = 1, so assume that it holds for some k ≥ 1. For any (x, y),

(x′, y′) ∈ X × Y, we can show

(P ⊗Q)k+1((x, y), (x′, y′)) =
∑
x̃,ỹ

(P ⊗Q)k((x, y), (x̃, ỹ))P ⊗Q((x̃, ỹ), (x′, y′))

=
∑
x̃,ỹ

P k(x, x̃)Qk(y, ỹ)P (x̃, x′)Q(ỹ, y′)

=
∑
x̃

P k(x, x̃)P (x̃, x′)
∑
ỹ

Qk(y, ỹ)Q(ỹ, y′)

= P k+1(x, x′)Qk+1(y, y′)

= P k+1 ⊗Qk+1((x, y), (x′, y′)).

By induction, the lemma is proven.

Lemma 3.17. If P and Q are aperiodic and irreducible, then the independent transition coupling

P ⊗Q is aperiodic and irreducible.

Proof. Since P and Q are aperiodic and irreducible, there exist `0,m0 ≥ 1 such that for any ` ≥ `0

and m ≥ m0, P ` > 0 and Qm > 0 (Levin and Peres, 2017, Proposition 1.7). Defining k0 := `0∨m0,
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for every k ≥ k0, P k, Qk > 0. By Lemma 3.16, it follows that (P ⊗ Q)k = P k ⊗ Qk > 0 for all

k ≥ k0. Thus P ⊗Q is irreducible. Furthermore, for every s ∈ X ×Y, gcd{k ≥ 1 : (P ⊗Q)k(s, s) >

0} = gcd{..., k0, k0 + 1, ...} = 1 and we conclude that P ⊗Q is also aperiodic.

Next we prove Proposition 3.11. Recall that for a set U ⊂ Rn, Bε(u) ⊂ Rn denotes the

open ball of radius ε > 0 centered at u ∈ U , aff(U) denotes the affine hull, defined as aff(U) =

{
∑k

i=1 αiui : k ∈ N, u1, ..., uk ∈ U ,
∑k

i=1 αi = 1}, and ri(U) denotes the relative interior, defined as

ri(U) = {u ∈ U : ∃ε > 0 s.t. Bε(u) ∩ aff(U) ⊂ U}.

Proposition 3.11. If P and Q are aperiodic and irreducible then every R ∈ ri(ΠTC(P,Q)) is also

aperiodic and irreducible, and thus mixing.

Proof. First we establish that P ⊗ Q(s, s′) > 0 implies that R(s, s′) > 0 for every s, s′ ∈ X × Y.

Suppose for the sake of contradiction that there exist s, s′ ∈ X ×Y such that P ⊗Q(s, s′) > 0 and

R(s, s′) = 0. By definition, there is some ε > 0 such that Bε(R) ∩ aff(ΠTC(P,Q)) ⊂ ΠTC(P,Q).

Defining R′ = R + ε
2d where d = (R − P ⊗ Q)/‖R − P ⊗ Q‖2, one may verify that R′ ∈ Bε(R) ∩

aff(ΠTC(P,Q)). Thus by the choice of R, we have R′ ∈ ΠTC(P,Q). However, our assumptions imply

that R′(s, s′) < 0, a contradiction. This proves the preliminary claim.

By nature of the fact that R((x, y), ·) ∈ Π(P (x, ·), Q(y, ·)), one may easily establish that the

reverse implication holds: R(s, s′) > 0 implies that P⊗Q(s, s′) > 0 for every s, s′ ∈ X ×Y. As such,

one may find a positive constant a > 0 such that aP ⊗Q ≤ R where the inequality is understood

to hold element-wise. Now, by Lemma 3.17, P ⊗Q is aperiodic and irreducible. Thus there exists

k ≥ 1 such that (P ⊗ Q)k > 0. Thus, Rk ≥ ak(P ⊗ Q)k > 0 and it follows that R is aperiodic

and irreducible as well. The mixing property of R follows from (Levin and Peres, 2017, Theorem

4.9).

3.9.4.3 Complexity of Entropic Transition Coupling Improvement

Next we aim to prove Theorem 3.12, showing that EntropicTCI returns an improved transi-

tion coupling with error bounded by ε > 0 in Õ(d4ε−4) time. Recall that EntropicTCI improves

policies by solving d2 entropy-regularized OT transport problems, calling the ApproxOT algorithm

(Altschuler et al., 2017) for each problem. Before we can prove Theorem 3.12, we must analyze

the computational complexity of ApproxOT. In the following discussion as well as Lemma 3.18,
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we find it most convenient to adopt the notation of (Altschuler et al., 2017). Thus, we fix two

probability vectors r ∈ ∆m and c ∈ ∆n, a non-negative cost matrix C ∈ Rm×n+ , a regularization

parameter ξ > 0, and an error tolerance ε > 0. For vectors in Rm or Rn and matrices in Rm×n, we

temporarily drop the double-indexing convention, using subscripts instead to denote elements (i.e.

ui and Xij). Finally, for a coupling X ∈ Π(r, c), let H(X) = −
∑

ij Xij logXij be the Shannon

entropy.

Recall that the entropic OT problem is defined as,

minimize 〈X,C〉 − 1

ξ
H(X)

subject to X ∈ Π(r, c).

(3.15)

In (Cuturi, 2013), Cuturi showed that solutions to (3.15) have a computationally convenient form.

Namely, if X∗ξ ∈ Π(r, c) is the solution to (3.15), then it is unique and can be written as X∗ξ =

diag(eu
∗
)K diag(ev

∗
) for some u∗ ∈ Rm and v∗ ∈ Rn, where K = e−ξC . As a result, (3.15) can be

formulated as a matrix scaling problem and solved using Sinkhorn’s algorithm (Sinkhorn, 1967).

More recent work (Altschuler et al., 2017) introduced the ApproxOT algorithm (Algorithm 3),

which combines Sinkhorn’s algorithm with a rounding step to obtain an approximate solution to

the OT problem. In particular, ApproxOT runs Sinkhorn (Algorithm 4) to obtain a coupling of

the form X ′ = diag(eu
′
)K diag(ev

′
) ∈ Π(r′, c′), where ‖r− r′‖1 + ‖c− c′‖1 ≤ ε, then applies Round

(Algorithm 5) to X ′ to obtain X̂ ∈ Π(r, c). ApproxOT was originally intended for approximating

the OT cost, but we use it to approximate the regularized optimal coupling X∗ξ ∈ Π(r, c). In

particular, we wish to show that for appropriate choice of parameters, ApproxOT yields a coupling

X̂ ∈ Π(r, c) such that ‖X̂ −X∗ξ ‖1 ≤ ε in Õ(mnε−4) time. To the best of our knowledge, this result

has not appeared in the literature. So we state and prove it in Lemma 3.18.
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Algorithm 3: ApproxOT

result: Optimal coupling
input : r, c, C, ξ, ε
/* Subset to positive elements

*/
R ← {i : ri > 0}, C ← {j : cj > 0}
S ← R× C, r̃ ← rR, c← cC
/* Set parameters */
J ← 4 log n‖CS‖∞/ε− log minij{r̃i, c̃j}
ε′ ← ε2/8J
K ← exp(−ξCS)
/* Approximate Sinkhorn

projection */
X ′ ← Sinkhorn(K, r̃, c̃, ε′)
/* Round to feasible coupling */
X ′ ← Round(X ′,Π(r̃, c̃))
/* Replace zeroes */

X̂ ← 0d×d, X̂S ← X ′

return X̂

Algorithm 4: Sinkhorn

result: Approximate Sinkhorn
projection

input : K, r, c, ε′

k ← 0
X0 ← K/‖K‖1, u0 ← 0, v0 ← 0
while
‖Xk1− r‖1 + ‖X>k 1− c‖1 > ε′ do
k ← k + 1
if k odd then

rk ← Xk1

ui ← log(ri/r
k
i ) for i ∈ [n]

uk ← uk−1 + u, vk ← vk−1

else
ck ← X>k 1

vj ← log(cj/c
k
j ) for j ∈ [n]

vk ← vk−1 + v, uk ← uk−1

Xk ← diag(eu
k
)K diag(ev

k
)

return Xk

Algorithm 5: Round

result: Feasible coupling
input : F,Π(r, c)
r′ ← F1
X ← diag(x) with xi = ri/r

′
i ∧ 1

F ′ ← XF

c′ ← (F ′)>1
Y ← diag(y) with yj = cj/c

′
j ∧ 1

F ′′ ← F ′Y

r′′ ← F ′′1, c′′ ← (F ′′)>1
errr ← r − r′′, errc ← c− c′′
return F ′′ + errr err>c /‖ errr ‖1

Note that ApproxOT was originally defined for fully-supported marginal probability vectors

(r, c > 0). However, this will not always be the case in Algorithm 2b. In particular, transition

couplings may be sparse, even when P and Q are strictly positive. Thus we add an extra step to

ApproxOT that subsets the quantities of interest to their positive entries. For an index set I and a

vector / matrix A we let AI denote the subvector / matrix that retains only elements with indices

contained in I.

Lemma 3.18. Let r ∈ ∆m and c ∈ ∆n have all positive entries, C ∈ Rm×n+ , ξ > 0 and ε ∈ (0, 1).

Then ApproxOT(r, c, C, ξ, ε) (Algorithm 3) returns a coupling X̂ ∈ Π(r, c) such that ‖X̂−X∗ξ ‖1 ≤ ε,
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where X∗ξ ∈ argminX∈Π(r,c)〈X,C〉−1/ξH(X), in time Õ(mnε−4ξ‖C‖∞(ξ2‖C‖2∞+(log b−1)2)) where

b = minij{ri, cj}.

Proof. Let ε′ > 0, K = e−ξC , X ′ ∈ ∆m×n be the output of Sinkhorn(K, r, c, ε′) and X̂ ∈ Π(r, c)

be the output of Round(X ′,Π(r, c)). By the triangle inequality,

‖X̂ −X∗ξ ‖1 ≤ ‖X̂ −X ′‖1 + ‖X ′ −X∗ξ ‖1. (3.16)

We will first describe how to control the second term on the right hand side. By Pinsker’s inequality,

‖X ′ − X∗ξ ‖21 ≤ 2K(X∗ξ ‖X ′), so it suffices to bound the KL-divergence between the two couplings.

From Lemma 2 of (Cuturi, 2013) that X∗ξ = diag(eu
∗
)K diag(ev

∗
) for some u∗ ∈ Rm, v∗ ∈ Rn, and

K = e−ξC . By construction we also have X ′ = diag(eu
′
)K diag(ev

′
) for some u′ ∈ Rm and v′ ∈ Rn.

Now rewriting the KL-divergence,

K(X∗ξ ‖X ′) =
∑
ij

X∗ξ,ij logX∗ξ,ij −
∑
ij

X∗ξ,ij logX ′ij

=
∑
ij

X∗ξ,ij
(
u∗i + v∗j − ξCij

)
−
∑
ij

X∗ξ,ij
(
u′i + v′j − ξCij

)
=
∑
ij

X∗ξ,ij(u
∗
i − u′i) +

∑
ij

X∗ξ,ij(v
∗
j − v′j)

=
∑
i

(u∗i − u′i)
∑
j

X∗ξ,ij +
∑
j

(v∗j − v′j)
∑
i

X∗ξ,ij

=
∑
i

(u∗i − u′i)ri +
∑
j

(v∗j − v′i)cj

= 〈u∗ − u′, r〉+ 〈v∗ − v′, c〉.

Writing ψ(u, v) = 〈1,diag(eu)K diag(ev)1〉 − 〈u, r〉 − 〈v, c〉 for the objective of the dual entropic

OT problem (Dvurechensky et al., 2018), we immediately see that

ψ̃(u′, v′) := ψ(u′, v′)− ψ(u∗, v∗) = 〈u∗ − u′, r〉+ 〈v∗ − v′, c〉.

71



Now let r′ and c′ be the row and column marginals of X ′, respectively. Using the two previous

displays and applying the upper bound from (Dvurechensky et al., 2018, Lemma 2), we obtain

K(X∗ξ ‖X ′) = ψ̃(u, v) ≤ J
(
‖r′ − r‖1 + ‖c′ − c‖1

)
,

where J = ξ‖C‖∞ − log minij{ri, cj}. For ease of notation, we will let b := minij{ri, cj}. Now by

(Altschuler et al., 2017, Theorem 2) and the fact that each iteration of Sinkhorn takes O(mn)

time, Sinkhorn(K, r, c, ε′) returns a coupling with X ′ ∈ Π(r′, c′) satisfying ‖r′ − r‖1 + ‖c′ −

c‖1 ≤ ε′ in O(mn(ε′)−2 log(s/`)) time where s =
∑

ijKij and ` = minijKij . As C is non-

negative, s =
∑

ij e
−ξCij ≤

∑
ij 1 = mn. Furthermore, ` = e−ξ‖C‖∞ so we get a total runtime of

O(mn(ε′)−2(logmn+ ξ‖C‖∞)) = Õ(mn(ε′)−2ξ‖C‖∞). Now choosing ε′ = ε2/8J , we have

‖X ′ −X∗ξ ‖1 ≤
√

2J(‖r′ − r‖1 + ‖c′ − c‖1) ≤
√

2Jε′ =
√

2Jε2/8J = ε/2.

Since ε′ = ε2/8J , the runtime becomes

Õ(mn(ε′)−2ξ‖C‖∞) = Õ(mn(ε2/8J)−2ξ‖C‖∞)

= Õ(mnε−4ξ‖C‖∞J2)

= Õ(mnε−4ξ‖C‖∞(ξ‖C‖∞ − log b)2)

= Õ(mnε−4ξ‖C‖∞(ξ2‖C‖2∞ + (log b−1)2)).

Now we must bound ‖X̂ − X ′‖1. By (Altschuler et al., 2017, Lemma 7), Algorithm 5 returns X̂

satisfying

‖X̂ −X ′‖1 ≤ 2(‖r′ − r‖1 + ‖c′ − c‖1),

in O(mn) time. So it suffices to check that ‖r′−r‖1 +‖c′−c‖1 ≤ ε′ = ε2/8J is enough to guarantee

that ‖X̂ −X ′‖1 ≤ ε/2. This will follow immediately from ‖X̂ −X ′‖1 ≤ 2ε′ = ε2/4J ≤ ε/2J if we

can establish that J ≥ 1. To see this, first note that b = mini,j{ri, cj} ≤ 1/(m ∨ n). This implies

that − log b ≥ log(m ∨ n) and since ξ > 0,

J = ξ‖C‖∞ − log b ≥ − log b ≥ log(m ∨ n) ≥ 1,
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assuming that m ∨ n > 2. If m ∨ n = 2, then one can check that letting ε′ = ε2 log 2/8J

is enough to obtain the desired bounds without affecting the computational complexity. Thus

by (3.16), we obtain ‖X̂ − X∗ξ ‖1 ≤ ε in time Õ(mnε−4ξ‖C‖∞(ξ2‖C‖2∞ + (log b−1)2) + mn) =

Õ(mnε−4ξ‖C‖∞(ξ2‖C‖2∞ + (log b−1)2)).

Now we can proceed to the proof of Theorem 3.12.

Theorem 3.12. Let P and Q be aperiodic and irreducible, h ∈ Rd2, ξ > 0, and ε > 0. Then

EntropicTCI(h, ξ, ε) returns R̂ ∈ ri(ΠTC(P,Q)) with maxs ‖R̂(s, ·) − R∗(s, ·)‖1 ≤ ε for some

R∗ ∈ argminR′∈ΠTC(P,Q)R
′h− 1/ξH(R′) in Õ(d4ε−4) time.

Proof. Without loss of generality, we may assume that h is non-negative. Otherwise, one can

consider the modified bias h + ‖h‖∞1. Since we are interested in optimal couplings with respect

to h rather than expected cost and ‖h + ‖h‖∞1‖∞ = O(‖h‖∞), this has no effect on the out-

put of ApproxOT or the computational complexity. Now, in order to analyze the complexity of

EntropicTCI, we must first analyze the complexity of ApproxOT. Fix s = (x, y) ∈ X ×Y and, af-

ter removing points outside of the supports of P (x, ·) and Q(y, ·), consider the entropic OT problem

for marginal probability measures P (x, ·) and Q(y, ·) and cost h,

minimize 〈r, h〉 − 1

ξ
H(r)

subject to r ∈ Π(P (x, ·), Q(y, ·)).
(3.17)

Then by (Cuturi, 2013, Lemma 2), there exists a unique solution r∗s ∈ Π(P (x, ·), Q(y, ·)) to

problem (3.17). Furthermore by Lemma 3.18, ApproxOT(P (x, ·)>, Q(y, ·)>, h, ξ, ε) returns r̂s ∈

Π(P (x, ·), Q(y, ·)) such that ‖r̂s− r∗s‖1 ≤ ε in Õ(d2ε−4) time. One may also verify using arguments

in (Altschuler et al., 2017) that r̂s ∈ ri(Π(P (x, ·), Q(y, ·))).

Now we may analyze the error and computational complexity of EntropicTCI(h, ξ, ε). Calling

ApproxOT(P (x, ·)>, Q(y, ·)>, h, ξ, ε) for every s = (x, y) ∈ X ×Y, we obtain R̂ ∈ ΠTC(P,Q), where

R̂(s, ·) = r̂s(·), in d2Õ(d2ε−4) = Õ(d4ε−4) time. Note that since the relative interior commutes

with cartesian products of convex sets, R̂ ∈ ri(ΠTC(P,Q)). Then defining R∗ ∈ ΠTC(P,Q) such
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that R∗(s, ·) = r∗s(·), we have

max
s
‖R̂(s, ·)−R∗(s, ·)‖1 = max

s
‖r̂s − r∗s‖1 ≤ ε,

by construction. This concludes the proof.

3.9.5 Proofs from Section 3.6

Our proof of Theorem 3.13 relies on a well-known result regarding the stability of certain

optimization problems. Before stating this result, fix spaces Z and U corresponding to the set of

possible solutions and set of parameters for the optimization problem of interest, respectively. Now

consider the following problem.

minimize f(z, u)

subject to z ∈ Φ(u).

(3.18)

Note that f(·, u) : Z → R describes the objective to be minimized and Φ(u) ⊂ Z represents the

feasible set of Problem (4.5), both indexed by a parameter u ∈ U . We will call a set V ⊂ Z a

neighborhood of a subset W ⊂ Z if W ⊂ intV. Neighborhoods in U will be defined similarly.

Recall that a multifunction F : U → 2Z is upper semicontinuous at a point u0 ∈ U if for any

neighborhood VZ of the set F (u0), there exists a neighborhood VU of u0 such that for every u ∈ VU ,

F (u) ⊂ VZ .

Theorem A ((Bonnans and Shapiro, 2013, Proposition 4.4)). Let u0 be a given point in the

parameter space U . Suppose that (i) the function f(z, u) is continuous on Z × U , (ii) the graph of

the multifunction Φ(·) is a closed subset of U ×Z, (iii) there exists α ∈ R and a compact set C ⊂ Z

such that for every u in a neighborhood of u0, the level set {z ∈ Φ(u) : f(z, u) ≤ α} is nonempty

and contained in C, (iv) for any neighborhood VZ of the set argminz∈Φ(u0) f(z, u0) there exists a

neighborhood VU of u0 such that VZ ∩ Φ(u) 6= ∅ for all u ∈ VU . Then the optimal value function

u 7→ minz∈Φ(u) f(z, u) is continuous at u = u0 and the multifunction u 7→ argminz∈Φ(u) f(z, u) is

upper semicontinuous at u0.
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Both Problems (I) and (II) may be recast in the form of Problem (4.5). Let

Z =
{

(λ,R) ∈ ∆d2 ×∆d2

d2 : R ∈ ΠTC(P,Q) for some P,Q ∈ ∆d
d, λR = λ

}

and U = ∆d
d ×∆d

d be the set of all valid pairs of transition matrices in Rd×d. It is straightforward

to verify that Z and U are in fact compact subsets of Rd2 ×Rd2×d2 and Rd×d ×Rd×d, respectively.

The objective function f(·) is identified with the map (λ,R) 7→ 〈c, λ〉 and does not depend on

the parameter u = (P,Q). We will refer to the constraint functions for Problems (I) and (II)

by Φ : U → 2Z and Φη : U → 2Z , and their optimal solution functions by Φ∗ : U → 2Z and

Φ∗η : U → 2Z , respectively.

Theorem 3.13. Let P,Q ∈ ∆d
d be irreducible transition matrices. Then the following hold:

• ρ(·, ·) is continuous and Φ∗(·, ·) is upper semicontinuous at (P,Q)

• For any η > 0, ρη(·, ·) is continuous and Φ∗η(·, ·) is upper semicontinuous at (P,Q)

Proof. We will prove the result for Problem (3.2) as the proof for Problem (3.4) is similar. As the

two problems are equivalent, it suffices to check the conditions of Theorem A for Problem (I) at

the point u0 = (P,Q) ∈ U . First, (i) is vacuously true since the objective f(·) does not depend

on u. Next, we will show that the graph of Φ(·) is a closed subset of U × Z. Fix a sequence

{(Pn, Qn, λn, Rn)}n≥1 ⊂ graph Φ(·). As a subset of the compact set ∆d
d ×∆d

d ×∆d2 ×∆d2

d2 , it has

a subsequence, which we also label as {(Pn, Qn, λn, Rn)}n≥1 converging to some (P ′, Q′, λ′, R′) ∈

∆d
d × ∆d

d × ∆d2 × ∆d2

d2 . Taking limits of the linear equations Rn ∈ ΠTC(Pn, Qn) and λnRn = λn,

we conclude that R′ ∈ ΠTC(P ′, Q′) and λ′R′ = λ′. Thus (P ′, Q′, λ′, R′) ∈ graph Φ(·) and (ii) holds.

To show that (iii) is satisfied, note that one may let α = ‖c‖∞ and use the fact that the entire

set Z is compact. Finally, we will show that (iv) is satisfied. Let VZ ⊂ Z be a neighborhood of

argminz∈Φ(u0) f(z, u0). Then define the neighborhood VU of u0 = (P,Q) as

VU := {(P,Q) ∈ ∆d
d ×∆d

d : R ∈ ΠTC(P,Q) for some (λ,R) ∈ VZ}.

75



Note that VU is nonempty by the non-emptiness of VZ and the definition of Z. Moreover, VZ ∩

Φ(u) 6= ∅ for all u ∈ VU by construction. Thus all the conditions of Theorem A are satisfied and

the desired convergence holds.
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CHAPTER 4

Graph Optimal Transport via Optimal Transition Coupling

In this chapter, we present a novel approach to optimal transport between graphs from the

perspective of stationary Markov chains. A weighted graph may be associated with a stationary

Markov chain by means of a random walk on the vertex set with transition distributions depending

on the edge weights of the graph. After drawing this connection, we describe how optimal transport

techniques for stationary Markov chains may be used in order to perform comparison and alignment

of the graphs under study. In particular, we propose the graph optimal transition coupling problem,

referred to as GraphOTC, in which the Markov chains associated to two given graphs are optimally

synchronized to minimize an expected cost. The joint synchronized chain yields an alignment of

the vertices and edges in the two graphs, and the expected cost of the synchronized chain acts as

a measure of distance or dissimilarity between the two graphs. We demonstrate that GraphOTC

performs equal to or better than existing state-of-the-art techniques in graph optimal transport for

several tasks and datasets. Finally, we also describe a generalization of the GraphOTC problem,

called the FusedOTC problem, from which we recover the GraphOTC and OT costs as special

cases.

4.1 Introduction

In graph comparison tasks, one aims to assess the similarity or dissimilarity of two graphs by

means of their topologies and vertex characteristics. In graph alignment or matching tasks, one

aims to associate the vertices and edges in a graph with similar vertices and edges in another

graph. Both comparison and alignment are of fundamental importance in the study of graphs in

machine learning and data science. Examples of applications include image captioning (Chen et al.,

2020), object recognition (Yan et al., 2018), domain adaptation (Malka et al.), aligning single-cell
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multi-omics data (Demetci et al., 2020), and language comparison (Alvarez-Melis and Jaakkola,

2018).

Some recent work (Peyré et al., 2016; Titouan et al., 2019; Maretic et al., 2019, 2020; Dong

and Sawin, 2020) addresses the problems of graph comparison and alignment using techniques from

optimal transport. In the optimal transport (OT) problem, one seeks a plan for transporting mass

between two probability measures of interest that minimizes expected cost. When each graph under

study is associated with a probability distribution and a cost or distance between the vertices in each

pair of graphs is available, graph comparison and alignment both fit naturally into the framework

of OT. In particular, optimal transport plans between the probability distributions correspond to

alignments between the graphs, while the expected cost of transportation serves as a measure of

dissimilarity or distance between graphs of interest.

To date, most OT-based approaches to graph comparison and alignment fall into one of two

categories: spectral methods or methods based on the Gromov-Wasserstein distance. In the spectral

approaches, each graph is associated with a zero-mean, multivariate normal distribution whose

covariance matrix is a function of the graph Laplacian. Graph OT is then performed via OT

between the associated normal distributions of the graphs of interest. In theory and example,

one finds that these methods emphasize differences in global structure, i.e., graph structure that

is robust to small changes in vertices and edges. On the other hand, the Gromov-Wasserstein

approach associates each graph with a discrete distribution over its vertex set and aims to couple

these probability measures so as to minimize changes in the edge weights of either graph. The

resulting graph OT problem emphasizes differences in local structure over global structure.

In this chapter, we describe a novel approach to OT for graph comparison and alignment that

balances differences in both global and local structure. We first propose to associate each graph

with a stationary Markov chain on its vertex set, with transition probabilities depending on the edge

weights of the graph. After drawing this connection, we define an OT problem for graphs by means

of an OT problem between the associated Markov chains of the graphs of interest. Leveraging

recent work in OT for Markov chains, we define the GraphOTC problem, which aims to find a

product graph with an associated Markov chain that minimizes the expectation of the pre-specified

cost with respect to the chain’s stationary distribution. This new approach can incorporate local

structure by means of the cost function between the vertices of either graph, and it accounts for
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global structure via the stationary distributions of the associated Markov chains. GraphOTC can

easily accommodate many distinct types of cost functions, including cost functions that depend

on the intrinsic local structure of the graphs and cost functions that involve external features of

the nodes. Furthermore, GraphOTC is easily interpretable and does not rely on selecting any free

parameters. Finally, drawing inspiration from the Fused Gromov-Wasserstein problem (Titouan

et al., 2019), we situate the GraphOTC problem within a broader theoretical context via a graph

OT framework that we call FusedOTC.

Contributions. The contributions of this chapter are as follows: (a) we define the GraphOTC

problem for graphs that extends OT techniques for Markov chains to graphs; (b) we demonstrate

that when the underlying cost satisfies the properties of a metric, the associated GraphOTC cost

is a metric on certain equivalence classes of graphs; (c) we demonstrate that the performance of

GraphOTC equals or surpasses the state-of-the-art in graph OT for several graph alignment and

graph comparison tasks; (d) we describe a broader graph OT framework, known as FusedOTC,

that includes the GraphOTC and OT costs as special cases.

4.1.1 Related work

Spectral methods. One line of work (Maretic et al., 2019, 2020; Dong and Sawin, 2020) uses graph

spectral techniques to define OT problems for graphs. In particular, this approach associates to each

graph a multivariate Gaussian with zero mean and covariance matrix equal to the pseudoinverse

of the graph Laplacian. The Wasserstein distance between Gaussians in the same space may be

computed analytically in terms of the respective covariance matrices. For graphs with different

numbers of vertices, (Maretic et al., 2020) and (Dong and Sawin, 2020) propose to optimize this

distance over soft many-to-one assignments between vertices in either graph. At present, this family

of approaches is unable to incorporate available feature information or underlying cost functions,

relying completely on intrinsic structure in their respective optimization problems.

Variants of Gromov-Wasserstein. Another line of work (Mémoli, 2011; Peyré et al., 2016;

Titouan et al., 2019; Vayer et al., 2019, 2020) considers the Gromov-Wasserstein (GW) distance

and related extensions. In this work, one tries to couple distributions on the nodes in each graph

so as to minimize an expected transport cost between vertices while minimizing changes in edges
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between the two graphs. This approach allows one to capture differences in both features and

structure between graphs. We refer the reader to (Dong and Sawin, 2020) for a discussion on the

differences between spectral-based graph OT methods and GW distances. A number of variants

of the GW distance have been proposed for a variety of tasks including cross-domain alignment

(Chen et al., 2020), graph partitioning (Xu et al., 2019a), graph matching (Xu et al., 2019a,b), and

node embedding (Xu et al., 2019b). The work (Barbe et al., 2020) proposes to incorporate global

structure into the Wasserstein and Fused GW distances by applying a heat diffusion to the vertex

features before computing the cost matrix.

4.2 Preliminaries

Notation. Let R+ be the set of non-negative real numbers and for every n ≥ 1, let ∆n = {µ ∈

Rn+|
∑n

i=1 µi = 1} be the probability simplex in Rn. For a Polish space U , we will use M(U) to

denote the set of Borel probability measures on U . Note that whenever the set U is finite, we will

frequently regard probability measures in M(U) as vectors in ∆|U|. We define the inner product

〈·, ·〉 for matrices U, V ∈ Rm×n by 〈U, V 〉 =
∑

i,j UijVij . For a vector u ∈ Rm and matrix U ∈ Rm×n,

we will denote by u�U the matrix satisfying (u�U)ij = uiUij . Graphs will be denoted by triples

G = (V,E,w) where V is the vertex set, E ⊂ V × V is the edge set, and w : E → R is a function

that gives the weight of each edge. All graphs considered in this paper will be assumed to be

undirected and connected. For unweighted graphs, we define w(e) = 0 for all e ∈ E by convention.

4.2.1 Optimal Transport

Recall the setting of the optimal transport problem for finite spaces: let µ ∈ M(U) and

ν ∈ M(V) be probability measures on finite spaces U and V, respectively, and let c : U × V → R+

be a non-negative function. Transport plans in the optimal transport (OT) problem are formalized

mathematically as couplings: A probability measure π ∈ M(U × V) is a coupling of µ and ν if

π1 = µ and π>1 = ν. We will denote the set of couplings of µ and ν by Π(µ, ν). The OT problem

is to minimize the expectation of c over the set Π(µ, ν):

min {〈π, c〉 : π ∈ Π(µ, ν)} . (4.1)
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The optimal value of Problem (4.1) is referred to as the optimal transport cost and optimal solutions

are referred to as optimal transport plans or optimal couplings. For more details on the OT problem

in general, the reader may consult (Peyré and Cuturi, 2019).

4.2.2 Optimal Transition Couplings of Markov chains

In Chapter 3, the OT problem (4.1) was adapted to the setting of Markov chains, resulting in an

optimization problem called the optimal transition coupling (OTC) problem. Let P ∈ [0, 1]|U|×|U|

and Q ∈ [0, 1]|V|×|V| be aperiodic and irreducible transition matrices on U and V, respectively. A

transition coupling of P and Q is a transition matrix R ∈ [0, 1]|U||V|×|U||V| satisfying

∑
ṽ∈V

R((u, v), (u′, ṽ)) = P (u, u′) and
∑
ũ∈U

R((u, v), (ũ, v′)) = Q(v, v′),

for every (u, v), (u′, v′) ∈ U × V. In other words, the rows of the joint transition matrix R are

couplings of the rows of the transition matrices P and Q. Every transition coupling corresponds

to a stationary Markov chain taking values in U × V. Furthermore, every such Markov chain is

necessarily a coupling of the Markov chains corresponding to the transition matrices P and Q, and

thus one may define an OT problem for Markov chains in terms of transition couplings (see Chapter

3). We will denote the set of transition couplings of P and Q by ΠTC(P,Q).

The OTC problem is to minimize the expectation of c over the set of stationary distributions

of transition couplings of P and Q:

min
{
〈λ, c〉 : R ∈ ΠTC(P,Q), λR = λ, λ ∈ ∆|U|×|V|

}
. (4.2)

As discussed in Chapter 3, one may view the OTC problem as trying to synchronize the Markov

chains corresponding to P and Q with respect to the long-run average of the cost c. The optimal

pair (λ,R) characterizes the synchronized chain, while the minimal expected cost 〈λ, c〉 provides

a measure of dissimilarity between P and Q. Importantly, this dissimilarity measure emphasizes

long-term average differences over short-term behavior. This feature is due to the stationarity

constraint in the OTC problem and will be key in enabling our proposed approach to graph OT to

capture differences in global structure despite being defined in terms of a cost between vertices.
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4.3 GraphOTC

Relationships between graphs and Markov chains have been studied extensively in the literature

(Lovász, 1993; Aldous and Fill, 2002; Levin and Peres, 2017). We propose to leverage this connection

in order to define a new OT problem for graphs. In particular, we view each graph in terms of

a stationary random walk on its vertex set and apply the OTC problem to the random walks

associated with the graphs of interest. Formally, to any graph G = (V,E,w), we associate a

transition matrix P ∈ [0, 1]|V |×|V |, defined as follows: Let

P (u, u′) =
exp {w(u, u′)}∑

ũ:(u,ũ)∈E exp {w(u, ũ)}
, ∀(u, u′) ∈ E,

and P (u, u′) = 0 otherwise. If P is irreducible, then it defines a unique stationary Markov chain,

which we also refer to as P when no confusion may arise. Using this construction, connected graphs

will correspond to irreducible Markov chains. Moreover, connected graphs with at least one self

loop will correspond to aperiodic Markov chains, and we note that any irreducible Markov chain

can be made aperiodic by considering the “lazy” chain instead (see (Levin and Peres, 2017, p. 9)).

For the rest of the chapter, we will associate the graphs of interest, G1 and G2, with the stationary

Markov chains P and Q, respectively. We will also assume for convenience that P and Q are

aperiodic and irreducible.

The random walk on a graph encodes important geometric properties of the graph, and it has

tight connections to both local properties of the graph (such as edge weights and generalized node

degrees) and global properties of the graph (such as the Laplacian and its spectrum). Indeed, the

stationary distribution of the random walk gives a notion of the global importance of the vertices

within the graph. For these reasons, coupling the random walks of two graphs provides a natural

and informative setting for performing graph OT.

In light of this perspective, we now define the GraphOTC problem as

d(G1,G2) = min
{
〈λ, c〉 : R ∈ ΠTC(P,Q), λR = λ, λ ∈ ∆|V1|×|V2|

}
. (4.3)

Note that in addition to a coupling cost of G1 and G2, we also obtain an optimal transition cou-

pling of the Markov chains P and Q. In particular, if (λ,R) is an optimal solution to Prob-
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lem (4.3), then λ(u, v) describes the alignment probability of vertices u ∈ V1 and v ∈ V2,

while λ(u, v)R((u, v), (u′, v′)) describes the alignment probability of the edges (u, u′) ∈ E1 and

(v, v′) ∈ E2. Note that the optimal transition coupling also provides an alignment of higher-order

paths, but we do not explore this observation any further here.

The GraphOTC problem brings the tools of Markov chain OT to bear on graphs. Moreover,

GraphOTC incorporates both local information (by means of a cost) and global structure (via

transition couplings). As we will demonstrate empirically in Sections 4.4 and 4.5, this results in an

approach to graph OT that automatically balances vertex and edge information with topological

structure in performing alignment and comparison.

GraphOTC is a metric. Building upon previous results in stationary optimal transport, one

may establish that the GraphOTC cost is a metric on a certain space of graphs when the cost c

is a metric. We will say that G1 ∼ G2 for two graphs G1 = (V,E,w1) and G2 = (V,E,w2) if there

exists C ∈ R such that w1(u, v) = w2(u, v) + C for every (u, v) ∈ E. We prove in the Section 4.8

that G1 ∼ G2 if and only if their respective random walks are identical.

Theorem 4.1. Suppose that the cost function c : V × V → R+ satisfies the properties of a metric

on V . Then d is a metric on the equivalence classes defined by ∼.

The proof of Theorem 4.1 is deferred to Section 4.8.

4.3.1 GraphOTC with Intrinsic Cost Functions

The GraphOTC problem, along with several other graph OT methods, relies on the specification

of a cost function c : V1×V2 → R+. Commonly, the cost c may be derived from features associated

with vertices in the graphs or from distances between vertices when both graphs are embedded

in a common metric space. For example, if one has access to label functions `1 : V1 → A and

`2 : V2 → A associating each vertex in V1 and V2 with a label in a finite alphabet A, then one may

let c(u, v) = δ(`1(u) 6= `2(v)). We refer to this function as the 0-1 cost for the label functions `1

and `2. Alternatively, if there exist maps f1 : V1 → U and f2 : V2 → U taking vertices in V1 and

V2 to points in a metric space (U , ρ), then a cost may be defined as c(u, v) = ρ(f1(u), f2(v)) or

c(u, v) = ρ(f1(u), f2(v))2.
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However, in some contexts such vertex features may unavailable in practice, and one may wish

to define a cost function when one is not given. In this case, one may consider costs defined in terms

of intrinsic properties of the graphs of interest. For example, letting Di : Vi → N be the degree

function for graph Gi, we might define the cost as cdeg(u, v) = (D1(u)−D2(v))2. Alternatively, one

may consider costs based on the degree distributions of the neighborhoods of u and v. Another

approach is to embed the vertices in a Euclidean space a priori using graph embedding methods

such as Laplacian eigenmaps (Belkin and Niyogi, 2003). We demonstrate in Section 4.4 that the

squared-degree cost cdeg can adequately capture important graph structure when used with the

GraphOTC problem.

4.3.2 Solving the GraphOTC Problem

Given the graphs G1 and G2, one may associate to each graph a stationary Markov chain, as

described above. Once these Markov chains have been defined, solving the GraphOTC problem

amounts to solving the OTC problem. Despite the non-convexity of the OTC problem, it was shown

in Chapter 3 that one may obtain solutions via an adaptation of the policy iteration algorithm

(Howard, 1960), referred to as ExactOTC. The algorithm ExactOTC exhibits a runtime scaling

like O((|V1||V2|)3) per iteration. In practice, convergence is typically observed after less than 5

iterations. A more efficient algorithm based on entropic regularization and Sinkhorn iterations

was proposed in Chapter 3 and is known as EntropicOTC. This algorithm was observed to scale

better with the sizes of the marginal state spaces, yielding a runtime of O((|V1||V2|)2) per iteration

(ignoring poly-logarithmic factors) in the case of GraphOTC. This runtime is nearly-linear in the

dimension of couplings under consideration and in this sense is comparable to the state-of-the-art

for entropic OT algorithms (Peyré and Cuturi, 2019).

4.4 Examples

In this section, we compare GraphOTC to existing approaches for graph OT in a few examples.

4.4.1 Stochastic Block Models
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G1 G2 G3

Figure 4.1: Three registered graphs with block structure. G1 was generated from a stochastic block model,
G2 was obtained by removing two edges between blocks, and G3 was obtained by removing two edges within
blocks. The removed edges of each graph are highlighted with red dashed lines.

Table 4.1: Costs for graphs in Figure 4.1.

Algorithm
Chosen

Cost
G1 vs. G2 G1 vs. G3 Ratio

GraphOTC 0-1 0.0396 0.0265 1.49

GraphOTC cdeg 0.1718 0.1315 1.31

GW – 0.1150 0.1125 1.02

GOT – 0.0039 0.0019 2.05

Stochastic block models (Holland

et al., 1983) (SBMs) are a common model

for random graphs with group (or com-

munity) structure, and they have been

used in a variety of applications, including

community detection and graph cluster-

ing (Abbe, 2018; Lee and Wilkinson, 2019;

Abbe and Sandon, 2015). In an SBM,

nodes are grouped into blocks representing communities within the graph. Edges are drawn between

nodes independently at random with probabilities depending on whether the two nodes are within

the same block or not. Generally, connection probabilities are higher within blocks than between

blocks, leading to more densely connected subgraphs.

In order to develop some intuition about the behavior of various graph OT methods, we apply

the GraphOTC distance along with existing graph OT methods to a selection of three graphs with

block structure. The graphs of interest are depicted in Figure 4.1. G1 was drawn from an SBM

with 40 nodes and 4 blocks, G2 was obtained by removing two edges between blocks from G1, and

G3 was obtained by removing two edges within blocks from G1. Intuitively, the topology of a graph

with block structure will depend more strongly on edges between blocks than within blocks and

thus we regard G2 as more dissimilar to G1 than G3 is to G1. In Table 4.1, we provide the distances

computed by GraphOTC for two different costs, as well as distances computed by two other graph

OT methods known as GW (Maretic et al., 2020) and GOT (Maretic et al., 2019), respectively.

We find that GraphOTC and GOT regard G2 as more dissimilar from G1 than G3 is. On the other
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hand, GW detects little difference in the dissimilarity of the graphs. Similar results were observed

for other choices of removed edges.

4.4.2 Wheel Graphs

G1 G2 G3

Figure 4.2: Three registered wheel graphs. G1 is a wheel graph of order 16, G2 was obtained by removing
a spoke, and G3 was obtained by removing a wheel edge. The removed edges of each graph are highlighted
with red dashed lines. Table 4.2: Costs for graphs in Figure 4.2.

Algorithm
Chosen

Cost
G1 vs. G2 G1 vs. G3 Ratio

GraphOTC 0-1 0.0838 0.0607 1.38

GraphOTC cdeg 2.6552 2.5517 1.04

GW – 0.0512 0.0547 0.93

GOT – 0.0459 0.0736 0.62

A wheel graph of order n is a graph

containing a cycle of order n− 1 such that

every node in the cycle is connected to a

central node called a hub. The edges con-

tained in the cycle are called wheel edges,

and the edges connected to the hub are

called spoke edges or spokes for short. We denote a wheel graph with n nodes by Wn.

In Figure 4.2, we apply several different graph OT methods to two pairs of wheel-type graphs.

The graph G1 is a wheel graph W16, and G2 and G3 are both copies of G1 with one edge removed.

G2 was obtained by removing a spoke and G3 was generated by removing a wheel edge from G1.

Since the hub node is connected with all other nodes, it is desirable for the topology of the wheel

graph to depend more strongly on spokes than on wheel edges. Spokes contain the hub, while wheel

edges do not. Thus, we expect G3 to be more similar to G1 than G2 is to G1. In Table 4.2, we see

GraphOTC detects that spokes are more influential than wheel edges, while GW and GOT do not.

This provides some evidence that our approach accounts for differences in global structure when

comparing graphs.
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Figure 4.3: Point cloud alignment accuracies. We evaluate the alignment accuracies of each method in
three different regimes: high overlap, moderate overlap, and low overlap (defined formally in Appendix
B.1.1). Accuracies reported are the average observed over 5 random pairs of point clouds. The horizontal
dashed line in each plot indicates the accuracy of random guessing.

4.5 Experiments

In this section, we demonstrate the performance of GraphOTC on point cloud alignment and

graph classification tasks. Complete experimental details may be found in Appendix B.1. In

both experiments, we compare GraphOTC to the following graph OT baselines: standard optimal

transport cost (OT), Gromov-Wasserstein (GW) (Peyré et al., 2016), Fused Gromov-Wasserstein

(FGW) (Titouan et al., 2019; Vayer et al., 2020), and Coordinated Optimal Transport (COPT)

(Dong and Sawin, 2020). We remark that GOT (Maretic et al., 2020) solves an optimization problem

which is nearly identical to COPT, so we omit it from our comparison. Code for reproducing the

experiments may be found at https://github.com/oconnor-kevin/GraphOTC.

4.5.1 Point Cloud Alignment

In our first experiment, we consider the task of aligning graphs derived from point clouds. We

consider randomly generated point clouds D1 = {x1,1, ..., x1,N1} and D2 = {x2,1, ..., x2,N2} in R3,

independently drawn from a 4-component Gaussian mixture model as described in Appendix B.1.1.

Given the point clouds D1 and D2, the graph G1 = (V1, E1, w1) is defined to be the graph with

vertex set V1 = D1, with edges and edge weights chosen as follows. Let λ ≥ 0 and w̃1 ∈ R|V1|×|V1| be

the matrix such that for all vj , vk ∈ V1, let w̃1(vj , vk) = −λ‖x1,j−x1,k‖2. In particular, λ allows one

to tune the relative importance of the pairwise distances in determining the edge weights. If λ = 0,
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then all edges are given equal weight, while as λ becomes large, only edges between points that

are very close to one another are given a non-negligible weight. Next, let w1 be the edge weights

obtained by rescaling the weights w̃1 to lie in the interval [0, 1] and then setting all weights that fall

below 0.1 to 0. Finally, we remove all edges with weight equal to 0. The graph G2 corresponding

to the other point cloud is constructed in the same way with the same λ.

In each iteration, we generate two graphs G1 and G2 as described above and apply each of the

aforementioned graph OT methods to align the two graphs. Each method returns a soft alignment

of the vertex sets V1 and V2 in the form of a coupling π ∈ Π(p, q). Similarly, all methods other than

COPT return an alignment of edges in the form of a 2-step coupling π2-step ∈ M((V1 × V2)2). In

the case of GW and FGW, π2-step = π ⊗ π ∈ Π(p⊗ p, q ⊗ q) while for GraphOTC, π2-step = λ�R ∈

Π(p� P, q �Q), for some (λ,R) in the OTC constraint set.

In Figure 4.3, we plot the vertex and edge alignment accuracies for each of the methods tested

in the case λ = 10−2. Similar results were observed for other values of λ in {10−5, 10−4, ..., 10−1}.

Vertex alignment accuracy was assessed by summing the mass of the optimal coupling of the two

graphs for pairs of vertices that were generated from the same mixture components. We find that

OT, FGW, and GraphOTC perform roughly equivalently in the task of vertex alignment, while GW

and COPT exhibit worse performance. In particular, COPT is only able to achieve an alignment

accuracy roughly equivalent to random guessing. We suspect that this is because COPT is not able

to take the geometric information into account in aligning the point cloud graphs.

We also compared the edge alignment accuracies of each algorithm in each of the three overlap

regimes. Edge alignment accuracy was evaluated by summing the mass of the 2-step optimal cou-

pling π2-step for pairs of edges connecting identical mixture components. We notice that GraphOTC

outperforms FGW and GW from the standpoint of edge alignment. This provides further evidence

that GraphOTC is able to balance local information (distances between nodes) with higher order

structure in comparing the graphs of interest. Finally, we remark that the edge alignment accura-

cies were much lower than the vertex alignment accuracies observed for all algorithms. We suspect

that this is due at least in part to the increased difficulty of edge alignment. In particular, random

guessing for edge alignment yields an accuracy of 6.25% vs. 25% for vertex alignment.

88



4.5.2 Graph Classification

In our next experiment, we demonstrate the utility of GraphOTC in a graph classification

task. We consider a selection of benchmark graph datasets from (Kersting et al., 2016) containing

discrete vertex attributes as well as a class label for every graph. This collection of datasets includes

AIDS (Riesen and Bunke, 2008), BZR (Sutherland et al., 2003), Cuneiform (Kriege et al., 2018),

MCF-7 (Yan), MOLT-4 (Yan), MUTAG (Debnath et al., 1991), and Yeast (Yan). We obtain a cost

function from the vertex attributes by letting the cost for a pair of vertices be equal to 0 if their

labels are identical and 1 otherwise. Using this cost function, we fit a simple 5-nearest neighbor

classifier using each of the graph OT costs to a randomly-sampled training set of graphs consisting

of 80% of the data. In Table 4.3, we report the average classification accuracy observed on the

held-out test set for each graph OT cost and dataset over 5 random samplings of the training and

test sets.

Table 4.3: 5-nearest neighbor classification accuracies for graphs with discrete node attributes. Average
accuracies observed over 5 random samplings of the training and test sets are reported along with their
standard deviation.

Algorithm AIDS BZR Cuneiform MCF-7 MOLT-4 MUTAG Yeast

GraphOTC 88.0± 4.9 84.8 ± 6.6 73.2 ± 7.8 92.8± 4.2 92.0 ± 2.0 85.4 ± 7.1 90.8± 6.4
OT 84.4± 6.1 76.4± 4.6 71.3± 7.7 93.6 ± 3.3 92.0 ± 2.0 63.2± 7.3 91.2± 7.0
GW 98.8± 1.8 78.0± 8.5 12.8± 4.6 93.6 ± 3.3 91.6± 2.6 81.6± 7.0 91.6 ± 6.2

FGW 99.2 ± 1.1 80.4± 7.4 71.7± 7.2 92.8± 4.2 91.2± 2.3 83.8± 8.3 90.0± 5.5
COPT 98.0± 1.4 73.6± 7.9 16.6± 3.1 92.4± 4.8 91.6± 2.6 80.0± 5.6 90.4± 6.7

In Table 4.3, we see that GraphOTC outperforms the baseline methods in several cases. We

emphasize that GraphOTC is competitive with other graph OT methods without the need for tuning

any hyperparameters. This suggests that GraphOTC sufficiently captures important differences

among the graphs of interest by default and provides further support for the proposed approach.

When taking standard deviations into account, we do not see significant differences in performance

between the algorithms in most cases. Therefore, it would be helpful to perform a more detailed

study in the future with a greater number of training-test set randomizations.
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4.6 FusedOTC

In this section, we describe a more general framework of graph OT problems that includes

both GraphOTC and OT of the stationary distributions as extremal cases. This more general

framework is analogous to the Fused Gromov-Wasserstein distance proposed in (Titouan et al.,

2019). Specifically, in order to more flexibly capture global and local differences in the graphs of

interest, we augment the GraphOTC objective, adding a term that penalizes changes in edge weights

(as in GW). We refer to the resulting graph OT problem as FusedOTC. We show in Theorem 4.2

that one may recover both the GraphOTC and standard OT costs as special cases of FusedOTC

by taking appropriate limits.

Let α ∈ [0, 1] and let p ∈ ∆|V1| and q ∈ ∆|V2| be the stationary distributions of the chains

P and Q. The Fused Gromov-Wasserstein (FGW) problem (Titouan et al., 2019) for graphs

G1 = (V1, E1, w1) and G2 = (V2, E2, w2) may be written in a simplified form as

dFGW
α (G1,G2) = min {α〈π, c〉+ (1− α)〈π ⊗ π,E〉 : π ∈ Π(p, q)} , (4.4)

where E ∈ R|V1||V2|×|V1||V2| is the matrix satisfying E((u, v), (u′, v′)) = |w1(u, u′)− w2(v, v′)|. Note

that compared to the standard OT distance between p and q, the objective in Problem (4.4) includes

an additional term penalizing changes in edge weights. Depending on one’s choice of α, the FGW

problem will prioritize coupling similar vertices or similar edge weights. In the case that α = 1, one

recovers the standard OT problem for marginals p and q and cost c, while in the case that α = 0,

one recovers the Gromov-Wasserstein problem for graphs G1 and G2.

We may extend the flexibility of the FGW problem to GraphOTC in a straightforward manner,

yielding a graph OT problem that can adaptively balance expected cost with correct edge coupling

while taking global graph structure into account. We refer to this problem as the FusedOTC

problem. Fixing parameters α ∈ [0, 1] and τ ∈ N, the FusedOTC problem is defined as

dτ,α(G1,G2) = min
{
α〈λ, c〉+ (1− α)〈λ�R,E〉 : R ∈ ΠTC(P τ , Qτ ), λR = λ, λ ∈ ∆|V1|×|V2|

}
.

The FusedOTC problem is highly flexible and generalizes both the GraphOTC problem as well

as the standard OT problem between the stationary distributions of the chains P and Q. In the
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case α = 1 and τ = 1, we recover the GraphOTC problem, while in the case α = 0 and τ ∈ N,

we obtain a new graph OT problem that is independent of the cost c. Relying on basic results in

Markov chain theory, we expect that in the limit τ →∞, the chains P τ and Qτ become IID. In this

limit and with α = 1, we recover the Wasserstein distance (dW) between the stationary distributions

p ∈ ∆|V1| and q ∈ ∆|V2| of the Markov chains P and Q. These properties are formalized in the

following theorem, whose proof appears in Section 4.8.

Theorem 4.2. The FusedOTC cost dτ,α satisfies the following:

• lim
α→1

d1,α(G1,G2) = d(G1,G2) • lim
(τ,α)→(∞,1)

dτ,α(G1,G2) = dW(G1,G2)

4.7 Discussion

In this chapter, we proposed the GraphOTC problem for comparing and aligning graphs. This

new approach to graph OT applies ideas from constrained OT for Markov chains to the random

walks associated to the graphs. In theory and practice, we demonstrated that GraphOTC balances

differences in both global and local structure. In synthetic and real data experiments, we showed

that GraphOTC exhibits equal or better performance to state-of-the-art graph OT methods in

both comparison and alignment tasks. We also described a more flexible framework for graph OT

known as FusedOTC, from which one may recover both GraphOTC as well as standard OT as

special cases. Future work may aim to develop computationally tractable algorithms for solving

the FusedOTC problem and explore principled means of selecting the hyperparameters α and τ in

practice.

Graph-structured data may be found in a wide variety of application areas. The GraphOTC

problem offers a novel approach to studying this data from the perspective of Markov chains and

optimal transport. We showed that GraphOTC achieves the state-of-the-art in graph OT for a 5-

nearest neighbor classification task for several real datasets including BZR, MOLT-4, and MUTAG.

Graphs in each of these datasets describe molecular structure for different compounds of interest.

Consequently, GraphOTC may find application in this area, enabling practitioners to compare and

align molecules. Potential applications beyond biochemistry might include the analysis of social

networks or protein-protein interaction networks. While GraphOTC does not present any direct
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opportunities for negative societal impacts, indirect negative effects are possible in each of the

potential applications mentioned.

This study has several limitations. While GraphOTC performs well in the experiments pre-

sented here, other methods may be better suited to particular tasks. Additionally, further experi-

ments are necessary to characterize the performance of GraphOTC fully. Lastly, we note that all

of the currently available graph OT methods, including GraphOTC, may present computational

challenges for large graphs.

4.8 Proofs

In this section, we prove Theorems 4.1 and 4.2.

4.8.1 Proof of Theorem 4.1

We begin by proving Theorem 4.1, concluding that the GraphOTC cost is a metric on a certain

set of equivalence classes of graphs. We will first prove the following lemma, which states that two

graphs are equivalent if and only if they have identical associated transition matrices.

Lemma 4.3. For two graphs G1 = (V,E,w1) and G2 = (V,E,w2) with associated Markov transition

matrices P and Q, G1 ∼ G2 if and only if P and Q are equal.

Proof. Suppose first that G1 ∼ G2 and thus there exists C such that w1(u, v) = w2(u, v) + C for

every (u, v) ∈ E. Then clearly the two transition matrices P and Q associated with G1 and G2 are

equal. Now suppose that P and Q are equal. Then for every (u, v) ∈ E, we have

exp{w1(u, v)}∑
ṽ:(u,ṽ)∈E exp{w1(u, ṽ)}

=
exp{w2(u, v)}∑

ṽ:(u,ṽ)∈E exp{w2(u, ṽ)}
.

Written another way, we have w1(u, v) = w2(u, v) + Cu, where

Cu = ln

(∑
ṽ:(u,ṽ)∈E exp{w1(u, ṽ)}∑
ṽ:(u,ṽ)∈E exp{w2(u, ṽ)}

)
.

Since G1 and G2 are undirected, (v, u) ∈ E and a similar argument will establish that w1(v, u) =

w2(v, u)+Cv. The undirectedness of G1 and G2 also implies that w1(u, v) = w1(v, u) and w2(u, v) =

w2(v, u). It follows that w1(v, u) = w2(v, u)+Cu and thus Cu = Cv. Since G1 and G2 are connected,
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there exists a sequence of edges (u1, u2), (u2, u3), (un−1, un) ∈ E such that u ∈ {u1, ..., un} for every

u ∈ V . Iterating the arguments above for all edges in this sequence we conclude that Cu = Cv for

every u, v ∈ V . It follows that w1(u, v) = w2(u, v) + C for some constant C that is independent of

u and v. Then by definition, G1 ∼ G2 and the claim is proven.

Before proceeding with the proof of Theorem 4.1, we introduce some necessary background.

We will review the optimal joining distance S, introduced in Chapter 1. Informally, for stationary

processes X and Y taking values in finite sets X and Y, the optimal joining distance S(c;X,Y ) with

respect to c : X × Y → R is obtained by minimizing E[c(X̃, Ỹ )] over the set of jointly stationary

paired processes (X̃, Ỹ ) taking values in X × Y such that X̃ and Ỹ are equal in distribution to

X and Y , respectively. Such processes are referred to as joinings of X and Y (Furstenberg, 1967;

de la Rue, 2020). Since every transition coupling of stationary Markov chains P and Q is also a

joining of P and Q, we have

S(c;P,Q) ≤ min
{
〈λ, c〉 : R ∈ ΠTC(P,Q), λR = λ, λ ∈ ∆|X |×|Y|

}
.

In particular, if the chains P and Q are associated with graphs G1 = (X , E1, w1) and G2 =

(Y, E2, w2), S(c;P,Q) ≤ d(G1,G2). Finally, we remark that in the case that X = Y, S(c; ·, ·)

is known to satisfy the properties of a metric when c does (Gray et al., 1975).

Theorem 4.1. Suppose that the cost function c : V × V → R+ satisfies the properties of a metric

on V . Then d is a metric on the equivalence classes defined by ∼.

Proof. The symmetry of d is clear. Moreover, it was established in Chapter 3 that the optimal

transition coupling cost satisfies the triangle inequality for Markov chains when the cost c does.

Thus d satisfies the triangle inequality for graphs. So it suffices to show that d(G1,G2) = 0 if and

only if G1 ∼ G2. Let G1 and G2 be graphs satisfying G1 ∼ G2 with associated transition matrices P

and Q. By Lemma 4.3, P and Q are equal and clearly d(G1,G2) = 0 since 〈λ, c〉 = 0 is achieved

by λ satisfying λ(u, v) = p(u)δ(u = v), which is stationary for the transition coupling satisfying

R((u, v), (u′, v′)) = P (u, u′)δ(u = v)δ(u′ = v′). Now suppose that G1 � G2. Again by Lemma 4.3,

the transition matrices P and Q are distinct and consequently so are their associated stationary

Markov chains. Since it defines a distance on stationary processes, the optimal joining distance
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satisfies S(c;P,Q) > 0. Since the optimal transition coupling cost is lower bounded by the optimal

joining distance S(c; ·, ·), it follows that

0 < S(c;P,Q) ≤ min
{
〈λ, c〉 : R ∈ ΠTC(P,Q), λR = λ, λ ∈ ∆|V |×|V |

}
= d(G1,G2).

Thus d(G1,G2) = 0 if and only if G1 ∼ G2 and the proof is concluded.

4.8.2 Proof of Theorem 4.2

Next we prove Theorem 4.2. Our proof follows an argument similar to the proof of Theorem

3.13 in Chapter 3, which establishes a stability result for the OTC problem. Our proof utilizes

a well-known stability result, detailed in Theorem A below, for optimization problems satisfying

certain conditions,. Before stating this result, we fix some notation and definitions. Let Z and U

be Polish spaces corresponding to a set of possible solutions and a set of parameters, respectively.

Then for a function f : Z ×U → R and feasible set Φ : U → 2Z , consider the optimization problem

indexed by a parameter u ∈ U ,

min{f(z, u) : z ∈ Φ(u)}. (4.5)

Note that f(·, u) : Z → R describes the objective to be minimized and Φ(u) ⊂ Z represents the

feasible set of Problem (4.5). We will call a set V ⊂ Z a neighborhood of a subset W ⊂ Z if

W ⊂ intV. Neighborhoods in U will be defined similarly. Now we may state the key result for the

proof of Theorem 4.2.

Theorem A ((Bonnans and Shapiro, 2013, Proposition 4.4)). Let u0 be a given point in the

parameter space U . Suppose that (i) the function f(z, u) is continuous on Z × U , (ii) the graph of

the multifunction Φ(·) is a closed subset of U ×Z, (iii) there exists α ∈ R and a compact set C ⊂ Z

such that for every u in a neighborhood of u0, the level set {z ∈ Φ(u) : f(z, u) ≤ α} is nonempty

and contained in C, (iv) for any neighborhood VZ of the set argminz∈Φ(u0) f(z, u0) there exists a

neighborhood VU of u0 such that VZ ∩ Φ(u) 6= ∅ for all u ∈ VU . Then the optimal value function

u 7→ minz∈Φ(u) f(z, u) is continuous at u = u0 and the multifunction u 7→ argminz∈Φ(u) f(z, u) is

upper semicontinuous at u0.
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In order to simplify notation going forward, we will assume without loss of generality that the

vertex sets V1 and V2 satisfy |V1| = |V2| = d for some d ∈ N. Moreover, we will make use of the fact

that the set of d × d (resp. d2 × d2) transition matrices may be identified with the set ∆d
d (resp.

∆d2

d2). Now, let

Z =
{

(λ,R) ∈ ∆d2 ×∆d2

d2 : R ∈ ΠTC(P,Q) for some P,Q ∈ ∆d
d, λR = λ

}

be the union of all feasible sets for the FusedOTC problem and U = cl{(P τ , Qτ ) : τ ∈ N} × [0, 1]

be the set of all valid pairs (P τ , Qτ , α) including the limit (P ,Q, α) where P = limτ→∞ P
τ and

Q = limτ→∞Q
τ . Note that since P and Q are aperiodic and irreducible, P and Q exist and have

rows equal to the stationary distributions p and q ∈ ∆d of P and Q, respectively. One may easily

verify that Z and U are compact subsets of Rd2 × Rd2×d2 and Rd×d × Rd×d × R, respectively. The

objective function f(·, ·) is identified with the map

((λ,R), (P τ , Qτ , α)) 7→ α〈c, λ〉+ (1− α)〈E, λ�R〉,

which does not depend on P τ or Qτ . We will refer to the constraint functions for the FusedOTC

problem by Φ : U → 2Z . In particular, we let

Φ((P τ , Qτ , α)) =
{

(λ,R) ∈ ∆d2 ×∆d2

d2 : R ∈ ΠTC(P τ , Qτ ), λR = λ, λ ∈ ∆d2

}
.

Now we may proceed with the proof of Theorem 4.2.

Theorem 4.2. The FusedOTC cost dτ,α satisfies the following:

• lim
α→1

d1,α(G1,G2) = d(G1,G2) • lim
(τ,α)→(∞,1)

dτ,α(G1,G2) = dW(G1,G2)

Proof. We begin by proving the second claim. It will suffice to check the conditions of Theorem A for

the FusedOTC problem at the point u0 = (P ,Q, 1) ∈ U . First, (i) clearly holds since the objective

f(·, ·) is quadratic in (λ,R), linear in α, and does not depend on P τ or Qτ . Next, we will show that

the graph of Φ(·) is a closed subset of U×Z. Fix a sequence {(Pn, Qn, αn, λn, Rn)}n≥1 ⊂ graph Φ(·).

As a subset of the compact set ∆d
d×∆d

d×[0, 1]×∆d2×∆d2

d2 , it has a subsequence, which we also label
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as {(Pn, Qn, αn, λn, Rn)}n≥1 converging to some (P ′, Q′, α′, λ′, R′) ∈ ∆d
d ×∆d

d × [0, 1]×∆d2 ×∆d2

d2 .

Taking limits of the linear equations Rn ∈ ΠTC(Pn, Qn) and λnRn = λn, we conclude that R′ ∈

ΠTC(P ′, Q′) and λ′R′ = λ′. Thus (P ′, Q′, α′, λ′, R′) ∈ graph Φ(·) and (ii) holds. To show that (iii) is

satisfied, note that one may let a = ‖c‖∞+‖E‖∞ and use the fact that the entire set Z is compact.

Finally, we will show that (iv) is satisfied. Let VZ ⊂ Z be a neighborhood of argminz∈Φ(u0) f(z, u0).

Then define the neighborhood VU of u0 = (P ,Q, 1) as

VU := {(P,Q) ∈ ∆d
d ×∆d

d : R ∈ ΠTC(P,Q) for some (λ,R) ∈ VZ} × {1}.

Note that VU is nonempty by the non-emptiness of VZ and the definition of Z. Moreover, VZ ∩

Φ(u) 6= ∅ for all u ∈ VU by construction. Thus all the conditions of Theorem A are satisfied and we

conclude that u 7→ minz∈Φ(u) f(z, u) is continuous at u0 = (P ,Q, 1). Letting u(τ, α) = (P τ , Qτ , α),

the continuity of u(·, ·) implies that the map (τ, α) 7→ minz∈Φ(u(τ,α)) f(z, u(τ, α)) satisfies

lim
(τ,α)→(∞,1)

dτ,α(G1,G2) = lim
(τ,α)→(∞,1)

min
z∈Φ(u(τ,α))

f(z, u(τ, α)) = min
z∈Φ(P ,Q,1)

f(z, (P ,Q, 1)).

In particular,

lim
(τ,α)→(∞,1)

dτ,α(G1,G2) = min
{
〈λ, c〉 : R ∈ ΠTC(P ,Q), λR = λ, λ ∈ ∆|V1|×|V2|

}
.

Since the chains associated with P and Q are IID, the OTC cost between them is simply the

standard OT cost between their respective stationary distributions p and q. As a consequence, we

find that

lim
(τ,α)→(∞,1)

dτ,α(G1,G2) = dW(G1,G2).

Using the same line of reasoning as above, one may establish that the map u 7→ minz∈Φ(u) f(z, u)

is continuous at u0 = (P,Q, α) for any α ∈ [0, 1]. Letting u(α) = (P,Q, α), the continuity of the

u(·) implies that α 7→ minz∈Φ(u(α)) f(z, u(α)) is continuous at 1 and thus

lim
α→1

d1,α(G1,G2) = lim
α→1

min
z∈Φ(u(α))

f(z, u(α)) = min
z∈Φ(u(1))

f(z, u(1)) = d(G1,G2).

This concludes the proof.
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CHAPTER 5

Consistent Estimation of Optimal Joinings

In this chapter, we consider the estimation of an optimal joining of two stationary processes

from dependent observations. In the interest of computational tractability, we also introduce the

entropic optimal joining problem, a solution of which can be estimated with improved computational

efficiency. We show that these estimates are consistent in the large sample limit when the stationary

processes of interest are ergodic. Finally, when the processes of interest satisfy a certain mixing

condition, we prove a bound on the expected error of the estimated optimal joining cost.

5.1 Introduction

In this chapter, we investigate optimal transport for finite alphabet stationary ergodic processes,

together with cost functions that measure differences at a single time point (or finitely many

time points). Recall from Chapters 1 and 2 that optimal transport for stationary processes is a

special case of the ordinary optimal transport problem in which the distributions of interest are

shift invariant measures on infinite product spaces (the sequence spaces associated with the given

processes). As such, existing methods and theory apply. However, it is easy to show that a coupling

of two stationary processes need not be stationary, and the same is true of optimal transport plans

(see Examples 1.1 and 1.2 in Chapter 1). To address these, and other, issues arising in the general

setting, we restrict our attention to stationary couplings of stationary processes, referred to as

joinings. This seemingly mild restriction has far reaching consequences.

The primary focus of this chapter is estimating an optimal joining, and the associated optimal

joining cost, of two finite alphabet stationary ergodic processes using n observations from each

process. Roughly speaking, we use the available observations to estimate the k-dimensional dis-

tribution of each process, find an optimal coupling of these k-dimensional estimates, and then use

this coupling to construct a joint process that is stationary.
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In order to ensure that the constructed process converges to an optimal joining, it is necessary

to balance estimating the k-dimensional distribution by letting the sample size n grow and learning

the dependence structure of the optimal joining by letting k grow. Thus the task of choosing an ap-

propriate sequence {k(n)} of block sizes indexed by sample size is critical for consistently estimating

an optimal joining. Under the stated assumptions, we show that there exists a sequence {k(n)}

for which the corresponding joint processes will converge to an optimal joining of the marginal

processes, and the expected cost of the joint processes will converge to the cost of the optimal

joining.

Under additional mixing assumptions on the observed processes, we identify an explicit growth

rate for k and obtain rates of convergence for estimates of the optimal joining cost. To the best of

our knowledge, these are the first finite-sample bounds for estimation of an optimal joining cost. In

the iid case, optimal joining and optimal transport coincide, and we recover existing, state-of-the-art

bounds for estimation of the optimal transport cost. As special cases of our results we obtain new,

finite-sample bounds for estimation of the d- and ρ-distances between stationary ergodic processes.

In recent years, there has been a substantial amount of work on regularized optimal transport,

in which the regularization is obtained by adding an entropic penalty to the usual optimal transport

cost. As with (unregularized) optimal transport, the regularized problem has been primarily studied

in static settings. In this work, we bring these ideas to a dynamic setting. More specifically, we

propose and analyze a regularized form of the optimal joining problem, which is obtained by adding

a penalty based on the entropy rate of a process to the expected cost. We then extend our estimation

scheme from the standard optimal joining problem to the regularized problem, and we establish

the consistency of the resulting estimates. Existing algorithms for computing regularized optimal

transport plans may be applied to compute the proposed estimates in the regularized case more

efficiently compared to the unregularized case.

The rest of the chapter is organized as follows. Background on optimal transport, optimal

joinings, some initial results, and related work are presented in the next section. In Section 5.3, we

detail the proposed estimation scheme for an optimal joining and its expected cost and state our

main consistency result. Statement of our finite sample error bound under mixing assumptions, and

a corollary, are presented in Section 5.4. In Section 5.5, we introduce the entropic optimal joining

problem and discuss how our estimation scheme and consistency result extend to this problem. We
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close with a discussion of our results in Section 5.6. Proofs of the main results are presented in

Section 5.7.

5.2 Preliminaries and First Results

In this section, we review some background on optimal transport and notation. Let U and V

be metric spaces let µ ∈ M(U) and ν ∈ M(V) be probability measures. Recall that the optimal

transport problem for µ and ν with respect to a non-negative cost function c : U × V → R+ is

defined by

T (c;µ, ν) = inf
π∈Π(µ,ν)

∫
c(u, v) dπ(u, v),

where Π(µ, ν) is the set of couplings of µ and ν. As noted previously, the optimal transport problem

is very general, and makes no assumptions about the structure of the sets U and V or the measures

µ and ν. Existing work has considered different choices of U and V, including finite dimensional

Euclidean spaces (Tolstikhin et al., 2018; Arjovsky et al., 2017), graphs (Xu et al., 2019a,b; Titouan

et al., 2019), trees (Wang et al., 2020), finite sets (Sommerfeld and Munk, 2018; Montrucchio and

Pistone, 2021), and sequence spaces (Kolesnikov and Zaev, 2017).

5.2.1 Couplings of Stationary Processes

Let X and Y be finite sets with their discrete topology, and let U = XN and V = YN be

associated sequence spaces. Each x = (x1, x2, . . .) ∈ U is an infinite sequence with entries in X ,

and each y = (y1, y2, . . .) ∈ V is an infinite sequence with entries in Y. Let σ : XN → XN be the

left-shift map on XN defined by σ(x1, x2, ...) = x2, x3, . . ., and note that σ is continuous under the

usual product topology on XN. A Borel measure µ ∈M(XN) is said to be stationary if µ◦σ−1 = µ.

A stationary measure µ is said to be ergodic if µ(A) ∈ {0, 1} for any measurable set A ⊂ XN such

that σ−1(A) = A. Let Ms(XN) denote the set of stationary Borel measures on XN. In the same

way we may define the left-shift τ : YN → YN and the corresponding set of stationary measures

Ms(YN) on YN.

Definition 5.1. Let γ be a measure on the sequence space UN where U is finite. For k ≥ 1,

let γk be the distribution of the first k coordinates of u = (u1, u2, . . .) under γ, that is, γk(B) =

γ(B × U × U × · · · ) for each B ⊆ Uk.
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It is helpful to recall the simple equivalence between stationary measures and stationary pro-

cesses. Each measure µ ∈ Ms(XN) corresponds to a stationary process X = X1, X2, . . . with

Xi ∈ X via the relation P(Xk
1 ∈ B) = µ(B × R × R × · · · ) for all B ⊆ X k and all k ≥ 1. If

µ is ergodic, so is the process X. In the same way, each measure ν ∈ Ms(YN) corresponds to a

stationary process Y = Y1, Y2, . . . with values in Y. If µ ∈ Ms(XN) and ν ∈ Ms(YN) give rise

to processes X and Y , respectively, then each coupling π ∈ Π(µ, ν) corresponds to a joint process

(X̃, Ỹ ) = (X̃1, Ỹ1), (X̃2, Ỹ2), . . . such that X̃
d
= X and Ỹ

d
= Y . With a slight abuse of notation, we

will use Π(X,Y ) to refer to the set of couplings of stationary processes X and Y . Importantly, the

definition of coupling does not require the joint process (X̃, Ỹ ) to be stationary.

In what follows we will consider a single letter cost function c : X ×Y → [0,∞) that is defined

on pairs of elements from X and Y. Note that c is necessarily bounded as X and Y are finite. By

considering sliding blocks, we can readily extend our presentation to cost functions depending on

any finite number of letters. Single (and finite) letter cost functions are the norm in information

theory, and are natural when making inferences about processes that are only partially observed.

Note that any continuous cost function c0 : XN×YN → [0,∞) defined on infinite sequences can be

uniformly well approximated by a finite letter cost function.

Any single letter cost function c : X × Y → [0,∞) can be extended to a cost function c0 :

XN × YN → [0,∞) on infinite sequences by defining c0(x,y) = c(x1, y1). In this case, the optimal

transport problem for stationary measures µ ∈Ms(XN) and ν ∈Ms(YN) can be written as

inf
π∈Π(µ,ν)

∫
c0 dπ = inf

π∈Π(µ,ν)

∫
c dπ1 = inf

(X̃,Ỹ )∈Π(X,Y )
Ec(X̃1, Ỹ1) (5.1)

where X and Y are the stationary processes associated with µ and ν respectively.

5.2.2 Joinings of Stationary Processes

Recall Example 1.2 from Chapter 1, which showed that the optimal transport cost between an

iid process and a deterministic process can be zero. This example illustrates an important feature

of the optimal transport problem for stationary processes: for a single letter cost function c, an

optimal coupling (X̃, Ỹ ) of processes X and Y need only align the first component of X̃ and Ỹ ; the

joint behavior of X̃ and Ỹ at subsequent time points is not important. Analogous remarks apply
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to finite letter costs. If X and Y represent discrete-time audio and video sequences, an optimal

coupling will sync these sequences at the initial time point, but will not be sensitive to differences

at subsequent time points. While the finite memory cost functions play a role in this behavior,

the examples above suggest that non-stationary couplings are also a problem. From a theoretical

and practical point of view, it is natural to restrict attention to couplings that share the broad

stochastic structure of the processes X and Y being coupled. This motivates the consideration of

stationary couplings, also known as joinings.

Definition 5.2. A probability measure λ is a joining of µ ∈ Ms(XN) and ν ∈ Ms(YN) if λ is a

coupling of µ and ν and is itself stationary, that is, λ ∈ Ms(XN × YN). The set of joinings of µ

and ν will be denoted by J (µ, ν).

Equivalently, a joining of two stationary processes X and Y is a coupling (X̃, Ỹ ) that is itself

stationary. Joinings were first introduced by Furstenberg (Furstenberg, 1967) and have been studied

extensively in the ergodic theory literature since that time; an overview and more details can be

found in Chapter 2. Note that the independent coupling µ⊗ ν is stationary and therefore J (µ, ν)

is non-empty.

Let c : X × Y → [0,∞) be a single letter cost function. Constraining the optimal transport

problem (5.1) to the set of stationary couplings, we obtain the optimal joining problem,

inf
λ∈J (µ,ν)

∫
c dλ1 = inf

(X̃,Ỹ )∈J (X,Y )
Ec(X̃1, Ỹ1) (5.2)

where X and Y are the stationary processes associated with µ and ν respectively. We will denote

the set of joinings attaining the infimum in (5.2) by Jmin(µ, ν), and the value of the infimum by

S(c;µ, ν). Elements of Jmin(µ, ν) will be called optimal joinings, and S(c;µ, ν) will be called the

optimal joining cost. The following proposition collects some standard properties of J (µ, ν) and

Jmin(µ, ν); for more details see (McGoff and Nobel, 2021) and the references therein.

Proposition 5.3. Under the stated assumptions, the set J (µ, ν) is non-empty, convex, and compact

in the weak topology, and its extreme points coincide with ergodic joinings of µ and ν. Moreover,

the set Jmin(µ, ν) of optimal joinings of µ and ν is non-empty, convex, and compact in the weak

topology, and its extreme points coincide with the set of ergodic optimal joinings.
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There are close connections between the optimal joining problem and the optimal transport

problem using long run average cost. For k ≥ 1 let ck : X k × Yk → R+ be the k-step cumulative

cost defined by ck(x
k
1, y

k
1 ) =

∑k
`=1 c(x`, y`), and let c(x,y) = lim supk→∞ k

−1ck(x
k
1, y

k
1 ).

Proposition 5.4. Let X and Y be finite and µ ∈Ms(XN) and ν ∈Ms(YN) be ergodic. Then

S(c;µ, ν) = lim
k→∞

k−1 T (ck;µk, νk) = T (c;µ, ν).

The first equality in Proposition 5.4 was proven in (Gray et al., 1975) in the special case where

X = Y and c is a metric; a straightforward extension of their arguments establishes the general

case above. The second equality is proven in Section 5.7 using cyclical monotonicity of optimal

couplings.

Proposition 5.4 shows that the optimal joining cost may be obtained as a limit of k-step optimal

transport costs, and that this limit is equal to the optimal transport cost under the long term

average cost function. In this sense, the optimal joining problem seeks couplings that have good

average behavior, relative to the single letter cost, over the complete history of the joint process.

This is a natural shift in objective when considering optimal transport for stationary processes. In

comparison to the optimal transport problem T (c;µ, ν), the optimal joining problem circumvents

the need to work with the averaged cost c, which may be highly irregular. On the other hand, the

set of joinings J (µ, ν) has relatively simple structure (i.e. compactness, convexity) and leads to an

optimization problem that is easier to study.

Remark 5.5. Proposition 5.4 implies that the optimal joining problem S(c;µ, ν) satisfies Kan-

torovich duality with respect to c. In particular,

S(c;µ, ν) = sup
(f,g)∈L1(µ)×L1(ν)

{∫
f dµ+

∫
g dν : f ⊕ g ≤ c

}
. (5.3)

The only difference between (5.3) and the standard Kantorovich dual problem is the use of c instead

of c. More details on Kantorovich duality can be found in (Villani, 2008) and (Santambrogio, 2015).

While we do not make use of the dual optimal joining problem in this chapter, we expect that it

may be of use in future analyses.
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5.2.3 Existing Work in Estimation for Stationary Optimal Transport

The problem of estimating optimal joinings appears to have not been considered explicitly in

the literature. However, the special case of estimating the d-distance between two ergodic processes

from finite observations has been considered. The focus of this line of work has been in finding

universal estimation schemes that are consistent for some class of ergodic processes. In terms of our

main result, this is analogous to seeking a single choice of sequence {k(n)} such that the desired

convergence holds uniformly over all pairs µ and ν from some set. The estimates we propose are

an extension of those proposed in (Ornstein and Weiss, 1990) for the d-distance. In that previous

work, it was shown that the scheme with k(n) = o(log n) is consistent whenever µ and ν are B-

processes. Later work studied the limits of this estimation scheme (Marton and Shields, 1994) and

the properties of processes for which the scheme is consistent (Ornstein and Shields, 1994). In this

context, our consistency results allow for relatively weak assumptions on µ and ν (ergodicity) at the

expense of loss of control over the sequence {k(n)}. Furthermore, our finite-sample results allow

one to identify explicit sequences {k(n)} and corresponding error bounds under additional mixing

conditions on µ and ν. We also extend our results to the setting with entropic penalization.

5.3 Estimation of an Optimal Joining and Its Expected Cost

Before describing the proposed estimation scheme, we first develop some intuition for our

approach. In words, Proposition 5.4 states that the optimal transport cost between k-dimensional

distributions of µ and ν converges to the optimal joining cost. Intuitively, we expect that for

large k, a “good” estimate of 1
k T (ck;µk, νk) will be a “good” estimate of the optimal joining cost

S(c;µ, ν). Furthermore, a stationary process measure with expected cost equal to the estimated

optimal joining cost should be “close” to the set of optimal joinings Jmin(µ, ν).

Building off of this intuition, we propose an estimation scheme that is comprised of three steps.

First, we construct k-block empirical measures from the observations. The resulting probability

measures act as empirical estimates of µk and νk. Second, we select an optimal transport plan

between the empirical k-block measures with respect to ck. The expected cost of this coupling will

be an empirical proxy for T (ck;µk, νk). Finally, we construct a stationary process measure from the
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coupling in the second step. This is done via the k-block process construction, described formally

in Definition 5.6.

Definition 5.6 ( (Block process construction)). Let U be a finite space and k ≥ 1. Define Λ̃k :

M(Uk) → M(UN) to be the map that takes a probability measure γk ∈ M(Uk) to the unique

probability measure on UN obtained by independently concatenating γk to itself infinitely many

times. Formally, for any `k-dimensional cylinder set C = C1 × · · · × C`k × U × · · · ⊂ UN,

Λ̃k[γk](C) =
`−1∏
i=0

γk(C
ik+k
ik+1 ).

Moreover, define Λk : M(Uk) → Ms(UN) to be the map defined by randomizing the start of the

output of Λ̃k over the first k coordinates. Formally, for any set U ⊂ UN,

Λk[γk](U) =
1

k

k−1∑
`=0

Λ̃k[γk](U ` × U).

We will refer to Λ̃k[γk] as the non-stationary k-block process induced by γk and Λk[γk] as the

k-block process induced by γk.

Remark 5.7. For simplicity, we will use the same notation for the block process construction defined

in Definition 5.6 regardless of the alphabet of the processes under consideration. As such, Λk[µk]

and Λk[νk] are well-defined.

The block process construction is standard in ergodic theory (Ornstein and Weiss, 1990; Shields,

1996) and ensures that the resulting process is stationary. Moreover, the block process constructed

from a coupling is necessarily a joining of the block processes constructed from the coupling’s

marginal measures. Thus, we may use it to construct an estimate of an optimal joining of µ and

ν. The details of the estimation scheme are as follows.

Step 1: (Construct empirical block measures) For k ∈ {1, ..., n}, define the probability measure

µ̂k,n := µ̂k[X
n
1 ] ∈M(X k) by

µ̂k,n(xk1) =
1

n− k + 1

n−k∑
`=0

δ(xk1 = X`+k
`+1 ),
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for every xk1 ∈ X k. This is referred to as the k-block empirical measure constructed

from observations Xn
1 . Let ν̂k,n be the k-block empirical measure constructed from Y n

1

in the analogous manner. Note that µ̂k,n and ν̂k,n are probability measures on X k and

Yk, respectively, and may be thought of as estimates of the k-dimensional distributions

of µ and ν, written as µk and νk.

Step 2: (Find optimal coupling) After constructing µ̂k,n and ν̂k,n, we find an optimal coupling

of the two with respect to the k-step total cost ck. Formally, let π̂k,n := π̂k[X
n
1 , Y

n
1 ] ∈

M(X k × Yk) be any probability measure satisfying

π̂k,n ∈ argmin
π∈Π(µ̂k,n,ν̂k,n)

∫
ck dπk.

Thus, π̂k,n has expected k-step cost equal to T (ck; µ̂k,n, ν̂k,n). To simplify notation, we

define ρ̂k(X
n
1 , Y

n
1 ) := 1

k T (ck; µ̂k,n, ν̂k,n).

Step 3: (Construct stationary process measure) Given π̂k,n, we let λ̂k[Xn
1 , Y

n
1 ] ∈Ms(XN×YN)

be the stationary process measure such that λ̂k[Xn
1 , Y

n
1 ] = Λk[π̂k,n].

We propose λ̂k[Xn
1 , Y

n
1 ] as the estimated optimal joining and ρ̂k(X

n
1 , Y

n
1 ) as the estimated op-

timal joining cost, respectively. To simplify notation, we will occasionally write λ̂k,n for λ̂k[Xn
1 , Y

n
1 ]

and ρ̂k,n for ρ̂k(X
n
1 , Y

n
1 ). We establish in Appendix C.1 that λ̂k,n is in fact a joining of empirical

estimates of µ and ν with expected cost equal to ρ̂k,n. This ensures that, after establishing that ρ̂k,n

converges to the optimal joining cost of µ and ν, λ̂k,n will converge to the set of optimal joinings.

Remark 5.8. We note that other constructions are possible in Step 3. For example, one may

construct a finite-order, stationary Markov process from π̂k,n. However, the expected cost of a

stationary Markov chain constructed from π̂k,n will generally not be equal to ρ̂k,n and may require

more care to control. On the other hand, the approach detailed in Step 3 enables us to control the

expected cost of the constructed process λ̂k,n, namely ρ̂k,n, which we show converges to the optimal

joining cost.

Remark 5.9. Note that the optimal transport distance between k-block measures was proposed

as an extension of optimal transport to stationary time series in (Muskulus and Verduyn-Lunel,
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2011). However, that work did not consider the relationship of this approach to the optimal joining

problem or the consistency of the proposed distance.

5.3.1 Consistency

Having detailed the proposed estimators λ̂k,n and ρ̂k,n, we now consider their behavior as the

length n of the observed sequences goes to infinity. Intuitively, for fixed k we expect that when n is

large, ρ̂k,n will be close to 1
k T (ck;µk, νk). However, as Proposition 5.4 suggests, this quantity will

only be close to the optimal joining cost when k is large. Thus in order for our estimates to converge

to the desired targets, we must let k grow with n. In particular, we consider sequences of estimates

{λ̂k(n),n}n≥1 and {ρ̂k(n),n}n≥1 for some sequence {k(n)} such that k(n)→∞ and ask whether the

two sequences converge to an optimal joining and the optimal joining cost, respectively. We show

in Theorem 5.10 that under the stated assumptions, such a sequence {k(n)} necessarily exists.

We will say that a sequence of Borel probability measures {γn} ⊂ M(U) converges weakly to

a set Γ ⊂ M(U), written as γn ⇒ Γ, if every subsequence of {γn} contains a further subsequence

that converges weakly to an element of Γ. Moreover, to simplify notation going forward, we will

occasionally write k for k(n) when there is no risk of confusion.

Theorem 5.10. Let X and Y be finite and µ ∈ Ms(XN) and ν ∈ Ms(YN) be ergodic. Let P

be any coupling of µ and ν. Then there exists a sequence {k(n)} with k(n) → ∞ such that with

P-probability one, ρ̂k,n → S(c;µ, ν) and λ̂k,n ⇒ Jmin(µ, ν) as n→∞.

In the special case that X = Y, c is 0-1 cost, and µ is a stationary coding of an iid process, the

first conclusion of Theorem 5.10 has been established for k(n) = dlog|X | ne (Ornstein and Weiss,

1990; Ornstein and Shields, 1994). In relation to that result, Theorem 5.10 addresses more general

pairs of measures (requiring only ergodicity) but does not provide specific information about the

sequence {k(n)}.

Remark 5.11. The arguments underlying the proof of Theorem 5.10 may be adapted in a straight-

forward way to show that the proposed estimates are consistent more generally whenever X and Y

are compact and c is continuous. We omit the proof of the result at this level of generality in order

to keep the stated assumptions consistent throughout the paper.
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5.3.2 Choice of k(n)

The conclusion of Theorem 5.10 begs the question of how the choice of the sequence {k(n)}

depends on the marginal processes µ and ν. In the proof of Theorem 5.10, we find that the sequence

{k(n)} is related to a notion of c-admissibility. Before defining c-admissibility and detailing its

relationship to the choice of {k(n)}, we require the following definition.

Definition 5.12. Let X and Y be finite and let c : X × Y → R+ be a cost function. Then the

X -adapted cost cX : X × X → R+ is defined by

cX (x, x′) = sup
y∈Y
|c(x, y)− c(x′, y)|,

with the Y-adapted cost cY : Y × Y → R+ defined in the analogous way.

Adapted cost functions capture the variability of the cost in each of its arguments. In particular,

the adapted cost arises naturally when studying the Lipschitz properties of the optimal transport

and optimal joining costs (see Lemmas 5.25 and 5.29). We will use cXk : X k × X k → R+ and

cYk : Yk × Yk → R+ to denote the X - and Y-adapted costs summed over k coordinates. Formally,

for any xk1, x̃
k
1 ∈ X k, we let cXk (xk1, x̃

k
1) =

∑k
`=1 c

X
k (x`, x̃`) and define cYk analogously. Note that

(X k, 1
kc
X
k ) and (Yk, 1

kc
Y
k ) are well-defined pseudometric spaces for every k ≥ 1.

Definition 5.13. Let X and Y be finite and c : X × Y → R+ be a cost function. We will say that

a nondecreasing sequence {k(n)} with k(n)→∞ is c-admissible for µ ∈Ms(XN) if

µ

({
x ∈ XN : lim

n→∞

1

k
T (cXk ; µ̂k[x

n
1 ], µk) = 0

})
= 1.

We define c-admissibility for ν ∈Ms(YN) in the analogous way.

The c-admissibility property quantifies the rate at which the finite dimensional distributions of a

process may be coupled to the empirical distributions of the process. To the best of our knowledge,

c-admissibility has not appeared previously in the literature, although it may be regarding as a

weakening of the notions of admissibility and d-admissibility discussed in (Shields, 1996). We note

that certain sequences growing like O(log n) are known to be admissible for aperiodic Markov chains

(Marton and Shields, 1994).
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In the proof of the Theorem 5.10, we find that the sequence {k(n)} for which the λ̂k,n and ρ̂k,n

are consistent is related to c-admissibility as follows.

Proposition 5.14. Under the hypotheses of Theorem 5.10, if a sequence {k(n)} is c-admissible

for both µ and ν, then with P-probability one, ρ̂k,n → S(c;µ, ν) and λ̂k,n ⇒ Jmin(µ, ν) as n→∞.

In particular, we find that the c-admissibility of a sequence {k(n)} for both µ and ν is sufficient for

the consistency of λ̂k,n and ρ̂k,n. For example, as discussed above, if µ and ν are aperiodic Markov

chains, the conclusion of Theorem 5.10 will hold with k(n) = C log n for an appropriate choice of

C > 0.

5.4 Finite-Sample Error Bound

In this section, we detail an upper bound on the expected error of the proposed estimate of the

optimal joining cost. As we show in Section 5.7, this task is related to the problem of obtaining

bounds on the optimal transport cost between a measure and an empirical measure constructed

from a finite number of samples. A substantial body of work has considered this problem in the iid

case from both asymptotic and finite-sample perspectives (Dudley, 1969; Boissard and Le Gouic,

2014; Fournier and Guillin, 2015; Weed and Bach, 2019; Mena and Niles-Weed, 2019; Genevay

et al., 2019; Klatt et al., 2020). Other work has focused on rates of convergence and central

limit theorems for the 1-Wasserstein distance onM(R) when samples are drawn from a stationary

process satisfying a certain mixing condition (Dede, 2009; Boissard and Le Gouic, 2014; Dedecker

and Merlevède, 2017; Berthet et al., 2020).

Building upon the intuition laid out in Section 5.3, we expect that the magnitude of error in the

estimated optimal joining cost will depend on the rate at which the k-step optimal transport cost

1
k T (ck;µk, νk) converges to the optimal joining cost S(c;µ, ν) and the rate at which the empirical k-

step optimal transport cost ρ̂k,n converges to the true k-step optimal transport cost in expectation.

Both of these quantities will depend on the extent to which the k-dimensional distributions of µ and

ν capture the behavior of the full processes. This will be quantified via their respective φ-mixing

coefficients.
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Definition 5.15. Let U be finite. We will say that γ ∈ Ms(UN) has a φ-mixing coefficient φγ :

N0 → R+ if φγ(0) = 1 and for any g ≥ 1,

φγ(g) = sup
{
|γ(Ug−1 ×B|A)− γ(B)| : ` ≥ 1, A ⊂ U `, B ⊂ UN

}
,

where γ(Ug−1 × B|A) = γ(A× Ug−1 × B)/γ(A). The process measure γ will be called φ-mixing if

limg→∞ φγ(g) = 0.

The φ-mixing condition is a standard strong mixing condition in the study of stochastic processes.

For more details on φ-mixing and its relationship to other strong mixing conditions, we refer the

reader to (Bradley, 2005).

For a pseudometric space (U , d), let N (U , d, ε) denote the ε-covering number of U with respect

to the pseudometric d. We now present our finite sample error bound.

Theorem 5.16. Let µ and ν have φ-mixing coefficients φµ and φν , respectively. Then there exists

a universal constant C <∞ such that for every n ≥ 1, k ∈ {1, ..., n}, g ≥ 0 and t ∈ (0, ‖c‖∞/4],

E [|ρ̂k(Xn
1 , Y

n
1 )− S(c;µ, ν)|] ≤ ‖c‖∞

(
k(φµ(g + 1) + φν(g + 1))

k + g
+

3g

k

)

+ C

t+

(
1

n2

n∑
`=0

(n− `+ 1)φ1/2
µ (`)

)1/2 ∫ ‖c‖∞/4
t

N (X k, 1

k
cXk , ε)

1/2 dε

+

(
1

n2

n∑
`=0

(n− `+ 1)φ1/2
ν (`)

)1/2 ∫ ‖c‖∞/4
t

N (Yk, 1

k
cYk , ε)

1/2 dε

 .

Theorem 5.16 gives an abstract upper bound on the expected error of the proposed estimate of

the optimal joining cost in terms of the φ-mixing coefficients of µ and ν and the covering numbers

of the product spaces X k and Yk with respect to 1
kc
X
k and 1

kc
Y
k . The latter terms may be viewed

as assessing the regularity of the adapted costs cX and cY in some sense. In particular, when

the cost c does not vary much, cX and cY will yield smaller covering numbers N (X k, 1
kc
X
k , ε) and

N (Yk, 1
kc
Y
k , ε). This coincides with the intuition that estimation should be easier when c is mostly

constant.

Next, we use Theorem 5.16 to obtain an explicit upper bound.
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Corollary 5.17. Let µ and ν have φ-mixing coefficients φµ and φν , respectively, satisfying

n∑
`=0

(n− `)φ1/2
µ (`) = O(np) and

n∑
`=0

(n− `)φ1/2
ν (`) = O(np)

for some p ∈ [1, 2). Then there exists a constant C < ∞ depending only on φµ and φν such that

for every n ≥ 1, k ∈ {1, ..., n} and g ≥ 0,

E [|ρ̂k(Xn
1 , Y

n
1 )− S(c;µ, ν)|] ≤ ‖c‖∞

(
k(φµ(g + 1) + φν(g + 1))

k + g
+

3g

k
+
C(|X |k/2 + |Y|k/2)

n1−p/2

)
.

In particular, if k(n) < (2−p) logn
log(|X |∨|Y|)∨1 and g(n) = o(k(n)), then the expected error converges to zero.

Corollary 5.17 gives explicit, finite-sample control on the mean error in the estimated entropic

optimal joining cost. In particular, it sheds some light on how the choice of block size k interacts

with the amount of dependence of the marginal processes (as quantified by their φ-mixing coeffi-

cients) and the sample size n. Previous work (Csiszár and Talata, 2010; Talata, 2013, 2010; Gallo

et al., 2013; Bressaud et al., 1999) has established error bounds and rates of convergence for Markov

approximations to ergodic processes. However, it appears that no previous work has established

such results for the k-block process estimate. We remark that Theorem 5.16 and Corollary 5.17

include the special case of Ornstein’s d-distance and thus provides some additional insight into the

estimation scheme for this distance proposed in (Ornstein and Weiss, 1990). To provide further

context for Corollary 5.17, we consider two examples below.

Example 5.18 ( (IID processes)). If µ and ν are iid processes, then S(c;µ, ν) = T (c;µ1, ν1) and

φµ(g) = φν(g) = 0 for every g ≥ 1, and so we may let k = 1 and g = 0. Then by Corollary 5.17,

we see that

E [|ρ̂1(Xn
1 , Y

n
1 )− S(c;µ, ν)|] = O

(
n−1/2

)
.

This rate is consistent with known rates for the estimation of the 1-Wasserstein distance on finite

spaces (Boissard and Le Gouic, 2014).

For iid processes, the optimal joining problem reduces to the optimal coupling problem of their

1-dimensional marginal measures, which yields the error bound above. However, when at least one

of the measures is not iid, the optimal joining need not be Markov of any order (Ellis, 1976), and
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one must let k tend to infinity in order to estimate the full behavior of an optimal joining. As such,

one expects to find slower rates.

Example 5.19 ( (Markov processes)). If µ and ν are aperiodic and irreducible Markov chains, then

there exist constants Cµ, Cν < ∞ and ρµ, ρν ∈ [0, 1) such that φµ(g) ≤ Cµρ
g
µ and φν(g) ≤ Cνρ

g
ν

(Davydov, 1974; Bradley, 2005). Thus the summability conditions in Corollary 5.17 are satisfied

with p = 1. Applying Corollary 5.17 and letting k(n) =
⌊

α log(n)
log(|X |∨|Y|)∨1

⌋
and g(n) =

⌊
− log(α log(n))

log(ρµ∧ρν)

⌋
for some α ∈ (0, 1) and n large enough, we find

E [|ρ̂k(Xn
1 , Y

n
1 )− S(c;µ, ν)|] = O

(
log(log(n))

log(n)

)
.

5.5 The Entropic Optimal Joining Problem

A large body of recent work in optimal transport has focused on studying the computational

and statistical properties of regularized versions of the optimal transport problem. Entropic regu-

larization in particular has attracted a great deal of interest from the machine learning and statistics

communities as a means of smoothing the optimal transport problem and enabling more efficient

computation of solutions. Recall from Chapter 2 that the entropic optimal transport problem is

obtained by subtracting the Shannon entropy H(π) = −
∑

u,v π(u, v) log π(u, v) from the optimal

transport objective:

T η(c;µ, ν) := inf
π∈Π(µ,ν)

{∫
c dπ − ηH(π)

}
.

In this section, we extend entropic regularization techniques from optimal transport to the

optimal joining problem. In particular, we aim to regularize the optimal joining problem in a

manner that leads to efficient computation. We propose to find the “natural” penalty term for the

optimal joining problem by viewing the regularized problem as a limit of entropic optimal transport

problems. By solving a series of entropic optimal transport problems with increasing dimension,

we observe that they converge to a regularized optimal joining cost with the entropy rate as the

penalty term. Entropy rate is the process analogue of entropy and has been an object of interest

in stochastic processes and information theory for many years, dating back to Shannon (Shannon,

1948). For k ≥ 1 and π ∈ M(X k × Yk), let Hk(π) := −
∑

xk1 ,y
k
1
π(xk1, y

k
1 ) log π(xk1, y

k
1 ) where we
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use Hk(·) instead of H(·) to emphasize the dependence of this quantity on the dimension k. For a

process γ ∈Ms(UN), we will abuse notation and let Hk(γ) = Hk(γk).

Definition 5.20. Let U be finite and γ ∈Ms(UN) be a stationary process. Then the entropy rate

of γ is defined by the limit h(γ) := limk→∞
1
kHk(γ), which is known to exist by subadditivity.

In other words, the entropy rate is the limiting joint entropy per symbol of the finite dimensional

distributions of the process. As an example, an iid process with one dimensional distribution p has

entropy rate equal to H(p). Moreover, a stationary, aperiodic and irreducible Markov chain with

stationary distribution p and transition matrix P has entropy rate given by −
∑

ij piPij logPij . We

that, again by subadditivity, the limit in the definition of the entropy rate is in fact an infimum:

h(γ) = infk≥1
1
kHk(γ).

Now for η > 0, we define the entropic optimal joining problem by

inf
λ∈J (µ,ν)

{∫
c dλ1 − ηh(λ)

}
. (5.4)

As in the unregularized problem, one can show under the stated assumptions that the infimum in

(5.4) is attained. We include a proof of this fact in Appendix C.2. From now on, we will denote

the set of joinings achieving the infimum in (5.4) by J ηmin(µ, ν) and the value of the infimum by

Sη(c;µ, ν). Note that (5.4) is still well-defined when η = 0 but in that case, we recover the standard

optimal joining problem and thus refer to it by that name.

At this point, we may formalize the motivation for entropy rate as the regularizer in the optimal

joining problem. Recall from Section 5.3 that Proposition 5.4 describes how the optimal joining

cost may be obtained as a limit of k-step optimal transport costs. In Proposition 5.21, we extend

Proposition 5.4 to the entropic optimal joining problem.

Proposition 5.21. Let X and Y be finite and µ ∈Ms(XN) and ν ∈Ms(YN). Then for any η ≥ 0,

lim
k→∞

1

k
T η(ck;µk, νk) = Sη(c;µ, ν).

This result demonstrates how the entropic optimal joining cost can be obtained as a limit of entropic

optimal transport costs. In this way, the entropy rate is a natural regularizer for the optimal joining

problem. Furthermore, it suggests that the proposed approach to estimating an optimal joining
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and the optimal joining cost may extend to the regularized setting. Intuitively, a good estimate

of 1
k T η(ck;µk, νk) for large k should be a good estimate of Sη(c;µ, ν). From this perspective, one

may also see how the choice of entropy rate as the regularization yields improved computational

efficiency. In particular, existing algorithms for computing 1
k T η(ck;µk, νk) efficiently will translate

to faster estimates of Sη(c;µ, ν).

Before moving on to extend the proposed estimation scheme to this problem, we consider the

stability of the entropic optimal joining cost in η. We wish to assert that for small η, Sη(c;µ, ν) will

be a reasonable approximation of S(c;µ, ν) in some sense. Considering the limit as the regularization

coefficient η converges to zero, we find in the next proposition that the entropic optimal joining

cost converges to the unregularized optimal joining cost.

Proposition 5.22. Let X and Y be finite and µ ∈ Ms(XN) and ν ∈ Ms(YN). Then the entropic

optimal joining cost satisfies

lim
η→0
Sη(c;µ, ν) = S(c;µ, ν).

Proposition 5.22 is consistent with analogous results in computational optimal transport (Peyré

and Cuturi, 2019).

5.5.1 Extension of the Estimation Procedure

The proposed estimation scheme (described in Section 5.3) may be easily extended to the

entropic optimal joining problem. One need only consider a modification of Step 2 in which one

solves an entropic optimal transport problem for η > 0:

Step 2’: (Find entropic optimal coupling) Let

π̂ηk,n ∈ argmin
π∈Π(µ̂k,n,ν̂k,n)

{∫
ck dπ − ηHk(π)

}
.

Thus, π̂ηk,n has expected entropic k-step cost equal to T η(ck; µ̂k,n, ν̂k,n). To simplify

notation, we define ρ̂ηk(X
n
1 , Y

n
1 ) = 1

k T η(ck; µ̂k,n, ν̂k,n).

One may then construct a stationary process λ̂η,k[Xn
1 , Y

n
1 ] ∈Ms(XN×YN) from π̂ηk,n following

Step 3 of the estimation scheme. We propose λ̂η,k[Xn
1 , Y

n
1 ] as an estimate of an entropic optimal
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joining of µ and ν and ρ̂ηk(X
n
1 , Y

n
1 ) as an estimate of the entropic optimal joining cost. In order to

reduce notation, we will often write λ̂η,k,n for λ̂η,k[Xn
1 , Y

n
1 ] and ρ̂ηk,n for ρ̂ηk(X

n
1 , Y

n
1 ).

As in the unregularized case, we establish in Appendix C.1 that the estimate λ̂η,k,n is a joining

of empirical estimates of µ and ν with the desired expected entropic cost ρ̂ηk,n. For large n, one

expects that ρ̂ηk,n will be close to 1
k T η(ck;µk, νk) and by Proposition 5.21, 1

k T η(ck;µk, νk) will be

close to S(c;µ, ν) when k is large.

5.5.2 Consistency

If one is interested in the behavior of the proposed estimates as n goes to infinity, similar

reasoning as in Section 5.3 suggests that it is necessary to consider sequences {λ̂η,k,n}n≥1 and

{ρ̂ηk,n}n≥1 for some sequence {k(n)} with k(n) → ∞. The following result extends Theorem 5.10

to the regularized setting.

Theorem 5.23. Let X and Y be finite and µ ∈ Ms(XN) and ν ∈ Ms(YN) be ergodic. Then

for any η > 0, there exists a sequence {k(n)} with k(n) → ∞ such that with P-probability one,

ρ̂ηk,n → Sη(c;µ, ν) and λ̂η,k,n ⇒ J ηmin(µ, ν) as n→∞.

The proof of Theorem 5.23 is similar to that of Theorem 5.10; we construct a c-admissible

sequence {k(n)} for µ and ν and apply a Lipschitz property of the entropic optimal transport cost

to obtain the desired convergence. Consequently, a conclusion analogous to Proposition 5.14 holds

for the regularized estimation scheme presented above. We omit a formal statement of such a result

to simplify presentation.

5.6 Discussion

The extension of optimal transport techniques to stochastic processes is an important problem

in statistics and machine learning. In this chapter, we presented a step in this direction, considering

the case of finite-alphabet, stationary and ergodic processes. We argued that, in this setting, one

should consider a constrained form of the optimal transport problem, referred to as the optimal

joining problem, in order to account for the long-term dynamics of the processes of interest. Given

finite sequences of observations, we proposed estimates of an optimal joining and the optimal joining

cost, and we proved that these estimates are consistent in the large sample limit. We presented an
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upper bound on the expected error of the estimated optimal joining cost in terms of the mixing

coefficients of the two processes of interest. Finally, building upon recent work in optimal transport,

we also proposed a regularized problem, the entropic optimal joining problem, and extended the

proposed estimation scheme and consistency result to this new problem.

This work enables the principled application of optimal transport techniques to data arising

as observations from stationary processes. Future work may investigate additional properties and

uses of the entropic optimal joining problem. For example, are there conditions under which the

entropic optimal joining cost exhibits a faster rate of convergence compared to the unregularized

optimal joining cost? Other work may extend our results to the setting of Polish spaces. It was

noted in Section 5.3 that the arguments in the proof of Theorem 5.10 may be adapted to the case

when X and Y are compact and c is continuous. However, it is not clear whether the entropic

optimal joining is always well-defined in that setting. Moreover, the arguments in the proof of

Theorem 5.16 do not extend easily to continuous spaces, and so further consideration is necessary.

5.7 Proofs

5.7.1 Lipschitz Continuity of Optimal Transport

Before proving our main results, we prove a lemma regarding the Lipschitz continuity of

the (entropic) optimal transport cost. In particular, we show in Lemma 5.25 that the map

(α, β) 7→ T η(c;α, β) is 1-Lipschitz with respect to a certain “adapted” optimal transport cost

with an additional term to account for the entropic penalty. First we will require some basic results

regarding the entropic optimal transport problem and the notion of a (c, η)-transform. Let U and

V be finite spaces, α ∈ M(U) and β ∈ M(V), c : U × V → R+, and η > 0. It was established in

(Cuturi and Peyré, 2018, Proposition 2.4) that the entropic optimal transport problem satisfies

T η(c;α, β) = max
f :U→R

{∫
f dα+

∫
f (c,η,β) dβ

}
= max

g:V→R

{∫
g(c,η,α) dα+

∫
g dβ

}
, (5.5)

where

f (c,η,β)(v) := η log β(v)− η log

(∑
u

exp

{
1

η
(f(u)− c(u, v))

})
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and

g(c,η,α)(u) := η logα(u)− η log

(∑
v

exp

{
1

η
(g(v)− c(u, v))

})
.

The formulation (5.5) is referred to as the semidual of the entropic optimal transport problem while

the quantities f (c,η,β) and g(c,η,α) are referred to as the (c, η)-transforms of f and g with respect to

β and α, respectively. In what follows, we will let

g(c,η)(u) := −η log

(∑
v

exp

{
1

η
(g(v)− c(u, v))

})
,

to simplify notation. Note that g(c,η,α)(u) = η logα(u) + g(c,η)(u). Our proof of Lemma 5.25 will

leverage the duality (5.5) as well as the following basic facts about f (c,η) and g(c,η).

Proposition 5.24. Let (U , dU ) and (V, dV) be finite pseudometric spaces, and let f : U → R and

g : V → R be real-valued functions. Furthermore, let c : U × V → R+ be a non-negative cost

function satisfying |c(u, v) − c(u′, v′)| ≤ L(dU (u, u′) + dV(v, v′)) for all u, u′ ∈ U and v, v′ ∈ V for

some L ∈ R. Then for any η > 0, f (c,η) and g(c,η) satisfy |f (c,η)(v) − f (c,η)(v′)| ≤ LdV(v, v′) and

|g(c,η)(u)− g(c,η)(u′)| ≤ LdU (u, u′) for all u, u′ ∈ U and v, v′ ∈ V.

A proof of Proposition 5.24 is provided in Appendix C.3. A more detailed discussion of the (c, η)-

transform and its use in optimal transport can be found in (Peyré and Cuturi, 2019). Now we may

proceed to the result of interest.

Lemma 5.25. Let U and V be finite and let c : U × V → R+ be a cost function. Then for any

η ≥ 0 and any α, α′ ∈M(U) and β, β′ ∈M(V),

∣∣T η(c;α, β)− T η(c;α′, β′)
∣∣ ≤ T (cU ;α, α′) + η|H(α)−H(α′)|

+ T (cV ;β, β′) + η|H(β)−H(β′)|.
(5.6)

Proof. We begin by considering the case η > 0. By the triangle inequality,

∣∣T η(c;α, β)− T η(c;α′, β′)
∣∣ ≤ ∣∣T η(c;α, β)− T η(c;α′, β)

∣∣+
∣∣T η(c;α′, β)− T η(c;α′, β′)

∣∣ . (5.7)
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By (5.5), there exists g : V → R be such that

T η(c;α, β) =

∫
g(c,η,α) dα+

∫
g dβ. (5.8)

Rewriting g(c,η,α), we have

T η(c;α, β) =

∫ (
g(c,η) + η logα

)
dα+

∫
g dβ

=

∫
g(c,η) dα+

∫
g dβ − ηH(α).

Since g is also feasible for the semidual problem of T η(c;α′, β), (5.5) implies that

T η(c;α′, β) ≥
∫
g(c,η,α′) dα′ +

∫
g dβ

=

∫ (
g(c,η) + η logα′

)
dα′ +

∫
g dβ

=

∫
g(c,η) dα′ +

∫
g dβ − ηH(α′). (5.9)

Combining (5.8) and (5.9),

T η(c;α, β)− T η(c;α′, β) ≤
∫
g(c,η) dα−

∫
g(c,η) dα′ + η(H(α′)−H(α)).

Note that c necessarily satisfies |c(u, v) − c(ũ, ṽ)| ≤ cU(u, ũ) + cV(v, ṽ). Thus by Proposition 5.24,

g(c,η) satisfies g(c,η)(u) − g(c,η)(ũ) ≤ cU(u, ũ). Thus the pair (g(c,η),−g(c,η)) is feasible for the dual

of T (cU ;α, α′) and it follows that

T η(c;α, β)− T η(c;α′, β) ≤ T (cU ;α, α′) + η(H(α′)−H(α)).

A similar argument can be used to upper bound T η(c;α′, β)− T η(c;α, β), yielding

| T η(c;α, β)− T η(c;α′, β)| ≤ T (cU ;α, α′) + η|H(α)−H(α′)|.
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The same line of reasoning will show that

| T η(c;α′, β)− T η(c;α′, β′)| ≤ T (cV ;β, β′) + η|H(β)−H(β′)|,

which combines with (5.7) to give the result. Taking the limit as η → 0 of (5.6) (see (Peyré and

Cuturi, 2019, Remark 4.3)), we obtain the result for η = 0.

We conclude the subsection with a simple proposition that details the implication of Lemma

5.25 for the k-step entropic optimal transport cost.

Proposition 5.26. For any η ≥ 0, n ≥ 1, and k ∈ {1, ..., n},

∣∣∣∣ρ̂ηk(Xn
1 , Y

n
1 )− 1

k
T η(ck;µk, νk)

∣∣∣∣ ≤ 1

k
T (cXk ; µ̂k,n, µk) + η

∣∣∣∣1kHk(µ̂k,n)− 1

k
Hk(µk)

∣∣∣∣
+

1

k
T (cYk ; ν̂k,n, νk) + η

∣∣∣∣1kHk(ν̂k,n)− 1

k
Hk(νk)

∣∣∣∣ .
Proof. The result follows from an application of Lemma 5.25 and the pointwise inequalities

( 1
kck)

Xk ≤ 1
kc
X
k and ( 1

kck)
Yk ≤ 1

kc
Y
k .

5.7.2 Proofs from Section 5.2

Next, we prove the second equality in Proposition 5.4, which states that the optimal joining

cost is equal to the optimal transport cost with respect to the averaged cost c. We will do this by

showing that solutions to the optimal joining problem are characterized by a local property of their

support known as cyclical monotonicity.

Definition 5.27. For two sets U and V and a cost function c : U × V → R, a set C ⊂ U × V is

called c-cyclically monotone if for every N ≥ 1 and (u1, v1), ..., (uN , vN ) ∈ C,

N∑
`=1

c(u`, v`) ≤
N∑
`=1

c(u`, v`+1),

with the convention that vN+1 = v1. A probability measure on U ×V is called c-cyclically monotone

if it is concentrated on a c-cyclically monotone set.
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Cyclical monotonicity has been studied in the optimal transport literature as a means of char-

acterizing optimality of couplings. In particular, we make reference to the following result.

Theorem B ((Beiglböck, 2015)). Let U and V be Polish, µ ∈M(U), ν ∈M(V), and c : U × V →

[0,∞) be measurable. Then any c-cyclically monotone π ∈ Π(µ, ν) with
∫
c dπ <∞ is a solution to

T (c;µ, ν).

Under stronger assumptions on c (i.e. lower semicontinuity and integrability conditions), one may

also establish the reverse implication, namely that any optimal coupling is c-cyclically monotone

(see (Villani, 2008)). In this way, cyclical monotonicity characterizes solutions to the optimal

transport problem and provides another perspective from which to study the problem. In the

following lemma, we show that an analogous result holds for the optimal joining problem.

Lemma 5.28. Let X and Y be finite and µ ∈ Ms(XN) and ν ∈ Ms(YN) be ergodic. Then an

ergodic joining λ ∈ J (µ, ν) is a solution to S(c;µ, ν) if and only if it is c-cyclically monotone.

Proof. We begin by showing that an ergodic, c-cyclically monotone joining is optimal in the optimal

joining problem. By construction, the averaged cost c is invariant under the joint left-shift map

σ × τ . Thus by the pointwise ergodic theorem and the integrability of c,
∫
c dλ1 =

∫
c dλ for

every λ ∈ J (µ, ν). It follows by taking infima that S(c;µ, ν) = S(c;µ, ν). Fixing an ergodic and

c-cyclically monotone joining λ ∈ J (µ, ν), Theorem B implies that λ is a solution to T (c;µ, ν).

Thus ∫
c dλ1 =

∫
c dλ = T (c;µ, ν) ≤ S(c;µ, ν) = S(c;µ, ν)

and it follows that λ is necessarily a solution to S(c;µ, ν).

Now it suffices to prove that any ergodic optimal joining is c-cyclically monotone. Let λ ∈

Jmin(µ, ν) be ergodic. We will construct a c-cyclically monotone set C ⊂ XN × YN such that

λ(C) = 1. Note that as a consequence of the ergodicity of λ, µ, and ν, and the pointwise ergodic

theorem, the following two conditions hold.

1. There exists a set D ⊂ XN × YN such that λ(D) = 1 on which c is constant and equal to∫
c dλ1.

2. There exist E ⊂ XN and F ⊂ YN such that µ(E) = ν(F ) = 1 and for any x ∈ E, y ∈ F , the

probability measures µnx := 1
n

∑n−1
`=0 δσ`x and νny := 1

n

∑n−1
`=0 δτ`y satisfy µnx ⇒ µ and νny ⇒ ν.

119



Letting C := D ∩ (E ×F ), one may easily establish that λ(C) = 1. So we need only show that the

set C is c-cyclically monotone. Let N ≥ 1, (x1,y1), ..., (xN ,yN ) ∈ C and suppose for the sake of

contradiction that
N∑
`=1

c(x`,y`) >

N∑
`=1

c(x`,y`+1).

Define the sequence of probability measures {λn} by

λn :=
1

nN

N∑
`=1

n−1∑
k=0

δ(σkx`,τky`+1),

where we use the convention yN+1 = y1. Note that λn ∈ Π(µn, νn) for every n ≥ 1, where

µn := 1
N

∑N
`=1 µ

n
x`

and νn := 1
N

∑N
`=1 ν

n
y`

where µn
x`

and νn
y`

are as defined in the second condition

above. By the choice of C, one may establish that µn ⇒ µ and νn ⇒ ν as n → ∞. Thus by

Lemma C.3 there is a subsequence of {λn} converging weakly to some λ̃ ∈ J (µ, ν). To simplify

notation, we refer to this subsequence again as {λn}. Using the fact that c is constant on C and

the continuity and boundedness of c, we have

∫
c dλ̃1 = lim

n→∞

∫
c dλn1

= lim sup
n→∞

1

nN

N∑
`=1

n∑
k=1

c(x`k, y
`+1
k )

≤ 1

N

N∑
`=1

lim sup
n→∞

1

n

n∑
k=1

c(x`k, y
`+1
k )

=
1

N

N∑
`=1

c(x`,y`+1)

<
1

N

N∑
`=1

c(x`,y`)

=

∫
c dλ1

= S(c;µ, ν),

a contradiction. Thus C is c-cyclically monotone and the result follows.
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Proposition 5.4. Let X and Y be finite and µ ∈Ms(XN) and ν ∈Ms(YN) be ergodic. Then

S(c;µ, ν) = lim
k→∞

k−1 T (ck;µk, νk) = T (c;µ, ν).

Proof. Under the stated conditions, it is well-known (Shields, 1996) that there exists λ ∈ Jmin(µ, ν)

that is ergodic. By Lemma 5.28, λ is c-cyclically monotone. Finally, by Theorem B, λ is a solution

to T (c;µ, ν) and it follows that S(c;µ, ν) =
∫
c dλ1 = T (c;µ, ν).

5.7.3 Proofs from Section 5.3

In this section, we prove Theorem 5.10 regarding the consistency of the proposed estimates

without entropic regularization.

Theorem 5.10. Let X and Y be finite and µ ∈ Ms(XN) and ν ∈ Ms(YN) be ergodic. Let P

be any coupling of µ and ν. Then there exists a sequence {k(n)} with k(n) → ∞ such that with

P-probability one, ρ̂k,n → S(c;µ, ν) and λ̂k,n ⇒ Jmin(µ, ν) as n→∞.

Proof. We begin by constructing a sequence {k(n)} such that the k(n)-step empirical optimal

transport cost converges to the optimal joining cost almost surely. As noted by (Marton and Shields,

1994), due to the ergodic theorem, µ and ν have admissible sequences {`(n)} and {m(n)}. Using

the same reasoning, one may verify that {k(n)} where k(n) = min{`(n),m(n)} is also admissible

for both processes. Since any admissible sequence is also c-admissible, {k(n)} is c-admissible for

both µ and ν. In order to simplify notation in the rest of the proof, we suppress the dependence of

k(n) on n. For any n ≥ 1, an application of the triangle inequality gives

|ρ̂k(Xn
1 , Y

n
1 )− S(c;µ, ν)| ≤

∣∣∣∣ρ̂k(Xn
1 , Y

n
1 )− 1

k
T (ck;µk, νk)

∣∣∣∣
+

∣∣∣∣1k T (ck;µk, νk)− S(c;µ, ν)

∣∣∣∣ . (5.10)

Applying Proposition 5.26, we have

∣∣∣∣ρ̂k(Xn
1 , Y

n
1 )− 1

k
T (ck;µk, νk)

∣∣∣∣ ≤ 1

k
T (cXk ; µ̂k[X

n
1 ], µk) +

1

k
T (cYk ; ν̂k[Y

n
1 ], νk),
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which by the c-admissibility of k for µ and ν implies that the first term on the right hand side in

(5.10) goes to zero, P-almost surely as n→∞. An application of Proposition 5.4 with the fact that

k(n)→∞ shows that the second term on the right hand side in (5.10) goes to zero. It follows that

|ρ̂k(Xn
1 , Y

n
1 )− S(c;µ, ν)| → 0, P-almost surely. (5.11)

Next we show that the sequence of estimated optimal joinings indexed by k converges weakly

to the set of optimal joinings Jmin(µ, ν), almost surely. Fix an element ω ∈ Ω of the sample space

in the set of P-measure one on which (5.11) holds. Let {λ̂k,n}n≥1 be the corresponding sequence of

estimated optimal joinings where the dependence on Xn
1 (ω) and Y n

1 (ω) has been suppressed. By

Lemma C.3, for any subsequence {λ̂k,n`}`≥1, there is a further subsequence converging weakly to a

joining λ ∈ J (µ, ν). For ease of notation, we refer to this further subsequence again as {λ̂k,n`}`≥1.

Then ∫
c dλ1 = lim

`→∞

∫
c dλ̂k,n`1 = lim

`→∞

1

k
T
(
ck;µ

n`
k , ν

n`
k

)
= S(c;µ, ν),

where the first equality follows from the continuity and boundedness of c, the second equality

follows from Proposition C.1, and the third equality follows from (5.11). Thus, λ ∈ Jmin(µ, ν) and

since the subsequence was arbitrary, we conclude that λ̂k,n` ⇒ Jmin(µ, ν). By the choice of ω, this

convergence occurs P-almost surely.

5.7.4 Proofs from Section 5.4

In this section, we prove Theorem 5.16 regarding the expected error of the estimated optimal

joining cost ρ̂k,n. Our argument may be broken down into three steps: First, we prove a Lipschitz

result for the optimal joining cost akin to Lemma 5.25 in terms of Ornstein’s d-distance. Second, we

prove a novel upper bound on these d terms using the φ-mixing coefficients of the process measures

µ and ν. Finally, we use a covering number bound to control the error of the estimated k-step

optimal transport cost.

Lipschitz Bound. To begin, we establish a Lipschitz property for the optimal joining cost akin to

the result stated in Lemma 5.25. In particular, we show that (µ, ν) 7→ S(c;µ, ν) is ‖c‖∞-Lipschitz

with respect to the d-distance with an additional term to account for the difference in entropy rates
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of the marginal processes. Since we will require the Lipschitz bound for the proof of Theorem 5.23

as well, we prove Lemma 5.25 more generally for the regularized optimal joining cost Sη(c;µ, ν).

Briefly, we remind the reader that the d-distance between two processes, introduced in (Ornstein,

1973), may be defined as the optimal joining cost with respect to the single-letter Hamming metric

(u,u′) 7→ δ(u1 6= u′1). The distance d may be thought of as the process analogue to the total

variation distance.

Lemma 5.29. Let α, α′ ∈Ms(XN) and β, β′ ∈Ms(YN) be stationary process measures. Then for

any η ≥ 0,

∣∣Sη(c;α, β)− Sη(c;α′, β′)
∣∣ ≤ ‖c‖∞(d(α, α′) + d(β, β′)) + η|h(α)− h(α′)|+ η|h(β)− h(β′)|.

Proof. Fix k ≥ 1 and recall that by Proposition 5.26,

∣∣∣∣1k T η (ck;αk, βk)−
1

k
T η
(
ck;α

′
k, β
′
k

)∣∣∣∣ ≤ 1

k
T (cXk ;αk, α

′
k) +

1

k
T (cYk ;βk, β

′
k)

+ η

∣∣∣∣1kHk(αk)−
1

k
Hk(α

′
k)

∣∣∣∣
+ η

∣∣∣∣1kHk(βk)−
1

k
Hk(β

′
k)

∣∣∣∣ .
Now note that cXk and cYk satisfy the pointwise upper bounds cXk ≤ ‖c‖∞δk and cYk ≤ ‖c‖∞δk where

δk(x
k
1, x̃

k
1) =

∑k
`=1 δ(x` 6= x̃`) is the k-step Hamming distance. Thus,

∣∣∣∣1k T η (ck;αk, βk)−
1

k
T η
(
ck;α

′
k, β
′
k

)∣∣∣∣ ≤ ‖c‖∞k T (δk;αk, α
′
k) +

‖c‖∞
k
T (δk;βk, β

′
k)

+ η

∣∣∣∣1kHk(αk)−
1

k
Hk(α

′
k)

∣∣∣∣
+ η

∣∣∣∣1kHk(βk)−
1

k
Hk(β

′
k)

∣∣∣∣ .
Letting k →∞ and applying Proposition 5.21, we find

∣∣Sη(c;α, β)− Sη(c;α′, β′)
∣∣ ≤ ‖c‖∞ (S(δ;α, α′) + S(δ;β, β′)

)
+ η|h(α)− h(α′)|+ η|h(β)− h(β′)|.

Recognizing that d(α, α′) = S(δ;α, α′) and d(β, β′) = S(δ;β, β′), the result follows.
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Bound on d. Next, we prove an upper bound on the d-distance between a stationary process

measure and an approximation constructed from its finite dimensional distributions. The approxi-

mation of interest is defined as follows:

Definition 5.30 ( (Block approximation with gaps)). Let U be a finite space and k, g ≥ 1. We

define Λ̃k,g : Ms(UN) ×M(Ug) → M(UN) to be the map that takes a process γ ∈ Ms(UN) and a

probability measure α ∈M(Ug) to the unique probability measure on UN obtained by independently

concatenating γk and α together infinitely many times. Formally, for any `(k + g)-dimensional

cylinder set C ⊂ UN,

Λ̃k,g[γ, α](C) =

`−1∏
i=0

γk(C
i(k+g)+k
i(k+g)+1 )α(C

(i+1)(k+g)
i(k+g)+k+1).

Moreover, we define Λk,g :Ms(UN)×M(Ug)→Ms(UN) to be the map defined by randomizing the

start of the output of Λ̃k,g over the first k + g coordinates. Formally, for any set U ⊂ UN,

Λk,g[γ, α](U) =
1

k + g

k+g−1∑
`=0

Λ̃k,g[γ, α](U ` × U).

We will refer to Λ̃k,g[γ, α] as the non-stationary k-block process approximation of γ with gap g and

Λk,g[γ, α] as the k-block process approximation of γ with gap g.

Note that we omit α when referring to either approximation because our arguments do not

depend on the choice of α. For simplicity, we will use the same notation for these approximations

regardless of the alphabet of the processes under consideration. As such, Λk,g[µ, α] and Λk,g[ν, β]

are well-defined. We will show later that Λk,g[µ, α] and Λk,g[ν, β] arise naturally in the proof of

Theorem 5.16. In particular, it will be necessary to control the error of these approximations as

measured by the d-distances to µ and ν, respectively.

Lemma 5.31. Let U be finite and γ ∈Ms(UN) have φ-mixing coefficient φγ. Then for every k ≥ 1,

g ≥ 0 and α ∈M(Ug),

d(γ,Λk,g[γ, α]) ≤ g

k + g
+

k

k + g
φγ(g + 1).
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Proof. Fix k ≥ 1, g ≥ 0, α ∈ M(Ug). To simplify notation, let ξ̃ = Λ̃k,g[γ, α] and ξ = Λk,g[γ, α].

We begin by defining an intermediate process ζ ∈ Ms(UN). Let ζ̃ ∈ M(UN) be the probability

measure corresponding to the distribution of the process U generated as follows:

1. Draw a sequence U ∈ UN according to γ.

2. For every ` ≥ 0, replace U
(`+1)(k+g)
`(k+g)+k+1 with a random draw from α ∈ M(Ug). In other words,

replace the g-blocks of U with independent draws from α.

Thus ζ̃ is comprised of alternating blocks of size k and g where letters in the k-blocks are distributed

according to the corresponding letters of γ and the g-blocks are drawn independently according to

α. Then, let ζ ∈ Ms(UN) be the stationary process measure obtained by randomizing the start of

ζ̃ over the first k + g coordinates. By the triangle inequality for d,

d(γ, ξ) ≤ d(γ, ζ) + d(ζ, ξ).

Since the d-distance is defined as an infimum over joinings, we may upper bound both terms on

the right hand side by the expected cost of some suitably chosen joinings of γ and ζ, and ζ and ξ,

respectively.

We will first bound d(γ, ζ) by choosing a good coupling of γ and ζ̃ and then randomizing the

start to obtain a good joining of γ and ζ. Since the k-blocks of ζ̃ are equal in distribution to

those of γ by construction, we may couple them so that the k-blocks are equal with probability

one. Formally, define the coupling π ∈ Π(γ, ζ̃) to be the probability measure corresponding to the

distribution of the process (U, Ũ) generated as follows:

1. Sample U ∈ UN according to γ.

2. Set Ũ = U.

3. For every ` ≥ 0, replace Ũ
(`+1)(k+g)
`(k+g)+k+1 with a random draw from α ∈ M(Ug). In other words,

replace g-blocks of Ũ with independent draws from α.

In particular, U` = Ũ` with π-probability one when ` = i(k+g)+j for some i ≥ 0 and j ∈ {1, ..., k}.

Letting λ ∈ J (γ, ζ) be the joining obtained by randomizing the start of π over the first k + g
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coordinates and abusing notation somewhat, we obtain

d(γ, ζ) ≤
∫
δ(u1 6= ũ1) dλ(u, ũ)

=

∫
1

k + g

k+g∑
`=1

δ(u` 6= ũ`) dπ(u, ũ)

=
1

k + g

k+g∑
`=k+1

∫
δ(u` 6= ũ`) dπ(u, ũ)

≤ g

k + g
.

Next we bound d(ζ, ξ). By Proposition 5.4,

d(ζ, ξ) = lim
m→∞

1

m
T (δm; ζm, ξm)

and thus, fixing a subsequence m(`) := `(k + g) + k for ` ∈ N0, we have

d(ζ, ξ) = lim
L→∞

1

m(L)
T
(
δm(L); ζm(L), ξm(L)

)
. (5.12)

It suffices to obtain a bound on

1

m(L)
T
(
δm(L); ζm(L), ξm(L)

)
for fixed L ∈ N0 and take a limit as L → ∞. Similar to the first bound, we will achieve this

by constructing a good coupling of ζ̃m(L) and ξ̃m(L) and randomizing the start to obtain a good

coupling of ζm(L) and ξm(L). Recall that both ζ̃ and ξ̃ are comprised of alternating blocks of size

k and g, with the difference between the two measures being that the k-blocks of ζ̃ depend upon

one another while those of ξ̃ are independent of one another. In order to obtain the desired bound,

we will bridge the gap between ζ̃m(L) and ξ̃m(L) with a series of intermediate process measures

ρ0, ..., ρL ∈M(UN) where the first `+ 1 k-blocks of ρ` are dependent on one another (as in ζ̃m(L))

and the rest are independent (as in ξ̃m(L)).

Fix an index L ∈ N. Define the process measures ρ0, ..., ρL ∈ M(UN) such that for every

` ∈ {0, ..., L} and Um(`) ⊂ Um(`), it holds that ρ`(Um(`) × UN) = ζ̃(Um(`) × UN) and for every
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measurable U ⊂ UN, it holds that ρ`(Um(`) × U) = ξ̃(Um(`) × U). In other words, ρ` is equal to

ζ̃ on the first ` + 1 (k + g)-blocks and equal to ξ̃ on the remaining blocks. Note that ρ0 = ξ̃ and

ρLm(L) = ζ̃m(L). Applying the triangle inequality again,

T
(
δm(L); ζ̃m(L), ξ̃m(L)

)
≤

L−1∑
`=0

T
(
δm(L); ρ

`
m(L), ρ

`+1
m(L)

)
. (5.13)

In order to bound the terms on the right hand side of (5.13), we will construct a good coupling

of ρ`m(L) and ρ`+1
m(L) for each ` ∈ {0, ..., L − 1}. In particular, we will couple ρ`m(L) and ρ`+1

m(L) so

that they are equal on the first ` + 1 (k + g)-blocks, close on the next k-block, and equal again

on the remaining k- and g-blocks. Fix ` ∈ {0, ..., L − 1} and let π` ∈ Π(ρ`, ρ`+1) be the coupling

corresponding to the distribution of the process (U, Ũ) generated as follows:

1. Draw U
m(`)+g
1 ∈ Um(`)+g according to ζ̃m(`)+g.

2. Set Ũ
m(`)+g
1 = U

m(`)+g
1 .

3. Draw (U
m(`+1)
m(`)+g+1, Ũ

m(`+1)
m(`)+g+1) according to an optimal coupling π∗ of the conditional distribu-

tions of the next k-block ρ`k(·|U
m(`)+g
1 ) and ρ`+1

k (·|Ũm(`)+g
1 ) with respect to the cost δk.

4. Draw U
m(`+1)+g
m(`+1)+1 according to α and U

m(L)
m(`+1)+g+1 according to ξ̃m(L)−m(`+1)−g.

5. Set Ũ
m(L)
m(`+1)+1 = U

m(L)
m(`+1)+1.

We note that for any (u
m(L)
1 , ũ

m(L)
1 ) ∈ Um(L) × Um(L), one may write,

π`(u
m(L)
1 , ũ

m(L)
1 ) = ζ̃m(`)+g(u

m(`)+g
1 )︸ ︷︷ ︸

Step 1

δ(u
m(`)+g
1 = ũ

m(`)+g
1 )︸ ︷︷ ︸

Step 2

× π∗
(

(u
m(`+1)
m(`)+g+1, ũ

m(`+1)
m(`)+g+1)|(um(`)+g

1 , ũ
m(`)+g
1 )

)
︸ ︷︷ ︸

Step 3

× α(u
m(`+1)+g
m(`+1)+1)ξ̃m(L)−m(`+1)−g(u

m(L)
m(`+1)+g+1)︸ ︷︷ ︸

Step 4

δ(u
m(L)
m(`+1)+1 = ũ

m(L)
m(`+1)+1)︸ ︷︷ ︸

Step 5

.

In particular, u
m(`)+g
1 = ũ

m(`)+g
1 and u

m(L)
m(`+1)+1 = ũ

m(L)
m(`+1)+1 with π`-probability one. It follows that

T
(
δm(L); ρ

`
m(L), ρ

`+1
m(L)

)
≤
∫
Um(L)×Um(L)

δm(L)(u
m(L)
1 , ũ

m(L)
1 ) dπ`(u

m(L)
1 , ũ

m(L)
1 )
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=

∫
Um(L)×Um(L)

δk(u
m(`+1)
m(`)+g+1, ũ

m(`+1)
m(`)+g+1) dπ`(u

m(L)
1 , ũ

m(L)
1 ).

By the construction of π`, this implies

T
(
δm(L); ρ

`
m(L), ρ

`+1
m(L)

)
≤
∫
Um(`)+g

T
(
δk; ρ

`
k(·|u

m(`)+g
1 ), ρ`+1

k (·|um(`)+g
1 )

)
dζ̃m(`)+g(u

m(`)+g
1 ).

Finally, using the fact that the optimal transport cost with respect to δk is bounded by k times the

total variation distance, we have

T
(
δm(L); ρ

`
m(L), ρ

`+1
m(L)

)
≤ k sup

u
m(`)+g
1

sup
A⊂Uk

∣∣∣ρ`+1
k (A|um(`)+g

1 )− ρ`k(A|u
m(`)+g
1 )

∣∣∣ .
Now since k-block `+2 of ρ` is independent of all previous blocks, it follows that ρ`k(·|u

m(`)+g
1 ) = γk

for every u
m(`)+g
1 ∈ Um(`)+g. Moreover, ρ`+1

k (·|u`(k+g)
1 ) = γk(·|C(u

`(k+g)
1 )) where C(u

`(k+g)
1 ) is the

set obtained by taking the union of u
`(k+g)
1 over all possible g-blocks, i.e.,

C(u
`(k+g)
1 ) =

`−1⋃
i=0

⋃
u
m(i+1)
m(i)+1

{u`(k+g)
1 }.

Letting φγ : N→ R+ be the mixing coefficient of γ, it follows that

T
(
δm(L); ρ

`
m(L), ρ

`+1
m(L)

)
≤ k sup

u
m(`)+g
1

sup
A∈Uk

∣∣∣γk(A|C(u
`(k+g)
1 ))− γk(A)

∣∣∣ ≤ kφγ(g + 1).

Plugging this result into (5.13),

T
(
δm(L); ζ̃m(L), ξ̃m(L)

)
≤

L−1∑
`=0

kφγ(g + 1) = Lkφγ(g + 1).

By randomizing the start of the couplings considered above, one may further establish that

T
(
δm(L); ζm(L), ξm(L)

)
≤ Lkφγ(g + 1).
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Plugging this into (5.12) and recalling that m(L) = L(k + g) + k, we find that

d(ζ, ξ) = lim
L→∞

Lk

L(k + g) + k
φγ(g + 1) =

k

k + g
φγ(g + 1).

Combining this and the earlier bound yields the result.

Bound on Mean k-Step Optimal Transport Cost. In the final step before proving Theorem

5.16, we prove an upper bound on the mean optimal transport cost between µ̂k,n and µk in terms

of φµ (and the analogous result for ν). In order to do this, we leverage (Boissard and Le Gouic,

2014, Proposition 1.7), stated below as Theorem C, regarding the expectation of the p-Wasserstein

distance from an empirical measure to its target measure for stationary, ρ-mixing sequences. We

will say that a process measure γ ∈ Ms(UN) has ρ-mixing coefficient ργ : N0 → R+ if ργ(0) = 1

and for g > 1 and any random variable U = (U1, U2, ...) : Ω→ UN distributed according to γ,

ργ(g) := sup
{
|Corr(F,G)| : ` ≥ 1, F ∈ L2(σ(U1, ..., U`)), G ∈ L2(σ(U`+g, ...))

}
,

where for i ≤ j ≤ ∞, σ(Ui, ..., Uj) is the smallest sigma field in (Ω,B,P) with respect to which U ji

is measurable and for a sigma field F ⊂ B, L2(F) is the set of square-integrable, F-measurable

random variables. The result is stated below in a form that is adapted to our notation and the case

of p = 1.

Theorem C ((Boissard and Le Gouic, 2014)). Let γ ∈ Ms(UN) be a stationary process mea-

sure on a Polish space U with metric d and let γ have ρ-mixing coefficient ργ. Define χn =

1
n2

∑n
m=0

∑m
g=0 ργ(g) and let ∆ = Diam(U). If γn1 := γn1 [Un1 ] ∈ M(U) is the empirical measure

constructed from samples Un1 drawn according to γ, then there exists a constant C < ∞ such that

for any t ∈ (0,∆/4],

E [T (d; γn1 , γ1)] ≤ C

(
t+ χ1/2

n

∫ ∆/4

t
N (U , d, ε)1/2 dε

)
.

As we show in the next proposition, we may translate this result into an upper bound on the

expectation of the adapted optimal transport costs between µ̂k,n and µk, and ν̂k,n and νk under a

φ-mixing assumption.
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Proposition 5.32. Let µ and ν have φ-mixing coefficients φµ and φν , respectively. Then, there

exists a constant C <∞ such that for any n ≥ 1, k ∈ {1, ..., n}, and t ∈ (0, ‖c‖∞/4],

E
[

1

k
T (cXk ; µ̂k,n, µk) +

1

k
T (cYk ; ν̂k,n, νk)

]

≤ C

t+

 1

n2

n∑
g=0

(n− g + 1)φ1/2
µ (g)

1/2 ∫ ‖c‖∞/4
t

N (X k, 1

k
cXk , ε)

1/2 dε

+

(
1

n2

n∑
`=0

(n− g + 1)φ1/2
ν (g)

)1/2 ∫ ‖c‖∞/4
t

N (Yk, 1

k
cYk , ε)

1/2 dε

 .

Proof. The result follows from two applications of Theorem C for µ and ν. Considering first the case

of µ, let U = X k with pseudo-metric d = 1
kc
X
k . Moreover, let µ̃k ∈ Ms((X k)N) be the distribution

of the stationary process (X1, ..., Xk), (X2, ..., Xk+1), ... where (X1, X2, ...) is drawn according to µ.

Note that the ρ- and φ-mixing coefficients of µ̃k satisfy ρµ̃k(g) ≤ 2φ
1/2

µ̃k
(g) for every g ≥ 0 (Bradley,

2005). One may also easily establish that φµ̃k(g) ≤ φµ(g) for every g ≥ 0. Then a direct application

of Theorem C to µ̃k yields

E
[

1

k
T (cXk ; µ̂k,n, µk)

]
≤ C

t+

 2

n2

n∑
m=0

m∑
g=0

φ1/2
µ (g)

1/2 ∫ ∆/4

t
N (X k, 1

k
cXk , ε)

1/2 dε


= C

t+

 2

n2

n∑
g=0

(n− g + 1)φ1/2
µ (g)

1/2 ∫ ∆/4

t
N (X k, 1

k
cXk , ε)

1/2 dε

 ,

for some constant C < ∞ and any t ∈ (0, ∆
4 ], where the n − k + 1 term comes from the fact that

one has n− k + 1 k-blocks in the sequence Xn
1 . In this case ∆ = ‖c‖∞ and an identical argument

for ν yields the result.

Proof of Main Results. Gathering the results proven above, we may proceed with the proofs of

Theorem 5.16 and Corollary 5.17.

Theorem 5.16. Let µ and ν have φ-mixing coefficients φµ and φν , respectively. Then there exists

a universal constant C <∞ such that for every n ≥ 1, k ∈ {1, ..., n}, g ≥ 0 and t ∈ (0, ‖c‖∞/4],

E [|ρ̂k(Xn
1 , Y

n
1 )− S(c;µ, ν)|] ≤ ‖c‖∞

(
k(φµ(g + 1) + φν(g + 1))

k + g
+

3g

k

)
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+ C

t+

(
1

n2

n∑
`=0

(n− `+ 1)φ1/2
µ (`)

)1/2 ∫ ‖c‖∞/4
t

N (X k, 1

k
cXk , ε)

1/2 dε

+

(
1

n2

n∑
`=0

(n− `+ 1)φ1/2
ν (`)

)1/2 ∫ ‖c‖∞/4
t

N (Yk, 1

k
cYk , ε)

1/2 dε

 .

Proof. Let n, k and g be as in the statement of the theorem. By the triangle inequality,

|ρ̂k(Xn
1 , Y

n
1 )− S(c;µ, ν)|

=

∣∣∣∣1k T (ck; µ̂k,n, ν̂k,n)− S(c;µ, ν)

∣∣∣∣
≤
∣∣∣∣1k T (ck; µ̂k,n, ν̂k,n)− 1

k
T (ck;µk, νk)

∣∣∣∣+

∣∣∣∣1k T (ck;µk, νk)− S(c;µ, ν)

∣∣∣∣ .
We begin by establishing an upper bound on

∣∣ 1
k T (ck;µk, νk)− S(c;µ, ν)

∣∣. Note by Proposition

5.4, 1
k T (ck;µk, νk) ≤ S(c;µ, ν), so it suffices to upper bound S(c;µ, ν) − 1

k T (ck;µk, νk). Let

πk ∈ Π(µk, νk) achieve the minimum in the problem T (ck;µk, νk) and let γ ∈ M((X × Y)g) be

any probability measure on (X × Y)g. Denote the X g and Yg marginals of γ by α ∈ M(X g)

and β ∈ M(Yg). Finally, let λk,g ∈ Ms(XN × YN) be the stationary process measure satisfying

λk,g = Λk+g[πk ⊗ γ]. Note that λk,g ∈ J (Λk,g[µ, α],Λk,g[ν, β]). Then by the construction of λk,g,

S
(
c; Λk[µ, α],Λk[ν, β]

)
≤
∫
c dλk,g

=
1

k + g

(∫
ck dπk +

∫
cg dγ

)
≤ 1

k + g
(T (ck;µk, νk) + g‖c‖∞) .

Rearranging terms and adding S(c;µ, ν) to both sides, we obtain that

S(c;µ, ν)− 1

k
T (ck;µk, νk) ≤ S(c;µ, ν)− k + g

k
S
(
c; Λk[µ, α],Λk[ν, β]

)
+
g

k
‖c‖∞.

Now using the fact that 1
k T (ck;µk, νk) ≤ S(c;µ, ν) as established in Lemma 5.33, we have

∣∣∣∣1k T (ck;µk, νk)− S(c;µ, ν)

∣∣∣∣ = S(c;µ, ν)− 1

k
T (ck;µk, νk)

≤ S(c;µ, ν)− k + g

k
S
(
c; Λk[µ, α],Λk[ν, β]

)
+
g

k
‖c‖∞
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≤ S(c;µ, ν)− S
(
c; Λk[µ, α],Λk[ν, β]

)
+
g

k
‖c‖∞.

By Lemmas 5.29 and 5.31, we see that

S(c;µ, ν)− S
(
c; Λk,g[µ, α],Λk,g[ν, β]

)
≤ ‖c‖∞

(
d
(

Λk,g[µ, α], µ
)

+ d
(

Λk,g[ν, β], ν
))

≤ ‖c‖∞
(

2g

k + g
+

k

k + g
(φµ(g + 1) + φν(g + 1))

)
≤ ‖c‖∞

(
2g

k
+

k

k + g
(φµ(g + 1) + φν(g + 1))

)
.

Considering the other term, Lemma 5.25 gives us

∣∣∣∣1k T (ck; µ̂k,n, ν̂k,n)− 1

k
T (ck;µk, νk)

∣∣∣∣ ≤ 1

k
T (cXk ; µ̂k,n, µk) +

1

k
T (cYk ; ν̂k,n, νk).

Combining the bounds proven above, taking an expectation, and applying Proposition 5.32, we

obtain the result.

Corollary 5.17. Let µ and ν have φ-mixing coefficients φµ and φν , respectively, satisfying

n∑
`=0

(n− `)φ1/2
µ (`) = O(np) and

n∑
`=0

(n− `)φ1/2
ν (`) = O(np)

for some p ∈ [1, 2). Then there exists a constant C < ∞ depending only on φµ and φν such that

for every n ≥ 1, k ∈ {1, ..., n} and g ≥ 0,

E [|ρ̂k(Xn
1 , Y

n
1 )− S(c;µ, ν)|] ≤ ‖c‖∞

(
k(φµ(g + 1) + φν(g + 1))

k + g
+

3g

k
+
C(|X |k/2 + |Y|k/2)

n1−p/2

)
.

In particular, if k(n) < (2−p) logn
log(|X |∨|Y|)∨1 and g(n) = o(k(n)), then the expected error converges to zero.

Proof. For every ε ∈ (0, ‖c‖∞/4], we have N (X k, 1
kc
X
k , ε) ≤ |X |k and N (Yk, 1

kc
Y
k , ε) ≤ |Y|

k. After

applying these inequalities and the summability conditions for φµ and φν in Theorem 5.16, we

obtain the result by letting t→ 0.
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5.7.5 Proofs from Section 5.5

In this section, we prove the results stated in Section 5.5. We begin with Lemma 5.33, which

states that the limit in Proposition 5.21 exists and is equal to a supremum.

Lemma 5.33. For any η ≥ 0,

lim
k→∞

1

k
T η(ck;µk, νk) = sup

k≥1

1

k
T η(ck;µk, νk).

Proof. By Fekete’s lemma, it suffices to show that the sequence {T η(ck;µk, νk)}k≥1 is superadditive.

Fix k, ` ≥ 1 and let π ∈ Π(µk+`, νk+`) be a solution to T η(ck+`;µk+`, νk+`). Let πk ∈M(X k ×Yk)

and π` ∈M(X `×Y`) be the measures corresponding to the first k coordinates and last ` coordinates

of π, respectively. Using the stationarity of µ and ν, it is straightforward to show that πk ∈ Π(µk, νk)

and π` ∈ Π(µ`, ν`). Moreover, using the subadditivity of Hk+`(·),

T η(ck+`;µk+`, νk+`) =

∫
ck+` dπ − ηHk+`(π)

≥
∫
ck dπk − ηHk(πk) +

∫
c` dπ` − ηH`(π`)

≥ T η(ck;µk, νk) + T η(c`;µ`, ν`).

So the sequence {T η(ck;µk, νk)}k≥1 is superadditive and the conclusion follows.

Proposition 5.21. Let X and Y be finite and µ ∈Ms(XN) and ν ∈Ms(YN). Then for any η ≥ 0,

lim
k→∞

1

k
T η(ck;µk, νk) = Sη(c;µ, ν).

Proof. Fix ε > 0 and η ≥ 0 and let λ ∈ J (µ, ν) be a joining of µ and ν such that

∫
c dλ1 − ηh(λ) ≤ Sη(c;µ, ν) + ε.

Since the k-dimensional distribution of λ, written as λk, satisfies λk ∈ Π(µk, νk), we have

T η(ck;µk, νk) ≤
∫
ck dλk − ηHk(λk).

133



As λ is stationary and h(λ) ≤ 1
kHk(λk),

Sη(c;µ, ν) + ε ≥
∫
c dλ1 − ηh(λ)

=
1

k

∫
ck dλk − ηh(λ)

≥ 1

k

∫
ck dλk −

η

k
Hk(λk)

≥ 1

k
T η(ck;µk, νk).

By Lemma 5.33 we may take a limit in k and let ε→ 0 to establish that

Sη(c;µ, ν) ≥ lim
k→∞

1

k
T η(ck;µk, νk).

Now let {πk} be a sequence with πk ∈ Π(µk, νk) such that

1

k

∫
ck dπ

k − η

k
Hk(πk) ≤

1

k
T η(ck;µk, νk) + εk,

where εk → 0. From this sequence, we wish to construct a sequence of joinings converging to a

joining of µ and ν. For every k ≥ 1, let λk ∈ Ms(XN × YN) be the stationary process measure

satisfying λk = Λk[πk]. We will now show that the XN- and YN-marginals of λk, written as mX (λk)

and mY(λk), converge weakly to µ and ν. Let σ : XN → XN and τ : YN → YN be the left-shift

maps on XN and YN, respectively. Fix a measurable cylinder set C = C1× · · · ×Cm ⊂ Xm and let

C̃ ⊂ XN be its extension to XN such that C̃ = C ×X × X · · · . Then for k ≥ m,

λk(C̃ × YN) =
1

k

k−1∑
`=0

Λ̃k[πk](σ−`C̃ × τ−`YN)

=
1

k

k−1∑
`=0

Λ̃k[πk](σ−`C̃ × YN)

=
1

k

k−1∑
`=0

Λ̃k[µk](σ
−`C̃)

=
k −m+ 1

k
µm(C) +

1

k

m−1∑
`=1

µm−` (C1 × · · · × Cm−`)µ` (Cm−`+1 × · · · × Cm) .
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Fixing m and taking a limit in k, we see that

lim
k→∞

λk(C̃ × YN) = µm(C) = µ(C̃).

Thus mX (λk)⇒ µ and one may use a similar argument to show that mY(λk)⇒ ν. So by Lemma

C.3, λk` ⇒ λ ∈ J (µ, ν) for some subsequence {λk`}. Now for each ` ≥ 1, one may show using

the definition of λk` that
∫
c dλk`1 = 1

k`

∫
ck` dπ

k` and h(λk`) = 1
k`
Hk`(π

k`). Thus, by the upper

semicontinuity of h(·) and the continuity and boundedness of c,

Sη(c;µ, ν) ≤ lim inf
`→∞

{∫
c dλk`1 − ηh(λk`)

}
= lim inf

`→∞

{
1

k`

∫
ck` dπ

k` − η

k`
Hk`(π

k`)

}
≤ lim inf

`→∞

{
1

k`
T η(ck` ;µk` , νk`) + εk`

}
= lim

k→∞

1

k
T η(ck;µk, νk),

giving the result.

Proposition 5.22. Let X and Y be finite and µ ∈ Ms(XN) and ν ∈ Ms(YN). Then the entropic

optimal joining cost satisfies

lim
η→0
Sη(c;µ, ν) = S(c;µ, ν).

Proof. Let {ηn} be a sequence of non-negative integers such that ηn → 0 and for every n ≥ 1 let

λn ∈ J ηnmin(µ, ν). As J (µ, ν) is compact in the weak topology, there exists a subsequence of {λn},

which we also refer to as {λn}, such that λn ⇒ λ for some λ ∈ J (µ, ν). Now let λ∗ ∈ Jmin(µ, ν).

Using the feasibility of λn for S(c;µ, ν) and λ∗ for Sηn(c;µ, ν), it follows that for every n ≥ 1,

∫
c dλ∗1 ≤

∫
c dλn1

and ∫
c dλn1 − ηnh(λn) ≤

∫
c dλ∗1 − ηnh(λ∗).
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Rearranging, we obtain

0 ≤
∫
c dλn1 −

∫
c dλ∗1 ≤ ηn(h(λn)− h(λ∗)). (5.14)

As h(·) is bounded, we have limn→∞ ηn(h(λn)− h(λ∗)) = 0. Taking limits in (5.14) and using the

continuity and boundedness of c,

∫
c dλ1 = lim

n→∞

∫
c dλn1 =

∫
c dλ∗1 = S(c;µ, ν).

It follows that λ ∈ Jmin(µ, ν) and limn→∞
∫
c dλn1 = S(c;µ, ν). Again using the boundedness of

h(·),

lim
n→∞

Sηn(c;µ, ν) = lim
n→∞

{∫
c dλn1 − ηnh(λn)

}
= lim

n→∞

∫
c dλn1 = S(c;µ, ν).

Since {ηn} was arbitrary, we obtain the result.

Theorem 5.23. Let X and Y be finite and µ ∈ Ms(XN) and ν ∈ Ms(YN) be ergodic. Then

for any η > 0, there exists a sequence {k(n)} with k(n) → ∞ such that with P-probability one,

ρ̂ηk,n → Sη(c;µ, ν) and λ̂η,k,n ⇒ J ηmin(µ, ν) as n→∞.

Proof. Fix some η > 0. To begin, we would like to construct a sequence {k(n)} satisfying

lim
n→∞

∣∣∣ρ̂ηk(n)(X
n
1 , Y

n
1 )− Sη (c;µ, ν)

∣∣∣ = 0, P− a.s. (5.15)

Our approach will be similar to the unregularized case with the exception that we also have to

control the error in the entropies of the estimates. In particular, by Proposition 5.26,

∣∣∣∣ρ̂ηk(Xn
1 , Y

n
1 )− 1

k
T η(ck;µk, νk)

∣∣∣∣ ≤ 1

k
T (cXk ; µ̂k,n, µk) + η

∣∣∣∣1kHk(µ̂k,n)− 1

k
Hk(µk)

∣∣∣∣
+

1

k
T (cYk ; ν̂k,n, νk) + η

∣∣∣∣1kHk(ν̂k,n)− 1

k
Hk(νk)

∣∣∣∣ .
So it is necessary to ensure that the entropy error terms also decay to zero along the sequence

{k(n)} that we construct. To see that such a sequence exists, fix ε > 0 and i ∈ N and recall that
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since µ̂i,n ⇒ µi and Hi(·) is weakly continuous, there exists an n(i) ∈ N such that

µ

(∣∣∣∣1i Hi(µ̂i,n(i))−
1

i
Hi(µi)

∣∣∣∣ > ε

)
≤ 2−i.

Then by Borel-Cantelli,

µ

(
lim sup
i→∞

∣∣∣∣1i Hi(µ̂i,n(i))−
1

i
Hi(µi)

∣∣∣∣ > ε

)
= 0,

and it follows that
∣∣1
iHi(µ̂i,n(i))− 1

iHi(µi)
∣∣→ 0, µ-almost surely. Abusing notation somewhat, we

obtain a sequence {i(n)} by letting i(n′) := infi{n(i) = n′}. Thus

lim
n→∞

∣∣∣∣ 1

i(n)
Hi(n)(µ̂i(n),n)− 1

i(n)
Hi(n)(µi(n))

∣∣∣∣→ 0, µ-almost surely.

Let {j(n)} be a sequence constructed in the analogous manner for ν and let {`(n)} and {m(n)}

be admissible sequences for µ and ν. Then letting {k(n)} be the sequence defined by k(n) =

min{i(n), j(n), `(n),m(n)}, we obtain the desired convergence.

Next we show that the sequence of estimated entropic optimal joinings indexed by k(n) con-

verges weakly to the set of entropic optimal joinings J ηmin(µ, ν), almost surely. In order to simplify

notation, we will suppress the dependence of k(n) on n in the rest of the proof. Fix an element

ω ∈ Ω of the sample space in the set of P-measure one on which (5.15) holds. Let {λ̂η,k,n}n≥1 be the

corresponding sequence of estimated entropic optimal joinings where the dependence on the obser-

vations Xn
1 (ω) and Y n

1 (ω) has been suppressed. By Lemma C.3, for any subsequence {λ̂η,k,n`}`≥1,

there is a further subsequence converging weakly to a joining λ ∈ J (µ, ν). For ease of notation,

we refer to this further subsequence again as {λ̂η,k,n`}`≥1. Using the weak lower semicontinuity of

−h(·) and the continuity and boundedness of c, one may establish

∫
c dλ1 − ηh(λ) ≤ lim inf

`→∞

{∫
c dλ̂η,k,n`1 − ηh(λ̂η,k,n`)

}
= lim inf

`→∞

1

k
T η(ck;µn`k , ν

n`
k )

= T η(c;µ, ν).
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Thus, λ ∈ J ηmin(µ, ν) and since the subsequence was arbitrary, we conclude that λ̂η,k,n ⇒ J ηmin(µ, ν).

By the choice of ω, we conclude that λ̂η,k,n ⇒ J ηmin(µ, ν), P-almost surely. The proof of the upper

bound on E[|ρ̂ηk(X
n
1 , Y

n
1 )− Sη(c;µ, ν)|] may be found in the proof of Theorem 5.16.
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APPENDIX A

APPENDIX TO CHAPTER 3

A.1 Properties of the OTC Problems

In this appendix, we prove that solutions to the OTC and constrained OTC problems exist via

continuity and compactness arguments and establish the triangle inequality for the unconstrained

problem. For a metric space U and a sequence of Borel probability measures {µn} ⊂ M(U), we say

that µn converges weakly to µ ∈ M(U), denoted by µn ⇒ µ, if for every continuous and bounded

function f : U → R,
∫
f dµn →

∫
f dµ. A set Π ⊂ M(U) is said to be weakly compact if every

sequence in Π contains a subsequence converging weakly to an element of Π. Π is said to be tight

if for every ε > 0, there exists a compact set K ⊂ U such that µ(K) > 1 − ε for every µ ∈ Π.

Tightness and relative compactness are related by Prohorov’s theorem which states that if U is a

separable metric space, Π ⊂ M(U) is tight if and only if its closure is relatively compact. Note

that XN × YN is complete and separable when equipped with the metric

d((x1,y1), (x2,y2)) =
∞∑
k=0

2−kδ((x1
k, y

1
k) 6= (x2

k, y
2
k)).

Finally, we remark that since c : X × Y → R+ is continuous and bounded, c̃(x,y) = c(x0, y0) is as

well.

A.1.1 Existence for the OTC Problem

We begin by proving that ΠTC(P,Q) is weakly compact.

Lemma A.1. ΠTC(P,Q) is weakly compact.

Proof. By (Villani, 2008, Lemma 4.4), Π(P,Q) is tight. Since ΠTC(P,Q) ⊂ Π(P,Q), ΠTC(P,Q) is

tight as well. Thus by Prohorov’s theorem, the closure of ΠTC(P,Q) is weakly compact. So we

need only prove that ΠTC(P,Q) is closed. Take a sequence {πn} ⊂ ΠTC(P,Q) such that πn ⇒ π ∈

M(XN × YN). Since Π(P,Q) is weakly compact (Villani, 2008), π ∈ Π(P,Q). Then it suffices to

prove that π is stationary, Markov, and has a transition matrix that satisfies the transition coupling

property.
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We begin by proving that π is stationary. Let σ : XN × YN → XN × YN be the left-shift

map defined for every (x,y) ∈ XN × YN by σ(x,y) = (x∞1 , y
∞
1 ). Then stationarity of any µ ∈

M(XN ×YN) is defined by µ = µ ◦ σ−1. Since each πn is stationary, πn = πn ◦ σ−1. Noting that σ

is continuous, the continuous mapping theorem implies that πn ◦ σ−1 ⇒ π ◦ σ−1, so πn ⇒ π ◦ σ−1.

Since weak limits are unique, we conclude that π = π ◦ σ−1 and π is stationary.

Next we prove that π is Markov. Since X × Y is finite, for any cylinder set [sk0] = {(x,y) ∈

(X × Y)N : (xj , yj) = sj , 0 ≤ j ≤ k}, πn([sk0])→ π([sk0]). Then

πn([s0 · · · sk])
πn([s0 · · · sk−1])

→ π([s0 · · · sk])
π([s0 · · · sk−1])

(A.1)

and

πn([sk−1sk])

πn([sk−1])
→ π([sk−1sk])

π([sk−1])
, (A.2)

where we let 0/0 = 0. But since πn is Markov for each n ≥ 1,

πn([s0 · · · sk])
πn([s0 · · · sk−1])

=
πn([sk−1sk])

πn([sk−1])
.

As a result, π([s0 · · · sk])/π([s0 · · · sk−1]) = π([sk−1sk])/π([sk−1]). Thus, π is Markov.

Now, we need only show that π satisfies the transition coupling property. Letting Rn and R

denote the transition matrices of πn and π, respectively, (A.1) and (A.2) imply that Rn(s, s′) →

R(s, s′) for every s, s′ ∈ X × Y. Then for any (x, y) ∈ X × Y and y′ ∈ Y,

∑
x′

Rn((x, y), (x′, y′))→
∑
x′

R((x, y), (x′, y′)). (A.3)

But as Rn ∈ ΠTC(P,Q),
∑

x′ Rn((x, y), (x′, y′)) = Q(y, y′) and it follows that
∑

x′ R((x, y),

(x′, y′)) = Q(y, y′). Employing a similar argument to the other marginal of R, one may show

that in fact R ∈ ΠTC(P,Q). Therefore, π ∈ ΠTC(P,Q) and we conclude that ΠTC(P,Q) is weakly

compact.

Proposition A.2. The OTC problem (3.2) has a solution.
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Proof. Let {πn} ⊂ ΠTC(P,Q) be a sequence such that

∫
c̃ dπn → inf

π∈ΠTC(P,Q)

∫
c̃ dπ.

By Lemma A.1, ΠTC(P,Q) is weakly compact. Thus, there exists a subsequence {πnk} such that

πnk ⇒ π∗ for some π∗ ∈ ΠTC(P,Q). Since c̃ is continuous and bounded,

∫
c̃ dπ∗ = lim

k→∞

∫
c̃ dπnk = inf

π∈ΠTC(P,Q)

∫
c̃ dπ.

Thus π∗ is an optimal solution for Problem (3.2).

A.1.2 Existence for the Constrained OTC Problem

We begin by proving that Πη
TC(P,Q) is convex and compact as a subset of Rd2×d2 .

Lemma A.3. For any η > 0, the constrained set of transition coupling matrices Πη
TC(P,Q) is

convex and compact.

Proof. Fixing η > 0, we begin by showing that Πη
TC(P,Q) is convex. Let R,R′ ∈ Πη

TC(P,Q),

λ ∈ (0, 1), and define Rλ := λR+(1−λ)R′. Since ΠTC(P,Q) is convex, Rλ ∈ ΠTC(P,Q). Moreover,

using the convexity of the KL-divergence, for any s ∈ X × Y,

K(Rλ(s, ·)‖P ⊗Q(s, ·)) = K(λR(s, ·) + (1− λ)R′(s, ·)‖P ⊗Q(s, ·))

≤ λK(R(s, ·)‖P ⊗Q(s, ·)) + (1− λ)K(R′(s, ·)‖P ⊗Q(s, ·))

≤ λη + (1− λ)η

= η.

Thus Rλ ∈ Πη
TC(P,Q) and we conclude that Πη

TC(P,Q) is convex.

Next we prove compactness. Note that as a subset of the compact set ΠTC(P,Q) we need only

show that Πη
TC(P,Q) is closed. Let {Rn} ⊂ Πη

TC(P,Q) be a sequence converging to R ∈ Rd2×d2 .

By the compactness of ΠTC(P,Q), R ∈ ΠTC(P,Q). Now for any s ∈ X × Y, note that R(s, ·) is
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absolutely continuous with respect to P ⊗Q(s, ·). This implies that, for every s′ ∈ X × Y,

R(s, s′) log
R(s, s′)

P ⊗Q(s, s′)
<∞,

where we let 0 log(0/0) = 0. Then K(·‖P ⊗Q(s, ·)) is continuous at R(s, ·) and we have that

K(R(s, ·)‖P ⊗Q(s, ·)) = lim
n→∞

K(Rn(s, ·)‖P ⊗Q(s, ·)) ≤ η.

Thus R ∈ Πη
TC(P,Q) and we conclude that Πη

TC(P,Q) is compact.

Next, we show that Πη
TC(P,Q) is weakly compact.

Lemma A.4. For any η ≥ 0, Πη
TC(P,Q) is weakly compact.

Proof. Let {πn} ⊂ Πη
TC(P,Q) be a sequence such that πn ⇒ π ∈ M(XN × YN). By Lemma A.3,

ΠTC(P,Q) is weakly compact so π ∈ ΠTC(P,Q). Letting R be the transition matrix of π, we need

only show that R ∈ Πη
TC(P,Q). Letting Rn be the transition matrix of πn, it follows from (A.3)

that Rn → R. Using the weak lower semicontinuity of the KL-divergence, for every s ∈ X × Y,

K(R(s, ·)‖P ⊗Q(s, ·)) ≤ lim inf
n→∞

K(Rn(s, ·)‖P ⊗Q(s, ·)) ≤ η.

Therefore, R ∈ Πη(P,Q) and we find that π ∈ Πη
TC(P,Q). Thus, we conclude that Πη

TC(P,Q) is

weakly compact.

Proposition A.5. For any η > 0, the constrained OTC problem (3.4) has a solution.

Proof. Let {πn} ⊂ Πη
TC(P,Q) be a sequence such that

∫
c̃ dπn → inf

π∈ΠηTC(P,Q)

∫
c̃ dπ.

By Lemma A.4, Πη
TC(P,Q) is weakly compact. So there exists a subsequence {πnk} such that

πnk ⇒ π∗ for some π∗ ∈ Πη
TC(P,Q). Since c̃ is continuous and bounded,

∫
c̃ dπ∗ = lim

k→∞

∫
c̃ dπnk = inf

π∈ΠηTC(P,Q)

∫
c̃ dπ.
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Thus π∗ is an optimal solution for Problem (3.4).

A.1.3 Triangle Inequality

Next we prove that the optimal transition coupling cost satisfies the triangle inequality when the

cost does. For probability measures p1, p2, p3 ∈M(X ), we let Π(p1, p2, p3) denote the set of three-

way couplings of p1, p2, and p3 defined in the obvious way. For stationary Markov process measures

P1, P2, P3 ∈ M(XN) we let ΠTC(P1,P2,P3) denote the set of three-way transition couplings of P1,

P2, and P3, again defined in the obvious way. If the three process measures have transition matrices

P1, P2, and P3 ∈ Rd×d, we let Π(P1, P2, P3) denote the set of three-way transition coupling matrices

of P1, P2, and P3.

Lemma A.6 ( (Gluing Lemma)). Let P1, P2, P3 ∈ M(XN) be stationary and irreducible Markov

chains with stationary distributions p1, p2, p3 ∈ M(X ), and let π12 ∈ ΠTC(P1,P2) and π23 ∈

ΠTC(P2,P3). Then there exists π123 ∈ ΠTC(P1,P2,P3) such that π123(A1×A2×XN) = π12(A1×A2)

and π123(XN × A2 × A3) = π23(A2 × A3) for any A1, A2, A3 ⊂ XN. Furthermore, any stationary

distribution λ123 ∈M(X × X × X ) of R123 necessarily satisfies λ123 ∈ Π(p1, p2, p3).

Proof. Let P1, P2, P3, π12 and π23 have transition matrices P1, P2, P3, R12 and R23, respectively.

By the gluing lemma for optimal couplings (Villani, 2008), for every x1, x2, x3 ∈ X , there exists a

coupling r(x1,x2,x3) ∈ Π(P1(x1, ·), P2(x2, ·), P3(x3, ·)) such that

∑
x̃3

r(x1,x2,x3)(x̃1, x̃2, x̃3) = R12((x1, x2), (x̃1, x̃2))

and ∑
x̃1

r(x1,x2,x3)(x̃1, x̃2, x̃3) = R23((x2, x3), (x̃2, x̃3)).

Let R123 ∈ Rd
3×d3 be the transition matrix such that for every (x1, x2, x3), (x̃1, x̃2, x̃3) ∈ X ×X ×X ,

R123((x1, x2, x3), (x̃1, x̃2, x̃3)) = r(x1,x2,x3)(x̃1, x̃2, x̃3). By construction, R123 ∈ Π(P1, P2, P3) and we

may let π123 be the stationary Markov process measure constructed from R123 and some stationary

distribution λ123 ∈M(X ×X ×X ) of R123. To see that λ123 ∈ Π(p1, p2, p3), let the first X -marginal
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R =



(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(0,0) 0 0.25 0 0.25 0 0 0 0 0.50
(0,1) 0 0 0.25 0 0 0.25 0.25 0.25 0
(0,2) 0 0 0.25 0.25 0 0 0.25 0.25 0
(1,0) 0.25 0 0 0 0 0.25 0 0.25 0.25
(1,1) 0 0 0.25 0.25 0 0 0 0.25 0.25
(1,2) 0 0.25 0 0 0 0.25 0.50 0 0
(2,0) 0 0.25 0 0.25 0 0 0 0 0.50
(2,1) 0.25 0 0 0 0 0.25 0 0.25 0.25
(2,2) 0 0.25 0 0 0 0.25 0.50 0 0


.

Figure A.1: A reducible transition coupling of irreducible transition matrices P and Q defined in (A.5)
and (A.6), respectively.

of λ123 be p̃1 ∈M(X ). Then for every x1 ∈ X ,

p̃1(x1) =
∑
x2,x3

λ123(x1, x2, x3)

=
∑
x2,x3

∑
x̃1,x̃2,x̃3

λ123(x̃1, x̃2, x̃3)×R123((x̃1, x̃2, x̃3), (x1, x2, x3))

=
∑

x̃1,x̃2,x̃3

λ123(x̃1, x̃2, x̃3)P1(x̃1, x1)

=
∑
x̃1

p̃1(x̃1)P1(x̃1, x1),

so p̃1 is stationary with respect to P1. Since P1 is irreducible, the stationary distribution of P1 is

unique and it follows that p̃1 = p1. Repeating the argument for the second and third marginals, it

follows that λ123 ∈ Π(p1, p2, p3) and thus π123 ∈ ΠTC(P1,P2,P3).

Proposition A.7 ( (Triangle Inequality)). Let P1, P2, P3 ∈M(XN) be stationary and irreducible

Markov chains and let c̃(x, x̃) = c(x0, x̃0) for every x, x̃ ∈ XN. If c satisfies the triangle inequality,

then the OTC problem satisfies

min
π∈ΠTC(P1,P3)

∫
c̃ dπ ≤ min

π∈ΠTC(P1,P2)

∫
c̃ dπ + min

π∈ΠTC(P2,P3)

∫
c̃ dπ. (A.4)

Proof. By Proposition A.2, there exist π12 ∈ ΠTC(P1,P2) and π23 ∈ ΠTC(P2,P3) that are optimal

in the two problems on the right hand side of (A.4). Then by Lemma A.6, there exists π123 ∈

ΠTC(P1,P2,P3) that admits π12 and π23 as (X ×X )N-marginals. Define the measure π13 ∈M((X ×
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X )N) by π13(A1 × A3) = π123(A1 × XN × A3) for every A1, A3 ⊂ XN. Clearly, π13 ∈ ΠTC(P1,P3).

Moreover, c̃ satisfies the triangle inequality on (X × X )N since c satisfies it on X × X . Thus,

min
π∈ΠTC(P1,P3)

∫
c̃ dπ ≤

∫
(X×X )N

c̃(x1,x3) dπ13(x1,x3)

=

∫
(X×X×X )N

c̃(x1,x3) dπ123(x1,x2,x3)

≤
∫

(X×X×X )N
(c̃(x1,x2) + c̃(x2,x3)) dπ123(x1,x2,x3)

=

∫
(X×X )N

c̃(x1,x2) dπ12(x1,x2) +

∫
(X×X )N

c̃(x2,x3) dπ23(x2,x3)

= min
π∈ΠTC(P1,P2)

∫
c̃ dπ + min

π∈ΠTC(P2,P3)

∫
c̃ dπ.

A.2 Reducible Transition Coupling of Irreducible Chains

In this appendix, we provide an example showing that a transition coupling of two irreducible

transition matrices is not necessarily irreducible. Let

P =



0 1 2

0 0.25 0.25 0.50

1 0.25 0.25 0.50

2 0.25 0.25 0.50

 (A.5)

and

Q =



0 1 2

0 0.25 0.25 0.50

1 0.25 0.25 0.50

2 0.50 0.25 0.25

. (A.6)

Both P andQ are clearly irreducible, but the transition coupling R, given in Figure A.1, is reducible.

While we do not provide an example here, we remark that transition coupling matrices of aperiodic

and irreducible transition matrices may also have multiple recurrent classes.
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A.3 Comparison to 1-step Optimal Transition Coupling

In this appendix, we demonstrate how the 1-step transition coupling problem described in

Section 3.2 prioritizes expected cost in the next step over long-term average cost as the OTC

problem does.

Example A.8. Consider stationary Markov chains X and Y with transition distributions defined

by the graphs in Figure A.2. In order to find an OTC of X and Y , we must specify a cost for

every pair of states (x, y) ∈ X × Y. Let states (0, 0), (1, 2), (2, 1), (2, 2), and (3, 3) have cost 0,

states (1, 1), (3, 4) and (4, 3) have cost 1, state (4, 4) have cost 9, and let all other states have a

cost sufficiently large 1-step OTC and OTC do not assign them positive probability.

0

1

2

3

4

0.25

0.75

1

1

(a) X transition probabilities

0

1

2

3

4

0.5

0.5

1

1

(b) Y transition probabilities

Figure A.2: Marginal stationary Markov chains. Both chains return to state 0 from states 3 and 4 with
probability one.

The transition distributions of the OTC and 1-step OTC are largely the same except for the

transitions from (0, 0) to (1, 1), (1, 2), (2, 1) and (2, 2) (see Figure A.3 for an illustration). In

particular, since the OTC chooses the transitions to minimize expected cost over the complete

trajectory of the chain, it assigns lower probability to the transition (0, 0)→ (2, 2) in order to avoid

the costly state (4, 4). On the other hand, the 1-step OTC does not utilize this information in

deciding how to transition from (0, 0) and assigns a higher probability to the transition (0, 0) →

(2, 2). As a result, the expected cost of the 1-step OTC is 5/3 compared to an expected cost of 1

for the OTC. In fact, by increasing the cost of the state (4, 4), one can make the difference between

the 1-step OTC and OTC costs arbitrarily large. The lower expected cost indicates that the OTC

constitutes a better alignment of X and Y as compared to the 1-step OTC.
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(0,0)

(1,2)

(2,1)

(2,2)

(1,1)

(3,4)

(4,3)

(4,4)

(3,3)

0.25

0.25

0.5

1

1

1

1

(a) 1-step OTC (expected cost of 5/3)

(0,0)

(1,2)

(2,1)

(2,2)

(1,1)

(3,4)

(4,3)

(4,4)

(3,3)

0.25

0.5

0.25

1

1

1

1

(b) OTC (expected cost of 1)

Figure A.3: An example where the 1-step OTC has sub-optimal expected cost. Both chains return to state
(0, 0) from states (3, 3), (3, 4), (4, 3), and (4, 4) with probability one. Note that Figures A.3a and A.3b omit
the edges that are the same between the two transition couplings.
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APPENDIX B

APPENDIX TO CHAPTER 4

B.1 Experimental Details

In this appendix, we provide further details for the experiments discussed in Section 4.5.

B.1.1 Point Cloud Alignment

In the experiment described in Section 4.5.1, point clouds in R3 were generated from a 4-

component Gaussian mixture model as follows: For a given σµ > 0, we generate µ1, ..., µ4 ∼

N3(0, σ2
µI) independently. The vectors µ1, ..., µ4 will be the means of the four mixture components

under consideration. Note that as σµ is increased, these means will tend to be further separated

and the task of distinguishing between points from each component becomes easier. Then given

ni ∈ N, we generate ni points IID from N3(µi, I) for each i = 1, ..., 4. Gathering these points, we

obtain a point cloud D ⊂ R3 of size N :=
∑4

i=1 ni.

The overlap regimes referred to in Figure 4.3 of Section 4.5.1 correspond to σµ = 1 (high

overlap), σµ = 2 (moderate overlap), and σµ = 3 (low overlap). In each iteration, we sampled

10 points from each mixture component to form the first graph and 5 points from each mixture

component to form the second graph. For each choice of σµ, cross validation was performed

for FGW (to select α ∈ {0, 0.1, ..., 1}) by randomly generating 5 pairs of graphs and computing

alignments of vertices and edges. Parameters that yielded the highest average alignment accuracy

were selected. Separate parameters were chosen for optimizing vertex and edge alignment. The

ExactOTC algorithm was used to compute solutions to the GraphOTC problem. The experiment

was developed and run in Matlab on a 6-core, personal machine.

B.1.2 Graph Classification

In order to compute approximate solutions to the GraphOTC problem, we used the

EntropicOTC algorithm with L = 10, T = 50, ξ = 100, and 50 Sinkhorn iterations. The FGW

cost was computed with a default parameter choice of α = 0.5. The experiment was developed in

Matlab and run on a 24-core node in a university-owned computing cluster.
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APPENDIX C

APPENDIX TO CHAPTER 5

C.1 Properties of the Proposed Estimates

Proposition C.1. For any η ≥ 0, the proposed estimates satisfy λ̂η,k,n ∈ J (Λk[µ̂k,n],Λk[ν̂k,n]) and

∫
c dλ̂η,k,n1 − ηh(λ̂η,k,n) = ρ̂ηk,n.

Proof. Let π̂ηk,n ∈ M(X k × Yk) be as defined in Section 5.5. We start by proving that λ̂η,k,n is

invariant under the left-shift σ×τ on XN×YN. Note first that by construction, Λ̃k[π̂ηk,n]◦(σ×τ)−k =

Λ̃k[π̂ηk,n]. Then,

kλ̂η,k,n ◦ (σ × τ)−1 =
k−1∑
`=0

Λ̃k[π̂ηk,n] ◦ (σ × τ)−`−1

=
k−1∑
`=1

Λ̃k[π̂ηk,n] ◦ (σ × τ)−` + Λ̃k[π̂ηk,n] ◦ (σ × τ)−k

=

k−1∑
`=1

Λ̃k[π̂ηk,n] ◦ (σ × τ)−` + Λ̃k[π̂ηk,n]

=

k−1∑
`=0

Λ̃k[π̂ηk,n] ◦ (σ × τ)−`

= kλ̂η,k,n.

Thus λ̂η,k,n ∈ Ms(XN × YN). Next we prove that λ̂η,k,n ∈ Π(Λk[µ̂k,n],Λk[ν̂k,n]). Fix a measurable

set C ⊂ XN. Then

λ̂η,k,n(C × YN) =
1

k

k−1∑
`=0

Λ̃k[π̂ηk,n](σ−`C × τ−`YN)

=
1

k

k−1∑
`=0

Λ̃k[π̂ηk,n](σ−`C × YN)

=
1

k

k−1∑
`=0

Λ̃k[µ̂k,n](σ−`C)

= Λk[µ̂k,n](C).
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Since C was arbitary, it follows that the XN-marginal of λ̂η,k,n is Λk[µ̂k,n]. A similar argument will

show that the YN-marginal of λ̂η,k,n is Λk[ν̂k,n]. Thus λ̂η,k,n ∈ J (Λk[µ̂k,n],Λk[ν̂k,n]). Finally, by the

construction of λ̂η,k,n,

∫
c dλ̂η,k,n1 − ηh(λ̂η,k,n) =

1

k

∫
ck dπ̂

η,n
k − η

k
Hk(π̂

η,n
k ) =

1

k
T η (ck; µ̂k,n, ν̂k,n) = ρ̂ηk,n,

where the first equality follows from the well-known fact that randomizing the start of a block-IID

process preserves entropy rate.

C.2 Existence of an Entropic Optimal Joining

Proposition C.2. Let X and Y be finite, µ ∈ Ms(XN), ν ∈ Ms(YN), and c : X × Y → R+ be a

non-negative cost function. Then for every η ≥ 0, the set of entropic optimal joinings J ηmin(µ, ν) is

non-empty.

Proof. Fix η ≥ 0 and a sequence {λn} ⊂ J (µ, ν) such that
∫
c dλn1 − ηh(λn) → Sη(c;µ, ν). As

J (µ, ν) is compact in the weak topology, we may extract a subsequence {λn`} such that λn` ⇒ λ

as ` → ∞ for some λ ∈ J (µ, ν). As the entropy rate h(·) is weakly upper semicontinuous on

Ms(XN × YN) and c is continuous and bounded,

∫
c dλ1 − ηh(λ) ≤ lim inf

`→∞

{∫
c dλn`1 − ηh(λn`)

}
= Sη(c;µ, ν).

Thus we conclude that λ ∈ J ηmin(µ, ν) and J ηmin(µ, ν) is non-empty.

C.3 Properties of the (c, η)-Transform

Proposition 5.24. Let (U , dU ) and (V, dV) be finite pseudometric spaces, and let f : U → R and

g : V → R be real-valued functions. Furthermore, let c : U × V → R+ be a non-negative cost

function satisfying |c(u, v) − c(u′, v′)| ≤ L(dU (u, u′) + dV(v, v′)) for all u, u′ ∈ U and v, v′ ∈ V for

some L ∈ R. Then for any η > 0, f (c,η) and g(c,η) satisfy |f (c,η)(v) − f (c,η)(v′)| ≤ LdV(v, v′) and

|g(c,η)(u)− g(c,η)(u′)| ≤ LdU (u, u′) for all u, u′ ∈ U and v, v′ ∈ V.
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Proof. We will prove the bound for g(c,η) and the bound for f (c,η) will follow from a similar argument.

Let the conditions of the proposition hold. Then for any u, u′ ∈ U ,

g(c,η)(u) = −η log

(∑
v

exp

{
1

η
(g(v)− c(u, v))

})

= −η log

(∑
v

exp

{
1

η
(g(v)− c(u′, v) + c(u′, v)− c(u, v))

})

= −η log

(∑
v

exp

{
1

η
(g(v)− c(u′, v))

}
exp

{
1

η
(c(u′, v)− c(u, v))

})

≤ −η log

(
exp

{
−L
η
dU (u, u′)

}∑
v

exp

{
1

η
(g(v)− c(u′, v))

})

= LdU (u, u′) + g(c,η)(u′).

Applying the same argument after exchanging u and u′ and using the symmetry of dU (·, ·), the

result for g(c,η) follows.

C.4 Weak Convergence of Couplings and Joinings

Lemma C.3. Let U and V be Polish spaces and {µn} ⊂ M(U) and {νn} ⊂ M(V) be sequences

satisfying µn ⇒ µ and νn ⇒ ν for some µ ∈ M(U) and ν ∈ M(V). Then for any sequence {πn}

satisfying πn ∈ Π(µn, νn) for every n ≥ 1, there exists a subsequence {πn`} such that πn` ⇒ π for

some π ∈ Π(µ, ν). Moreover, if U = XN and V = YN for Polish alphabets X and Y and for every

n ≥ 1, µn ∈Ms(XN), νn ∈Ms(YN) and πn ∈ J (µn, νn), then π ∈ J (µ, ν).

Proof. The first part of the lemma follows from basic weak convergence arguments (see for example

(Villani, 2008)). Suppose that the second set of conditions hold. Then from the first part of the

lemma, it suffices to show that π is invariant under the joint left-shift σ× τ : XN×YN → XN×YN.

Since σ × τ is continuous, for any bounded and continuous f : XN × YN → R, f ◦ (σ × τ) is also

bounded and continuous and it follows that

∫
f d[π ◦ (σ × τ)−1] =

∫
f ◦ (σ × τ) dπ = lim

`→∞

∫
f ◦ (σ × τ) dπn` = lim

`→∞

∫
f dπn` =

∫
f dπ.
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Since f was arbitrary, we conclude that π is invariant under the left-shift σ× τ and the second part

of the lemma follows.
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G. Schiebinger, J. Shu, M. Tabaka, B. Cleary, V. Subramanian, A. Solomon, J. Gould, S. Liu,
S. Lin, P. Berube, et al. Optimal-transport analysis of single-cell gene expression identifies
developmental trajectories in reprogramming. Cell, 176(4):928–943, 2019.

P. Schweitzer. On undiscounted Markovian decision processes with compact action spaces. RAIRO-
Operations Research, 19(1):71–86, 1985.

C. E. Shannon. A mathematical theory of communication. Bell system technical journal, 27(3):
379–423, 1948.

P. C. Shields. The ergodic theory of discrete sample paths, volume 13. American Mathematical
Soc., 1996.

R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American
Mathematical Monthly, 74(4):402–405, 1967.

M. Sommerfeld and A. Munk. Inference for empirical Wasserstein distances on finite spaces. Journal
of the Royal Statistical Society Series B, 80(1):219–238, 2018.

J. Song, Y. Gao, H. Wang, and B. An. Measuring the distance between finite Markov decision
processes. In Proceedings of the 2016 international conference on autonomous agents & multia-
gent systems, pages 468–476. International Foundation for Autonomous Agents and Multiagent
Systems, 2016.

B. Su and G. Hua. Order-preserving Wasserstein distance for sequence matching. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1049–1057, 2017.

B. Su and G. Hua. Order-preserving optimal transport for distances between sequences. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 41(12):2961–2974, 2018.

J. J. Sutherland, L. A. O’brien, and D. F. Weaver. Spline-fitting with a genetic algorithm: A method
for developing classification structure- activity relationships. Journal of chemical information and
computer sciences, 43(6):1906–1915, 2003.

Z. Talata. Divergence of information-criterion based Markov order estimators for infinite memory
processes. In 2010 IEEE International Symposium on Information Theory, pages 1378–1382.
IEEE, 2010.

Z. Talata. Divergence rates of Markov order estimators and their application to statistical estimation
of stationary ergodic processes. Bernoulli, 19(3):846–885, 2013.

C. Tameling, M. Sommerfeld, and A. Munk. Empirical optimal transport on countable metric
spaces: Distributional limits and statistical applications. The Annals of Applied Probability, 29
(5):2744–2781, 2019.

161



V. Titouan, N. Courty, R. Tavenard, and R. Flamary. Optimal transport for structured data with
application on graphs. In International Conference on Machine Learning, pages 6275–6284, 2019.

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schölkopf. Wasserstein auto-encoders. In International
Conference on Learning Representations (ICLR 2018). OpenReview. net, 2018.

A. Tong, J. Huang, G. Wolf, D. Van Dijk, and S. Krishnaswamy. Trajectorynet: A dynamic optimal
transport network for modeling cellular dynamics. In International Conference on Machine
Learning, pages 9526–9536. PMLR, 2020.

V. S. Varadarajan. On the convergence of sample probability distributions. Sankhyā: The Indian
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