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ABSTRACT

CHRISTOPHER J. URBAN: Machine Learning-Based Estimation and Goodness-of-Fit for
Large-Scale Confirmatory Item Factor Analysis.

(Under the direction of Daniel J. Bauer)

I investigate novel parameter estimation and goodness-of-fit (GOF) assessment methods for

large-scale confirmatory item factor analysis (IFA) with many respondents, items, and latent fac-

tors. For parameter estimation, I extend Urban and Bauer’s (2021) deep learning algorithm for

exploratory IFA to the confirmatory setting by showing how to handle user-defined constraints on

loadings and factor correlations. For GOF assessment, I explore new simulation-based tests and

indices. In particular, I consider extensions of the classifier two-sample test (C2ST), a method that

tests whether a machine learning classifier can distinguish between observed data and synthetic

data sampled from a fitted IFA model. The C2ST provides a flexible framework that integrates

overall model fit, piece-wise fit, and person fit. Proposed extensions include a C2ST-based test of

approximate fit in which the user specifies what percentage of observed data can be distinguished

from synthetic data as well as a C2ST-based relative fit index that is similar in spirit to the rela-

tive fit indices used in structural equation modeling. Via simulation studies, I first show that the

confirmatory extension of Urban and Bauer’s (2021) algorithm produces more accurate parame-

ter estimates as the sample size increases and obtains comparable estimates to a state-of-the-art

confirmatory IFA estimation procedure in less time. I next show that the C2ST-based test of ap-

proximate fit controls the empirical type I error rate and detects when the number of latent factors

is misspecified. Finally, I empirically investigate how the sampling distribution of the C2ST-based

relative fit index depends on the sample size.
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1 INTRODUCTION

Item factor analysis (IFA; Bock, Gibbons, & Muraki 1988) is an invaluable method for inves-

tigating the latent structure underlying the discrete item response data that arises in many social

science applications. In particular, IFA allows researchers to summarize a large number of item

responses using a smaller number of continuous latent factors, thereby reducing the dimension-

ality of the data and potentially making the data easier to understand. Researchers with specific

hypotheses about the number of factors, the relations between the item responses and the factors,

and the factor correlations typically encode their hypotheses as parameter constraints in a con-

firmatory IFA model (e.g., Wirth & Edwards 2007). For example, personality assessments such

as the revised Minnesota Multiphasic Personality Inventory (Butcher, Dahlstrom, Graham, Telle-

gen, & Kaemmer 1989) and the International Personality Item Pool NEO (Goldberg 1999) include

hundreds of items organized into subscales wherein each subscale is designed to measure a single

personality factor. Modeling such designs using confirmatory IFA entails estimating the relations

between the items comprising a subscale and their corresponding factor while constraining these

items’ relations with all other factors to zero (i.e., not estimating these relations). Estimating con-

firmatory IFA model parameters and their standard errors permits inferences about the properties

of items as well as about the characteristics of the population from which the observed sample was

drawn. Subsequent goodness-of-fit (GOF) analyses provide useful information about how well the

fitted model approximates the data generating model (e.g., Maydeu-Olivares 2013a).

Unfortunately, both parameter estimation and GOF assessment have long been computation-

ally challenging in the large-scale setting with many respondents, items, and latent factors (e.g.,

Cai 2010a, 2010b). Existing methods for confirmatory IFA may therefore be sub-optimal for

analyzing complex, high-dimensional item response data arising from sources such as surveys,
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standardized tests, online applications, and electronic data capture, many of which are becom-

ing increasingly available to social scientists (e.g., Pardos 2017; Woo, Tay, & Proctor 2020). To

clarify this issue, consider Bock and Aitkin’s (1981) marginal maximum likelihood (MML) esti-

mator, which has many desirable statistical properties and is typically the preferred estimator for

confirmatory IFA parameter estimation.1 The MML approach bases inference on the marginal

likelihood of the observed item responses, which is obtained by integrating out the latent factors.

Problematically, however, evaluating this integral is computationally burdensome when the num-

ber of factors P is even moderately large (e.g., P≥ 5). Researchers have devised numerous meth-

ods to avoid this computational burden: adaptive Gaussian quadrature methods (Rabe-Hesketh,

Skrondal, & Pickles 2005; Schilling & Bock 2005), Laplace approximation methods (e.g., Huber,

Ronchetti, & Victoria-Feser 2004), Monte Carlo expectation-maximization (EM) algorithms (e.g.,

Meng & Schilling 1996; Song & Lee 2005), Markov Chain Monte Carlo methods (e.g., Béguin &

Glas 2001; Edwards 2010), and stochastic approximation methods (SA; e.g., Cai 2010a, 2010b;

S. Zhang, Chen, & Liu 2020). Of the above methods, SA procedures such as the Metropolis-

Hastings Robbins-Monro (MH-RM) algorithm (Cai 2010b) and the stochastic EM (StEM) algo-

rithm (S. Zhang et al. 2020) are the most computationally efficient; in recent years, MH-RM has

been particularly widely used in the social and behavioral sciences due to its flexibility and compu-

tational efficiency. However, even these state-of-the-art SA procedures are slow when the sample

size N, number of items J, and number of factors P are all large (e.g., N ≥ 10000, J ≥ 100, and

P≥ 10).

Even after surmounting the computational difficulties associated with MML estimation, re-

searchers who wish to assess their confirmatory IFA model’s GOF face yet another computational

barrier. Let K j denote the number of response categories for item j. To simplify the presentation,

assume all items have the same number of categories such that K = K j for j = 1, . . . ,J. GOF

1I note that other estimators such as limited-information estimators (e.g., Jöreskog & Moustaki 2001; Muthén 1978,
1984) and joint maximum likelihood (JML) estimators (X. Chen, Liu, Sun, & Hong 2019) are more computationally
efficient than the MML estimator. However, these alternative estimators have different statistical properties — for
example, limited-information estimators are not asymptotically efficient, while JML estimators are only consistent
when the sample size and the number of items simultaneously tend to infinity — and are not considered further here
due to space constraints.
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assessment for IFA models fitted via MML is typically based on the underlying KJ-dimensional

multinomial table on which the model is defined. Full-information GOF statistics such as Pearson’s

statistic and the likelihood ratio statistic have inaccurate p-values when the number of items and

the number of response categories are even moderately large due to the multinomial table’s sparse-

ness (e.g., when J ≥ 6 and K ≥ 5; Thissen & Steinberg 1997). Limited-information GOF statistics

overcome the sparsity problem by only utilizing marginals of the multinomial table, thereby “con-

centrating” the information available for testing to obtain more accurate p-values and higher power

(e.g., Maydeu-Olivares & Joe 2005, 2006, 2014). However, calculating limited-information GOF

statistics requires high-dimensional numerical integration and is typically computationally inten-

sive. Despite efforts to improve computational efficiency for specific IFA models (e.g., Cai &

Hansen 2013), calculating limited-information GOF statistics for general confirmatory IFA mod-

els remains computationally intensive when the number of items, response categories, and factors

are all large (e.g., J ≥ 100, K ≥ 5, and P≥ 10).

Based on the preceding discussion, it is clear that more computationally efficient MML esti-

mation and GOF assessment methods are needed to apply confirmatory IFA to very large-scale

data. In this thesis, I investigate machine learning methods that offer steps toward addressing some

of the difficulties mentioned above. The method I propose for parameter estimation is based on

Urban and Bauer’s (2021) deep learning algorithm for exploratory IFA. Their algorithm uses an

importance-weighted amortized variational estimator (I-WAVE) that combines variational infer-

ence and importance sampling to construct an approximation to the MML estimator. By increas-

ing the number of importance-weighted samples drawn during fitting, the I-WAVE typically trades

computational efficiency for a better approximation. In the large-scale exploratory setting (i.e.,

P = 10, J = 100, 1000≤ N ≤ 10000), the I-WAVE has empirically demonstrated comparable pa-

rameter estimation accuracy and increased computational efficiency relative to the MML estimator

implemented via MH-RM (Urban & Bauer 2021).

Assessing GOF for large-scale IFA models fitted via I-WAVE is not straightforward. In addition
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to being computationally inefficient in the large-scale setting, the limited-information GOF statis-

tics described above were designed for models fitted via the MML estimator and have unknown

theoretical properties when applied to models fitted via approximate MML (e.g., the I-WAVE). I

aim to address both computational and theoretical issues simultaneously by instead considering

simulation-based GOF assessment methods in which model-data fit is assessed by comparing the

observed item responses to synthetic item responses sampled from a fitted IFA model. Previous

work in simulation-based GOF assessment for confirmatory IFA has mainly focused on posterior

predictive model checking (PPMC) in the Bayesian setting (e.g., Levy, Mislevy, & Sinharay 2009;

Sinharay, Johnson, & Stern 2006). In PPMC, synthetic data simulated from the posterior predic-

tive distribution are compared to the observed data using discrepancy measures (i.e., measures that

quantify how two data sets differ). Unlike limited-information GOF statistics, PPMC is computa-

tionally efficient, accounts for parameter estimation uncertainty, and does not rely on asymptotic

arguments. Although PPMC was originally developed for Bayesian IFA models, recent work has

shown that PPMC may be applied to frequentist IFA models using a normal approximation to the

posterior predictive distribution (Kuhfeld 2019; Lee, Cai, & Kuhfeld 2016). Unfortunately, PPMC

assuming posterior normality (PPMC-N) is only well-motivated when models are fitted via ex-

act maximum likelihood, suggesting that PPMC-N may not be a well-motivated GOF assessment

method for I-WAVE.

The alternative GOF assessment methods I consider are based on a class of machine learn-

ing methods called classifier two-sample tests (C2STs; Friedman 2003; Kim, Ramdas, Singh, &

Wasserman 2021; Lopez-Paz & Oquab 2017). Similar to t-tests and other classical two-sample

tests, C2STs aim to determine whether two samples are drawn from the same distribution. To as-

sess model-data fit in confirmatory IFA, a C2ST begins by first sampling synthetic item responses

from the fitted IFA model.2 The synthetic responses are combined with the observed responses to

construct a new data set, which is divided at random into two disjoint subsets called the training

2Unlike PPMC-N, the C2ST is well-motivated when applied to an IFA model fitted via any estimator given that
synthetic data can be sampled from the model. This holds for estimators that treat the latent factors as random effects
(e.g., the MML estimator or the I-WAVE) but not for estimators that treat the latent factors as fixed effects (e.g., JML
estimators).
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set and the test set. Next, a machine learning classifier (e.g., a logistic regression or a neural net-

work classifier) is trained to distinguish between the observed and synthetic training set response

patterns. Finally, the classifier’s test set accuracy (i.e., the proportion of test set response patterns

correctly classified as observed or synthetic) is treated as the test statistic and is used to test the

null hypothesis that the observed and synthetic data are drawn from the same distribution. For

a perfect-fitting model, the accuracy obtained should not be significantly better than chance be-

cause the synthetic data will mimic the observed data characteristics. Depending on one’s choice

for the classifier, C2STs are potentially very computationally efficient in the large-scale setting.

C2STs also provide a variety of interpretable values to complement the use of p-values and may

be viewed as uniting overall model fit, piece-wise (i.e., item-level) fit, and person fit under a single

framework.

In exploring these issues, my thesis makes four primary contributions. First, I extend the I-

WAVE to the confirmatory setting by showing how to handle user-defined constraints on the factor

loadings and inter-factor correlations. Second, I empirically investigate confirmatory I-WAVE’s

finite sample behavior and conduct comparisons with MH-RM. Third, in addition to a C2ST-based

test of perfect (exact) fit, I propose and explore a novel C2ST-based test of approximate fit as well

as a C2ST-based relative fit index that is similar in spirit to the relative fit indices used in linear

confirmatory factor analysis and structural equation modeling (SEM; e.g., Bentler 1990; Bentler &

Bonett 1980; Bollen 1989b; L. R. Tucker & Lewis 1973). Compared to standard C2STs, these new

methods are potentially better suited to applications where the specified IFA model is unlikely to

exactly capture the data generating model. Fourth, I conduct simulations to investigate the C2ST

variants’ finite sample behavior in several settings including when the IFA model is correctly and

incorrectly specified.

The remaining chapters are organized as follows. Chapter 2 reviews variational methods (e.g.,

I-WAVE) for fitting confirmatory IFA models with polytomous responses. Novel C2ST-based GOF

assessment methods are developed in Chapter 3. Chapter 4 includes implementation details for the

proposed parameter estimation and GOF assessment methods as well as an empirical example and
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simulation studies. Experimental results are summarized, then limitations and extensions of the

proposed methods are discussed in Chapter 5.
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2 VARIATIONAL METHODS FOR PARAMETER ESTIMATION

Variational inference (VI) is an approach to approximate maximum likelihood estimation for

latent variable (LV) models that is widely used in machine learning (Blei, Kucukelbir, & McAuliffe

2017; C. Zhang, Butepage, Kjellstrom, & Mandt 2019). VI has recently been applied for IFA in a

variety of settings (e.g., Y. Chen, Filho, Prudêncio, Diethe, & Flach 2019; Cho, Wang, Zhang, & Xu

2020; Curi, Converse, & Hajewski 2019; Hui, Warton, Ormerod, Haapaniemi, & Taskinen 2017;

Natesan, Nandakumar, Minka, & Rubright 2016; Urban & Bauer 2021; Wu, Davis, Domingue,

Piech, & Goodman 2020). In this chapter, I review variational methods for IFA. I focus in particular

on the VI-based method described by Urban and Bauer (2021), which provides a theoretical link

between VI and MML estimation.

2.1 A Model for Confirmatory IFA

I first establish notation for the IFA models under consideration. Specifically, I consider Same-

jima’s (1969) graded response model (GRM) for polytomous item responses, although the methods

discussed in this chapter readily apply to other IFA models. Suppose that N respondents have an-

swered J items. Let xi, j ∈ {0,1, . . . ,K j − 1} denote the response for respondent i to item j in

K j ordinal categories. To simplify the presentation, assume K j = K for j = 1, . . . ,J. Note that

when K = 2, the GRM reduces to the widely used multidimensional two-parameter logistic model

(McKinley & Reckase 1983).

Each respondent is represented by a P× 1 latent vector zi and each item is represented by a

(P+K− 1)× 1 parameter vector θθθ j = (ααα>j ,βββ
>
j )
> where βββ j is a P× 1 vector of loadings and

ααα j = (α j1, . . . ,α j,K−1)
> is a (K−1)×1 vector of strictly ordered category intercepts. The GRM

defines a set of boundary response probabilities conditional on θθθ j and zi:

Pr(xi, j ≥ k | θθθ j,zi) =
1

1+ exp[α j,k +βββ
>
j zi]

, k ∈ {1, . . . ,K−1}, (2.1)

7



where Pr(xi, j ≥ 0 | θθθ j,zi) = 1 and Pr(xi, j ≥ K | θθθ j,zi) = 0. The conditional probability of the

response xi, j = k for k ∈ {0, . . .K−1} is

πi, j,k = Pr(xi, j = k | θθθ j,zi) = Pr(xi, j ≥ k | θθθ j,zi)−Pr(xi, j ≥ k+1 | θθθ j,zi). (2.2)

It follows from Equation (2.2) that the conditional distribution of xi, j is multinomial with K

cells, trial size 1, and cell probabilities πi, j,k:

pθθθ j(xi, j | zi) =
K−1

∏
k=0

π
1(xi, j=k)
i, j,k , (2.3)

where 1(·) denotes the indicator function. Let xi = (xi,1, . . . ,xi,n)
> be the ith respondent’s response

pattern and let θθθ = (θθθ>1 , . . . ,θθθ
>
J )
> be a vector collecting all item parameters. By the local inde-

pendence assumption, the conditional distribution of xi is

pθθθ (xi | zi) =
J

∏
j=1

pθθθ j(xi, j | zi). (2.4)

Assume that zi is multivariate normally distributed with zero mean vector and covariance matrix

ΣΣΣ = (σp,p′)P×P. Let ωωω = (θθθ>,vech(ΣΣΣ)>)> be a vector collecting all unknown parameters where

vech(ΣΣΣ) stacks the P(P+ 1)/2 unique elements of ΣΣΣ into a vector. Under my assumptions about

the distribution of the factors, the marginal distribution of xi is given by

pωωω(xi) =
∫ J

∏
j=1

pθθθ j(xi, j | z)N (z | ΣΣΣ)dz, (2.5)

where N (· | ΣΣΣ) is a normal density parameterized by ΣΣΣ and the above integral is over RP.

I set σp,p = 1 for p = 1, . . . ,P to identify the scale of the factors. In the confirmatory setting,

users encode hypotheses about the measurement structure by placing restrictions on the loadings

(e.g., by fixing β j,p to zero if item j is not hypothesized to measure factor p). Following Cai

8



(2010b), I consider the case of linear equality constraints so that the loadings may be written as

βββ j = b j +A jβββ
′
j, (2.6)

where βββ j is the restricted loadings vector, b j is a P×1 vector of constants, A j is a P×P matrix of

constants that implements the linear constraints, and βββ
′
j is a vector of free parameters. Cai (2010b)

provides examples of how b j and A j may be specified to implement various restrictions, while

Anderson and Rubin (1956) provide sufficient conditions enabling b j and A j to be specified such

that the model is identified.

2.2 Variational Lower Bound

Let X be an N× J matrix whose ith row is x>i . The marginal log-likelihood of the observed

data is

`(ωωω | X) =
N

∑
i=1

log
[∫ J

∏
j=1

pθθθ j(xi, j | zi)N (z | ΣΣΣ)dz)
]
. (2.7)

Maximizing `(ωωω | X) by directly evaluating the N integrals in Equation (2.7) is computationally

intensive when P is large. VI solves this issue by instead maximizing a computationally tractable

lower bound on `(ωωω |X). To derive the lower bound, I first re-write a single summand in Equation

(2.7) as

log pωωω(xi) = DKL
[
qψψψ i

(zi)‖pωωω(zi | xi)
]
+Eqψψψi(zi)

[
log pωωω(zi,xi)− logqψψψ i

(zi)
]
, (2.8)

where DKL
[
·‖·
]

denotes the Kullback-Leibler (KL) divergence1 and qψψψ i(zi) is an arbitrary density

with parameter vector ψψψ i satisfying
∫

qψψψ i
(z)dz = 1. The first r.h.s. term in Equation (2.8) is the

KL divergence between qψψψ i
(zi) and the posterior distribution of the latent factors. Since this term

in nonnegative, the second r.h.s. term is a lower bound on the marginal log-likelihood of a single

observation:

log pωωω(xi)≥ Eqψψψi(zi)

[
log pωωω(zi,xi)− logqψψψ i

(zi)
]
. (2.9)

1The KL divergence is defined as DKL
[
Q‖P

]
= EQ

[
logQ

]
− EQ

[
logP

]
for distributions P and Q. It satisfies

DKL
[
Q‖P

]
≥ 0 with equality if and only if P=Q almost everywhere.
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This lower bound is called the evidence lower bound (ELBO) and is often re-written as:

ELBOi = Eqψψψi(zi)

[
log pωωω(zi,xi)− logqψψψ i

(zi)
]

(2.10)

= Eqψψψi(zi)

[
log pωωω(xi | zi)

]
−DKL

[
qψψψ i

(zi)‖N (zi | ΣΣΣ)
]
. (2.11)

The variational estimator of the IFA model parameters ωωω is obtained by maximizing the ELBO over

all observations w.r.t. both ωωω and ψψψ i, which is equivalent to minimizing the KL divergence between

qψψψ i
(zi) and the posterior distribution of the latent factors. Intuitively, obtaining the variational

estimator drives qψψψ i
(zi) to approximate the true LV posterior; I henceforth refer to qψψψ i

(zi) as the

approximate LV posterior. When the approximate LV posterior perfectly approximates the true

posterior such that the KL divergence term on the r.h.s. of Equation (2.8) is zero, the ELBO equals

the marginal log-likelihood and the variational estimator is equivalent to the MML estimator.

Following previous work (e.g., Hui et al. 2017; Kingma & Welling 2014; Urban & Bauer 2021),

I set the approximate LV posterior to the isotropic normal density:

qψψψ i(zi) = N (zi | µµµ i,σσσ
2
i IP
)
, (2.12)

where µµµ i is a P× 1 vector of means, σσσ2
i is a P× 1 vector of variances, and IP is a P×P identity

matrix. Although the isotropic normal approximate LV posterior is computationally tractable, it is

rarely flexible enough in practice to perfectly approximate the true posterior and thereby minimize

the KL divergence to zero. The importance sampling technique described in Sect. 2.4 decreases

the gap between the ELBO and the marginal log-likelihood by implicitly increasing the flexibility

of the approximate posterior.

2.3 Amortized VI

Traditional VI fits a different parameter vector ψψψ i (i.e., a different approximate LV posterior)

for each observation. This approach quickly becomes computationally infeasible for large sam-

ple sizes. Additionally, it is not immediately clear how to apply models fitted using VI to new

observations (e.g., to compute the log-likelihood of the new observations). Amortized variational

10



inference (AVI) solves the above issues by parameterizing the approximate posterior using a pow-

erful function approximator called an inference model. Since the inference model parameters are

shared across observations, performing AVI requires fitting a constant number of parameters re-

gardless of the sample size, whereas performing VI requires fitting a number of parameters that

grows linearly with the sample size. Models fitted using AVI can also be straightforwardly applied

to new observations by passing the observations through the inference model.

The variational autoencoder (VAE; Kingma & Welling 2014; Rezende, Mohamed, & Wier-

stra 2014) is an algorithm for AVI that uses an artificial neural network (NN) inference model.

NNs are parametric machine learning models that map a set of predictor variables through a se-

quence of transformations to predict a set of outcome variables (for a brief overview, see Urban

& Bauer 2021). Using an NN inference model is typically considered justifiable because NNs can

approximate any Borel measurable function (e.g., Cybenko 1989) and perform well in a variety of

real-world applications (LeCun, Bengio, & Hinton 2015). I can specify a VAE for confirmatory

IFA by parameterizing the approximate LV posterior as follows:

(µµµ>i , logσσσ
>
i )
> = NNψψψ(xi),

qψψψ(zi | xi) = N (zi | µµµ i,σσσ
2
i IP),

(2.13)

where µµµ i is a P× 1 predicted vector of means, logσσσ i is a P× 1 predicted vector of log-standard

deviations, and NNψψψ is a neural network parameterized by ψψψ . Instead of estimating a parameter

vector ψψψ i for each observation, the NN parameters ψψψ are now shared across observations. That is,

instead of maximizing Equation (2.11) over observations, I maximize

ELBO = Eqψψψ (z|x)
[

log pωωω(x | z)
]
−DKL

[
qψψψ(z | x)‖N (z | ΣΣΣ)

]
(2.14)

over observations. Note that I have dropped the case index i since ψψψ is shared across {xi,zi}N
i=1.

The VAE relies on the assumption that the NN is capable of approximating the mapping from

the data space to the approximate LV posterior parameter space. In theory, this assumption holds

11



when the NN is sufficiently flexible (e.g., when the NN has one infinitely large hidden layer). In

practice, however, the NN has a limited capacity that may prevent the VAE from performing as

well as traditional VI. Fortunately, this performance difference can be reduced by increasing the

flexibility of the approximate LV posterior (Cremer, Li, & Duvenaud 2018).

Technical details regarding model fitting are briefly reviewed here; see Urban and Bauer (2021)

for greater detail. The fitting procedure of Urban and Bauer (2021) requires an unbiased estimator

for the gradient of the ELBO w.r.t. ξξξ = (ωωω>,ψψψ>)>. This is obtained by first reparameterizing z as

nnn ∼N (nnn),

z = µµµ +σσσ � nnn ,

(2.15)

where nnn is a P×1 sample from a standard multivariate normal density, µµµ and σσσ are the outputs of

the NN inference model given in equations 2.13, and � denotes element-wise multiplication. This

reparameterization writes z as a deterministic function of ψψψ and can be viewed as “externalizing”

the randomness in z. An unbiased estimator for the gradient of the ELBO w.r.t. ξξξ is now given by

∇ξξξ ELBO = EN (nnn)

[
∇ξξξ log pωωω(z,x)−∇ξξξ logqψψψ(z | x)

]
(2.16)

≈ 1
S

S

∑
s=1

[
∇ξξξ log pωωω(zs,x)−∇ξξξ logqψψψ(zs | x)

]
, (2.17)

where ∇ξξξ returns an M× 1 vector of first-order partial derivatives w.r.t. ξξξ and (2.17) is a Monte

Carlo approximation to the expectation in (2.16). Figure 2.1 illustrates how computation proceeds

in a VAE for confirmatory IFA: First, an item response x is passed through the inference model

NNψψψ to produce the approximate LV posterior parameters (µµµ>, logσσσ>)>; next, a latent vector z is

sampled from N (z | µµµ,σσσ2IP
)

and used to compute the response probabilities π j,k for j = 1, . . . ,6

and k = 0, . . . ,2; finally, these intermediate quantities are used to compute both the expected condi-

tional log-likelihood and the KL divergence terms in the ELBO. The gradient estimator in Equation

(2.17) can be efficiently computed using an automatic differentiation procedure called backprop-

agation (e.g., Goodfellow, Bengio, & Courville 2016). Urban and Bauer (2021) then apply an
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(
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)
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π1,0 π1,1 π2,0 π2,1 π3,0 π3,1 π4,0 π4,1 π5,0 π5,1 π6,0 π6,1

DKL
[
N (z | µµµ,σσσ 2IP)‖N (z | ΣΣΣ)

]︸ ︷︷ ︸
Kullback-Leibler divergence

EN (z|µµµ,σσσ2IP)

[
6
∑
j=1

2
∑

k=0
1(x j = k) logπ j,k

]
︸ ︷︷ ︸

expected conditional log-likelihood

Input
layer

NN
hidden
layer

Predicted
approximate
LV posterior
parameters

LV layer

Predicted
response

probabilities

Figure 2.1: Schematic diagram of a variational autoencoder for confirmatory item factor analysis
with J = 6 items, K = 2 categories per item, P = 2 factors, S = 1 Monte Carlo sample from the
approximate latent variable posterior, and an inference model consisting of a neural network with a
single hidden layer. Each factor loads on three items. The reparameterization of z is not illustrated
for simplicity. LV = latent variable, NN = neural network.

adaptive stochastic gradient method called AMSGrad (Reddi, Kale, & Kumar 2018) to iteratively

update ξξξ until convergence.

2.4 Importance-Weighted VI

Importance-weighted VI (Burda, Grosse, & Salakhutdinov 2016; Domke & Sheldon 2018) is a

strategy for obtaining a better approximation to the true log-likelihood by increasing the flexibility

of traditional VI. The importance-weighted amortized variational estimator (I-WAVE) for the IFA

model parameters ωωω is obtained by maximizing a new lower bound called the importance-weighted
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ELBO (IW-ELBO):

log pωωω(x)≥ IW-ELBO (2.18)

= Ez1:R

[
log

1
R

R

∑
r=1

wr

]
, (2.19)

where z1:R ∼∏
R
r=1 qψψψ(zr | x), wr = pωωω(zr,x)/qψψψ(zr | x) are unnormalized importance weights for

the joint distribution of latent and observed variables, and R is the number of importance-weighted

(IW) samples. The IW-ELBO reduces to the ELBO when R = 1 and converges monotonically to

the marginal log-likelihood as R→ ∞ under mild assumptions (Burda et al. 2016). I-WAVE can

also be viewed as implicitly defining a flexible approximate LV posterior qIW
ψψψ (z | x) that approaches

the true LV posterior pointwise as R→∞ (Cremer et al., 2017). The above facts imply that I-WAVE

and the MML estimator are equivalent when the number of IW samples R equals infinity, in which

case I-WAVE inherits the MML estimator’s statistical properties.

Following Urban and Bauer (2021), I use Burda et al.’s (2016) estimator for the IW-ELBO

ωωω-gradient:

∇ωωωEx1:R

[
log

1
R

R

∑
r=1

wr

]
= Ennn1:R

[ R

∑
r=1

w̃r∇ωωω logwr

]
(2.20)

≈ 1
S

S

∑
s=1

[ R

∑
r=1

w̃r,s∇ωωω logwr,s

]
, (2.21)

as well as G. Tucker, Maddison, Lawson, and Gu’s (2019) “doubly reparameterized” estimator for

the IW-ELBO ψψψ-gradient:

∇ψψψEx1:R

[
log

1
R

R

∑
r=1

wr

]
= Ennn1:R

[ R

∑
r=1

w̃2
r

∂ logwr

∂zr

∂zr

∂ψψψ

]>
(2.22)

≈ 1
S

S

∑
s=1

[ R

∑
r=1

w̃2
r,s

∂ logwr,s

∂zr,s

∂zr,s

∂ψψψ

]>
, (2.23)

where nnn1:R ∼ ∏
R
r=1 N (nnn r) and w̃r = wr/∑

R
r′=1 wr′ are normalized importance weights. Both es-

timators are unbiased and have increasing signal-to-noise ratios as R→ ∞. Further, both can be
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successfully approximated using a single Monte Carlo sample (e.g., Burda et al. 2016; G. Tucker

et al. 2019), so I set S = 1 for all experiments in this thesis.

2.5 Handling User-Defined Constraints

User-defined constraints on the factor loadings are straightforward to implement for I-WAVE.

In particular, the gradient of the IW-ELBO w.r.t. the unconstrained loadings vector βββ
′
j can be

obtained using the chain rule:

∇
βββ
′
j
IW-ELBO =

(
∂ IW-ELBO

∂βββ j

∂βββ j

∂βββ
′
j

)>
= A>j ∇βββ j

IW-ELBO . (2.24)

Equation (2.24) implies that one can first compute the gradient of the IW-ELBO w.r.t. βββ j, then

obtain the gradient w.r.t. βββ
′
j via pre-multiplication by the transposed constraint matrix A>j .

Users also often wish to impose constraints on the factor correlation matrix ΣΣΣ. Let ΣΣΣ = LL>

where L is a P×P lower triangular matrix. I estimate L using a hyperspherical parameterization

(Pinheiro & Bates 1996; Rapisarda, Brigo, & Mercurio 2007), which enables unconstrained esti-

mation of a variety of structured correlation matrices and has similar computational efficiency to

estimating L directly. This parameterization is given by:

lp,p′ =


cosϑp,1, if p′ = 1

cosϑp,p′+1 ∏
p′

p′′=1 sinϑp,p′′ , if 1 < p′ < p

∏
p
p′′=1 sinϑp,p′′, if p′ = p,

(2.25)

for p = 1, . . . ,P where lp,p′ are elements of L and ϑp,p′ ∈ (0,π] are angles measured in radians

which are elements of a P×P lower triangular matrix ΘΘΘ. Constraints on the angles giving rise to

various correlation structures are discussed by Tsay and Pourahmadi (2017) as well as by Ghosh,

Mallick, and Pourahmadi (2020). I note that it is also feasible to estimate ΣΣΣ using a proximal

stochastic gradient method (e.g., Yun, Lozano, & Yang 2020).
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2.6 Summary

In this chapter, I introduced notation for a class of confirmatory IFA models for polytomous

items response data and derived a computationally tractable lower bound on the marginal log-

likelihood of the observed data. I showed how to combine the lower bound with both deep learn-

ing and importance sampling to develop an importance-weighted amortized variational estima-

tor for the IFA model parameters that is equivalent to the MML estimator when the number of

importance-weighted samples equals infinity. I also discussed how to parameterize the IFA model

to incorporate user-defined constraints on the factor loadings and the factor correlation matrix.

These developments will be investigated experimentally in a later chapter.
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3 CLASSIFIER TWO-SAMPLE TESTS FOR GOODNESS-OF-FIT ASSESSMENT

3.1 Exact C2STs

I now discuss the application of classifier two-sample tests (C2STs; Friedman 2003; Kim et al.

2021; Lopez-Paz & Oquab 2017), a class of simulation-based GOF assessment methods that have

recently been developed in machine learning, to assessing exact GOF for confirmatory IFA models.

Let ω̂ωω denote parameter estimates obtained for some confirmatory IFA model. Let xi ∼ P denote

the ith observed response pattern and let y j ∼ pω̂ωω(y j) = P̂ denote the the jth synthetic response

pattern drawn from the fitted model where xi,y j ∈ X for i = 1, . . . ,N1 and j = 1, . . . ,N2. To

simplify the presentation, I assume N1 = N2 = N.

C2STs aim to test whether the observed and synthetic response patterns are drawn from the

same distribution — that is, C2STs aim to test H0 : P= P̂ against H1 : P 6= P̂. A C2ST is conducted

by training a machine learning classifier to distinguish between the observed and synthetic response

patterns. Intuitively, when P = P̂, the classifier’s test set accuracy should be close to 1/2 (i.e.,

chance), since samples from P and P̂ are indistinguishable. When P 6= P̂, the classifier should

be able to capitalize on the distributional differences to obtain a test set accuracy higher than 1/2.

More formally, a C2ST can be described as the following five-step procedure (Lopez-Paz & Oquab

2017):

(1) Construct a data set D = {(xi,1)}N
i=1∪{(yi,0)}N

i=1 = {(ui, li)}2N
i=1.

(2) Shuffle D at random and split it into disjoint sets D = Dtrain∪Dtest where Ntrain = |Dtrain| and

Ntest = |Dtest|.

(3) Fit a machine learning classifier f̂ : X → [0,1] using Dtrain.
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(4) Obtain the test set classification accuracy:

âcc =
1

Ntest
∑

i∈Itest

1

(
1

(
f̂ (ui)>

1
2

)
= li

)
=

1
Ntest

∑
i∈Itest

âcci, (3.1)

where Itest = {i : (ui, li) ∈ Dtest}.

(5) Compute a p-value based on the asymptotically normal null distribution of acc:

p̂ = Pr(âcc′ ≥ âcc | H0) = 1−Φ

 âcc−1/2√
1

4Ntest

 , (3.2)

where Φ(·) denotes the standard normal cumulative distribution function.

To derive Equation (3.2), notice that acci∼Bernoulli(acci | pi) where pi = 1/2 is the probability of

correctly classifying some ui in the test set when H0 is true. In this setting, Equation (3.2) follows

from the fact that

Ntest acc∼ Binomial
(

Ntest acc
∣∣∣∣Ntest,

1
2

)
≈N

(
Ntest acc

∣∣∣∣ Ntest

2
,
Ntest

4

)
(3.3)

as Ntest→ ∞.

C2STs provide a variety of interpretable numbers that complement the use of p-values:

(a) Taking f̂ (ui) as an estimate of the conditional probability Pr(li = 1 | ui) for i ∈ Itest, I can

determine which item response patterns were labeled correctly or incorrectly as well as how

confident f̂ was in each decision. This approach provides a way to evaluate which observed

response patterns are discrepant from the fitted IFA model.

(b) I can interpret the fitted classifier f̂ to determine which items were most useful for distin-

guishing between real and synthetic distributions (e.g., by interpreting a logistic regression

classifier’s coefficients).

(c) I can interpret the test statistic âcc as the percentage of item response patterns that were
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correctly distinguished between the real and synthetic distributions.

The values described in (a), (b), and (c) correspond to measures of person fit, piece-wise fit, and

overall model fit, respectively. C2STs may therefore be viewed as uniting these different kinds of

fit measures under a single framework.

C2STs are closely related to classical two-sample tests including the t-test for the difference in

means of two samples (Student 1908), the Wilcoxon-Mann-Whitney test for the difference in rank

means of two samples (Mann & Whitney 1947; Wilcoxon 1945), and the Kolmogorov-Smirnov

test for the difference in empirical cumulative distributions of two samples (Kolmogorov 1933;

Smirnov 1939), although these classical tests are less statistically efficient in the multivariate set-

ting. C2STs are also related to modern multivariate kernel two-sample tests (K2STs) including

the maximum mean discrepancy test (Gretton, Borgwardt, Rasch, Schölkopf, & Smola 2012) and

the mean embedding test (Chwialkowski, Ramdas, Sejdinovic, & Gretton 2015; Jitkrittum, Szabó,

Chwialkowski, & Gretton 2016), both of which test for differences in the empirical kernel mean

embeddings of two samples. However, depending on one’s choice for f , C2STs typically im-

prove upon K2STs by requiring less manual engineering of the input data and by providing more

interpretable results.

3.2 Approximate C2STs

The C2STs described above are exact in the sense that they test the null hypothesis that the real

distribution P and the synthetic distribution P̂ are exactly equal. In general, however, it is unlikely

that any specified IFA model will exactly capture the data generating mechanism such that P = P̂

(e.g., Cudeck & Henly 1991; Maccallum & Tucker 1991). I therefore propose a more realistic

approximate C2ST for which I assume P 6= P̂ and I test H0 : acc = 1/2+ δ against H1 : acc >

1/2+δ where δ ∈ (0,1/2) is a pre-specified value representing the degree of model error viewed

as tolerable by the user. The approximate C2ST is not a test of exact GOF because it does not test

whether the hypothesized IFA model exactly captures the data generating mechanism. Instead, the

approximate C2ST is a test of approximate GOF wherein the user asserts that an IFA model that

fits the data “well enough” should be capable of synthesizing item response patterns that can only
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be distinguished from real item response patterns around 100δ% of the time.

I now derive the null distribution of acc for the approximate C2ST. Since acc = 1/2+δ > 1/2

under H0, Equation (3.1) implies that acci = 1/2+ δi ≥ 1/2 for i ∈ Itest where δi ∈ [0,1/2] and

δ = N−1
test ∑i∈Itest δi. In this setting, the acci are independent but not identically distributed Bernoulli

random variables with success probabilities pi = 1/2+ δi. Ntest acc therefore follows a Poisson

binomial distribution, which I follow Ehm (1991) in approximating as

Ntest acc∼ Binomial(Ntest acc | Ntest, p̄)≈N
(
Ntest acc | Ntest p̄,Ntest p̄(1− p̄)

)
(3.4)

as Ntest→ ∞ where p̄ = N−1
test ∑i∈Itest pi = 1/2+N−1

test ∑i∈Itest δi = 1/2+δ . It follows that

acc∼N

(
acc

∣∣∣∣∣ 1
2
+δ ,

1
4 −δ 2

Ntest

)
. (3.5)

To derive the alternative distribution of acc, notice that under H1 I have acc= 1/2+δ +ε > 1/2

where the effect size ε ∈ (0,1/2−δ ) is the magnitude of the difference between acc under H0 and

acc under H1. Equation (3.1) implies that acci = 1/2+ δi + εi for i ∈ Itest where δi ∈ [0,1/2],

εi ∈ [0,1/2−δi], δ = N−1
test ∑i∈Itest δi, and ε = N−1

test ∑i∈Itest εi. Then by a similar argument to the one

given in the previous paragraph, I can obtain

acc∼N

(
acc

∣∣∣∣∣ 1
2
+δ + ε,

1
4 −δ 2−2δε− ε2

Ntest

)
(3.6)

as Ntest→ ∞.

I now analyze the approximate C2ST’s power (i.e., the probability of correctly rejecting H0

when H0 is false) by proving the following theorem.

Theorem 1. Let α ∈ [0,1] be the user-defined significance level (i.e., the probability of incorrectly

rejecting H0 when H0 is true). Suppose the null and alternative distributions of acc are given by

equations 3.5 and 3.6, respectively. Then the power of the approximate C2ST is approximately
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given by

power(α,Ntest,δ ,ε) = Φ

ε
√

Ntest−
√

1
4 −δ 2Φ−1(1−α)√

1
4 −δ 2−2δε− ε2

 .

Proof. At significance level α , the decision threshold for acc is

zα =
1
2
+δ +

√
1
4 −δ 2

Ntest
Φ
−1(1−α).

When acc < zα , we accept H0. The probability of making a type II error (i.e., of incorrectly

accepting H0 when H0 is false) is

Pr
N

(
acc
∣∣∣∣ 1

2+δ+ε,
1
4−δ2−2δε−ε2

Ntest

)(acc < zα) = Pr
N

(
acc′

∣∣∣∣0, 1
4−δ2−2δε−ε2

Ntest

)
acc′ <

√
1
4 −δ 2

Ntest
Φ
−1(1−α)− ε



= Φ

√ Ntest
1
4 −δ 2−2δε− ε2

√ 1
4 −δ 2

Ntest
Φ
−1(1−α)− ε


= Φ


√

1
4 −δ 2Φ−1(1−α)− ε

√
Ntest√

1
4 −δ 2−2δε− ε2

 .

The power of the approximate C2ST is therefore

power(α,Ntest,δ ,ε) = 1−Φ


√

1
4 −δ 2Φ−1(1−α)− ε

√
Ntest√

1
4 −δ 2−2δε− ε2


= Φ

ε
√

Ntest−
√

1
4 −δ 2Φ−1(1−α)√

1
4 −δ 2−2δε− ε2

 .

Remark 1. The (approximate) power of the exact C2ST was derived by Lopez-Paz and Oquab

(2017, Theorem 1) and can be alternately be derived by setting δ = 0 in the power formula in

Theorem 1.
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Theorem 1 provides an important insight: maximizing the approximate C2ST’s power involves

trading off between maximizing the test set size Ntest and choosing a classifier f that maximizes

the effect size ε (equivalently, that maximizes the test set accuracy acc = 1/2+ δ + ε). To illus-

trate this trade-off, notice that while relatively inflexible classifiers (e.g., logistic regression) often

obtain low test set accuracy because they cannot capture complex nonlinear relationships (i.e.,

they decrease ε), these classifiers only require small training data sets (i.e., they increase Ntest).

Conversely, while flexible classifiers (e.g., NNs) may obtain high test set accuracy by capturing

complex nonlinear relationships (i.e., they increase ε), these classifiers require large training data

sets (i.e., they decrease Ntest). Lopez-Paz and Oquab (2017) note that this trade-off is analogous to

the well known bias-variance trade-off in statistics and machine learning (e.g., Yarkoni & Westfall

2017). In this thesis, I empirically investigate this tradeoff by using two different classifiers (i.e.,

a k-nearest neighbors classifier and an NN classifier) that may require different training set sizes

to obtain optimal test set accuracy. I also follow Jitkrittum et al. (2016) and Lopez-Paz and Oquab

(2017) in setting Ntrain = Ntest = N, which often achieves high power in practice and would achieve

maximum power if P and P̂ differed only in means.

3.3 C2ST-Based Relative Fit Index

The C2STs described above measure how well the proposed IFA model reproduces the ob-

served data (i.e., the model’s absolute GOF). An alternative approach that is often used in SEM is

to calculate a relative fit index (RFI) that measures the proportional improvement in fit obtained by

moving to the proposed model from a more restrictive baseline model (e.g., Bentler 1990; Bentler

& Bonett 1980; Bollen 1989a; L. R. Tucker & Lewis 1973). A typical baseline model posits that

the observed variables are mutually independent (i.e., there are no common latent factors underly-

ing the data; Bentler & Bonett 1980) and serves as a contrasting point of reference to a model that

perfectly reproduces the observed data (i.e., a saturated model; e.g., Bentler 1995; Steiger 1980).

Consider a zero-factor baseline model where P = 0 and θθθ j = ααα j for j = 1, . . . ,J. In this case,

each respondent’s response probability πi, j,k evaluated at the maximum likelihood estimate of θθθ

can be shown to be the observed proportion of respondents choosing response category k for item
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j, which I write as π̂ j,k = N−1
∑

N
i=11(xi, j = k). I can therefore conduct a C2ST for this baseline

model using N synthetic samples drawn from a multinomial distribution with K cells, trial size 1,

and cell probabilities π̂ j,k. Let âccprop and âccbase denote the test set accuracies for the proposed

model and for the baseline model, respectively, and let f̂prop and f̂base denote the corresponding

fitted classifiers. I propose the following C2ST-based RFI:

C2ST-RFI = 1−
Mprop

Mbase
·

∆prop

∆base
, (3.7)

where ∆prop = âccprop− 1/2, ∆base = âccbase− 1/2, Mprop is the number of fitted parameters in

the proposed model, and Mbase is the number of fitted parameters in the baseline model. The ratio

∆prop/∆base is a measure of the proportional change in misfit obtained by moving to the proposed

model from the baseline model, while the ratio Mprop/Mbase is a penalty that increases with the

number of fitted parameters in the proposed model (i.e., it rewards parsimony in the proposed

model).

I motivate my definition of C2ST-RFI by considering the fit index’s behavior in the typical

setting where the baseline model obtains less-than-perfect fit (i.e., when âccbase > 1/2). In the

common scenario that the proposed model fits the same or better than the baseline model (i.e., when

âccprop varies between âccbase and 1/2), C2ST-RFI varies between 1−Mprop/Mbase and one with

values closer to one indicating better fit. C2ST-RFI is much larger than one when âccprop is much

smaller than 1/2, which may occur when proposed model fits the data well but f̂prop has overfitted

the training data. In the infrequent event that the proposed model fits worse than the baseline model

(i.e., when âccprop > âccbase), C2ST-RFI is smaller than 1−Mprop/Mbase. C2ST-RFI therefore

behaves somewhat analogously to other nonnormed fit indices such as the Tucker-Lewis Index

(L. R. Tucker & Lewis 1973) that distinguish between less-than-perfect model fit, perfect model

fit, and overfitting by being smaller than one in the first case, close to one in the second case, and

much larger than one in the third case.

I next consider the effect of sample size on C2ST-RFI. Bollen (1989a) notes that GOF indices

may be influenced by sample size either (a) when N enters the calculation of the index or (b) when
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the mean of the sampling distribution of the index is related to N. For (a), notice that although both

âccprop and âccbase include factors of N−1
test, these factors cancel in the ratio ∆prop/∆base, indicating

that (a) does not hold. For (b), notice that when N is very small, both f̂prop and f̂base may fail to

capture any relationships in the training data. In this case, both âccprop and âccbase will be close

to 1/2 and C2ST-RFI will be close to 1−Mprop/Mbase. As N increases, f̂prop and f̂base should

capture any relationships in the training data and âccprop and âccbase should come close to their

population values, suggesting that (b) holds. I provide empirical evidence that the mean of the

sampling distribution of C2ST-RFI depends on N in Chapter 4. Specifically, I observe that C2ST-

RFI gives a less optimistic assessment of fit as N increases. This phenomenon is analogous to

the approximate C2ST’s power increasing with N and is likely of little concern for moderate- to

large-scale applications.

I also consider the probability limit of the proposed fit index. Assume that plimN→∞(accprop) =

1/2+δ and plimN→∞(accbase) = 1/2+δ +ε where δ ∈ [0,1/2] and ε ∈ [0,1/2−δ ]. This assump-

tion is mild and states that the accuracies obtained by f̂prop and f̂base should come close to specific

constants as N grows large, with f̂prop obtaining the same or better accuracy than f̂base.1 Then

plimN→∞(C2ST-RFI) = 1− [Mprop/Mbase] · [δ/(δ +ε)] = c where c is a constant which equals one

when the proposed model is correct (i.e., when δ = 0) and is smaller than one otherwise.

Finally, I comment on how to interpret numerical values of C2ST-RFIs. In practice, cutoff

values are used to interpret fit indices and thereby evaluate model fit. The development of adequate

“rules of thumb” cutoff criteria that cover a wide range of realistic data and model conditions

requires extensive empirical study (e.g., Hu & Bentler 1999) and is beyond the scope of this thesis.

Based on limited initial experimentation, however, I consider a provisory cutoff of C2ST-RFI> 0.9

to indicate good fit. I empirically investigate the performance of this cutoff in Chapter 4.

1A similar assumption that plimN, J→∞(acc) = 1/2+ δ for some δ > 0 is used by Kim et al. (2021) to prove that
C2STs are consistent (i.e., have power approaching one) in the high-dimensional setting where both N and J tend to
infinity.
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3.4 Summary

I began this chapter by formally describing C2STs as well as their application to exact GOF

assessment for confirmatory IFA models. I subsequently extended C2STs in ways that make them

better suited to real-world applications where the proposed model is not the exact data-generating

model: I derived an approximate C2ST wherein the user specifies the proportion of model error

they deem acceptable as well as a C2ST-based RFI that parallels the fit indices used in SEM. These

developments were primarily theoretical and will be investigated experimentally in the following

chapter.
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4 IMPLEMENTATION AND EXPERIMENTS

4.1 Implementation

I-WAVE is programmed using the machine learning library PyTorch (Version 1.1.6 Paszke et

al. 2017). Although PyTorch supports GPU computing to accelerate fitting, I follow Urban and

Bauer (2021) in opting for CPU computing to enable fairer comparisons with other methods and

to assess performance using hardware that is more typically available to social scientists. Ex-

periments are conducted on a computer with a 2.8 GHz Intel Core i7 CPU and 16 GB of RAM.

Code to reproduce all experiments is readily available at https://github.com/cjurban/

MachineLearningConfirmatoryIFA.

Optimization and hyperparameter tuning for I-WAVE in the exploratory setting are discussed

in detail by Urban and Bauer (2021, Section 5). I follow their implementation almost exactly,

although I adapt their factor loadings initialization procedure to the confirmatory setting as follows:

β j,p ∼ Uniform

(
β j,p

∣∣∣∣∣−
√

6
Mp +P

,

√
6

Mp +P

)
, (4.1)

for j = 1, . . . ,J and p = 1, . . . ,P where Mp is the number of nonzero loadings parameters for factor

p. This strategy is based on Xavier initialization (Glorot & Bengio 2010) and aims stabilize fitting

while taking into account user-defined zero constraints on the factor loadings. An additional detail

that must be addressed in the confirmatory setting is initializing the hyperspherical parameteriza-

tion ΘΘΘ of the factor correlation matrix ΣΣΣ. To ensure that ΣΣΣ is well-conditioned at the start of fitting,

I choose ΘΘΘ such that ΣΣΣ = IP by setting ϑp,p′ = π/2 for p = 1, . . . ,P, p′ = 1, . . . , p−1.

Following Lopez-Paz and Oquab (2017), I investigate two classifiers for C2ST analyses: a k-

nearest neighbors (KNN) classifier (Fix & Hodges 1951) and an NN classifier.1 Both classifiers are

1I initially also investigated a regularized logistic regression classifier but found that it performed very poorly relative
to KNNs and NNs.
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implemented via the Python package scikit-learn (Version 0.23.1; Pedregosa et al. 2011) and have

different hyperparameter settings, which I discuss in turn. For each test set observation ui ∈X ,

let Ii collect the indices of the k training set observations that are closest to ui under some distance

metric d : X ×X → [0,∞). KNNs set the predicted class l̂i for ui to the most frequent observed

class for the k closest training set observations, that is, l̂i = 1(k−1
∑i′∈Ii li′ > 1/2). In this work, I

use the Hamming distance metric d(ui,ui′) = J−1
∑

J
j=11(ui, j 6= ui′, j), which returns the proportion

of unequal responses between ui and ui′ . I also set k = b
√

Ntestc, which often performs adequately

in practice (Duda, Hart, & Stork 2001, Chapter 4).

Although KNNs are flexible and often require very little tuning, they typically obtain worse

predictive accuracy as J increases and are computationally intensive when the training set size

Ntrain is large (Hastie, Tibshirani, & Friedman 2009, Chapter 13). NNs overcome these issues in

that their predictive accuracy suffers relatively less as J increases and their computational efficiency

does not depend on Ntrain when they are fitted via stochastic gradient methods (Bottou, Curtis, &

Nocedal 2018), although they often require more tuning than KNNs to obtain optimal predictive

accuracy. I set most NN hyperparameters to the scikit-learn package defaults, which performed

well in all experiments. To mitigate overfitting in small data sets, I (a) stop fitting if the default

convergence criterion is not obtained within b10000 · 200/Ntestc stochastic gradient steps and (b)

apply weight decay (i.e., an L2 norm penalty on the NN regression weights) where the optimal

weight decay hyperparameter is selected from {10n : n ∈ {−1,−1/2,0,1/2,1}} using a held-out

validation set consisting of 25% of the training set observations (for details, see Hastie et al. 2009,

Chapters 7 and 11).

Since neither KNNs nor NNs are directly interpretable, I use a permutation importance (PI)

method to interpret which items are most useful for distinguishing between real and synthetic

distributions (Breiman 2001; Fisher, Rudin, & Dominici 2019). PI can be used to interpret any

fitted classifier f̂ , even when f̂ itself is not directly interpretable. Let U be an N× J matrix whose

ith row is u>i for i ∈ Itest. For each item j = 1, . . . ,J and each repetition t = 1, . . . ,T , shuffle the jth

column of U to generate a corrupted matrix Ũ j,t whose ith row is ũ>i, j,t . The PI for item j is defined
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as the average decrease in test set accuracy for f̂ when the responses to item j are shuffled:

importance j = âcc− 1
T

T

∑
t=1

1
Ntest

∑
i∈Itest

1

(
1

(
f̂ (ũi, j,t)>

1
2

)
= li

)
= âcc− 1

T

T

∑
t=1

ãcc j,t . (4.2)

Since the shuffling procedure breaks the relationship between item j and the class label, importance j

measures how much f̂ depends on item j. PI may be viewed as a piece-wise fit assessment method

wherein each importance j measures how well the proposed IFA model fits item j, with larger

importance j indicating worse fit. I set the number of repetitions to T = 5 for all experiments.

4.2 Empirical Example

I demonstrate the proposed methods’ computational efficiency in the large-scale setting and

obtain data generating parameters for simulation studies by analyzing 1015342 responses to the

50-item International Personality Item Pool five-factor model (IPIP-FFM; Goldberg 1999), the

same data considered by Urban and Bauer (2021) for exploratory IFA using I-WAVE. The IPIP-

FFM is designed to measure the Big Five personality factors of openness, conscientiousness, ex-

traversion, agreeableness, and emotional stability, making this data well suited to a more con-

firmatory approach. Each factor is measured by 10 five-category items anchored by “Disagree”

(1), “Neutral” (3), and “Agree” (5). The data were downloaded from the Open-Source Psycho-

metrics Project (https://openpsychometrics.org/) and pre-processed following Urban

and Bauer (2021, Section 6.1), resulting in an analytic sample containing N = 515708 responses.

Reverse worded items were recoded so that the highest numerical response category indicated a

high level of the corresponding factor.

4.2.1 A Five-Factor Model

I used I-WAVE to fit a five-factor confirmatory IFA model with correlated factors to the IPIP-

FFM data. Optimization and inference model hyperparameters were set to the values used by

Urban and Bauer (2021, Section 6.1). I set the number of IW samples to R = 5 based on Urban

and Bauer’s (2021) finding that this value performs well in practice. I fitted the data set 10 times to

investigate whether parameter estimation and GOF assessment results were stable across random

starts.
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Table 4.1: Factor Loadings for IPIP-FFM Data Set

Factor Loading Items

Five-Factor Model
Extraversion 2.12 2.18 2.05 2.59 2.57 1.55 2.38 1.64 1.73 2.27 1–10
Emotional Stability 2.09 1.47 1.69 1.22 1.27 2.35 2.35 2.66 1.92 1.94 11–20
Agreeableness 1.54 1.72 .74 2.80 2.16 1.45 2.17 1.59 2.24 1.14 21–30
Conscientiousness 1.69 1.53 .83 1.80 1.73 1.95 1.39 1.36 1.56 .97 31–40
Openness 1.32 1.59 1.50 1.43 1.71 1.65 1.14 1.17 .85 2.30 41–50

Seven-Factor Model
Extraversion 2.00 2.15 2.06 2.57 2.62 1.54 2.38 1.56 1.74 2.33 1–10
Emotional Stability 2.40 1.59 1.90 1.23 1.38 2.39 2.87 3.27 1.94 1.83 11–20
Agreeableness 1.53 1.74 .70 2.85 2.19 1.43 2.18 1.56 2.21 1.12 21–30
Conscientiousness 1.78 1.49 .87 1.77 1.75 1.92 1.34 1.35 1.49 1.03 31–40
Openness 1.69 1.48 1.56 1.38 1.80 1.77 1.03 1.43 .83 2.54 41–50
Doublet 1 2.31 2.31 11–20
Doublet 2 2.38 2.38 41–50

Factor loadings and correlations from the fitted model that attained the highest IW-ELBO

across random starts — henceforth called the reference model — are reported in Tables 4.1 and

4.2, respectively. All loadings were positive, which fit with the confirmatory design of the mea-

surement scale. Factor correlations aligned with the typical finding that emotional stability is

negatively correlated with the other factors. The mean fitting time was 198 seconds (SD = 56

seconds), which is quite fast given the large sample size. Relative to the reference model, mean

loadings root-mean-square error (RMSE) was 0.031 (SD = 0.017), mean intercepts RMSE was

0.046 (SD = 0.018), and mean factor correlation RMSE was 0.027 (SD = 0.010), suggesting that

fitting was fairly stable.2

I assessed overall fit for the proposed five-factor model (FFM) across random starts using KNN-

and NN-based exact and approximate C2STs. The large sample size required minor modifications

to how the classifiers were implemented. Specifically, I fitted the KNNs using a random subsample

of 2.5% of the training set observations to ensure that fitting was not computationally intensive,

2I treat the model attaining the highest IW-ELBO as ground truth in line with how an optimal solution is often selected
from multiple random starts for mixture models (e.g., Biernacki, Celeux, & Govaert 2003). Were I to alternatively
treat the mean parameter estimates across random starts as ground truth, the corresponding variability estimates would
be smaller than those reported here, although this approach would downplay the impact of possible local maxima on
parameter estimate stability.
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Table 4.2: Factor Correlations for IPIP-FFM Data Set

Factor

Factor 1 2 3 4 5 6 7

Five-Factor Model
1. Extraversion 1.00
2. Emotional Stability −.23 1.00
3. Agreeableness .37 .01 1.00
4. Conscientiousness .10 −.28 .08 1.00
5. Openness .21 −.10 .18 .01 1.00

Seven-Factor Model
1. Extraversion 1.00
2. Emotional Stability −.26 1.00
3. Agreeableness .38 .02 1.00
4. Conscientiousness .09 −.27 .11 1.00
5. Openness .26 −.15 .20 .06 1.00
6. Doublet 1 .00 .00 .00 .00 .00 1.00
7. Doublet 2 .00 .00 .00 .00 .00 .00 1.00

and I did not apply weight decay to the NNs given that large sample sizes often mitigate overfitting.

For approximate C2STs, I set δ = 0.025 to test H0 : acc = 0.525 against H1 : acc > 0.525, which

amounts to testing whether the proposed FFM is capable of synthesizing item response patterns

that can only be distinguished from real item response patterns 52.5% of the time (i.e., at slightly

better than chance). C2ST results are presented in Table 4.3. The fitted KNNs obtained much

lower test set accuracies than the fitted NNs (M = 0.67 for KNNs vs. M = 0.83 for NNs), echoing

the typical finding that NNs outperform KNNs when J is large. All KNN- and NN-based C2STs

rejected H0 at signficance level α = 0.05 (p̂ < 0.0001), suggesting that the FFM did not fit the

data “well enough”. Importantly, all tests were fast: accounting for both sampling synthetic data

and fitting the classifier, KNN-based C2STs took around 20 seconds and NN-based C2STs took

around 15 seconds.
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Table 4.3: Classifier Two-Sample Test Results for IPIP-FFM Data Set

Baseline Model Five-Factor Model Seven-Factor Model

M SD M SD M SD

Sampling Time 6.8 < .1 8.7 .4 8.7 .7

KNN

Fitting Time 11.0 .7 11.8 2.2 11.6 .7

Test Set Accuracy .65 .01 .67 .01 .66 .01

C2ST-RFI −.49 .22 −.46 .21

NN

Fitting Time 6.5 < .1 6.6 .3 6.6 < .1

Test Set Accuracy .96 < .01 .83 < .01 .81 < .01

C2ST-RFI .05 .02 .10 .01

Note. “Sampling Time” refers to time required to sample synthetic data from the model. All

times are given in seconds.

I next assessed piece-wise fit by computing PIs for fitted classifiers accross random starts,

which are displayed in Figure 4.1a. The median NN importances are clearly much larger than the

median KNN importances, likely due to the NNs having obtained higher test set accuracies. Fur-

ther, the NNs rely heavily on five specific items — items 17, 18, and 20, which measure emotional

stability, and items 41 and 48, which measure openness — whereas the KNNs rely fairly evenly on

all the items. This finding suggests that the NNs captured relationships between these five items

and the class label that the KNNs did not, likely contributing to the NNs’ superior performance.

The NN results in particular suggest that the FFM’s overall lack of fit is most heavily influenced

by its piece-wise lack of fit to items 17, 18, 20, 41, and 48.

Although the above results suggest that the FFM did not fit the data well in an absolute sense,

similar findings might be expected for nearly any a priori model. It would therefore be useful
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(a) Five-factor model.
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(b) Seven-factor model.

Figure 4.1: Permutation importances for each IPIP-FFM item across 10 random starts. Items are
grouped by their corresponding factor. Bar heights indicate medians, while error bars indicate 25%
and 75% quantiles. Hatched bars indicate the five poorest fitting items for the five-factor model.
EXT = extraversion, EST = emotional stability, AGR = agreeableness, CON = conscientiousness,
OPN = openness.
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Table 4.4: Wordings for Five Poorest Fitting IPIP-FFM Items

Item Wording

17 I change my mood a lot.
18 I have frequent mood swings.
20 I often feel blue.
41 I have a rich vocabulary.
48 I use difficult words.

to assess the FFM’s value in a relative sense by contrasting it with a baseline model. To this

end, I computed C2ST-RFIs for the fitted classifiers across random starts. As shown in Table 4.3,

KNNs obtained much lower baseline model test set accuracies than NNs (M = 0.65 for KNNs

vs. M = 0.96 for NNs). The KNN results suggest that the proposed FFM and the baseline zero-

factor model had comparable fit, while the NN results suggest that the FFM fit the data better

than the baseline model. This finding was reflected in the C2ST-RFIs, which were much lower

for KNNs than for NNs (M =−0.49 for KNNs vs. M = 0.05 for NNs). No C2ST-RFIs exceeded

the provisory cutoff of 0.9 suggested as an indicator of good fit. The additional RFI computations

were also fast, taking at most around 18 seconds or less.

4.2.2 A Seven-Factor Model

I investigated the five poorest fitting items flagged by PIs with the goal of improving model

fit. As shown in Table 4.4, wordings for item pair 17 and 18 as well as for item pair 41 and

48 are similar. To account for possible local dependence between these similarly worded pairs,

I modeled each pair using an additional orthogonal “doublet” factor that was only measured by

its corresponding two items and whose loadings were constrained to be equal to ensure model

identification. The resulting seven-factor model (SFM) was fitted with 10 random starts using the

same hyperparameters as the FFM.

The SFM loadings and factor correlation estimates are given in Tables 4.1 and 4.2, respectively,

and are largely similar to the FFM estimates for the non-doublet factors. Fitting remained fast

(M = 188 seconds, SD= 44 seconds) and fairly stable (relative to the seven-factor reference model,

loadings RMSE M = 0.038, SD = 0.016; intercepts RMSE M = 0.051, SD = 0.021; and factor
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correlation RMSE M = 0.032, SD = 0.010).

C2ST results for the SFM in Table 4.3 suggest that overall fit improved marginally relative

to the FFM. In particular, mean test set accuracy for both KNNs and NNs was slightly lower for

the SFM, suggesting that the SFM fit the data slightly better. However, all exact and approximate

C2STs again rejected H0 at α = 0.05 (p̂ < 0.0001), suggesting that the SFM also failed to fit

the data “well enough”. The SFM’s fit relative to the zero-factor baseline also improved only

marginally: mean KNN- and NN-based C2ST-RFIs were slighly higher for the SFM than for the

FFM, although these values remained far from the provisory cutoff of 0.9. Computation for all

tests and fit indices remained fast.

Although the SFM appeared to improve overall fit only marginally relative to the FFM, piece-

wise fit appeared to improve more substantially. This improvement is evident in the SFM’s PIs,

which are shown in Figure 4.1b. In particular, NN-based PIs for the flagged item pairs are drasti-

cally lower for the SFM than for the FFM. Improvements in piece-wise fit for these item pairs were

also observed for KNNs, although these improvements were relatively small since KNN-based PIs

were much smaller than NN-based PIs for both the FFM and the SFM.

4.3 Simulation Studies

4.3.1 Evaluating I-WAVE

I investigate confirmatory I-WAVE’s parameter recovery and computational efficiency as the

number of IW samples R increases and the log-likelihood approximation improves. The data gen-

erating model has P = 5 factors and J = 50 5-category items. Generating parameters are rounded

estimates from the five-factor reference model in Section 4.2.1. I consider R = 1, 5, and 25 as well

as N = 500, 2500, 12500, and 62500, resulting in 12 total simulation settings for each R and N

combination. I conduct 100 replications at each setting. All analyses reused the optimization and

inference model hyperparameters from Section 4.2.

Parameter recovery was assessed by computing the bias for each parameter as the mean de-

viation of the estimated parameter from the data generating parameter across replications, that is,

bias(ξ̂ ,ξ ) = 100−1
∑

100
a=1[ξ̂

(a)− ξ ] where ξ̂ (a) is the estimated parameter at replication a and ξ
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is the data generating parameter. I also computed mean squared error (MSE) for each parameter

as MSE(ξ̂ ,ξ ) = 100−1
∑

100
a=1[ξ̂

(a)− ξ ]2. Boxplots of parameter biases and MSEs for each sim-

ulation setting are displayed in Figures 4.2 and 4.3, respectively, with separate plots for factor

loadings, factor correlations, and intercepts. All estimates become more accurate as the sample

size increases. Loadings and factor correlations are highly biased for R = 1 but appear nearly un-

biased for R ≥ 5. MSE tends to decrease with increasing R for each N setting. I note that several

replications initially converged to poor local maxima when N = 500 and R ≥ 5 (specifically, 7

replications for R = 5 and 10 replications for R = 25). When N ≥ 2500 and R ≥ 5, poor local

maxima occurred in one or fewer replications at each (R,N) setting. Problematic replications were

handled by refitting with a new random seed.

Line plots of fitting times for each simulation setting are displayed in Figure 4.4. Median fitting

time decreases from around 116 seconds to around 96 seconds as R increases from 1 to 5, then

increases to around 165 seconds as R increases from 5 to 25. For fixed R, median fitting time tends

to decrease slightly as N increases. These results demonstrate that I-WAVE is computationally

efficient even when the sample size is very large.

4.3.2 Comparing I-WAVE to MH-RM

In this study, I compare I-WAVE to the MML estimator implemented via MH-RM in a setting

where the number of factors is large. I use the MH-RM implementation from the R package

mirt, which has core functions written in both R and C++ (Version 1.32.1 Chalmers 2012). The

data generating model has P = 10 factors measured by J = 100 5-category items. Generating

parameters are again rounded estimates from the five-factor reference model in Section 4.2.1 with

the parameters for items 51–100 set equal to the parameters for items 1–50. The factor correlation

matrix is a 10×10 block diagonal matrix with rounded FFM estimates on the main-diagonals and

zeros on the off-diagonals. I conduct 100 replications for each N = 1000, 2500, 5000, and 10000.

For I-WAVE, I set R = 5 and set the learning rate optimization hyperparameter to 0.0025 to ensure

the IW-ELBO does not diverge due to the large number of factors (for details, see Urban & Bauer

2021). I-WAVE converged to poor local maxima once each when N = 1000 and 2500, both of
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Figure 4.2: Parameter bias for the importance-weighted amortized variational estimator (I-WAVE).
Three settings for the number of importance-weighted (IW) samples are compared.
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Figure 4.3: Parameter mean squared error (MSE) for I-WAVE.
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Figure 4.4: Fitting times for I-WAVE. Markers indicate medians, while error bars indicate 25%
and 75% quantiles.

which were handled by refitting with a new random seed. I set MH-RM hyperparameters to the

mirt package defaults, which performed well across N settings.

Simulation results are presented in Figures 4.5 and 4.6. Both methods obtain comparable

estimates in all N settings and have MSE decreasing toward zero with increasing N. I-WAVE may

obtain slightly better estimates than MH-RM for N = 1000, and vice versa for N = 10000, although

the differences appear to be somewhat negligible. Parameter biases for both methods were also

comparable and are not shown. I-WAVE is faster than MH-RM in all settings: the median fitting

time for I-WAVE stays around three minutes and decreases slightly as N increases, whereas the

median fitting time for MH-RM is around 4.5 minutes when N = 1000 and increases to around 18

minutes when N = 10000. I note that the MH-RM implementation in the commercially available

flexMIRT software (Cai 2017) has core functions written in C++ and is likely faster than mirt,

although even this implementation would become slower as N increases. Additionally, I-WAVE

could achieve a potentially large speedup using a GPU, whereas a similar speedup is not currently

available for MH-RM.

4.3.3 Evaluating Approximate C2STs in a Non-IFA Setting

I conduct a small simulation study to verify that KNN- and NN-based approximate C2STs have

empirical type I error close to α = 0.05 as well as empirical power close to values predicted by the
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Figure 4.5: MSE for I-WAVE and the marginal maximum likelihood estimator. MH-RM =
Metropolis-Hastings Robbins-Monro.
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Figure 4.6: Fitting times for I-WAVE and the marginal maximum likelihood estimator.

formula in Theorem 1. Type I error rates for exact C2STs were empirically verified by Lopez-Paz

and Oquab (2017) and are not considered here. Since it is difficult to control the effect size ε in

the IFA setting, I instead consider real-valued data drawn from tractable distributions whereby ε

is precisely controlled. The use of real-valued data requires that KNNs be modified to use the

Euclidean distance metric d(ui,ui′) = ‖ui−ui′‖2 rather than the Hamming distance metric.

I begin with the type I error experiments. For each replication a = 1, . . . ,100, I simulate data

by drawing two samples {x(a)i }N
i=1 ∼ P = Uniform(xi | 0,1) and {y(a)i }N

i=1 ∼ P̂ = Uniform(yi |

0.05,1.05) where N = 250, 500, 1000, 2500, 5000, and 10000. P and P̂ are shown in Figure 4.7.

Close to 95% of the observations in each data set will fall in the region where P and P̂ overlap

(i.e., in [0.1,1]) and will be indistinguishable since P = P̂. On the other hand, close to 5% of the

observations will fall either to the left or the right of the overlapping region (i.e., either in [0,0.1)

or (1,1.05], respectively) and will be perfectly distinguishable since P̂ = 0 to the left and P = 0

to the right. This implies that the maximum obtainable test set classification accuracy is close to

0.525. I therefore test H0 : acc = 0.525 against H1 : acc > 0.525 so that the effect size ε = 0.

Figure 4.8 shows that both KNN- and NN-based approximate C2STs have rejection rates close to

the nominal level in most N settings and test set classification accuracies converging to 0.525 as

Ntest increases. NN-based approximate C2STs have low type I error rates when Ntest ≤ 500, likely
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Figure 4.7: Uniform generating distributions used to verify the type I error rate for approximate
C2STs. Observations falling in the overlapping (light gray) region are indistinguishable, while
observations falling in the non-overlapping (dark gray) regions are perfectly distinguishable.

because the NNs overfitted the training data in these small N settings.

To assess empirical power, I follow the same procedure as above except I now draw {y(a)i }N
i=1∼

P̂= Uniform(yi | 0.1,1.1). By similar reasoning to that given above, the maximum obtainable test

set classification accuracy in this setting is close to 0.55. I again test H0 : acc = 0.525 against

H1 : acc > 0.525 so that now the effect size ε = 0.025. Figure 4.9 shows that all approximate

C2STs have both power converging to one and test set classification accuracies converging to 0.55

as Ntest increases. NNs do not have very low power when Ntest ≤ 500 despite having low type I

error rates in these settings. Power values predicted by the formula in Theorem 1 are close to the

empirical power values for all tests.

4.3.4 Evaluating C2STs and C2ST-RFIs in a Confirmatory IFA Setting

I now investigate the proposed GOF assessment methods’ performance in settings where the

fitted IFA model is correctly or incorrectly specified. I consider two data generating models for

J = 50 five-category items: (1) the same FFM considered in Section 4.3.1 as well as (2) an SFM

with five correlated factors each measured by 10 items, one orthogonal doublet factor measured by

items 17 and 18, and another orthogonal doublet factor measured by items 41 and 48. Generating

parameters for (2) are rounded estimates from the seven-factor reference model in Section 4.2.2.
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Figure 4.8: Empirical type I error and test set classification accuracy for KNN- and NN-based
approximate C2STs.
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Figure 4.9: Empirical power and and test set classification accuracy for KNN- and NN-based
approximate C2STs.
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I simulate 100 data sets from (1) and (2) for each N = 750, 1250, 2500, 5000, and 10000. Using

I-WAVE with the same hyperparameters as in Section 4.2, I fit two models to each data set: (a) an

FFM with the same specification as (1) and (b) an SFM with the same specification as (2). This

leads to four different settings for each combination of data generating model and fitted model.

Viable GOF assessment methods should indicate near perfect fit for settings (1a) and (2b), which

have correctly specified fitted models, as well as for setting (1b), which has an overspecified fitted

model. Setting (2a), on the other hand, has an underspecified fitted model and should demonstrate

poorer fit as N increases. Although it might be expected that acc = 0.5 in settings with correctly

specified and overspecified models, it is also feasible that IFA model parameter estimate uncer-

tainty leads to acc slightly greater than 0.5. To investigate both possibilities, I assess GOF for all

simulation settings using KNN- and NN-based exact C2STs where δ = 0 as well as approximate

C2STs where δ = 0.025, which respectively correspond to H0 : acc = 0.5 and H0 : acc = 0.525.

Rejection rates at signficance level α = 0.05 as well as test set classification accuracies for the

overspecified SFM in setting (1b) are shown in Figure 4.10a. Results for the correctly specified

models in settings (1a) and (2b) were nearly identical and are not shown. Rejection rates remain

well below the nominal level and test set classification accuracies come close to 0.5 as Ntest in-

creases, suggesting that the SFM fits the simulated data nearly perfectly. The near-zero rejection

rates likely occurred because there was almost no signal in the training data, leading classifiers to

overfit to noise and perform worse than random chance for small to moderate N. A similar phe-

nomenon was observed in Sect. 4.3.3, where it appeared to have a negligible impact on empirical

power.

C2ST results for the underspecified fitted model in setting (2a) are shown in Figure 4.10b.

NN-based C2STs performed well, with classification accuracies exceeding 0.5 and rejection rates

tending to one as Ntest increases. KNN-based C2STs, however, performed relatively poorly, with

classification accuracies only marginally exceeding 0.5, exact tests only obtaining moderate rejec-

tion rates when Ntest = 10000, and approximate tests always failing to reject H0. These results
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(a) An overspecified seven-factor fitted model.
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(b) An underspecified five-factor fitted model.

Figure 4.10: Rejection rates as well as test set classification accuracies for approximate and exact
C2STs.
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Figure 4.11: Permutation importances for the underspecified five-factor fitted model when N =
10000.

mirror NNs’ superior performance in Section 4.2. I also demonstrate the viability of PIs by assess-

ing the underspecified fitted model’s item-level fit when N = 10000. Results in Figure 4.11 show

that NNs clearly flagged items 17, 18, 41, and 48 as poor fitting with all other items having PIs

near zero. KNNs also flagged these items, although PIs were much smaller than for NNs.

Boxplots of C2ST-RFIs for the overspecified SFM in setting (1b) as well as for the underspec-

ified FFM in setting (2a) are shown in Figures 4.12a and 4.12b, respectively. C2ST-RFIs for the

correctly specified models in settings (1a) and (2b) were nearly identical to C2ST-RFIs for (1b)

and are not shown. The means of the sampling distributions of both KNN- and NN-based C2ST-

RFIs appear to depend on N. C2ST-RFIs for both (1b) and (2a) start out larger than one when

Ntest = 750, with RFIs for (1b) tending to one and RFIs for (2a) tending to values smaller than

one as Ntest increases. These results suggest that the SFM fit its data almost perfectly and that the

FFM fit its data relatively poorly, although classifiers overfitted to noise in the training data for
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Figure 4.12: C2ST-RFIs for simulated data. The provisory cutoff of 0.9 is marked with a solid
line.

small Ntrain. The provisory cutoff of 0.9 obtains similar rejection rates to those obtained by C2STs:

essentially no C2ST-RFIs fall below the threshold in setting (1a) (i.e., the rejection rate remains

near zero), all NN-based C2ST-RFIs in setting (2b) fall below the threshold as Ntest increases (i.e.,

the rejection rate tends to one), and KNN-based C2ST-RFIs in setting (2b) start falling below the

threshold for large Ntest (i.e., the rejection rate slowly increases).

I assessed each GOF assessment method’s computational efficiency by computing the total

time required to sample all synthetic data and to fit (and possibly tune hyperparameters for) all as-

sociated classifiers. Total run times for C2STs and for C2ST-RFIs computed in simulation setting

(2a) are shown in Figures 4.13a and 4.13b, respectively. Run times for other simulation settings

were very similar and are not shown. Run times increase with increasing Ntest, with KNNs always

running faster than NNs. For instance, when Ntest = 10000, KNN-based C2STs and C2ST-RFIs

have median run times around 4 and 9 seconds, respectively, whereas their NN-based counterparts

have median run times around 18 and 40 seconds. This finding is likely attributable to the fact that

no KNN hyperparameters are tuned during fitting as well as to the fact that N is never extremely

large (e.g., N ≥ 100000), in which case NNs would potentially be much faster than KNNs. Ad-

ditionally, absolute run times are never prohibitively large, suggesting that the better-performing
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(a) C2ST run times.
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(b) C2ST-RFI run times.

Figure 4.13: Run times for KNN- and NN-based C2STs and C2ST-RFIs from the simulation setting
with the underspecified five-factor model.

NNs are still a viable choice in practice.
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5 DISCUSSION

This thesis is concerned with the theoretical properties and empirical performance of machine

learning-based parameter estimation and goodness-of-fit assessment methods for large-scale con-

firmatory item factor analysis. An importance-weighted amortized variational estimator imple-

mented via a deep learning algorithm demonstrated improved parameter recovery as the sample

size increased and obtained comparable estimates to those obtained by the MML estimator im-

plemented via the MH-RM algorithm. The deep learning algorithm’s computational efficiency

appears to be essentially independent of the sample size, enabling fitting even with extremely

large samples. A simulation-based test of exact fit called the classifier two-sample test was de-

scribed and extended into a test of approximate fit as well a relative fit index. Approximate C2STs

and C2ST-RFIs successfully identified when an IFA model was correctly or incorrectly specified.

C2ST results suggested that more flexible (but potentially harder to tune) classifiers such as NNs

performed better than less flexible (but potentially easier to tune) classifiers such as KNNs. A

permutation importance technique was demonstrated as a tool for exploring piece-wise model fit.

The proposed methods have a number of limitations and extensions that may be addressed in

future work.

First, optimization for I-WAVE may be improved to ensure both (1) stabler and (2) faster con-

vergence. Regarding (1), I note that I-WAVE occasionally converged to poor local maxima, par-

ticularly with small sample sizes. I handled this issue by refitting the model with new random

starting values. I also manually reduced the learning rate optimization hyperparameter when the

latent dimension was large to ensure stable convergence. It may be feasible to mitigate insta-

bility using more computationally intensive procedures for choosing starting values such as Cai’s

(2010b) stochastic EM procedure or Y. Chen, Li, and Zhang’s (2019) singular value decomposition
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procedure. In addition, the automatic procedures for choosing starting values and for tuning opti-

mization hyperparameters recommended by Agrawal, Sheldon, and Domke (2020) in the context

of general amortized importance-weighted VI may help reduce user burden. At present, I recom-

mend trying multiple random starts to mitigate convergence to poor local maxima. I note that this

is typically considered good practice for IFA models fitted via most popular estimators with non-

convex objective functions (e.g., the MML estimator) since convergence to the global maximum

is not guaranteed in general. Regarding (2), I note that convergence could potentially be sped up

using a variant of natural gradient descent (e.g., Hoffman, Blei, Wang, & Paisley 2013; Tang &

Ranganath 2019). This would be similar in spirit to recent work by Liu (2020) in which computa-

tional efficiency for a JML estimator was enhanced via a Riemannian optimization procedure that

exploits the manifold structure of the parameter space.

Second, computing standard errors (SEs) and handling missing data with I-WAVE were not

discussed. Approximate SEs may be obtained by evaluating the observed information matrix at

the parameter estimates obtained by maximizing the IW-ELBO, then inverting this matrix block-

wise (Hui et al. 2017). As noted by Urban and Bauer (2021), SEs will likely be small for the

large-scale applications considered here. Procedures for handling missing-at-random data (Mattei

& Frellsen 2018) as well as missing-not-at-random data (Ipsen, Mattei, & Frellsen 2021) have been

developed for general amortized importance-weighted VI and can be straightforwardly utilized for

I-WAVE.

Third, using approximate C2STs to assess person and piece-wise fit may be more thoroughly

investigated. In terms of person fit, the approach suggested in Sect. 3.1 remains to be investi-

gated via simulation studies. In terms of piece-wise fit, the permutation importance measures

applied here have shortcomings including (1) unknown sampling distributions and (2) degraded

performance when predictors are highly correlated (e.g., Hooker & Mentch 2019). For (1), future

work may explore whether accurate p-values and confidence intervals for estimated PIs can be

obtained via parametric approximations (Altmann, Toloşi, Sander, & Lengauer 2010) or bootstrap

resampling. For (2), it would likely be fruitful to explore alternative approaches based on Shapley
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additive explanations (SHAP; Lundberg & Lee 2017). SHAP is a game theoretic method for ex-

plaining fitted classifiers’ predictions and has several extensions that help prevent its performance

from degrading in the presence of multicollinearity (Aas, Jullum, & Løland 2021; Basu & Maji

2020; Sellereite & Jullum 2020). I note, however, that SHAP is less computationally efficient than

PI, potentially hampering its application to very large-scale data.

Fourth, C2ST-RFIs may be improved by developing better (1) cutoff criteria, (2) baseline mod-

els, and (3) model complexity penalties. For (1), I studied the performance of C2ST-RFIs under

a fairly narrow range of modeling conditions. Although my provisory cutoff criterion of 0.9 per-

formed well in these conditions, further research is needed to develop more robust cutoff criteria

for evaluating model fit in practice. For (2), I focused on zero-factor or “independence” baseline

models to closely parallel how fit is assessed in the SEM literature. However, Maydeu-Olivares

(2013b) notes that zero-factor baseline models may be overly unrealistic in that they disregard

inter-item correlations, potentially inflating our sense of the proposed model’s relative value. A

more realistic alternative is suggested by Urban and Bauer’s (2021, Section 7.4) note that I-WAVE

can be used to fit a fully nonlinear factor model in which the inverse link function between the

observed and latent variables is approximated using an NN: first fit the proposed model as well

as the fully nonlinear baseline model, then construct a “badness-of-fit” index that measures the

proportional decrement in fit obtained by moving from the highly flexible baseline to the less flex-

ible model of interest (e.g., using the ratio âccbase/âccprop). For (3), I employed a complexity

penalty based on the number of fitted parameters. Although this parameter counting approach is

fast, alternative penalties that take into account IFA models’ functional forms would provide more

accurate characterizations of complexity that could be used to compare different models with the

same number of parameters (e.g., Bonifay & Cai 2017).

In summary, the methods considered in this thesis may provide feasible and promising frame-

works for testing hypotheses about the latent structure underlying large-scale item response data

in a computationally efficient manner. Both I-WAVE and C2STs are highly flexible frameworks

that may be extended in a variety of ways. Some of these extensions are discussed above, some
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are discussed in the vast machine learning literature, and some are yet to be conceived. I view

this work as part of a dialogue between machine learning and psychometrics that is leading to the

development of new extensions and applications with the potential to positively impact both fields.
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