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ABSTRACT 

Angélica M. Gómez: Effects of extensive agriculture on the hydrologic cycle in tropical 
lowlands 

(Under the direction of Erika Wise and Tamlin Pavelsky) 
 

In the tropics, global demands for food and services accelerate land cover changes that 

impact water availability, modify energy and water balances, and intensify the consequences of 

extreme climate (e.g., droughts and flooding). Among the tools to understand the effects of these 

changes are regional earth system models. These models required ground data for model 

verification, which is often limited in tropical regions. This dissertation addresses this need by 

exploring avenues to improve our understanding of hydrological and energy processes in tropical 

regions. This work is focused on the North Colombia lowlands, where land has faced long-term 

disturbances due to agriculture intensification. I start by exploring how the combined use of 

depth to groundwater measurements collected by the community and their descriptive 

observations can inform depth to groundwater mapping. I show that incorporating depth to 

groundwater qualitative descriptions to a Bayesian Maximum Entropy geostatistical model 

improves model performance and spatiotemporal representation of depth to groundwater. Then, I 

focus on understanding the global dynamics of oil palm plantations in the context of vegetation 

and water interactions. Oil palm is the most important vegetable oil globally and an essential 

economic driver in some tropical countries. I start by identifying the state of knowledge in oil 

palm-hydrologic interactions across the tropics by developing a systematic literature review. 

Through this process, I identify major gaps, including a lack of studies in the Neotropics and 
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Africa, a lack of understanding of microclimatic conditions over longer timescales, and a lack of 

studies in alternative oil palm species that has potential for expansion. To address one of the gaps 

identified in the systematic literature review, I installed three microclimatic stations in Northern 

Colombia at three sites, where OxG interspecific hybrid is planted. I collected hourly data for a 

year. The data show that seasonal variability in vapor pressure deficit impacts the atmospheric 

water balance and potentially oil palm greenness. The energy balance partition shows the 

important role of evapotranspiration in these plantations. The resulting dataset, the first in oil 

palm OxG hybrid plantations, provide data on key variables for modeling water and energy 

processes in tropical regions.
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CHAPTER 1: INTRODUCTION 

 

Tropical regions account for more than 50% of renewable water resources on Earth (State of 

Tropics, 2020). Population growth and the need to satisfy demands for global production of food, 

energy, and goods threaten this region by leading to extensive changes in land cover (biophysical 

attributes of the landscape) and land use (operations on land made by humans). Land 

transformation shifts the hydrologic cycle and results in changes to the local climate, alteration 

of soil properties, and frequency of wet and dry periods (DeFries & Eshleman, 2004). Land 

cover changes modify energy heat fluxes that impact surface temperature (Sabajo et al., 2017), 

alter the atmospheric water balance by shifting available moisture storage and transport (Yuan et 

al., 2019; Sheil et al., 2018), and affect surface and groundwater by influencing interception, 

runoff, and soil infiltration capacity (Margat & van der Gun, 2013). All these changes may 

constrain the resilience capacity of landscapes. 

In this dissertation, agricultural intensification in tropical lowlands is studied through a 

variety of novel approaches that aim to improve our understanding of hydrological and energy 

processes in tropical regions. This research shows how working with local populations, whether 

through community science or direct engagement with plantation owners, can lead to improved 

models and opportunities for long-term monitoring. This dissertation focuses on the North 

Colombia lowlands, where land has faced long-term disturbances and agriculture is a 

fundamental component of the national economy.   
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Chapter 2 

Research Questions:  

 How can descriptive information be incorporated into depth to groundwater mapping?  

 Does the inclusion of this information improve model performance? 

Main Finding: 

 Incorporating descriptive knowledge from the community with Bayesian Maximum Entropy 

geostatistics improved the representation of depth to groundwater, while allowing the design 

of mechanisms to involve the community in different stages of the model construction. 

In chapter 2, I focused on how to incorporate knowledge with different levels of uncertainty 

in hydrologic mapping. In particular, I combined data and knowledge collected in a community 

science project in a remote rural region in Colombia, the Man River watershed. The community 

provided depth to groundwater measurements and descriptive observations of the wetland water 

level during the wet season. The groundwater system represents a primary source of water 

supply for this region. However, as happens in many cases, continuous depth to groundwater 

measurements are challenging to obtain, although they are essential for understanding 

groundwater recharge and surface-groundwater connectivity. This challenge constrains informed 

decision-making processes in water and land management. In this chapter, I showed how 

geostatistical techniques (i.e., Bayesian Maximum Entropy geostatistics) that include qualitative 

local knowledge helped characterize the spatiotemporal distribution of depth to groundwater and 

identified depth to groundwater dynamics in response to extreme precipitation events. This 

study's results provide insights concerning how land use activities may impact watersheds that 

are highly affected by agricultural and mining practices, opening new avenues to link land 

changes with hydrologic processes.  
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Chapter 3 

Research Questions:  

 What are the effects of oil palm on surface energy and water balances, fluvial and subsurface 

processes?  

 How do ecohydrological processes vary under different types of land use and land cover 

transitions and to what extent have these variations been studied? 

 How have the major impacts on water resources have been perceived by local communities? 

Main Finding: 

 Oil palm ecohydrological processes have been mostly studied in the transition from humid 

forest to oil palm, in which the predominant spatial scales range from plot to regional and 

temporal scales from days to a few months. The main focus of the studies are related to 

surface air temperature and moisture, runoff, sediment yield and soil organic carbon. The 

effects of oil palm plantations vary with the land transition, but there are limited studies in 

understanding land transitions other than humid forest to oil palm. Few examples of 

community perceptions associated with biogeophysical processes were found.  

In Chapter 3, I synthesized the advances on understanding ecohydrological processes in oil 

palm plantations by doing a systematic literature review. Current literature reviews in related 

topics have concentrated on summarizing the work done in the transition from forest (mainly 

rainforest that grow over mineral and peat soils) to oil palm. I focused my search on different 

scenarios of land transition looking at the three main components of the hydrologic cycle (land-

atmosphere, streams and landscape, and subsurface) and different oil palm species. I also 

included sociopolitical literature of community perceptions of water to help to identify to what 

extent community knowledge and perceptions have been included in biogeophysical oil palm 
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research. Finally, I included spatial and temporal scale of the studies and their geographical 

distribution into the analysis. I found an increase in scientific literature in ecohydrology of oil 

palm has been happening since 2011. Although these efforts have identified plant transpiration, 

shifts in air temperature, and moisture within the crops and at different land covers, as well as 

runoff and sediment yield, this progress has been made mainly at plot and regional scales and 

under short periods of time (days to months). These limitations make it difficult to detect trends 

and thresholds in the limits to oil palm expansion. There are similar limits to our understanding 

of the impacts of oil palm on subsurface processes. Important gaps were also detected in 

addressing land transitions. Most of the work has been done in the transition from forest to oil 

palm and less in addressing other patterns or expansion (i.e., transitions from pastures or 

croplands). These gaps limit the identification of constraining factors on oil palm development in 

other regions. More work is needed in oil palm hybrids and alternative varieties of oil palm 

cultivars given the high tolerance of these species to extremes (i.e., drought, flooding, and plant 

diseases) and the commercial attention in cultivating these species. Examples were found in 

which community perceptions have been included in addressing scientific questions focusing on 

community concerns. However, these studies were limited and focused in a few geographical 

areas. The synthesis built in this chapter helped to identify key areas of needed research and to 

move towards the characterization of important thresholds in water requirements at water-limited 

as well as water-abundant systems.  

Chapter 4 

Research Questions:  

 How do microclimatic conditions in oil palm plantations vary through the dry and wet season 

during a year in northwestern Colombia?  
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 How can those differences be explained?  

 What is the diurnal energy balance partition in plantations growing the E. Guineensis x E. 

Oleifera variety of oil palm?  

Main Finding: 

 Average microclimatic conditions were similar across the stations. However, seasonal 

variations in temperature and vapor pressure deficit were detected in the wet vs the dry 

seasons. These changes might be explained by environmental conditions in the sites (winds 

that are moving faster and stronger and carrying moisture from the Andes cordillera during 

the dry season vs. the wet season). The environmental conditions seem to have an impact on 

the photosynthetic activity reflected in a lower vegetation index. Results of the energy 

balance partition showed similarities across the stations, probably due to the similar 

environmental conditions during the dry season, and were similar to existing studies in 

Indonesia.    

In Chapter 4, I worked to fill some of the knowledge gaps found in Chapter 2 (i.e., the lack of 

studies in oil palm hybrids and under the conversion from pastures and croplands to oil palm). 

For that purpose, I installed three microclimatic stations in Northwest Colombia measuring 

environmental microclimatic conditions (i.e., temperature, radiation, relative humidity, wind 

speed and direction, spectral reflectance, soil matric potential and soil temperature) across the 

vertical profile from 0.65 m below the surface to 11 m above, which covers the active root depth, 

under canopy, and over the canopy of the palms. The collected dataset was preprocessed to filter 

out inconsistent data. This chapter explains how the data was used to derive Normalized 

Difference Vegetation Index (NDVI) from a 7-band spectrometer, vapor pressure deficit (VPD), 

for the dry and the wet season, and the four components of the energy balance (i.e., latent, 
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sensible, and ground heat, and net radiation) during the wet season based on the Bowen ratio 

method. I found NDVI coincide with low VPD across the stations, suggesting a variation in 

photosynthetic activity that requires further explore using more direct techniques. Chapter 4 also 

discussed how Bowen ratio results are similar to those obtained in Indonesia when net radiation 

is taken into account. The collected dataset is unique to the region, and unique for the type of 

species and land transitions. This chapter also explored how the collaborative efforts with the 

local institutions (environmental agency, farmers, and university) helped to maintain the stations 

remotely, and the challenges faced in data acquisition.   

Overall, this dissertation shows how the difficulties of working in rural tropical lowlands 

have led to a lack of long-term studies of appropriate species in the Neotropics in Chapter 3, 

while also providing clear examples of how these challenges can be addressed through direct 

engagement with communities and plantation workers in Chapters 2 & 4. Given the accelerated 

transformation of tropical regions, more tools are needed to understand landscapes under 

disturbance. In this dissertation, I demonstrate paths towards building that understanding from a 

collaborative perspective, first by engaging local community in scientific research and included 

their insights in the model construction, second by including perspectives of the community in 

my systematic literature review, and third by collaborating with a variety of stakeholders to 

developing a monitoring system to gain understanding of local environmental conditions.  
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CHAPTER 2: INTEGRATING COMMUNITY SCIENCE RESEARCH AND SPACE-
TIME MAPPING TO DETERMINE DEPTH TO GROUNDWATER IN A REMOTE 

RURAL REGION1 

 

Plain Language Summary  

Groundwater is a key source of water supply in many regions, supporting crop yields and 

maintaining water levels in rivers and wetlands. In unconfined aquifers, groundwater may reach 

the surface during wet periods, contributing to overland flow and intensifying erosion. 

Identifying groundwater level changes helps to establish water and land management activities. 

However, continuous depth to groundwater data collection, essential for identifying groundwater 

level changes, is challenging in remote rural areas. We show how Community Science Research, 

an approach involving active community participation, added crucial information to a statistical 

model to represent shallow aquifer's groundwater levels in Colombia. The community collected 

depth to groundwater during an extreme wet year and an average year in a middle-low-elevation 

watershed. We created depth to groundwater maps using three statistical models. Depth to 

groundwater is better represented by the model that combines descriptive observations with 

depth to groundwater measurements. We also created a map with the probability that the 

groundwater is near the surface and showed that the area was much larger in the wet year than 

 
1 This chapter previously appeared in the Water Resources Research journal. The original citation is as follows: 
 
Gómez, A. M., Serre, M., Wise, E., & Pavelsky, T. (2021). Integrating Community Science Research and 
Space‐Time Mapping to Determine Depth to Groundwater in a Remote Rural Region. Water Resources Research, 
57(6). https://doi.org/10.1029/2020WR029519 
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during the average year. This difference implies that after the watershed receives a lot of 

precipitation, its flow regulation capacity decreases, which is threatened by land-use activities.  

Introduction  

Depth to groundwater (DTG), the depth measured from the terrain surface to the groundwater 

table, is essential to identify groundwater availability and groundwater-surface water interactions 

(Fan et al., 2013). Groundwater can influence the landscape, acting as a discharge system feeding 

the tributaries that support streams (Margat & van der Gun, 2013), creating water-logged soil 

conditions that define wetland ecosystems, and supplying water to the root zone to maintain 

plant photosynthetic activity (Lewandowski et al., 2019). The landscape also influences 

groundwater as groundwater flow is often related to topography. Surface waters and areas where 

deep infiltration occurs can recharge aquifers (Sophocleous, 2002; Winter et al., 1998). In 

addition to its ecosystem function, groundwater is the primary water supply in many regions, 

sometimes acting as the only source (UNESCO & UN-Water, 2017). In the absence of 

regulation, land use activities may substantially change shallow groundwater systems' capacity to 

regulate flow or attenuate groundwater pollution (Gleeson et al., 2016). In precipitation-driven 

groundwater systems, extreme rainfall changes can cause groundwater table subsidence or 

flooding (Marchetti & Carrillo-Rivera, 2014), influencing erosion. These effects can 

subsequently impact ecosystem function and services. Although continuous data collection is 

challenging, these data are needed to understand the links of shallow groundwater to the 

landscape, estimate groundwater storage, and establish limits of extraction. Large, long-term 

DTG datasets are mostly limited to developed countries (Fan et al., 2013), constraining the 

understanding of groundwater function and services and limiting land and water management 

decision-making in these regions.  
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Community participation in scientific projects provides a way to address environmental 

questions with a meaningful social impact and to reduce information gaps (Arias et al., 2016; 

Sandoval, 2004; Wiggins & Crowston, 2011). Approaches to community participation in 

scientific projects can be defined as a function of the type of relations, the strategies 

implemented, and the level of engagement developed between the public and the researchers 

(e.g., citizen science, participatory action, community-based, social monitoring, etc.). In this 

paper, we use the term Community Science Research (Cooper et al., 2007) to describe research 

projects in which the public participates in significant ways. Significant participation can take 

place at different stages where the participants engage in activities that may last beyond the 

projects (Wijnen et al., 2012), influence local governance decision-making processes (Arias et 

al., 2016), and help solve scientific questions that increase the system's knowledge (Baldwin et 

al., 2012; Le Coz et al., 2016). 

Community science projects have a long history in data collection in several biogeoscience 

disciplines. In hydrology, the participation of the public and explicit design of community 

science projects has been increasing (Buytaert et al., 2014). There are several existing examples 

of community participation in water level and precipitation data collection (Piragua project, 

Colombia, http://www.piraguacorantioquia.com.co/piragua/; Pluviometros Cuidadanos, Chile, 

http://milluvia.dga.cl/index.php; CoCoRaHS, USA, https://www.cocorahs.org/; Little et al., 

2016; Lowry et al., 2019; Weeser et al., 2018); its use in modeling river discharge (Starkey et al., 

2017); and on identifying lake water storage changes (Little et al., 2021). Most projects 

concentrate on data collection, leaving data analysis and modeling to the scientist (Assumpção et 

al., 2018; Njue et al., 2019). Beyond data collected by the local population, their knowledge of 

the landscape also encompasses local environmental conditions that help to define the logistics to 
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access or install measurement devices and provide a qualitative understanding of hydrologic 

systems. This type of information is not always formally collected or included in the analysis and 

model implementation process. Therefore, high levels of active participant engagement and 

valuable qualitative descriptions are left out of the quantitative data analysis. The qualitative 

nature and the potential high levels of uncertainty of the descriptions made by local inhabitants 

make it challenging to incorporate into the model construction. Overcoming this challenge will 

be key in integrating community knowledge into models and data analysis. 

One potential solution to add local knowledge to models is through the creation of a 

probabilistic representation using Bayesian Maximum Entropy (BME). BME incorporates 

general information about the salient variable (spatial dependencies, conceptual assumptions, 

etc.) by maximizing an entropy function (Christakos, 1990; He & Kolovos, 2018; Serre & 

Christakos, 1999). BME is an extension of linear geostatistical approaches (kriging-based 

methods). It can combine data that carry higher levels of uncertainty, known as soft data, with 

spatiotemporal measurements that have lower uncertainty, known as hard data. In groundwater 

hydrology, BME has been used to effectively map groundwater flow direction using water table 

data (Serre & Christakos, 1999). In this study, each measurement had a source of error reported 

during the monitoring campaigns. Those water table measurements with an identified source of 

randomized errors or errors manually flagged by experts were defined as soft data. Hard data 

were defined as water table measurements with no recorded random errors and no errors 

manually flagged by experts after data collection. Another example of applied BME estimates 

aquifer hydraulic conductivity (Serre et al., 2003), soft data correspond to hydraulic conductivity 

derived from porous media analysis at different sites and hard data are hydraulic conductivity 

measurements performed at specific locations. These combinations of soft and hard data 
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minimized estimation errors of the hydraulic subsurface properties in saturated media. BME has 

also been applied to assess water quality by combining space-time variability of the water quality 

within the river network (Akita et al., 2007). In this study, soft data included detected nitrate 

concentrations in water, using concentrations under the detection limit, while hard data included 

nitrate concentrations over the detection limit (Messier et al., 2014). Also, BME served to 

combine different temporal scales of arsenic concentrations, with soft data defined as arsenic 

concentrations at coarser temporal scales and private wells, and hard data as the concentrations 

officially provided by the local authorities (Sanders et al., 2012). In all these cases, the use of 

BME approaches led to an improvement in the detection of water quality levels. BME has also 

been used to design monitoring networks (Hosseini & Kerachian, 2017) by incorporating the 

uncertainty of having areas with no monitoring stations and different start monitoring dates in the 

modeling design. These examples show the potential of BME to include ancillary information 

with high levels of uncertainty in data-driven models.  

To our knowledge, BME has not previously been used to model DTG. In the absence of 

continuous measurements, the shallow groundwater table is often assumed to be a function of the 

topography and simulated using classic geostatistical interpolation methods, which require high 

resolution elevation maps. However, topographic information is often only available at coarse 

resolution in remote rural regions. Therefore, modeling DTG as a function of the topography 

may hide shallow DTG in lowlands, close to depressions, that may impact identification and 

mapping of near-saturated areas that affect discharge (Snyder, 2008). 

The central research questions of this study are: How can descriptive information be 

incorporated into DTG mapping? Does the inclusion of this information improve model 

performance? We show the potential for combining DTG quantitative and qualitative data 
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collected in a community science project in the 481 km2 Man River middle-low elevation 

watershed (Bajo Cauca region, Colombia). The data collected by the community previously 

helped to generate monthly groundwater table maps using classic kriging interpolation (Palacio, 

2014). This interpolation used the elevation from the Shuttle Radar Topography Mission dataset 

(http://srtm.csi.cgiar.org/), with a 30 m spatial resolution, SRTM-30. The resulting maps were 

useful to identify potential flow direction in the shallow aquifer. However, monthly average 

groundwater table estimates may hide peaks, missing potential high and low values and making 

it difficult to identify rapid water table responses to precipitation. We present a different 

approach to obtain weekly depth to groundwater. The regular flooding in the region during 

extreme wet seasons (Betancur-Vargas et al., 2017) motivated us to apply our results to address 

how extreme precipitation influences changes in DTG.  

Materials and Methods  

Study area  

The 481 km2 Man River middle-low watershed drains the foothills between the Western and 

the Central Andes Cordillera in Colombia (Figure 2.1). The relief is low with a landscape 

characterized by extensive valleys and rolling hills. The middle-low watershed's elevation ranges 

between 12 and 148 m.a.s.l.. The Man River, originating at 1,050 m.a.s.l., is a tributary of the 

Cauca River, a main river in Colombia. Its most important tributaries are the Quebradona and the 

Ciénaga Colombia creeks (Figure 2.1a). The Ciénaga Colombia, a wetland to the north-east, 

regulates flow during the wet season and provides ecological and cultural services to the region's 

socio-economic development (Santa-Arango et al., 2010). The climate is humid (average relative 

humidity 78%) and warm (average temperatures between 25 and 30 °C). The average 

precipitation is 2,800 mm/year, with a dry period between December and March and a wet 
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period between April and November. The region's geology is primarily composed of Tertiary 

clastic sedimentary rocks of continental origin, represented by the Cerrito Formation (Ngc), 

which occupy 404.3 km2 of the watershed; Sincelejo Group sedimentary rocks (NgQs), 17.5 

km2; and recent Quaternary alluvial deposits (Qal), 57.4 km2 (Figure 2.1c). These features form 

three hydrogeological units: a shallow aquifer, an aquitard, and a confined aquifer (Betancur et 

al., 2012). Our work centers on the shallow aquifer, formed by Man River alluvial deposits and 

non-consolidated saprolite from the Cerrito Formation, with depths ranging between 13 and 65 m 

(Palacio et al., 2013). Previous studies in this region identified groundwater and surface water 

connections (Santa-Arango et al., 2010), and groundwater recharge occurring directly from 

precipitation (Palacio & Betancur, 2007). 

A 2003 water well inventory indicated 147 dug and five drilled wells in this area; 86% are 

for domestic use (CORANTIOQUIA & Universidad de Antioquia, 2003). At the time of this 

project, no water supply treatment system was operational in the area. In 2011, 66.8% of the 

population from the municipalities where the watershed is located lived in poverty 

(Departamento Administrativo Nacional de Estadística, 2012). A few people engage in small-

scale agriculture and fishing, but the main economic activity is cattle raising (Instituto 

Geográfico Agustín Codazzi, 2007a). Cattle ranching occupies around 80% of the watershed 

(Instituto Geográfico Agustín Codazzi, 2007b) and along with strip mining, land conflicts, and 

illicit crops, leads to population displacement (Cuartas et al., 2000). 
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Figure 2.1. Study area and community science activities. (a) Wells used as monitoring stations. (b) 
Activities developed by the community (source: Grupo GIGA, Universidad de Antioquia). (c) Geology of 
the region describing the shallow aquifer: Qal, recent Quaternary alluvial deposits (12% of the 
watershed); Ngc, Cerrito Formation (84%); and NgQs, Sincelejo Group (3%). 

 

Community science data collection  

The DTG monitoring network started with the analysis of a conceptual hydrogeological 

model for the Bajo Cauca region (Betancur, 2008), that estimates groundwater flow directions at 

a regional scale and identifies aquifer units and their thickness. The potential wells and 

associated collaborators were obtained from the 2003 well inventory (CORANTIOQUIA & 

Universidad de Antioquia, 2003) based on three criteria: 1) spatial distribution across the 

watershed, 2) accessibility, and 3) well depth. The wells' spatial distribution was selected based 

on areas where groundwater-surface water interactions were and were not expected. These 

decisions were based on expert knowledge of the region and the conceptual hydrogeological 

model. The accessibility conditions aimed to facilitate visits to the sites and access to a good 



15 
 

cellphone signal to receive data from the collaborators. Finally, the wells' depth helped to 

identify the hydrogeological unit from which water is extracted. With this selection, six field 

campaigns were conducted. In the first reconnaissance campaign, each household's well location 

and contact information registered in the well inventory was confirmed with the collaborators at 

each house and farm where the wells are located. The rest of the sampling campaigns were 

designed to reinforce data collection procedures, collect hydrogeochemical data, share guidance, 

and follow up on the maintenance of each well's sanitary condition. 

The campaigns were designed to facilitate data collection with limited resources. Potential 

collaborators were introduced to the project, and characteristics of water wells, pumps, and 

pumping times were identified. Collaborators were trained in water depth measurements at each 

site and provided with a tape measure and forms to register measurements. Each collaborator 

was trained individually. The distance was measured from the top of the well to the water table 

weekly before pumping. The height from the top of the well to the ground was subtracted later to 

obtain the DTG (Figure 2.1b). Weekly phone calls gathered information and verified anomalous 

values, representing extremely low or high DTG. The verification followed a 2-step process. The 

first step was to verify by phone the time of the day and how the collaborator was measuring. 

The second step was during the sampling campaign. In most cases, phone call verification was 

enough to improve data collection. Some collaborators moved during the study, which is 

common in this area; data were either no longer collected or the collaborator trained a new 

person to monitor their well. This practice of knowledge transfer was identified in highly 

engaged participants. In addition to obtaining DTG, collaborators located close to the wetland 

area or the Man River described weather conditions and observed surface water levels. These 

descriptions were not systematically collected among collaborators but were mostly provided 
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during the phone calls to collect the data or during the sampling campaigns. After the third 

campaign, the monitoring network was updated to include additional wells, following the same 

procedure established with the first group of wells. Ultimately, we managed to collect a total of 

2,397 high-quality noncontinuous data at 44 wells between 2008 and 2009. These data would 

have been challenging and expensive to acquire with a traditional approach. 

Although the project did not provide monetary compensation to the collaborators, 

hydrogeochemical data collected to identify groundwater sources and surface-groundwater 

interactions (Santa-Arango et al., 2010) were reinterpreted in terms of their sanitary meaning, 

and the results were provided to the collaborators. Those data were for the benefit of the 

collaborators and are not part of this research study. In addition, after finding poor sanitary 

conditions at some of the wells, recommendations were provided, such as covering wells to 

prevent animal and debris access and simple disinfection techniques (Organization World 

Health, 1999). The data collection team followed up with each household regarding these 

recommendations. Some households shared advice with other relatives or friends not included in 

the monitoring network. We did not measure or collect information on how much of this 

information transfer occurred among households. 

Model framework and implementation  

In this work, we built three model combinations using the BME framework: spatial 

interpolation with only observed DTG at each monitoring wells, i.e., hard data (S), space-time 

with only hard data (ST), and space-time with probabilistic or soft data, i.e., data corresponding 

to expected low DTG at the wetland locations (STSD). In the spatial interpolation, S, we 

interpolated each week independently, assuming no correlation in time, a common approach in 
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classic geostatistical analysis. For the space-time interpolations (ST and STSD) we hypothesized 

high correlations of DTG in time would improve DTG estimates (Figure 2.2).  

The summary of the BME framework provided below is adapted from previous work; the 

reader is referred to these papers for more details on the mathematical underpinnings of the BME 

framework (Christakos et al., 2001; Serre & Christakos, 1999). The BME framework is a 

nonlinear extension of the classical kriging methods of linear geostatistics. BME has the capacity 

to use only the knowledge base kriging can process. In that case, the BME equation reduces to a 

linear kriging estimator with a Gaussian posterior probability distribution function, PDF. 

However, using information processing principles such as information entropy maximization and 

epistemic Bayesian principles, the knowledge base that BME considers can extend beyond those 

used in kriging. 

Let 𝑋(𝑝) be a space-time random field (S/TRF) representing the variation of DTG across 

space-time coordinate p=(s,t), where s is a geographical location, and t is time. We denote as 

𝐺 =  {𝑚 (𝑝), 𝑐 (𝑝, 𝑝′)} the general knowledge characterizing 𝑋(𝑝), where 𝑚 (𝑝) and 𝑐 (𝑝, 𝑝′) 

are the mean and covariance of 𝑋(𝑝), respectively. We denote 𝑆 = {𝑥 , 𝑓 (𝑥 )} the site-specific 

knowledge characterizing the data at hand, where 𝑥  are the space-time hard data DTG values 

observed at each monitoring wells, 𝑥  are space-time soft data DTG values corresponding to 

where we know the DTG is low, and 𝑓 (𝑥 ) are the density functions characterizing the shallow 

DTG and its uncertainty.  
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Figure 2.2 Schematic differences in the interpolation methods. A) Shows a watershed conceptual block-
diagram closed to the wetland location at three different times: t1 and t2 correspond to the wet season and 
tn to the dry season. Tables t1, t2, and tn show examples of the data collected. Collaborators qualitatively 
reported the wetland stage, mainly during the wet season. B) DTG interpolation example at time t1(dashed 
line). Spatial interpolation (S) interpolates only data collected at t1; space-time interpolation (ST) 
incorporates correlations in time of DTG to improve interpolation results; in the space-time with soft data 
(STSD) interpolation, descriptions from collaborators are incorporated to further improve results.  

 
BME can be summarized in three stages: Prior, Posterior, and Interpretive. At the prior stage, 

we use the Maximum Entropy principle of information theory to create a prior PDF 𝑓 𝑥  

that integrates the general knowledge G, where 𝑥 = (𝑥 , 𝑥 , 𝑥 ) is the value of 𝑋(𝑝) at points 

𝑝 = (𝑝 , 𝑝 , 𝑝 )  and where 𝑝  is an estimation point of interest. The PDF statistical 
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properties are consistent with G, and maximize the amount of choice in the value DTG can take. 

G consists of the knowledge of the mean and covariance of 𝑋(𝑝), which are statistical moments 

up to order two only. As a result, 𝑓  is the multivariable Gaussian PDF with means and 

covariance specified in 𝐺. 

At the posterior stage, we integrate the site-specific knowledge S using an epistemic 

Bayesian conditionalization equation 1. 

𝑓 (𝑥 ) =  𝐴 ∫ 𝑑𝑥 𝑓 (𝑥 )𝑓 (𝑥 , 𝑥 , 𝑥 )  (1) 

In Equation 1, A is a normalization constant. This equation creates the BME posterior PDF, 

𝑓 (𝑥 ), providing a full stochastic representation of 𝑋(𝑝 ), the DTG at the estimation point 

𝑝 .When we restrict the analysis by not using the soft data, equation 1 reduces to equation 2: 

𝑓 (𝑥 ) =  𝑓 (𝑥 , 𝑥 )/ ∫ 𝑑𝑥 𝑓 (𝑥 , 𝑥 ) = 𝑓 (𝑥 |𝑥 ) (2) 

which is the conditional PDF 𝑥  gives 𝑥  under the general knowledge base G. Since 

𝑓 (𝑥 , 𝑥 ) is Gaussian, the conditional PDF in equation 2 is also Gaussian, which means the 

PDF is a linear combination of observed values that correspond to the kriging approach. Since 

the mean is assumed constant and calculated within a local estimation neighborhood, BME 

reduces to moving window ordinary kriging when only household well observation data are 

used. This is the case of the S and ST approaches. This kriging limiting case makes BME 

attractive since it means that BME reduces to a linear kriging estimator whenever the analysis is 

restricted to hard data, but it extends to a nonlinear and non-Gaussian estimator when soft data is 

used. Finally, at the interpretive stage, we calculate the BME mean 𝑥  and corresponding 

posterior BME variance 𝑣  of the BME posterior PDF at estimation points 𝑝  on an estimation 

grid to obtain BME estimation maps and the corresponding uncertainty of DTG.  
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Prior to model implementation, we examined the general spatial and temporal distribution of 

the raw data. Because of its high right skewness (most of DTG are close to 0), we normalized the 

data by transforming DTG using natural logarithm, and used it in all the interpolation methods 

expressed in ln(depth (m)) units, here denoted as ln-depth. This decision was made to have 

comparable results across the models since BME reduces to a linear Gaussian estimation when 

only wells measurements are included. We defined 𝑥  as all the 2,395 space-time hard data DTG 

values observed at the 44 household monitoring wells, 𝑥  as the 2,600 space-time soft data DTG 

values corresponding to where we know the DTG is low (i.e., these points are geographically 

located at 50 nodes uniformly distributed across the wetland area and during the wet season, 

April-November), and 𝑓 (𝑥 ) were the corresponding 2,600 triangular probability density 

functions characterizing the shallow DTG and its uncertainty.  

For STSD, the triangular PDF was based on precipitation records combined with community 

members' descriptions of the water levels in the wetland and floodplains during wet months (end 

of April to November). The collaborators reported increasing wetland surface levels and shallow 

DTG in nearby wells. These observations, while not quantitative, gave us tools to hypothesize 

the aquifer connections to the wetland. Using collaborators' qualitative statements, we defined a 

probability function of shallow DTG in the wetland during the wet season. First, we used the 

piezometers 201 and 206 installed in the Ciénaga Colombia sub-catchment (Figure 2.1a) to 

identify the relation between the intra-annual precipitation pattern and groundwater level change. 

These piezometers have complete DTG records and are at 500 and 860 m distance to the nearer 

stream. We built a Cumulative Deviation of the Mean, CDM, to identify rainfall changes that 

reflect DTG changes. The shift from negative to positive slope in the CDM curve marked the 

beginning of the wet conditions (Custodio & Llamas, 1996). Second, we defined uniformly and 
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randomly distributed points in the wetland as representative wetland data locations, i.e., soft data, 

using the wetland and inundated areas dataset (Lasso et al., 2014). For each, we defined a 

triangular PDF with the lower, middle, and upper bound parameters obtained from well 121, the 

only one in the Man River floodplains. The lower bound was set to 0 m (minimum depth 

expected), the middle to the minimum of non-zero (0.01 m), and the upper to the maximum (0.8 

m) DTG during the wet season. A descriptive report of low shallow DTG in well 121, coincided 

with a report of shallow depths in the north of Ciénaga Colombia wetland, and the confluence of 

the wetland with the Man River. Based on the qualitative descriptions made by the community 

about the low topographic locations close to the wetland, we expect DTG at those locations will 

follow a similar pattern to that observed in well 121 during the wet season. However, 

heterogeneity is expected to alter the parameters of the PDF function. To limit the assumption of 

equal behavior, we limited the PDF function to the wet months in the wetland area.  

In this work, the BME framework was implemented using MATLAB functions from BMElib 

version 2.0c (available at https://mserre.sph.unc.edu/BMElib_web/). The BME implementation 

parameters chosen for this work varied according to the model approach. In the spatial approach, 

S, we used six hard data points in the estimation neighborhood, with a maximum spatial radius 

covering the study area extent (36.5 km) and a maximum temporal radius of zero weeks. In S 

and ST approaches, we considered 300 hard data points in the estimation neighborhood, with the 

same spatial radius as in the spatial approach and four weeks as the maximum temporal radius. 

For space-time with soft data approach (STSD), we used two soft data points as the maximum 

soft data estimation neighborhood. We used an estimation grid of 250 by 200 estimation points 

and included the hard data points as the Voronoi points. The mean within the estimation 

neighborhood was assumed to be constant and equal to the mean of the observational data within 
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that neighborhood (i.e., the average of the closest hard data points). The estimation grid was 

expanded outside the middle-low watershed domain to avoid edge effects. 

We only considered the mean and covariance of DTG observations at the prior stage for all 

the modeling approaches. As a result, the prior stage is multivariate Gaussian. Although, higher 

statistical moments up to an even order can also be considered, though we did not attempt that. 

In the STSD approach, we considered both hard and soft data at the posterior stage, which leads 

to a non-Gaussian posterior pdf and a nonlinear combination of the observations. This BME 

posterior PDF is particularly adept at integrating the knowledge of the triangular PDFs at the 

wetland soft data points. The integration allows us to incorporate soft data derived from knowing 

the location of wetlands and from household knowledge of wetland flooding during the wet 

season. This unique feature of BME makes it an ideal framework to process data from a 

community science project. 

Model evaluation  

To quantify each model performance, we used leave-one-out cross-validation over the entire 

space-time domain, using 4,397 validation values in total, consisting of 2,397 well observations 

and 2,600 wetland values obtained by taking the expected value of the probability density 

function at each soft data point. We quantified the total error (estimate minus validation value) in 

terms of systematic error (i.e., error that is consistent and can be removed through bias 

correction), and random error (i.e., residual error after systematic errors are removed), which 

indicate the degree of precision (Reyes et al., 2017). For the statistical metrics, we used the 

following notation. The first letter designates the statistical operator: M = mean, V = variance, S 

= Standard Deviation, MS = Mean Square, Cov = Covariance. The last letter represents the 

values to which each statistic is applied. Z = ln-depth estimations, O = ln-depth validation value 
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observed at the well or wetland points, and E = Z-O = ln-depth errors. Let 𝑒i = zi – oi be the error 

at the space-time i, and n be the number of space-time validation values. Positive errors mean 

overestimation and negative errors mean underestimation.  

The Mean Error, ME; (Equation 3) and the Variance of Error, VE, (Equation 4) quantify the 

systematic and random errors, respectively. The systematic errors explain the bias of the method, 

while the random error describes the precision. These two errors are quantified in the total error 

or Mean Square Error (Equation 5) (Reyes et al., 2017). 

𝑀𝐸 = ∑ 𝑒 𝑛⁄  (3) 

𝑉𝐸 = ∑ (𝑒 − 𝑀𝐸) 𝑛⁄   (4) 

𝑀𝑆𝐸 = ∑ 𝑒 𝑛⁄ = ME2 + VE  (5) 

Finally, we used the Pearson coefficient of determination R2 (Equation 6) to quantify the 

fraction of the variance explained by the estimates.  

R=𝑐𝑜𝑣(𝑂, 𝑍) (𝑆𝑂 × 𝑆𝑍)⁄   (6) 

Where cov(O, Z) is the covariance between O and Z. Knowing that VE = V(O,Z), VE can be 

written as in equation 7.  

𝑉𝐸 =  𝑆𝑂  + 𝑆𝑍  –  2 × 𝑐𝑜𝑣(𝑂, 𝑍) (7) 

Combining equations 6 and 7, R2 can also be expressed as: 

𝑅  = (𝑉𝑍 + 𝑉𝑂 − 𝑉𝐸) (4 × 𝑉𝑍 × 𝑉𝑂)⁄   (8) 

which allows interpreting the influence of the random errors over the variance of the estimates. 
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Areas impacted by shallow depths  

Mapping DTG helps to reveal groundwater-surface water connectivity and quantify seasonal 

fluctuation in groundwater level and flooding (Fan et al., 2013). With the STSD model, we 

established the areas more susceptible to shallow groundwater in response to precipitation, given 

that 2008 was a wet year in which the middle-low watershed experienced flooding. To 

accomplish this goal, we used BME mean and variance and calculated the probability that DTG 

is less than a cutoff value of interest at each estimation point, i.e., Prob[DTG < 0.1 m]. Values 

smaller than the cutoff value of 0.1 m are interpreted as shallow DTG which are more likely to 

maintain flow in surface streams, connect to the wetland, and increase the probability of flooding 

during extreme precipitation periods. We used the BME posterior Probabilistic Distribution 

Function (PDF) to calculate for each space-time estimation point the probability that DTG is less 

than 0.1 m, Prob[depth < 0.1]. The probabilities were classified as high = [0.8 - 1.0], moderate = 

[0.6 – 0.8), low= [0.4 – 0.6), and very low = [0.0 – 0.4). 

With the probability maps, we accounted for areas of a high probability of shallow 

groundwater. We built a time series of the area and compared it with the cumulative average 

weekly precipitation. The precipitation records were obtained from the three closest weather 

stations managed by the National Institute of Hydrology, Meteorology and Environmental 

Studies of Colombia, IDEAM, (http://dhime.ideam.gov.co/atencionciudadano/). Two stations 

(i.e., Guarumo-La Lucha, National ID: 25025160 and La Coquera, National ID: 26240160) are 

located outside the middle-low watershed, around 3 km from the catchment to the Northeast. The 

third station is situated at the upper side of the Quebradona sub-catchment (i.e., Manizales, 

National ID: 26240060) (Figure 2.1). We used this information to analyze the influence of 

intensity, amount of precipitation per week, and frequency, days of continuous precipitation, in 

the shallow DTG area. 
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Results and Discussion 

Monitoring network results 

The monitoring period overlapped with the 2008 La Niña year, with 3,375 mm of 

precipita1tion (700 mm above average); 2009 was relatively dry and received 1,119 mm less 

rainfall than 2008 (2,255 mm) (data obtained from the IDEAM). The decrease in precipitation in 

2009 compared to 2008 was reflected in the DTG. During the wet season, average DTG ranged 

between 0.9 and 1.3 m in 2009, whereas in 2008, it ranged between 0.5 and 1.1 m (Figure 2.3). 

During the 2009 dry season, average DTG was 2.4 m, while in 2008, DTG reached 3.3 m in 

March (Figure 2.3b). DTG ranged from 0 to 20 m; for 75% of the data points DTG was less than 

6 m (Figure 2.3b). Wells with DTG greater than 6 m were located to the North (wells 120 and 

123), and to the South, outside the middle-low watershed (well 140). 

The closest monitoring stations to Ciénaga Colombia wetland were piezometer 202 and well 

105 (Figure 2.1 and Figure 2.3). During the 2008 wet season, DTG in piezometer 202 reached 

the surface in June, while for well 105 the minimum DTG was 1 m. These differences are 

explained by the fact that well 105 is topographically higher (55 m.a.s.l) than piezometer 202 (47 

m.a.s.l). Well 121 was the only one located in the Man River floodplain (Figure 2.3). In this well, 

groundwater reached the surface during the two wet seasons, fluctuating from 0 to 0.8 m, and 

had a maximum DTG (3.29 m) during the dry period of 2008 (Figure 2.3).   

DTG varied with the season and well's location (Figure 2.1 and Figure 2.3). For wells located 

at a high topographic location, at the catchment boundary or between two tributaries (e.g., wells 

120, 127, 128, and 140), the water table was deeper during the entire period compared to wells 

located in topographic depressions. Consistently shallower depths were found close to the 

springs of the Ciénaga Colombia creek sub-catchment, especially during the wet season, at 
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Quebradona Creek (well 126), and at La Manada Creek (well 129). Difficulty accessing wells 

located close to the wetland impeded measurement of DTG in these areas. 

 

 
Figure 2.3. Summary of data collected in the watershed. a) annual average distribution of DTG during 
2008 and 2009. b) weekly DTG percentiles in all wells. c) examples of DTG time series chosen based on 
depth range. 

Cross-validation and method selection  

The cross-validation MSE metric, calculated by combining well and wetland validation data, 

showed a reduction in the overall error (MSE) when using space-time models compared to 

spatial interpolation (Table 2.1). The MSE dropped from 9.41 (ln-depth)2 in the S model to 7.21 

(ln-depth)2 in the ST model. This reduction is explained by an improvement in precision (VE), 

but not in bias (ME), as depths to groundwater are consistently overestimated due to lack of hard 
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data collected near the wetland. Adding soft data generated by knowledge of low DTG at the 

wetland locations and wet weeks (i.e., weeks in which the water table rose to the ground in the 

vicinity of wetland areas) resulted in further reduction of the MSE from 7.21 (ln-depth)2 in ST to 

0.61 (ln-depth)2 in STSD. This change resulted from the addition of soft data, which caused a 

decrease in VE, from 3.81 to 0.41 (ln-depth)2, and ME, from 1.84 to 0.44 (ln-depth). Therefore, 

the STSD model reduced the overestimation of DTG, and the total error by a factor of 15 

(MSES/MSESTSD) when S is compared to STSD. Consistent DTG overestimation could be due to 

the lack of well observations in the wetland. Although further reductions could be reached with 

more well observations in the wetland area, our wetland space-time data contribute to a better 

representation of the DTG in the floodplain. Cross-validation results using only the well and 

wetland validation data, data agree with these results and are included in the supporting 

information (Table A.1). 

 
Table 2.1 Cross-validation model results for the hard and soft data points 

  
Model 

MSE 
(ln-depth)2 

VE 
(ln-depth)2 

ME 
(ln-depth) 

R2 
unitless 

VZ 
(ln-depth) 

S 9.41 5.97 1.86 0.004 1.23 

ST 7.21 3.81 1.84 0.268 2.23 

STSD 0.61 0.41 0.44 0.930 3.71 

Note: For each cross-validation evaluation, MO is -1.93 (ln-depth), and VO is 5.06 (ln-depth)2. 
 

The Pearson regression coefficient, R2, increased from 0.004 for the S model to 0.268 for the 

ST model. Since VO is the same for S and ST, an increase in R2 may be due to a decrease in VE 

or an increase in VZ. Here, the increase in R2 is due to an effect on both VE and VZ. VE 

decreased from 5.97 (ln-depth)2 for the S model to 3.81 (ln-depth)2 in the ST model (i.e., the ST 
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model produces smaller error estimates), while VZ simultaneously increased from 1.23 (ln-

depth)2 in S to 2.23 (ln-depth)2 (i.e., the ST model provides a stronger contrast between small 

versus large DTG values). These results reveal the benefits of building a space-time interpolation 

over a pure spatial analysis. For the ST model, high temporal correlation of DTG informed the 

model in areas where DTG were missing for a particular date. R2 increased further, to 0.930, in 

the STSD model due to an increase in VZ from 2.23 (ln-depth)2 in ST to 3.71 (ln-depth)2 in 

STSD, and a decrease in VE from 3.81 (ln-depth)2 to 0.41 (ln-depth)2. The dual-action on VE 

and VZ reflects the positive impact of adding soft data describing the expected low DTG in the 

wetland and floodplains during wet periods. 

Inclusion of wetland space-time data improved DTG estimates (Figures A.3-A.4 in the 

supplemental information). The models showed shallow DTG in the northwest of the middle-low 

watershed, close to springs and depressions, especially in the wet season. However, models 

without soft data (S and ST) failed to represent the expected small depths near wetland and 

floodplains (DTG estimation resulted in larger values) due to the lack of observations in the 

topographic low-elevation sectors of the catchment.  

The collaborators reported increases in flooded areas and wetland open water during the wet 

season. Our results can spatially represent these findings and observations at a weekly temporal 

scale. Moreover, our findings are consistent with previous studies in the region that used 

hydrogeochemistry and isotopic techniques to identify groundwater recharge sources (Palacio & 

Betancur, 2007), and surface-groundwater interactions in the Man River middle-low watershed 

(Palacio et al., 2013) and the Ciénaga Colombia wetland (Santa-Arango et al., 2010). According 

to these studies, in the Quebradona and Ciénaga Colombia sub-catchment, evaporation from the 

aquifer occurs in the upper left side of each of the sub-catchments (Palacio et al., 2013). 
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Moreover, direct recharge takes place across the watershed. This pattern was identified by 

detecting similar isotopic composition in the rainwater and the shallow groundwater, which 

suggested recent groundwater in the aquifer with potential short resident time (Palacio & 

Betancur, 2007). These water composition similarities were consistent during the wet and dry 

seasons, implying a high dependency of the aquifer on precipitation, which also may explain 

some of the shallow depths obtained during the wet year.  

BME total error reduction is consistent with BME applications in water quality (Akita et al., 

2007; Messier et al., 2014), highlighting that accounting for temporal correlation results in 

significant decrease in the total error. Our approach allowed us to partition the total error into 

systematic and random error to analyze them separately. We found that the main contribution in 

the STSD model is that it increases the precision (i.e., reduce the random errors) more than it 

reduces the bias, although the bias is also reduced (i.e., systematic error decrease). All methods 

overestimated DTG. This may be explained by the lack of hard DTG data in the low-elevation 

locations. Nevertheless, STSD overestimated DTG the least compared with the S and ST model. 

This consistent overestimation implies more contrast between deep and shallow DTG is expected 

in the area and predictions can be improved by adding new hard data measurements at the 

depression locations. 

Areas impacted by shallow DTG  

The probability of shallow groundwater (DTG<0.1 m) increased as precipitation increased. 

The area of high probability of shallow DTG expanded during April–November, and decreased 

between December–March (Figure 2.4a). After the middle-low watershed received six or more 

continuous days of precipitation in a week, the area with shallow DTG increased, reaching its 

maximum (56%) the second week of May 2008 (Figure 2.4a). We saw a bigger increase in the 
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area in 2008, the wetter year, suggesting a relationship between days with continuous 

precipitation, rainfall intensity, and shallow DTG (Figure 2.5). Conversely, shallow DTG area 

decreased two weeks after reaching its peak when precipitation also decreased, suggesting that 

soil moisture's antecedent and posterior conditions influence shallow DTG area changes. Our 

results suggest a nonlinear relationship may be occurring between precipitation intensity and 

frequency, and the fluctuation of shallow DTG areas (Figure 5). We found a relationship 

between the aquifer response to precipitation and the intensity and duration of the rain. Longer 

DTG records are necessary to define the threshold in precipitation after which groundwater 

contributes to overland flow and subsequent flooding, and the nature of the nonlinear 

relationship defining this threshold.  

The distribution of the high probability of shallow DTG areas indicates the aquifer's potential 

exchange of groundwater and surface water. Zones with consistently shallow DTG included the 

Ciénaga Colombia wetland and the Man River floodplains in the low watershed, i.e., topographic 

depressions, and the up-stream La Manada and Quebradona sub-catchments, where the 

headwaters are located (Figure 2.6 & Figure 2.7). Shallow DTG areas up-stream of the main sub-

catchments may explain the permanent streamflow of the Man tributaries throughout the year. 

Low probabilities of shallow DTG, situated to the North in the watershed's upper margin (Figure 

2.4b), are consistent throughout the two-year period (Figure 2.6 & Figure 2.7). 

Previous studies suggested a dominant contribution of the aquifer to the surface water, and 

evaporation from the upper La Manada and Quebradona sub-catchments (Betancur, 2008; 

Palacio et al., 2013). Evaporation may explain the rapid decrease in the shallow DTG area after it 

reaches its peak (Figure 2.4a). Another explanation of this rapid decline of shallow DTG area 

could be associated with the soil characteristics and the sparse vegetation. 80% of the watershed 
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is associated with sandy clay and loam soils derived from poorly consolidate sandstones with a 

hydraulic conductivity of about 0.2 cm/h (Instituto Geográfico Agustín Codazzi, 2007a). These 

soil characteristics allow the soils to reach saturation quickly. Therefore, DTG increases during 

continuous and intense rainy days.  

Land use activities may play an essential role in shaping the aquifer response to precipitation 

in the watershed. The region has alluvial mining exploitation and grazing since the 16th century 

(Cuartas et al., 2000). Mining activities in the Man River floodplains and other tributaries have 

affected the watershed's capacity to control erosion in the riverbanks. Additionally, around 80% 

of the middle-low watershed is used for grazing, in which a common practice is to create 

artificial open water ponds to provide water for the animals (Instituto Geográfico Agustín 

Codazzi, 2007a). These activities have reshaped creeks and channels, disrupting the surface flow 

(Betancur, 2008, 2014) and threatening wetland ecosystem services such as flow control, 

groundwater replenishment, erosion control, and food provision (Betancur-Vargas et al., 2017). 

This practice and the favorable atmospheric moisture conditions for evaporation may be drivers 

for rapid water loss after precipitation days cease. Evidence of an increase in intensity and 

frequency of La Niña events (Wang et al., 2019) is cause for concern, as an intensification of wet 

events would increase the probability of flooding in agricultural areas, promoting sediment 

deposition and erosion that may cause soil compaction and reduce the infiltration capacity.  

Impact of community knowledge added to model implementation 

Our approach allowed us to identify the combined action of intensity and frequency of 

precipitation over DTG response. This identification was possible due to the community 

knowledge that allowed to add detailed temporal data to the model. Previous studies used the 

classic kriging spatial interpolation to model monthly groundwater table in the River Man 
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middle-low watershed using SRTM-30 (Palacio, 2014). While SRTM-30 was the best-known 

elevation model for the area, heterogeneity is missing in a relatively flat landscape (i.e., the 

elevation of a well located in high topography can appear lower than expected). Although we 

cannot compare both studies' results numerically, both studies revealed the groundwater table 

fluctuation in response to precipitation changes. In addition, our results provide insights about 

how DTG may respond to precipitation.  

The fact that STSD is the best representation of DTG suggests that community knowledge 

added vital information to improve DTG mapping, even though incorporating this knowledge 

into the model implementation was not planned from the beginning of the community science 

project. A more systematic qualitative knowledge collection with the community (e.g., 

interviews or surveys, storytelling, knowledge dialog) would enhance community perceptions 

into the model. These systematic qualitative methods require design strategies for sustaining 

community engagement (Haklay, 2013). For future projects we suggest, regardless of the 

knowledge collection strategy, to include the community as part of the model validation. Further 

feedback from the community will help confirm and validate model results collectively. A 

technique that can be adapted for this model validation purpose is social cartography (Liebman 

& Paulston, 1994). This technique has proven effective in identifying relevant monitoring sites 

while also helps to identify environmental risk (Arias et al., 2016).  

Participatory approaches are effective mechanisms to increase the knowledge about the 

groundwater system while involving the community in the process at different levels (Grieef & 

Hayashi, 2007; Little et al., 2016; Re, 2015). Our approach can be used in systems with no data 

for exploratory purposes (e.g., monitoring network design or seasonal groundwater-surface water 

connectivity detection, and aquifer characterization). Additionally, our approach is helpful for 
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incorporating continuous groundwater monitoring because locals can be involved in different 

project stages, from data collection to data analysis to model validation. Building collaborative 

links between scientists and the community also help address research questions with a 

meaningful social impact (Arias et al., 2016; Haklay, 2013).  

Constant communication and knowledge sharing are effective engagement mechanisms in 

community science projects (Assumpção et al., 2018; Cooper et al., 2007). One of the tasks that 

made the communication effective was to have short informal conversations with each household 

before discussing the data collection. Communication and trust-building are key in community 

science projects (Baldwin et al., 2012; Little et al., 2016). Fieldwork campaigns were also 

designed to build trust and establish collaborations with the households. Providing 

recommendations for the wells' maintenance, sharing water quality analysis results, and having a 

conversation with the households about activities not necessarily related to data collection were 

effective mechanisms to build trust, and at the same time, help to solve issues affecting water 

quality at the household level. These ways of communication helped to maintain the monitoring 

network remotely and to learn from the locals. We believe that our approach allows us to include 

the community knowledge in the data analysis.  
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Figure 2.4. Temporal and spatial distribution of Prob[DTG < 0.1 m]. a) Weekly precipitation compared to 
weekly area of high Prob[DTG < 0.1 m] expected at 0.8, 0.85, and 0.9 cutoffs. Values at each probability 
cutoff are expressed as a percentage of the total watershed area (481.3 km2), including wetlands (11.1 
km2). Precipitation is the average of the three closest national weather stations. b) Example weekly maps 
of the spatial distribution of Prob [DTG < 0.1 m] for time points 1,2,3, and 4 (see a), illustrating dry and 
wet months.  
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Figure 2.5. Relation between precipitation of the previous week and the high probability of shallow DTG 
area. The combined precipitation intensity (i.e., mm per week of rainfall) and duration (i.e., number of 
rainy days) have an effect on the area of shallow DTG. 
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Figure 2.6. Spatial distribution of the probability that the weekly average of DTG is smaller than 0.1 m 
(Prob. [DTG<0.1m]) for each week in 2008. The first week of the year is considered to start on 
12/31/2007. 
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Figure 2.7. Spatial distribution of the probability that the weekly average of DTG is smaller than 0.1 m 
(Prob. [DTG<0.1m]) for each week in 2009. The first week of the year is considered to start on 
01/05/2009. 
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Conclusions  

Community participation in scientific hydrologic studies provides benefits through both 

community engagement (e.g., knowledge transfer, community self-training, education outreach, 

and informed decision making) and the understanding of hydrologic systems. In groundwater-

dependent regions with limited or no DTG information, our results suggest that the combination 

of Community Science Research and BME modeling can contribute to a better understanding of 

groundwater dynamics. We used community descriptions, locations of wetlands, and 

precipitation records to define a probabilistic function that informs us about shallow DTG in the 

floodplains and wetland areas and complements the data collected by the community. The 

community helped create a dataset that would have been challenging to acquire with 

conventional data collection methods and provided local descriptive knowledge essential to 

improving DTG representation. BME's capabilities make it suitable to incorporate both 

qualitative and quantitative data into a model. Our results show how this combination 

contributed to the modeling effort, specifically: 

1. The reduction of the total error occurred progressively from space (S), to the space-time 

(ST), to the space-time with soft data model (STSD). The high temporal correlation 

characteristic of DTG allowed improved space-time (ST) interpolations compared to spatial 

interpolation (S). MSE further reduced from ST to STSD by adding soft probabilistic DTG in 

the wetland and floodplain areas, resulting in the combined improvement in precision and a 

reduction in DTG overestimation and bias. Also, STSD incorporated information where DTG 

values were missing, increasing the variability in DTG values. 

2. The spatial and weekly temporal distribution of the groundwater and surface water 

connections showed consistency with previous studies using hydrogeochemistry and isotopic 
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approaches. In those studies, evaporation from the aquifer was identified to occur in areas of 

the main sub-catchments (Palacio & Betancur, 2007), which may explain why the area of 

shallow DTG decreased around two weeks after reaching its peak. Similar isotopic 

composition between groundwater and surface water during the wet and dry periods in 

topographic depressions (Palacio et al., 2013; Santa-Arango et al., 2010) explains the 

consistent shallow DTG in our maps. By incorporating the wetland locations and their most 

likely DTG during the wet season, we delineated shallow DTG in these topographic 

depressions.  

3. Our results suggest a nonlinear relationship between precipitation intensity and frequency 

and the shallow groundwater area. The rapid increase in shallow DTG area in the extreme 

wet year compared to the average year may be related to high antecedent soil moisture 

conditions due to continuous rainfall, raising the groundwater table. In contrast, middle-low 

watershed topographic features, atmospheric conditions, and land-use practices create 

favorable conditions for high evaporation, contributing to decreasing the shallow DTG area 

over the year when precipitation ceases. Additional data will be required to investigate 

further specific threshold values after which shallow DTG area increases. 

From a modeling perspective, one limitation of our approach is that the lack of observations 

in the wetland areas constrains the reduction of DTG overestimation. That said, recognizing the 

value of using BME in Community Science projects may contribute to the design of monitoring 

networks or to model use for exploration purposes. The combined use of BME and Community 

Science may allow for closer interactions with the collaborators, contributing to the formulation 

of new hypotheses and further identification of critical environmental concerns. Our results 

suggest that both quantitative and, crucially, qualitative information from community members 
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can result in substantially better spatial and temporal understanding of DTG, which may be of 

use in many similar environments around the world. Including the community in the model 

validation would be a further step towards fully integrating community science projects in the 

broader scientific enterprise. 

Acknowledgments, Samples, and Data 

The authors acknowledge the Grupo de Ingeniería y Gestión Ambiental, GIGA, at the 

Facultad de Ingeniería, Universidad de Antioquia, and the International Atomic Energy Agency 

(project: CRP-14031), which funded the community science research component of this paper. 

Data Analysis was completed with support from Minciencias-Fulbright, Colombia, and Faculty 

for the Future fellowships awarded to Angélica M. Gómez. 

Special thanks to Teresita Betancur Vargas at Universidad de Antioquia for her essential 

contributions to the design and maintenance of the monitoring network as a director of the 

Community Science Research project, and her mentorship of the first author's M.S.thesis. 

Thanks to all the collaborators of the Man River middle-low watershed (Complete list of names 

in the supplemental material), and to Paola A. Palacio, Diana Montoya-Velilla, and Diana Santa-

Arango. Thanks to Jhon C. Duque and Arik Tashie for their time to discuss data analysis results 

and to Giovanny Ruiz for his contributions to the design of figure 2.2. 

We would also like to thank the editors and the anonymous reviewers for their valuable 

comments and feedback. 

All the Depth to Groundwater data used in this paper are available in the repository DOI: 

10.5281/zenodo.3923896 [License Creative Commons Attribution 4.0 International] 

Wetlands and inundated areas dataset are available in Lasso et al., (2014).  



41 
 

All maps of the STSD model results used in this paper are available in the repository DOI: 

10.5281/zenodo.3928587 [License Creative Commons Attribution 4.0 International] 

 



42 
 

 
 
 
 
 
CHAPTER 3: ECOHYDROLOGICAL IMPACTS OF OIL PALM EXPANSION UNDER 

DIFFERENT SCENARIOS OF LAND TRANSITION2 

 

Introduction  

The extensive use of palm oil in consumable goods and biodiesel has resulted in widespread 

global demand of this vegetable oil, resulting in accelerated land-use change across tropical 

countries towards oil palm crop establishment and expansion (Bessou et al., 2017a; Pirker et al., 

2016). According to the FAO statistics database (FAOSTAT, 2020), the total harvested oil palm 

area increased by over 400% between 1961 and 2018, from 3,621,037 ha to 18,969,417 ha. 

Moreover, Meijaard et al. (2018) estimate that about half of oil palm development expanded into 

forested lands between 1972 and 2015, while the other half replaced other land uses. These 

findings indicate that, in tropical countries, oil palm is a direct driver of deforestation. 

Additionally, oil palm cultivation indirectly causes further land-use change by displacing other 

crops onto non-cultivated land (Fitzherbert et al., 2008; Koh & Wilcove, 2008). The expansion 

of oil palm cultivation is expected to continue based on the current palm oil market demands 

(Bessou et al., 2017b; von Geibler, 2013). National governments promote the crop as a driver of 

economic growth by establishing tax exemptions, subsidy programs, and other policies 

(Castiblanco et al., 2013; Dislich et al., 2017; Furumo & Aide, 2017). Currently, the mean annual 

oil palm production is greatest in Asia (85.9% of global production), where Indonesia and 

Malaysia hold the first and second place in the world production, and Thailand is fourth; 

 
2 The outline of this work has been accepted for submission at Environmental Research Letters Review 
As co-authors:Gomez A.M., Parra A, Pavelsky T. M, Wise, E. Villegas-Palacio, J. C, Meijide A. 
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followed by Africa (7.8%), where Nigeria is third in global production; America (5.4%), where 

Colombia occupies the fifth place; and finally, Oceania (0.8%) where Papua New Guinea holds 

the seventh position (FAOSTAT, 2020).  

The establishment of oil palm plantations in previously forested land typically involves 

terrain clearing, which sometimes is done by slashing and burning, drainage of waterlogged 

soils, terracing in areas with high slopes, and construction of drainage channels and access roads 

(Dislich et al., 2017). This process results in removing organic material, carbon loss, soil 

degradation and compaction, and biodiversity loss, among other negative impacts (Dislich et al., 

2017; Meijaard et al., 2018). Planted areas generally constitute large-scale monocrops with 

homogeneous canopy vertical structure, as plants are of uniform age, and understory vegetation 

is commonly cleared (Meijaard et al., 2018). With the continued expansion of oil palm planted 

areas in countries outside Southeast Asia, new trends in land cover transition are being reported, 

particularly crop establishment in land previously used for pasture and agriculture (Furumo & 

Aide, 2017). These trends and the need to increase oil palm adaptation to local environmental 

conditions motivate oil palm species to be different from the traditional commercial Elaeis 

guineensis Jacq. or African oil palm (E. guineensis). An interspecific hybrid between E. 

guineensis and E. oleifera Cortés (American oil palm), called OxG hybrid, is getting more 

commercial attention (Barcelos et al., 2015). Compared to the conventional oil palm species (E. 

guineensis) that has a rotation of around 25 years (i.e., palms become too tall to be harvested) 

(Corley and Tinker, 2003), the OxG hybrid has slower growth that increases its life cycle. This 

hybrid is also tolerant to butt rot disease, an infection that attacks oil palm plantations, and its oil 

has improved nutritional properties (Mozzon et al., 2020). Understanding how different 

environmental processes shift under different transition scenarios and different plant species 
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contributes to identifying ecohydrological impacts in water availability and ecological function. 

However, to our knowledge there has not yet been a review that systematically examines 

ecohydrologic impacts in different land transitions and incorporates oil palm varieties in addition 

to E. guineensis.  

The growing heterogeneity in oil palm expansion patterns and the variety of species planted 

make it challenging to generalize the environmental implications of oil palm development. Land 

conversion to monocrops shifts vegetation structure and composition, causing ecohydrological 

impacts in water availability and ecological function. In humid tropical forests, deforestation can 

increase runoff and decrease infiltration (Sun et al., 2017; Wright et al., 2018). These changes 

affect soil retention capacity, soil structure, and erosion, increasing sediment transport and 

nutrient loss into streams (Hunter & Walton, 2008). Land cover changes can modify local-to-

regional precipitation patterns and ultimately alter the regional climate in humid and semi-arid 

environments (Spracklen et al., 2018; Hoyos et al., 2018). Land conversion also alters the energy 

balance partitioning (Spracklen et al., 2018). Sensible heat may increase in recently deforested 

areas due to an increase in albedo and surface temperature (Bonan, 2008). Similarly, latent heat 

may vary in distinct ways when crops replace natural vegetation due to differences in stomatal 

conductance, which impact transpiration (Pongratz et al., 2006). Existing reviews (Carr, 2011; 

Comte et al., 2012; Pardon et al., 2016) demonstrate that environmental effects of oil palm 

intensification, its impacts on water, and plant-water relations have been studied in oil palm 

plantations, but mostly in regard to forest conversion.  

Although publications regarding different land transition scenarios and plant species and 

research focused on oil palm outside of Southeast Asia have been growing in the last decades, a 

systematic review that includes those topics has not been produced. Available reviews that 
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specifically evaluate the effects of oil palm crops on water resources explore the relationship 

between Elaeis guineensis plant water requirements and irrigation (Carr, 2011), the impacts of 

agricultural practices in nutrient cycling (Pardon et al., 2016) and hydrologic fluxes (Comte et 

al., 2012), and the application of remote sensing analysis to oil palm studies (Chong et al., 2013). 

Additional works investigate oil palm impacts on both biodiversity (Meijaard et al., 2018) and 

changing ecosystem functions under scenarios of forest conversion (Dislich et al., 2017). Carr 

(2011) summarizes the connections between stomatal opening, transpiration, and gas exchange 

across seasons and how these three aspects relate to soil moisture. In doing so, Carr (2011) 

highlights the lack of information regarding both, the maximum water table depths palm oil 

plants can tolerate and the different water management strategies in oil palm productivity. Comte 

et al. (2012) remark on gaps in the understanding of the water balance partition when reviewing 

the impact on hydrological fluxes of oil palm conversion from forests and its relations to nutrient 

assimilation and excess. In particular, they identify throughfall and rainfall interception changes 

across different oil palm ages, evapotranspiration at immature oil palm stages, and long-term 

runoff changes. The impacts of oil palm on ecosystem functions under forest conversion 

scenarios are reviewed by Dislich et al. (2017). In this review, the authors highlight the tendency 

of the regulation ecosystem function to decrease in oil palm plantations and the influence of 

plant age, local environmental conditions, and crop management in the ecosystem function 

response. All the existing reviews describe the gaps and opportunities for understanding oil palm 

processes. However, a common aspect of all the cited publications is that they limit their scope to 

Elaeis guineensis and to the transition from forest to oil palm crop. Moreover, the cited 

publications in these reviews limit their geographical scope mostly to Indonesia and Malaysia, 
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the largest palm oil producers (Fitzherbert et al., 2008; Wilcove and Koh, 2010; FAOSTAT, 

2020).  

Here, we review the state of the field and highlight emerging knowledge gaps and research 

challenges associated with the effects of oil palm cultivation on water resources in the tropics 

and associated ecological processes. We looked at the gaps and advances synthesized by existent 

reviews as a baseline and expanded our search to other regions, land transition types, and oil 

palm species. We summarized the work done by exploring different land transitions to oil palm 

across the tropics at different spatial scales, focusing on understanding the linkages between oil 

palm plantations and hydrologic processes. Available information at the global and regional 

scale is evaluated and synthesized to 1) determine the extent of oil palm research on 

ecohydrological processes, in particular, land-atmosphere interactions, fluvial processes, and soil 

and groundwater dynamics, 2) summarize the effects of oil palm on the water budget and how 

these effects link to other ecosystem processes and to other scenarios of land transition (we 

considered tropical forests, croplands, and pastureland or grasslands), and 3) describe areas of 

future research associated to ecohydrological fluxes that have not been addressed.  

Material and Methods 

Literature search and selection  

We conducted a literature search across nine databases and one search engine: Redalyc, 

Scielo, Dialnet, IEEE, Springer Link, Scopus, Science Direct, Web of Science, PubMed, and 

Google Scholar. Considering the expansion of oil palm cultivation into Latin America (Furumo 

and Aide, 2017), we decided to include literature written in Spanish and Portuguese to ensure 

that relevant research from Latin American countries was not filtered out due to a language 

barrier. Redalyc, Scielo, and Dialnet databases were used mainly to find literature written in 
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these languages. Literature in oil palm research that explicitly included the term ‘ecohydrology’ 

is not very common. Therefore, the search query across the different platforms was done using 

combinations of search terms associated with ecohydrology. These terms are presented in the 

supplemental material (Table B.1). Given the variety of databases used in this review, we 

discarded non-peer-reviewed papers. Our search was performed between November 2018 and 

February 2019.  During the preparation of the manuscript, we included relevant and more recent 

literature that was not systematically collected. We did not limit the search to any year or period.  

The resulting publications were filtered in three primary stages: 1) select by title, 2) select by 

abstract and categorize, and 3) detailed reading. In the first stage, we screened the search results 

by title and abstract (Figure 3.1). We excluded papers referring to the industrial aspects of palm 

oil production, detailed agronomic studies or food industry studies (including topics such as 

waste and yield management, pest control, and nutritional analysis of oil palm), and articles that 

did not include any explicit mention of oil palm. In the second stage, we classified the documents 

that were retained from the first filter into three categories according to the information included 

in the title and abstract (categories described below). In the third stage, we made a detailed 

reading of papers from each category. We subcategorized those papers based on their specific 

topic, i.e., oil palm distribution and expansion, land-atmosphere, fluvial processes, and soil and 

groundwater. We excluded documents that did not match any of the category’s criteria or fall 

into the research subquestions. During this process, we reclassified papers into a different 

category if necessary. 

We defined categories to facilitate the systematic revision, as we wanted to focus on papers 

related to ecohydrological processes, land-use change, and the perceptions that socio-political 

literature presents on water availability and water quality. These categories were then distributed 
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into subcategories during the data extraction and analysis. The categories were defined as 

follows: 

Category A: hydrological papers, including work examining current or expected oil palm 

transformation scenarios and their hydrologic effects. The articles could address one or several 

processes in the hydrologic cycle or water budget at one or more scales. Guiding questions: How 

do studies consider coupled hydrologic-vegetation function? What are the effects of oil palm on 

surface energy and water balances? Which type of land use and land cover transitions have been 

studied? 

Category B: research on oil palm extension and expansion patterns including papers 

quantifying and mapping oil palm biophysical characteristics, such as leaf area index and canopy 

related metrics, and water use efficiency. Guiding questions: What is the geographical 

distribution and expansion of oil palm? Which type of land use and land cover transitions have 

been studied?  

Category C: research on political, economic, sustainability, and social aspects related to oil 

palm cultivation and water resources; e.g., conflicts in water use and communities' perceptions of 

water availability and water quality. Guiding questions: What are the major impacts on water 

resources? What changes in water availability and quality are perceived by communities? 

After the categorization, additional topic-specific classification was made to identify 

connections among the studies. Relevant material for this review included existing review papers 

associated with different ecosystem functions in oil palm plantations and research papers 

addressing any of the guiding questions.  
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Data extraction and analysis   

We collected general (e.g., year, authors, study area, and temporal and spatial scale of the 

analysis) and specific information (i.e., topic-specific information) from each paper (Figure 3.1). 

Given the variety of definitions of spatial scale, we classified papers using the scheme developed 

by Becker and Nemec (1987), who define spatial scale as plant (at a specific part of the plant), 

plot (1 m2 to 1 km2), regional (small mesoscale >1 km2 to 100 km2), mesoscale (large mesoscale 

>100 km2 to 10000 km2), and macroscale (continental scale >10000 km2). Papers with study 

areas covering the entire tropics were considered macroscale. We based the selection of specific 

information variables for categories A and B on Bonan (2008), who described biogeophysical 

ecosystem processes and how they are integrated to treat the biosphere as a couple system, and 

D’Odorico et al. (2010), who described land ecohydrological processes. Following the 

components of the water cycle and their interactions with vegetation, we distributed type A, B, 

and C papers in subcategories defined as (i) oil palm distribution and expansion, which bring 

insights to understanding patterns of land transition and distribution of oil palm species; (ii) land-

atmosphere, which describes microclimatic variables, energy balance partition, and 

evapotranspiration; (iii) fluvial processes, indicating the hydrologic connectivity of the landscape 

through sediment transport and surface runoff, including streamflow; and (iv) soils and 

groundwater processes, which includes soil properties given its a critical role regulating the 

water balance (Rodriguez-Iturbe, 2000), and water table fluctuation in groundwater systems. The 

list of specific information extracted appears in the supplemental material. (Figure B.1).  

To identify the differences in ecohydrological processes under different scenarios of land 

transition into oil palm plantations, we designed a coding system that differentiates direction of 

change (i.e., increase, decrease, no change, inconclusive), type of land transition, oil palm 

species, oil palm age, and the scale of the analysis. We identified the transition types as forest, 
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grassland or pastureland, and cropland. Oil palm species included E. guineensis, the hybrid 

interspecific E. oleifera x E. guineensis, other species, and non-specified species. Regarding oil 

palm age, we classified processes happening at the nursing stage of oil palm (less than two years 

old), the young stages (2- 6 years), and the mature stage (>6 years), where oil palm dominated 

the canopy cover. When papers compared processes associated with oil palm crops and other 

land covers, we identified three types of analysis: pair-comparison, time series of land use-land 

cover transition, and building of land use-land cover change scenarios. We also extracted the 

type of approach the study followed, separating fieldwork and experimental studies from 

modeling approaches and statistical from physically-based approaches. 

We included the mean values of each of the variables analyzed for each of the relevant 

papers, the type of land transition analysis, and the direction of change (Table B.2). We also 

include the summary of papers that do not include land transition. Given the differences in 

approaches, units, and ways to present error metrics, values from different studies were not 

averaged. For papers that do not include data results in tables but only in figures, we relied on the 

figures to extract maximum, average, and minimum values for the variable(s) analyzed.  
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Figure 3.1. Information extraction process applied to relevant literature. 1. General descriptive 
information obtained at the beginning of reading each paper. 2. Specific information by category and 
subcategory. Blue shapes are associated with category A: Hydrologic processes; green shapes with 
category B: Biogeophysical processes; and yellow shapes refer to category C, which includes 
sustainability and sociopolitical aspects of oil palm development. Once all the literature was selected, 
papers were distributed into subcategories (blue-green shapes), and their results and approaches were 
analyzed based on four components: oil palm distribution, land-atmosphere, fluvial, and soil and 
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groundwater processes. The final relevant papers for each subcategory are presented in the figure, with 
some papers overlapping subcategories.  

Results  

A total of 90 relevant articles remained in the analysis after the filtering stages: the hydrology 

category (A) included a total of 41 papers, the biogeophysical oil palm processes category (B) 

included 37, and the sociopolitical and sustainability category (C) included 12 papers (Figure 

3.1). Three studies cover the continental scale for the entire tropics, addressing land suitability 

for oil palm expansion (Pirker et al., 2016; Paterson et al., 2016, Vijay et al., 2016). 

Unsurprisingly, of the 90 publications, 59 (65%) correspond to studies taking place in Indonesia 

and Malaysia, the major palm oil producers (Figure 3.3). An important percentage of the rest of 

the studies (28 papers, 31%) focus on countries in the American continent, a region that has had 

an increase in publications since 2008. A smaller number of studies on Africa (5 papers) focus 

on land-atmosphere processes (Burton et al., 2017; Radersma and de Ridder, 1996; Dufrene et 

al., 1992), land suitability in Gabon (Paterson et al., 2016), and a review of plant-water 

interactions for irrigation purposes (Carr, 2011), which is the only reference on Nigeria found in 

the literature, even though Nigeria is the world’s third-largest oil palm producer. The oldest 

relevant study identified in this analysis was from 1992 (Dufrene et al., 1992). After that year, 

research only started being published consistently after 2005, and there was a sharp increase in 

research after 2010. Most of the selected literature was written in English; we found two relevant 

papers written in Spanish and one in Portuguese.       

We found high variability in the temporal scale of the studies, ranging from a few days to 

three years in experimental and field sites, to multiple years using modeling approaches. 

Notably, most of the work with experimental and field data has short-term data collection (days 

to months that sum less than a year). In terms of the spatial scale, the highest number of studies 
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have been at plot scale followed by regional and mesoscale. Most of the studies identifying oil 

palm distribution use mainly remote sensing techniques (Figure 3.4). We found four studies that 

center on identifying how different management practices impact hydrological fluxes, 

specifically the reduction of runoff (Tarigan et al., 2016), and the benefits of riparian zones 

(Chellaiah et al., 2018; Luke et al., 2017; Horton et al., 2018). Typically, the oil palm species 

analyzed is Elaeis guineensis (44% of studies). However, the species is not explicitly specified in 

38% of the studies. Only 2% of the studies cover the interspecific OxG hybrid (Figure 3.2). Land 

conversion or implications of land conversion to oil palm appeared in 31 publications, of which 

13 studies performed pair comparisons among different land covers, 11 evaluated the changes in 

time, and seven corresponded to analyses of land conversion scenarios. The specific forest type 

is not often specified in the literature, i.e., rainforest, mangrove forest, peatland forest, etc.  

Within the literature comprising sociopolitical and sustainability aspects of oil palm, we 

found few examples that conduct a comprehensive analysis of community perceptions on water-

related issues related to oil palm cultivation, though some studies include anecdotal information 

from local residents. Merten et al. (2016) evaluate local perceptions on water dynamics along 

with environmental data to assess local knowledge in Indonesia. Using semi-structured 

interviews conducted in the Jambi province, Indonesia, along with eddy covariance, sap flux, and 

streamflow measurements, Merten et al. (2016) concluded that the villagers’ perceptions of 

increased water scarcity can be related to changes in ecohydrological processes derived from 

land cover changes to oil palm. In another study, Larsen et al. (2014) used interviews and focus 

groups among different actors (e.g, farmers, government officials, managers, residents, 

researchers) to collect perceptions related to hydrologic processes in Indonesia. They found that 

actors had different perspectives on water contamination due to erosion and runoff from oil palm 
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plantations and mills, toxins from pesticides, and reduced surface water in rivers during the dry 

season and in the water table in land adjacent to the plantation. In addition, actors noticed floods 

from deforestation with an increased peak flow and flashy floods in the rainy season as well as a 

reduction in the fishing capacity. In general, local perceptions point towards water scarcity or 

loss of flow regulation capacity of watersheds with extended oil palm plantations (Merten et al., 

2016; Tarigan et al., 2016). Other studies also indicate that social conflicts are related to the 

reduction in water availability resulting from the high-water demand for oil palm production and 

water pollution due to the use of fertilizers (Tittor, 2017; Saadun et al., 2018; Larsen et al., 

2014). These studies were done in Nicaragua (Tittor, 2017), Malaysia (Saadun et al., 2018), and 

Indonesia (Larsen et al., 2014).   

The following subsections summarize the geographic distribution of relevant studies and the 

main findings related to ecohydrological processes in oil palm crops and changes in these 

processes due to land cover transitions. The land-atmosphere section describes the progress made 

in understanding energy balance partition, evapotranspiration, and environmental variables that 

determine water use efficiency in the crops. The fluvial processes section describes runoff, 

streamflow, sediment generation, and transport due to oil palm conversion and in oil palm crops, 

as well as nutrient leaching. The soil and groundwater section describes the changes in soil 

physical structure associated with texture and soil organic carbon composition. The final section 

summarizes the research addressing how different management practices impact changes in 

hydrological fluxes in oil palm plantations.  
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Figure 3.2 Distribution of papers by year, species, and spatial scale. (A) Total number of relevant papers 
by category and year. (B) Distribution of papers per oil palm species. (C) Distribution of papers per 
subcategory (papers can be in more than one subcategory.) (D) Distribution of papers per spatial scale 
(papers can include more than one scale).   
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Figure 3.3. Relevant studies by country, type of paper, and biogeographical regions. A study can include 
more than one country. (A) Total number of relevant studies per country compared to oil palm 
production. (Source of oil palm production FAOSTAT, 2018). (B) Number of studies per category for the 
Neotropics region. (C) Number of studies per category for the Afrotropics region. (D) Number of studies 
per category for the Indo-Malay and Australasian regions. Studies grouping more than one country are 
distributed among the locations they cover.  
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Figure 3.4. Summary of main approach and spatial scale in papers covering hydrologic (A) and 
biogeophysical processes (B) categories. Method approaches were summarized based on the main method 
used.  

Global expansion of oil palm crop 

According to the Food and Agriculture Organization, FAO, statistical database (FAOSTAT, 

2020), the global extent of oil palm harvested area was over 189,000 km2 in 2018. 

Approximately 69% of the harvested area is located in the Indo-Malay and Australasia 

biogeographical regions, with Indonesia and Malaysia accounting for 63% of the total area. The 

Afrotropical region covers approximately 24% of the area, with Nigeria accounting for 16% of 

the total harvested area. Finally, 7% of the area is located in the neotropical region, with 

Colombia accounting for approximately 1.5% of the harvested area.       
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According to the literature available for Southeast Asia, oil palm expansion has resulted in 

severe deforestation processes, with a large portion of crop area replacing primary and secondary 

peatswamp forest and rainforest (Miettinen et al., 2016; Tsujino et al., 2016; Austin et al., 2017). 

About half of oil palm development expanded into forested lands between 1972 and 2015 

(Meijaard et al., 2018). Koh et al. (2011) estimate that for the early 2000s in Peninsular 

Malaysia, Borneo, and Sumatra, approximately 880,000 ha (6% of total plantations) were 

previously peatland forest areas. However, some studies found deforestation is also due to other 

factors Abood et al. (2015) estimate approximately 6.6 Mha (11%) of forest conversion to oil 

palm in Indonesia between 2000 and 2010. In this study, they show how forest loss is also 

associated with logging (12,5%) and fiber (12.8%) concessions. While deforestation is the 

dominant land cover pattern in Southeast Asia, oil palm plantations have also replaced 

agricultural land, with Austin et al. (2017) estimating a proportion of 37.9% replacement 

between 2010 and 2015 in Indonesia. It is not clear if current oil palm expansion follows a 

similar pattern in the Afrotropics as in Southeast Asia, but some studies indicate that similar 

trends might take place in the future (Amigun et al., 2011; Burton et al., 2017). In the eastern 

region of Ghana, a land use land cover change analysis showed that between 1986 and 2015, 

11.9 of semi-deciduous forest was lost, followed by 10.7% in food crop losses, while oil palm 

and cacao gained 11.2% and 8.9%, respectively (Asubonteng et al., 2018). By doing a swap 

analysis in which partial gain and losses are estimated, Asubonteng et al (2018) found that oil 

palm has been replacing food-crop land (7.20%), closely followed by cacao (7.02%) and forest 

(5.98%). In Latin America, oil palm expansion has mostly replaced non-forested land. Furumo & 

Aide (2017) estimated that between 2001 and 2014, 79% of crop expansion occurred in already 

intervened lands, mainly in cattle pastures, with the remaining 21% occurring in areas with 
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woody vegetation. The available literature indicates that deforestation is more common in 

countries like Peru and Brazil, while in Colombia, the main land cover change is from pastures 

and cropland (Gutierrez-Velez et al., 2011; Furumo and Aide, 2017; Bicalho et al.,2016; 

Romero-Ruiz et al., 2012). Most of the studies above focused on large-scale industrial oil palm, 

but there are some local examples of oil palm distribution and patterns of change among 

smallholders and small-scale plantations. In Indonesia, Erniwati et al. (2017) found that 53% of 

the smallholder plantations planted between 1990 and 2002 come from degraded land and not 

from rainforests. Another example shows the differences between land suitability and actual land 

occupation by oil palm smallholders in Brazil, where oil palm has occupied less area than 

expected (Benami et al., 2018). Finally, in Mexico, it was found that smallholders displaced 

natural vegetation to plant oil palm following a different pattern than industrial plantations, 

mostly planting in pastures and previous cropland (Hernandez-Rojas et al., 2018).  

The continued demand for palm oil and the interest of local governments in establishing oil 

palm plantations for economic development have led to research into future scenarios of oil palm 

expansion and of identification of suitable areas for crop establishment. In general, these studies 

evaluate biophysical conditions that allow for oil palm establishment by overlapping suitable 

areas with boundaries of protected or restricted zones, areas of forest cover, or another 

environmental relevant zoning. After overlapping, they calculate the final available areas that 

guarantee zero-deforestation or minimal negative impacts (Smit et al., 2013; Austin et al., 2017; 

Castiblanco et al., 2013; Rhebergen et al., 2016). The effects of climate change on the 

distribution of suitable land for oil palm establishment have also been evaluated in the literature. 

Paterson et al. (2016) used climate projections to 2050 and 2100 to determine how unsuitable 

and highly suitable land for oil palm cultivation might change worldwide in the future. One of 
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their main findings is that current large producers of oil palm (Malaysia, Indonesia, Nigeria, and 

Colombia) might have a large reduction in suitable land with climate change projections. At the 

local level, in the state of Maranhão, part of the Brazilian Amazon, the oil palm potential 

expansion was estimated based on the hydric conditions determined in terms of water deficit 

(Martorano et al., 2017). In this study, the authors estimated a water deficit of 125 mmy-1 which 

indicates the low suitability of oil palm establishment under no irrigation conditions. The studies 

in land suitability or land use land cover change typically considered Elaeis guineensis or do not 

specify the oil palm species. We did not find studies mapping or estimating the distribution of 

different oil palm species across the tropics. However, Barcelos et al. (2015) evaluate the 

benefits and shortcomings of cultivating different species and hybrids of oil palm in relation to 

productivity and disease resistance and indicate that interspecific hybrids (e.g. OxG) are 

becoming more commonly cultivated.   

Land-atmosphere processes  

Land-atmosphere processes are driven by microclimatic conditions that vary across oil palm 

stages of growth (Figure 3.5) and from the previous land covers that transition to oil palm 

(Figure 3.6). Studies comparing or evaluating land cover transition impacts on land-atmosphere 

processes were found in forests and croplands. The changes in surface temperature, albedo, latent 

heat, and sensible heat fluxes have been mainly studied in Asia (Roll et al., 2015; Meijide et al., 

2017; Manoli et al., 2018; Sabajo et al., 2017). In the early stages of crop establishment after 

replacing rainforest, open canopies cause the surface temperature in oil palm crops to increase by 

up to 4 °C (Sabajo et al., 2017). As oil palm grows, temperature decreases as a response to 

canopy closure. This decreased temperature has been reported to be close to that seen in forests 

but slightly higher (Figure 3.6). Meijide et al. (2017) report differences of about 1 °C between 1- 
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and 12-year old plantations using Eddy covariance techniques. By modeling the ecohydrology of 

oil palm at plot scale using the Tethys and Chloris model, Manoli et al. (2018) found that 

temperature in young oil palms ranges between 23-26 °C, while temperature decreases to 22-23 

°C when oil palm is mature (i.e., dominates the canopy cover). In another study, temperatures in 

oil palm plantations with a closed canopy range between 22 and 30 °C (Meijide et al., 2018). 

Changes in temperature also relate to changes in relative humidity, which is lower in closed-

canopy oil palm plantations (91.3 ± 0.8 %) than in forests (95.6 ± 1.0%) (Meijide et al., 2018). 

These studies conclude that oil palm creates drier and warmer microclimatic conditions when 

compared to rainforests. Changes in land surface temperature and its relation to foliage cover 

have been identified at the regional scale (Ramdani et al., 2014) and macroscale (Sabajo et al., 

2017) using remote sensing images. In these studies, land surface temperature increases between 

0.2 and 1.05 °C after the foliage is lost as a result of oil palm establishment, showing forest cover 

has a lower temperature (Figure 3.4). In terms of land transition, most of the studies developed in 

Asia evaluate the response in microclimatic conditions of replacing rain forests with oil palm 

plantations (Sabajo et al., 2017; Ramdani et al., 2014; Meijide et al., 2018; Manoli et al., 2018), 

with few examples that compare annual cropland (Radersma et al., 1996) and permanent 

croplands (Merten et al., 2016; Meijide et al., 2018; Radersma et al., 1996). 

Air temperature highly correlate to vapor pressure deficit (VPD). One-year old oil palm in 

Indonesia experienced a maximum VPD of around 16 hPa while 12-year old oil palm VPD was 

around 14 hPa, according to Meijide et al. (2017). Roll et al. (2015) found VPD in oil palms 

between 2 and 9 years old to be around 15.3 ± 0.95 hPa, and a high VPD variability in palms 

older than 10-years old (15.4 ± 3.35 hPa). In a 12-day experiment during a wet season for a 5-

year old E. guineensis plantation in Colombia, the average VPD was 26 ± 8.3 hPa (Bayona-
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Rodriguez & Romero, 2016). These results were similar to those found in a 12-years old oil palm 

plantation in Indonesia during the wet season by Niu et al., (2015). In all plot and plant studies 

the measurement period is from days to less than a year. Although these short periods are 

explained by the complexities of running long-term field campaigns in the plantations (e.g., 

difficult access to continuous monitoring, sensor failure, high operational costs), it does not 

allow the evaluation of the conditions at continuous growth or at different seasonal variations. At 

the plot scale within the crops, few studies have estimated albedo. Despite the observed changes 

in temperature, albedo did not show significant changes between 1- and 12-year old oil palms 

(0.16±0.02 and 0.14±0.01 respectively) (Meijide et al., 2017). Similarly, albedo showed a weak 

influence on the land surface temperature and very small differences between forest and oil palm 

plantations (Sabajo et al 2017).  Studies suggest canopy closure is one important condition 

influencing variation in microclimatic conditions given the variation in surface roughness and 

temperature distribution across the vertical profile (Meijide et al., 2018; Sabajo et al., 2017; 

Ramdani et al., 2014). 

Differences in the energy balance have been reported at different stages of oil palm growth. 

Sensible heat appears to be higher when oil palm is young, while latent heat significantly 

increases in mature E. guineensis. Derived from field observations in Indonesia, maximum 

sensible heat ranges from 140 Wm-2 in 1-year old oil palm to 50 Wm-2 in 12-year old oil palm 

(Meijide et al., 2018). Modeled values of sensible heat in oil palm range from 180 Wm-2 in 

young oil palm to 30 Wm-2 in adult oil palm (Manoli et al., 2018). Fowler et al. (2011), reported 

daily sensible heat values in mature plantations of around 100 Wm-2. Latent heat, based on data 

derived from field observations, is dominant in the energy balance, with maximum values that 

fluctuate between 220 Wm-2 in a 1-year old palm to nearly 410 Wm-2 in a 12-year old palm 
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(Meijide et al., 2018), and model values that rank between 300 Wm-2 for young plantations to 

400 Wm-2 in mature plantations (Manoli et al., 2018). Fowler et al. (2011) obtained latent heat 

values in mature oil palm plantations of nearly 400 Wm-2.  

Environmental conditions influence oil palm water use, gas exchanges, and subsequently 

evapotranspiration (ET). Stomatal openness, which regulates water and gas exchanges, is limited 

by VPD and temperature (Dufrene et al., 1992, Carr 2011, Roll et al., 2015, Rivera-Mendes et 

al., 2016). In a study at nursing stages of E. guineensis under laboratory-controlled conditions, 

Rivera-Mendes et al. (2016) found that plants at different soil moisture conditions did not alter 

stomatal conductance, photosynthesis, or transpiration, which suggests effects on stomatal 

conductance may be more influenced by atmospheric environmental conditions at that stage of 

maturity. In relation to plant age, Roll et al. (2015) found that stand-level water conductance 

increased with stand age. This plot study obtained experimental sap flow measurements and 

stand flow and found sap flux transpiration to be 8% of ET in a 2-years old oil palm and 53% in 

a 12-year-old oil palm. ET was 2.8 mm day-1 and 4.7 mm day-1, respectively. Using modeling 

techniques at the plot scale, evapotranspiration ranges between 1000 to 1600 mmy-1 in young 

plantations and 1200 to 1800 mmy-1 in mature plantations (Manoli et al 2018). Using Penman-

Montieth equation ET values resulted in 918+-46 mmy-1 (Meijide et al., 2018). Although these 

studies provide a valuable contribution to understanding water-vegetation interactions in the 

atmosphere, they correspond to the same region (Southeast Asia) and are done at a plot scale 

with no intra-seasonal variation. Compared to rainforests, mature oil palms do not show a clear 

increase or decrease in evapotranspiration. While Manoli et al. (2018) and Kurniawan et al. 

(2018) found an increase in evapotranspiration in mature plantations, Sabajo et al. (2017) found 

comparable evapotranspiration rates in oil palm when compared to forests at a regional scale. 
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Radersma et al. (1996) tested different water supply conditions in a closed canopy oil palm 

plantation, but age of the plantation was not specified. They found that under suboptimal or drier 

conditions of water supply during the dry and wet season, evapotranspiration is higher in oil 

palm plantations than in cocoa, rice, and maize, except for cocoa in the dry season. Existing 

literature rarely addresses variations in local precipitation due to oil palm plantations. However, 

efforts have been made to partition the precipitation into interception (Tarigan et al., 2018; 

Kurniawan et al., 2018; Merten et al., 2016) and throughfall (Dufrene et al., 1992; Banabas et al., 

2008). Studies of precipitation identify short-term precipitation events, but we did not find 

studies addressing changes in regional precipitation due to oil palm plantations.  

Fluvial processes  

Fluvial processes associated with sediment yield, transport, runoff and streamflow 

generation, and nutrient leaching typically contrasted early stages of oil palm establishment 

coming from rain forest land to mature oil palm stages (Carlson et al., 2015; Adnan & Atkinson, 

2011; Babel et al., 2015; Nainar et al., 2019). Compared to rainforest, sediment yield and 

transport increased in oil palm plantations regardless of the stage of growth of the crop, with 

differences between 19,000 ± 3,400 mg h-1 ha-1 in young plantations and 8,000 ± 2,000 mg h-1 

ha-1 in mature plantations (Carlson et al., 2015). In another study, annual suspended sediment 

concentration discharge in an oil palm catchment was estimated to be 4 to 12 times greater than 

primary and multiple logged forest catchments (Nainar et al., 2017). High sediment transport was 

also reported after forest clearing and plantation establishment (Gharibreza et al., 2013). This 

increase in sediment concentration was attributed to bench-terraced slopes with little to no 

vegetation (Nainar et al., 2018), the construction of roads, and the absence of vegetated riparian 

zones (Carlson et al., 2014, 2015), which increase the chances of erosion. Although sediment 
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yield tended to decrease as canopy increased in oil palm plantations (i.e., oil palm growth), 

values reported in the literature were higher than in forests, which was associated with loss of 

understory vegetation, oil palm planting in steep terrain, which increases erosion (Satriawan et 

al., 2016), and the construction of infrastructure (e.g., roads, harvesting paths) to facilitate crop’s 

management (Carlson et al., 2014). When oil palm was compared to land cover other than 

rainforests, studies have shown similar trends but different results depending on the land cover. 

In a scenario-based analysis with oil palm and other biofuels, sediment transport was higher in 

oil palm compared to cassava and soybeans (Babel et al., 2012). Similarly, sediment yield was 

greater in oil palm plantations younger than three years old and plantations older than 10 

compared to mixed logged agroforest (Carlson et al., 2014). Guillaime et al. (2015) evaluated 

soil erosion at the plot scale in three land-use types, including jungle with rubber trees, rubber 

plantation, and oil palm plantation. They found that the oil palm and rubber plantations presented 

higher erosion (with a maximum of 35 ± 8, and 33 ± 10 cm respectively) than jungle (14± 14 

cm). The fact that the jungle with rubber land use did not require land preparation, makes this 

land use less susceptible to an alteration in the soil conditions. We have not found studies that 

contrast sediment concentration in streams draining pasturelands with oil palm plantations 

(Figure 3.5).  

Runoff, baseflow, and streamflow generation responses in oil palm plantations vary as a 

function of previous land cover and topographic conditions. Tarigan et al., (2018) compared 

watersheds to identify how the baseflow index and the runoff coefficient vary under different 

dominant land covers and to what extent changes in the land cover can affect these variables. 

They suggest a percentage of area threshold (minimum 30% forest and maximum 40% oil palm) 

after which catchments can lose streamflow regulation capacity. This is one of the few studies 
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that included shrubland in the analysis and found no significant differences between runoff 

coefficients of shrubland and oil palm plantations. Nainar et al. (2018) analyzed three types of 

land cover: primary forest, logged forest, and mature oil palm. They found total discharge and 

baseflow were lower in oil palm plantations (baseflow was 34% of total discharge). However, oil 

palm showed the highest runoff response (runoff coefficient 32.6%), twice the mean of grassland 

(runoff coefficient 15.3%), which was attributed to the compacted layer of soils resulted from oil 

palm and former grazing management (Algeet-Abarquero et al., 2015). Runoff increased in oil 

palm plantations when compared to the forest in loam and clay acrisols (Kurniawan et al., 2018). 

By simulating oil palm expansion and continuous drainage of a peatland region in Indonesia, a 

hydrologic and economic analysis showed a flood-risk increase after 100 years, in which near 

46% of the peat area will be subject to constant inundation (Sumarga et al., 2016). In addition, 

higher runoff coefficients were found in topsoil of oil palm plantations (60%) compared to 

grassland in an overgrazed area (40%), forest (12%), and forest plantation (33%) in Costa Rica 

(Algeet-Abarquero et al., 2015). 

Some studies have analyzed different mitigation strategies for runoff generation (e.g., frond 

piles, silt pits) and water retention during the dry season, as well as the influence of riparian 

zones in controlling stream properties. The runoff coefficient decreased from 63% to 50% when 

a combination of frond piles and silt pits were used as a mitigation strategy in oil palm 

plantations (Tarigan et al., 2016). Different understory vegetation can be planted to prevent 

changes in infiltration and runoff and losses of fertile soils that are rich in organic matter. In a 1 

to 2-year old plantation, different vegetation communities including oil palm were tested, and the 

effect on infiltration and erosion was analyzed (Satriawan et al., 2016). They found that 

understory vegetation and tree cover decreased runoff generation, with a positive effect in 
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decreasing soil erosion and nutrient loss. This is important given that Indonesian oil palm is 

mostly planted on sloped areas (Satriawan et al., 2016). Preserving or planting riparian zones 

contribute to mitigating the negative impacts in oil palm plantations by decreasing stream 

temperature (Chelliah and Yule, 2018a; Luke et al., 2017) and bank erosion (Horton et al 2018). 

Riparian zones also contribute to maintaining the quality of the streams, decreasing nutrient 

leaching, and contributing to the microbial activity that is enhanced by litter decomposition 

(Chelliah and Yule, 2018b). Most of the studies that identify the effect of riparian zones are local 

to the area surrounding the plantations. An attempt to map and characterize riparian vegetation 

and its changes in Papua New Guinea showed how oil palm encroachment into the riparian zones 

has degraded and displaced most of the natural riparian areas, reducing dense riparian zones 

mostly to areas upstream of oil palm (Sheaves et al 2018).  

Soils and Groundwater  

Changes in soil properties during the establishment and development of oil palm plantations 

depend on the previous land cover, the soil type, and the management practices. Soil properties 

have been studied in peatland soils retained from previous forest cover (Nurulita et al 2015; 

Tonks et al 2017), cropland (Couwenberg & Hoojier, 2013), and different types of mineral soils 

from well-drained (Bruun et al 2013) to moderately drained (Goodrick et al 2015, Nelson et al 

2014). In particular, mechanical soil compaction due to the introduction of machinery for 

harvesting and establishment purposes increased bulk density, especially in the traffic zone (i.e., 

the zone in which oil palm bunches are collected) (Matysek et al., 2018; Da Sato et al., 2017). In 

contrast, an increase in bulk density was detected when oil palm replaced a swidden system 

(Bruun et al., 2013) in a 3-year old plantation, and when compared samples taken under the 

swidden system with a 15-year old plantation. Similar results were presented by Marwanto et al 
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(2014), who analyzed peatland soils. In the land conversion of grassland to oil palm in Papua 

New Guinea, significant changes were found in soil pH and exchangeable Magnesium, but no 

statistically significant variations were detected in bulk density, soil carbon, or nitrogen content, 

although an increase in those aspects was detected (Nelson et al 2014).  

Another measure characterized in oil palm plantation soils is soil organic carbon (SOC). 

Frazao et al (2014), working in Brazil, measured SOC in mineral Oxisol soils (using the USDA 

classification) under rainforests, mixed forests, and oil palm. They found that mixed forest has 

the lowest SOC among the land covers. However, within two different oil palm ages (23 and 34 

years old), they found the younger plantation has lower SOC across all the depths and the older 

plantation has higher values across all the depths. Couwenberg & Hoojier (2013) compare 

carbon losses and subsidence in Acacia and oil palm plantations. Annual carbon losses are 

similar in Acacia plantations and oil palm plantations of 5 and 19 years old when comparing the 

rate of carbon loss to the subsidence rate. SOC losses are also detected in repetitive plantation 

cycles after replanting (Matysek et al., 2018) (Figure 3.5). However, the combined analysis of 

SOC and bulk density indicated that while SOC decreases in oil palm plantations when 

compared to swidden systems, an increase in bulk density does not allow conclusions about SOC 

losses (Bruun et al., 2013). 

Infiltration capacity and infiltration rate have been measured for different land uses and land 

covers and oil palm mitigation techniques to prevent erosion and overland flow (Tarigan et al 

2016; Satriawan et al 2016). In Indonesia, field measurements using double-ring infiltrometers 

found low infiltration rates in oil palm plantations with no management treatment (around 10 

cmh-1) and rubber plantations (around 20 cmh-1), while high infiltration rates were obtained in 

secondary forest (90 cmh-1) (Tarigan et al 2016). This study also measured infiltration rates in 
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oil palm plantations with a front pile management technique finding that this treatment increased 

infiltration by around 40 cmh-1. Satriawan et al (2016) measure infiltration volume and estimate 

infiltration capacity at plots between 5 months and 2 years old, and under different understory 

vegetation used as a soil conservation technique to prevent erosion. They found that soil 

conservation techniques did not affect infiltration capacity significantly, while the infiltration 

volume was significantly impacted (soil conservation treatment leaded to high infiltration 

volume). Related to water storage in the soils, a study in Malaysia reported higher soil water 

content in peat swamp forest compared to mature oil palm (defined as trees more than 25 m high 

and canopy coverage greater than 80%) (Tonks et al., 2017) (Figure 3.6). 

Less studied in the literature are processes associated with groundwater dynamics in oil palm 

plantations. Typically, studies looked at the first 60 cm of soil depth. However, analysis of water 

table variation and subsidence has been done in peatland soils (Wösten et al., 2006). By using the 

hydrological model SIMGRO and 15 months of data from piezometers located in a watershed in 

Indonesia, Wösten et al. (2006) analyzed different scenarios of peatland drainage due to oil palm 

conversion. They found subsidence between 2 and 3 m can occur in the catchment. This 

subsidence reduced the water table and the catchment discharge. Another study found that 

constant water drainage in oil palm plantations leaded to water table subsidence (between 3.7 

and 3.9 cmy-1) (Couwenberg & Hoojier, 2013). 
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Figure 3.5. Degree of knowledge of vegetation and hydrological processes in an oil palm plantation. Left: 
oil palm plantation before production (young). Right: active oil palm production (mature). The width and 
height of the arrows and boxes indicate the difference in the fluxes between the young and mature 
plantations. Hollow boxes and arrows indicate no agreement was found among the studies. Checkmarks 
and question marks define the number of papers studying a particular process. 
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Figure 3.6. Change in hydrologic fluxes and state variables in land cover transition from rainforest (left), 
cropland (center), pastures or grassland (right) to oil palm. Circle sizes represent the number of papers. 
Given different reporting units, time and spatial scales, and environmental conditions, papers were 
summarized individually.    

Discussion 

Our review provides a description and summarizes relevant findings in oil palm research 

associated with hydrology-oil palm plantation interactions in the three main components of the 

hydrologic cycle (i.e., interphase land-atmosphere, which covers processes within the 
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troposphere; streams and landscape, and subsurface). While we recognize the progress in 

identifying oil palm establishment, development, and expansion, we found an imbalance between 

the number of scientific publications written in English and oil palm production in the 

Afrotropics, despite the relevant contributions of Dufrene et al. (1992), and the review in plant-

water relations of Carr (2011). We also found a lack of replication, especially in the Neotropics 

at different environmental conditions and at all types of land transition. Research has been 

mainly focused on industrial plantations based in Asia and is gradually expanding to smallholder 

plantations. However, the spatial scale of the majority of ecohydrological studies is still done at 

plot or regional spatial scale, and short temporal scales (i.e., between days and less than a year). 

These findings might be explained by the complexities and high costs of long-term monitoring 

systems. Plant-water relations have been traditionally oriented to identify water requirements to 

improve oil palm yield, but we found this orientation has gradually shifted to identifying changes 

in the hydrological response in oil palm plantation. Still, research is needed to improve the 

spatiotemporal scope and geographical representation of those analyses, especially to 

characterize the difference in more humid vs. semi-arid tropical environments in which oil palm 

has been planted. Although we found examples that integrate community knowledge to improve 

the understanding of ecohydrological processes, more recognition of communities' perceptions as 

a mechanism to build hypotheses, acknowledging local knowledge, and including active 

participation in management practices is still needed. Due to logistical constraints, we could not 

address scientific literature written in all the languages of tropical regions, which may have 

hidden progress that has been made in some of the regions (e.g., Africa), though the inclusion of 

literature in Spanish and Portuguese makes visible other academic productions made in the 

Neotropics in different soil types and environmental conditions. We recognize that including all 
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the scientific literature produced in the field would require a multi-language search wider than 

the one we performed. 

Current knowledge in ecohydrological process in oil palm research and oil palm distribution 

Oil palm distribution and land use land cover transition is the main focus of 23% of the 

literature, especially since 2010. Most of the studies characterizing oil palm distribution and 

change are located in the Indo-Malay biogeographical region, where most palm oil production 

occurs, targeting forest conversion. Recent literature explores other land cover transitions, 

especially in marginal lands revealing agricultural and pastureland replacement (79% of the land 

in the Neotropics between 2001 and 2014 (Furumo & Aide, 2017) and 39% between 2010 and 

2015 in Indonesia (Austin et al., 2017)). In terms of methods to identify oil palm distribution and 

land cover change, we found extensive use of remote sensing techniques and an increase in the 

resolution of the analysis, especially at the regional scale (1 km2 to 100 km2), potentially 

motivated by the recent availability of satellite imagery as well as robust algorithms that deal 

with computational constraints. Still, the majority of the remote sensing techniques have been 

applied at the mesoscale (Figure 3.4). Although this review does not focus on specific remote 

sensing analysis or classification techniques, we recognize that the use of these tools helps to 

advance the field.  

Expansion of oil palm in pastureland allows examination of different hydrologic responses of 

oil palm establishments depending on the antecedent land cover type. One of the arguments 

behind the incentives of oil palm establishment in marginalized lands is reducing carbon 

emission (Garcia-Ulloa et al., 2012). However, in these lands, water availability may be an 

essential factor in oil palm expansion. Effects on ecohydrological fluxes from E. Guineensis crop 

establishment in previously forested areas (especially rainforest in peatland soils) are more 
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documented than in cropland, grassland, and pastures (Figure 3.6). These studies, mostly done at 

the plot scale, reveal the dominant role of evapotranspiration across the oil palm life cycle and 

stress the importance of vapor pressure deficit and air temperature in regulating stomata closure 

and therefore evapotranspiration rates. Closed canopy oil palm evapotranspiration can be higher 

than forest and other permanent cropland plantations. However, the trends in perennial croplands 

are not the same for all types of crops. Besides the type of crop, having similar trends may be 

conditioned by soil properties and intra-seasonal variations. Studies have shown that a rise in air 

temperature during the day causes stomatal closure and reduces evapotranspiration (Roll, et al., 

2015). However, there are not enough studies to generalize a specific threshold in which stomatal 

closure happens and the daily or intra-annual variability of this process.  

Based on the studies found, trends in sediment transport and production among different land 

uses show an increase after the transition from forest and a decrease after transitioning from 

pastures. However, the studies are done at short temporal scale, thus conclusions around these 

trends have to be treated carefully. Studies comparing sites of forest and oil palm show an 

agreement in the increment of sediment production. It has been observed that oil palm increases 

runoff during the rainy seasons in the early stages of forest conversion and decreases when oil 

palm canopy is dominant in the landscape. However, not enough empirical evidence is found in 

cropland or pasture lands (i.e., only one analysis that models oil palm conversion to cropland 

using scenarios (Babel et al., 2015)). This set of findings persists in the analysis of runoff.  At the 

watershed scale, we typically found modeling involving other land use and land covers in 

addition to oil palm, therefore the observed trends in runoff generation include heterogeneous 

characteristics of the catchment. In the case of sediment transport data, the temporal scale of the 

data collected in the field ranges from episodic to a few months, which makes it challenging to 
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compare variations in time. None the less, the literature reviewed here does provide some 

consistent information about methods for reducing runoff and sediment flux. The use of front 

piles, silt splits, and the conservation of riparian zones are proven mechanisms to prevent the 

negative impacts of runoff and sediment generation. Riparian zones also contribute to regulating 

stream temperature, which in turn helps to preserve stream biological activities. Other mitigation 

strategies that have been useful to reduce runoff and mitigate erosion are the use of understory 

vegetation, conventionally used to contribute to nitrogen fixation.  

In terms of the soil content and structure, oil palm plantations reduce soil organic carbon and 

elevated bulk density when compared to rainforest soils. When compared to other cropland and 

grassland, the effect of oil palm plantations in soils is less conclusive and depends on the land 

cover and soil composition. Studies center in the soils has been done in the first 60 cm of soils 

which is the region considered active in terms of root activity. Few studies discuss how 

variations in soil organic content impact soil water content. However, this impact has proven to 

be less significant for other soil types (Minasny & Mcbratney, 2018).  Other than a few examples 

in peatland soils, water table variation has been less addressed in the literature revealing a need      

for future research.   

Major challenges and future research needs 

The information gap on oil palm distribution impedes having a clear global picture of land 

cover change processes driven by oil palm cultivation. Based on the reported statistics and in the 

number of relevant papers by country, it is clear that there is a lack of information on crop 

establishment and expansion processes in the Afrotropical countries (only three relevant papers) 

despite this region accounting for a considerable proportion of global harvested area (16%). 

Studies on suitable land for oil palm establishment and expansion allow exploration of possible 
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future changes in the crop’s global distribution; however, they are either centered on E. 

guineensis or do not specify the oil palm species. Since hybrid oil palms have proven to be more 

tolerant of extreme environmental conditions and more resistant to diseases, it is necessary to 

address the distribution and potential implications on land suitability for different species and 

hybrids of oil palm. The lack of research in the interspecific oil palm is also evident in 

addressing ecohydrological questions. We did not find a dataset or information about the 

distribution of the different types of oil palms across the tropics despite the fact that a global 

dataset has been recently released at a smallholder scale. We identified the following research 

needs in oil palm ecohydrological processes:  

1. More studies are necessary to measure the microclimatic conditions under different air 

moisture conditions and soil types at longer temporal scales. This would help to identify 

differences in evapotranspiration rates and to relate those differences with surrounding land 

covers. We recognize the logistical and economic complexities of installing Eddy covariance 

flux-towers; however, we also have found in the literature more affordable and easier to 

maintain examples that will potentially contribute to more widespread data collection 

(Villegas et al., 2017; Meijide et al., 2018). A more robust dataset would also provide the 

necessary inputs for regional to mesoscale oil palm ecohydrological modeling.   

2. In terms of contrasting changes in fluvial process and runoff generation, more analyses in 

non-forested areas are still required. In particular, those analyses should include an 

assessment of the differences in water availability in humid vs semi-arid environments. 

These contrasts should also account for differences in patterns of transition. Given the high 

water requirements of adult oil palms and their presence in areas where other crops exist, 



77 
 

increased understanding on the pressure that irrigation places on community water supply is 

needed.  

3. We found a gap in long-term oil palm eco-hydrological processes in all the components of 

the hydrologic cycle. Long-term analysis of oil palm, including oil palm rotation, would 

show how oil palm may alter hydrological processes over longer time scales.  

4. Local knowledge and community perspectives in oil palm-producing regions remain largely 

absent from questions motivating the scientific literature. Given the human-dominated nature 

of this crop, these perspectives may help to advance the stage of knowledge in hydrological 

and ecological processes in oil palm research while also linking social and environmental 

dynamics.     

5. Although there have been advances in developing global oil palm datasets, there is still work 

to be done to identify different transition patterns. Extended coverage to include regions with 

sparse oil palm plantations and those encompassed withing other land covers is needed. 

6. In conducting this review, we have identified different terminology that is not always 

clarified or explained in the literature (e.g., forest types, agroforest, agriculture), which 

makes it challenging to compare scenarios and geographical locations, especially in 

conversion scenarios. Although progress has been made to characterize oil palm at different 

ages, management practices and species are not always described in the papers. Different 

temporal and spatial scales make it challenging to combine different datasets and contrast 

results from different geographical locations, suggesting that replication of approaches might 

be needed. 
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Conclusions 

Our study synthesizes the progress on understanding ecohydrological processes in oil palm 

plantations at different temporal and spatial scales across the tropics. We focused our search on 

different scenarios of land transition, the three main components of the hydrologic cycle (i.e., 

interphase land-atmosphere; streams and landscape, and subsurface), and different oil palm 

species (i.e., the commercial African oil palm of E. guineensis Jacq and the OxG hybrid (E. 

oleifera cortés - E. guineensis Jacq.). We found important efforts have identified hydroclimatic 

processes in oil palm related to plant transpiration, shifts in air temperature, and water vapor 

pressure within different stages of oil palm growth and different land covers. Still, most of the 

progress has been a plot and regional scale, and at short-term temporal scales (i.e., days to 

months). Similar to fluvial processes, most of the work to understand runoff and sediment yield 

has been done at regional scales or smaller. Although we recognize the logistics and cost-related 

complexities of long-term monitoring in oil palm plantations, this lack of continuous data 

constitutes a gap to understand ecohydrological processes in oil palm research. While we found 

examples in which the community perceptions have been included in addressing scientific 

questions and attending community concerns, these are still limited but important given the 

human-dominated nature of oil palm. In addition, an important gap in oil palm patterns of 

transition and understanding of ecohydrological processes in the Afrotropics was detected 

despite the high oil palm production in this region. More studies are needed in oil palm hybrids 

given the potential for further expansion due to their commercial value and their resistance to 

extreme environmental conditions (i.e., plant disease, drought, and flooding). Important 

thresholds in water requirements in water-limited scenarios are still necessary to explore, 

especially in landscapes where oil palm is not the only cropland, crops require irrigation to gain 



79 
 

optimal yields, and there are plantations under pasture transitions. Further research in these types 

of landscapes will help to identify the limits of oil palm expansion from a hydrological 

perspective.  
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CHAPTER 4: MICROCLIMATIC CONDITIONS AND DAILY ENERGY BALANCE 
PARTITION FOR INTERSPECIFIC HYBRID OIL PALM PLANTATIONS IN 

NORTHERN COLOMBIA 
 

Introduction  

The perennial nature of oil palm and its high yield production, when compared to other 

vegetable oils, make this crop suitable for expansion in tropical regions (Monzzon et al., 2020). 

Massive oil palm expansion has been happening over the last 40 years in Asian countries, which 

contain 69% of the total harvested area of oil palm globally (FAOSTAT, 2020). In Indonesia and 

Malaysia, the main oil palm producers, expansion has replaced primarily at peat swamp forest 

and rainforest (Miettinen et al., 2016; Tsujino et al., 2016; Austin et al., 2017) in addition to 

croplands and pastures in a lower proportion (Abood et al., 2015). The massive conversion of 

rainforest to oil palm, and the corresponding impacts to increasing carbon emissions and 

greenhouse gasses, have driven the attention to the need for applying sustainable practices of oil 

palm development. One such strategy is to promote oil palm expansion in already degraded land, 

which has a lower impact on carbon emissions (Garcia-Ulloa et al., 2012; Quezada et al., 2019). 

In Central and South America, 79% of oil palm development has replaced non-forested land and 

already disturbed land between 2001 and 2014 (Furumo and Aide, 2017). Progress has been 

made in understanding microclimate in E. guineensis oil palm plantations at different spatial and 

temporal scales (Roll et al., 2015; Meijide et al., 2017; Hardwick et al 2015), and plant-water 

relations in the context of irrigation (Carr, 2011; Culman et al., 2019; Dufrêne & Saugier, 1993; 

Radersma & de Ridder, 1996). However, the characteristics of oil palm crops in regions where 
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oil palm has replaced pastures, other crops, or grasslands, and the implications of this expansion 

on water availability and microclimate, have been less studied.  

The influence of microclimate on oil palm development has been studied to identify water 

irrigation requirements and optimal plant development (Dufrene et al., 1992; Carr, 2011; Corley 

and Tinker, 2003; Bayona-Rodriguez & Romero, 2016). Under a temperature threshold (case 

studies suggest temperatures between 32-36 ℃ (Carr, 2011)), oil palm stomata begin to close to 

avoid losses of water in the plant. However, temperature is highly correlated to vapor pressure 

deficit (VPD) (i.e., the difference between saturated vapor pressure and actual vapor pressure), 

which plays a dominant role in stomata openness (Corley and Thinker, 2003). As VPD increases, 

stomatal conductance also decreases (Carr, 2011; Culman et al., 2019; Dufrêne & Saugier, 

1993). This relationship implies that stomatal openness, which regulates water and gas 

exchanges, is limited by VPD, and VPD in turn varies as a function of temperature. Rivera-

Mendes et al. (2016) found that stomatal conductance, photosynthesis, and transpiration did not 

change significantly in oil palm less than 1-year old under different waterlogged conditions. In 

contrast, stomatal openness varies with plant age. Roll et al. (2015) evaluated plant stands in 2-

year old and 12-year old oil palms. They found that stand-level water conductance increased 

with stand age. Although the mechanisms of this process are reported to be unknown, an increase 

in stomatal openness has implications for local moisture conditions, evapotranspiration, and 

subsequently in the energy balance partition, which together contribute to oil palm plantation 

modification of the local microclimate. Annual transpiration estimates for oil palm in 1- and 12-

year old plantations were 64 ± 3 and 826 ± 34 mm, respectively (Meijide et al., 2017). Similar 

trends were obtained with evapotranspiration estimates using an ecohydrological model at the 

plot scale (Manoli et al., 2018). In this study, evapotranspiration ranged between 1000 to 1600 
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mmy-1 in young plantations and 1200 to 1800 mmy-1 in mature plantations (Manoli et al., 

2018). Each of these studies was performed in E. guineensis at the plant and plot scale in 

plantations located in Africa (Dufrene et al., 1992; Carr, 2011), America (Bayona-Rodriguez & 

Romero, 2016; Rivera-Mendes et al., 2016), and Asia (Roll et al., 2015; Meijide et al., 2017; 

Manoli et al., 2018). At the regional scale, studies have also contrasted the influence of canopy 

cover in regulating temperature in oil palm and compared it to different land covers (Ramdani et 

al., 2014; Sabajo et al., 2017). As concluded from Chapter 2, despite the progress in 

understanding the interactions between oil palm and microclimate, there are not enough studies 

to generalize diurnal and daily variability and thresholds of air temperature and VPD after which 

stomatal closure happens.  

Although the main oil palm species distributed in the tropics is the African Oil palm Elaeis 

guineensis Jacq, O×G interspecific hybrid, (i.e., a cross between African palm (E. guineensis) 

and the American palm (E. oleifera (Kunth) Cortés)), has gained popularity in the Neotropics 

due to its high tolerance for the bud-rot disease caused by Phytophthora palmivora and Fusarium 

wilt (Barcelos et al.,, 2015). In addition, the OxG hybrid is known for its slow vertical growth 

rate, which facilitates harvesting and prolongs the commercial cycle of the palm up to 40 years 

(Corley and Tinker, 2003). OxG is also known for high tolerance of environmental changes and 

extreme conditions (Barcelos et al 2015) and its high yield (Bayona-Rodriguez & Romero, 

2019). Some of these characteristics are retained from the E. oleifera Cortés. E. oleifera naturally 

grows on riverbanks, which makes it more tolerant of high water tables and high moisture 

conditions than E. guineensis. It has a growth rate of 5 to 10 cm y-1, reaching heights up to 

around 8 m, preserving the bunches at around 3 m height (Corley and Tinker, 2003). In contrast, 

African Oil Palm trees can grow up to 20 m, which causes replanting after 25-30 years when 
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palms become high enough that harvesting becomes unsustainable (Basiron, 2007). The 

differences among these palms suggest potential differences in microclimatic conditions, water, 

and energy partition in oil palm plantations. Physiological and agronomical properties of OxG 

hybrids were reported in Bayona-Rodriguez et al. (2016), who evaluated the OxG hydric 

potential under drought conditions, and Bayona-Rodriguez & Romero (2019), who explored the 

physiological responses (in leaf water potential, photosynthetic and transpiration rate, and 

photosynthetic water use efficiency), oil quality, and yield of six-year-old OxG hybrids under 

dry and rainy environmental conditions in Colombia. They found major drought tolerant in a 

group of oil palms that included OxG hybrid species. However, to our knowledge, the energy 

balance partition, and the relation of OxG hybrids to VPD and temperature have not been 

explicitly studied.  

Here we describe the implementation and data collection of microclimatic data at OxG 

Hybrid oil palm plantations to characterize daily variations in temperature, vapor pressure, 

radiation, and biophysical properties of oil palm crops. Using the variables measured between 

August 28th, 2019, and September 30th, 2020, we derive different components of the energy 

balance using the Bowen ratio method (explained by Shuttleworth (2011) and Monteith & 

Unsworth, (2013)) and describe the characteristics of the microclimate across three stations 

located 30 km apart in the Colombian lowlands. We proposed three research questions: How do 

microclimatic conditions in oil palm plantations vary through the dry and wet season during a 

year in northwestern Colombia? How can those differences be explained? What is the diurnal 

energy balance partition in plantations growing the E. Guineensis x E. Oleifera variety of oil 

palm? Knowing the microclimatic conditions that dominate the plantations will help us to 

understand the limiting factors in oil palm development and how those factors may be associated 
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with water use. This has implications for determining the thresholds of oil palm expansion from 

the biophysical perspective. The Bowen ratio method allows the estimation of evapotranspiration 

that can be used in a water balance to determine differences in water availability. 

Study area, data, and methods 

Study area  

The study area is located in Northwest Colombia, in the Uraba region close to the Pacific 

(West) and Atlantic (North) oceans and the border between Colombia and Panama (Figure 4.1). 

This region is characterized by average precipitation of 2,510 +- 938 mm y-1, based on the 

multiannual average cumulative precipitation of 17 National Weather Stations recorded between 

1977 and 2017 (National Institute of Hydrology, Meteorology and Environmental Studies of 

Colombia, IDEAM, (http://dhime.ideam.gov.co/atencionciudadano/)). Based on data between 

1979 and 2017 at the national agrometeorological station at Uniban, the average annual 

temperature in the region is 26.6 ± 0.3 ℃, and the average relative humidity is 84.3 ± 1.5 % 

(National ID: 12015020) (Figure 4.1). The long-term annual cycle of precipitation defines the 

rainfall regime as mixed in the central lowlands (i.e., a highly-defined dry season between 

December and March, a less dry season between August and September, and a wet season from 

April to July and from October to November) and unimodal close to the Northeast and the west 

and North coasts (i.e., a dry season from December to March and a wet season from April to 

November) (Urrea et al., 2019). According to the most recent Colombian official Land Use and 

Land Cover Map (2010-2012) (Instituto Geografico Agustin Codazzi, available in: 

https://www.datos.gov.co), the land is mostly dedicated to pastures and agriculture, especially 

bananas. Oil palm has been gradually introduced, mainly replacing pastureland across the low 
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elevation portions of the region. However, the area covered by oil palm plantations is not part of 

the official Land Use Land Cover product. 

In Uraba, the first oil palm plantations (E. guineensis) were cultivated in the 1960s (Martinez 

et al., 2014). However, a crop sanitary crisis constrained oil palm development due to the bud rot 

disease. In the last 12 years, the OxG hybrid has been planted, becoming the oil palm variety 

dominant in the region. Although oil palm plantations in this region are rainfed, they are 

designed to have a drainage system for excess runoff as it is specified for E. guineensis.  

 

 
Figure 4.1. Study area and location of the stations. A. Study area region divided by watersheds, Sucio 
River located to the South, Leon River watershed in the center, Bajo Atrato to the West, and Mulatos 
River to the North. Multiannual-monthly averages of temperature (B), multiannual-cumulative 
evaporation (C), multiannual-cumulative rainfall (D), and multiannual-monthly averages relative 
humidity (E). Square symbols represent the location of the national weather stations from IDEAM. The 
location of the microclimatic stations designed and implemented in this work (BA, LP, and SI) are shown 
on the map.   
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Station design and implementation 

Eddy covariance methods are typically used to measure microclimatic variables and derive 

the components of the energy balance (Monteith & Unsworth, 2013). However, their high cost 

and necessary maintenance make them challenging to implement and monitor. More affordable 

methods install fewer sensors in the vertical profile and have been implemented to identify 

microclimatic conditions in different land covers, including oil palm (Meijide et al., 2018), and 

implement a portable mobile station for rapid assessment of microclimatic conditions at different 

levels of forest disturbance (Villegas et al., 2017). We adapted the Villegas et al., (2017) design 

to implement the microclimatic stations in the Uraba region. 

We performed three fieldwork campaigns to explore the region, design, install, and define the 

monitoring protocols necessary to maintain the microclimatic stations. The process of contacting 

and obtaining access to the farms started in 2018 in communication with the local environmental 

agency, Corporación para el Desarrollo Sostenible del Urabá, CORPOURABA. A first visit to 

the region took place between February 12th and 14th, 2019, to get familiar with the study area. 

Before the visit, we established communication with the leading oil palm company at Uraba, 

called Bioplanta Palmera Para el Desarrollo, Universidad de Antioquia-Sede Tulenapa, and the 

precision agriculture company Sioma Eco Zomac S.A.S, Sioma, that operates in the region. As a 

result of this visit, we defined the monitoring sites and obtained access to the farms to install the 

stations. At the Universidad de Antioquia, we work with Prof. Javier Lopez Sanchez, Ing. 

Andres Garcia, and students Juan Cardona and Jhan Cuartas. The students participated as 

assistants in the project while developing their undergraduate theses. Sioma supported the 

installation and maintenance of the stations by providing logistical and technical support. The 

second fieldwork campaign was dedicated to installing the stations at each site. The third 

fieldwork campaign was dedicated to follow-up on the stations and maintenance protocols and to 
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take soil samples. The details of the installation of the stations and the sampling campaigns are 

described in the following paragraphs. 

Microclimatic stations were installed at three oil palm farms in oil palm canopy-dominated 

landscapes. The purpose of the stations was to measure microclimatic conditions and hourly 

energy balance. Each station was separated by around 30 km to account for different local 

environmental conditions. Station BA was located at 8°06’21.2’’ N and 76°40’38.9’’ W in the 

Sucio River watershed, in a plantation that was 6-years old at the time of installation. At station 

BA, oil palm heights were between 6.5 and 7 m. Station LP was located at 7°45’11.9’’ N 

and 76°39’53.8’’ W in the Leon River watershed, in an 11-year old plantation with palms 7 to 

7.2 m in height at the installation time. Finally, station SI was located at 7°19’54.8’’ N and 

76°43’2.2’’ W in the Mulatos River watershed, in a plantation that was 8 years old at the time of 

installation. At Station SI, palms were between 8 and 9 m in height. All heights were measured 

with a Nikon Forestry Pro II Laser from outside of each plot. In terms of previous land use land 

cover, BA and SI were at plantations that replaced pastureland, while LP was in a plantation that 

replaced bananas. At all the plantations the understory vegetation has naturally growth after oil 

palm was planted. 

The station setup consisted of four sensors located above the surface at each location at 2, 9, 

10.5, and 11 m in height. With this configuration, we aimed to record the conditions in the 

constant flow layer, just above the roughness layer, at the inertial layer, and at the canopy layer. 

The sensor over the canopy layer at the constant flow layer allows partitioning of the energy 

balance using the Bowen ratio method, while the sensors at 2 m allow identification of the times 

at which the lapse rate starts and stops, and vertical microclimatic profiling. The top, located 11 

m above the ground (Figure 4.2), was an Arable Mark I multisensor that performs physical and 
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biological observations (https://www.arable.com/). The device measures 4-component radiation 

(i.e., 2-shortwave, one upwelling and one downwelling, and 2-longwave, one upwelling, and one 

downwelling radiation), reflected radiation in 7 spectral bands (bands distributed between 440 

and 960 nm) that covers a surface circular region under the sensor with a diameter two times the 

maximum height (22 m) (the distribution of bands can be found in the supplemental material). At 

each spectral band, the sensor measures the upwelling and downwelling reflectance. This means 

that the sensor reports two reflectance values for each band (to see the band range see appendix 

C. Table C.1). The Arable Mark I device also measures air temperature, relative humidity, and 

barometric pressure. In the vertical profile, three multisensor Kestrel 5500 instruments 

(https://kestrelinstruments.com/) were located at 10.5, 9, and 2 m. These devices are equipped 

with temperature, pressure, relative humidity, wind direction, and wind speed sensors. The 

locations of the sensors were designed to measure both above and under the canopy. Eight 

sensors arranged in four pairs of soil temperature (200 TS sensors) and soil matric potential 

(Granular Matrix Watermark -200 SS- sensors) were installed under the ground at 0.1, 0.2, 0.35, 

and 0.6 m depth. (https://www.irrometer.com/). We choose these depths to account for the area 

where the root activity develops and where the primary ground heat flux is expected to occur. At 

each depth, the temperature sensor was placed 0.1 m apart from a soil water potential sensor 

(Figure 4.2). The 4-pair sensor arrangement at each station was connected to an Irrometer 900M 

Monitor Datalogger (https://www.irrometer.com/). Soil sensors were installed during the wet 

season when the soils were in saturated conditions. Due to sensor conditioning, the first month of 

readings was discarded. Prior to installation, soil matric potential sensors were submerged in 

clean water for 24 h, after that they were rubbed against the soil at their location’s depth. 
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The stations were installed in mid-August 2019. To use the same period of analysis for the 

three stations, we selected the period of analysis August 24th, 2019, to September 30th, 2020. 

Data storage and temporal resolution varied according to each type of device. The temporal 

resolution of the Arable Mark is 1-hour, and data is transmitted using the cellular network and 

retrieved remotely from Amazon cloud servers. Kestrel 5500 and Irrometer 900M sensors store 

data locally. The Kestrel stored data at 1-hour resolution during the first six months. After that 

time, data frequency was updated to 20 min resolution. Irrometers were set to a 15 min resolution 

to allow more quality control and higher temporal resolution. After data filtering and quality 

control, we aggregate all data to a 1-hour resolution for further analysis (Table 4.1). Due to 

sensor malfunction, the Arable Mark I at station BA was replaced on August 21, 2020 with a 

new version of the device, Arable Mark II. This version of the device does not measure 

longwave downwelling radiation. However, we estimated longwave downwelling radiation using 

the method described by Dong (1992), following the recommendation of Arable Labs company. 

To verify the accuracy of these longwave downwelling estimates for the region, we verified them 

with longwave downwelling radiation data previously collected in the three stations using the 

variance, ANOVA, and non-parametric Wilcoxon analysis test. Maintenance for each station was 

performed once a month in close collaboration with students at the local university, Universidad 

de Antioquia - Sede Tulenapa, and the company Sioma.  

At each station, soil samples were collected to identify soil texture profiles in the area where 

the soil sensors were installed. In addition, we determined soil texture by hand in the field. 

During the installation of the sensors, we measured percentage of Soil Water Content (SWC) and 

bulk density using Decagon GS3 probes and the portable handheld ProCheck reader at each 

depth. We took core soil samples with a core cylinder (37.7 cm3) at each depth. The samples 



90 
 

were taken to the soil laboratory at Universidad de Antioquia - Sede Tulenapa to measure soil 

porosity. We weighed each sample, dried it in an oven at 105 ℃ for 24 hours and weighed the 

dry soil. After drying the soils, we weighed a portion of the soils, added 15 ml of water to the 

tube test (Vw), measured 15 ml of the soils (Vs) in another tube test, and finally add the water to 

the soils tube test until the pores were filled. We read volume displaced by the soils (Vd). 

Porosity was calculated as n = (Vw + Vs - Vd)/Vd.     

 
 

 
Figure 4.2. Station design and implementation. 1. Schematic of each station setup. The sensors in the 
vertical profile were installed oriented to the North. The distance between soil sensors and the main pole 
varied across stations based on conditions in the field. 2. Photo of upper part BA station. 3. Photo of soil 
station at SI. Sensors were arranged in a line and tagged.  

Methods of analysis 

Data preprocessing and filtering   

Data collected by the sensors during maintenance were filtered out of the dataset. 

Additionally, data filtering was performed during the preparation for data analysis. Flag codes 

were designed to identify data out of range (10), outlier values (11), sensor failure (12), and 

uncalibrated sensor (13). Data out of range means that it reported data out of the measurable 
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range of the device. For most variables, a value was considered an outlier if it was out of the 

99.9% confidence interval at the time and season for each station. For the net radiation 

components, the confidence interval was 90%. This was decided after detecting unrealistic 

values of net radiation lower than 100 W/m2 at noon. Data out of the measurable range was 

detected in soil matric potential and soil temperature data. Outliers were mainly identified in the 

sensors in the atmosphere. We detected that Kestrel’s wind direction appeared uncalibrated on a 

few occasions. We therefore chose to not use wind speed in such cases, but rather used the 

uncalibrated code to flag wind speed and wind direction. In the case of surface reflectance from 

the 7-band spectrometer (7 upwelling bands and 7 downwelling downwelling), only daily data 

(measured continuously from 7:00 - 18:00) were considered for the analysis at 1-hour resolution 

since the bands are in the visible spectrum. Spectral reflectance was considered in the 0 to 1 

range. The reflectance, ⍴SR, at each band i, was calculated as the ratio between the spectrometer 

band upwelling (sbup) and the spectrometer band downwelling (sbup): 

⍴SR = sbup/sbdw (1) 
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Table 4.1. Summary of data used for the analysis, collected at each station by Kestrel and Arable multi-sensors by the hour for each variable from 
August 24th, 2019, to September 30th, 2020. Numbers correspond to raw data except for surface reflectance, which was calculated based on the 
spectrometer upwelling and downwelling bands (Eq 1).  The number of surface reflectance records likely varies across bands due to an additional 
filter of the spectrometer band provided by Arable Labs when the sensor tilts, prior to calculating surface reflectance. Spectral range for each band 
can be found at appendix C Table C.1) 

Station 
Height 
(m) 

Wind 
speed & 
direction 

Relative 
Humidit
y 

Air 
Temperatu
re 

Pressure 
Radiation 
(4-components) 

Surface Reflectance 

Band 
1 

Band 
2 

Band 
3 

Band 
4 

Band 
5 

Band 
6 

Band 
7 

BA 

2 7,737 8,450 8,450 8,450 - - - - - - - - 

9 7,383 7,443 7,443 7,443 - - - - - - - - 

10.5 5,455 7,142 7,142 7,142 - - - - - - - - 

11 - 5,574 5,574 5,582 5,582 3,628 5,577 5,579 3,265 5,572 5,553 5,572 

LP 

2 9,646 9,646 9,646 9,646 - - - - - - - - 

9 9,032 9,033 9,033 9,033 - - - - - - - - 

10.5 8,533 8,639 8,639 8,639 - - - - - - - - 

11 - 5,896 5,896 5,896 5,896 3,342 5,891 5,891 3,169 5,889 5,673 3,310 

SI 

2 7,192 7,202 7,202 7,202 - - - - - - - - 

9 7,874 7,874 7,874 7,874 - - - - - - - - 

10.5 6,091 6,850 6,850 6,850 - - - - - - - - 

11 - 8,016 8,016  8,016 8,016 4,192 7,607 8,014 4,148 7,202 6,788 7,533 
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Surface reflectance out of the 0 to 1 range were flagged and excluded from further analysis 

but counted as data collected and were included in the final dataset (Table 4.1). We experienced 

several sensor issues during the monitoring campaign. At the beginning of the monitoring on 

September 12, 2019, the Arable Mark I installed at LP exploded. This caused loss of data at that 

station until mid-November 2019. After three months of operation a sensor drift was observed in 

the relative humidity sensor of the Kestrel device. Similarly, despite using silica gel to avoid 

condensation inside the data logger box, they appeared wet during the wet season in 2020. 

Sensor drift was also observed in the deepest matric soil potential and soil temperature sensors 

during the wet season 2020. We did not attempt to apply a drift correction to the data, instead, 

we filtered this data out of the analysis. A database structure was designed to store all the data 

collected by the sensors (see appendix C. Figure C.1). In addition, we created a programming 

class module in python to calculate all the components of the energy balance available in a 

bitbucket repository (https://bitbucket.org/) and at the supplemental information. 

Microclimatic and vegetation conditions  

To analyze daily microclimatic conditions among sites, we used air temperature, relative 

humidity, and radiation collected at the top of the canopy during the wet and the dry seasons. Air 

temperature and relative humidity were used to estimate vapor pressure deficit, VPD, and 

radiation components were used to obtain net radiation (NR) and albedo. Albedo, ɑi, was 

obtained using shortwave upwelling radiation, SWupi, and shortwave downwelling radiation, 

SWdwi, at each hour i:  

ɑi = - 1 × (SWupi / SWdwi) (2) 

We estimated VPD as the difference between water vapor pressure and saturated vapor 

pressure using Arable Mark I and II records. At each site, we also explored the vertical profiles 



 

94 
 

of air temperature, wind speed, and direction for the entire period. Given that the Kestrel relative 

humidity sensor failed within the first three months of operation, we built the VPD vertical 

profile at each station only for that period of data.  

We calculated the saturated vapor pressure at each height (i.e., maximum pressure of the air 

when saturated) using the method described by Buck (1981), who offers an enhanced correction 

for temperatures ranging between -80 and 50 ℃. Saturated vapor pressure, at a time i, is 

provided by esi,  

esi= 6.1121 * e^((18.678 - Tairi / 234.5) * Tairi / (257.14 +Tairi)) (3) 

where esi is expressed in hPa, and Tairi refers to air temperature in ℃ at the time i. 

Then we calculated the actual water vapor pressure at the time i, ea, at each height as a 

function of relative humidity rhi, as a fraction, and saturated vapor pressure esi, 

eai=rhi × esi   (4) 

Finally, VPD at each height and time i was estimated as:  

VPDi = eai - esi  (5) 

The Normalized Difference Vegetation Index, NDVI, (Huete et al., 2002) was calculated 

using the bands 4 (620-690 nm Red) and 6 (780-900 nm Near-Infrared, NIR) at each hour during 

the day using the expression:  

NDVIi = (NIRi - Redi) / (NIRi + Redi) (6) 

NDVI was used as an indicator of photosynthetic activity. Gamon et al. (1995) tested NDVI 

at various land covers and identified NDVI as a good indicator of photosynthetic activity during 

the Spring for evergreen perennial conditions. Given that the conditions of temperature in the 

study area are similar during the year, we decided to use NDVI as an indicator for photosynthetic 

activity. Given the high canopy cover at each station, we expected high NDVI during the day.  
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We used a unimodal rainfall regime to group the data into wet and dry periods and analyze 

differences among the sites, using December to March as the dry period and April to November 

as the wet period. To test the differences among the sites, we performed the non-parametric 

Wilcoxon test implemented in the Python SciPy package stats. We compared air temperature, net 

radiation, albedo, and VPD among the stations. To identify potential conditions of temperature 

inversion, vertical air temperature gradients between the air temperature at the top of the canopy 

and under the canopy at each hour were calculated at each station.   

Energy balance   

The energy balance partition was approached using the Bowen ratio/energy budget method. 

This partition accounts for the energy distribution and storage on the surface. The Bowen ratio is 

the relation between the sensible heat, H, and the latent heat, λE, fluxes. It relies on the fact that 

the available energy, A, at any point is the sum of H and λE. (Shuttleworth, 2011).  

A= H + λE = Rn - G    (7) 

Where Rn is net radiation and G is ground energy flux. The Bowen ratio method also 

assumes neutral stability, i.e., turbulent exchanges of water and heat are similar to each other 

(Monteith & Unsworth, 2013). Neutral stability implies that the change in temperature with 

height is equivalent to the adiabatic lapse rate (Shuttleworth, 2011). Since thermal stability is 

directly related to virtual potential temperature, i.e., temperature without the effect in water 

vapor content changes (equation 13), the rate of sensible heat between two heights is 

proportional to the atmospheric heat content and the Bowen ratio, at each time i, can be 

expressed by equation (8):   

βi=Hi/λEi = γθv/Δeai   (8) 
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Where θv is the potential virtual temperature, γ, is the psychrometric constant (i.e., Specific 

heat of the air at constant pressure). Using equations (7) and (8), energy fluxes can be expressed 

as  

λE = A / (1 + β)  (9) 

H = β × λE  (10) 

The Bowen ratio becomes indeterminate when Rn-G tends to 0, making it difficult to apply at 

night or when net radiation is small. To apply the energy balance equation, we used data 

collected during the wet period 2019 (October and November) to avoid using soil matric 

potential values before soil sensors were conditioned in the field. Given the relative humidity 

sensor failure in the Kestrel devices, we did not apply the energy balance to dry and wet periods. 

Rather, we proposed an estimate for average day energy partition using the hourly data available. 

To calculate the Bowen ratio, we used relative humidity and temperature measurements for the 

top sensors over the canopy layer. To apply equation (8), we first calculated the proportion of 

water vapor in the moist air, known as specific humidity, by estimating the mixing ratio at each 

time i, i.e., the ratio of the mass of water vapor to the mass of dry air in the moist air sample. 

Since water vapor is considerably lighter than dry air, specific humidity is considered equivalent 

to mixing ratio (Shuttleworth, 2011):  

q=eai(Rd/Rv)/[⍴ - ei[1-(Rd/Rv)]] (11) 

where Rd is the gas constant of dry air (287.1 J/(kg·K)), Rv is the gas constant for water 

vapor (461.5 J/(kg·K), ⍴ is the total pressure [KPa] (i.e., barometric pressure). Simplifying the 

expression, equation (11) can be written as:  

qi = ri = 0.622*eai/⍴i (12) 
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Using q, and the fact that virtual temperature can be expressed as Tairi × (1 + 0.61 × q), θvi at 

each time can be estimated as  

𝜃vi = Tairi × (1 + 0.61 × qi)×(100/⍴i)^(Ra/Cp) (13) 

where Cp is the specific heat of humid air 1,013 [J kg-1 °K-1]. 

Soil heat depends on the exposure of the soils to solar radiation and its radiative properties. 

To calculate G, we used the gradient method, in which G is a direct application of Fourier’s law 

for heat conduction. The gradient method states the ground flux is a function of the thermal 

conductivity and the changes in temperature  

Gi = 𝜆si * (ΔTsoili /Δzi)         (14) 
Where λs is the thermal conductivity, and (ΔTsoil /Δz) is the vertical temperature gradient 

between z depths. The gradient method is relatively easy to apply, and its implementation does 

not require expensive equipment. However, the complexity relies on estimating λs, which can be 

highly variable spatially and temporally. Thermal conductivity varies considerably as a function 

of moisture content and temperature. The effect of the water content is due to the larger 

difference between the air and water thermal conduction, and the differences that latent heat 

transport produces in different media. We followed the implementation of Peng et al (2017) to 

estimate λs:  

𝜆s = 𝜆dry + exp(Qfsh -  SWC-Cfsh) (15) 

where λdry is the thermal conductivity of the dry soils (Wm-1K-1), SWC is soil water content, 

Cfsh and Qfsh are shape factors associated with clay fraction, fc, and quartz fraction, fq, and bulk 

density, ⍴b, respectively: 

𝜆dry = -0.56n + 0.51         (16)   

Cfsh = 0.67fc + 0.24        (17)   
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Qfsh =1.97fq + 1,87⍴b - 1.36fq ⍴b - 0.95       (18)   

This method uses the fractions of sand and clay, as well as porosity and bulk density. Due to 

restrictions on access to the soil laboratory due to COVID-19, soil samples could not be analyzed 

during 2020. However, during the sampling campaigns we analyzed soil texture manually. With 

that information, we used a general soil texture classification between clay and silt, which are the 

dominant texture features at each station, and iterated 𝜆s within 200 randomly generated values 

of each main texture group (i.e., sand and clay) (Table 4.2). Given that the Watermark sensor at 

0.65 m presented more data errors than the sensors at 0.1, 0.2, and 0.35, we used only 0.1, 0.2 

and 0.35 depths to calculate ground energy.   

 

Table 4.2. Properties of soils in the installation campaign. Texture description was obtained on-site, 
quantitative measurements taken could not be analyzed for texture due to access restrictions to the 
laboratories in 2020. 

Station 
Texture 
Description 

Depth 
(m) 

Bulk 
density 
(g/cm3) 

Initial soil 
water 
content (%) 

Porosity 

BA Clay-Silt 

0.1 0.489 48.7 0.30 

0.2 0.344 47.1 0.43 

0.35 0.304 39.9 0.30 

0.65 0.279 42.4 0.25 

LP Clay-Silt 

0.1 0.268 49.7 0.25 

0.2 0.353 51.7 0.30 

0.35 0.317 53.2 0.43 

0.65 0.22 50.7 0.30 

SI Silt-Clay 

0.1 0.217 53.0 0.30 

0.2 0.237 49.0 0.36 

0.35 0.138 54.0 0.30 

0.65 0.204 48.3 0.20 
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Use of additional information and comparison with eddy covariance data in the neotropics  

To evaluate the general hydroclimatic conditions of the region we used the available data 

from IDEAM. This consisted of 18 stations, 17 with rainfall data from 1977 to 2017, and one 

meteorological station (Uniban) with air temperature, hours of sun, relative humidity, 

evaporation, and rainfall from 1979 to 2017 (figure 4.1). From Uniban station, we were able to 

obtain relative humidity data between 2019 and 2020. None of the stations is located in an oil 

palm plantation. 

Results  

Microclimatic and environmental conditions across stations and seasons 

Average values of air temperature, VPD, NDVI, albedo, soil temperature (average 

temperature 26 ± 1 °C) and soil water content (average 40 - 50 %) did not show differences when 

compared among the stations (Table 4.3). Each station had an average temperature of 28 °C 

during the period of analysis, which is around 1 °C higher than the maximum multiannual 

average (26.6 ± 3 °C) for the region. Although not significantly different, average VPD was 

slightly higher during the dry season at SI (1.25 ± 0.46 kPa) than during the wet season (0.89 ± 

0.48 kPa). This accounts for differences between 0.38 kPa in the lower bound and 0.34 kPa in 

the upper bound. Average relative humidity was also similar across the stations and seasons 

(0.78 ± 0.09), and generally lower than the average for the same period found at Uniban 

meteorological station (0.86 ± 0.10). None of the mean albedo values across the stations and 

seasons varied significantly (Table 4.3).    

Soil samples showed that the characteristics of the soils across sites are similar in terms of 

porosity and texture (identified qualitatively in the field) (Table 4.2). Bulk density, however, was 

higher at BA across all depths compared to LP and SI. In all the stations bulk density was lower 
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in the deep layer of soil than in the top layer. At the moment of installing the stations all soils 

had soil water content (measured as volumetric water content) higher than 40%. At all stations, 

porosity values were lower (between 0.2 and 0.3) at 0.1 and 0.65 m and higher in the 

intermediate layers.   

When looking at the variations of NDVI during the day we found similarities in NDVI at BA 

(0.81 ± 0.04 for the dry season and 0.86 ± 0.02 for the wet season) and LP (0.86 ± 0.01 for the 

dry season and 0.84 ± 0.02 for the wet season), but hourly values of NDVI were lower at SI 

(0.74 ± 0.13 for the dry season and 0.75 ± 0.07 for the wet season). At each plantation, NDVI 

peaked between 12:00 and 14:00 (Figure 4.4), which is consistent with the hours of maximum 

net radiation (Figure 4.5). Although NDVI was mostly the same across seasons, mean NDVI at 

BA was lower at each time interval during the dry season compared to the wet season. NDVI 

variation is higher at the beginning and the end of the day, similarly, with albedo. 

We found differences in daily variation of air temperature and VPD across the stations and 

seasons. Surprisingly, during the diurnal hours of maximum temperature (at 15:00), air 

temperature at the top of the canopy in BA was lower (28.5 ± 0.7 °C) during the dry season than 

during the wet season (30.0 ± 1.8 °C). At LP and SI, maximum mean diurnal temperature did not 

differ among seasons (29.5 ± 1.1 and 29.39 ± 1.5 for LP and 29.6 ± 1.1 and 29.4 ± 1.5 for SI). In 

contrast, we found differences in VPD at the hours of maximum VPD across seasons and 

between the stations in the North and the South. Maximum VPD typically occurred between 

14:00 and 15:00 at each station and season. Maximum hourly VPD at BA (1.27 ± 0.41 kPa) was 

higher during the wet than during the dry season (0.95 ± 0.21 kPa). The opposite was true for SI, 

where VPD was higher in the dry season (1.6 ± 0.38 kPa) than in the wet season (1.25 ± 0.44 

kPa). In addition, VPD had more variability within each hour during the season at SI than at BA 
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(Figure 4.3).  However, during the dry season at BA mean VPD values were similar during the 

day. Hourly average values for each station, variable and season are shown in the supplemental 

material Table C.8 to C.14.  

 
Table 4.3. Average meteorological and vegetation parameters at each station and season. Values were 
average during the daily hours (7:00 to 18:00) 

Variable 
Station BA LP SI 

Season Dry Wet Dry Wet Dry Wet 

Air 
Temperatu
re (C ) 

n 1,092  1,397  753  1,908  1,308  2,291  

Mean 28.04  28.48  28.55  28.40  28.65  28.10  

STD   1.06    2.03    1.52    1.91    1.79    2.08  

Vapor 
Pressure 
Deficit 
(kPa) 

n 1,089  1,395     751  1,907  1,305  2,286  

Mean   0.85    0.91    0.90    0.88    1.25    0.89  

STD   0.26    0.43    0.35    0.41    0.46    0.48  

Relative 
humidity 

n 1,095  1,401     754  1,911  1,310  2,292  

Mean   0.78    0.78    0.78    0.78    0.69    0.78  

STD   0.06    0.08    0.07    0.08    0.09    0.10  

NDVI 

n 1,114  1,428     773  1,940  1,338  2,329  

Mean   0.79    0.83    0.82    0.82    0.75    0.74  

STD   0.08    0.09    0.08    0.11    0.07    0.13  

Albedo 

n 1,081  1,395     751  1,891  1,304  2,265  

Mean   0.08    0.09    0.06    0.12    0.09    0.09  

STD   0.06    0.07    0.03    0.10    0.05    0.08  
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Figure 4.3. Diurnal variation of air temperature (°C) (left) and vapor pressure deficit, VPD (kPa) (right). 
Colors differentiate each hour. Error bars corresponding to the 10 to 90% confidence interval.  
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Figure 4.4. Diurnal variation of albedo and NDVI among the three stations during the dry and wet season. 
A) Average albedo for the three stations at the dry season (left) and the wet season (right). B) NDVI at the 
dry season (left) and the wet season (right) at stations BA (top), LP (middle), and SI (bottom). 
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Figure 4.5. Diurnal variation in net radiation (Wm-2) for each station (rows) and season (columns). 

Vertical profiles at each station  

Wind speed measurements were higher during the dry than the wet season at all the stations 

(Figure 4.6). At station BA, wind speed at the top of the canopy was higher than in the other 

stations, reaching values up to 7.9 mps during the wet season and up to 5.5 mps during the dry 

season. In terms of wind direction, we found a consistent direction of the wind coming from the 

Andes cordillera at each station during the dry season. However, during the wet season, wind 

direction was from the Pacific in the west.  
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At the three stations we found thermal inversion (i.e., temperature in the upper level is higher 

than the lower level) at different times at each station depending on the season. Thus, long 

periods of neutral stability conditions occurred during the dry season from 10:00 to 18:00 at BA, 

12:00 to 18:00 at LP, and 10:00 to 17:00 at SI. During the wet season neutral stability occurred 

from 9:00 to 17:00 at BA, 12:00 to 16:00 at LP, and 13:00 to 17:00 at SI.   

 

 
Figure 4.6. Wind speed profile and wind direction. 1) Wind speed profile at each station and season. 2)  
Wind direction at the top sensor. 
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Figure 4.7. Temperature profile at each station in the three Kestrel sensors. Temperature profile at each 
height and station. Colors represent the different hours. Each height has the daily variation of temperature 
at each hour. 
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Figure 4.8. Beginning and end of lapse rate during the wet and dry season at each station.  

 

Energy balance partition in oil palm plantations 

Latent heat flux was higher than sensible and ground heat, and it constituted the dominant 

flux in the energy balance partition (75% of net radiation in BA and 77% in LP and SI). Sensible 

heat was slightly higher in BA than LP and SI (18% of net radiation in BA, 17% in LP and SI). 

Median, maximum, and minimum ground heat fluxes did not vary significantly at each station or 
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between stations (between 5% and 6% of net radiation). Maximum ground heat fluxes varied 

between 0 and 15 Wm-2. Since G values had very little variation, we focus these results on the 

energy balance partition obtained with the G median. Latent heat reached its maximum at 12:00 

in all three stations. Sensible heat, H, reached its maximum at 9:00 in BA and 12:00 for LP and 

SI. In all the stations, H remained almost the same from 9:00 to 14:00, when it started to decline. 

We discarded the periods of thermal inversion from the analysis because they do not follow the 

Bowen ratio assumptions of neutral stability (Figure 4.9). Bowen ratio did not vary significantly 

across the stations (0.26± 0.07 at BA, 0.25 ± 0.10 at LP, and 0.25 ± 0.10 at SI). 

 

 
Figure 4.9. Energy balance partition at each station between October and November 2019 (wet season). 
Dashed line marks 0 Wm-2. Shaded areas represent the distribution of the values at the same time (100% 
of the data is included). 

 

Discussion  

Variation of microclimatic conditions across the stations  

Although average seasonal values of albedo, NDVI, air temperature, and VPD were similar 

across the stations and the seasons, variations were observed in the diurnal cycle across stations. 

VPD and temperature decreased during the dry season at two stations (BA and LP) while 

increased in the wet season. Especially at BA, wind speed was greater there than in the other two 

stations. Wind direction trends indicated the preferential path of the wind traveling from the 
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Andes cordillera West branch, which is located east of the study area. Lower VPD in the North 

compared to the South of the study area in the dry season may be due to more readily available 

sources of moisture. In west Colombia, local moisture recycling, the water coming from 

evapotranspiration in the same area where precipitation occurs, was identified at a regional scale 

by Hoyos et al., (2018). Specifically, they showed water vapor flux traveling from East to West 

between January and May.  

The effect of moisture over the dry season can also be hypothesized based on the slightly 

lower temperatures during the dry season compared to the wet season observed in our dataset. 

This difference suggests a cooling effect of the winds during the dry vs. the wet season. The 

preferential path from the Andes cordillera might indicate that the forest cover located in that 

part of the Andes plays a role in driving moisture to the lowlands. However, the data collected in 

this work cannot test that hypothesis, nor was that the purpose of our study. We also observed a 

change of direction of the winds between the dry and the wet seasons. During the wet season, 

winds blew from the Pacific (Figure 4.6). This is likely due to the Choco low-level westerly jet, 

which contributes to moisture advection coming from the Pacific Ocean and produces high 

precipitation in western Colombia (Poveda and Mesa, 2000). 

NDVI values were greater than 0.7 across the stations, which was expected given the canopy-

dominated characteristics at each station and oil palm age. The similarities in NDVI values can 

be attributed to the degree of canopy cover: typically, OxG Hybrid covers the canopy after 

reaching 5-years old (Oscar Castillo, personal communication). Typically, NDVI can be used as 

an indicator of plant growth. However, when we compared NDVI values from each station, we 

did not find a strong relation between NDVI and age that would suggest a trend as a function of 

plant age. This is due to similarities in the canopy cover at all three plantations that cause 
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spectral saturation in NDVI (Chong et al., 2017). However, NDVI was lower at SI than LP and 

BA. This observation coincides with high temperature, and VPD observed at the same SI station, 

higher than the stations in the North, especially during the dry season. High VPD may inhibit 

stomatal conductance. Extreme values in albedo and NDVI during the first hours in the morning 

and after 16:00 are explained by the downwelling shortwave radiation decrease in the case of 

albedo; and by the saturation on the red band in case of the vegetation indices and the sun 

declination. 

Literature on water limitation for E. guineensis suggests stomatal conductance decreases 

exponentially when VPD ranges between 1.0 and 4.5 kPa in well-watered soils (Dufrene and 

Saugier, 1993), although Henson (1995) found this range to be between 0.8 and 2.0 kPa. In a 

plot-scale study in an E. guineensis plantation in Brazil, VPD was a limiting factor for stomatal 

conductance, affecting plant transpiration in oil palm plantations (Brum, et al 2021). Although 

previous studies have suggested that stomatal conductance is affected by soil moisture and VPD 

(Carr, 2011; Culman et al., 2019; Dufrêne & Saugier, 1993), Brum et al. (2021) found VPD has a 

dominant role, especially under humid conditions. Zhang et al. (2016) found VPD is a strong 

indicator of light use efficiency in evergreen forest vegetation, showing that VPD is dominant 

over soil water content in determining plant stress conditions. We did not find previous studies 

that reported decreased stomatal conductance due to higher VPD as a limiting factor in OxG 

Hybrid. Though not specifically focused on oil palm, other studies have also found that higher 

VPD is associated with decreased vegetation productivity. In a global study (Yuan et al., 2019), 

multiannual changes in VPD were analyzed with changes in vegetation productivity using NDVI 

and other vegetative metrics. They found the influence of VPD in limiting vegetation growth 

changes at large temporal and spatial scales. We recognize the potential impact of NDVI 
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saturation due to canopy closure in all three sites. Nevertheless, we do not discard the effect of 

VPD in the reduction of NDVI.  

Another interesting feature of the microclimatic conditions we observed is the change in the 

start hours of the lapse rate. Since lapse rate happens under neutral stability, high energy flux 

exchange would be expected during that time range. In fact, relative to the energy balance 

partition, we found that the dominant energy flux, latent heat, happened between the lapse rate 

start and end times, resulting from favorable conditions for gas exchange. Moreover, we 

identified a dominant effect of latent heat over sensible heat in the three stations (Figure 4.9), 

similar to what has been reported at other plantations in Indonesia (Meijide et al., 2017). In 

Indonesia, in a 12-year-old oil palm plantation, the mean maximum values of H were 12% and 

78% for λE, respectively, which coincide with our results at BA (11-year old) and SI (8-year 

old). High λE rates are related to high transpiration rates. Our findings imply that high 

transpiration rates are expected during the rainy season. This aligns to what was found in an 

analysis of the physiological responses of oil palm species, including OxG hybrid, to 

environmental variables (Bayona-Rodriguez & Romero, 2019).  

In a study in Indonesia Bowen ratio for a 12-year-old E. guineensis was found to be 0.14 ± 

0.09 during a dry year (March 2014 to May 2015) (Meijide et al., 2017). These values are lower 

than the values found in our study (0.27± 0.08 at BA, 0.25 ± 0.12 at LP, and 0.26 ± 0.12 at SI). 

However, net radiation was lower in Uraba than in Indonesia, which compensates for the 

difference in Bowen ratio and suggests H/λE were almost the same. Our results were obtained 

for a wet season which potentially represents a contrasting scenario respect the study in 

Indonesia. Therefore, a closer look at soil moisture conditions and method uncertainties would 

need to be considered to make a strong conclusion. This is particularly important since our 
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method follows a different approach from the eddy covariance techniques used in Meijide et al. 

(2017). Our Bowen ratio was calculated between the top sensor (11 m) and the under-canopy 

sensor (2 m). This setup implies that the partition of the energy balance considers all the canopy 

as the column to transfer latent and sensible heat. This consideration can be an additional factor 

when comparing the differences between OxG Hybrid and E. guineensis results. Based on these 

results, we believe that more studies under different soil conditions are needed to draw firm 

conclusions and to identify the age at which each oil palm species reaches higher λE.  

Limitations  

Our analysis of the energy balance partition was limited to daytime hours, as our station 

instrumentation, especially the 7-band spectrometer, and our application of the Bowen ratio 

method are only valid during the daytime.  

We are suggesting NDVI as indicator of photosynthetic activity. However, this index also 

identify characteristics associated with plant health status, which implies that local plant health 

can impact the plant's response to light absorption. The estimates of G are another source of 

uncertainty in the energy balance partition. Although the gradient heat method is a simple 

technique to estimate G, it requires precision in identifying the textural properties of soil. 

Fortunately, we did not detect high ranges of G under several combinations of soil texture 

fractions. However, since the sensors measure soil matric potential, the conversion to soil water 

content using average values can constitute an additional source of uncertainty. We believe the 

use of drift correction methods can help to include more of the flagged data into the estimates, 

thereby reducing some of these uncertainties. Given the relative humidity sensor failure in all the 

Kestrel devices, we could only estimate energy fluxes during the wet season. This restricted the 

analysis to the wet season in which the environmental conditions across the stations are more 
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similar. In addition, at LP average Bowen ratio was estimated with less data than the other two 

stations because of Arable Mark I failure during the first months. This might explain the higher 

variability in the results. 

Conclusions  

In this work, we present an analysis of the microclimatic conditions in three canopy-covered 

OxG hybrid plantations in Northern Colombia. We collected a series of microclimatic variables 

to partition the energy balance at each plantation using the Bowen ratio method. In addition to 

identifying the energy balance partition, we analyzed the microclimatic conditions in the region. 

We found the average Bowen ratio at the three plantations was around 0.25, which was similar to 

the one reported in E. guineensis plantations in Indonesia by Meijide et al., (2017) when net 

radiation in both studies is considered.  By characterizing the microclimatic conditions, we found 

that average VPD, air temperature, and vegetation indices do not change across the stations 

seasonally. However, we found variations in temperature, vapor pressure deficit (VPD), and 

wind speed and direction at hourly temporal scale, especially during the dry season. The 

northernmost plantation experienced less VPD, and slightly lower temperatures compared to the 

station in the North. We also detected lower NDVI in the South, potentially associated with 

higher VPD during the dry season. Most of the year, soil moisture conditions corresponded to 

well-watered soils, with decreasing soil moisture during the dry season.  

As discussed in Chapter 3 of this dissertation there are gaps in the understanding of the 

ecohydrology of oil palm. These gaps specifically relate to oil palm expansion in land covers 

other than forest, in different species, and in the Neotropics. Such knowledge gaps constrain 

informed decision-making in oil palm expansion and sustainable practices that minimize 
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environmental impacts in different types of landscapes. Chapter 4 contributes to minimizing the 

gaps mentioned above in the following ways:  

1 To our knowledge, this is the first study in OxG hybrid analyzing microclimate and the 

energy balance partition. The data collected will advance understanding of water use 

efficiency and evapotranspiration in OxG hybrid, which, combined with existing studies, will 

enhance understanding of oil palm water-related requirements on a regional and global scale.  

Our dataset can be used in ecohydrological and earth system models to verify oil palm 

energy balance partition outputs and related them to evapotranspiration rates. 

Ecohydrological models have been used in Indonesia to contrast forest transition to oil palm 

using the data collected by Meijide et al., (2017). (Manoli et al., 2018; Fan et al., 2019). Our 

dataset can be implemented in a model following a similar configuration parametrization. 

The fact that we collected data at three sites offers the potential to model at a regional scale 

and verify temporally and spatially. 

2 We contribute to the literature by offering a data set with a unique temporal length that 

allows the comparison of microclimatic conditions across seasons. The dataset produced for 

this study contains data representative of the rainy and dry seasons. Complexities and budget 

constraints of this type of research typically make it challenging to produce long-term data 

sets such as this one. Reflecting this reality, existing studies typically have shorter periods of 

data collection (days and months) (Roll et al., 2015; Meijide et al., 2017; Niu et al., 2015) 

than our study.  

3 This work is the first of its nature in the Uraba region and thereby offers essential 

information for development in one of the leading agricultural regions in Colombia. 

Specifically, the data we have collected may inform applications that improve future 
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agricultural practices that minimize adverse environmental impacts or increase long-term 

sustainable use of resources. Our work, therefore, has potential for multiple regional 

applications as well. 

4 Finally, the stations installed for this study continued operating after September 2020, albeit 

with partial functionality due to logistical difficulties associated with COVID-19. This 

additional data can be used in the future to contrast an average wet season in 2019 with the 

La Niña season of 2020, which produced extreme wet conditions in the region. This 

comparison would bring insights on how OxG hybrid respond to extreme events, and in 

general what would be the potential consequences to these extremes in the region.  
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CHAPTER 5: SUMMARY AND CONCLUSION 

 

This dissertation examined critical aspects of tropical lowlands associated with regions of 

intensive agriculture development. Despite the extensive changes in land cover and land use 

occurring in this region and its importance for Earth's ecosystems and water resources, 

difficulties conducting long-term studies in rural regions have led to important gaps in our 

understanding of the interactions between ecosystems and hydrology. Through this dissertation 

research, I aimed to shed light on the different ways in which local communities' observations 

and insights can be acknowledged and included in scientific analysis.  

Chapter 2 interrogated how the combined action of rural communities' data collection and 

knowledge and geostatistical models could be used to improve the spatiotemporal mapping of 

depth to groundwater. The use of Bayesian Maximum Entropy geostatistical models offered 

flexibility to incorporate data with high levels of uncertainty into quantitative analysis. Results 

showed that the use of descriptive information in model design improved the representation of 

depth to groundwater. At the same time, this inclusion contributed to opportunities for science 

and local communities to interact actively. This work represents a contribution to a broader 

question: How can we better acknowledge community knowledge, local legacies, and practices 

in scientific research? Chapter 2 reinforced the ideas of Assumpção et al. (2018); Cooper et al. 

(2007); and Haklay (2013) that express how constant communication and knowledge sharing are 

effective mechanisms to improve our understanding of environmental systems while also 

contributing to solving questions with a meaningful social impact. In addition, the approach 
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proposed in chapter 2 will hopefully help build models to explore hypotheses with the 

community and collaborative design strategies for data acquisition and analysis. 

Regarding the specific application, the results in chapter 2 were also beneficial for improving 

the spatiotemporal representation of depth to groundwater in a system where groundwater is the 

primary source of domestic water supply. By involving community insights in the model 

construction, I identify a nonlinear relationship between precipitation intensity and frequency 

and depth to groundwater. Although further exploration of this relationship will require 

additional data collection, it represents progress towards understanding the responses of 

groundwater to precipitation. Additional research will be needed to maintain community 

engagement, a process that requires links between academia, the public and private sectors, and 

the community.   

Chapters 3 & 4 explored the relations between ecological and hydrological aspects of oil 

palm plantations. Chapter 3 examines the progress that has occurred in global ecohydrology of 

oil palm research. It focuses on identifying the progress on understanding water-atmosphere, 

fluvial, soils, and groundwater processes, the types of land transition that have been explored, 

and the spatiotemporal scales of analysis and geographical distribution that are represented in 

research to date. By involving research published in Spanish and Portuguese, as well as in 

English, I worked to include a broader perspective on current knowledge. 

Chapter 3 shows how the majority of the scientific production (65% of the papers analyzed) 

has been done in South East Asia, where the major oil palm producers are located, while in 

Africa, gaps in the scientific literature were found. In the Neotropics, there has been a recent 

increase in literature production. Most research has evaluated the African oil palm, E. guineensis, 

the microclimate and energy balance partition (Radersma et al., 1996; Ramdani et al., 2014; 
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Meijide et al., 2017; Meijide et al., 2018; Sabajo et al., 2017), their associations with 

evapotranspiration and water use efficiency (Roll et al., 2015; Manoli et al., 2018), sediment flux 

and storage, and runoff generation (Carlson et al., 2015; Adnan & Atkinson, 2011; Babel et al., 

2015; Nainar et al., 2019, Gharibreza et al., 2013). Although this research has effectively 

advanced our understanding of the linkages between oil palm processes and shifts in local 

environmental conditions in the tropics, the short periods of analysis and the plot / regional 

spatial scales constitute a limitation to our ability to generalize trends. In addition, oil palm is 

expanding into areas of pastures and cropland, yet by far the main focus of study has been on 

conversion to oil palm from forested regions. The implications of transitions from other land 

cover types on ecohydrological processes remain largely unknown. Given the land heterogeneity 

in water-limited vs. water-abundant systems, more studies are needed under a variety of 

scenarios. This replication will build the necessary tools for establishing the limits of oil palm 

expansion. In terms of biophysical processes, studies have focused on minimizing carbon release 

to determine the development limit. However, that limit is unknown in areas already degraded, 

and water limitation needs to be considered as another strong limiting factor. 

Chapter 4 builds on the findings of Chapter 3, with a specific aim of filling the gaps 

associated with identifying microclimate of oil palm in areas previously dedicated to grazing, the 

use of OxG hybrid, and the need for long-term environmental monitoring of microclimatic 

conditions. This work is located in northern Colombia, a region of rapid oil palm expansion. In 

Colombia, and countries in the neotropics, oil palm has replaced mainly pastures and grasslands 

(Furumo & Aide, 2017). In Chapter 4, three microclimatic stations were established to identify 

energy balance partition and the microclimatic conditions at plot scale. The results showed 

similarities in temperature, vapor pressure deficit, net radiation, and soil conditions at all 
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stations. However, differences in vapor pressure deficit and temperature between seasons and 

changes in wind direction and speed suggest an influence of moisture transport and a cooling 

effect during the dry season. In addition, the energy balance partition for the three plantations 

shows similar values across the sites and is comparable with results from Indonesia. This work 

ultimately contributes to advancing the understanding of oil palm in the tropics and the 

differences in limitations to further development.  

More broadly, this dissertation advances the field of physical geography because: 1) it 

includes novel methods to involve communities in scientific research, methods which could be 

further explored in conjunction with human geographers to improve the linkages between 

scientists and community and the active involvement of all actors long-term; 2) it synthesizes the 

state of knowledge on how agricultural and hydrologic processes are integrated with land use 

land cover changes and ecohydrological processes, advancing the scientific knowledge while 

acknowledging the communities that depend on the crops; and 3) by presenting alternative 

techniques for the eddy covariance method, this dissertation explores the energy and biophysical 

relations across oil palm plantations in a region with high potential for oil palm expansion and 

under characteristics of species and land transitions not previously reported.  
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A. APPENDIX A: SUPPLEMENTAL INFORMATION TO CHAPTER 2 

Content of this appendix  

 
Introduction 

A1. Community science data collection 

A2. Additional explanation of model implementation and validation 

A3. DTG Distribution maps 

A4. List of collaborators in the community science project 

Supplemental Figure A.1. Distribution of the weekly DTG and its transformed value using 

natural logarithm 

Supplemental Figure A.2. Covariance models used in the space-time interpolation. Top: Spatial 

covariance model 

Supplemental Figure A.3. Spatial distribution of the STSD estimate of the weekly average of 

DTG for each week in 2008. 

Supplemental Figure A.4. Spatial distribution of the STSD estimate of the weekly average of 

DTG for each week in 2009. 

Supplemental Figure A.5. Spatial distribution of the ST estimate of the weekly average of DTG 

for each week in 2008. 

Supplemental FigureA.6. Spatial distribution of the ST estimate of the weekly average of DTG 

for each week in 2009. 

Supplemental Figure A.7. Spatial distribution of the S estimate of the weekly average of DTG 

for each week in 2008. 

Supplemental Figure A.8. Spatial distribution of the S estimate of the weekly average of DTG 

for each week in 2009. 
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Supplemental Table A.1. Number of weekly DTG observations per month and per station. 

Supplemental Table A.2. Cross-validation statistics using only the well validation values and 

only the wetland validation values 

Introduction  

This supporting information file contains details about the community science data collection 

and the data summary (A.1). We included how many space-time data points were collected and 

how we obtained weekly DTG used to perform model interpolations. Also, we have included 

details of the model implementation and additional cross-validation results (A.2). We specify the 

covariance model and its configuration for each of the geostatistical methods. We present the 

results of cross-validation over the hard data and the soft data domains. We include all the 

resulting maps for the three models: spatial (S), space-time (ST), and space-time with 

probabilistic or soft data (STSD) interpolations (A.3). Finally, we include the list of collaborators 

that contribute to the data collection in the Man River watershed (A.4). 

A.1. Community science data collection 

 
There was a total of 44 household wells (well observations) where depth to groundwater 

(DTG) data were recorded once a week, resulting in 2,448 daily readings. In some cases, data 

were not recorded every week due to several factors, including the high mobility of the 

collaborators, change in the weather conditions, especially during the wet season, and 

communication issues. In other cases, collaborators registered more data each week. When more 

readings were presented, the recorded readings from each week were averaged, resulting in 2,395 

weekly DTG averages. DTG values ranged from 0 to about 22 meters, and the average DTG 

ranged from 0 to 2.5 m (Figure A.1). Data were transformed using a natural logarithm; therefore, 
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units are ln((m)), denoted as ln-depth. Table A.1 shows the number of weeks with DTG 

observations for each month of the study period. In October-November 2008, the monitoring 

network was updated to include more collaborators in the Southwest portion of the catchment 

and outside the watershed, close to the Cauca River, one of the main rivers in Colombia. 

A.2. Additional explanation of model implementation and validation 

Covariance model parameters for the S, ST, and STSD approaches. In a geostatistical 

approach, the general information is described by the process's mean and covariance model. For 

the spatial approach, we use the same covariance model as for the space-time approaches. 

However, the only difference is that we restrict estimation by using a time radius of 0 weeks 

around the estimation time; therefore, only data for that time is used instead of using data from 

the previous and following weeks. Hence it is sufficed that we describe the covariance model 

used for the space-time approaches (ST and STSD). That covariance model is given by the 

following equation, which consists of the sum of two space-time separable exponential 

covariance structures: 

𝐶(𝑟, 𝜏) = 𝑉𝑂 × (𝐶 × 𝑒
 

× 𝑒
 

+ 𝐶 × 𝑒
 

× 𝑒
 

)  (S1) 

where r and 𝜏 are the spatial and temporal lags, respectively. The parameters of this model 

were obtained by fitting the covariance model to all the space-time observational data, which are 

as follows: VO = 3.634 ln-depth2 is the variance of the observations in the log-transformed 

space; C1 = 0.85 and C2 = 0.15 are the percentage of the variance that can be represented by each 

exponential structure of the covariance model; ar1=3 km and ar2=30 km, are the spatial ranges of 

the first and second structures; and at1 = 1,040 weeks and at2 = 12 weeks are the corresponding 

temporal ranges.  
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The process of fitting the covariance parameters to the observational data consisted of the 

following steps. First, experimental covariance values were calculated for a temporal lag 𝜏 of 

zero and a spatial lag r, (𝐶(𝑟, 𝜏 = 0)), varying from zero to about 9,000 m (circles in the top 

panel of Figure A.2), and for a spatial lag r of zero and temporal lag 𝜏, 𝐶(𝑟 = 0, 𝜏), varying from 

zero to 55 weeks (circles in the bottom panel of Figure A.2). Then covariance parameters were 

selected to best fit the experimental covariance values, resulting in the model shown with a plain 

line in Figure A.2. 

Cross-validation in the soft and the hard data. The cross-validation statistics presented in 

Table A.1, in the main manuscript, were calculated based on the 4,996 validation data values for 

DTG as ln-depth, which comprises the 2,396 validation values obtained from well observations 

and the 2,600 validation values obtained as the expected value of the PDF for the soft data points 

in the wetlands. In Table A.2, we show these statistics after they are re-calculated using only the 

2,396 well validation values (top rows of Table A.2) and using only the 2,600 wetland validation 

values (bottom rows of Table A.2). 

A.3. DTG Distribution maps  

All the weekly interpolation maps for each interpolation method are presented in Figures A.3 

to A.8. All the results maps of the STSD model used in this paper are available in the repository 

DOI: 10.5281/zenodo.3928587 [License Creative Commons Attribution 4.0 International] 
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Figure  A.1 Distribution of the weekly DTG and its transformed value using natural logarithm. a) DTG 
histogram of raw data (m); b) ln-depth DTG ln-depth; c) temporal trend percentiles of weekly DTG (m); 
and d) temporal trend percentiles of ln-depth. 

 

 
Figure  A.2 Covariance models used in the space-time interpolation. Top: Spatial covariance model. 
Bottom: Temporal covariance model.  
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Figure  A.3 Spatial distribution of the STSD estimate of the weekly average of DTG for each week in 
2008. First week of the year is considered to start on 12/31/2008.  
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Figure  A.4 Spatial distribution of the STSD estimate of the weekly average of DTG for each week in 
2009. First week of the year is considered to start on 01/05/2009 
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Figure  A.5 Spatial distribution of the ST estimate of the weekly average of DTG for each week in 2008. 
First week of the year is considered to start on 12/31/2008 
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Figure  A.6 Spatial distribution of the ST estimate of the weekly average of DTG for each week in 2009. 
First week of the year is considered to start on 01/05/2009 
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Figure  A.7 Spatial distribution of the S estimate of the weekly average of DTG for each week in 2008. 
First week of the year is considered to start on 12/31/2008 
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Figure  A.8 Spatial distribution of the S estimate of the weekly average of DTG for each week in 2009. 
First week of the year is considered to start on 01/05/2009 
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Table  A.1 Number of weekly DTG observations per month and per station. The greyscale represents the 
different quantities of data, where the shading helps distinguish the number of weeks with data reported 
each month. The darker the color, the more data collected in that station that month. The darkest gray 
indicates a maximum of five weeks with observations, and the lightest gray indicates a month with zero 
observations. 

 
 
Table  A.2 Cross-validation statistics using only the well validation values and only the wetland 
validation values. Well validation values are at the top portion of the table, MO= -1.93 ln-depth, VO= 
5.06 (ln-depth)2). Wetland validation are in the bottom portion of the table, MO= -1.31 ln-depth, VO= 0.0 
(ln-depth)2). 

Type of 
validation 
values 

Model 
MSE VE ME R2 VZ 

(ln(m))2 (ln(m))2 ln(m) unitless ln(m) 

Wells (n= 
2,396 s/t 
values) 

S 4.05 4.05 -0.03 0.02 1.00 

ST 0.25 0.25 0.00 0.93 3.49 

STSD 0.25 0.25 0.00 0.93 3.49 

Wetland 
(n=2,600 s/t 
values) 

S 14.35 1.44 3.59 <0.01 1.44 

ST 13.62 1.07 3.54 <0.01 1.07 

STSD 0.94 0.21 0.86 <0.01 0.21 

 
 
 



 

132 
 

A.4. List of collaborators in the community science project 

 
We thank the following collaborators in the Man River watershed for their valuable 

contribution to the project: 

Luis Javier, Luis Osorio, Roberto Villadiego, Venegilda-Nafer, Libia Martínez, Darío 

Jiménez, Jaime Sánchez, Luis Carlos Chamorro, Antonio Pineda, Oscar Granados, José Heredia, 

Marlibia, Humberto Ramos, Antonio Navarro, Eunice, Marino Algarín, Aída Ibáñez, Elvia, 

Rodrigo Lambraño, Doris, Bernardo Carlos Dominguez, Emilia Vergara, Javier Casarubia, 

Emilsa, Fabio Escobar, José Darío, Luis Álvarez, Jorge Daniel Ameta, Ricardo Ricaute, Gabriel 

Pineda, Aura, Wilson Cardenas, Ernadi, Manuel Polo, Rosa, Luis Díaz, Antonio, José Vega, 
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B. APPENDIX B: SUPPLEMENTAL INFORMATION TO CHAPTER 3 

Table  B.1 Search terms, filtering criteria, and the number of papers in each filtering stage 

Database or 
Search 
engine 

Search terms 

No. of articles 

Initial 
results 

After 
first 

filtering 

After 
removing 
duplicates 

and 
categorizing 

Scielo 

"palma de aceite"  
"oil palm" 
"palma do oleo" AND 
“hidrologia” 

664 34 10 

PubMed "oil palm" AND expansion 59 59 14 

Web of 
Science 

"oil palm" AND (hydrology 
OR "land use" OR 
ecohydrology OR "land 
cover" OR moisture OR 
evapotranspiration)  

404 217 84 

Science 
Direct 

"oil palm" AND ("land use" 
OR hydrology OR moisture 
OR evapotranspiration) 

505 39 22 

Dialnet  "oil palm" 314 30 13 
IEEE "oil palm" 166 41 13 

Scopus 
"oil palm" AND (hydrology 
OR runoff OR 
evapotranspiration) 

81 78 37 

Redalyc "palma de aceite" 461 18 7 

Springer  
"oil palm" AND ("land use" 
OR hydrology) 

238 15 4 

Google 
Scholar 

"oil palm" AND (expansion 
OR runoff OR 
evapotranspiration OR "water 
stress")  

451 62 11 

TOTALS 3343 593      215 
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Figure  B.1 Activity diagram of the complete flow process and details reading papers.  
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Table  B.2 Coding system to summarize results in ecohydrological variables under different land 
transitions. Each initial was put in order 1. Change, 2. Land transition. 3, Age. 4, Scale. 5, Species for 
each of the fluxes and variables analyzed per each study.   
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Table  B.3 Data dictionary conventions of each table 

Reference Article reference 

Value Type 

Values extracted from each paper (Trend:  code used to classify each 

article, Value OP are the values that the oil palm plantation has in each 

item, and Value transition are the values of the coverage with which the 

oil palm is compared in each variable). 

Type Paper Category (A: Hydrology, B: Biogeophysical) 

Comparation or Transition 
Classification if the article presents a transition comparison or other 

scenario with oil palm (T: Transition, C: Comparation, S: Scenario) 

Season R: rain or D: dry session according to each study. 

Crop Type Type of soil or crop according to each study. 

 
Table  B.4 Studies addressing fluxes, trends of change, and values for the variables Interception, Throughfall, Transpiration. Table conventions 
can be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Interception Units Throughfall Units Transpiration Units 

Dufrene et 
al., 1992 

Trend A  D ZPlG 
Intercepti
on 
loss/PET 

ZPlG 
Whole period 
(Throughfall/T
otal Rainfall ) 

ZPlG 
Transpiratio
n/PET 

Dufrene et 
al., 1992 

Values 
OP 

A  D 0.07 +-0.02 
mm 
day−1 

0,82 mm 0.56+-0.08 mm day−1 

Dufrene et 
al., 1992 

Values 
Transiti

A  D       
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Interception Units Throughfall Units Transpiration Units 

on 

Dufrene et 
al., 1992 

Trend A  R ZPlG 
Intercepti
on 
loss/PET 

ZPlG 
Whole period 
(Throughfall/T
otal Rainfall ) 

ZPlG 
Transpiratio
n/PET 

Dufrene et 
al., 1992 

Values 
OP 

A  R 0.11 +-0.02 
mm 
day−1 

0,82 mm 0.69+-0.04 mm day−1 

Dufrene et 
al., 1992 

Values 
Transiti
on 

A  R       

Radersma 
et al., 1996 

Trend A C D     ICZSmX 

Suboptimal 
to optimal 
water 
supply 
conditions 

Radersma 
et al., 1996 

Values 
OP 

A C D     2.5-6.5 mm day−1 

Radersma 
et al., 1996 

Values 
Transiti
on 

A C D     1.9-6.1 mm day−1 

Radersma 
et al., 1996 

Trend A C R     ICZSmX 

Suboptimal 
to optimal 
water 
supply 
conditions 

Radersma 
et al., 1996 

Values 
OP 

A C R     2.5-3.3 mm day−1 

Radersma 
et al., 1996 

Values 
Transiti
on 

A C R     1.9-3.0 mm day−1 

Radersma 
et al., 1996 

Trend A C D     DCZSmX 
Suboptimal 
to optimal 
water 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Interception Units Throughfall Units Transpiration Units 

supply 
conditions 

Radersma 
et al., 1996 

Values 
OP 

A C D     2.5-6.5 mm day−1 

Radersma 
et al., 1996 

Values 
Transiti
on 

A C D     4.4-5.4 mm day−1 

Radersma 
et al., 1996 

Trend A C R     ICZSmX 

Suboptimal 
to optimal 
water 
supply 
conditions 

Radersma 
et al., 1996 

Values 
OP 

A C R     2.5-3.3 mm day−1 

Radersma 
et al., 1996 

Values 
Transiti
on 

A C R     2.2-2.7 mm day−1 

Banabas et 
al., 2008 

Trend A   MSmG  MSmG    

Banabas et 
al., 2008 

Values 
OP 

A     83 %   

Banabas et 
al., 2008 

Values 
Transiti
on 

A         

Röll et al., 
2015 

Trend A       YPlG  

Röll et al., 
2015 

Values 
OP 

A       0,224 mm day−1 

Röll et al., 
2015 

Values 
Transiti
on 

A         

Röll et al., Trend A       MPlG  



 

 
 

139 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Interception Units Throughfall Units Transpiration Units 

2015 

Röll et al., 
2015 

Values 
OP 

A       2,491 mm day−1 

Röll et al., 
2015 

Values 
Transiti
on 

A         

Tarigan et 
al., 2018 

Trend A T  QFMMeG      

Tarigan et 
al., 2018 

Values 
OP 

A T  8,4 mm     

Tarigan et 
al., 2018 

Values 
Transiti
on 

A T        

Kurniawan 
et al., 2018 

Trend A C  DFMSmG    DFMSmG  

Kurniawan 
et al., 2018 

Values 
OP 

A C  182 mm yr−1   437 mm yr−1 

Kurniawan 
et al., 2018 

Values 
Transiti
on 

A C  196 mm yr−1   1033 mm yr−1 

Kurniawan 
et al., 2018 

Trend A C  DFMSmG    DFMSmG  

Kurniawan 
et al., 2018 

Values 
OP 

A C  166 mm yr−1   446 mm yr−1 

Kurniawan 
et al., 2018 

Values 
Transiti
on 

A C  181 mm yr−1   1284 mm yr−1 

Meijide et 
al., 2017 

Trend A T      NZSmG  

Meijide et 
al., 2017 

Values 
OP 

A T      64 ± 3 mm yr−1 

Meijide et Values A T        
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Interception Units Throughfall Units Transpiration Units 

al., 2017 Transiti
on 

Meijide et 
al., 2017 

Trend A T      MZSmG  

Meijide et 
al., 2017 

Values 
OP 

A T      826 ± 34 mm yr−1 

Meijide et 
al., 2017 

Values 
Transiti
on 

A T        

Merten et 
al., 2016 

Trend A C  ICMSmX    QCMSmX  

Merten et 
al., 2016 

Values 
OP 

A C  28 %   1.8 ± 0.3 mm day -1 

Merten et 
al., 2016 

Values 
Transiti
on 

A C  17 %   1.1 ± 0.1 mm day -1 

Merten et 
al., 2016 

Values 
Transiti
on 

A C      2.0 ± 0.2 mm day -1 
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Table  B.5 Studies addressing fluxes, trends of change, and values for the variables Surface-Runoff, Infiltration, Groundwater flow. Table 
conventions can be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Surface 
Runoff 

Units Infiltration Units Groundwaterflow Units 

Algeet-
Abarquero 
et al., 2015 

Trend A C  IVZSmG Runoff coef     

Algeet-
Abarquero 
et al., 2015 

Values 
OP 

A C  32,6 %     

Algeet-
Abarquero 
et al., 2015 

Values 
Transiti
on 

A C  15,3 %     

Algeet-
Abarquero 
et al., 2015 

Trend A C  IFZSmG Runoff coef     

Algeet-
Abarquero 
et al., 2015 

Values 
OP 

A C  32,6 %     

Algeet-
Abarquero 
et al., 2015 

Values 
Transiti
on 

A C  1,7 %     

Banabas et 
al., 2008 

Trend A   MSmG  MSmG    

Banabas et 
al., 2008 

Values 
OP 

A   6 %     

Banabas et 
al., 2008 

Values 
Transiti
on 

A         

Babel et 
al., 2015 

Trend A S  DCZMeG      

Babel et 
al., 2015 

Values 
OP 

A S        
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Surface 
Runoff 

Units Infiltration Units Groundwaterflow Units 

Babel et 
al., 2015 

Values 
Transiti
on 

A S        

Nainar et 
al., 2018 

Trend A T  DFMReG      

Nainar et 
al., 2018 

Values 
OP 

A T  956 mm     

Nainar et 
al., 2018 

Values 
Transiti
on 

A T  2764 mm     

Nainar et 
al., 2018 

Trend A T  DFMReG      

Nainar et 
al., 2018 

Values 
OP 

A T  956 mm     

Nainar et 
al., 2018 

Values 
Transiti
on 

A T  1785 mm     

Nainar et 
al., 2018 

Trend A T  DFMReG      

Nainar et 
al., 2018 

Values 
OP 

A T  956 mm     

Nainar et 
al., 2018 

Values 
Transiti
on 

A T  1597 mm     

Nainar et 
al., 2018 

Trend A T  DFMReG      

Nainar et 
al., 2018 

Values 
OP 

A T  956 mm     

Nainar et 
al., 2018 

Values 
Transiti
on 

A T  1907 mm     

Sabajo et Values A T        
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Surface 
Runoff 

Units Infiltration Units Groundwaterflow Units 

al., 2017 OP 

Sabajo et 
al., 2017 

Values 
Transiti
on 

A T        

Sabajo et 
al., 2017 

Values 
Transiti
on 

A T        

Satriawan 
et al., 2016 

Trend A S  QCNSmX  QCNSmX    

Satriawan 
et al., 2016 

Values 
OP 

A S  289,72 bC m3 h-1 14,68 bc mm   

Satriawan 
et al., 2016 

Values 
OP 

A S  271,95 aB m3 h-1     

Satriawan 
et al., 2016 

Values 
OP 

A S  262,83 aA m3 h-1     

Satriawan 
et al., 2016 

Values 
OP 

A S  271,51 aC m3 h-1 17,35 c mm   

Satriawan 
et al., 2016 

Values 
OP 

A S  259,42 aB m3 h-1     

Satriawan 
et al., 2016 

Values 
OP 

A S  249,37 aA m3 h-1     

Satriawan 
et al., 2016 

Values 
OP 

A S  403,84 cA m3 h-1 10,15 a mm   

Satriawan 
et al., 2016 

Values 
OP 

A S  400,84 bA m3 h-1     

Satriawan 
et al., 2016 

Values 
OP 

A S  399,84 bA m3 h-1     

Satriawan 
et al., 2016 

Values 
OP 

A S  402,98 cA m3 h-1 12,34 b mm   

Satriawan 
et al., 2016 

Values 
OP 

A S  400,31 bA m3 h-1     

Satriawan Values A S  398,64 bA m3 h-1     
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Surface 
Runoff 

Units Infiltration Units Groundwaterflow Units 

et al., 2016 OP 

Satriawan 
et al., 2016 

Values 
Transiti
on 

A S    11,69 mm   

Satriawan 
et al., 2016 

Values 
Transiti
on 

A S    14,88 mm   

Satriawan 
et al., 2016 

Values 
Transiti
on 

A S    18,34 mm   

Taringan et 
al, 2016 

Trend A     IMSmX    

Taringan et 
al, 2016 

Values 
OP 

A         

Taringan et 
al, 2016 

Values 
Transiti
on 

A         

 

Table  B.6 Studies addressing fluxes, trends of change, and values for the variables Streamflow or Surface Discharge, Sediment transport, 
Evapotranspiration. Table conventions can be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Streamflow 
or Surface 
Discharge 

Units 
Sediment 
transport 

Units Evapotranspiration Units 

Manoli et 
al 2018 

Trend A T      DFYPlG  

Manoli et 
al 2018 

Values 
OP 

A T      1000–1600 mm yr −1 

Manoli et 
al 2018 

Values 
Transiti
on 

A T      1200-2240 mm yr −1 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Streamflow 
or Surface 
Discharge 

Units 
Sediment 
transport 

Units Evapotranspiration Units 

Manoli et 
al 2018 

Trend A T      IFMPlG  

Manoli et 
al 2018 

Values 
OP 

A T      1200−1800 mm yr −1 

Manoli et 
al 2018 

Values 
Transiti
on 

A T      1300+-200 mm yr −1 

Carlson et 
al., 2015 

Trend A C    IFYReG    

Carlson et 
al., 2015 

Values 
OP 

A C    32000 ± 4800 
mg h-1 ha-
1 

  

Carlson et 
al., 2015 

Values 
Transiti
on 

A C    13000 ± 1400 
mg h-1 ha-
1 

  

Carlson et 
al., 2015 

Trend A C    IFMReG    

Carlson et 
al., 2015 

Values 
OP 

A C    20000 ± 3400 
mg h-1 ha-
1 

  

Carlson et 
al., 2015 

Values 
Transiti
on 

A C    13000 ± 1400 
mg h-1 ha-
1 

  

Adnan et 
al., 2011 

Trend A T  QFZMaX      

Adnan et 
al., 2011 

Values 
OP 

A T        

Adnan et 
al., 2011 

Values 
Transiti
on 

A T        

Dufrene et 
al., 1992 

Trend A  D     ZPlG PET 

Dufrene et 
al., 1992 

Values 
OP 

A  D     3.54+-0.16 mm day−1 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Streamflow 
or Surface 
Discharge 

Units 
Sediment 
transport 

Units Evapotranspiration Units 

Dufrene et 
al., 1992 

Values 
Transiti
on 

A  D       

Dufrene et 
al., 1992 

Trend A  R     ZPlG PET 

Dufrene et 
al., 1992 

Values 
OP 

A  R     3.14+-0.11 mm day−1 

Dufrene et 
al., 1992 

Values 
Transiti
on 

A  R       

Radersma 
et al., 1996 

Trend A C D     QCZSmX 

Not clear 
under 
different 
conditions 
of water 
suppy. 
Lower 
bound 
suboptimal 
water 
condition, 
upper 
bound 
optimal 

Radersma 
et al., 1996 

Values 
OP 

A C D     395-428 mm yr−1 

Radersma 
et al., 1996 

Values 
Transiti
on 

A C D     294-490 mm yr−1 

Radersma 
et al., 1996 

Trend A C R     ICZSmX 
Supoptima
l to 
optimal 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Streamflow 
or Surface 
Discharge 

Units 
Sediment 
transport 

Units Evapotranspiration Units 

conditions 

Radersma 
et al., 1996 

Values 
OP 

A C R     623-623 mm yr−1 

Radersma 
et al., 1996 

Values 
Transiti
on 

A C R     584-584 mm yr−1 

Radersma 
et al., 1996 

Trend A C D     ICZSmX 

Not clear 
under 
different 
conditions 
of water 
suppy. 
Lower 
bound 
suboptimal 
water 
condition, 
upper 
bound 
optimal 

Radersma 
et al., 1996 

Values 
OP 

A C D     395-428 mm yr−1 

Radersma 
et al., 1996 

Values 
Transiti
on 

A C D     46-46 mm yr−1 

Radersma 
et al., 1996 

Trend A C R     ICZSmX 

Supoptima
l to 
optimal 
conditions 

Radersma 
et al., 1996 

Values 
OP 

A C R     623-623 mm yr−1 

Radersma Values A C R     372-364 mm yr−1 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Streamflow 
or Surface 
Discharge 

Units 
Sediment 
transport 

Units Evapotranspiration Units 

et al., 1996 Transiti
on 

Henson et 
al., 2007 

Trend A       MSmG  

Henson et 
al., 2007 

Values 
OP 

A         

Henson et 
al., 2007 

Values 
Transiti
on 

A         

Banabas et 
al., 2008 

Trend A   MSmG Streamflow   MSmG  

Banabas et 
al., 2008 

Values 
OP 

A   1100% %     

Banabas et 
al., 2008 

Values 
Transiti
on 

A         

Röll et al., 
2015 

Trend A       YPlG  

Röll et al., 
2015 

Values 
OP 

A       2,8 mm day−1 

Röll et al., 
2015 

Values 
Transiti
on 

A         

Röll et al., 
2015 

Trend A       MPlG  

Röll et al., 
2015 

Values 
OP 

A       4,7 mm day−1 

Röll et al., 
2015 

Values 
Transiti
on 

A         

Carlson et 
al., 2013 

Trend B S        
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Streamflow 
or Surface 
Discharge 

Units 
Sediment 
transport 

Units Evapotranspiration Units 

Carlson et 
al., 2013 

Values 
OP 

B S        

Carlson et 
al., 2013 

Values 
Transiti
on 

B S        

Wösten et 
al., 2006 

Trend A S  DPZReX      

Wösten et 
al., 2006 

Values 
OP 

A S        

Wösten et 
al., 2006 

Values 
Transiti
on 

A S        

Babel et 
al., 2015 

Trend A S  DCZMeG  DCZMeG    

Babel et 
al., 2015 

Values 
OP 

A S        

Babel et 
al., 2015 

Values 
Transiti
on 

A S        

Kurniawan 
et al., 2018 

Trend A C      DFMSmG  

Kurniawan 
et al., 2018 

Values 
OP 

A C      1027 mm yr−1 

Kurniawan 
et al., 2018 

Values 
Transiti
on 

A C      1384 mm yr−1 

Kurniawan 
et al., 2018 

Trend A C      DFMSmG  

Kurniawan 
et al., 2018 

Values 
OP 

A C      1071 mm yr−1 

Kurniawan 
et al., 2018 

Values 
Transiti

A C      1622 mm yr−1 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Streamflow 
or Surface 
Discharge 

Units 
Sediment 
transport 

Units Evapotranspiration Units 

on 

Meijide et 
al., 2017 

Trend A T      NZSmG  

Meijide et 
al., 2017 

Values 
OP 

A T      918 ± 46 mm yr−1 

Meijide et 
al., 2017 

Values 
Transiti
on 

A T        

Meijide et 
al., 2017 

Trend A T      MZSmG  

Meijide et 
al., 2017 

Values 
OP 

A T      1216 ± 34 mm yr−1 

Meijide et 
al., 2017 

Values 
Transiti
on 

A T        

Sabajo et 
al., 2017 

Trend A T      FMMaG  

Sabajo et 
al., 2017 

Values 
OP 

A T      -0.03 ± 0.03 mm h−1 

Sabajo et 
al., 2017 

Values 
Transiti
on 

A T      -0.03 ± 0.04 mm h−1 

Sabajo et 
al., 2017 

Values 
Transiti
on 

A T      -0.04 ± 0.03 mm h−1 

Sabajo et 
al., 2017 

Trend A T      FNMaG  

Sabajo et 
al., 2017 

Values 
OP 

A T      -0.18 ± 0.04 mm h−1 

Sabajo et 
al., 2017 

Values 
Transiti
on 

A T      -0.23 ± 0.04 mm h−1 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Streamflow 
or Surface 
Discharge 

Units 
Sediment 
transport 

Units Evapotranspiration Units 

Sabajo et 
al., 2017 

Values 
Transiti
on 

A T      -0.26 ± 0.06 mm h−1 

Satriawan 
et al., 2016 

Trend A S        

Nainar et 
al., 2019 

Trend A T    IFZReX    

Nainar et 
al., 2019 

Values 
OP 

A T    132 y 587 mg L – 1   

Nainar et 
al., 2019 

Values 
Transiti
on 

A T    34 y 102 mg L – 1   

Merten et 
al., 2016 

Trend A C  DCMSmX    QCMSmX  

Merten et 
al., 2016 

Values 
OP 

A C  21,2 l s -1 ha -1   4,7 mm day-1 

Merten et 
al., 2016 

Values 
Transiti
on 

A C  36,9 l s -1 ha -1   n.d  

Merten et 
al., 2016 

Values 
Transiti
on 

A C      n.d  

 

Table  B.7 Studies addressing fluxes, trends of change, and values for the variables Temperature, Latent Heat, Sensible Heat. Table conventions 
can be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Temperature Units Latent Heat Units Sensible Heat Units 

Fowler et 
al., 2011 

Trend A C    IFMReB  IFMReB  
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Temperature Units Latent Heat Units Sensible Heat Units 

Fowler et 
al., 2011 

Values 
OP 

A C    7,8 MJ m-2 d-1 2,1 
MJ m-2 d-
1 

Fowler et 
al., 2011 

Values 
Transiti
on 

A C    6,7 MJ m-2 d-1 1,3 
MJ m-2 d-
1 

Manoli et 
al 2018 

Trend A T  IFYPlG  DFYPlG  IFYPlG  

Manoli et 
al 2018 

Values 
OP 

A T  23-26 °C 300 W/m2 180 W/m2 

Manoli et 
al 2018 

Values 
Transiti
on 

A T  21-23 °C 380 W/m2 70 W/m2 

Manoli et 
al 2018 

Trend A T  DFMPlG  IFMPlG  DFMPlG  

Manoli et 
al 2018 

Values 
OP 

A T  22-23 °C 400 W/m2 30 W/m2 

Manoli et 
al 2018 

Values 
Transiti
on 

A T  21-23 °C 380 W/m2 70 W/m2 

Meijide et 
al., 2018 

Trend A T  IFZSmG      

Meijide et 
al., 2018 

Values 
OP 

A T  25.5 ± 0.2 °C     

Meijide et 
al., 2018 

Values 
Transiti
on 

A T  2.8 ± 0.1 °C     

Luke et al., 
2017 

Trend A T  IFZSmG      

Luke et al., 
2017 

Values 
OP 

A T  28.22 ± 0.07 °C     

Luke et al., 
2017 

Values 
Transiti

A T  26.86 ± 0.36 °C     
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Temperature Units Latent Heat Units Sensible Heat Units 

on 

Luke et al., 
2017 

Trend A T  IFZSmG      

Luke et al., 
2017 

Values 
OP 

A T  28.22 ± 0.07 °C     

Luke et al., 
2017 

Values 
Transiti
on 

A T  25.02 ± 0.93 °C     

Luke et al., 
2017 

Trend A T  IFZSmG      

Luke et al., 
2017 

Values 
OP 

A T  28.22 ± 0.07 °C     

Luke et al., 
2017 

Values 
Transiti
on 

A T  24.99 ± 0.67 °C     

Chellaiah 
and Yule., 
2018 

Trend A T  FZSmG      

Chellaiah 
and Yule., 
2018 

Values 
OPF 

A T  
25.186 ± 
0.217 

(0.217b) °C     

Chellaiah 
and Yule., 
2018 

Values 
OPOP 

A T  
27.587 ± 
0.194 

(0.194c) °C     

Chellaiah 
and Yule., 
2018 

Values 
OPNB 

A T  
29.164 ± 
0.194 

(0.194d) °C     

Chellaiah 
and Yule., 
2018 

Values 
Transiti
on NF 

A T  
23.255 ± 
0.166 

(0.166a) °C     

Merten et 
al., 2016 

Trend A C  ICMSmX      
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Temperature Units Latent Heat Units Sensible Heat Units 

Merten et 
al., 2016 

Values 
OP 

A C  25 °C     

Merten et 
al., 2016 

Values 
Transiti
on 

A C  Similar      

Merten et 
al., 2016 

Values 
Transiti
on 

A C  Lower      

 
 
Table  B.8 Studies addressing fluxes, trends of change, and values for the variables Precipitation, Relative Humidity, Vapor Pressure Deficit. 
Table conventions can be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Precipitation Units 
Relative 
Humidity 

Units 
Vapor Pressure 
Deficit 

Units 

Fowler et 
al., 2011 

Trend A C  DFMReB      

Fowler et 
al., 2011 

Values 
OP 

A C  2,1 mm day-1     

Fowler et 
al., 2011 

Values 
Transiti
on 

A C  13 mm day-1     

Adnan et 
al., 2011 

Trend A T  QFZMaX      

Adnan et 
al., 2011 

Values 
OP 

A T        

Adnan et 
al., 2011 

Values 
Transiti
on 

A T        

Radersma 
et al., 1996 

Trend A C D     ZPlX  
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Precipitation Units 
Relative 
Humidity 

Units 
Vapor Pressure 
Deficit 

Units 

Radersma 
et al., 1996 

Values 
OP 

A C D       

Radersma 
et al., 1996 

Values 
Transiti
on 

A C D       

Radersma 
et al., 1996 

Trend A C R     ZSmX  

Radersma 
et al., 1996 

Values 
OP 

A C R       

Radersma 
et al., 1996 

Values 
Transiti
on 

A C R       

Radersma 
et al., 1996 

Trend A C D     ZPlX  

Radersma 
et al., 1996 

Values 
OP 

A C D       

Radersma 
et al., 1996 

Values 
Transiti
on 

A C D       

Radersma 
et al., 1996 

Trend A C R     ZSmX  

Radersma 
et al., 1996 

Values 
OP 

A C R       

Radersma 
et al., 1996 

Values 
Transiti
on 

A C R       

Banabas et 
al., 2008 

Trend A   MSmG      

Banabas et 
al., 2008 

Values 
OP 

A         

Banabas et 
al., 2008 

Values 
Transiti

A         
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Precipitation Units 
Relative 
Humidity 

Units 
Vapor Pressure 
Deficit 

Units 

on 

Röll et al., 
2015 

Trend A       YPlG  

Röll et al., 
2015 

Values 
OP 

A         

Röll et al., 
2015 

Values 
Transiti
on 

A         

Röll et al., 
2015 

Trend A       MPlG  

Röll et al., 
2015 

Values 
OP 

A         

Röll et al., 
2015 

Values 
Transiti
on 

A         

Meijide et 
al., 2018 

Trend A T    DFZSmG  IFZSmG  

Meijide et 
al., 2018 

Values 
OP 

A T    91.3 ± 0.8 (0.8c) % 359 ± 38c Pa 

Meijide et 
al., 2018 

Values 
Transiti
on 

A T    95.6 ± 1.0 (1.0a) % 169 ± 39a Pa 

Nainar et 
al., 2018 

Trend A T        

Nainar et 
al., 2018 

Values 
OP 

A T        

Nainar et 
al., 2018 

Values 
Transiti
on 

A T        

Nainar et 
al., 2018 

Trend A T        

Nainar et Values A T        
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Precipitation Units 
Relative 
Humidity 

Units 
Vapor Pressure 
Deficit 

Units 

al., 2018 OP 

Nainar et 
al., 2018 

Values 
Transiti
on 

A T        

Nainar et 
al., 2018 

Trend A T        

Nainar et 
al., 2018 

Values 
OP 

A T        

Nainar et 
al., 2018 

Values 
Transiti
on 

A T        

Nainar et 
al., 2018 

Trend A T        

Nainar et 
al., 2018 

Values 
OP 

A T        

Nainar et 
al., 2018 

Values 
Transiti
on 

A T        

Nainar et 
al., 2018 

Trend A T  DFMReG      

Nainar et 
al., 2018 

Values 
OP 

A T  2680 mm     

Nainar et 
al., 2018 

Values 
Transiti
on 

A T  3504 mm     

Nainar et 
al., 2018 

Trend A T  DFMReG      

Nainar et 
al., 2018 

Values 
OP 

A T  2680 mm     

Nainar et 
al., 2018 

Values 
Transiti
on 

A T  2904 mm     
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Precipitation Units 
Relative 
Humidity 

Units 
Vapor Pressure 
Deficit 

Units 

Nainar et 
al., 2018 

Trend A T  DFMReG      

Nainar et 
al., 2018 

Values 
OP 

A T  2680 mm     

Nainar et 
al., 2018 

Values 
Transiti
on 

A T  2494 mm     

Nainar et 
al., 2018 

Trend A T  DFMReG      

Nainar et 
al., 2018 

Values 
OP 

A T  2680 mm     

Nainar et 
al., 2018 

Values 
Transiti
on 

A T  2397 mm     

Meijide et 
al., 2017 

Trend A T  NZSmG      

Meijide et 
al., 2017 

Values 
OP 

A T  1834 mm     

Meijide et 
al., 2017 

Values 
Transiti
on 

A T        

Meijide et 
al., 2017 

Trend A T  MZSmG      

Meijide et 
al., 2017 

Values 
OP 

A T  1251 mm     

Meijide et 
al., 2017 

Values 
Transiti
on 

A T        

Cock et al., 
2016 

Trend A   MSmX      

Cock et al., 
2016 

Values 
OP 

A         
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season Precipitation Units 
Relative 
Humidity 

Units 
Vapor Pressure 
Deficit 

Units 

Cock et al., 
2016 

Values 
Transiti
on 

A         

 
 
Table  B.9 Studies addressing fluxes, trends of change, and values for the variables Gross Primary Productivity, Carbon Secuestration. Table 
conventions can be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or 
Transition 

Season 
Gross 
Primary 
Productivity 

Units 
Carbon 
Sequestration 

Units 

Manoli et 
al 2018 

Trend A T      

Manoli et 
al 2018 

Values OP A T      

Manoli et 
al 2018 

Values 
Transition 

A T      

Manoli et 
al 2018 

Trend A T  IFMPlG    

Manoli et 
al 2018 

Values OP A T  3000-4400 gC m-2 yr-1   

Manoli et 
al 2018 

Values 
Transition 

A T  2250-3300 gC m-2 yr-1   

Sumarga et 
al., 2016 

Trend B     QFZReX  

Sumarga et 
al., 2016 

Values OP B       

Sumarga et 
al., 2016 

Values 
Transition 

B       
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Table  B.10 Studies addressing fluxes, trends of change, and values for the variables Stomatal Conductance, Carbon transport. Table conventions 
can be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Stomatal 
Conductance 

Units Carbon Transport Where Carbon Units 

Koh et al., 
2011 

Trend B T    DPMMaX AGB  

Koh et al., 
2011 

Values 
OP 

B T    5.1 ± 1.1  Mg/ha y-1 

Koh et al., 
2011 

Values 
Transition 

B T    10.3 ± 2.8  Mg/ha y-1 

Brunn et al., 
2013 

Trend B T    QCYSmX SOC  

Brunn et al., 
2013 

Values 
OP 

B T       

Brunn et al., 
2013 

Values 
Transition 

B T       

Brunn et al., 
2013 

Trend B T       

Brunn et al., 
2013 

Values 
OP 

B T    QCMSmX SOC  

Brunn et al., 
2013 

Values 
Transition 

B T       

Da Silva et 
al., 2016 

Trend B C R   ICZSmG SOC  

Da Silva et 
al., 2016 

Values 
OP 

B C R   0.9 +- 0.07  Mg/ha yr-1 

Da Silva et 
al., 2016 

Values 
Transition 

B C R   0.64 +- 0.07  Mg/ha yr-1 

Da Silva et 
al., 2016 

Trend B  D   DCZSmG SOC  

Da Silva et 
al., 2016 

Values 
OP 

B  D   0.64 +- 0.07  Mg/ha yr-1 

Da Silva et Values B  D   0.9 +- 0.07  Mg/ha yr-1 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Stomatal 
Conductance 

Units Carbon Transport Where Carbon Units 

al., 2016 Transition 

Sommer et 
al., 2000 

Trend B C    DFZSmG SOC  

Sommer et 
al., 2000 

Values 
OP 

B C       

Sommer et 
al., 2000 

Values 
Transition 

B C       

Couwenberg 
and 
Hooijer., 
2013 

Trend B C R   ECYSmX Carbon loss  

Couwenberg 
and 
Hooijer., 
2013 

Values 
OP 

B C R      

Couwenberg 
and 
Hooijer., 
2013 

Values 
Transition 

B C R      

Couwenberg 
and 
Hooijer., 
2013 

Trend B C R   ECMSmX Carbon loss  

Couwenberg 
and 
Hooijer., 
2013 

Values 
OP 

B C R      

Couwenberg 
and 
Hooijer., 
2013 

Values 
Transition 

B C R      

Marwanto Trend B     PMSmG   
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Stomatal 
Conductance 

Units Carbon Transport Where Carbon Units 

and Agus., 
2014 
Marwanto 
and Agus., 
2014 

Values 
OP 

B        

Marwanto 
and Agus., 
2014 

Values 
Transition 

B        

Frazao et 
al., 2014 

Trend B C    QFMSmG SOC  

Frazao et 
al., 2014 

Values 
OP 

B C       

Frazao et 
al., 2014 

Values 
Transition 

B C       

Frazao et 
al., 2014 

Trend B C    QCMSmG SOC  

Frazao et 
al., 2014 

Values 
OP 

B C       

Frazao et 
al., 2014 

Values 
Transition 

B C       

Dufrene et 
al., 1992 

Trend A  D ZPlG     

Dufrene et 
al., 1992 

Values 
OP 

A  D 4.1+-1.0 mm s-1    

Dufrene et 
al., 1992 

Values 
Transition 

A  D      

Dufrene et 
al., 1992 

Trend A  R ZPlG     

Dufrene et 
al., 1992 

Values 
OP 

A  R 6.6+-0.5 mm s-1    

Dufrene et 
al., 1992 

Values 
Transition 

A  R      
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Stomatal 
Conductance 

Units Carbon Transport Where Carbon Units 

Frazao et 
al., 2014 

Trend B T    DFYSmG SOC  

Frazao et 
al., 2014 

Values 
OP 

B T       

Frazao et 
al., 2014 

Values 
Transition 

B T       

Marwanto et 
al., 2014 

Trend B     PSmG   

Marwanto et 
al., 2014 

Values 
OP 

B     46±30  
Mg ha-1 yr-
1 

Marwanto et 
al., 2014 

Values 
Transition 

B        

Matysec et 
al., 2018 

Trend A T    PMSmX SOC  

Matysec et 
al., 2018 

Values 
OP 

A T       

Matysec et 
al., 2018 

Values 
Transition 

A T       

Allen et al., 
2015 

Trend A T    DFMSmG SOC  

Allen et al., 
2015 

Values 
OP 

A T    1.8 ± 0.2 SOC 
(kg C m-2) 
4 

Allen et al., 
2015 

Values 
Transition 

A T    2.6 ± 0.2 SOC 
(kg C m-2) 
4 

Allen et al., 
2015 

Trend A T    FMSmG SOC  

Allen et al., 
2015 

Values 
OP 

A T    3.5 ± 0.2 SOC 
(kg C m-2) 
4 

Allen et al., 
2015 

Values 
Transition 

A T    3.3 ± 0.5 SOC 
(kg C m-2) 
4 

Merten et 
al., 2016 

Trend A C    DCMSmX   
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Stomatal 
Conductance 

Units Carbon Transport Where Carbon Units 

Merten et 
al., 2016 

Values 
OP 

A C    2,1  % 

Merten et 
al., 2016 

Values 
Transition 

A C    Similar   

Merten et 
al., 2016 

Values 
Transition 

A C    Higher   

Tonks et al 
2017 

Trend B C    DFMSmX SOC  

Tonks et al 
2017 

Values 
OP 

B C    497 ± 157  Mg ha−1 

Tonks et al 
2017 

Values 
Transition 

B C    
975 ± 
151 

 Mg ha−1 

Tonks et al 
2017 

Trend B C    IFNSmX   

Tonks et al 
2017 

Values 
OP 

B C    1050 +- 150  Mg ha−1 

Tonks et al 
2017 

Values 
Transition 

B C    
975 ± 
151 

 Mg ha−1 

Goodrick et 
al 2015 

Trend B C    IVMSmG SOC  

Goodrick et 
al 2015 

Values 
OP 

B C       

Goodrick et 
al 2015 

Values 
Transition 

B C       
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Table  B.11 Studies addressing fluxes, trends of change, and values for the variables Nutrient transport, Biomass, sap Flow. Table conventions can 
be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Nutrient 
Transport 

Units Biomass Units Sap Flow Units 

Koh et al., 
2011 

Trend B T    DPMMaX    

Koh et al., 
2011 

Values 
OP 

B T    24,2 ± 8,1 Mg/ha   

Koh et al., 
2011 

Values 
Transition 

B T    179,7 ± 38,2 Mg/ha   

Oktarita et 
al., 2017 

Trend B   SmX      

Oktarita et 
al., 2017 

Values 
OP 

B   20 N2O-N ha-1     

Oktarita et 
al., 2017 

Values 
Transition 

B         

Marwanto 
and Agus., 
2014 

Trend B   PMSmG      

Marwanto 
and Agus., 
2014 

Values 
OP 

B   
N = 23±4,  
P= 0.2±0.0, 
K = 0.3±0.0 

g Kg−1     

Marwanto 
and Agus., 
2014 

Values 
Transition 

B         

Dufrene et 
al., 1992 

Trend A  D   ZPlG 
Root 
system 

  

Dufrene et 
al., 1992 

Values 
OP 

A  D   30.5 tDM ha-1   

Dufrene et 
al., 1992 

Values 
Transition 

A  D       

Dufrene et 
al., 1992 

Trend A  R   ZPlG 
Root 
system 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Nutrient 
Transport 

Units Biomass Units Sap Flow Units 

Dufrene et 
al., 1992 

Values 
OP 

A  R   30.5 tDM ha-1   

Dufrene et 
al., 1992 

Values 
Transition 

A  R       

Banabas et 
al., 2008 

Trend A   MSmG      

Banabas et 
al., 2008 

Values 
OP 

A         

Banabas et 
al., 2008 

Values 
Transition 

A         

Röll et al., 
2015 

Trend A       YPlG  

Röll et al., 
2015 

Values 
OP 

A         

Röll et al., 
2015 

Values 
Transition 

A         

Röll et al., 
2015 

Trend A       MPlG  

Röll et al., 
2015 

Values 
OP 

A         

Röll et al., 
2015 

Values 
Transition 

A         

Bayona et 
al., 2016 

Trend A       YPlG Max values 

Bayona et 
al., 2016 

Values 
OP 

A       180 +- 40 cm3 h-1 

Bayona et 
al., 2016 

Values 
Transition 

A         

Rivera et 
al., 2016 

Trend A   NPlG      

Rivera et 
al., 2016 

Values 
OP 

A         
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Nutrient 
Transport 

Units Biomass Units Sap Flow Units 

Rivera et 
al., 2016 

Values 
Transition 

A         

Carlson et 
al., 2012 

Trend B S  QFZMeG  QFZMeG    

Carlson et 
al., 2012 

Values 
OP 

B S  0,342 MtC·y −1 (5.97) A 0.62 tC·ha−1   

Carlson et 
al., 2012 

Values 
Transition 

B S        

Carlson et 
al., 2013 

Trend B S  QFZMeG  QFZMeG    

Carlson et 
al., 2013 

Values 
OP 

B S        

Carlson et 
al., 2013 

Values 
Transition 

B S        

Babel et al., 
2015 

Trend A S  DCZMeG      

Babel et al., 
2015 

Values 
OP 

A S        

Babel et al., 
2015 

Values 
Transition 

A S        

Frazao et 
al., 2014 

Trend B T  DFYSmG      

Frazao et 
al., 2014 

Values 
OP 

B T        

Frazao et 
al., 2014 

Values 
Transition 

B T        

Kurniawan 
et al., 2018 

Trend A C  QFMSmG      

Kurniawan 
et al., 2018 

Values 
OP 

A C  
0.995 
(0.001) 

mg N m−2 d 
−1 / mg N 
m−2 d −1 

    

Kurniawan Values A C  0.997 mg N m−2 d     
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Nutrient 
Transport 

Units Biomass Units Sap Flow Units 

et al., 2018 Transition (0.000) −1 / mg N 
m−2 d −1 

Kurniawan 
et al., 2018 

Trend A C  QFMSmG      

Kurniawan 
et al., 2018 

Values 
OP 

A C  
0.998 
(0.001) 

mg N m−2 d 
−1 / mg N 
m−2 d −1 

    

Kurniawan 
et al., 2018 

Values 
Transition 

A C  
0.999 
(0.000) 

mg N m−2 d 
−1 / mg N 
m−2 d −1 

    

Luke et al., 
2017 

Trend A T  FZSmG      

Luke et al., 
2017 

Values 
OP 

A T  0,74 mg L-1     

Luke et al., 
2017 

Values 
Transition 

A T  2.69 ± 2.63 mg L-1     

Luke et al., 
2017 

Trend A T  FZSmG      

Luke et al., 
2017 

Values 
OP 

A T  0,74 mg L-1     

Luke et al., 
2017 

Values 
Transition 

A T  0.64 ± 0.63 mg L-1     

Luke et al., 
2017 

Trend A T  FZSmG      

Luke et al., 
2017 

Values 
OP 

A T  0,74 mg L-1     

Luke et al., 
2017 

Values 
Transition 

A T  0.56 ± 0.31 mg L-1     

Chellaiah 
and Yule., 
2018 

Trend A T  FZSmG      

Chellaiah Values A T  0.703 ± (0.59–0.80)b     
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Nutrient 
Transport 

Units Biomass Units Sap Flow Units 

and Yule., 
2018 

OPF 0.061 (0.59–
0.80) 

(μg/ml) 

Chellaiah 
and Yule., 
2018 

Values 
OPOP 

A T  
0.533 ± 
0.094 (0.35–
0.66) 

(0.35–
0.66)ab 
(μg/ml) 

    

Chellaiah 
and Yule., 
2018 

Values 
OPNB 

A T  
0.830 ± 
0.060 (0.71–
0.90) 

(0.71–0.90)b 
(μg/ml) 

    

Chellaiah 
and Yule., 
2018 

Values 
Transition 
NF 

A T  
0.290 ± 
0.066 (0.16–
0.34) 

(0.16–0.34)a 
(μg/ml) 

    

 
Table  B.12 Studies addressing fluxes, trends of change, and values for the variables Soil Moisture, Groundwater, Recharge or Runoff. Table 
conventions can be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Soil 
Moisture 

Units 
Depth 
Average 

Groundwater Units 
Recharge or 
Runoff 

Units 

Couwenberg 
and Hooijer., 
2013 

Trend B C R    ECYSmX    

Couwenberg 
and Hooijer., 
2013 

Values 
OP 

B C R        

Couwenberg 
and Hooijer., 
2013 

Values 
Transition 

B C R        

Couwenberg 
and Hooijer., 
2013 

Trend B C R    ECMSmX    

Couwenberg 
and Hooijer., 

Values 
OP 

B C R        
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Soil 
Moisture 

Units 
Depth 
Average 

Groundwater Units 
Recharge or 
Runoff 

Units 

2013 

Couwenberg 
and Hooijer., 
2013 

Values 
Transition 

B C R        

Manoli et al 
2018 

Trend A T         

Manoli et al 
2018 

Values 
OP 

A T         

Manoli et al 
2018 

Values 
Transition 

A T       Pending  

Manoli et al 
2018 

Trend A T       300-2800 
mm yr 
−1 

Manoli et al 
2018 

Values 
OP 

A T         

Manoli et al 
2018 

Values 
Transition 

A T         

Algeet-
Abarquero et 
al., 2015 

Trend A C  ZSmG       

Algeet-
Abarquero et 
al., 2015 

Values 
OP 

A C         

Algeet-
Abarquero et 
al., 2015 

Values 
Transition 

A C         

Algeet-
Abarquero et 
al., 2015 

Trend A C  ZSmG       

Algeet-
Abarquero et 
al., 2015 

Values 
OP 

A C         

Algeet- Values A C         



 

 
 

171 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Soil 
Moisture 

Units 
Depth 
Average 

Groundwater Units 
Recharge or 
Runoff 

Units 

Abarquero et 
al., 2015 

Transition 

Dufrene et 
al., 1992 

Trend A  D ZPlG       

Dufrene et 
al., 1992 

Values 
OP 

A  D        

Dufrene et 
al., 1992 

Values 
Transition 

A  D        

Dufrene et 
al., 1992 

Trend A  R ZPlG       

Dufrene et 
al., 1992 

Values 
OP 

A  R        

Dufrene et 
al., 1992 

Values 
Transition 

A  R        

Radersma et 
al., 1996 

Trend A C D ZPlX       

Radersma et 
al., 1996 

Values 
OP 

A C D        

Radersma et 
al., 1996 

Values 
Transition 

A C D        

Radersma et 
al., 1996 

Trend A C R ZSmX       

Radersma et 
al., 1996 

Values 
OP 

A C R        

Radersma et 
al., 1996 

Values 
Transition 

A C R        

Radersma et 
al., 1996 

Trend A C D ZPlX       

Radersma et 
al., 1996 

Values 
OP 

A C D        

Radersma et 
al., 1996 

Values 
Transition 

A C D        
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Soil 
Moisture 

Units 
Depth 
Average 

Groundwater Units 
Recharge or 
Runoff 

Units 

Radersma et 
al., 1996 

Trend A C R ZSmX       

Radersma et 
al., 1996 

Values 
OP 

A C R        

Radersma et 
al., 1996 

Values 
Transition 

A C R        

Nelson et al., 
2006 

Trend A   MSmG       

Nelson et al., 
2006 

Values 
OP 

A          

Nelson et al., 
2006 

Values 
Transition 

A          

Henson et al., 
2007 

Trend A   MSmG       

Henson et al., 
2007 

Values 
OP 

A          

Henson et al., 
2007 

Values 
Transition 

A          

Banabas et 
al., 2008 

Trend A       MSmG   

Banabas et 
al., 2008 

Values 
OP 

A          

Banabas et 
al., 2008 

Values 
Transition 

A          

Carlson et al., 
2013 

Trend B S         

Carlson et al., 
2013 

Values 
OP 

B S         

Carlson et al., 
2013 

Values 
Transition 

B S         

Wösten et al., 
2006 

Trend A S     DPZReX    
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Soil 
Moisture 

Units 
Depth 
Average 

Groundwater Units 
Recharge or 
Runoff 

Units 

Wösten et al., 
2006 

Values 
OP 

A S     2 to 3 m   

Wösten et al., 
2006 

Values 
Transition 

A S         

Tarigan et al., 
2018 

Trend A T       QFMMeG  

Tarigan et al., 
2018 

Values 
OP 

A T         

Tarigan et al., 
2018 

Values 
Transition 

A T         

Kurniawan et 
al., 2018 

Trend A C       IFMSmG  

Kurniawan et 
al., 2018 

Values 
OP 

A C       761 
mm 
yr−1 

Kurniawan et 
al., 2018 

Values 
Transition 

A C       545 
mm 
yr−1 

Kurniawan et 
al., 2018 

Trend A C       IFMSmG  

Kurniawan et 
al., 2018 

Values 
OP 

A C       1087 
mm 
yr−1 

Kurniawan et 
al., 2018 

Values 
Transition 

A C       722 
mm 
yr−1 

Sahat et al., 
2016 

Trend A S         

Sahat et al., 
2016 

Values 
OP 

A S         

Sahat et al., 
2016 

Values 
Transition 

A S       73.6 SD 4.7 % 

Sahat et al., 
2016 

Values 
Transition 

A        41.7 SD 5.7 % 

Sahat et al., 
2016 

Values 
Transition 

A        45.6 SD 18.7 % 
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Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Soil 
Moisture 

Units 
Depth 
Average 

Groundwater Units 
Recharge or 
Runoff 

Units 

Sahat et al., 
2016 

Values 
Transition 

A        53.4 SD 18.8 % 

Tonks et al 
2017 

Trend B C  DFMSmX SVWC      

Tonks et al 
2017 

Values 
OP 

B C  56.56 ± 21 %      

Tonks et al 
2017 

Values 
Transition 

B C  82.3 ± 28 %      

Tonks et al 
2017 

Trend B C  DFNSmX SVWC      

Tonks et al 
2017 

Values 
OP 

B C  33.3 ± 9 %      

Tonks et al 
2017 

Values 
Transition 

B C  82.3 ± 28 %      

 

Table  B.13 Studies addressing fluxes, trends of change, and values for the variables Water Temperature, Overland Flow, Evaporation. Table 
conventions can be found in Table B.3 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Water 
Temperature 

Units 
Overland 
Flow 

Units Evaporation Units 

Carlson et al., 
2015 

Trend A C  IFYReG      

Carlson et al., 
2015 

Values 
OP 

A C  29 +- 1.8 °C     

Carlson et al., 
2015 

Values 
Transition 

A C  27 ± 1.1 °C     

Carlson et al., 
2015 

Trend A C  IFMReG      

Carlson et al., 
2015 

Values 
OP 

A C  28+-2.5 °C     



 

 
 

175 

Reference 
Values 
type 

Type 
Comparation 
or Transition 

Season 
Water 
Temperature 

Units 
Overland 
Flow 

Units Evaporation Units 

Carlson et al., 
2015 

Values 
Transition 

A C  27 ± 1.1 °C     

Algeet-
Abarquero et 
al., 2015 

Trend A C    IVZSmG    

Algeet-
Abarquero et 
al., 2015 

Values 
OP 

A C        

Algeet-
Abarquero et 
al., 2015 

Values 
Transition 

A C        

Algeet-
Abarquero et 
al., 2015 

Trend A C    IFZSmG    

Algeet-
Abarquero et 
al., 2015 

Values 
OP 

A C        

Algeet-
Abarquero et 
al., 2015 

Values 
Transition 

A C        

Kurniawan et 
al., 2018 

Trend A C      IFMSmG  

Kurniawan et 
al., 2018 

Values 
OP 

A C      408 
mm 
yr−1 

Kurniawan et 
al., 2018 

Values 
Transition 

A C      155 
mm 
yr−1 

Kurniawan et 
al., 2018 

Trend A C      IFMSmG  

Kurniawan et 
al., 2018 

Values 
OP 

A C      459 
mm 
yr−1 

Kurniawan et 
al., 2018 

Values 
Transition 

A C      157 
mm 
yr−1 
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Table  B.14 Studies addressing fluxes, trends of change, and values for the variables Baseflow, Crop Type. Table conventions can be found in 
Table B.3 

Reference Values type Type 
Comparation or 
Transition 

Season Baseflow Units Crop Type 

Couwenberg 
and Hooijer., 
2013 

Trend B C R   Acacia 

Couwenberg 
and Hooijer., 
2013 

Values OP B C R    

Couwenberg 
and Hooijer., 
2013 

Values 
Transition 

B C R    

Couwenberg 
and Hooijer., 
2013 

Trend B C R   Acacia 

Couwenberg 
and Hooijer., 
2013 

Values OP B C R    

Couwenberg 
and Hooijer., 
2013 

Values 
Transition 

B C R    

Frazao et al., 
2014 

Trend B C     

Frazao et al., 
2014 

Values OP B C     

Frazao et al., 
2014 

Values 
Transition 

B C     

Frazao et al., 
2014 

Trend B C    Mixed secondary agroforest 

Frazao et al., 
2014 

Values OP B C     

Frazao et al., Values B C     
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Reference Values type Type 
Comparation or 
Transition 

Season Baseflow Units Crop Type 

2014 Transition 

Radersma et 
al., 1996 

Trend A C D   Cocoa 

Radersma et 
al., 1996 

Values OP A C D   Cocoa 

Radersma et 
al., 1996 

Values 
Transition 

A C D   Cocoa 

Radersma et 
al., 1996 

Trend A C R   Cocoa 

Radersma et 
al., 1996 

Values OP A C R   Cocoa 

Radersma et 
al., 1996 

Values 
Transition 

A C R   Cocoa 

Radersma et 
al., 1996 

Trend A C D   Rice, Maize 

Radersma et 
al., 1996 

Values OP A C D   Rice, Maize 

Radersma et 
al., 1996 

Values 
Transition 

A C D   Rice, Maize 

Radersma et 
al., 1996 

Trend A C R   Rice, Maize 

Radersma et 
al., 1996 

Values OP A C R   Rice, Maize 

Radersma et 
al., 1996 

Values 
Transition 

A C R   Rice, Maize 

Kurniawan et 
al., 2018 

Trend A C    Loam Acrisol Soil 

Kurniawan et 
al., 2018 

Values OP A C    Loam Acrisol Soil 

Kurniawan et 
al., 2018 

Values 
Transition 

A C    Loam Acrisol Soil 

Kurniawan et Trend A C    Clay Acrisol Soil 
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Reference Values type Type 
Comparation or 
Transition 

Season Baseflow Units Crop Type 

al., 2018 

Kurniawan et 
al., 2018 

Values OP A C    Clay Acrisol Soil 

Kurniawan et 
al., 2018 

Values 
Transition 

A C    Clay Acrisol Soil 

Allen et al., 
2015 

Trend A T    Loam Acrisol Soil 

Allen et al., 
2015 

Values OP A T    Loam Acrisol Soil 

Allen et al., 
2015 

Values 
Transition 

A T    Loam Acrisol Soil 

Allen et al., 
2015 

Trend A T    Clay Acrisol Soil 

Allen et al., 
2015 

Values OP A T    Clay Acrisol Soil 

Allen et al., 
2015 

Values 
Transition 

A T    Clay Acrisol Soil 

Nainar et al., 
2018 

Trend A T  DFMReG   

Nainar et al., 
2018 

Values OP A T  38,43 % PF (Primary forest) 

Nainar et al., 
2018 

Values 
Transition 

A T  67,92 %  

Nainar et al., 
2018 

Trend A T  DFMReG   

Nainar et al., 
2018 

Values OP A T  38,43 % 
VJR (Virgin 
jungle reserve) 

Nainar et al., 
2018 

Values 
Transition 

A T  42,18 %  

Nainar et al., 
2018 

Trend A T  DFMReG   

Nainar et al., Values OP A T  38,43 % LF2 (Twice-logged forest with 22 
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Reference Values type Type 
Comparation or 
Transition 

Season Baseflow Units Crop Type 

2018 years’ regeneration) 

Nainar et al., 
2018 

Values 
Transition 

A T  50,84 %  

Nainar et al., 
2018 

Trend A T  DFMReG   

Nainar et al., 
2018 

Values OP A T  38,43 % 
LF3 (Multiple-logged forest with 8 
years’ regeneration) 

Nainar et al., 
2018 

Values 
Transition 

A T  55,02 %  

Nainar et al., 
2018 

Trend A T     

Nainar et al., 
2018 

Values OP A T    PF (Primary forest) 

Nainar et al., 
2018 

Values 
Transition 

A T     

Nainar et al., 
2018 

Trend A T     

Nainar et al., 
2018 

Values OP A T    
VJR (Virgin 
jungle reserve) 

Nainar et al., 
2018 

Values 
Transition 

A T     

Nainar et al., 
2018 

Trend A T     

Nainar et al., 
2018 

Values OP A T    
LF2 (Twice-logged forest with 22 
years’ regeneration) 

Nainar et al., 
2018 

Values 
Transition 

A T     

Nainar et al., 
2018 

Trend A T     

Nainar et al., 
2018 

Values OP A T    
LF3 (Multiple-logged forest with 8 
years’ regeneration) 

Nainar et al., Values A T     
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Reference Values type Type 
Comparation or 
Transition 

Season Baseflow Units Crop Type 

2018 Transition 

Luke et al., 
2017 

Trend A T     

Luke et al., 
2017 

Values OP A T     

Luke et al., 
2017 

Values 
Transition 

A T    Oil Palm with buffer Strips (OPB) 

Luke et al., 
2017 

Trend A T     

Luke et al., 
2017 

Values OP A T     

Luke et al., 
2017 

Values 
Transition 

A T    Logged forest (LF) 

Luke et al., 
2017 

Trend A T     

Luke et al., 
2017 

Values OP A T     

Luke et al., 
2017 

Values 
Transition 

A T    Old.growth forest (OG) 

Da Sato et al., 
2017 

Trend A S    Clay (< 2 µm) 

Da Sato et al., 
2017 

Values OP A S     

Da Sato et al., 
2017 

Values 
Transition 

A S    0-20 cm 

Da Sato et al., 
2017 

Trend A S    Silt (2-50 µm) 

Da Sato et al., 
2017 

Values OP A S     

Da Sato et al., 
2017 

Values 
Transition 

A S    0-20 cm 

Da Sato et al., Trend A S    Sand (50-200 µm) 
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Reference Values type Type 
Comparation or 
Transition 

Season Baseflow Units Crop Type 

2017 

Da Sato et al., 
2017 

Values OP A S     

Da Sato et al., 
2017 

Values 
Transition 

A S    0-20 cm 

Meijide et al., 
2017 

Trend A T    1 yerar old 

Meijide et al., 
2017 

Values OP A T     

Meijide et al., 
2017 

Values 
Transition 

A T     

Meijide et al., 
2017 

Trend A T    12 year old 

Meijide et al., 
2017 

Values OP A T     

Meijide et al., 
2017 

Values 
Transition 

A T     

Sabajo et al., 
2017 

Trend A T     

Sabajo et al., 
2017 

Values OP A T    Palma Madura 

Sabajo et al., 
2017 

Values 
Transition 

A T    Rubber 

Sabajo et al., 
2017 

Values 
Transition 

A T    Acacia 

Sabajo et al., 
2017 

Trend A T     

Sabajo et al., 
2017 

Values OP A T    Palma Joven 

Sabajo et al., 
2017 

Values 
Transition 

A T    Urban 

Sabajo et al., Values A T    clear cut 
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Reference Values type Type 
Comparation or 
Transition 

Season Baseflow Units Crop Type 

2017 Transition 

Satriawan et 
al., 2016 

Trend A S     

Satriawan et 
al., 2016 

Values OP A S    5-7 months/Slopes 15-25% (P1) 

Satriawan et 
al., 2016 

Values OP A S     

Satriawan et 
al., 2016 

Values OP A S     

Satriawan et 
al., 2016 

Values OP A S    7–25 months / slopes 15–25% (P2) 

Satriawan et 
al., 2016 

Values OP A S     

Satriawan et 
al., 2016 

Values OP A S     

Satriawan et 
al., 2016 

Values OP A S    5–7 months / slopes 30–40% (P3) 

Satriawan et 
al., 2016 

Values OP A S     

Satriawan et 
al., 2016 

Values OP A S     

Satriawan et 
al., 2016 

Values OP A S    7–25 months / slopes 30–40% (P4) 

Satriawan et 
al., 2016 

Values OP A S     

Satriawan et 
al., 2016 

Values OP A S     

Satriawan et 
al., 2016 

Values 
Transition 

A S    LC weeds allowed (T1) 

Satriawan et 
al., 2016 

Values 
Transition 

A S    Rice + soybeans (T2) 

Satriawan et Values A S    Rice + soybeans + strip M. bracteata 
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Reference Values type Type 
Comparation or 
Transition 

Season Baseflow Units Crop Type 

al., 2016 Transition (T3) 

Merten et al., 
2016 

Trend A C     

Merten et al., 
2016 

Values OP A C    Oil palm 

Merten et al., 
2016 

Values 
Transition 

A C    Rubber plantation 

Merten et al., 
2016 

Values 
Transition 

A C    Forest 

Sahat et al., 
2016 

Trend A S     

Sahat et al., 
2016 

Values OP A S     

Sahat et al., 
2016 

Values 
Transition 

A S    Bare Soil 

Sahat et al., 
2016 

Values 
Transition 

A     Full Grass Cover 

Sahat et al., 
2016 

Values 
Transition 

A     Half Grass Cover 

Sahat et al., 
2016 

Values 
Transition 

A     Half Dry Frond 

 
 



 

184 
 

C. APPENDIX C: SUPPLEMENTAL INFORMATION TO CHAPTER 4 

C.1 Range of the spectrometer bands. Arable Mark 

Table  C.1 Band spectrometer range in the Arable Mark I 

Band Arable Mark 

1 440-510 

2 515-555 

3 565-595 

4 620-690 

5 690-740 

6 780-900 

7 930-960 

 

C.2. Database design  

A database was designed to storage the data collected by the stations (Figure C.1). This 

database helps to organize the data and facilitate search and storage of information. A data 

dictionary explains the meaning of each column and table in the database   

 
Figure  C.1 Structure of the database designed to storage data from the stations. The scheme is based on 
the Unified Modeling Language (UML). Each box represents a table in the database. The attributes of 
each table are listed in each box after the title. The type of each attribute or column is described in the 
diagram after the semicolon (:). Connectors represent the relations among the tables that make possible 
retrieve the data and linked in the programming language. 
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Table  C.2 Description of table Station 

Table name: Station. Contains the list and main characteristics of each station 
Attribute or Column 
name 

Type of data it contains Description 

name String Name of the station 
date Date Date of installation 
latitude Numeric Latitude at which the station is located 
longitude  Numeric Longitude at which the station is 

located 
 
Table  C.3 Description of table Device 

Table name: Device. Storage information about the device 
Attribute or Column 
name 

Type of data it contains Description 

id String Each sensor identification. The one 
assigned by the manufacture company 

name String Name of the device 
height Numeric* Height at which the device is placed. It 

can be one or many 
date_from  Date* Initial date in which the device was 

placed at the specific height. It can be 
one or many 

date_to Date*  Final date in which the device was 
placed at the specific height. It can be 
one or many 

 
Table  C.4 Description of table Measurement  

Table name: Measurement. Storage data measurements  
Attribute or Column 
name 

Type of data it contains Description 

date date Date in which the measurement was 
taken or registerd 

value Numeric Value registered 
type String Variable corresponding to the value 

measured 
 
Table  C.5 Description of table Maintenance  

Table name: Maintenance. Storage the dates in which the maintenance was done at each sensor  
Attribute or Column 
name 

Type of data it contains Description 

init_date date Date and time in which the 
maintenance started for a device  

end_date date Date and time in which the 
maintenance ended for a device 

filename String Filename in which the data was stored 
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Table  C.6 Description of table Variable  

Table name: Variable. Storage information about the variables 
Attribute or Column 
name 

Type of data it contains Description 

name date Date and time in which the 
maintenance started for a device  

unit date Date and time in which the 
maintenance ended for a device 

symbol String Filename in which the data was stored 
accuracy Numeric Accuracy defined for each variable and 

sensor 
min_range Numeric Maximum range of the variable at a 

sensor 
max_range Numeric Minimum range of the variable at a 

sensor 
 

C.3. Energy balance estimates Python Code.  

#Class EnergyBalance contain all the equations for the energy balance calculation 
import sys 
import os 
sys.path.append(os.getcwd()) 
from src.resources.arablepy.physics import * 
import pandas as pd 
import numpy as np 
 
class EnergyBalance: 
    _J2Wm2 = 1000000 
    _Ra = 461.495  # Specific gas constant for moist air in Jkg-1K-1 
    _C2K_f: float = 273.15 #K 
    _e = 0.622 
    _Cp = 1013 #Jkg-1 K-1 
    _R = 8.314462 #J/(K*mol) 
    _Mv = 0.018016 #Kg/mol 
    _Md = 0.028965 #Kg/mol 
 
    # Parameters 
    parameters = {'tair_fd': 'tair', 'time_fd': 'dtime', 'lat_fd': 'lat', 'long_fd': 'long', 
                  'swuw_fd': 'swuw', 'swdw_fd': 'swdw', 'ea_fd':'ea_wvp','alb_fd': 'albedo'} 
    def __init__(self, df=None): 
        self.df = df 
 
    """Create a data frame or a copy of the existing one to make the calculations 
       The idea behind it is to use a copy of a data frame instead of the original reference to memory 
       This function is only used by the methods and have no effect on the Energy Balance 
calculations""" 
 
    def _val_data_frame(self, df_local): 
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        if self.df is None and df_local is None: 
            # Create an empty dataframe and use it for the operation 
            return pd.DataFrame()  # TODO: Instead of logical error manage from the caller, use a try-
catch and propagate the error 
        elif df_local is not None: 
            df = df_local.copy() 
        else: 
            df = self.df.copy() 
        return df 
     
    #TODO: Pending convert other T units. For now convert from C to K  
    def convert_temperature(self, t_fd, df_local=None, inplace=False, o_unit='C', d_unit='K'): 
        df = self._val_data_frame(df_local) 
        if o_unit=='C' and d_unit=='K': 
            f_name = t_fd + '_K' 
            df[f_name] = df[t_fd] + self._C2K_f 
        elif o_unit == 'K' and d_unit == 'C': 
            f_name = t_fd + '_C' 
            df[f_name] = df[t_fd] - self._C2K_f 
        else: 
            raise Exception('Working on implementing other conversions. Check o_unit and d_unit inputs') 
        if inplace: 
            self.df = df 
        return df 
 
# TODO: Include conversion from other units, for now, only kPa and Degree celsious 
# Source: 
http://www.atmo.arizona.edu/students/courselinks/fall11/atmo551a/ATMO_451a_551a_files/WaterVap
or.pdf 
 
    def wvp2wvd(self, df_local, tair_fd, ea_wvp_fd, inplace=False, unit_t='C', unit_e='kPa'): 
        df = self._val_data_frame(df_local) 
        if unit_t == 'C' and unit_e == 'kPa': 
            tair_fd_K = tair_fd + '_' + 'K' 
            df[tair_fd_K] = df[tair_fd] + self._C2K_f 
            ea_wvp_fd_Pa = ea_wvp_fd + '_' + 'Pa' 
            df[ea_wvp_fd_Pa] = 1000 * df[ea_wvp_fd] 
        df['wvd'] = df[ea_wvp_fd_Pa] / (461.5 * df[tair_fd_K])  # Units kg/m3 
        if inplace: 
            self.df = df 
        return df 
    def calc_air_density(self, pressure_fd, ea_fd, tair_fd, df_local=None, inplace=False, unit_t='C', 
unit_ea='kPa', unit_p='kPa'): 
        df=self._val_data_frame(df_local) 
        if unit_t=='C': 
            tair_fd_K = tair_fd + '_' + 'K' 
            df[tair_fd_K] = df[tair_fd] + self._C2K_f 
        elif unit_t=='K': 
            tair_fd_K = tair_fd 
        if unit_p=='kPa': 
            pressure_fd_Pa= pressure_fd + '_' + 'Pa' 



 

188 
 

            df[pressure_fd_Pa]= df[pressure_fd] * 1000 
        elif unit_p=='Pa': 
            pressure_fd_Pa = pressure_fd 
        if unit_ea=='kPa': 
            ea_fd_Pa=ea_fd+'_'+'Pa' 
            df[ea_fd_Pa] = df[ea_fd] * 1000 
        elif unit_p=='Pa': 
            ea_fd_Pa = ea_fd 
        df['mad'] = (df[pressure_fd_Pa]*self._Md + df[ea_fd_Pa]*(self._Mv - 
self._Md))/(self._R*df[tair_fd_K]) 
        if inplace: 
            self.df = df 
        return df 
 
    """Calc long wave radiation based on the Dong equation. Call the function for net radiation using 
Dong.  
        TODO: Pending to change to make an independent calculation""" 
    def calc_lwdw_based_Dong(self, df_local=None, params_fd_dict=None, albedo_calc='prod', 
T_untis = 'K', inplace=False): 
        df = self.Rn_dong92_adapted(df_local, params_fd_dict, albedo_calc, T_untis) 
        df['lwdw_fn'] = np.where(df['lwdw'].isnull(),df['lwdw_calc'],df['lwdw']) 
        if inplace: 
            self.df = df 
        return df 
 
    def calc_net_radiation(self, df_local=None, fields=None, inplace=False): 
        """Calculate net radiation calc_net_radiation (self, df_local=None, fields=None, inplace=False): 
                fields={'swdw': swdw_field, 'lwdw': lwdw_field, 'swuw': swuw_field, 'lwuw': lwuw_field}""" 
        df = self._val_data_frame(df_local) 
        if fields is None: 
            try: 
                # TODO: Create a uniform dictionary of fieldnames 
                df['nr'] = df['swdw'] + df['lwdw'] + df['swuw'] + df['lwuw'] 
            except: 
                return pd.DataFrame() 
        else: 
            swdw_fd=fields['swdw'] 
            swuw_fd=fields['swuw'] 
            lwdw_fd=fields['lwdw'] 
            lwuw_fd=fields['lwuw'] 
            df['nr']=df[swdw_fd] + df[lwdw_fd] + df[swuw_fd] + df[lwuw_fd] 
        if inplace: 
            self.df = df 
        return df 
 
    def calc_albedo(self, swdw_fd, swup_fd, df_local=None, inplace=False): 
 
        df = self._val_data_frame(df_local) 
        try: 
            # TODO: Create a uniform dictionary of fieldnames 
            df['albedo'] = df[swup_fd] / df[swdw_fd] 
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            df['albedo'] = df['albedo'].abs() 
        except: 
            return pd.DataFrame() 
        if inplace: 
            self.df = df 
        return df 
 
    """Water pressure calculation at a given height 
        This function calculate the saturated water vapor pressure as well if necessary 
        field_rh: field with relative humidity data 
        field_air_t: field name with the air temperature  
        df_local: local dataframe if not specified it uses the one in the class  
        rh_percentage: Default=False, is the RH expressed as %? 
        cal_swvp: if true, calculate the saturated water vapor pressure. Default: true  
        equation: Implement Buck or Teten equation. Default Buck 
         
        Output Dataframe with an additional field ea_wvp water vapor pressure 
         
        checked 03/31/2021""" 
 
    def calc_water_vapor_pressure(self, field_rh, field_air_t, df_local=None, rh_percentage=False, 
equation='Buck_1981', 
                                  cal_swvp=True, inplace=False): 
        df = self._val_data_frame(df_local) 
        if rh_percentage == True: 
            df[field_rh] = df[field_rh] / 100 
        if cal_swvp == True: 
            df = self.calc_saturated_wvp(field_air_t, df, equation, inplace) 
        df['ea_wvp'] = df[field_rh] * df['es_wvp'] 
        if inplace: 
            self.df = df 
        return df 
 
    # TODO: add Buck equation when T<0 
    """Units in kPa, input units T[C],  
    output dataframe with additional column saturated vapor pressure: es_wvp 
    checked 06/16/2021""" 
 
    def calc_saturated_wvp(self, field_air_t, df_local=None, equation='Buck_1981', inplace=False): 
 
        df = self._val_data_frame(df_local) 
 
        df['es_wvp'] = 6.1121 * np.exp( 
            (18.678 - df[field_air_t] / 234.5) * df[field_air_t] / (257.14 + df[field_air_t])) 
        if equation == 'Teten_FAO56': 
            df['es_wvp'] = 6.11 * np.exp(17.27 * df[field_air_t] / (273.3 + df[field_air_t])) 
        df['es_wvp'] = df['es_wvp'] / 10  # Convert units from hPa to kPa 
        if inplace: 
            self.df = df 
        return df 
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    """Calculate the VPD 
            for now all the fields are by default none which means they are assumed to be calculated inside 
the function 
            otherwise specify: 
            df_local: datafame with water vapor pressure saturation and water vapor pressure. Default, 
inside the instance  
            field_es: field name/column with saturated water vapor pressure in kPa. default name es_wvp 
            field_ea: field name/column with water vapor pressure in kPa. default name ea_wvp""" 
 
    def calc_VPD(self, df_local=None, field_es=None, field_ea=None, inplace=False): 
        df = self._val_data_frame(df_local) 
        f_es = 'es_wvp' 
        f_ea = 'ea_wvp' 
        if field_ea is not None: 
            f_es = field_es 
        if field_es is not None: 
            f_ea = field_ea 
        df['VPD'] = df[f_es]-df[f_ea] 
        if inplace: 
            self.df = df 
        return df 
 
    """Calculate the mixing ratio as equivalent to specific humidity 
        p_fd: field name with the Pressure 
        ea_wvp_fd: water vapor presure at a given height""" 
 
    def calc_mixing_ratio(self, p_fd, ea_wvp_fd, df_local=None, suffix=None, inplace=False): 
        df = self._val_data_frame(df_local) 
        mr_name = 'mr' 
        if suffix is not None: 
            mr_name = mr_name + '_' + suffix 
        # _e should be 0.622 
        df[mr_name] = self._e * df[ea_wvp_fd] / df[p_fd] 
        if inplace: 
            self.df = df 
        return df 
 
    """Calculate virtual temperature assuming mixing ratio has been already calculated""" 
 
    def calc_virtual_temperature(self, tair_fd, mr_fd, df_local=None, suffix=None, inplace=False): 
        df = self._val_data_frame(df_local) 
        tv_name = 'tv' 
        if suffix is not None: 
            tv_name = tv_name + '_' + suffix 
        df[tv_name] = df[tair_fd] * (1 + 0.61 * df[mr_fd]) 
        if inplace: 
            self.df = df 
        return df 
 
    """Calculate virtual potential temperature for a given height under a known virtual temperature  
        p_fd has to be in KPa""" 
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    def calc_virtual_potential_temperature(self, p_fd, tv_fd, df_local=None, suffix=None, 
inplace=False): 
        df = self._val_data_frame(df_local) 
        tvp_name = 'tvp' 
        if suffix is not None: 
            tvp_name = tvp_name + '_' + suffix 
        df[tvp_name] = df[tv_fd] * (100 / df[p_fd]) ** (self._Ra / self._Cp) 
        if inplace: 
            self.df = df 
        return df 
 
    """Fixed to calculate at each height and have different name specified by suffix 
        Output is in MJkg-1""" 
 
    def calc_latent_heat_vaporization(self, tair_fd, df_local=None, equation='Harrison_1963', 
suffix=None, 
                                      inplace=False): 
 
        df = self._val_data_frame(df_local) 
        lambda_name = 'lambda' 
        if suffix is not None: 
            lambda_name = lambda_name + '_' + suffix 
        # temperature in degree Celsius 
        df[lambda_name] = 2.501 - 2.361E-3 * df[tair_fd]  # Harrison 1963. (Refs 
http://www.fao.org/3/X0490E/x0490e0k.htm Gavilan y Berenguena 2007) 
        if inplace: 
            self.df = df 
        return df 
 
    # Reference: Brunt (1952) 
    # TODO: Validate units 
    def calc_psychrometric_constant(self, pressure_fd, lambda_fd, df_local=None, p_units='kPa', 
suffix=None, 
                                    inplace=False): 
 
        df = self._val_data_frame(df_local) 
        if p_units != 'kPa': 
            raise Exception('Units different from kPa not supported yet') 
        Cp = self._Cp  # Specific heat of moist air [J kg-1 C-1] 
        e = self._e  # Ratio molecular weight of water vapor/dry air 
        gamma_name = 'g_constant' 
        if suffix is not None: 
            gamma_name = gamma_name + '_' + suffix 
        df[gamma_name] = Cp * df[pressure_fd] / (e * df[lambda_fd])  # kPa k-1 
 
        if inplace: 
            self.df = df 
        return df 
 
    # TODO: Validate units 
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    def calc_atmospheric_density(self, pressure_fd, tair_fd, ea_wvp_fd, df_local=None, tair_units='C', 
                                 pressure_units='kPa', inplace=False): 
 
        df = self._val_data_frame(df_local) 
 
        if tair_units == 'C': 
            tair_fd_K = tair_fd + '_' + 'K' 
            df[tair_fd_K] = df[tair_fd] + 273.15 
        elif tair_units == 'K': 
            tair_fd_K = tair_fd 
        # else: 
        #     raise 
 
        if pressure_units == 'kPa': 
            pressure_fd_kPa = pressure_fd 
            ea_wvp_fd_kPa = ea_wvp_fd 
        elif pressure_units == 'Pa': 
            ea_wvp_fd_kPa = ea_wvp_fd + '_' + 'kPa' 
            pressure_fd_kPa = pressure_fd + '_' + 'kPa' 
            df[pressure_fd_kPa] = df[pressure_fd] * 1000 
            df[ea_wvp_fd_kPa] = df[ea_wvp_fd] * 1000 
        # From FAO http://www.fao.org/3/X0490E/x0490e0k.htm#TopOfPage 
        df['air_density'] = df[tair_fd_K] * (3.486 * df[pressure_fd_kPa] - 1.318 * df[ea_wvp_fd_kPa]) 
 
        if inplace: 
            self.df = df 
        return df 
 
    def latent_heat_2s(self, wind_up_fd, wind_dw_fd, ma_up_fd, ma_dw_fd, tair_up_fd, tair_dw_fd, 
mr_up_fd, mr_dw_fd, 
                       # lambda_up_fd, lambda_dw_fd, 
                       inplace=False, ma_type='D', unit_t='C', unit_ea='kPa', unit_p='kPa', 
                       p_up_fd=None, p_dw_fd=None, df_local=None): 
        """ Recieve a dataframe with date and the corresponding rows up and down values to calculate 
latent heat fluxes at two co-located sites arrange in the vertical""" 
        # TODO: Correct the method if is incorrect 
        """ Inputs:  
            df_local: Dataframe with the infomation 
            wind_up_fd: Field or column with horizontal wind at point X1 
            wind_dw_fd: Field or column with horizontal wind at point X2 
            ma_up_fd: Field or column with moist air property at point X1. It can be density or pressure. 
Specify type in wv_type 
            ma_dw_fd: Field or column with moist air property at point X2 
            ma_type: If P, it will convert pressure to density to calculate latent heat, if D it will use the 
wv_up wv_dw columns as moist air density. Default D 
            tair_up_fd: Field or Column with values of air temperature at point X1 
            tair_dw_fd: Field or Column with values of air temperature at point X2 
            mr_up_fd: Field or Column with values of mixing ration at point X1 
            mr_dw_fd: Field or Column with values of mixing ration at point X2""" 
        # TODO: Validate Null data and empty to non-existen dataframes/fields 
        df = self._val_data_frame(df_local) 
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        if ma_type == 'P':  # Convert from air Vapor Pressure to air Pressure Density 
            if p_up_fd is not None and p_dw_fd is not None: 
                # if tair_up_fd is None or tair_dw_fd is None: 
                #     raise Exception('Air Temperature needed to convert Water Vapor Pressure to Water 
Pressure Density') 
                df = self.calc_air_density(df, pressure_fd=p_up_fd, ea_fd=ma_up_fd, tair_fd=tair_up_fd, 
                                           inplace=inplace, unit_t=unit_t, unit_p=unit_p, unit_ea=unit_ea) 
                df.rename(columns={'mad': 'up_mad'}, inplace=True) 
                mad_up_fd = 'up_mad' 
                df = self.calc_air_density(df, pressure_fd=p_dw_fd, ea_fd=ma_dw_fd, tair_fd=tair_dw_fd, 
                                           inplace=inplace, unit_t=unit_t, unit_p=unit_p, unit_ea=unit_ea) 
                df.rename(columns={'mad': 'dw_mad'}, inplace=True) 
                mad_dw_fd = 'dw_mad' 
        else: 
            mad_dw_fd = ma_dw_fd 
            mad_up_fd  = ma_up_fd 
        # Calculate delta fluxes first 
        df['delta_w'] = df[wind_up_fd] - df[wind_dw_fd] 
        df['delta_mr'] = df[mr_up_fd] - df[mr_dw_fd] 
        df['avg_mad'] = df[[mad_up_fd, mad_dw_fd]].mean(axis=1) 
        #Assume latent heat vaporization calculated 
        df['tair_mean'] = df[[tair_up_fd, tair_dw_fd]].mean(axis=1) 
        df = self.calc_latent_heat_vaporization('tair_mean', df, inplace=inplace) 
        df['LambdaE'] = df['lambda'] * df['avg_mad']* df['delta_w'] * df['delta_mr']  # Mega joules 
        df['LambdaE'] = df['LambdaE'] * self._J2Wm2  # Convert to J or W/m2 
        if inplace: 
            self.df = df 
        return df 
     
    def calc_sensible_heat_2s(self, psychrometric_up_fd, psychrometric_dw_fd, tvp_up_fd, tvp_dw_fd, 
                              wind_up_fd, wind_dw_fd,ma_up_fd, ma_dw_fd,tair_up_fd, tair_dw_fd, 
ma_type='D', unit_t='C', 
                              unit_ea='kPa', unit_p='kPa', p_up_fd=None, p_dw_fd=None, df_local=None, 
inplace=False): 
        df = self._val_data_frame(df_local) 
        if ma_type == 'P':  # Convert from air Pressure to air Density 
            if p_up_fd is not None and p_dw_fd is not None: 
                df = self._convert_updw_ap2ad(df, p_up_fd, p_dw_fd, ma_up_fd, ma_dw_fd, tair_up_fd, 
tair_dw_fd, unit_t, 
                                              unit_p, unit_ea, inplace) 
                mad_up_fd = 'up_mad' 
                mad_dw_fd = 'dw_mad' 
 
        else: 
            mad_dw_fd = ma_dw_fd 
            mad_up_fd  = ma_up_fd 
        #Calculate independent terms 
        #avg air density 
        df['avg_mad'] = df[[mad_up_fd, mad_dw_fd]].mean(axis=1) 
        #avg phsychrometric constant 
        df['mean_g_constant'] = (df[psychrometric_dw_fd] + df[psychrometric_up_fd]) / 2 



 

194 
 

        #delta virtual temperature 
        df['delta_tvp'] = df[tvp_dw_fd] - df[tvp_up_fd] 
        #delta wind speed 
        df['delta_w'] = df[wind_dw_fd] - df[wind_up_fd] 
        df['SH']=df['avg_mad']*df['mean_g_constant']*df['delta_tvp']*df['delta_w'] 
        if inplace==True: 
            self.df = df 
        return df 
 
    def _convert_updw_ap2ad(self, df, p_up_fd,p_dw_fd,ma_up_fd, ma_dw_fd,tair_up_fd, 
tair_dw_fd,unit_t='C', unit_p='kPa', unit_ea='kPa', inplace=False): 
        # if tair_up_fd is None or tair_dw_fd is None: 
        #     raise Exception('Air Temperature needed to convert Water Vapor Pressure to Water Pressure 
Density') 
        df=self._val_data_frame(df) 
        df = self.calc_air_density(df, pressure_fd=p_up_fd, ea_fd=ma_up_fd, tair_fd=tair_up_fd, 
                                   inplace=inplace, unit_t=unit_t, unit_p=unit_p, unit_ea=unit_ea) 
        df.rename(columns={'mad': 'up_mad'}, inplace=True) 
 
        df = self.calc_air_density(df, pressure_fd=p_dw_fd, ea_fd=ma_dw_fd, tair_fd=tair_dw_fd, 
                                   inplace=inplace, unit_t=unit_t, unit_p=unit_p, unit_ea=unit_ea) 
        df.rename(columns={'mad': 'dw_mad'}, inplace=True) 
 
        if inplace: 
            self.df=df 
        return df 
    # virtual potential Temperature must be in C 
    # Presure must be in kPa 
    # Psychrometric constant must be in kPaC-1 
    def calc_bowen_ratio(self, psychrometric_up_fd, psychrometric_dw_fd, tvp_up_fd, tvp_dw_fd, 
                         ea_wvp_up_fd, ea_wvp_dw_fd, df_local=None, 
                         inplace=False): 
        df = self._val_data_frame(df_local) 
        df['mean_g_constant']=(df[psychrometric_dw_fd]+df[psychrometric_up_fd])/2 
        df['delta_tvp'] = df[tvp_dw_fd] - df[tvp_up_fd] 
        df['delta_wvp'] = df[ea_wvp_dw_fd] - df[ea_wvp_up_fd] 
        df['bowen_r'] = df['mean_g_constant'] * df['delta_tvp'] / df['delta_wvp'] 
 
        if inplace: 
            self.df = df 
        return df 
 
    def Rn_dong92_adapted(self,df_local=None, params_fd_dict=None, albedo_calc='prod', 
T_untis='K'): 
        """albedo_calc= 'prod' calc from arable 
                        'done' input as a field in params in the alb_fd variable 
                        'dong' calculate it with Dong, 1992 eq""" 
        df = self._val_data_frame(df_local) 
 
        if params_fd_dict is None: 
            params_fd_dict = self.parameters 



 

195 
 

        tair_fd=params_fd_dict['tair_fd'] 
        time_fd=params_fd_dict['time_fd'] 
        lat_fd = params_fd_dict['lat_fd'] 
        long_fd = params_fd_dict['long_fd'] 
        swuw_fd= params_fd_dict['swuw_fd'] 
        swdw_fd= params_fd_dict['swdw_fd'] 
        ea_fd=params_fd_dict['ea_fd'] 
 
        #Calc temperatures 
        if T_untis=='C': 
            df['tair_K']=df[tair_fd]+ self._C2K_f 
            tair_fd='tair_K' 
        #TODO:Pending the other conversions 
 
        # Temperatures 
        Tk = df[tair_fd] 
        To = df[tair_fd]  # clear sky temp 
        Tc = df[tair_fd]  # cloud top temp 
        Ts = df[tair_fd]  # surface temp; per Dong p472 set to air temp at 1.5m 
 
        # solar angles 
        sza = solar_psi_(df[time_fd].dt, df[lat_fd], df[long_fd]) 
        cossza = np.cos(sza) 
        theta = 90. - sza * 180. / np.pi  # solar altitude in degrees, cf Dong eqn 15 
 
        # Irradiance, Dong eqn 5 
        if 'SWP' not in df.columns: 
            df['SWP'] = SWP_(df[time_fd].dt, df[lat_fd], df[long_fd]) 
 
        I = df.SWP 
 
        # albedo, Dong eqn 6 
        if albedo_calc == 'prod': 
            # use our swdw/swuw 
            alpha = (-1.0 * df[swuw_fd]) / df[swdw_fd] 
            # clip to between 0 and 0.5 based on Adam's rec  
            alpha = alpha.clip(0, 0.5) 
        elif albedo_calc=='done': 
            alpha = df[params_fd_dict['alb_fd']] 
        else: 
            # use Dong version 
            if 'Kt' not in df.columns: 
                df['Kt'] = Kt_(df[swdw_fd], df[time_fd].dt, df[lat_fd], df[long_fd]) 
            Rs_I = df.Kt 
            alpha = 0.00158 * theta + 0.386 * exp(-0.0188 * theta) 
            alpha[df.Kt < 0.375] = 0.26 
 
        # emissivity 
        epss = 0.98  # surface emissivity. Dong assumes 0.98, but CIMIS uses  
        epsc = 1.  # assumed cloud emissivity of 1.0 
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        # clear sky emissivity, Dong eqn 10 
        # ea is in mbar in this eqn 
        epso = 1.08 * (1.0 - np.exp(-(df[ea_fd] * 10.) ** (Tk / 2016.))) 
 
        # fraction of cloud cover 
        Ra = (0.79 - 3.75 / theta) * I 
        Ra[theta < 10] = (0.79 - 3.75 / 10.) * I  # handles low zenith angles 
        c = (1.333 - 1.333 * (df[swdw_fd] / Ra)) ** 0.294 
        c = np.clip(c, 0, 1) 
 
        # Rn, equation 19 p 477 
        E = 0.89 
 
        SWdw = E * df[swdw_fd] 
        SWuw = E * alpha * df[swuw_fd] 
        LWdw = E * epss * (epso * (1. - c) * SBC * (To ** 4) + c * SBC * (Tc ** 4))  #  why Tc if the 
paper has Ta here too 
        LWuw = E * epss * SBC * (Ts ** 4) 
        df['lwdw_calc']=LWdw 
        df['Rn_Dong'] = SWdw - SWuw + SWdw - LWdw 
 
        return df 
 
 
import pandas as pd 
import os 
from datetime import datetime as dt 
from datetime import date, timedelta 
from pytz import timezone 
 
# from itertools import tee, izip 
#Useful to call directy to modules and classes storage in different scripts (find_dotenv has to be 
installed first) 
#DataQuality class  
import sys 
from dotenv import find_dotenv 
sys.path.append(os.path.dirname(find_dotenv())) 
 
from weather_data import WeatherFile 
 
class DataQuality: 
 
    def filter_maintenance(self, df, date_field, st, sensor_ir=None): 
        # open maintanance file 
        dw = os.getcwd() 
        os.chdir("..") 
        dir_name = os.getcwd() + "/data/" 
        file_name = 'date_maintenance.csv' 
        os.chdir(dw) 
        filter_dates = pd.read_csv(dir_name + file_name, sep=',') 
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        # filter stations that were taken off. Field name: Bajo_estacion 
        # filter station that is the station in the data 
        field_st_taken = 'Bajo_estacion' 
        station = 'Station' 
        start_date_field = 'Combined_started_date' 
        end_date_field = 'Combined_end_date' 
        filter_dates[field_st_taken] = filter_dates[field_st_taken].str.upper().str.strip() 
        st_down = filter_dates[(filter_dates[field_st_taken] == 'SI') & (filter_dates[station].str.strip() == 
st)] 
 
        # filter in df the dates from the file 
 
        try: 
            #if the call was done by irrometer 
            if sensor_ir == True: 
                df[date_field]=pd.to_datetime(df[date_field], format="%d/%m/%Y 
%H:%M").dt.strftime("%m/%d/%Y %H:%M") 
            df[date_field]= pd.to_datetime(df[date_field]).dt.tz_localize('America/Bogota') 
        except: 
            print("Field is already datetime") 
            #TODO: Fix this to a more contundent actions 
        tz_date=timezone('America/Bogota') 
        for index, row in st_down.iterrows(): 
 
            start_date = tz_date.localize(dt.strptime(row[start_date_field], '%d/%m/%Y %H:%M:%S')) 
            end_date = tz_date.localize(dt.strptime(row[end_date_field], '%d/%m/%Y %H:%M:%S')) 
            df = df[(df[date_field] < start_date) | (df[date_field] > end_date)] 
 
        return df 
 
    def count_data(self, df, group_field): 
        # Count amount of data by field 
        dfsum=df.groupby(group_field, as_index=False).count() 
 
        return dfsum 
 
    def reshape_to_long(self, df, id_fields, fields_to_remove=None, has_time_col=True, type=None): 
        if fields_to_remove is not None: 
            df=df.remove(fields_to_remove) 
        if has_time_col==True: 
            if type is not None: 
                wfdl=WeatherFile().get_time_cols('A') 
            else: 
                wfdl=WeatherFile().get_time_cols() 
            id_fields= wfdl + id_fields 
 
        return pd.melt(df, id_fields, 
                       var_name='variable', 
                       value_name='value') 
 
    """merge_df_by_date 
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        Merge two dataframes by date distinguising all the fields from df_one by a prefix df_one_prefix 
and  
        fields in dataframe two by a prefix df_two_prefix""" 
    def merge_df_by_date(self, df_one, df_two,name_date_fd,df_one_prefix,df_two_prefix): 
        #TODO: It should be a way to do this easier/faster by vectorizing 
        df_one=df_one.copy() 
        df_two = df_two.copy() 
        col_names_df1 = df_one.columns 
        col_names_df2 = df_two.columns 
        col_names_df1_r = [] 
        col_names_df2_r = [] 
        i = 0 
        for c in col_names_df1: 
            col_names_df1_r.append(df_one_prefix + '_' + c) 
            i += 1 
        df_one.columns = col_names_df1_r 
        i = 0 
        for c in col_names_df2: 
            col_names_df2_r.append(df_two_prefix + '_' + c) 
            i += 1 
 
        df_two.columns = col_names_df2_r 
        name_date_fd_1 = df_one_prefix + '_' + name_date_fd 
        name_date_fd_2 = df_two_prefix + '_' + name_date_fd 
        df_out = pd.merge(df_one, df_two, left_on=name_date_fd_1, right_on=name_date_fd_2) 
 
        return df_out 
 
 
 
Table  C.7 Summary statistics Conventions values at each hour for each station and season 

Column name  Meaning  
Station Name of the measurement station 

Season 
Refers to the tropical climatic season. I can be dry (low 
precipitation) and Wet (high precipitation)  

Hour Hour of the day  

No records Number of records summarized 

Mean Variable's mean value 

STD Variable's standard deviation 

Min Variable's minimum value 

25% Variable's 25% percentile 

50% Variable's 50% percentile 

75% Variable's 75% percentile 

Max Variable's maximum value 
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Table  C.8 Summary statistics Albedo values at each hour for each station and season 

Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

BA Dry 7 101 0.08 0.02 0.06 0.07 0.07 0.08 0.19 

BA Dry 8 100 0.06 0.01 0.05 0.06 0.06 0.07 0.11 

BA Dry 9 100 0.06 0.01 0.05 0.05 0.06 0.06 0.10 

BA Dry 10 101 0.06 0.01 0.04 0.05 0.06 0.06 0.12 

BA Dry 11 101 0.06 0.01 0.04 0.05 0.05 0.06 0.11 

BA Dry 12 101 0.06 0.02 0.04 0.05 0.05 0.06 0.11 

BA Dry 13 101 0.06 0.02 0.04 0.05 0.05 0.06 0.17 

BA Dry 14 101 0.07 0.02 0.05 0.05 0.06 0.06 0.13 

BA Dry 15 102 0.08 0.04 0.05 0.06 0.07 0.07 0.21 

BA Dry 16 103 0.15 0.16 0.06 0.08 0.09 0.10 0.94 

BA Dry 17 94 0.15 0.09 0.07 0.10 0.12 0.15 0.71 

BA Wet 7 128 0.10 0.08 0.04 0.05 0.05 0.13 0.49 

BA Wet 8 128 0.09 0.07 0.03 0.04 0.05 0.10 0.33 

BA Wet 9 128 0.08 0.07 0.03 0.04 0.04 0.06 0.22 

BA Wet 10 129 0.08 0.06 0.03 0.04 0.04 0.06 0.21 

BA Wet 11 130 0.08 0.06 0.03 0.04 0.04 0.07 0.21 

BA Wet 12 130 0.08 0.06 0.04 0.04 0.04 0.06 0.22 

BA Wet 13 131 0.08 0.06 0.04 0.04 0.05 0.07 0.28 

BA Wet 14 131 0.08 0.06 0.04 0.05 0.05 0.06 0.23 

BA Wet 15 131 0.10 0.07 0.05 0.05 0.06 0.07 0.22 

BA Wet 16 131 0.11 0.07 0.05 0.06 0.07 0.11 0.30 

BA Wet 17 131 0.18 0.11 0.06 0.10 0.13 0.23 0.62 

LP Dry 7 70 0.06 0.01 0.05 0.05 0.05 0.06 0.13 

LP Dry 8 70 0.05 0.00 0.04 0.05 0.05 0.05 0.07 

LP Dry 9 70 0.05 0.00 0.04 0.04 0.05 0.05 0.06 

LP Dry 10 70 0.04 0.00 0.04 0.04 0.04 0.05 0.05 

LP Dry 11 71 0.04 0.00 0.04 0.04 0.04 0.05 0.05 

LP Dry 12 71 0.04 0.00 0.04 0.04 0.04 0.05 0.05 

LP Dry 13 71 0.05 0.03 0.04 0.04 0.04 0.05 0.24 

LP Dry 14 69 0.05 0.01 0.04 0.05 0.05 0.05 0.16 

LP Dry 15 69 0.06 0.02 0.05 0.05 0.05 0.06 0.21 

LP Dry 16 71 0.07 0.04 0.05 0.06 0.06 0.07 0.38 

LP Dry 17 71 0.14 0.10 0.07 0.09 0.11 0.13 0.64 

LP Wet 7 173 0.15 0.13 0.04 0.06 0.07 0.24 0.61 

LP Wet 8 173 0.12 0.10 0.04 0.05 0.06 0.22 0.45 

LP Wet 9 174 0.11 0.08 0.04 0.05 0.06 0.20 0.42 

LP Wet 10 176 0.10 0.07 0.04 0.05 0.06 0.18 0.25 

LP Wet 11 174 0.09 0.06 0.04 0.05 0.05 0.17 0.26 
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Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

LP Wet 12 175 0.09 0.07 0.04 0.05 0.05 0.16 0.57 

LP Wet 13 175 0.09 0.07 0.04 0.05 0.05 0.16 0.35 

LP Wet 14 177 0.10 0.07 0.04 0.05 0.06 0.18 0.24 

LP Wet 15 178 0.12 0.09 0.04 0.06 0.07 0.21 0.58 

LP Wet 16 177 0.12 0.10 0.05 0.06 0.07 0.21 0.68 

LP Wet 17 172 0.21 0.20 0.06 0.08 0.11 0.28 0.99 

SI Dry 7 122 0.11 0.09 0.06 0.08 0.09 0.11 0.77 

SI Dry 8 122 0.09 0.09 0.06 0.07 0.08 0.09 0.92 

SI Dry 9 121 0.07 0.02 0.06 0.06 0.07 0.08 0.25 

SI Dry 10 120 0.07 0.01 0.06 0.06 0.07 0.08 0.10 

SI Dry 11 121 0.07 0.01 0.05 0.07 0.07 0.08 0.10 

SI Dry 12 122 0.07 0.01 0.05 0.06 0.07 0.07 0.10 

SI Dry 13 122 0.07 0.01 0.06 0.06 0.07 0.08 0.11 

SI Dry 14 122 0.08 0.01 0.06 0.07 0.08 0.08 0.10 

SI Dry 15 122 0.09 0.01 0.07 0.08 0.09 0.10 0.12 

SI Dry 16 122 0.12 0.02 0.07 0.10 0.12 0.13 0.22 

SI Dry 17 121 0.18 0.08 0.09 0.13 0.16 0.20 0.51 

SI Wet 7 213 0.09 0.06 0.06 0.07 0.08 0.09 0.73 

SI Wet 8 212 0.08 0.02 0.05 0.06 0.07 0.08 0.23 

SI Wet 9 212 0.07 0.02 0.05 0.06 0.07 0.08 0.21 

SI Wet 10 211 0.07 0.02 0.05 0.06 0.07 0.08 0.26 

SI Wet 11 210 0.07 0.01 0.05 0.06 0.07 0.07 0.11 

SI Wet 12 210 0.07 0.01 0.05 0.06 0.06 0.07 0.12 

SI Wet 13 211 0.07 0.01 0.05 0.06 0.07 0.07 0.11 

SI Wet 14 212 0.08 0.01 0.06 0.07 0.07 0.08 0.21 

SI Wet 15 212 0.09 0.05 0.06 0.08 0.09 0.09 0.66 

SI Wet 16 211 0.13 0.08 0.07 0.09 0.11 0.13 0.67 

SI Wet 17 194 0.25 0.19 0.09 0.12 0.17 0.29 0.95 
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Table  C.9 Summary statistics WRDVI values at each hour for each station and season 

Station Season Hour 
No 

records Mean STD Min 25% 50% 75% Max 

BA Dry 7 99 0.25 0.10 -0.23 0.22 0.28 0.31 0.40 

BA Dry 8 98 0.34 0.06 0.16 0.32 0.35 0.37 0.51 

BA Dry 9 98 0.36 0.06 0.20 0.34 0.37 0.40 0.54 

BA Dry 10 99 0.37 0.07 0.16 0.34 0.37 0.41 0.55 

BA Dry 11 99 0.37 0.07 0.14 0.35 0.38 0.41 0.56 

BA Dry 12 99 0.36 0.08 0.14 0.34 0.37 0.41 0.55 

BA Dry 13 99 0.35 0.09 0.12 0.34 0.37 0.40 0.54 

BA Dry 14 99 0.32 0.10 0.05 0.34 0.35 0.37 0.53 

BA Dry 15 99 0.28 0.12 -0.06 0.28 0.32 0.34 0.48 

BA Dry 16 100 0.20 0.17 -0.30 0.24 0.26 0.29 0.40 

BA Dry 17 100 0.04 0.22 -0.52 0.00 0.14 0.20 0.26 

BA Wet 7 125 0.35 0.15 -0.23 0.33 0.39 0.43 0.54 

BA Wet 8 125 0.42 0.10 -0.11 0.40 0.44 0.46 0.56 

BA Wet 9 125 0.44 0.05 0.27 0.43 0.45 0.47 0.55 

BA Wet 10 126 0.46 0.06 0.28 0.44 0.46 0.47 0.61 

BA Wet 11 127 0.46 0.05 0.28 0.43 0.47 0.49 0.58 

BA Wet 12 127 0.47 0.05 0.33 0.44 0.48 0.51 0.55 

BA Wet 13 128 0.47 0.05 0.23 0.45 0.48 0.51 0.54 

BA Wet 14 128 0.46 0.05 0.28 0.43 0.47 0.49 0.53 

BA Wet 15 128 0.44 0.05 0.21 0.41 0.45 0.48 0.52 

BA Wet 16 128 0.39 0.08 0.02 0.35 0.41 0.44 0.52 

BA Wet 17 128 0.08 0.27 -0.54 -0.14 0.19 0.29 0.42 

LP Dry 7 68 0.28 0.09 0.00 0.28 0.31 0.34 0.39 

LP Dry 8 68 0.38 0.03 0.27 0.37 0.38 0.40 0.43 

LP Dry 9 68 0.42 0.02 0.38 0.41 0.42 0.43 0.46 

LP Dry 10 68 0.44 0.01 0.41 0.44 0.44 0.45 0.49 

LP Dry 11 69 0.46 0.02 0.42 0.45 0.46 0.47 0.50 

LP Dry 12 69 0.46 0.02 0.39 0.45 0.47 0.48 0.52 

LP Dry 13 69 0.45 0.06 0.03 0.45 0.47 0.48 0.50 

LP Dry 14 67 0.44 0.03 0.37 0.43 0.44 0.45 0.49 

LP Dry 15 67 0.40 0.03 0.24 0.39 0.40 0.42 0.45 

LP Dry 16 69 0.33 0.08 -0.03 0.29 0.34 0.39 0.43 

LP Dry 17 69 0.01 0.18 -0.52 -0.08 0.05 0.15 0.25 

LP Wet 7 171 0.28 0.13 -0.39 0.26 0.32 0.36 0.43 

LP Wet 8 171 0.36 0.08 -0.25 0.34 0.38 0.40 0.45 

LP Wet 9 172 0.40 0.04 0.24 0.38 0.41 0.42 0.45 

LP Wet 10 175 0.41 0.05 -0.02 0.40 0.42 0.44 0.47 

LP Wet 11 173 0.42 0.04 0.27 0.41 0.43 0.45 0.47 
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Station Season Hour 
No 

records Mean STD Min 25% 50% 75% Max 

LP Wet 12 174 0.42 0.09 -0.70 0.41 0.43 0.46 0.49 

LP Wet 13 174 0.42 0.05 0.09 0.41 0.43 0.44 0.46 

LP Wet 14 174 0.40 0.04 0.27 0.38 0.41 0.42 0.48 

LP Wet 15 175 0.37 0.06 0.20 0.33 0.38 0.41 0.47 

LP Wet 16 174 0.36 0.11 -0.21 0.33 0.39 0.43 0.48 

LP Wet 17 174 0.12 0.27 -0.59 0.02 0.22 0.31 0.45 

SI Dry 7 119 0.09 0.10 -0.44 0.05 0.09 0.14 0.27 

SI Dry 8 119 0.16 0.08 -0.38 0.12 0.15 0.21 0.29 

SI Dry 9 118 0.19 0.05 0.10 0.16 0.18 0.22 0.31 

SI Dry 10 117 0.21 0.05 0.12 0.17 0.19 0.26 0.31 

SI Dry 11 118 0.23 0.05 0.15 0.20 0.21 0.27 0.34 

SI Dry 12 119 0.24 0.04 0.12 0.21 0.23 0.27 0.33 

SI Dry 13 119 0.25 0.05 0.15 0.22 0.25 0.29 0.34 

SI Dry 14 119 0.24 0.04 0.14 0.20 0.24 0.27 0.35 

SI Dry 15 119 0.20 0.04 0.10 0.18 0.20 0.22 0.29 

SI Dry 16 119 0.17 0.05 0.03 0.14 0.17 0.21 0.25 

SI Dry 17 119 -0.02 0.18 -0.53 -0.15 0.04 0.12 0.25 

SI Wet 7 209 0.16 0.13 -0.39 0.14 0.20 0.23 0.29 

SI Wet 8 208 0.22 0.07 -0.22 0.21 0.24 0.26 0.32 

SI Wet 9 208 0.23 0.05 0.06 0.22 0.24 0.26 0.34 

SI Wet 10 207 0.25 0.03 0.12 0.23 0.25 0.27 0.33 

SI Wet 11 206 0.26 0.04 0.16 0.24 0.26 0.28 0.35 

SI Wet 12 207 0.27 0.05 0.10 0.24 0.27 0.30 0.38 

SI Wet 13 208 0.27 0.05 0.12 0.24 0.27 0.30 0.37 

SI Wet 14 208 0.25 0.05 0.07 0.22 0.25 0.28 0.35 

SI Wet 15 208 0.20 0.09 -0.21 0.17 0.21 0.25 0.33 

SI Wet 16 208 0.09 0.16 -0.43 0.02 0.13 0.19 0.35 

SI Wet 17 208 -0.19 0.29 -0.73 -0.42 -0.18 0.07 0.32 
 
Table  C.10 Summary statistics Air Temperature (°C) values at each hour for each station and season 

Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

BA Dry 7 86 26.45 0.70 24.90 26.00 26.70 27.00 27.40 

BA Dry 8 82 27.62 0.71 26.10 27.00 27.60 28.28 28.80 

BA Dry 9 80 28.13 0.63 26.80 27.60 28.15 28.60 29.30 

BA Dry 10 83 28.41 0.73 26.90 27.90 28.40 29.00 29.70 

BA Dry 11 82 28.16 0.67 26.90 27.60 28.20 28.70 29.60 

BA Dry 12 89 28.05 0.82 26.90 27.40 28.00 28.60 29.70 

BA Dry 13 83 28.27 0.78 27.20 27.70 28.10 28.85 29.80 

BA Dry 14 83 28.33 0.64 27.40 27.80 28.20 28.80 29.60 
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Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

BA Dry 15 82 28.48 0.46 27.80 28.10 28.40 28.88 29.40 

BA Dry 16 82 28.51 0.43 27.60 28.23 28.55 28.80 29.20 

BA Dry 17 83 27.90 0.39 27.20 27.55 27.90 28.20 28.60 

BA Wet 7 104 25.63 0.81 24.20 25.08 25.60 26.30 27.20 

BA Wet 8 103 26.53 0.78 25.00 25.80 26.60 27.10 28.00 

BA Wet 9 104 27.22 0.79 25.70 26.60 27.20 27.70 29.00 

BA Wet 10 105 27.95 0.87 26.20 27.40 27.90 28.50 29.80 

BA Wet 11 104 28.65 0.98 26.90 27.80 28.75 29.40 30.40 

BA Wet 12 105 29.33 0.96 27.30 28.70 29.40 30.10 30.90 

BA Wet 13 106 29.86 1.03 27.10 29.20 30.00 30.68 31.50 

BA Wet 14 105 30.15 1.13 27.30 29.50 30.40 30.90 31.90 

BA Wet 15 105 30.13 1.22 27.00 29.40 30.30 31.10 32.40 

BA Wet 16 105 29.41 1.36 26.90 28.40 29.30 30.40 32.30 

BA Wet 17 109 28.14 1.08 26.00 27.20 28.20 28.80 30.00 

LP Dry 7 57 26.08 0.54 25.10 25.70 26.00 26.50 27.00 

LP Dry 8 56 27.37 0.52 26.40 27.00 27.35 27.70 28.30 

LP Dry 9 58 27.70 0.71 26.60 27.13 27.60 28.20 29.10 

LP Dry 10 58 28.20 0.73 27.20 27.60 28.10 28.78 29.60 

LP Dry 11 59 28.87 0.91 27.60 27.95 28.70 29.70 30.40 

LP Dry 12 58 29.14 0.94 27.30 28.42 29.10 29.95 30.70 

LP Dry 13 57 29.57 0.83 27.80 29.00 29.60 30.10 30.80 

LP Dry 14 59 29.79 0.99 27.90 29.10 30.00 30.40 31.30 

LP Dry 15 56 29.69 0.77 28.30 29.15 29.60 30.33 31.40 

LP Dry 16 58 29.26 0.72 27.80 28.73 29.30 29.70 30.80 

LP Dry 17 59 28.24 0.62 26.90 27.75 28.30 28.70 29.30 

LP Wet 7 140 25.52 0.77 24.10 24.98 25.50 26.03 27.00 

LP Wet 8 143 26.68 0.94 25.00 26.10 26.60 27.30 28.60 

LP Wet 9 142 27.70 1.01 26.00 26.90 27.70 28.40 29.50 

LP Wet 10 144 28.28 1.02 26.20 27.50 28.20 29.10 30.20 

LP Wet 11 142 28.68 1.11 26.50 27.92 28.70 29.58 30.60 

LP Wet 12 143 29.15 1.14 26.80 28.50 29.20 30.10 31.00 

LP Wet 13 141 29.44 0.95 27.44 28.70 29.60 30.20 31.00 

LP Wet 14 142 29.59 0.94 27.60 29.03 29.75 30.20 31.30 

LP Wet 15 143 29.60 0.92 27.70 28.85 29.70 30.30 31.20 

LP Wet 16 143 29.34 1.29 26.60 28.40 29.50 30.31 31.40 

LP Wet 17 141 28.42 1.35 25.80 27.40 28.61 29.60 30.50 

SI Dry 7 100 25.55 0.61 24.20 25.10 25.70 26.00 26.40 

SI Dry 8 96 27.14 0.80 25.40 26.60 27.20 27.73 28.50 

SI Dry 9 98 27.52 1.01 25.60 26.70 27.60 28.40 29.20 

SI Dry 10 98 28.15 1.09 26.30 27.33 28.00 29.08 30.20 
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Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

SI Dry 11 101 28.93 1.00 27.20 28.00 29.00 29.80 30.50 

SI Dry 12 100 29.38 0.82 27.70 28.80 29.60 30.00 30.50 

SI Dry 13 96 29.68 0.66 27.90 29.30 29.80 30.20 30.70 

SI Dry 14 98 29.99 0.69 28.10 29.63 30.00 30.40 31.20 

SI Dry 15 98 30.16 0.78 28.60 29.53 30.30 30.80 31.30 

SI Dry 16 98 29.79 0.98 27.80 29.10 29.80 30.68 31.40 

SI Dry 17 96 28.91 0.73 27.40 28.38 29.05 29.50 30.30 

SI Wet 7 174 25.22 0.74 23.80 24.70 25.20 25.90 26.50 

SI Wet 8 170 26.34 0.86 24.60 25.70 26.40 27.10 27.80 

SI Wet 9 169 27.08 0.94 25.20 26.40 27.10 27.70 29.00 

SI Wet 10 170 27.78 1.09 25.90 26.92 27.60 28.60 29.90 

SI Wet 11 169 28.38 1.10 26.20 27.50 28.40 29.20 30.30 

SI Wet 12 171 29.06 1.12 26.80 28.00 29.20 30.10 30.80 

SI Wet 13 168 29.49 1.03 27.40 28.60 29.70 30.30 31.10 

SI Wet 14 169 29.64 1.08 27.40 28.80 29.80 30.40 31.40 

SI Wet 15 170 29.54 1.19 27.20 28.63 29.70 30.50 31.70 

SI Wet 16 168 28.86 1.35 26.30 27.70 28.80 29.92 31.50 

SI Wet 17 169 27.72 1.33 24.90 26.70 27.90 28.80 29.90 
 
Table  C.11 Summary statistics VPD (kPa) values at each hour for each station and season 

Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

BA Dry 7 82 0.51 0.13 0.25 0.43 0.53 0.62 0.70 

BA Dry 8 80 0.74 0.16 0.37 0.67 0.78 0.85 0.99 

BA Dry 9 80 0.89 0.17 0.51 0.80 0.90 1.01 1.19 

BA Dry 10 81 0.95 0.19 0.53 0.81 0.95 1.08 1.34 

BA Dry 11 81 0.90 0.16 0.63 0.75 0.86 1.02 1.29 

BA Dry 12 81 0.86 0.16 0.63 0.72 0.83 1.02 1.16 

BA Dry 13 81 0.89 0.18 0.64 0.73 0.84 1.04 1.24 

BA Dry 14 81 0.91 0.16 0.65 0.78 0.88 1.05 1.21 

BA Dry 15 80 0.94 0.16 0.68 0.80 0.90 1.08 1.25 

BA Dry 16 81 0.94 0.16 0.69 0.82 0.91 1.08 1.23 

BA Dry 17 82 0.82 0.13 0.61 0.72 0.82 0.90 1.06 

BA Wet 7 102 0.37 0.12 0.18 0.28 0.36 0.44 0.61 

BA Wet 8 102 0.54 0.13 0.30 0.44 0.53 0.64 0.80 

BA Wet 9 102 0.67 0.15 0.39 0.57 0.67 0.77 1.06 

BA Wet 10 103 0.80 0.16 0.47 0.68 0.79 0.93 1.13 

BA Wet 11 105 0.93 0.19 0.58 0.79 0.92 1.08 1.28 

BA Wet 12 104 1.05 0.20 0.56 0.93 1.04 1.21 1.46 

BA Wet 13 106 1.18 0.26 0.67 1.00 1.16 1.39 1.65 
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Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

BA Wet 14 105 1.25 0.29 0.65 1.08 1.25 1.49 1.77 

BA Wet 15 105 1.25 0.31 0.64 1.01 1.23 1.48 1.91 

BA Wet 16 105 1.07 0.30 0.57 0.85 0.98 1.30 1.81 

BA Wet 17 105 0.77 0.21 0.38 0.62 0.74 0.93 1.19 

LP Dry 7 56 0.39 0.14 0.14 0.28 0.42 0.49 0.60 

LP Dry 8 56 0.63 0.15 0.24 0.58 0.68 0.73 0.83 

LP Dry 9 56 0.77 0.16 0.39 0.70 0.79 0.83 1.12 

LP Dry 10 56 0.90 0.16 0.60 0.81 0.89 1.03 1.24 

LP Dry 11 59 1.02 0.19 0.76 0.86 0.99 1.16 1.43 

LP Dry 12 57 1.03 0.18 0.76 0.90 0.98 1.14 1.47 

LP Dry 13 57 1.09 0.19 0.72 0.97 1.08 1.19 1.53 

LP Dry 14 55 1.15 0.21 0.68 1.03 1.14 1.29 1.62 

LP Dry 15 55 1.12 0.18 0.77 1.00 1.11 1.23 1.52 

LP Dry 16 57 1.01 0.19 0.69 0.87 0.98 1.18 1.36 

LP Dry 17 57 0.80 0.16 0.43 0.70 0.77 0.90 1.06 

LP Wet 7 138 0.31 0.10 0.16 0.22 0.31 0.37 0.53 

LP Wet 8 138 0.52 0.14 0.29 0.41 0.51 0.62 0.83 

LP Wet 9 139 0.71 0.17 0.39 0.58 0.71 0.83 1.05 

LP Wet 10 142 0.83 0.19 0.47 0.68 0.83 0.98 1.22 

LP Wet 11 140 0.96 0.23 0.58 0.78 0.94 1.13 1.45 

LP Wet 12 141 1.06 0.24 0.62 0.86 1.04 1.27 1.52 

LP Wet 13 141 1.11 0.25 0.71 0.90 1.07 1.29 1.61 

LP Wet 14 141 1.15 0.26 0.70 0.93 1.13 1.35 1.72 

LP Wet 15 142 1.10 0.26 0.66 0.89 1.06 1.30 1.69 

LP Wet 16 141 0.97 0.30 0.45 0.75 0.93 1.22 1.56 

LP Wet 17 141 0.75 0.24 0.31 0.57 0.77 0.90 1.18 

SI Dry 7 96 0.49 0.13 0.25 0.38 0.50 0.61 0.72 

SI Dry 8 96 0.81 0.19 0.42 0.69 0.84 0.96 1.10 

SI Dry 9 97 0.99 0.17 0.57 0.89 1.00 1.12 1.30 

SI Dry 10 96 1.16 0.18 0.77 1.04 1.19 1.31 1.48 

SI Dry 11 97 1.35 0.21 0.93 1.20 1.35 1.50 1.69 

SI Dry 12 96 1.47 0.22 0.90 1.33 1.50 1.63 1.80 

SI Dry 13 96 1.55 0.22 1.05 1.41 1.58 1.71 1.92 

SI Dry 14 96 1.61 0.23 1.08 1.45 1.64 1.80 1.95 

SI Dry 15 96 1.60 0.26 1.07 1.38 1.65 1.83 1.96 

SI Dry 16 96 1.48 0.27 0.96 1.31 1.48 1.73 1.93 

SI Dry 17 96 1.22 0.24 0.71 1.11 1.26 1.41 1.58 

SI Wet 7 169 0.27 0.07 0.16 0.22 0.27 0.33 0.43 

SI Wet 8 169 0.49 0.14 0.27 0.37 0.47 0.59 0.79 

SI Wet 9 168 0.66 0.19 0.38 0.50 0.63 0.82 1.05 
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Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

SI Wet 10 169 0.81 0.23 0.43 0.62 0.76 0.99 1.26 

SI Wet 11 168 0.94 0.26 0.49 0.70 0.93 1.11 1.43 

SI Wet 12 169 1.09 0.30 0.57 0.83 1.11 1.35 1.63 

SI Wet 13 168 1.18 0.29 0.68 0.91 1.20 1.41 1.73 

SI Wet 14 169 1.23 0.32 0.66 0.95 1.23 1.49 1.87 

SI Wet 15 170 1.18 0.37 0.60 0.86 1.19 1.48 1.92 

SI Wet 16 168 0.97 0.37 0.37 0.64 0.94 1.26 1.77 

SI Wet 17 168 0.68 0.28 0.25 0.44 0.67 0.91 1.23 
 
Table  C.12 Summary statistics Relative humidity values at each hour for each station and season 

Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

BA Dry 7 83 0.85 0.04 0.80 0.82 0.85 0.87 0.92 

BA Dry 8 83 0.80 0.04 0.74 0.77 0.80 0.82 0.89 

BA Dry 9 83 0.77 0.04 0.71 0.74 0.77 0.79 0.86 

BA Dry 10 82 0.76 0.04 0.68 0.73 0.76 0.79 0.85 

BA Dry 11 83 0.77 0.04 0.69 0.74 0.78 0.80 0.82 

BA Dry 12 81 0.77 0.04 0.71 0.74 0.78 0.81 0.83 

BA Dry 13 82 0.77 0.04 0.70 0.73 0.78 0.81 0.83 

BA Dry 14 85 0.77 0.04 0.70 0.73 0.77 0.80 0.83 

BA Dry 15 84 0.76 0.04 0.69 0.72 0.76 0.79 0.82 

BA Dry 16 82 0.76 0.04 0.70 0.73 0.76 0.79 0.82 

BA Dry 17 88 0.78 0.03 0.72 0.75 0.78 0.81 0.83 

BA Wet 7 102 0.89 0.03 0.83 0.87 0.89 0.91 0.94 

BA Wet 8 106 0.85 0.03 0.79 0.82 0.85 0.87 0.91 

BA Wet 9 108 0.82 0.04 0.74 0.79 0.82 0.84 0.89 

BA Wet 10 109 0.79 0.04 0.72 0.76 0.79 0.81 0.86 

BA Wet 11 109 0.77 0.04 0.70 0.74 0.77 0.80 0.84 

BA Wet 12 105 0.74 0.04 0.67 0.72 0.74 0.77 0.84 

BA Wet 13 110 0.72 0.05 0.64 0.68 0.72 0.76 0.81 

BA Wet 14 110 0.71 0.05 0.62 0.67 0.71 0.74 0.82 

BA Wet 15 107 0.71 0.06 0.60 0.67 0.71 0.75 0.82 

BA Wet 16 106 0.74 0.05 0.63 0.70 0.76 0.78 0.84 

BA Wet 17 112 0.80 0.05 0.71 0.76 0.80 0.84 0.89 

LP Dry 7 58 0.89 0.04 0.83 0.86 0.87 0.92 0.96 

LP Dry 8 56 0.83 0.04 0.79 0.81 0.82 0.84 0.93 

LP Dry 9 58 0.80 0.04 0.73 0.77 0.79 0.81 0.89 

LP Dry 10 58 0.76 0.04 0.70 0.74 0.76 0.79 0.84 

LP Dry 11 60 0.75 0.04 0.67 0.72 0.75 0.77 0.81 

LP Dry 12 58 0.74 0.04 0.66 0.72 0.75 0.77 0.81 
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Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

LP Dry 13 60 0.74 0.04 0.65 0.72 0.74 0.76 0.82 

LP Dry 14 56 0.73 0.04 0.64 0.70 0.73 0.75 0.82 

LP Dry 15 55 0.73 0.04 0.67 0.71 0.74 0.76 0.80 

LP Dry 16 57 0.75 0.04 0.69 0.72 0.75 0.78 0.81 

LP Dry 17 57 0.79 0.04 0.74 0.76 0.80 0.82 0.88 

LP Wet 7 149 0.91 0.03 0.85 0.89 0.91 0.93 0.95 

LP Wet 8 146 0.85 0.04 0.78 0.82 0.85 0.88 0.91 

LP Wet 9 143 0.81 0.04 0.74 0.78 0.81 0.84 0.88 

LP Wet 10 145 0.79 0.04 0.71 0.76 0.78 0.82 0.87 

LP Wet 11 142 0.76 0.05 0.67 0.72 0.77 0.80 0.84 

LP Wet 12 145 0.74 0.05 0.65 0.70 0.74 0.78 0.83 

LP Wet 13 146 0.73 0.05 0.63 0.69 0.74 0.77 0.81 

LP Wet 14 147 0.72 0.05 0.62 0.68 0.73 0.77 0.82 

LP Wet 15 145 0.74 0.05 0.63 0.70 0.74 0.78 0.82 

LP Wet 16 145 0.77 0.06 0.65 0.72 0.78 0.81 0.87 

LP Wet 17 151 0.81 0.05 0.73 0.78 0.81 0.85 0.91 

SI Dry 7 103 0.86 0.04 0.79 0.82 0.85 0.89 0.92 

SI Dry 8 104 0.78 0.05 0.71 0.74 0.77 0.81 0.87 

SI Dry 9 103 0.73 0.05 0.66 0.69 0.73 0.76 0.84 

SI Dry 10 97 0.69 0.04 0.63 0.66 0.69 0.72 0.78 

SI Dry 11 98 0.66 0.04 0.60 0.63 0.66 0.69 0.75 

SI Dry 12 97 0.64 0.04 0.58 0.60 0.64 0.67 0.75 

SI Dry 13 99 0.63 0.05 0.56 0.59 0.63 0.66 0.73 

SI Dry 14 101 0.62 0.05 0.55 0.58 0.62 0.66 0.73 

SI Dry 15 100 0.62 0.05 0.55 0.59 0.62 0.66 0.74 

SI Dry 16 100 0.65 0.05 0.57 0.60 0.64 0.68 0.76 

SI Dry 17 98 0.70 0.05 0.62 0.66 0.69 0.73 0.81 

SI Wet 7 180 0.92 0.02 0.87 0.90 0.92 0.93 0.95 

SI Wet 8 171 0.86 0.03 0.79 0.83 0.87 0.89 0.91 

SI Wet 9 172 0.82 0.04 0.73 0.78 0.82 0.86 0.89 

SI Wet 10 178 0.79 0.05 0.69 0.74 0.79 0.83 0.87 

SI Wet 11 177 0.76 0.06 0.65 0.72 0.76 0.81 0.86 

SI Wet 12 175 0.74 0.06 0.63 0.68 0.73 0.79 0.84 

SI Wet 13 172 0.72 0.06 0.62 0.67 0.72 0.77 0.82 

SI Wet 14 176 0.71 0.06 0.59 0.66 0.71 0.77 0.82 

SI Wet 15 176 0.72 0.07 0.58 0.65 0.72 0.78 0.84 

SI Wet 16 170 0.76 0.08 0.62 0.70 0.77 0.83 0.89 

SI Wet 17 173 0.82 0.06 0.71 0.76 0.82 0.88 0.92 
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Table  C.13 Summary statistics Net Radiation values at each hour for each station and season 

Station Season Hour 

No 
record
s Mean STD Min 25% 50% 75% Max 

BA Dry 7 81 31.35 26.37 -20.40 12.60 31.90 54.40 75.30 

BA Dry 8 80 176.81 58.96 52.90 131.10 172.95 232.17 270.70 

BA Dry 9 80 301.16 94.42 135.30 233.10 296.25 377.90 481.50 

BA Dry 10 81 369.27 119.12 141.40 274.10 387.10 460.90 598.30 

BA Dry 11 81 424.84 121.93 196.90 350.10 419.90 503.40 690.90 

BA Dry 12 81 502.08 158.55 202.00 357.70 519.00 633.30 744.00 

BA Dry 13 81 513.83 132.80 252.50 403.40 536.60 623.60 704.80 

BA Dry 14 81 458.70 93.37 242.90 380.60 493.40 534.10 591.30 

BA Dry 15 80 291.95 77.03 114.90 229.25 303.85 352.97 410.10 

BA Dry 16 81 114.69 56.34 -9.50 69.90 131.90 159.00 182.50 

BA Dry 17 81 -22.69 19.33 -74.20 -30.70 -16.50 -10.60 1.40 

BA Wet 7 102 82.21 60.08 -17.50 38.40 74.45 135.48 206.60 

BA Wet 8 102 214.84 97.64 52.90 124.63 221.45 290.62 407.50 

BA Wet 9 102 323.53 128.36 74.00 230.95 315.20 422.60 567.60 

BA Wet 10 103 406.05 146.28 93.00 302.40 423.60 516.05 657.70 

BA Wet 11 104 464.66 162.78 118.20 343.18 481.90 606.53 746.00 

BA Wet 12 104 483.67 145.17 189.40 386.17 497.25 603.20 715.80 

BA Wet 13 105 442.06 129.01 164.70 341.20 474.60 558.60 629.50 

BA Wet 14 105 327.06 87.63 164.80 262.80 322.20 398.30 485.80 

BA Wet 15 105 186.18 54.61 73.30 138.10 177.50 229.60 295.60 

BA Wet 16 105 50.08 36.18 -14.30 21.50 45.00 82.80 123.60 

BA Wet 17 105 -41.50 22.46 -69.10 -61.50 -48.60 -23.60 3.40 

LP Dry 7 56 51.87 45.19 -18.80 4.78 53.05 89.30 120.70 

LP Dry 8 56 226.25 107.15 34.70 142.08 247.50 319.87 358.40 

LP Dry 9 56 365.35 133.20 129.70 245.98 374.25 491.13 538.20 

LP Dry 10 56 461.11 134.33 208.00 334.82 504.05 581.65 617.70 

LP Dry 11 57 509.92 135.12 237.60 388.60 543.20 631.20 697.80 

LP Dry 12 57 530.52 145.71 167.00 452.40 547.00 662.00 740.40 

LP Dry 13 57 474.60 134.14 189.40 396.60 486.30 587.30 648.80 

LP Dry 14 55 387.03 104.40 142.40 312.10 397.50 479.75 533.70 

LP Dry 15 55 248.53 81.67 105.20 181.95 262.40 318.80 367.50 

LP Dry 16 57 90.05 44.45 -5.40 60.90 97.00 128.20 146.80 

LP Dry 17 57 -32.22 14.16 -58.70 -45.10 -27.60 -21.00 -13.70 

LP Wet 7 138 19.02 32.97 -32.80 -7.98 12.15 37.38 94.70 

LP Wet 8 138 116.90 62.52 5.00 67.30 111.65 164.47 245.00 

LP Wet 9 139 203.58 92.41 51.20 128.55 196.80 271.20 413.90 

LP Wet 10 142 266.94 101.76 82.30 186.10 268.41 335.25 509.40 
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Station Season Hour 

No 
record
s Mean STD Min 25% 50% 75% Max 

LP Wet 11 140 328.16 141.00 108.10 194.32 325.53 443.68 603.60 

LP Wet 12 141 347.77 136.48 98.90 235.20 331.90 471.00 603.40 

LP Wet 13 140 313.85 125.36 83.80 214.38 311.26 411.30 538.30 

LP Wet 14 141 258.53 103.99 86.70 175.40 246.12 323.80 491.10 

LP Wet 15 142 163.00 77.45 16.90 101.65 162.23 220.23 325.70 

LP Wet 16 141 55.02 48.19 -28.10 20.80 49.30 81.20 187.10 

LP Wet 17 141 -34.66 17.63 -63.60 -48.70 -34.20 -21.50 4.10 

SI Dry 7 96 43.46 39.54 -22.40 10.28 43.00 71.40 118.80 

SI Dry 8 96 189.12 93.90 31.60 116.95 185.65 266.65 351.30 

SI Dry 9 97 318.63 138.62 99.60 197.40 323.70 436.60 539.90 

SI Dry 10 96 390.21 126.98 170.30 295.97 385.00 514.18 606.50 

SI Dry 11 97 415.41 112.80 202.00 333.20 412.10 497.50 608.20 

SI Dry 12 96 427.84 129.23 156.70 335.25 428.05 528.78 658.20 

SI Dry 13 96 412.93 113.95 225.60 300.80 424.05 497.05 594.80 

SI Dry 14 96 318.37 85.97 156.70 244.90 326.20 387.90 458.80 

SI Dry 15 96 192.76 55.28 93.50 143.00 196.45 238.25 289.90 

SI Dry 16 96 60.33 26.69 7.50 40.15 59.65 83.13 105.00 

SI Dry 17 96 -34.66 10.94 -54.40 -45.00 -34.55 -24.53 -18.70 

SI Wet 7 169 40.01 43.84 -29.30 6.00 31.70 62.60 145.20 

SI Wet 8 168 156.59 95.36 14.80 73.68 145.25 226.20 348.50 

SI Wet 9 168 266.78 130.44 58.70 171.85 239.65 374.33 539.50 

SI Wet 10 169 353.73 142.87 103.00 233.70 342.50 484.40 617.50 

SI Wet 11 168 405.61 136.91 152.10 298.60 415.50 506.13 645.10 

SI Wet 12 169 434.23 146.06 157.30 304.30 450.90 553.20 689.00 

SI Wet 13 168 408.85 117.43 168.00 319.32 410.30 513.32 618.30 

SI Wet 14 168 323.31 110.29 124.80 237.45 323.35 419.10 517.80 

SI Wet 15 168 171.29 79.52 31.30 97.62 178.00 241.07 313.30 

SI Wet 16 168 32.99 38.78 -41.90 1.90 32.60 61.18 109.00 

SI Wet 17 168 -43.36 14.34 -63.20 -55.92 -47.55 -30.65 -13.30 
 
Table  C.14 Summary statistics NDVI values at each hour for each station and season 

Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

BA Dry 7 99 0.78 0.05 0.52 0.77 0.80 0.81 0.84 

BA Dry 8 98 0.82 0.02 0.75 0.81 0.82 0.83 0.88 

BA Dry 9 98 0.83 0.02 0.76 0.82 0.83 0.84 0.89 

BA Dry 10 99 0.83 0.03 0.75 0.82 0.83 0.85 0.89 

BA Dry 11 99 0.83 0.03 0.74 0.82 0.83 0.85 0.89 

BA Dry 12 99 0.83 0.03 0.74 0.82 0.83 0.85 0.89 
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Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

BA Dry 13 99 0.82 0.03 0.73 0.82 0.83 0.84 0.89 

BA Dry 14 99 0.81 0.04 0.69 0.82 0.83 0.83 0.88 

BA Dry 15 99 0.79 0.05 0.63 0.80 0.81 0.82 0.87 

BA Dry 16 100 0.76 0.09 0.45 0.78 0.79 0.80 0.84 

BA Dry 17 100 0.67 0.15 0.23 0.66 0.74 0.76 0.79 

BA Wet 7 125 0.82 0.07 0.52 0.82 0.84 0.85 0.89 

BA Wet 8 125 0.85 0.04 0.60 0.84 0.86 0.86 0.89 

BA Wet 9 125 0.86 0.02 0.80 0.85 0.86 0.86 0.89 

BA Wet 10 126 0.86 0.02 0.80 0.85 0.86 0.87 0.91 

BA Wet 11 127 0.86 0.02 0.80 0.85 0.87 0.87 0.90 

BA Wet 12 127 0.87 0.01 0.82 0.86 0.87 0.88 0.89 

BA Wet 13 128 0.87 0.02 0.78 0.86 0.87 0.88 0.89 

BA Wet 14 128 0.86 0.02 0.80 0.85 0.87 0.87 0.88 

BA Wet 15 128 0.86 0.02 0.77 0.85 0.86 0.87 0.88 

BA Wet 16 128 0.84 0.03 0.68 0.83 0.84 0.86 0.88 

BA Wet 17 128 0.68 0.16 0.20 0.58 0.76 0.80 0.85 

LP Dry 7 68 0.80 0.04 0.67 0.80 0.81 0.82 0.84 

LP Dry 8 68 0.84 0.01 0.80 0.83 0.84 0.84 0.85 

LP Dry 9 68 0.85 0.01 0.84 0.85 0.85 0.85 0.86 

LP Dry 10 68 0.86 0.00 0.85 0.85 0.86 0.86 0.87 

LP Dry 11 69 0.86 0.01 0.85 0.86 0.86 0.87 0.88 

LP Dry 12 69 0.86 0.01 0.84 0.86 0.86 0.87 0.88 

LP Dry 13 69 0.86 0.02 0.68 0.86 0.86 0.87 0.88 

LP Dry 14 67 0.86 0.01 0.83 0.85 0.86 0.86 0.87 

LP Dry 15 67 0.84 0.01 0.78 0.84 0.84 0.85 0.86 

LP Dry 16 69 0.82 0.03 0.65 0.80 0.82 0.84 0.85 

LP Dry 17 69 0.66 0.12 0.23 0.62 0.70 0.74 0.79 

LP Wet 7 171 0.79 0.07 0.38 0.79 0.81 0.83 0.85 

LP Wet 8 171 0.83 0.04 0.50 0.82 0.84 0.84 0.86 

LP Wet 9 172 0.84 0.01 0.78 0.83 0.84 0.85 0.86 

LP Wet 10 175 0.84 0.02 0.65 0.84 0.85 0.85 0.87 

LP Wet 11 173 0.85 0.01 0.80 0.84 0.85 0.86 0.87 

LP Wet 12 174 0.85 0.07 -0.06 0.85 0.85 0.86 0.87 

LP Wet 13 174 0.85 0.02 0.71 0.84 0.85 0.86 0.86 

LP Wet 14 174 0.84 0.01 0.79 0.84 0.84 0.85 0.87 

LP Wet 15 175 0.83 0.02 0.76 0.82 0.84 0.85 0.87 

LP Wet 16 174 0.83 0.05 0.53 0.82 0.84 0.85 0.87 

LP Wet 17 174 0.70 0.17 0.13 0.68 0.77 0.81 0.86 

SI Dry 7 119 0.71 0.06 0.32 0.69 0.72 0.74 0.79 

SI Dry 8 119 0.74 0.04 0.39 0.73 0.74 0.77 0.80 
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Station Season Hour 
No 
records Mean STD Min 25% 50% 75% Max 

SI Dry 9 118 0.76 0.02 0.72 0.75 0.76 0.77 0.81 

SI Dry 10 117 0.77 0.02 0.73 0.75 0.76 0.79 0.81 

SI Dry 11 118 0.78 0.02 0.74 0.76 0.77 0.79 0.82 

SI Dry 12 119 0.78 0.02 0.73 0.77 0.78 0.80 0.82 

SI Dry 13 119 0.79 0.02 0.74 0.77 0.78 0.80 0.82 

SI Dry 14 119 0.78 0.02 0.74 0.77 0.78 0.79 0.82 

SI Dry 15 119 0.76 0.02 0.72 0.75 0.76 0.77 0.80 

SI Dry 16 119 0.75 0.03 0.68 0.74 0.75 0.77 0.79 

SI Dry 17 119 0.64 0.12 0.21 0.58 0.69 0.73 0.79 

SI Wet 7 209 0.74 0.07 0.37 0.74 0.76 0.78 0.80 

SI Wet 8 208 0.77 0.04 0.52 0.77 0.78 0.79 0.81 

SI Wet 9 208 0.78 0.02 0.70 0.77 0.78 0.79 0.82 

SI Wet 10 207 0.78 0.01 0.73 0.78 0.79 0.79 0.82 

SI Wet 11 206 0.79 0.02 0.75 0.78 0.79 0.80 0.82 

SI Wet 12 207 0.79 0.02 0.72 0.78 0.79 0.80 0.83 

SI Wet 13 208 0.79 0.02 0.73 0.78 0.79 0.81 0.83 

SI Wet 14 208 0.78 0.02 0.71 0.77 0.78 0.80 0.82 

SI Wet 15 208 0.76 0.04 0.53 0.75 0.77 0.78 0.82 

SI Wet 16 208 0.71 0.09 0.33 0.68 0.73 0.76 0.82 

SI Wet 17 208 0.50 0.24 -0.12 0.34 0.55 0.70 0.81 
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