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ABSTRACT

Xifeng Wang: Statistical Learning Methods for Diffusion Magnetic
Resonance Imaging

(Under the direction of Hongtu Zhu)

Diffusion Magnetic Resonance Imaging (dMRI) is a commonly used imaging technique

to reveal white matter (WM) microstructure by probing the diffusion of water molecules.

The diffusion of water molecules is constrained by the biological boundaries including nerves

and tissues. Thus, quantifying the diffusion process is important to understand the WM mi-

crostructure. However, the development of efficient analytical methods for the reconstruction,

lifespan structural connectome analysis, and surrogate variable analysis have fallen seriously

behind the technological advances. This challenge motivates us to develop new statistical

learning methods for dMRI.

In the first project, we propose a two-stage sparse and adaptive smoothing model (TSASM)

for two major image denoising tasks in neuroimaging data analysis, including image recon-

struction from a series of noisy images within each subject and group analysis of images

obtained from different subjects. Our TSASM consists of an initial smoothing stage of

applying a penalized M−estimator and a refined smoothing stage of applying kernel-based

smoothing methods. The key novelties of our TSASM are that it accounts for the sparse

structure of imaging signals, while preserving piecewise smooth regions with unknown edges.

In the second project, we develop a scalable analytical method for mapping the lifespan

human structural connectome. Specifically, we develop a novel lifespan population-based

structural connectome (LPSC) framework that integrates fiber bundle and functional network

information for hierarchically guiding the registration. Our LPSC is applicable to several

neuroimaging studies of neuropsychiatric disorders as well as normal brain development. An
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improved understanding of human structural connectome has the potential to inspire new

approaches to prevention, diagnosis, and treatment of many illnesses.

In the third project, we propose an eigen-shrinkage projection (ESP) method to perform

the surrogate variable analysis and solve the hidden confounders and harmonization problems

in the neuroimaging studies. Our ESP can eliminate the signals from primary variable while

preserving the eigenvalue-gap between hidden confounder and noises, which enables hidden

confounder estimation from the projected data. We then investigate the statistical properties

of the estimated hidden confounders and uncover the natural connection with ridge regression.

Numerical experiments are used to illustrate the finite-sample performance.
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CHAPTER 1: INTRODUCTION

Diffusion Magnetic Resonance Imaging (dMRI) is the unique non-invasive method to

reveal the white matter (WM) microstructure by probing the diffusion of water molecules

(Johansen-Berg and Behrens, 2009; Le Bihan and Iima, 2015; Thiebaut de Schotten et al.,

2011; Hagmann et al., 2006; Jones, 2010). Since the diffusion of water molecules is restricted

by the biological boundaries(Sykov and Nicholson, 2008), such as cells and tissues, recovering

the information of this diffusion process is important to further understand the WM geometry.

Current dMRI acquisition can be divided into two categories: Diffusion Tensor Imaging

(DTI)(Basser et al., 1994) and High Angular Resolution Diffusion Imaging (HARDI)(Tuch

et al., 1999; Descoteaux, 2008; Alexander, 2005). HARDI has recently been of great interest

and many HARDI techniques have been proposed since a better sampling scheme than DTI

was considered. For instance, the Orientation Distribution Functions (ODFs) derived from

either single-shell HARDI (sHARDI) (Tournier et al., 2007; Aganj et al., 2009; Yan et al.,

2018; Tristán-Vega et al., 2009; Descoteaux et al., 2007a; Cheng et al., 2010) or multi-shell

HARDI (mHARDI) (Aganj et al., 2010; Jeurissen et al., 2014; Cheng et al., 2014) are applied

into fiber tracking tasks since it can capture the direction and angular information of the

fiber tracts. In contrast, full three-dimensional (3D) Ensemble Average Propagator (EAP)

can achieve more information of the diffusion process and represent it in WM more accurately

(Tuch, 2002a). Therefore, in Chapter 3, we develop a two-stage sparse and adaptive smoothing

model for reconstruction and group analysis of neuroimaging data, which can be utilized in

the estimation of EAP and its features.

Recently, with recent development in imaging technologies, many large-scale biomedical

studies, such as the UK Biobank (Miller et al., 2016) and Human Connectome Project (HCP)

(Sotiropoulos et al., 2013; Van Essen et al., 2013), have collected/are collecting massive
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dMRI data with high spatial and temporal resolution as well as other complex information

(e.g., genomics). However, analyzing such large-scale neuroimaging data poses two major

challenges. The first challenge arises from the large intra-subject heterogeneity of WM

fibers and the complex inter-subject spatio-temporal patterns of fibers when mapping the

structural connectome across the lifespan at the population level. Particularly, the quality

of WM tractographic data varies strongly by age, anatomical tract, tractography algorithm,

and acquisition parameters (e.g., directions), among others, so it is critically important to

accurately segment WM tractographic data (St-Jean et al., 2019; Guevara et al., 2011a;

Buchanan et al., 2014; Wakana et al., 2007; Guevara et al., 2020; Schilling et al., 2019).

Existing voxel-based (Smith et al., 2006; Schwarz et al., 2014; Snook et al., 2007) and tract-

based (Fornito et al., 2013; Zhu et al., 2011; Yeatman et al., 2012; Cousineau et al., 2017; Jin

et al., 2014; Heiervang et al., 2006; Ciccarelli et al., 2003; Wang et al., 2016; Wassermann

et al., 2010; Garyfallidis et al., 2017; Olivetti et al., 2017; Sharmin et al., 2016) analysis

methods may either lose individual fiber tract specificity or rely on fiber clustering methods

and parcellation atlas. Therefore, in Chapter 4, we propose a new lifespan population-based

structural connectome method to create a parcellation-based tractographic skeleton atlas for

accurately mapping dMRI and structural MRI data acquired from the subjects with multiple

scans measured at different times on the atlas across the lifespan. The reliable construction

of such atlas allows us to quantify the development of WM within individual subjects across

time and understand its variations across groups.

The second challenge is that the imaging data may be acquired in multiple imaging sites.

Therefore, technical variability across sites, including heterogeneity in the imaging protocol,

variations in the scanning parameters and differences in the scanner manufacturers remain to

be the batch effect/hidden confounders that would affect the reliability of dMRI images and

their imaging features such as Fractional Anisotropy (FA) and Mean Diffusivity (MD)(Zhu

et al., 2009, 2011). The research method to adjust for these hidden confounders is termed as

Surrogate Variable Analysis (SVA) by Leek and Storey (2007). Although this approach is

2



originally proposed for large-scale multiple testing problem in genetics and omics data, it

has increasingly gained attention in neuroimaging data(Fortin et al., 2017, 2016; Guillaume

et al., 2018). Therefore, in Chapter 5, we develop a new eigen-shrinkage projection based

method to estimate and adjust for the hidden confounders, which has the potential use for

the harmonization of multi-site dMRI data.
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CHAPTER 2: LITERATURE REVIEW

2.1 Diffusion Magnetic Resonance Imaging(dMRI) Acquisition

For dMRI data, we acquire nDiffusion Weighted Imaging (DWI) data with each image to be

a 3D volume containing N voxels for each subject. Each DWI data at each voxel v ∈ V denotes

as (S (qi; v) , ri, bi)), where qi is associated with the gradient vector ri = (ri,1, ri,2, ri,3)T and

the b factor for each i. The diffusion weighted signal attenuation E (qi; v) is defined through

the normalization of DWI data:

E (qi; v) = S (qi; v) /S (q0; v)

where q0 represents for qi with bi = 0.

Ensemble Average Propagator (EAP) is defined as

P (R) = F3D{E(q)}(R) =

∫
R3

E(q) exp
(
−2πiqTR

)
dq =

∫
R3

E(q) cos
(
2πqTR

)
dq

(2.1.1)

where F3D and F−1
3D , respectively, denote the Fourier transformation and its inverse transfor-

mation. The last equation in (2.1.1) is correct since E(q) = E(−q).

With (2.1.1), E(q) can be rewritten as

E(q) =

∫
R3

P (R) exp
(
2πiqTR

)
dR = F−1

3D{P (R)}(q) (2.1.2)

Based on the sampling scheme of gradient vector r in q-space, dMRI can be generally

categorized into Diffusion Tensor Imaging (DTI) and High Angular Resolution Diffusion

Imaging (HARDI).
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2.1.1 Diffusion Tensor Imaging (DTI)

In diffusion tensor imaging(DTI)(Basser et al., 1994), the signal is written using Stejskal-

Tanner equation,

E(q) = exp
(
−brTDr

)
. (2.1.3)

The diffusion tensor matrix D can be decomposed as:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 = λ1v1v
T
1 + λ2v2v + λ3v3v

T
3 (2.1.4)

With diffusion tensor matrix D, Fractional Anisotropy (FA) and Mean Diffusivity

(MD)(Pierpaoli and Basser, 1996) can be defined as

FA =

√
3
∥∥D− 1

3
Trace(D)I

∥∥
√

2‖D‖
=

√
3

2

√(
λ1 − λ̄

)2
+
(
λ2 − λ̄

)2
+
(
λ3 − λ̄

)2

λ2
1 + λ2

2 + λ2
3

(2.1.5)

MD = λ̄ (2.1.6)

where λ̄ = (λ1 + λ2 + λ3) /3. Linear, planar, and spherical measures are introduced as

LA = (λ1 − λ2) /(3λ̄), PA = 2 (λ2 − λ3) /(3λ̄), SA = λ3/λ̄ (2.1.7)

2.1.2 High Angular Resolution Diffusion Imaging (HARDI)

High Angular Resolution Diffusion Imaging (HARDI)(Tuch et al., 1999; Tuch, 2002b)

was proposed to use a better angular resolution sampling scheme than DTI. Many research

works have been proposed to estimate Orientation Distribution Functions (ODF) or EAPs

for HARDI.
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Diffusion Spectrum Imaging (DSI) Diffusion Spectrum Imaging (DSI) estimate p(R)

from (2.1.1) using Fourier transform. EAP is visualized through the EAP profile(Wedeen et al.,

2005), which is defined as p (R0r) = p(Rr)|R=R0
for a given radius R0. Usually R0 = 15µm

is used in EAP profile to detect the fiber directions since large R may introduce more error.

The Orientation Distribution Function (ODF(Wedeen et al., 2005)) is defined through the

marginal distribution of p(R)

Φw(r) =

∫ ∞
0

p(R)R2dR. (2.1.8)

Q-Ball Imaging (QBI) Different from DSI, Q-Ball Imaging (QBI)(Tuch, 2002b) does

not require the b values with large range and it is one of the most commonly used HARDI

method.

The ODF in QBI is defined as:

Φt(r) =
1

Z

∫ ∞
0

p(Rr)dR, (2.1.9)

where Z is the normalization factor to make it as a probability density function. Originally,

Φt(r) was estimated from samples of E(q) in single shell data based on Funk-Radon Transform

(FRT) numerically. For single shell data with b = 4π2τq2
0, the FRT of E(q) in direction r is

defined as

FRT {E (q0u)} (r) =

∫
Πr

E(qu)δ (q − q0) qdqdu = q0

∫
u∈S2

E (q0u) δ
(
uT r

)
du (2.1.10)

Spherical Polar Fourier Imaging (SPFI) Spherical Polar Fourier Imaging (SPFI)(Assemlal

et al., 2008, 2009) is a model-free method for mHARDI data(Cheng et al., 2010a). It rep-

resents the diffusion signal E(q) by Spherical Polar Fourier (SPF) basis, which has both
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spherical and radial parts. The SPFI represents the image signal by

E(q) =
N∑
n=0

L∑
l=0

l∑
m=−l

an,l,mBn,l,m(q), (2.1.11)

where Bn,l,m(q) is the SPF basis and {an,l,m} is the corresponding coefficient. EAP profile

p (R0r) for a given R0 can further be represented by SH basis

p (R0r) =
L∑
l=0

l∑
m=−l

{
4(−1)l/2

ζ0.5l+1.5πl+1.5Rl
0

Γ(l + 1.5)

K∑
k=0

fk,l,m (ζ, R0) ak,l,m

}
Y m
l (u)

=
L∑
l=0

l∑
m=−l

cl,mY
m
l (u).

(2.1.12)

where

fn,l,m (ζ, R0)

= κn(ζ)
n∑
i=0

(−1)i

 n+ 0.5

n− i

 1

i!
20.5l+i−0.5Γ(

2i+ l + 3

2
)F

(
2i+ l + 3

2
; l +

3

2
;−2π2R2

0ζ

)
(2.1.13)

κn(ζ) =

[
2

ζ3/2

n!

Γ(n+ 3/2)

]
(2.1.14)

F (a; b;x) =
∞∑
k=0

(a)kx
k

(b)kk!
, (a)k = (a(a+ 1) . . . (a+ k − 1)), with (a)0 = 1. (2.1.15)

2.2 Reconstruction and Estimation Methods

2.2.1 Voxel-wise Estimation Methods

It is assumed that the dMRI signal at voxel v follows the following model:

f (E (qi; v)) = xTi β(v) + εi(v) (2.2.1)

where f(·) is a transformation function, xi is a p× 1 covariate vector associated with qi, β(v)

is a p × 1 coefficient vector, and εi(v) is the measurement error following the distribution
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with mean zero and variance σ2
i (v). We exploit the penalized estimator for β(v) as

β̂(v) = arg min
β(v)

ρ(y(v)−Xβ(v);λ(v)) (2.2.2)

where y(v) = (f (E (q1; v)) , · · · , f (E (qn; v)))T ,X is the covariate matrix with xi being the

i th row and ρ(·;λ(v)) is a penalty function with tuning parameter λ(v). In the following

sections, we focus on Regularized Least-Squares Regression(RLSR) and Robust Regression.

Regularized Least-Squares Regression(RLSR) Regularized Least-Squares Regres-

sion(RLSR) reformulates (2.2.2) as

β̂(v) = arg min
β(v)
‖y(v)−Xβ(v)‖2 + ρ1(β(v);λ(v)) (2.2.3)

Different methods differs from each other in terms of ρ1(β(v);λ(v)). L2 regularization

assumes

ρ1(β(v);λ(v)) = λ(v)β(v)TΛβ(v) (2.2.4)

where Λ = diag (0, 4, 4, 4, · · · , L2(L+ 1)2, · · · , L2(L+ 1)2). With (2.2.4) as penalty function,

(2.2.3) can be solved with closed-form β̂LB(v) =
(
XTX + λ(v)Λ

)−1
XTy(v).

Additionally, we may consider L1 regularization. For example, the generalized LASSO(Tibshirani,

1996; Tibshirani and Taylor, 2011) utilizes the penalty function

ρ1(β(v);λ(v)) = λ(v)‖Dβ(v)‖1, (2.2.5)

whereD is the p×p weight matrix. (2.2.5) is not differentiable at zero thus the solution does not

have a close-form in general. Fortunately, (2.2.3) is a convex problem. Several algorithms have

been proposed to solve it, such as Alternating Direction Method of Multipliers(ADMM(Boyd

et al., 2011)), Least Angle Regression(LARS)(Efron et al., 2004) and Coordinate Descent(Wu

and Lange, 2008).
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Robust Regression To improve the robustness of the estimator, robust regression uses

the huber loss function (Huber, 1964)

ρ (ei) =

 e2
i if |ei| ≤ c

c (2 |ei| − c) if |ei| > c
(2.2.6)

where ei = yi−xTi β is the residual for the ith observation, c is the tuning parameter to adjust

the robustness level. Robust regression estimators can be obtained by solving

∑
i

ρ′ (ei) xi = 0. (2.2.7)

Specifically, (2.2.7) is rewritten as
∑

i ωieixi = 0 with ωi = ρ′ (ei) /ei. It solves the weighted

least squares problem, updates the weights and resolves the problem until convergence.

All these existing voxel-wise estimation methods perform reconstruction independently

at each voxel, which essentially ignores the spatial information across all the voxel of DWI

signals.

2.2.2 Spatial Regularization Estimation Methods

Many spatial-adaptive reconstruction methods have been proposed to incorporate spatial

constraints of dMRI data. The assumption behind these approaches is that EAP/ODF

changes smoothly in the same fiber crossing region while there may have sudden jumps at the

boundaries of different fiber crossing regions. Incorporating these constraints can improve the

reconstruction performance. Current spatial-adaptive methods can be generally categorized

into three types, the denoising of raw DWI data, the denoising of the estimated EAP or ODF,

and simultaneous smoothing and estimation of DWI data(Cheng and Zhu, 2016).

In the first type, penalization methods and nonparametric methods are commonly

used to denoise the raw DWI data
{

(S (qi; v) : v ∈ V)i≥1

}
and obtain the denoised data{

(S∗ (qi; v) : v ∈ V)i≥1

}
by imposing the spatial information. Penalization methods solve
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S∗ (qi; v) by

argminS∗(qi;v)

∫
v∈V
{` (S (qi; v) , S∗ (qi; v)) + ρ (S∗ (qi; v) , λ(v))} dL(v) (2.2.8)

where ` (S (qi; v) , S∗ (qi; v)) is the log-likelihood function of the DWI signal at voxel v, ρ(·, ·)

is the penalty function, and L(v) is a measure function defined on the sets of V .

Nonparametric statistical methods such as non-local means (NLM), propagation-seperation

methods, anisotropic Wiener filtering, the bilateral filter, and the Sigma filter(Arias-Castro

et al., 2012; Yaroslavsky, 1985; Katkovnik et al., 2010; Polzehl and Spokoiny, 2000a) aim to

denoise the DWI signals through assigning weights to the nearby voxel based on the spatial

similarity and taking the average. This strategy can preserve the piecewise smooth feature of

imaging data. For example, NLM can be defined as

NLM(S(q,v)) =

√ ∑
(q′,v′)∈V(q,v)

w ((q,v), (q′,v′))S (q′,v′)2 − 2σ2 (2.2.9)

where w ((q,v), (q′,v′)) is the weight defined through the similiarity between the patches

centered in (q,v) and (q′,v′) and σ is the variance of noise, which can be estimated from all

the DWI signals.

In the second type, most methods perform denoising on the estimation of ODF or EAP.

Same with the first category, penalization methods and nonparametric methods are commonly

used technique. Penalization methods formulates the problem as:

argmin{D(v):v∈V}

∫
v∈V

d(D̂(v),D(v)) + ρ(D(v), λ(v))

}
dL(v) (2.2.10)

where d(D̂(v),D(v)) is the distance between D̂(v) and D(v) and ρ(·, ·) is the penalty function.

Nonparametric methods starts with a set of estimated diffusion tensors

(
v1, D̂ (v1)

)
, . . . ,

(
vm, D̂ (vm)

)
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at given location {v1, · · · ,vm} and formulates the problem as

D̃α(v) = arg min
D(v)

m∑
i=1

w (vm,v) g
(
D̂m (vm) ,D(v)

)α
(2.2.11)

where α ≥ 1, w (v,v′) is the distance between v and v′, g (D(v),D (v′)) is the geodesic

distance between D(v) and D (v′) and (2.2.11) can be solved through local polynomial

regression estimate (Yuan et al., 2012).

In the third type, a multiscale adaptive regression modelling (MARM) framework can be

used to simultaneously smooth and estimate DTI/ODF/EAP(Tabelow et al., 2008a; Li et al.,

2011). Specifically, let B(v, h) be a sphere with radius h centered at voxel v and ω (v,v′;h)

be a weight function of triple (v,v′, h) such that

∑
v′∈B(v,h)

ω (v,v′;h) = 1 and ω (v,v′;h) ≥ 0 for all h ≥ 0 (2.2.12)

MARM starts with building a sequence of nested spheres increasing radii h0 = 0 < h1 <

· · · < hS = r at each voxel v. Then it iteratively solves the following optimization problem as

D̂ (v;hs) = argmaxD(v)

∑
v′∈B(v,hs)

ω (v,v′;hs) `n
(
{S (qi; v

′)}i≥1 ; D(v)
)
. (2.2.13)

At the scale h0 = 0, D̂ (v;h0) = D̂(v) without imposing any spatial information. From

h0 = 0 to hS = r, a path diagram of MARM is given below:

w(v,v′;h0) w(v,v′;h1) · · · w(v,v′;hS = r)

⇓ ↗ ⇓ ↗ · · · ⇓

D̂(v;h0) D̂(v;h1) · · · D̂(v;hS)
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2.3 Tractography Algorithms

Many tractography algorithms(Reisert et al., 2011; Mori and van Zijl, 2002; Lazar, 2010;

Jbabdi and Behrens, 2013; Fillard et al., 2011) have been developed to construct fiber

streamlines through the whole brain based on ODF/EAP. These algorithms can be classified

into two categories: local and global methods.

2.3.1 Local Streamline Methods

Local methods use local ODF/EAP information to map fibers and can be further classified

into two groups: deterministic and probabilistic algorithm. Deterministic algorithms usually

start at seed voxels and at each step it extract a most similar peak from the EAP/ODF of

the current voxel. Probabilistic algorithms decide the direction at each voxel by generating

the principal directions with Monte Carlo simulations. Mathematically, local tractography

methods formulates the fiber tracking problem as a stochastic ordinary differential equation:

dv(t)

dt
= e(v), t ≥ 0 with v(0) = v0 (2.3.1)

where v(t) is the fiber curves in R3, e(v) is the fiber direction at location v and v0 is the

position of the seed point. Local methods are computational efficiency but are easy to

accumulate errors, which may affect the fiber tracking accuracy severely.

2.3.2 Global Streamline Methods

Global methods aim to reconstruct the all the detectable fibers simultaneously. They

are more robust to noise components and outliers compared with local methods but are

usually computationally intensive. Denote M as a fiber model in V and S the set of all

the DWI signals. A Bayesian framework for global methods can be considered. Basically,

the likelihood function p(S|M) and the prior distribution p(M) need to be specified. The

likelihood function can be defined through the dMRI models discussed in the previous sections

but how to specify p(M) is of worthy attention. For example, Reisert et al. (2011) proposed

to use small streamline segments to represent streamline and p(M) was achieved by applying
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interaction model for all the connected segments. With the prior distribution, the posterior

distribution p(M|S) ∝ p(S|M)p(M) and the corresponding mode M̂ = argmaxM p(M|S)

can be obtained.

2.4 Fiber Analysis

Once the streamlines are reconstructed through tractography algorithms, anatomically

meaningful fiber bundles/tracks can be recovered by clustering the streamlines. Fiber bundle

clustering is essential for understanding and analyzing the white matter structure(Guevara

et al., 2012; Siless et al., 2018; Donnell and Westin, 2007). The clustering approaches such

as k-means(Li et al., 2010), hierarchical clustering(Donnell and Westin, 2007) and Kernel

dictionary learning(Kumar et al., 2019a) have been applied into fiber bundles clustering

successfully. Some of them will be reviewed in section 2.4.1. Recently, some deep learning

based clustering methods including deep adaptive image clustering(Chang et al., 2017), deep

self-evolution clustering(Chang et al., 2018) have been proposed to overcome the shortcomes

of traditional methods. For example, the performance of traditional methods is sensitive

to the choice of distance metric between two objects. Therefore, these deep learning based

clustering methods have potential application on fiber bundle clustering. Some of them will

be reviewed in section 2.4.2.

2.4.1 Fiber Clustering Methods

Notations and concepts are declared as follows. Denote S the set of streamlines and

X ∈ Sn is the streamlines generated from tractography. D ∈ Sm is the dictionary of bundle

prototype/cluster center and W ∈ Rm×n assigns the streamline to bundle and φ : S → Rq is

a mapping function. Define Φ as mapped streamlines and K ∈ Rn×n to be the kernel matrix

for streamlines.

Dictionary Learning and the k-means Let X be a d×n matrix such that each column

is the feature vector of each streamline. The fiber clustering problem is to assign each
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streamline to one of the m bundles and can be formulated as

min
W,D
‖X−DW‖2

F .

Although solving D and W together is NP-hard, optimizing W or D iteratively is feasible.

Specifically, with fixed dictionary D, the optimal W assigns each streamline to the prototype

with the nearest distance. With fixed W, the optimal dictionary D is achieved by linear

regression estimator. This idea is shared with the well-known k-means algorithm.

Kernel k-means In the kernel k-means, each streamline is projected to a q-dimensional

space by φ : Rd → Rq, where q � d. Denote Φ ∈ Rq×n as Φ = φ(X) and the kernel matrix

K = Φ>Φ. The clustering problem can be formulated as:

arg min
D,W
‖Φ−DW‖2

F subject to W>1m = 1n (2.4.1)

We further define D = ΦA, where A ∈ Rn×m. Then (2.4.1) becomes

arg min
W,A
‖Φ−ΦAW‖2

F subject to W>1m = 1n (2.4.2)

Following the similar optimization method in k-means, W is updated by:

wmi =

 1 : if m = arg minm′
[
A>KA

]
m′m′
− 2

[
A>ki

]
m′

0 : otherwise.
(2.4.3)

where ki is the ith column of K. A is then updated by the linear regression solution

A = W> (WW>)−1. A and W are optimized alternatively until convergence or the

maximum number of iterations is reached.

Kernel Dictionary Learning In fiber clustering problem, hard clustering approaches

such as k-means can be sensitive to streamline outliers. Therefore, kernel dictionary learning
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is proposed to overcome this drawback. Specifically, the L0 norm constraints are imposed

on the column of W and the i th column wi can be solved independently by the following

optimization problem:

arg min
Wi∈Rm+

‖φ (xi)− ΦAwi‖2
2 subject to ‖wi‖0 ≤ Smax, (2.4.4)

where Smax is defined to control the sparsity level of wi.

To solve matrix W and A, each column of W is first updated by using kernel orthogonal

matching pursuit (kOMP)(Nguyen et al., 2012) approach with non-negativity constrains.

Then A is updated by

[A]ij ← [A]ij ·

[
KW>]

ij

[KAWW>]ij
, i = 1, . . . , n, j = 1, . . . ,m (2.4.5)

A and W are optimized alternatively until convergence or the maximum number of iterations

is reached.

2.4.2 Deep Adaptive Image Clustering

The Deep Adaptive Clustering(DAC)(Chang et al., 2017) proposes to consider image

clustering as a binary pairwise classification task. Specifically, for the training set D =

{(xi,xj, rij)}ni=1,j=1 , define rij = 1 if xi,xj belong to the same cluster and rij = 0 otherwise.

This cluster problem is formulated as

min
w

E(w) =
∑
i,j

L (rij, g (xi,xj; w)) (2.4.6)

where g (xi,xj; w) is the similarity function between xi and xj with parameters w and

L (rij, g (xi,xj; w)) is the loss function between rij and g (xi,xj; w). The loss function can

be further expressed as

L (rij, g (xi,xj; w)) = −rij log (g (xi,xj; w))− (1− rij) log (1− g (xi,xj; w)) . (2.4.7)

15



To define the similarity function, the set of label features are first defined as L =
{
li ∈ Rk

}n
i=1

,

where li is the label feature vector of the image xi and

‖li‖2 = 1, and lih ≥ 0, h = 1, · · · , k (2.4.8)

The similarity g (xi,xj; w) is further defined as

g (xi,xj; w) = li · lj (2.4.9)

With the clustering constraint of li, the DAC model can be reformulated as:

min
w

E(w) =
∑
i,j

L (rij, li · lj) s.t. ∀i, ‖li‖2 = 1, and lih ≥ 0, h = 1, · · · , k (2.4.10)

However, since the true labels of images are unknown in clustering, it is unclear how

to select labeled samples for training purpose. A strategy to solve the problem is to use

ALL-ConvNets(Springenberg et al., 2014) based on

rij :=


1, if 1i · 1j ≥ u(λ)

0, if 1i · 1j < l(λ),

None, otherwise

, i, j = 1, · · · , n (2.4.11)

where λ is a tuning parameter and None means the sample is not selected for training. To

ensure that the samples are gradually selected in the training process, λ is increasing and

u(λ) ∝ −λ, l(λ) ∝ λ and l(λ) ≤ u(λ) are also satisfied.
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The DAC model can be finalized as

min
w,λ

E(w, λ) =
∑
i:j

vijL (rij,1i · 1j) + u(λ)− l(λ)

s.t. l(λ) ≤ u(λ), vij ∈ {0, 1}, i, j = 1, · · · , n,∀i, ‖li‖2 = 1, and lih ≥ 0, h = 1, · · · , k

rij :=


1, if 1i · 1j ≥ u(λ)

0, if 1i · 1j < l(λ),

None, otherwise

, i, j = 1, · · · , n,

(2.4.12)

where v satisfies

vij :=

 1, if rij ∈ {0, 1},

0, otherwise
i, j = 1, · · · , n. (2.4.13)

To solve (2.4.12), Adaptive Learning algorithm is utilized to optimize w and λ alternately.

With λ fixed, (2.4.12) degenerates to

min
w

E(w) =
∑
i,j

vijL (rij, f (xi; w) · f (xj; w)) (2.4.14)

and the back-propagation algorithm can be used to update w. Similarly, with w fixed,

(2.4.12) becomes:

min
λ

E(λ) = u(λ)− l(λ). (2.4.15)

λ can be updated by gradient descent algorithm:

λ := λ− η · ∂E(λ)

∂λ
(2.4.16)
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CHAPTER 3: A TWO-STAGE SPARSE AND ADAPTIVE SMOOTHING
MODEL FOR NEUROIMAGING DATA ANALYSIS

3.1 Introduction

Many large-scale neuroimaging studies, such as the lifespan human connectome studies and

the UK biobank, have collected/are collecting massive multi-modal imaging data, including

structure magnetic resonance imaging (MRI) data (Brown et al., 2014), diffusion MRI (dMRI)

(Johansen-Berg and Behrens, 2009; Le Bihan and Iima, 2015), and functional MRI (fMRI)

data (Lazar, 2008b; Penny et al., 2011), with high spatial and/or temporal resolution to

map human brain function and structure and assess their variability across time and groups.

An improved understanding of human brain function and structure through neuroimaging

data analysis has the potential to inspire new and urgently needed approaches to prevention,

diagnosis, and treatment of many illnesses (e.g., schizophrenia, and Alzheimer). Two major

neuroimage denoising tasks include image reconstruction from multiple noisy image volumes

within each subject and group analysis of normalized images obtained from different subjects.

These two tasks are highly related with the classical problem of image noise removal.

The problem of image noise removal has received extensive attention for decades (Fan et al.,

2019; Buades et al., 2005; Arias-Castro et al., 2012). Among all existing methods, kernel-based

methods are extremely popular due to their computational simplicity and theoretical elegance

(Nadaraya, 1964; Watson, 1964; Yaroslavsky, 1985; Lee, 1983; Buades et al., 2005; Awate and

Whitaker, 2006; Dabov et al., 2007; Dong et al., 2012; Coupé et al., 2008; Arias-Castro et al.,

2012). Some well-known examples include linear filtering (Nadaraya, 1964; Watson, 1964),

Yaroslavsky’s filter (Yaroslavsky, 1985; Lee, 1983), non-local means (Buades et al., 2005),

propagation−separation (PS) approach Polzehl and Spokoiny (2000b); Polzehl et al. (2010),

unsupervised, information-theoretic and adaptive filter (UINTA)) (Awate and Whitaker, 2006)
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and many variants of these approaches (Dabov et al., 2007; Dong et al., 2012; Coupé et al.,

2008). Those smoothing methods usually solve a weighted loss function by incorporating

signals in the neighboring locations of each location. A further refinement consists of building

a sequence of increasing scales and then sequentially fitting the weighted loss functions from

the small scale to the large scale (Polzehl and Spokoiny, 2000b; Polzehl et al., 2010). However,

these kernel-based denoising methods focus on smoothing a single image at a time, so they

are not optimal for the two major image denoising tasks discussed above due to additional

imaging features for neuroimaging data.

There are at least three key imaging features associated with many neuroimaging modal-

ities, including local low-dimensional representation, low signal-to-noise ratio, and spatial

smoothness. The first one is that multiple imaging signals in each spatial location are usually

represented as either a parametric model with a few parameters or a sparse representation

of a set of basis functions (Zhu et al., 2009; Zhang et al., 2016, 2013; Lindquist et al., 2010;

Tabelow et al., 2008b). For instance, in dMRI, spherical polar Fourier imaging (Cheng

et al., 2010b; Assemlal et al., 2009) was proposed to approximate diffusion signal attenuation

by using the spherical polar Fourier basis (SPF) basis. In fMRI, various basis functions

used for modeling a hemodynamic response function include the finite impulse response

(FIR) basis set, the principal component basis set, and spline basis set, among others. The

second one is that the signal-to-noise ratio of neuroimaging signals in each image volume

can be very low partially due to improving acquisition efficiency in many biomedical studies.

Therefore, it is very rare to independently apply image denoising methods to each image

volume, possibly leading to many artifacts. The third one is that neuroimaging data is

usually expected to contain spatially contiguous regions or effect regions with relatively sharp

edges due to the physical and biological reasons. For instance, scientists have been trying to

subdivide the human brain into anatomically and functionally distinct, spatially contiguous

areas (cortical areas and subcortical nuclei), as a prerequisite for understanding how the

brain works (Bijsterbosch et al., 2020; Glasser et al., 2016). Accurate parcellation enables
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efficient comparison of results across studies and communication among investigators and a

foundation for illuminating the functional and structural organization of the brain.

Two major image denoising methods include voxel-wise methods and adaptive smoothing

methods. Conventional voxel-wise approaches for image reconstruction independently fit a

statistical model (e.g., Rician regression or high-dimensional linear regression) to imaging data

at each location (Zhu et al., 2009; Zhang et al., 2016, 2013; Lindquist et al., 2010; Tabelow

et al., 2008b). Conventional voxel-wise approaches for group analysis involve in Gaussian

smoothing imaging data, independently fitting a statistical model to imaging data at each

voxel, and generating statistical maps of test statistics and p−values (Lazar, 2008a). It is

well-known that many voxel-wise methods ignores the spatial information of imaging data and

therefore, they are generally not optimal in power (Zhu et al., 2014; Lindquist et al., 2010).

Therefore, there is a great interest in developing multiscale adaptive methods to adaptively

and simultaneously smooth multiple neuroimaging images for the two neuroimaging denoising

tasks (Tabelow et al., 2008a,b; Becker et al., 2014; Polzehl et al., 2010; Zhu et al., 2014; Li

et al., 2011). Those multiscale adaptive methods dramatically increase signal-to-noise ratio,

while preserving spatial details (e.g., spatial smoothness and edges). Moreover, a multiscale

adaptive regression model (Li et al., 2011) was developed for a large class of parametric

models by integrating the propagation-separation approach and voxel-wise approach.

The aim of this paper is to develop a two-stage sparse and adaptive smoothing model

(TSASM) to solve the two neuroimage denoising tasks in neuroimaging data analysis, while

accounting for the key neuroimaging features as discussed above. We focus on the case when

multiple imaging signals in each spatial location can be represented a sparse representation

of a set of basis functions, in which the number of basis functions can be much larger than

the number of observations in each location. Our TSASM involves an initial smoothing stage

based on a penalized M−estimator and a refined smoothing stage by applying Yaroslavsky’s

filter and non-local means. Major contributions of the article are as follows.
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• In the first stage of TSASM, we fit a penalized linear regression model to select the active

set for each voxel/vertex. We study the variable selection consistency for the penalized

M -estimator. Since we consider the general loss function and nonconvex penalty

function, these results work for several variable selection methods with regularization

strategy including SCAD (Fan and Li, 2001), MCP (Zhang, 2010), and many others.

• In the second stage, we apply the adaptive kernel including Yaroslavsky’s filter

(Yaroslavsky, 1985) and Non-local means method (Buades et al., 2005; Arias-Castro

et al., 2012) on the coefficient images estimated from the first stage to adjust for the

piecewise-smoothness with discontinuity jump edges feature of neuroimaging data.

• Our two-stage estimation procedure smooth each of coefficient images independently,

which is computationally more efficient compared with the existing methods.

• We systematically study the oracle inequalities and derive the theoretical minimax rates

based on mean squared error under different noise levels. We also give the optimal

choice of bandwidth for the kernel function.

The rest of this paper proceeds as follows. Section 3.2 presents the two-stage imaging data

noise removal process and establish the theoretical properties. We examine the finite-sample

performance of our proposed methods by simulation studies in Section 3.4. In Section 3.5, we

apply our proposed method on a diffusion magnetic resonance imaging dataset. Section 3.6

concludes the article with some discussions. Theoretical assumptions and proofs are given in

the Appendix.

We summarize here the notation that will be used throughout the paper. For any

vector u = (u1, . . . , ud)
T ∈ Rd and q ≥ 1, ‖u‖q =

(∑d
j=1 |uj|q

)1/q is the `q norm and

‖u‖∞ = max1≤j≤d |ui| is the `∞ norm. For any vectors u,v ∈ Rd, we write 〈u,v〉 = uTv.

We use C to denote a generic constant which may change from line to line. For two sequences

of real numbers {an}n≥1 and {bn}n≥1, we write an = O(bn) or an . bn if |an| ≤ C|bn| for

some constant C > 0 and an � bn if an = O(bn) and bn = O(an). If A is an m× n matrix,
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we use ‖A‖q to denote its `q operator norm, defined by ‖A‖q = maxu∈Rn ‖Au‖q/‖u‖q. For

an n × n matrix A, we use λmax(A) and λmin(A) to denote the maximum and minimum

eigenvalues of A. For a function g : Rd → R, we use ∇g ∈ Rd to denote its gradient vector.

3.2 Methodology

3.2.1 Model Setup

Suppose that we observe n image volumes (or subjects) defined on a common space D0 in

a compact set of R3, where D0 is the set of all voxels d0. We use ND to denote the total

number of all voxels in D0. For the i-th volume, we observe an imaging measure yi(d0) at

d0 ∈ D0, and thus we would have a ND × 1 vector of measurements across D0. Besides the

imaging measurements, suppose we collect a set of predictors, such as age, gender and other

clinical variables, and/or basis functions, denoted as a vector xi = (xi1, . . . , xip)
T ∈ Rp for

the i th volume, where p is the number of the predictors.

First, it is assumed that the imaging measures at d0 follow the following model:

yi(d0) = f(xi,d0) + εi(d0) for all i = 1, . . . , n and d0 ∈ D0, (3.2.1)

where f(xi,d0) : Rp ×D → R and εi(d0) is a measurement error. Throughout the paper, it

is assumed that f(xi,d0) = xT
i β(d0), where β(d0) = (β1(d0), . . . , βp(d0))T is a p-dimensional

vector of coefficient functions of d0. For simplicity, f(xi,d0) is denoted by fi(d0). Throughout

the paper, p is allowed to be much larger than the sample size n and tends to∞ with n, but only

a few of them are related to yi(d0) with the corresponding elements of β(d0) being nonzero,

and the rest elements of β(d0) equal to 0 exactly. Let β∗(d0) = (β∗1(d0), . . . , β∗p(d0))T be the

true value of the parameter vector β(d0) and the true value of fi(d0) be f ∗i (d0) = xT
i β
∗(d).

We define the support set for every d ∈ D as

S(d0) = {j : 1 ≤ j ≤ p, β∗j (d0) 6= 0}.

We define s(d0) = |S(d0)| as the number of elements contained in S(d) and s = maxd0 s(d0).
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Second, it is assumed that both f ∗i and β∗j belong to the Cartoon function class F .

This assumption is quite reasonable since {yi(d0) : d0 ∈ D0} can be regarded as a noisy

version of a piecewise-smooth function of d ∈ D with jumps or edges and may inherit the

piecewise-smooth feature from imaging data. In many neuroimaging data, those jumps or

edges often reflect anatomically and functionally distinct brain subregions, such as major

white matter bundles. We define the Cartoon function class and its related Hölder function

class as follows.

Definition 3.2.1 (Hölder Function Class). For any α ∈ R+, let [α] denote the largest integer

strictly less than α. We define Hm(α,C0) as the Hölder class of functions g:[0, 1]m → [0, 1]

that are [α] times differentiable such that

∀d = (d1, . . . , dm)T ∈ [0, 1]m,∀s = (s1, . . . , sm)T ∈ Nm, 1 ≤ |s| ≤ [α] : |g(s)(d)| ≤ C0,

∀d and d
′ ∈ [0, 1]m, |s| := s1 + · · ·+ sm = [α] : |g(s)(d)− g(s)(d

′
)| ≤ C0

∥∥∥d− d
′
∥∥∥α−[α]

,

where α, C0 > 0 are some constants, g(s)(d) is the s-derivative of g(·) at d ∈ Rm and given by

g(s)(d) =
∂|s|

∂s1d1 . . . ∂
sm
dm

g(d).

Definition 3.2.2 (Cartoon Function Class). Let Ω = φ(B(0, 1)), where B(0, 1) is the unit

ball in R3 and φ : R3 → R3 is injective with both φ and φ−1 being C0-Lipschitz. Let Ωc and

∂Ω be the complement of Ω and the boundary of Ω, respectively. For C0 > 0, we define the

Cartoon function class F as the set of functions of the form

f(d) = 1({d ∈ Ω})fΩ(d) + 1({d ∈ Ωc})fΩc(d),

where 1(A) is the indicator function of an event A and fΩ(d) and fΩc(d) belong to Hölder
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function class H3(1, C0), with jump

µ(f) = inf
d∈∂Ω

|fΩ(d)− fΩc(d)| ≥ 1/C0.

Our purpose here is to identify the active sets, estimate the model coefficient, and finally

get a piecewise-smooth estimator for both f∗,i(·) and β∗(·).

3.2.2 Estimation Procedure

We develop a two-stage estimation procedure, including the first stage for estimating

β∗(d0) and the second stage for estimating f∗,i(d0), as follows.

First Stage: Estimating β∗(d0) We first identify the support set of β∗(d0) and obtain

an initial estimator of β∗(d0) for each voxel d0 ∈ D0. Specifically, we exploit the penalized

M -estimator

β̂(d0, λ) = arg min
‖β‖1≤R

{
L(β;Y (d0), X) +

p∑
j=1

pλ(βj)

}
, (3.2.2)

where L(·) is a convex loss function, Y (d0) = (y1(d0), . . . , yn(d0))T, X = (x1, . . . ,xn)T, pλ(·)

is a penalty function, and λ > 0 is a regularization parameter. We require R to be large enough

such that ‖β∗‖1 ≤ R. Subsequently, the corresponding support set estimator is given by

Ŝ(d0, λ) = {j : 1 ≤ j ≤ p, β̂j(d0, λ) 6= 0}. Fo simplicity, we write Ld0(β) = L(β;Y (d0), X).

Second Stage: Estimating f∗,i(d0) We second refine the estimator of β∗(d0) by ac-

counting for its piecewise-smooth property with discontinuities along smooth hypersurfaces.

Specifically, the initial estimator β̂(d0, λ) does not utilize this information, so it may be

suboptimal. We refine this estimator by using kernel-based methods as follows. We apply the

local linear regression to get a piecewise smooth estimator β̂j(·) for j = 1, . . . , p. Let Bj(d) =

(βj(d), h(∂βj(d)/∂d)T)T ∈ R4 and zh(dm−d) = (1, (dm,1−d1)/h, (dm,2−d2)/h, (dm,3−d3)/h)T,

where d = (d1, d2, d3)T and dm = (dm,1, dm,2, dm,3)T ∈ D0. To estimate Bj(d), we propose to
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solve

B̂j(d) = arg min
Bj

∑
dm∈D0

{
β̂j(dm, λ)−BT

j zh(dm − d)
}2
Kj,h(dm − d), (3.2.3)

where Kj,h(dm − d) is a rescaled kernel function with bandwidth h, which will be discussed

in Subsection 3.2.3. Taking the derivative with respect to Bj, we get

B̂j(d) =

{ ∑
dm∈D0

zh(dm − d)zh(dm − d)TKj,h(dm − d)

}−1

·

{ ∑
dm∈D0

zh(dm − d)Kj,h(dm − d)β̂j(dm, λ)

}
.

(3.2.4)

Moreover, β̂j(d) = B̂j(d)Te1 and e1 = (1, 0, 0, 0)T. For every d′0 and d ∈ D0, we define

wj,h(d
′
0,d) = zh(d

′
0−d)T[

∑
dm∈D0

zh(dm−d)zh(dm−d)TKh(dm−d)]−1e1Kj,h(d
′
0−d), (3.2.5)

then we have β̂j(d) =
∑

d′0∈D0
wj,h(d

′
0,d)β̂j(d

′
0, λ). The piece-wise smooth estimator for

f∗,i(d0) can be further given by f̂i(d) =
∑p

j=1 xijβ̂j(d).

3.2.3 Three different kernel functions

Various kernel-based methods that we discuss in this paper differ only in the choice of

kernel Kh(·). We consider three different kernels corresponding to oracle kernel, Yaroslavsky’s

filter (YF), and non-local means (NLM) method, respectively, as follows. The oracle kernel is

based on the boundary information ∂Ω, whereas the other two do not assume that.

Oracle Kernel We consider the oracle kernel by using the exact location of Ω and Ωc.

Therefore, we incorporate such location information into the kernel function and substitute it

into (3.2.3) to smooth βj. For example, to get β̂j,Ω(d) for d ∈ Ω, we set the kernel function

in as

Kh(dm − d) = h−3

3∏
k=1

Kloc((dm,k − dk)/h)1({d ∈ Ω
⋂
D0}). (3.2.6)
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Here we set Kloc(u) = (1 − u)+ := max(0, 1 − u). Similarly, we can obtain the smoothing

estimator β̂j,Ωc(d) for βj,Ωc(d). The final estimator for βj(d) is β̂j(d) = 1{d∈Ω}β̂j,Ω(d) +

1{d∈Ωc}β̂j,Ωc(d) and the corresponding estimator for fi(d) is given by f̂i(d) =
∑p

j=1 xijβ̂j(d).

Yaroslavsky’s filter The Yaroslavsky’s filter explicitly uses the similarity between two

voxels based on both their spatial distance and the relative proximity of image intensities in

them. Specifically, in order to utilize the information from the image intensity, YF set the

kernel function for the j-th coefficient in (3.2.3) as

Kadj
j,h,hy

(dm − d) = h−3

3∏
k=1

Kloc((dm,k − dk)/h)Lhy(β̂j(dm, λ), β̂j(d, λ)), (3.2.7)

where Lhy(β̂j(dm, λ), β̂j(d, λ)) = 1({|β̂j(dm, λ) − β̂j(d, λ)| ≤ hy}) is used to control the

photometric proximity. Let β̂YF
j,h,hy

(d) be the estimator of βj(d) obtained from (3.2.3) based

on the adjusted kernel function Kadj
j,h,hy

(dm − d), we calculate the corresponding estimator for

fi(d), given by f̂YF
i,h,hy

(d) =
∑p

j=1 xijβ̂
YF
j,h,hy

(d).

Non-local means method Non-local means can be regarded as an extension of YF for

handling the unknown boundary case. Specifically, NLM uses the relative proximity of image

intensity of two voxels through the discrepancy between patches surrounding the voxels

considered, whereas YF only uses the discrepancy between two considered voxels. Define

Pd = {d′ : max1≤j≤3 |d′j − dj| ≤ hP/2}, mP the number of voxels contained in Pd0 and

Yj,Pd
= {β̂j(dm, λ) : dm ∈ D

⋂
Pd} for hP > 0 and every d ∈ D. Then, the adjusted kernel

function in NLM is given by

Kadj
j,h,hy

(dm − d) = h−3

3∏
k=1

Kloc((dm,k − dk)/h)Lhf (Yj,Pdm
,Yj,Pd

), (3.2.8)

where Lhf (Yj,Pdm
,Yj,Pd

) = 1({‖Yj,Pdm
− Yj,Pd

‖2 ≤ hy}). In practice, it is computationally

intensive to calculate Lhf (Yj,Pdm
,Yj,Pd

) for large hP . Several methods have been proposed
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to make a trade-off between computational complexity and accuracy (Azzabou et al., 2007;

Tolga, 2009). Throughout this paper, we follow Mahmoudi and Sapiro (2005) and compare

patches only by using their means. It leads to the following photometric kernel

Lhf (Yj,Pdm
,Yj,Pd

) = L̄hf (β̄j,Pdm
, β̄jPd

) = 1({|β̄j,Pdm
− β̄i,Pd

| ≤ hy}),

where β̄j,Pdm
is the average of β̂j(dm, λ) within the patch Pdm . Let β̂NLM

j,h,hy
(d) be the estimator

of βj(d) obtained from (3.2.3) based on the adjusted kernel function (3.2.8), we calculate the

corresponding estimator for fi(d), given by f̂NLM
i,h,hy

(d) =
∑p

j=1 xijβ̂
NLM
j,h,hy

(d).

3.3 Theoretical Properties

We systematically investigate the theoretical properties of all estimators obtained from

the two-stage estimation procedure. Without otherwise stated, we assume that op(1) and

Op(1) hold uniformly across all d in either D0 or D throughout the article. Moreover, both

the sample-size n and the number of voxels ND are allowed to diverge to infinity. We define

the oracle estimator β̂0(d0) as

β̂0(d0) = argmin
supp(β)⊆S(d0)

L(β;Y (d0), X), (3.3.1)

in which S(d0) is the true support set of β∗(d0). We state the following theorems, whose

detailed proofs can be found in a supplementary document.

We need the following assumptions to facilitate the technical details, although they may

not be the weakest conditions.

Assumption 3.1. The penalty function satisfies the following conditions: (i) pλ(·) is sym-

metric on R, non-decreasing and differential on x > 0; (ii) pλ(x) + 0.5µ‖x‖2
2 is convex

for some µ > 0; (iii)ṗλ(x) = dpλ(x)/dx is continuous and non-increasing on (0,∞) and

limx→0+ ṗλ(x) = λ; and (iv) there exists a constant γ > 0 such that ṗλ(x) = 0 for any

|β| ≥ γλ > 0.
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Assumption 3.2. The localized restricted strong convexity (LRSC) assumption holds, that

is, there exists a ρ > 0 such that

〈∇L(β∗ + ∆)−∇L(β∗),∆〉 ≥ ρ‖∆‖2
2 − τ

log p

n
‖∆‖2

1, ∀ ‖∆‖2 ≤ r,

where τ > 0 is a tolerance parameter and r > 0 is a local radius parameter.

Assumption 3.3. εi(d)’s are i.i.d. sub-Gaussian random variables with mean 0 and vari-

ance proxy σ2, and maxd0∈M ‖∇Ld0(β
∗)‖∞ ∨ ‖∇Ld0(β̂

0)‖∞ . σ
√

log(p|M |/δ)/n holds with

probability at least 1− δ for any set M .

Assumption 3.4. d0 ∈ D0, xT

i,S(d0)(X
T

S(d0)XS(d0)/n)−1xi,S(d0) � s for all i = 1, . . . , n.

Assumption 3.5. For every d0 ∈ D0, λmax(XT

S(d0)XS(d0)/n) � λmin(n−1XT

S(d0)XS(d0)/n) =

O(1).

Assumption 3.6. Suppose there exists C1 > 0 such that (1/(pND))C1 = o((σ2s2n−1N−1
D )2/5)

and σ = o(n/(s+ log(ND))).

Assumption 3.7. Suppose λ � σ
√

log(pND)/n, s/n = o(1) and (logND)/n = o(1) .

Assumption 3.8. The bias and the variance of the oracle estimator have the following orders

‖bias(β̂0(d0))‖2 := ‖Eβ̂0(d0)− β∗(d0)‖2 .

√
s

n
σ2,

var(uT β̂0(d0)) .
s

n
σ2

for any unit vector u ∈ Rp×1.

Assumption 3.9. The tail probability of ‖β̄Pdm
− β̄∗Pdm

‖∞ satisfies

P
{

max
dm∈B(d0,h)

‖β̄Pdm
− β̄∗Pdm

‖∞ & σ(s+ log(mPND))/n+ σ
√

log(pND)/(nmP)

}
= o((σ2s2n−1N−1

D )2/5).
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Remark 1. Assumption 3.1 is satisfied for several folded concave penalty functions such

as SCAD, MCP and the capped `1 penalty. The local ball constraint can be used in the

case where the loss function is not quadratic like when the parameters are far away from

the underlying true, such as the Huber loss function. This can be seen as a generalization

of the restricted strong convexity condition by Loh and Wainwright (2015). Assumption

3.3 illustrate the distribution of measurement error ε and the tail probability of the first

derivative of loss function. Assumptions 3.4 and 3.5 imply the scale of the covariate matrix

XS(d0) for each d0. Assumptions 3.6 and 3.7 assume the order of tuning parameter λ, stand

deviation σ, the ratio of s and n and the ratio of n and p for selecting the support set.

Assumptions 3.8 and 3.9 describe the orders of bias and variance of the oracle estimator and

the tail probability of oracle estimator average within the patch for NLM respectively. These

assumptions are satisfied for the loss function such as L2 loss and Huber loss. The validation

of these assumptions using L2 loss and Huber loss can be found in Appendix.

We first investigate the consistency property of the estimated support set across all voxels

d0.

Theorem 3.3.1. Assume Assumptions 3.1 and 3.2 hold for loss Ld0 with 3µ < 4ρ and r = 2R.

Suppose ‖β̂0(d0)−β∗(d0)‖∞∨‖∇Ld0(β
∗)‖∞∨‖∇Ld0(β̂

0)‖∞ ≤ λ/2, and τs(log p/n)3/2 ≤ cλ

for some small enough constant c. Suppose minj∈S(d0) |β∗j | ≥ (γ + 1/2)λ. Then

Ŝ(d0, λ) = S(d0), β̂(d0, λ) = β̂0(d0).

Further if Assumption 3.2 holds for all losses, maxd0∈D0 ‖β̂0(d0)−β∗(d0)‖∞∨‖∇Ld0(β
∗)‖∞∨

‖∇Ld0(β̂
0)‖∞ ≤ λ/2, and mind0∈D0 minj∈S(d0) |β∗j (d0)| ≥ (γ + 1/2)λ, then

Ŝ(d0, λ) = S(d0) and β̂(d0, λ) = β̂0(d0) for all d0 ∈ D0.

Remark 2. Theorem 3.3.1 states that the support set S(d0) for each d0 can be estimated

consistently and the the penalized M -estimator is equal to the oracle estimator with high
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probability. These results also stand uniformly for all the d0 ∈ D0 under more strict scaling

conditions.

To evaluate the performance of the estimate method, we define

MSEf (f̂) =

∑
d0∈D0

∑n
i=1E(f̂i(d0)− f ∗i (d0))2

nND

=

∑
d0∈D0

E‖f̂(d0)− f ∗(d0)‖2

nND

,

where f̂(d0) = (f̂1(d0), . . . , f̂n(d0))
T and f ∗(d0) = (f ∗1 (d0), . . . , f

∗
n(d0))

T. Further define

Rn(f̂) = supf∈F MSEf(f̂) and the minimax risk R∗n = inf f̂ supf∈F MSEf(f̂).We say the

estimator f̂ achieves the minimax risk if Rn(f̂) = O(R∗n). Since we already have the value of

f ∗i belongs to [0, 1], we clip f̂i so that it also takes value in [0, 1] and this will not increase

MSE.

As pointed out in section 3.2.3, oracle kernel knows which voxel belongs to Ω or to Ωc.

This information is sufficient to help us smooth f as if there is no discontinuity. We call the

estimator that uses the oracle kernel the oracle estimator. We first focus on the performance

of oracle estimator and consider it as benchmark for other adaptive kernels.

Theorem 3.3.2. Under Assumptions 3.1-3.8, the risk of the oracle estimator has the following

upper bound

inf
h
Rn(f̂h) . (σ2s2n−1N−1

D )2/5 ∨ σ2s2n−1

with the optimal choice of bandwidth h � (σ2s2n−1N−1
D )1/5. If we further assume that εi(d)’s

are i.i.d. Gaussian random variables, then

(σ2s2n−1N−1
D )2/5 . inf

h
Rn(f̂h) . (σ2s2n−1N−1

D )2/5 ∨ σ2s2n−1.

If ND . (σ−2s−2n)
3
2 , the oracle estimator achieves the minimax risk

inf
h
Rn(f̂h) � R∗n � (σ2s2n−1N−1

D )2/5.
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Remark 3. Theorem 3.3.2 states the lower and upper bound for the oracle estimator.

Compared with the Theorem 4.2 in (Arias-Castro et al., 2012), our lower bound is the similar

minimax bound (Korostelev and Tsybakov, 2012) and requires the errors have Gaussian

distribution while our upper bound has the extra term σ2s2n−1, which comes from fitting the

linear model voxel-wise in our first stage. This upper bound holds for the general sub-gaussian

errors.

We next study the performance of YF. YF usually performs well when the noise level is

not high.

Theorem 3.3.3. Under Assumptions 3.1-3.8 and if σ .
√
n/(s log(pND)),then we have

inf
h,hy
R(f̂YF

h,hy) � inf
h
Rn(f̂h)

with h � (σ2sn−1N−1
D )1/5, hy � 1.

Remark 4. Theorem 3.3.3 states that YF can mimic the oracle kernel and achieve a

performance comparable to that of oracle kernel when the noise level is not high. However, the

results are no longer true when the noise level is of higher order. This is because under strong

noise level YF would smooth the voxel from both Ω and Ωc, which makes the separation at

the boundary region ∂Ω impossible.

In the previous section, we have discovered that YF can perform as well as the oracle

kernel when the noise level is not high. To adapt YF in the case of strong noise level, a

natural idea is to use a two-stage algorithm: denoise first and then apply YF. Indeed, this is

the rational behind NLM. We first investigate the performance of NLM when the noise level

is not high.

Theorem 3.3.4. Under Assumptions 3.1-3.8 and if σ .
√
n/(s log(pND)), then we have

inf
h,hy
R(f̂NLM

h,hy ) � inf
h
Rn(f̂h),
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with hP = 1/N
1/3
D , h � (σ2sn−1N−1

D )1/5, hy � 1.

Remark 5. Theorem 3.3.4 states that if the same noise condition in Theorem 3.3.3 is

satisfied, the patch with width hP = 1/N
1/3
D only contains one single voxel, which would

make NLM degenerate to YF, and we can still achieve the oracle risk bound.

We next consider the performance of NLM method under the general case of noise level.

Theorem 3.3.5. Under Assumptions 3.1-3.9, we have the upper bound of the risk as

inf
h,hy
R(f̂NLM

h,hy ) .
(σ2sn−1 log pND)1/3

N
1/3
D

∨ σ2s2n−1,

with hP � (σ2n−1 log pND)1/3

N
1/3
D

, hy � 1, h � (σ2sn−1N−1
D )1/5.

Remark 6. Theorem 3.3.5 gives an upper bound for the risk of the NLM estimator for

the general noise level. Compared with the Theorems 4.4-4.5 in Arias-Castro et al. (2012),

which require σ = o(1) for YF and σ = O(1) for NLM, our Theorems 3.3.3-3.3.5 can allow

for stronger noise level. This is because we utilize the cross-image information to reduce

the noise level in the first stage and integrate the spatial constraints in the second stage to

denoise further. This also illustrates that incorporating the covariates into denoising process

is helpful for image noise removal again.

3.4 Simulation Studies

We examined the finite sample performance of our two-stage framework on the reconstruc-

tion of ensemble average propagator (EAP) by simulating synthetic high angular resolution

diffusion imaging (HARDI) (Tuch et al., 1999). Data were generated from the multi-tensor

model (Alexander et al., 2002; Tuch, 2004) given by

E(qi; d) =

√√√√(
K∑
k=1

pke−biu
T
i Dk(d)ui + σεi1)2 + (σεi2)2 for i = 1, · · · , n (3.4.1)

where qi = qiui with ui being a unit vector and qi = ||qi||2, bi is the b-value for the i-th

gradient direction, pk is the weight and Dk(d) is the tensor matrix for the k-th fiber, K is
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the number of fibers, εi1 and εi2 come from independent standard normal distribution and

the signal-to-noise ratio (SNR) is defined as 1/σ. The synthetic data contained four shells

(b = 500, 1000, 2000, and 3000 s/mm2) and each shell had 81 sampling directions (n = 324)

on the hemisphere for the 3-rd order tessellation of the icosahedron.

We generated the voxels with a single fiber and the voxels with isotropic tensor from a single

tensor model usingD1(d) with eigenvalues [1.7, 0.3, 0.3]×10−3mm2/s and [1, 1, 1]×10−3mm2/s

respectively. The voxels with two fiber directions were generated by a two-tensor model

E(qi; d) = e−biu
T
i D1(d)ui/2 + e−biu

T
i D2(d)ui/2. The direction for one of the two fibers was along

x−axis and the other one had changing angles with x−axis from 45o , 60o, 75o, to 90o and

then from 90o, 75o, 60o to 45o.

We represented the signals using spherical polar Fourier imaging (SPFI) (Assemlal et al.,

2008, 2009), which is a model-free and fast method for multiple-shell HARDI data (Cheng

et al., 2010a). It represents the diffusion signal by spherical polar Fourier (SPF) basis

E(qi; d) =
K∑
k=0

L∑
l=0

l∑
m=−l

ak,l,m(d)Bk,l,m(qi) (3.4.2)

where Bk,l,m(qi) is SPF basis and ak,l,m(d) is the corresponding coefficient. In this case, the

representation can be regarded as a special case of model (3.2.1) if we set yi(d) = E(qi; d),

xi = (B0,0,0(qi) · · · , BK,L,L(qi))
T and β(d) = (a0,0,0(d), · · · , aK,L,L(d))T. EAP can be further

represented using Spherical Harmonic (SH) basis

p(R0r; d) =
L∑
l=0

l∑
m=−l

cl,m(R0,d)Y m
l (r) (3.4.3)

where Y m
l (u) is the l order m degree SH basis, r is a unit vector, R0 = 15µm and the

coefficients {cl,m} can be written as a linear transformation from {ak,l,m}. As suggested

by (Cheng et al., 2011), we chose K = 8 and L = 4 to get a sparse representation in

(3.4.2). We took the L2 loss function L(β;Y (d0), X) = ‖Y (d0)−Xβ‖2
2 and SCAD penalty
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function (Fan and Li, 2001) in (3.2.2) and the tuning parameter λ in (3.2.2) was changed to

λk,l,m = λKk
2(k+ 1)2 + λLl

2(l+ 1)2 with λK = 2e−8 and λL = 1e−6 in our simulation studies.

We first estimated the coefficients β = [ak,l,m] in (3.4.2) by SCAD estimation and then

smoothed the coefficients estimates using YF and NLM respectively. Denote

σ̂(d0)2 =
(Y (d0)− β̂(d0, λ))T (Y (d0)− β̂(d0, λ))

n− |Ŝ(d0, λ)|

v1(d0) = diag((XT
S(d0)XS(d0))

−1σ̂(d0)2)

The patch size for NLM was 3 × 3(i.e.hP = 3) and the photometric bandwidth hy was

χ2
1(0.8)v0 for YF and was χ2

1(0.8)v0/h
2
P for NLM, where v0 is the 75% quantile for the set

{v1(d0) : d0 ∈ D0}. For the spatial bandwidth h, they were chosen to minimize the overall

MSE =
∑n

i=1

∑
d∈D0

(f̂i(d)− fi(d))2.

Figure 3.1, 3.2 and 3.3 give the comparison of EAP reconstructions of SCAD, YF and NLM

on data with SNR = 10, 15 and 20 respectively. We can see that YF and NLM results are

closer to ground truth than SCAD result because they can reduce the noise by incorporation

useful neighborhood information into the estimation procedure. It is also observed that YF

is the closest to ground truth under low noise level (SNR = 20) while NLM performs best

under strong noise level(SNR = 10 and 15).

Furthermore, we examined the performance of the two-stage framework quantitatively.

We simulated 500 data sets for SNR = 10, 15, and 20, respectively. We first calculated the

overall MSE and the result was summarized in Table 3.1. We further extracted the EAP

maxima aligned with fiber directions in the anisotropic(with fiber) region and calculated

the angle detection errors, which is defined as the difference between the recovered fiber

direction with the ground truth for the voxels with a single fiber and the difference between

the recovered crossing angles with the ground truth for the voxels with two crossing fibers.

The mean of the angular errors at each voxel and the percentage of detecting correct number

of fibers were calculated and the result was summarized in the Table 3.2. We can see that
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(a) (b)

(c) (d)

Figure 3.1: Comparison of three estimation methods based on simulated data sets corre-
sponding to SNR=10: (a) the EAP image of ground truth; (b) the EAP image based on the
SCAD estimation; (c) the EAP image based on the YF estimation; and (d) the EAP image
based on the NLM estimation;
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(a) (b)

(c) (d)

Figure 3.2: Comparison of three estimation methods based on simulated data sets corre-
sponding to SNR=15: (a) the EAP image of ground truth; (b) the EAP image based on the
SCAD estimation; (c) the EAP image based on the YF estimation; and (d) the EAP image
based on the NLM estimation;
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(a) (b)

(c) (d)

Figure 3.3: Comparison of three estimation methods based on simulated data sets corre-
sponding to SNR=20: (a) the EAP image of ground truth; (b) the EAP image based on the
SCAD estimation; (c) the EAP image based on the YF estimation; and (d) the EAP image
based on the NLM estimation;
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SNR Noise SCAD YF NLM
10 547.16 (3.06) 222.19 (2.32) 154.10 (2.19) 129.10 (0.38)
15 240.02 (1.35) 84.70 (0.95) 56.69 (0.87) 54.40 (1.37)
20 134.32 (0.76) 44.15 (0.52) 29.97 (0.47) 33.05 (1.32)

Table 3.1: The MSE of EAP image at three SNR levels.

both YF and NLM can reduce the MSE level and mean of the angular errors and increase

the percentage of detecting correct number of fibers at all the noise levels. Under low noise

level(SNR = 20), YF performs better than NLM while NLM performs better than YF under

strong noise level(SNR = 10 and 15).

All voxels with one fiber
SNR SCAD YF NLM
10 2.75±0.48 (99.97 %) 2.48±0.58 (99.96 %) 1.64±0.85 (99.98 %)
15 1.23±0.78( 100 %) 1.04±0.84 (100 %) 0.73±0.89 (100 %)
20 0.78±0.90 (100 %) 0.69±0.89 (100 %) 0.62±0.86 (100 %)

All voxels with two fibers
SNR SCAD YF NLM
10 7.66±1.08 ( 88.45 %) 7.22±1.17 (89.98 %) 6.04±1.10 ( 93.19 %)
15 4.14±0.69( 99.87 %) 3.76±0.68 (99.88 %) 3.39±0.84 ( 99.92 %)
20 2.76±0.63( 100 %) 2.37±0.61 (100 %) 2.40±1.11 (1000 %)

Table 3.2: The means of angular errors and percentages of correct number (in parentheses)
of detected EAP maximum at three SNR levels.

3.5 Real Data Applications

We applied our proposed method to reconstruct EAP image via SPFI on a raw diffusion

Magnetic Resonance Imaging(dMRI) of a healthy adult. The dMRI data contains 24 shells

with 313 volumes corresponding to 13 b0s and 300 b values (n = 300). The b values range from

125 to 3000 s/mm2 with a step size 125 and the number of volume in each shell ranges from 1

to 24. The imaging protocol is as follows: 140×140 imaging matrix, 1.5mm×1.5mm×1.5mm

resolution, TE=89 ms, TR=2513 ms and multi band factor 5. The image data was normalized

into [0, 1] by the average of b0 images.

We first fitted SCAD to get the estimates of SPF coefficients through (3.4.2) and then
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smoothed the coefficients using YF and NLM respectively. For the spatial bandwidth h of YF

and NLM, since we did have the ground truth image, we minimized the overall generalized

cross-validation (GCV) (Fan and Gijbels, 1996) score given by

p∑
i=1

GCVi(h) =

p∑
i=1

β̃T
i (ID −Wi)

T(ID −Wi)β̃i

[1−ND
−1tr(Wi)]2

, (3.5.1)

where ID is an ND ×ND identity matrix and Wi is from equation (3.2.5). We chose tuning

parameter λ as λK = 1e−7 and λL = 5e−6. All other parameter settings were same with the

simulation studies. Figure 3.4 presents one slice and two selected ROIs of the EAP image

based on the SCAD estimation. Figures 3.5 and 3.6 show the estimated EAP images for the

selected ROI1 and ROI2 of Figure 3.4, respectively. We observe that YF and NLM lead to

better EAP reconstruction results than SCAD in terms of smoother EAPs along fiber tracts.

This is because SCAD fits the regression model voxel by voxel and does not consider the

spatial structure of imaging data.

We further used the reconstructed EAP to perform whole-brain tractography as described

in (Wu et al., 2020, 2019). We first calculated the EAP samples of each voxel from the

reconstructed EAP on 362 directions and normalized them into [0, 1] by the maximum

of all the directions. Tractography then followed the fiber orientation derived from EAP

samples and made use of generalized fractional anisotropy (GFA) image (Özarslan et al.,

2005) as stopping criteria and the prior information from previous step to generate reliable

results. Whole-brain tractography was conducted using deterministic fiber tracking method

with 2 seeds per voxel within brain parenchyma. The tractography dataset came up with

approximately 1M fiber streamlines and and each streamline has a step size of 0.2 mm. All the

tractography results went through a quality check manually. Taking advantage of streamline

geometry rather than the anatomical landmarks, the streamlines were then clustered into

fiber bundles automatically (Wu et al., 2020). Specifically, each streamline was mapped from

the native point space to a Hilbert space and then represented by the linear combination of a
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series of the cosine basis functions(Chung et al., 2010). This representation only relied on

the degrees of the cosine basis functions and robust to the number of sampling points along

the fiber. Tract Dictionary Learning (Kumar et al., 2019b) was further performed based on

the cosine coefficients to learn the dictionary for each bundle. The L1 penalty was added to

enforce each dictionary have sparse coefficients. Finally, each fiber was classified to a fiber

bundle by minimizing the distance to each dictionary. We chose the cluster size as 1000 and

the results of Cortico and Thalamic Pathway Parietal and Cortico-Fugal Parietal bundles

were summarized in Figure 3.7. The axial and sagital views were displayed and we can see

that NLM and YF lead to better tractography results than SCAD in terms of smoother fiber

tracts.

Figure 3.4: The EAP image based on the SCAD estimation on a selected slice and two
ROIs(ROI1 and ROI2) from the raw 24-shell data of the healthy subject.
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(a) (b)

(c)

Figure 3.5: Comparisons of the three estimation methods for ROI1 in Figure 3.4: (a) the
EAP image based on the SCAD estimation; (b) the EAP image based on the YF estimation;
(c) the EAP image based on the NLM estimation.

(a) (b)

(c)

Figure 3.6: Comparisons of the four estimation methods for ROI2 in Figure 3.4: (a) the EAP
image based on the SCAD estimation; (b) the EAP image based on the YF estimation; (c)
the EAP image based on the NLM estimation.
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(a) (b)

(c)

Figure 3.7: Comparisons of tractography results obtained from tracking the estimated EAPs
by using the three estimation methods based on the Cortico and Thalamic Pathway Parietal
(top) and Cortico-Fugal Parietal (bottom) bundles: (a) the SCAD estimation; (b) the YF
estimation; and (c) the NLM estimation.
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3.6 Discussion

We have introduced a two-stage method to denoise and reconstruct imaging data. Our

method first fits the regularized regression model utilizing covariates information among

subjects at each voxel. Then the kernel-based smoothing methods YF and NLM are applied

by borrowing the spatial information from the neighboring voxels adaptively to keep the

feature of piecewise smooth regions with jump discontinuities. Moreover, we derive the oracle

inequalities and minimax rates on MSE of YF and NLM under different noise levels and

calculate the optimal choice of bandwidth of kernel functions.

Some important issues need to be addressed in future research. First, our initial penalized

M−estimator relies on the condition that the number of covariates that related to the imaging

data should be much smaller than the sample size. Therefore, when this condition does

not hold, some other type of regularized regression model, such as Ridge Regression can be

considered to use. Second, we assume the measurement errors in (3.2.1) are independent

and identical copies of normal distribution. We can further extend it to be other complex

distribution with correlation between different voxels (Zhu et al., 2014).
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CHAPTER 4: LIFESPAN POPULATION-BASED STRUCTURAL
CONNECTOME MAPPING

4.1 Introduction

With recent development in imaging technologies, many large-scale biomedical studies,

such as the UK Biobank (Miller et al., 2016) and Human Connectome Project (HCP)

(Sotiropoulos et al., 2013; Van Essen et al., 2013), have collected/are collecting massive

multi-modal imaging data (e.g., structural magnetic resonance imaging (MRI), diffusion MRI

(dMRI), and functional MRI (fMRI)) with high spatial and temporal resolution as well as

other complex information (e.g., genomics). The HCP represents the first large-scale attempt

to map the human brain’s connections in high resolution from around 1,200 healthy adults

aged 22-35 years old to study white matter (WM) structure (Glasser et al., 2016). The

Lifespan Human Connectome Studies (LHCS) projects are extending the HCP protocols to

accurately map brain connections in much larger cohorts of developing, adult, and aging

subjects compared with the HCP (Howell et al., 2019; Bookheimer et al., 2019; Harms

et al., 2018; Somerville et al., 2018). Furthermore, fourteen Disease Human Connectome

Studies (DHCS) studies collected disease connectome data from subjects with certain clinical

diagnoses (e.g., Alzheimer). These rich data will allow us to quantify the dynamic process

of WM across the lifespan and address many fundamental questions on the connectional

organization of the human brain, which may eventually establish a baseline that would

help identify connectivity abnormalities across different spatial and/or temporal scales in

brain disorders, such as schizophrenia and Alzheimer (Durston, 2010; Satterthwaite et al.,

2014; Knickmeyer et al., 2014; Van Essen et al., 2013). Identifying such abnormalities could

transform our understanding of the origins of these disorders and inspire new, urgently needed

approaches to urgently needed prevention, diagnosis, and treatments.
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To map the structural connectome across the lifespan at the population level, the main

challenge is the large intra-subject heterogeneity of WM fibers and the complex inter-subject

spatio-temporal patterns of fibers. Particularly, the quality of WM tractographic data

varies strongly by age, anatomical tract, tractography algorithm, and acquisition parameters

(e.g., directions), among others, so it is critically important to accurately segment WM

tractographic data (St-Jean et al., 2019; Guevara et al., 2011a; Buchanan et al., 2014; Wakana

et al., 2007; Guevara et al., 2020; Schilling et al., 2019).

To address this challenge, existing analytical methods include three major types (i)

tract-based spatial statistics (TBSS)(Smith et al., 2006) and other voxel-based analysis

methods (Smith et al., 2006; Schwarz et al., 2014; Snook et al., 2007) (ii) tract-based fiber

parcellation methods (Fornito et al., 2013; Zhu et al., 2011; Yeatman et al., 2012; Cousineau

et al., 2017; Jin et al., 2014; Heiervang et al., 2006; Ciccarelli et al., 2003; Wang et al.,

2016; Wassermann et al., 2010; Garyfallidis et al., 2017; Olivetti et al., 2017; Sharmin et al.,

2016) and (iii) hybrid method(O’Donnell et al., 2013; Guevara et al., 2017; Zhang et al.,

2018). TBSS is a robust method that projects WM diffusion properties onto a whole brain

WM skeleton. It is independent of tratographic data but relies on the existing registration

methods, which therefore does not have individual fiber tract specificity and can not model

WM fiber architecture in the registration process (Zalesky et al., 2010; Yeatman et al., 2012).

Tract-based methods include various fiber parcellation methods, consisting of fiber clustering

strategies that directly cluster WM fiber bundles (O’Donnell et al., 2013; Guevara et al., 2017;

Jin et al., 2014; Guevara et al., 2011b; Garyfallidis et al., 2017) and cortical-parcellation-based

strategies that focus on the SC among different brain regions of interest (ROIs) (Siless et al.,

2020; Zhang et al., 2018; O’Donnell et al., 2013; de Reus and van den Heuvel, 2013; Zalesky

et al., 2010). Compared to voxel-based methods, tract-based methods can group the fibers

into anatomically meaningful fiber bundles and visualize them. However, the drawback of this

approach is the reliance either on the choice of clustering method and that of the similarity

metric for comparing streamlines (Zhang et al., 2014) or the choice of parcellation atlas. The
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hybrid method such as population-based structural connectome (PSC) (Zhang et al., 2018)

can utilize the geometric information of fibers, including shape and location, to increase

the robustness of extracted WM bundles between two ROIs and extract discriminative and

reproducible geometric features for parcellation-based connectome analysis.

In this paper, we propose a new hybrid method lifespan population-based structural

connectome (LPSC). The goal of LPSC is to create a parcellation-based tractographic skeleton

(PBTS) atlas for accurately mapping dMRI and structural MRI data acquired from n LHCS

subjects with multiple scans measured at different times on the atlas across the lifespan.

The reliable construction of such atlas allows us to quantify the development of WM within

individual subjects across time and understand its variations across groups. Figure 4.1 shows

the overview of the LPSC framework, which consists of three key stages. The Innovations of

LPSC are summarized as follows. (i) The LPSC can be represented as a major improvement

of TBSS and all other tract-based approaches, including our prior PSC, while inheriting the

robustness of TBSS. Specifically, we use LHCP-Y to train PBTS, so PBTS has much higher

signal-to-noise ratio than TBSS. (ii) The LPSC as a tract-based atlas is directly applicable

to dMRI obtained from various neuroimaging studies even without invoking fiber tracking.

Thus, it is extremely valuable for many existing non-HCP studies, which may not have

high-quality tractographic data. (iii) The LPSC is to build the weighted graph structure to

sparsely represent high-dimensional tractographic data. Since the graph structure is built

through Cole-Anticevic Brain-wide Network Partition (CAB-NP) (Ji et al., 2019), our LPSC

enjoys stronger functional and structural organization information than existing tract-based

approaches.

4.2 Materials and Methods

4.2.1 Overview

The proposed LPSC framework has three main steps, as shown in Figure 4.1. These are

(i) whole-brain structural connectome construction; (ii) creation of fiber skeleton; and (iii)

Sparse representation of tractographic data. In Sections 4.2.2-4.2.4, we introduce each of
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Figure 4.1: The workflow of LPSC.
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these modules in detail. Section 4.2.5 describes HCP and its test-retest dataset.

4.2.2 Whole-brain structural connectome construction

The first stage is to construct the whole-brain trajectory data set and map an initial

structural connectome based on two key steps, including (S1.1.1) the construction of high-

quality whole-brain tractographic data; and (S1.1.2) the robust brain parcellation and

connectome extraction..

Whole-brain tractography (S1.1.1) is the first key step of our LPSC framework, which

is to reliably reconstruct the whole-brain tractographic data for all scans of all subjects

through state-of-the-art tractography algorithms. We use the diffusion MRI tractography

processing pipeline, called Tractoflow (Theaud et al., 2020), and then further improve the

precision of tractography under the cortex by incorporating brain cortical surface boundary

information (St-Onge et al., 2018). Specifically, the Tractoflow pipeline first processes the

DWI, which includes raw DWI preprocessing (denoising, eddy correction, brain extraction, N4

bias correction, cropping, intensity normalization and resampling), diffusion tensor imaging

(DTI) metrics and fiber orientation distribution function(Descoteaux et al., 2007b; Tournier

et al., 2007) (fODF) metrics computation. Then it processes the T1 image, which includes raw

T1 preprocessing (denoising, N4 bias correction, resampling, brain extraction, and cropping ),

registration to the DWI space, the tissue segmentation and the computation of tracking masks

and seeding maps. Finally, Tractoflow utilizes the the tractography algorithm presented by

Girard et al. (2014) to generate a set of fibers that represents the underlying WM architecture.

This tracking algorithm generates the tractogram using the probabilistic method based on

fODF image and seeding mask. To avoid the fiber streamlines stop in the middle of the WM

without reaching the gray matter, we utilize the surface-enhanced tractography (SET) method

(St-Onge et al., 2018) to ensure the fiber curves connect cortical regions intersect with cortical

surfaces, such that any cortical parcellation can be applied to get a connectivity adjacency

matrix and we can further improve such cortical parcellation. We discard the fibers which
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have less than three points or only one of the endpoints intersect with cortical surface and

we also filter the fiber streamlines such that the fiber length is between 10 and 250 mm. The

output of (S1.1.1) is a whole-brain tractographic data set, denoted as Fit, and the associated

diffusion profiles (e.g., fractional anistropy), denoted as Pit for the i -th subject at t -th time.

The set Fit consists of Nit three-dimensional curves such that Fit = {Fit,1(·), . . . , Fit,Nit(·)}

and Fit,k is represented as a sequence of 3D points p(it,k),j =
(
x(it,k),j, y(it,k),j, z(it,k),j

)
∈ R3 for

j = 1, . . . ,m(it,k) and k = 1, . . . , Nit. Moreover, Pit = {Pit,1(·), . . . , Pit,Ni(·)} also consists of

Nit 1D functions and Pit,k(s) is observed along the fiber tract Fit,k(s).

In our analysis of real data, the tractography dataset came up with approximately 1M

fiber streamlines and and each streamline has a step size of 0.2 mm for each individual in the

HCP dataset (with isotropic voxel size of 1.25 mm).

Brain parcellation and connectome extraction. In (S1.1.2), we use a state-of-the-art

brain atlas with known parcellation to extract SC across subjects in three steps. (i) We use

the Cole-Anticevic Brain-wide Network Partition (CAB-NP) (Ji et al., 2019) consisting of 360

cortical parcels (Glasser et al., 2016) to define the nodes of the SC network, enabling treating

brain as a single network. These 360 parcels belong to 12 brain functional networks, such as

visual, language, and default. The CAB-NP parcellation improves neuroanatomical precision

for studying the structural and functional organization of human brain. (ii) We register all

individual brains and CAB-NP to the common MNI space using Freesurfer (Fischl, 2012)

and apply the transformation to tractographic data for each subject. We then map the ROI

labels of CAB-NP to the points on individual cortical surface. Since all the generated fiber

curves connect cortical regions intersect with cortical surfaces, we extract the endpoints of

the fibers and snap the endpoints of each fiber to the nearest points on the individual cortical

surface by minimizing the L2 distance such that we can assign the ROI labels of the points

on cortical surface to the fiber endpoints. (iii) We group fibers based on the connections

of their endpoints with different ROIs after parcellation and we calculate the fiber counts
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between different ROI pairs for each subject. The output of Stage 1 is a parcellation of {Fit}

into tractographs that connect each ROI pair.

4.2.3 Creation of fiber skeleton

Our second stage is to compute a parcellation-based fiber skeleton. Its three key steps

include (S1.2.1) outlier filtering; (S1.2.2) refined brain connectome; and (S1.2.3) elastic fiber

registration.

Outlier filtering In (S1.2.1), we identify and remove fibers that do not follow major WM

pathways as outliers in order to estimate the fiber bundles and establish a reliable network

among all ROI pairs, since almost all tractographic algorithms produce false fiber tracts due

to the intrinsic limitations of the existing technology, such as low resolution of dMRI and

inaccurate choices of tracking parameters. (Schilling et al., 2019). Similar with Zhang et al.

(2018), we use the Quickbundle method based on the direct-flip (MDF) distance (Garyfallidis

et al., 2010, 2012) to detect outlier fibers. Specifically, for each fiber s = [s1, s2, · · · , sK ] and

its flipped version sF = [sK , sK−1, · · · , s1], the MDF distance is defined as follows,

ddirect (s, t) = d(s, t) =
1

K

K∑
i=1

‖si − ti‖,

dflipped (s, t) = d
(
s, tF

)
= d

(
sF , t

)
,

MDF(s, t) = min (ddirect (s, t), dflipped (s, t)) ,

where ‖ · ‖ is the L2 distance and we downsample the number of points K = 100 on each

streamline. MDF distance is very fast and easy to compute and also considers the fiber

orientation issues. After calculating the MDF distance of each pair of the fibers, the clustering

process, similar to k-means (MacQueen et al., 1967), is performed. A fiber is assigned to a

cluster if its MDF distance to the cluster centroid is smaller than a pre-selected parameter θt

and then the cluster centroid is also updated correspondingly. Finally, Quickbundle method

groups all the fibers into several fiber clusters and the outliers are then defined as the clusters
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with very few fibers inside. The output of (S1.2.1) is a set of outliers-removed fiber bundles

across all the possible ROI pairs for each scan.

Refined brain connectome In (S1.2.2), we propose to refine the brain connectome.

Basically, there are three key steps: (i) merge ROIs with similar connectivity pattern; We

first extract the fiber count vector of each ROI and calculate the mean correlation of the fiber

count vector between each ROI pair across all the subjects. We merge fiber tracks in (Rv, Rv′)

together, where Rv and Rv1 are the ROIs which have large mean correlation, belong to the

same functional network and are spatially neighboring. In this way, we can also preserve the

functional network structure. These fiber curves and their endpoints are used to refine the

initial parcellation. (ii) remove ROI pair with low reproducibility; With the merged ROIs, we

quantify the at the reproducibility on test-retest dataset and discard the fiber curves in the

ROI pair with low reproducibility. (iii) cluster fiber curves within ROI pair; We further refine

the brain connectivity matrix across subjects by cluster fiber curves within ROI pair. That

is, we utilize the shape features of fiber curves to refine our initial brain atlas to increase the

discriminative power of the extracted structural connectome. As an illustration, we choose a

specific ROI pair, denoted as (Rv, Rv′) . If the number of fiber tracks connecting Rv and Rv′

is large, then it is important to identify these pathways across subjects and scans and refine

the parcellation such that each ROI pair only contains one major fiber pathway. We use the

Tract Dictionary Learning (TractDL) as described in Wu et al. (2020) to cluster the fibers.

Specifically, each fiber is mapped from the native point space to a Hilbert space and then

represented by the linear combination of a series of the cosine basis functions(Chung et al.,

2010). This representation only depends on the degrees of the cosine basis functions and

robust to the number of sampling points along the fiber. Tract Dictionary Learning(Kumar

et al., 2019b) is further performed based on the cosine coefficients to learn the dictionary

for each bundle. The L1 penalty is added to enforce each dictionary has sparse coefficients.

Finally, each fiber is classified to a fiber bundle by minimizing the distance to each bundle
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dictionary.

Elastic fiber registration In (S1.2.3), we will use a group-wise elastic registration method

to register fiber bundles within each ROI pair across subjects. Although some registration

tools are available for fibers Durrleman et al. (2011); Zvitia et al. (2010); Garyfallidis et al.

(2015); Jin et al. (2014); Wassermann et al. (2011); Zhang et al. (2018); O’Donnell et al.

(2012), they have major limitations (e.g., pinching effects). Please see discussions in pages

84-88 of Srivastava and Klassen (2016). Instead, we propose to use a square-root velocity

(SRV) representation for analyzing fiber shapes in the Euclidean space under an elastic metric

Srivastava and Klassen (2016). The elastic metric is developed specifically for the analysis

of curve shapes. Specifically, due to this SRV representation, a complicated elastic metric

simplifies to the L2 metric, the re-parameterization group acts by isometries, and the space

of unit length curves becomes the unit sphere. The use of the elastic metric seeks the best

correspondence between points to become correspondence-free. Finally, we use the elastic

metric to calculate the mean fiber and establish the correspondence between fibers for each

ROI pair across all subjects. Without loss of generality, for each specific pair (Rv, Rv′), we

will use its mean fiber, denoted as S(v,v′), as its skeleton. The final output of Stage 2 is a

parcellation-based tractographic skeleton, abbreviated as PBTS, which is given

by PBTS = ∪Vv,v′=1

{
(Rv, Rv′)⊕ S(v,v′)

}
, where V is the total number of ROIs.

4.2.4 Sparse representation of tractographic data

Our third stage is to sparsely represent Fit. This step consists of both basis learning

and efficient representation based on a matrix of basis functions across all pairs of ROIs

across time. After alignment, all fiber tracts connecting a specific ROI pair across subjects

and time share many shape similarities. Without loss of generality, we focus on a ROI pair,

(Rv, Rv′). We perform functional principal component analysis (fPCA) on each of the x, y and

z components of all aligned fiber tracts, separately, in order to learn a set of basis functions

denoted as L(v,v′) =
{
φ(x,y,z,t),m : m = 1, . . . ,M

}
, where M is the number of fPCA basis and
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φ(x,y,z,t),m are the fPCA basis functions. Each fiber curve connecting (Rv, Rv′) at time t can

be sparsely represented as a linear combination of the basis functions in L(v,v′). The output

of this stage is the graph of fPCA basis functions across all ROI pairs, denoted

as GBF= ∪Vv,v′=1

{
(Rv, Rv′)⊕ L(v,v′)

}
.

4.2.5 Real Datasets

The dMRI data of HCP dataset is accquired using HARDI. A full dMRI session includes 6

runs (each approximately 9 minutes and 50 seconds), representing 3 different gradient tables,

with each table acquired once with right-to-left and left-to-right phase encoding polarities,

respectively. Each gradient table includes approximately 90 diffusion weighting directions plus

6 b=0 acquisitions interspersed throughout each run. There are three shells (b = 1000, 2000,

and 3000 s/mm2) with an approximately equal number of acquisitions on each shell for each

run. More details regarding data acquisition and preprocessing can be found at Van Essen

et al. (2012) and Sotiropoulos et al. (2013). In our stage (S1.1.1), all the three shells are used

for fODF computation and only the b = 1000s/mm2 is used for DTI metrics calculation. We

extracted 856 subjects with both raw dMRI and anatomical T1-weighted MRI data from the

1206-subject release of the HCP dataset. Among the extracted 856 subjects, 43 subjects have

one repeated acquisitions, with an approximate two-week interval between two acquisitions.

Therefore, the test-retest dataset of HCP is composed of 86 acquisitions.

4.3 Experimental Results

In this section, we evaluate the following three aspects of our LPSC framework.

(I) Choice of optimal parameters in LPSC: There are several parameters in LPSC that

play an important role for generating reproducible and reliable results. We quantify

reproducibility on test-retest dataset to select these parameters.

(II) Validation of reproducibility: We validate the robustness and reproducibility of the

connectome results generated from LPSC.

(III) Demonstration of groupwise analysis: We extract the FA maps of the HCP data and
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Figure 4.2: Outlying streamlines (red) and major WM pathways (blue) for two selected ROI
pairs

project them on our PBTS. We use these data to demonstrate the application of our

PBTS in delineating the association between WM diffusion properties with a set of

covariates of interest.

4.3.1 Choice of optimal parameters in LPSC

There are several parameters in LPSC that play an important role for generating repro-

ducible and reliable results. We quantify reproducibility on test-retest dataset to select these

parameters.

Outlier threshold The clustering threshold θt in QuickBundle affects the number of the

outliers detected. Based on our previous findings (Zhang et al., 2018), QuickBundle can

hardly detect any outliers for θt > 10 mm, while QuickBundle may detect too many outliers

for θt < 5. Previously, we set θt = 8 mm to remove the apparent outlying streamlines that do

not follow any major WM pathways. At this time, we more conservatively set θt = 5 mm to

make the skeleton cleaner. Figure 4.2 displays some apparent outlying streamlines in red for

two selected ROI pairs.
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Parameters in refined brain connectome In the first step of (S1.2.2), we calculate the

mean correlation of the fiber count vector between each ROI pair across all the subjects in

test-retest dataset and then merge 23 ROI pairs that have mean correlation larger than 0.7,

belong to the same functional network and are spatially neighboring. In this case, dimension

of the connectivity matrix is reduced from 360 ∗ 360 to 337 ∗ 337. To justify that merging

ROIs can improve the reproducibility, we calculate intraclass correlation coefficient (ICC)

(Prckovska et al., 2016; Welton et al., 2015) at the test-retest dataset, which is defined as

ICC =
1

Ns2

N∑
n=1

(xn,1 − x̄) (xn,2 − x̄)

where xn,1 and xn,2 are the fiber counts for the nth subject in test and retest dataset

respectively, x̄ and s2 are the mean and stand deviation of fiber counts in the whole test-retest

dataset. Figure 4.3 (a) shows the density of ICCs calculated by the merged-before and

merged-after ROIs and we can see the pattern that ICCs are improved after merging the

ROIs. We further perform two-sample t-test and mann-whitney test and conclude that

mean ICC is improved significantly by both of the two tests (p < 10−4). In the second

step of (S1.2.2), we recalculate ICCs on the merged ROIs. Since ICC< 0.4 represents poor

reproducibility(Cicchetti, 1994), we discard these ROI pairs. We also remove the ROIs with

the percentage of the missingness at the test-retest dataset larger than 50% to ensure the

connectivity between any two ROIs exist for the majority of the subjects. Figure 4.3 (b) shows

displays the ICC matrix calculated by the merged-after ROIs. In the third step of (S1.2.2),

we cluster fiber curves within the ROI pair that has mean fiber count larger than 500 in

test-retest dataset. The number of cluster K is determined by maximizing Calinski-Harabasz

index, which is defined as

n−K
K − 1

∑K
k=1

∑
i∈Ik

∥∥∥s{k}i − c{k}∥∥∥2

∑K
k=1 nk ‖c{k} − c‖

2 ,
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Figure 4.3: ICC of fiber counts.(a)density of ICCs calculated by the merged-before and
merged-after ROIs; (b)ICC matrix calculated by the merged-after ROIs.

where s{k}i is the i-th streamline in the k-th cluster Ik, c{k} is the mean streamline in Ik, c is

the the mean streamline in the whole ROI pair, nk is the number of streamlines in Ik and

n =
∑k

k=1 nk. Clustering results for the ROI pairs left Area 6mp and right Primary Motor

Cortex, and left Primary Motor Cortex and left Area 1/3a are summarized in Figure 4.4 (a)

and (b) respectively. Each fiber cluster is remarked with a distinct color.

4.3.2 Reproducibility of connectomes generated by LPSC

A good LPSC framework should generate very similar connectome results based on the

scans acquired within a short time period from the same subject. In this section, we evaluate

and validate the reproducibility of structural connectomes at both network and streamline

levels on the test-retest dataset. All the parameters are set exactly the same as discussed in

section 4.3.1 to process the test-retest dataset.

Reproducibility of connectomes at network level We first consider the reproducibility

at the binary network level. We extract the 337 ∗ 337 fiber count matrix A = (ai,j) and

generate a binary network matrix B = (bi,j) for each 86 scans in test-retest dataset, where
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Figure 4.4: Clustering results for two selected ROI pairs: (a)Left Area 6mp and right Primary
Motor Cortex; (b)Left Primary Motor Cortex and left Area 1/3a.

bi,j = 1 if bi,j ≥ θbin and bi,j = 0 otherwise. Here we simply choose θbin = 20 as an example

and more details regarding how to choose the optimal θbin can be found in Zhang et al. (2018).

From Figure 4.5 (a), we can see that there is only small amount of the non-zero element in the

difference of the binary network matrix of the two scans from the same subject, whereas the

amount is larger in the the difference of the binary network matrix of two different subjects.

Figure 4.5 (b) displays the pairwise distance matrices between the 86 binary network matrices.

The distance is calculated as the sum of the L2 distance of the corresponding element between

each two matrices. To quantify the reproducibility at the network (matrix) level, we further

calculate the distance-based ICC (dICC)(Zhang et al., 2018). dICC can be viewed as an

extension of ICC to the multi-variate case and is defined as

dICC = (d̄2
bs − d̄2

ws)/d̄
2
bs,

where d̄2
bs and d̄2

ws respectively represent the average squared distance between subjects and

within multiple scans of a subject. The subject-related block diagonal pattern in Figure 4.5

(b) and the dICC around 0.64 indicate the strong reproducibility of our connectome results.
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(a) (b)

(c)

dICC=0.64

dICC=0.88

Figure 4.5: Reproducibility analysis at network level. (a) Binary network matrices difference
from two different scans of the same subject and the difference from two different subjects; (b)
Pairwise distance matrix between 86 binary network extracted from the test-retest dataset;
(c) Pairwise distance matrix between 86 weighted network extracted from the test-retest
dataset

Furthermore, we can observe the similar pattern for the distance matrices of weighted network

(i.e. regular fiber count matrix) in Figure 4.5 (c).

Reproducibility of connectomes at streamline level At the streamline level, we

extract the FA values of each streamline for each scan and calculate the mean FA curves for

each ROI pair. We use the L2 distance between the mean FA curves to further calculate the

dICC score at test-retest dataset. We summarized the results in Figure 4.6.

Figure 4.6 (a) displays the streamlines that connect left and right Supplementary and

Cingulate Eye Field (SCEF) regions and the corresponding FA values and mean FA curve

along them from the two scans of two randomly selected subjects in test-retest dataset.

These streamlines belong to part of the corpus callosum bundle. We find that the pattern of
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(a) (b)

Figure 4.6: Reproducibility analysis at streamline level. (a) Streamlines that connect left
and right SCEF regions extracted from two subjects in test-retest dataset. FA values and
mean curve (green line) are also plotted; (b) dICC score matrix based on mean FA curves.

FA values and streamlines is different across subjects but is consistent within the different

scans from the same subjects. Figure 4.6 (b) presents the dICC calculated on the mean FA

curves. We can observe most of the ROI pairs have dICC> 0.6, which indicates the strong

reproducibility at streamline level.

4.3.3 Groupwise analysis

In this section, we illustrate the application of our LPSC for groupwise analysis in HCP

dataset. We extract the FA maps for each subjects and study the association between FA

values along the PBTS and several covariates of interest.

We first project the individual FA map on our PBTS. Specifically, we merge the streamlines

of each ROI pair across subjects and randomly select 1000 streamlines from each ROI pair to

establish a parcellation-based tractographic coordinate system (PBTCS). For illustration,
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Figure 4.7: The skeleton and coordinate system used for projection of individual FA map:
(a) parcellation-based tractographic skeleton (PBTS); (b) parcellation-based tractographic
coordinate system (PBTSC) .

we choose a specific ROI pair (Rv, Rv′) as an example. We denote the i th streamline

ti = [t1i , t
2
i , · · · , t100

i ] selected from the ROI pair (Rv, Rv′), i = 1, · · · , 1000 and the skeleton

of this ROI pair as S(v,v′) = [s1
(v,v′), s

2
(v,v′), · · · , s100

(v,v′)]. Then the projected individual FA map

F(v,v′) = [f 1
(v,v′), f

2
(v,v′), · · · , f 100

(v,v′)] is defined as

fk(v,v′) =
1000∑
i=1

wi,kf
k
i ,

where k = 1, · · · , 100, fki is the FA value of the individual map at point tki . Moreover, wi,k is

given by

wi,k =
gh(‖sk(v,v′) − tki ‖))∑1000
k=1 gh(‖sk(v,v′) − tki ‖)

,

where gh is the gaussian kernel function with bandwidth h. Figure 4.7 displays PBTS and

PBTCS.
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FA values along the streamline can be modeled as functions of the coordinates on the

streamline. Therefore, we use the Functional analysis of diffusion tensor tract statistics

(FADTTS)(Zhu et al., 2011) pipeline to characterize the structure of the variability along the

streamline. Specifically, FADTTS fits a multivariate varying coefficient model as follows

yi(s) = xTi β(s) + ηi(s) + εi(s),

where yi(s) is the FA value within a given ROI pair at position/arc-length s for the i-th subject.

Age, gender, intelligence score (IS), BMI, max drink (Max drinks in a single day in past 12

months), and intercept term are added into xi ∈ R6 and β(s) = [β1(s), · · · , β6(s)]
T ∈ R6 is

a vector of six functional covariate coefficients. ηi(s) and εi(s) are the stochastic processes

with zero mean function to characterize the inter-subject variability and error structure

respectively. In our analysis, sample size is n = 977 (57 subjects are removed from the total

1034 subjects due to missing covariates) and the FA values are chosen from two ROI pairs:

left and right SCEF, and left and right Superio Frontal Language Area (SFL). These two

ROI pairs both belong to part of the corpus callosum bundle.

Figure 4.8 displays the FA curves and the estimated coefficient function of each covariate

for the two ROI pairs. We can see that the coefficient function of gender have potential

positive effect and the coefficient function of BMI have potential negative effect. To test the

significance of these effects, we perform the following global test

H0 : βi(s) = 0 for all s v.s. H1 : βi(s) 6= 0, (4.3.1)

for i = 2, · · · 6. The test statistic has been shown has asymptotic weighted χ2 distribution

and the pvalue p is calculated by wild bootstrap method(Zhu et al., 2012). The coefficient

function of gender has p < 10−3 and the coefficient function of BMI has p = 0.02. Other

coefficient functions do not have significant pvalues.

61



(a) (b)

Figure 4.8: FA curves and the estimated coefficient function for the two ROI pairs: (a)Left
and right SCEF; (b)Left and right SFL.

62



4.4 Discussion

We have developed a LPSC framework and created a PBTS atlas for mapping population

structural connectivity networks from large scale neuroimaging dataset with multiple scans

measured at different times across the lifespan. LPSC can be represented as a major

improvement of TBSS and all other tract-based approaches with higher signal-to-noise

ratio and stronger functional and structural organization information, while inheriting the

robustness of TBSS. LPSC also enables us to study brain structural connectivity at network

level and explore the shape information of white matter at streamline level for the high-

resolution data such as HCP. Furthermore, PBTS as a tract-based atlas is directly applicable

to dMRI obtained from various neuroimaging studies even without invoking fiber tracking.

Thus, it is extremely valuable for many existing non-HCP studies, which may not have

high-quality tractographic data. We have also applied LPSC on the HCP test-retest to

illustrate its reproducibility.

Although we have demonstrated the use of LPSC, one limitation needs to be addressed

in the future research. The CAB-NP atlas we used for brain parcellation does not consider

the subcortical regions. To explore the connectivity in subcortical region, the subcortical

parcellation such as woGSR(Ji et al., 2019) can be utilized. Besides, since the streamlines

in subcortical regions do not intersect with surfaces, other volume-based method maybe

required to cut the subcortical streamlines.
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CHAPTER 5: DECONFOUNDING BY EIGEN-SHRINKAGE IN
HIGH-DIMENSIONS

5.1 Introduction

5.1.1 Background

Large observational dataset emerge rapidly in many biomedical research fields. Associated

large-scale statistical inference often focuses on the mean profile and variance-covariance

structure of data matrix, especially on testing and estimating the mean difference of numerous

collected markers (e.g., image voxels, genetic variants) for one variable of interest (e.g., disease

status, age, treatment group). In many research fields, the practical tools to do such inference

are massive univariate models, where regressions are separately fitted on thousands or even

millions of markers, with the goal to prioritize and filter out important ones. For example, a

genome-wide association study (GWAS) is often performed to detect the association between

a phenotype (e.g., disease/trait) and a large number of single nucleotide polymorphisms

(SNPs) collected across an entire genome. The common approach in GWAS is to assess the

marginal association between phenotype and single SNP each at a time, while adjusting for

the same set of covariates. Similar single-feature univariate procedures are widely applied

in epigenome-wide association studies (EWAS) on DNA methylation data (Teschendorff

and Relton, 2018), transcriptome-wide association studies (TWAS) on gene expression data

(Pasaniuc and Price, 2017), and various voxel-wise analysis on neuroimaging (Smith and

Nichols, 2018). In what follows, we refer to the dependent variable in a univariate model as

feature and the independent variable of interest as primary variable.

Unmeasured hidden confounders, however, are well known challenges in such observational

studies. Here hidden confounders are defined as the unmeasured factors that are correlated

with both primary variable and features. For example, in high-throughout biomedical experi-
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ments, a large number of markers are produced by a series operation involving complicated

reagents, hardware, software and well-trained lab members (Leek et al., 2010). The variability

of these factors within or among studies can often cause unwanted variation of the features.

When these factors happen to be correlated with the primary variable, they will become

hidden confounders. Famous examples include ancestral history in GWAS (Price et al., 2006),

batch effects in microarray experiments caused by non-biological factors such as lab members

and collection times (Benito et al., 2004), and the head motion, breathing rate/depth change,

blood pressure, and scanner in neuroimaging (Smith and Nichols, 2018).

5.1.2 Low-rank models

Low-rank models are powerful tools in large-scale inference. In this paper, we consider

the following high-dimensional low-rank model

Y = XB +ZD +E, (5.1.1)

where Y ∈ Rn×p is a matrix of p collected features from n samples, X ∈ Rn×q contains the

primary variable and potentially other observed covariates, Z ∈ Rn×k stands for k hidden

confounding factors, E ∈ Rn×p is a noise matrix, and B ∈ Rq×p and D ∈ Rr×p are regression

coefficients. Testing and estimating B is the primary goal in statistical inference. Here we

ignore the difference between primary variable and other covariates, and assume both X and

Z are full rank with max(k, q) < n. In practice, Z is unmeasured and thus omitted from

model (5.1.1), leading to the following misspecified regression model

Y = XB∗ +E∗. (5.1.2)

When X and Z are independent (i.e., Z is not confounder but some unobserved factors),

ordinary least squares (OLS) estimator of B∗ remains as an unbiased estimator of B. ZD is

absorbed into E∗ and thus results in unwanted variance-covariance structure in test statistics

of B∗. Addressing the unwanted dependency of test statistics has been an active research
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area for large-scale inference. For example, the false discovery rate (FDR) control procedures

designed for independent tests (Benjamini and Hochberg, 1995; Storey, 2002) have been

extended to correlated tests with special dependency structure (weak or positive) (Benjamini

and Yekutieli, 2001; Storey et al., 2003; Clarke et al., 2009), and to more generally correlated

tests (Efron, 2010; Fan and Han, 2016; Friguet et al., 2009; Sun et al., 2015; Fan et al., 2017).

When X and Z are dependent, the scenario might become more complex. Since Z confounds

the relationship of X and Y , B∗ is a mixing of effects in B and D. The OLS estimator of

B∗ is a biased estimator of B and the test statistics of B∗ are not only correlated but also

confounded (Wang et al., 2017), resulting in inflated type I error and failure of FDR control.

In this paper, X and Z are allowed to be highly correlated and we consider the situation in

which X and Z are independent as a special case.

5.1.3 Existing methods

The research challenge to control for hidden confounders in gene expression studies is

termed Surrogate Variable Analysis (SVA) by Leek and Storey (2007). The goal of SVA is to

estimate a surrogate variable Û of Z from the observed data (Y ,X), then the large-scale

inference on B can be performed with the OLS estimator from

Y = XB + Û V̂ +E.

To achieve validated inference of B, the surrogate Û needs to represent the column space of

Z, donated as C(Z). That is, SVA aims to recover C(Z) from (Y ,X) , where X and Z

are allowed to be highly correlated. Along this line, existing methods to estimate Û include

two-step SVA (2-SVA) (Leek and Storey, 2007), iteratively re-weighted SVA (IRW-SVA) (Leek

and Storey, 2008), independent SVA (ISVA) (Teschendorff et al., 2011), remove unwanted

variation (RUV) (Gagnon-Bartsch and Speed, 2012; Gagnon-Bartsch et al., 2017; Gerard

and Stephens, 2017), latent effect adjustment after primary projection (LEAPP) (Sun et al.,

2012; Wang et al., 2017; McKennan and Nicolae, 2018a,b), direct surrogate variable analysis
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(dSVA) (Lee et al., 2017), and latent factor mixed models (LFMM) (Caye and Francois, 2018;

Frichot et al., 2013). These approaches are mainly proposed for large-scale multiple testing

problem in genetics and omics data, but now are increasingly recognized in other fields, such

as neuroimaging (Fortin et al., 2016; Guillaume et al., 2018), data integration (Fortin et al.,

2018, 2017), and predictive modeling (Fromer et al., 2016; Parker et al., 2014). A detailed

review and comparison of these methods is given in Section ??.

5.1.4 Motivations

To recover C(Z) from feature matrix Y , one need to carefully address the effects of XB.

It is notable that C(Z) can not be efficiently estimated from the residualized feature matrix

Y −XB̂∗ of model (5.1.2), because the OLS estimator B̂∗ is biased when C(X) (the column

space of X) and C(Z) are not orthogonal. Since X is observed, feature projection/rotation

constructed by X has been shown to be useful. For example, in LEAPP (Sun et al., 2012;

Wang et al., 2017; McKennan and Nicolae, 2018a,b), Householder transformation is the key

technique, which transforms feature matrix Y and separate it into two parts. The signals

associated with C(X) (including those from ZD) are concentrated to the first q rows of Y ,

therefore D can be easily estimated from the left n− q rows of Y .

In this paper, we propose an eigen-shrinkage projection (ESP) method, which utilizes a

new and simpler projection on feature matrix Y . Consider the projection DγQ
T
X on Y given

by

DγQ
T
XY = DγQ

T
X (XB +ZD +E)

= DγΣXBR
T
B +DγQ

T
XZD +DγQ

T
XE

= Y1 + Y2 + Y3,

where XB = QX

 ΣXB

0

RT
B is the singular value decomposition (SVD) of XB with

ΣXB = Diag(σ1, · · · , σq) are non-zero singular values, QX ∈ On,n and RB ∈ Oq,p are left and
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right singular vectors, respectively, and

Dγ = Diag
(
γ1, γ2, · · · , γq, 1, · · · , 1

)
∈ Rn×n, γi ∈ (0, 1), i = 1, · · · , q.

We will show that under mind conditions, the projected data satisfies Y2 >> Y1 and Y2 >> Y3.

Therefore,

svdk(DγQ
T
XY ) ≈DγQ

T
XZD

where svdk(A) = QAΣ∗AR
T
A is the rank k approximation of A = QAΣAR

T
A, in which Σ∗ is

generated by top k hard-thresholding of singular values in ΣA. Project the data back, we

have the estimator for ZD

(Û V̂ )γ = QXD
−1
γ svdk(DγQ

T
XY ). (5.1.3)

In equation (5.1.3), Y is left-projected onto QT
X and then is shrunk by Dγ . The top k left

singular vector from the DγQ
T
XY is used to approximate the column space of DγQ

T
XZD.

After left-projecting by QXD
−1
γ , C(Z) can be estimated by Û . Intuitively, shrinkage

projection is not efficient because penalty may also eliminate the effects from Z since C(Z)

and C(X) are not orthogonal. However, our theoretical analysis in later sections shows

that as long as C(Z) and C(X) are not exactly the same, such loss is ignorable and the

eigenvalue gap (eigen-gap) between ZD and E is preserved.

Our ESP has natural connection with the regularized regression method recently proposed

in LFMM (Caye and Francois, 2018). For example, When ridge penalty is posted on B,

LFMM-Ridge solves the following loss function

Lλ(UV ,B) = ||Y −XBT −UV ||2F + λ||B||2F , λ ∈ (0,∞),
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where ||B||F = Tr(BBT ) is the Frobenius norm of B, and λ is a regularization parameter.

The closed-form solution for Û V̂ is

(Û V̂ )λ = QXD
−1
λ svdk(DλQ

T
XY ), and

Dλ = Diag

(√
λ

λ+ σ2
1

, · · · ,

√
λ

λ+ σ2
q

, 1, · · · , 1

)
.

Thus, ridge penalized regression is a special case of shrinkage projection, where γi ≡√
λ/(λ+ σ2

i ), This close connection reveals that traditional ridge regression methods could be

used for hidden confounder problem where C(X) and C(Z) are not orthogonal, because the

signals from ZD will not vanish after penalization. Particularly, though the OLS estimator

B̂∗ of model (5.1.2) does not work to recover C(Z), ridge estimator can solve this problem

by adding L2 penalty onto B∗.

5.1.5 Structure and notations

We provide theoretical guarantees of ridge projection for hidden confounder problem under

high-dimensional low-rank data settings. In Section 5.2, we show that penalized projection

can eliminate the signals from primary variable while preserve the eigenvalue-gap (eigen-gap)

between unmeasured factors and noises, which enables hidden confounder estimation from

the projected data. Numerical experiments in Section 5.3 are used to illustrate our theoretical

arguments and the finite sample performance of ridge-projected projection.

We make use of the following notations frequently. tr(A) is the trace of matrix A,

Diag(a1, · · · , an) is the diagonal matrix with elements (a1, · · · , an) on the diagonal,→ donates

the convergence of a series of real numbers, →p represents the in probability convergence of a

series of random variables, and →a.s. is the almost surely convergence of a series of random

variables. I(·) is the indicator function, and ‖x‖2 = xTx =
∑p

i=1 x
2
i is the squared l2 norm of

p × 1 vector x, and ‖x‖2
Σ = xTΣx is the norm induced by Σ. In addition, o(1) and O(1)

define the small o and big O, op(1) and Op(1) define the small o and big O in probability, and

c, C are some generic constant numbers, ⊗ is the Kronecker product, vec(A) is vectorized
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a matrix A. Further, ϕv(·) is a function that returns the vth largest singular value of an

input matrix. Let Op,r =
{
V ∈ Rp×r : V >V = Ir

}
be the set of all matrices with orthonormal

columns. We define In as the n× n identity matrix.

5.2 Methods

5.2.1 Statistical models

Using the same notations in 5.1.2, let Y = [y1, · · ·yn]T ∈ Rn×p,X ∈ Rn×q, and Z ∈ Rn×k,

we have

Y = XB +ZD +E, (5.2.1)

where E ∈ Rn×p is the error matrix, B ∈ Rq×p,D ∈ Rk×p are fixed effects.

Given an n× 1 tuning parameter vector Γ = (γ, · · · , γ, 1, · · · , 1) with the first q elements

to be γ and the rest to be 1. We let Dγ = Diag
(
Γ
)
. The proposed method to estimate the

column space of Z has the following three steps.

(1). Project the data matrix Y onto DγQ
T
X , obtain the projected data DγQ

T
XY .

(2). Obtain the first approximation ofDγQ
T
XY using the rank k singular value decomposition

(SVD) of the matrix DγQ
T
XY , donated as svdk(DγQ

T
XY ).

(3). Project the data back, then the estimator for W = ZD is given by

Ŵ = QXD
−1
γ svdk(DγQ

T
XY ).

The estimator of Z can be achieved by performing extra SVD on Ŵ .

In the first step, we use DγQ
T
X to make a rotation and then a shrinkage on Y . Compared

with the confounding factor, the primary variable is shrinked much more. Therefore, the

factors of the SVD in the second step mainly come from the projected confounding factor

space. Finally, we use QXD
−1
γ to project and rotate the confounding factor space back.
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5.2.2 Statistical properties

To study how well we recover the column (singular) space of Z, we need the additional

notations. We decompose ZD as ZD = QZ

 ΣZD

0

RT
D, where ΣZD ∈ Rk×k is the

diagonal matrix of non-zero singular values, QX ∈ On,n and RB ∈ Oq,p are left and right

singular vectors, respectively. We further define

QT
XQZ =

 αT1 αT2

βT1 βT2


τ = RT

DRB

where αT1 ∈ Rq×k, αT2 ∈ Rq×(n−k), βT1 ∈ R(n−q)×k, βT2 ∈ R(n−q)×(n−k), and τ ∈ Rq×k.

Decompose DγQ
T
XZD as

DγQ
T
XZD =

[
U1 U1⊥

]
·

 Σ1 0

0 0

 ·
 V >1
V >1⊥


where

Σ1 = Diag
{
ϕ1

(
DγQ

T
XZD

)
, · · · , ϕk

(
DγQ

T
XZD

)}
∈ Rk×k,

Σ2 = Diag {0, · · · , 0} ∈ R(n−k)×(p−k),

are singular values, and U1 ∈ On,q, U1⊥ ∈ On,n−k, V1 ∈ Op,k and V1⊥ ∈ Op,p−k are corre-

sponding singular vectors. We further partition Y and XB +ZD in the same way as for

ZD,

DγQ
T
X(XB +ZD) =

[
Ũ1 Ũ1⊥

]
·

 Σ̃1 0

0 Σ̃2

 ·
 Ṽ >1
Ṽ >1⊥

 ,
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and

DγQ
T
XY =

[
Û1 Û1⊥

]
·

 Σ̂1 0

0 Σ̂2

 ·
 V̂ >1
V̂ >1⊥

 ,
where Ũ1, Ũ1⊥, Ṽ1, Ṽ1⊥, Σ̃1 and Σ̃2 and Û1, Û1⊥, V̂1, V̂1⊥, Σ̂1 and Σ̂2 have the same

structures as U1, U1⊥, V1, V1⊥, Σ1 and Σ2.

We further assume the following assumptions.

Assumption 5.1. Both p and n increase to ∞.

Assumption 5.2. p−1/2ϕk(ZD)→∞ and p
ϕk(ZD)

= o(n).

Assumption 5.3. The distribution of the entries of E, Eij is assumed to satisfy

Eij
iid∼ Gτ , 1 ≤ i ≤ n, 1 ≤ j ≤ m,

where the the class of distributions Gτ for some τ > 0 is defined as

If Z ∼ Gτ , then EZ = 0,Var(Z) = 1,E exp(tZ) ≤ exp(τt),∀t ∈ R.

Assumption 5.4. 0 ≤ ‖α1‖ < 1.

Assumption 5.2 represents the signal to noise ratio in the data. Assumption 5.3 describes

the sub-gaussian distribution of error matrix E. Assumption 5.4 implies that the singular

space of XB and ZD are not fully correlated.

We first investigate the rate of estimating U1 with Ũ1 and estimating Ũ1 with Û1. The

results are summarized in Lemma 5.2.1 and 5.2.2 respectively.

Lemma 5.2.1. Under assumptions 5.1-5.4, we have ‖ sin Θ(U1, Ũ1)‖ = O(r1), where

r1 =
γ3ϕ2

1(XB)

ϕ2
q(ZD)

+
γ‖τ‖ϕ1(XB)

ϕq(ZD)
.
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Lemma 5.2.2. Under assumptions 5.1-5.4, we have

‖ sin Θ(Ũ1, Û1)‖ = Op(r2),

where r2 =
√

n
ϕ2
k(ZD)

.

Theorem 5.2.3. Under assumptions 5.1-5.4, we have

‖ sin Θ(U1, Û1)‖ = Op(r3),

where r3 = r1 + r2 .

Lemma 5.2.1 illustrates that as we give a shrinkage γ onXB, we can estimate the singular

space of DγQ
T
XZD with the singular space of DγQ

T
X(XB + ZD) well. This is because

the shrinkage γ directly affects on the singular values of XB while ZD can preserve its

singular values since the singular space of XB and ZD are not fully correlated. Lemma

5.2.2 mainly addresses the perturbation bounds for the low-rank matrix DγQ
T
X(XB +ZD)

due to the noise matrix E. Theorem 5.2.3 combines the rates from Lemmas 5.2.1 and 5.2.2

together and describes the rate of sin Θ when estimating the singular space of DγQ
T
XZD

using DγQ
T
XZY .

To further investigate how we recover the column space of ZD after we apply QT
XD

−1
γ to

project the space back, we need the following additional assumptions.

Assumption 5.5. There exits W2 ∈ Ok,k such that ‖(Û1 − Ũ1W2)[1:k,:]‖ = Op(γr2) and

‖(Û1 − Ũ1W2)[(k+1):n,:]‖ = Op(r2) .

Assumption 5.5 implies that when we estimate Ũ1 by Û1 the rate for the first k rows

is γ times smaller than the rest of the rows. To see the intuition behind this, we first have

‖(Û1 − Ũ1W )‖ � ‖ sin Θ(Ũ1, Û1)‖ = Op(r2) by the Lemma 1 in Tony Cai and Zhang (2017).
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Then consider

Û1 = DγQ
T
XY V̂1Σ̂

−1
1 = DγQ

T
X(XB +ZD)V̂1Σ̂

−1
1 +DγQ

T
XEV̂1Σ̂

−1
1

≈ DγQ
T
X(XB +ZD)Ṽ1Σ̃

−1
1 +DγQ

T
XEṼ1Σ̃

−1
1

= Ũ1 +DγQ
T
XEṼ1Σ̃

−1
1 .

We can see that the difference of Ũ1 and Û1 is led by the first order approximation

DγQ
T
XEṼ1Σ̃

−1
1 , the first k rows of which have the stand deviation γ times smaller than the

rest rows.

Then we can introduce our Theorem 5.2.4.

Theorem 5.2.4. Under assumptions 5.1-5.5, there exits W ∈ Ok,k such that

‖QXD
−1
γ (Û1 −U1W )‖ = Op(r4),

where

r4 = r1/γ + r2 =

√
n

ϕ2
q(ZD)

+
γ2‖α1‖ϕ2

1(XB)√
1− ‖α1‖2ϕ2

q(ZD)
+
‖τ‖ϕ1(XB)

ϕq(ZD)
.

If we assume ‖τ‖ = o( n
ϕ2
q(ZD)

), we have

r4 =

√
n

ϕ2
q(ZD)

+
γ2‖α1‖ϕ2

1(XB)√
1− ‖α1‖2ϕ2

q(ZD)

Theorem 5.2.4 describes that we can recover the column space of Z by QXD
−1
γ Û1 and

it also gives us the insight of how choose the parameter γ. As long as we choose γ such

that γ = o(
n1/4
√
ϕ2
q(ZD)

ϕ1(XB)
), we have r4 = Op(

√
n

ϕ2
q(ZD)

if ‖τ‖ is small enough. Some examples

regarding the scale of ‖τ‖ can be seen in the Condition 5 of Lee et al. (2017) and the scenario

where B is spare in Wang et al. (2017).
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5.3 Numeric Experiments

In this section,we perform three sets of Monte Carlo simulations to examine the perfor-

mances of the proposed and several existing methods under various simulation setups. In

particular, we are interested in investigating how correlation structures among the primary

and hidden confounders, as well as the correlation among the associated effects of these

variables affect the performances of these methods. We also explore the impact of the sparsity

of the effects and the number of hidden confounders.

5.3.1 Methods to compare

The comparison methods are described below, with the name by which each will be

referred to in parentheses:

1. the hidden confounders are assumed to be known and are included as covariates in the

regression model (5.1.1) (Known);

2. the hidden confounders are completely ignored and analysis is done with the reduced

model (5.1.2) (Not.Adj);

3. two-step surrogate variable analysis from Leek and Storey (2007) (2-SVA);

4. iteratively reweighted surrogate variable analysis from Leek and Storey (2008) (IRW-

SVA);

5. PCA on original feature matrix (PCA);

6. PCA on the residualized matrix where effects of the observed variables are removed

from each feature (rPCA);

7. four-step RUV method of Gagnon-Bartsch et al. (2017) with q being estimated by PA

procedure of Buja and Eyuboglu (1992) (RUV4-k1);

8. four-step RUV method of Gagnon-Bartsch et al. (2017) with r being estimated by its

own built-in procedure (RUV4-k2)

9. LEAPP with robust regression from Wang et al. (2017) (LEAPP);
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5.3.2 Simulation Setups

In the first set of simulations, we consider the case where the effect of primary variables

and hidden confounders are independent. We generate p = 5000 features with sample size

n = 100. In each simulated dataset, the ith feature of the jth sample, yij, is generated from

the following model:

yij = β1ix1j + δ1iz1j + εij (i = 1, · · · , p; j = 1, · · · , n), (5.3.1)

where x1j is the primary variable, z1j is a continuous hidden confounder, with corresponding

β1i and δ1i, respectively. The random error εij is generated from N(0, 1). The primary

variable x1j and the hidden confounder z1j are jointly generated from the bivariate normal

distribution  x1j

z1j

 ∼ N


 0

0

 ,

 1 ρ

ρ 1


 ,

where ρ is used to control the degree of correlation between x1j and z1j . Four different values

of ρ are considered to allow for increasing correlation: 0.1, 0.3, 0.6 and 0.9.

One set of features of size m = 500, 1000 and 2000 is selected to have non-zero β1i

coefficient respectively, which is generated from N(0, 1). To mimic real microarray data where

the hidden confounders affect a subset of features relatively strongly, 2000 features are set

to be associated with z1j, with associated coefficients generated from N(0, 1) and correlated

with the non-zero β1is with correlation coefficient ρ1 = 0. The overlap of the non-zero index

between β1i and δ1i are set as s = 0.1m, 0.5m and 0.9m. Therefore, we have in total 36

simulation setups: ρ = 0.1, 0.3, 0.6 and 0.9; m = 500, 1000 and 2000; and s = 0.1m, 0.5m

and 0.9m. For each simulation setup, a total of 200 replications were conducted.

In the second set of simulations, we consider the case where the effect of primary variables

and hidden confounders have correlation. Specifically, we set ρ = 0.1 such that β1i and δ1i

have the correlation 0.1 on the common nonzero index. All the other setting are kept exactly
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the same as in the first set of simulations.

The number of surrogate variables r is estimated by the PA procedure of Buja and

Eyuboglu (1992) for all of the algorithms, unless otherwise stated. In RUV4-k1 and RUV4-k2,

we randomly select 300 or 400 features (6− 8%) as the negative controls. This percentage

mimics the proportion of housekeeping genes in real microarray datasets, and is similar to

those used in Gagnon-Bartsch et al. (2017) (10%) and Lee et al. (2017) (6%).

5.3.3 Simulation Results

The FDR results are displayed in Figures 5.1 and 5.4. As expected, Not.Adj has inflated

FDR and the inflation increases with ρ in all cases. Performance of PCA is acceptable when

the hidden confounders have much larger effects than the primary variable (Figures 5.1 (a),

m = 500). In this case, the hidden confounders clearly stand out and the top PCs from PCA

on Y can sufficiently identify them. However, when the effects of the hidden confounders are

similar to those of the observed variables (Figures 5.1, m = 2000), the FDR of PCA becomes

inflated since the top r PCs can no longer recover the hidden confounders efficiently. For

all simulated cases, rPCA has noticeably inflated FDR regardless of ρ. In all cases, both

2-SVA and IRW-SVA have noticeably inflated FDR when ρ is large and the inflation increases

with ρ. In addition, 2-SVA has noticeably inflated FDR when the effects of the primary and

hidden confounders are correlated.

The performance of RUV4-k1 varies. It suffers from inflated FDR for some cases (Figures

5.1 m = 1000), possibly due to the lack of a perfect set of negative controls. For RUV4-k2,

the built-in estimation procedure for r (Gagnon-Bartsch et al., 2017) does not always perform

well and thus has noticeably inflated FDR. Both RUV4-k1 and RUV4-k2 also have inflated

FDR when the effects of the primary and hidden confounders are correlated (Figure 5.4).

In contrast, LEAPP performs well in most cases, though it may have slightly inflated FDR

which increases with ρ. In all cases, ESP performs closest to Known and has well-controlled

FDR.

Mean squared errors (MSE) results are summarized in Figures 5.2 and 5.5. The MSE of
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LEAPP, RUV-k1 and ESP are comparable and are close to those of Known. Other methods

have inflated MSE when ρ is large. In many neuroimaging studies, a key step is to select and

regress out a list of confounders from the imaging features for downstream follow-up analysis.

Therefore, a method’s ability to recover the hidden confounders is also examined. Specifically,

a linear regression with the first hidden confounder z1 = (z11, · · · , z1n) as response variable

and estimated hidden confounders as covariates is fitted for each of the method, except for

the Known and Not.Adj. R-squared (R2) results are presented in Figures 5.3 and 5.6. Clearly,

the hidden confounders estimated from 2-SVA, IRW-SVA, PCA, rPCA and RUV4-k2 all

depart noticeably from z1. The remaining methods, RUV4-k1, LEAPP and ESP perform

better, but ESP is the clear winner.

In summary, ESP provides the most stable FDR control for data with complicated

dependence structures and can serve as a powerful alternative method for detecting and

recover hidden confounding variables.
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𝑚 = 500 𝑚 = 1000 𝑚 = 2000 𝑚 = 500 𝑚 = 1000 𝑚 = 2000

(a) 𝜌 = 0.1 (b) 𝜌 = 0.3

(c) 𝜌 = 0.6 (d) 𝜌 = 0.9

Figure 5.1: FDR results of the proposed and competing method in first set of simulations.
The error bars are one empirical 95% confidence interval over 200 repeated simulations. The
dashed vertical line is the 5% FDR level.
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𝑚 = 500 𝑚 = 1000 𝑚 = 2000 𝑚 = 500 𝑚 = 1000 𝑚 = 2000

(a) 𝜌 = 0.1 (b) 𝜌 = 0.3

(c) 𝜌 = 0.6 (d) 𝜌 = 0.9

Figure 5.2: MSE results of the proposed and competing method in first set of simulations.
The error bars are one empirical 95% confidence interval over 200 repeated simulations.
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𝑚 = 500 𝑚 = 1000 𝑚 = 2000 𝑚 = 500 𝑚 = 1000 𝑚 = 2000

(a) 𝜌 = 0.1 (b) 𝜌 = 0.3

(c) 𝜌 = 0.6 (d) 𝜌 = 0.9

Figure 5.3: R2 results of the proposed and competing method in first set of simulations. The
error bars are one empirical 95% confidence interval over 200 repeated simulations.
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0.0 0.2 0.4 0.6 0.8
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Methods

Known

Not.Adj

2SVA

IRW−SVA

PCA

rPCA

RUV4−k2

RUV4−k1

LEAPP

ESP

Figure 5.4: FDR results of the proposed and competing method in second set of simulations.
The error bars are one empirical 95% confidence interval over 200 repeated simulations. The
dashed vertical line is the 5% FDR level.
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Figure 5.5: MSE results of the proposed and competing method in second set of simulations.
The error bars are one empirical 95% confidence interval over 200 repeated simulations.
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0.0 0.2 0.4 0.6 0.8 1.0
R−Square

0.0 0.2 0.4 0.6 0.8 1.0
R−Square

Methods
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Figure 5.6: R2 results of the proposed and competing method in second set of simulations.
The error bars are one empirical 95% confidence interval over 200 repeated simulations.
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APPENDIX A: TECHNICAL DETAILS OF CHAPTER 3

The appendix collects the proofs of Theorems 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.3.5.

A.1 Proof of Theorem 3.3.1

Proof of Theorem 3.3.1. For simplicity, we omit d0 in Ld0(β
∗). We prove a stronger result

that the estimated coefficient vector β̂(d0) is exactly equal to the oracle estimator β̂0(d0).

For notational simplicity, we write β∗ = β∗(d0) and β̂λ = β̂(d0, λ). Let F (β) = L(β)+pλ(β),

where with slight abuse of notation we write pλ(β) =
∑p

j=1 pλ(βj).

To show β̂λ = β̂0, we first establish some basic properties of β̂λ and β̂0. We show that

β̂0 is a stationary point of (3.2.2). Suppose ||∇L(β̂0)||∞ ≤ λ/2. Since lim
x→0

p′λ(x) = λ, there

exists a subgradient ∇pλ(β̂0) such that

(∇F (β̂0))Sc = (∇L(β̂0))Sc + (∇pλ(β̂0))Sc = 0.

Moreover by the assumptions of the theorem we have minj∈S |β̂0
j | ≥ γλ, and thus

(∇L(β̂0))S + (∇pλ(β̂0))S = 0.

Adding the above two equalities gives ∇L(β̂0) +∇pλ(β̂0) = 0 and thus β̂0 is a stationary

point of (3.2.2).

Apparently the global minimum β̂λ is also a stationary point of the program (3.2.2). We

collect some lemmas which characterize the basic property of β̂λ.

Lemma A.1.1. Assume Assumptions 3.1 and 3.2. Suppose ρ > 3µ/4, r = 2R and

2‖∇L(β∗)‖∞ ≤ λ. Then

‖(β̂λ − β∗)Ac‖1 ≤ ‖(β̂λ − β∗)A‖1, ‖β̂λ − β∗‖2 ≤ 1.5(ρ− 3µ/4)−1λ
√
s,

where A is the subset indexing the largest s coordinates of β̂λ − β∗ in magnitude.

Proof of Lemma A.1.1. Since β̂λ ∈ B2(R) := {x : ‖x‖1 ≤ R}, we have ‖β̂λ − β∗‖1 ≤ 2R.
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Using Assumption 3.2 with r = 2R acquires

ρ‖β̂λ − β∗‖2
2 − τ

log p

n
‖β̂λ − β∗‖2

1 ≤ 〈∇L(β̂λ)−∇L(β∗), β̂λ − β∗〉.

Using the first order optimality condition that

−〈∇L(β̂λ) +∇pλ(β̂λ),β∗ − β̂λ〉 ≤ 0

for some ∇pλ(β̂λ) ∈ ∂pλ(β̂λ), we obtain

〈∇L(β̂λ)−∇L(β∗), β̂λ − β∗〉 ≤ 〈−∇pλ(β̂λ)−∇L(β∗), β̂λ − β∗〉. (A.1.1)

Since g(x) := pλ(x) + µx2/2 is convex, we have

g(β∗)− g(β̂λ) + 〈g′(β̂λ), β̂λ − β∗〉 ≥ 0,

or equivalently

−〈∇pλ(β̂λ), β̂λ − β∗〉 ≤ g(β∗)− g(β̂λ) + 〈µβ̂λ, β̂λ − β∗〉 ≤ pλ(β
∗)− pλ(β̂λ) +

µ

2
‖β̂λ − β∗‖2

2.

Plugging the above inequality into (A.1.1) and after some algebra, we obtain

〈∇L(β̂λ)−∇L(β∗), β̂λ − β∗〉 ≤ ‖∇L(β∗)‖∞‖β̂λ − β∗‖1 + pλ(β
∗)− pλ(β̂λ) +

µ

2
‖β̂λ − β∗‖2

2,

and thus

(ρ− µ/2)‖β̂λ − β∗‖2
2 ≤ pλ(β

∗)− pλ(β̂λ) +

(
‖∇L(β∗)‖∞ + 2Rτ

log p

n

)
‖β̂λ − β∗‖1

≤ pλ(β
∗)− pλ(β̂λ) +

λ

2
‖β̂λ − β∗‖1,

(A.1.2)

provided ‖∇L(β∗)‖∞ + 2Rτ(log p)/n ≤ λ/2. Now using the fact that λ|x| ≤ pλ(x) + µx2/2
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implied by the convexity of pλ(x) + µx2/2− λ|x| and the subadditivity of pλ which is then

implied by Assumption 3.1 (iii), we have

(ρ− 3µ/4)‖β̂λ − β∗‖2
2 ≤ pλ(β

∗)− pλ(β̂λ) +
pλ(β̂

λ) + pλ(β
∗)

2
,

or equivalently

0 ≤ 2(ρ− 3µ/4)‖β̂λ − β∗‖2
2 ≤ 3pλ(β

∗)− pλ(β̂λ).

For the RHS of the inequality above, we have

3pλ(β
∗)− pλ(β̂λ) = 3pλ

(
β∗S
)
− pλ

(
β̂λS
)
− pλ

(
β̂λSc
)

≤ 3pλ
(
(β̂λ − β∗)S

)
− pλ

(
β̂λSc
)

(subadditivity)

= 3pλ
(
(β̂λ − β∗)S

)
− pλ

(
(β̂λ − β∗)Sc

)
≤ 3pλ

(
(β̂λ − β∗)A

)
− pλ

(
(β̂λ − β∗)Ac

)
≤ λ

(
3‖(β̂λ − β∗)A‖1 − ‖(β̂λ − β∗)Ac‖1

)
, (Assumption 3.1 (iii))

where A is the subset indexing the largest s coordinates of β̂λ − β∗ in magnitude. Therefore,

β̂λ − β∗ falls in the `1 cone of {∆ : ‖∆Ac‖1 ≤ 3‖∆A‖1} , that is

‖(β̂λ − β∗)Ac‖1 ≤ ‖(β̂λ − β∗)A‖1.

Thus we must have

2(ρ− 3µ/4)‖β̂λ − β∗‖2
2 ≤ 3λ‖(β̂λ − β∗)A‖1 ≤ 3λ

√
s‖(β̂λ − β∗)A‖2,

which implies ‖β̂λ − β∗‖2 ≤ 1.5(ρ− 3µ/4)−1λ
√
s.
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Now we proceed to show that β̂λ = β̂0. We first show that β̂λ is supported on S.

By Lemma A.1.1, β̂λ is an interior local minimum and thus ∇L(β̂λ) + ∇pλ(β̂λ) = 0, or

equivalently ∇L̄(β̂λ) + λζ = 0, for some ζ ∈ ∂‖β̂λ‖1. Applying the LRSC condition, i.e.,

Assumption 3.2, we have

−τ log p

n
‖β̂0 − β̂λ‖2

1 + ρ‖β̂0 − β̂λ‖2
2 ≤ 〈∇L(β̂0)−∇L(β̂λ), β̂0 − β̂λ〉,

which implies

〈∇L̄(β̂0)−∇L̄(β̂λ), β̂0 − β̂λ〉 ≥ (ρ− µ)‖β̂λ − β̂0‖2
2 − τ

log p

n
‖β̂λ − β̂0‖2

1.

Also, ∇L(β̂0) + ∂pλ(β̂
0) = 0 together with ∇L̄(β̂λ) + λζ = 0 yields

0 = 〈∇L̄(β̂λ), β̂0 − β̂λ〉+ λ〈ζ, β̂0 − β̂λ〉

= 〈∇L̄(β̂λ)−∇L̄(β̂0), β̂0 − β̂λ〉+ λ〈ζ, β̂0 − β̂〉 − λ〈ζ0, β̂
0 − β̂λ〉

≤ τ
log p

n
‖β̂λ − β̂0‖2

1 − (ρ− µ)‖β̂λ − β̂0‖2
2 + λ〈ζ, β̂0〉+ λ〈ζ0, β̂

λ〉 − λ‖β̂λ‖1 − λ‖β̂0‖1.

(A.1.3)

Rearranging the above inequality, we obtain

λ‖β̂λ‖1 − λ〈ζ0, β̂
λ〉 ≤ τ

log p

n
‖β̂λ − β̂0‖2

1 − (ρ− µ)‖β̂λ − β̂0‖2
2.

We need the following result.

Lemma A.1.2. If ‖∇L(β̂0)‖∞ ≤ λ/2 and τs(log p/n)3/2 ≤ cλ for some small enough

constant c, then

‖∆̂‖1 ≤
5

2

√
s‖∆̂‖2.
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Proof of Lemma A.1.2. Rearranging (A.1.3) acquires

(ρ− µ)‖β̂λ − β̂0‖2
2 − τ

log p

n
‖β̂λ − β̂0‖2

1 ≤ λ〈ζ, β̂0〉+ λ〈ζ0, β̂
λ − β̂0〉 − λ‖β̂λ‖1.

Now since supp(β̂0) ⊆ S, we have

λ〈ζ, β̂0〉 − λ‖β̂λ‖1 ≤ λ‖β̂0‖1 − λ‖β̂λ‖1 ≤ λ(‖(β̂0 − β̂λ)S‖1 − ‖(β̂0 − β̂λ)Sc‖1).

For λ〈ζ0, β̂
λ〉, since ‖ζ0Sc‖∞ ≤ λ/2, we have

λ〈ζ0, β̂
λ − β̂0〉 ≤ λ‖(β̂λ − β̂0)S‖1 + λ/2‖(β̂λ − β̂0)Sc‖1.

For simplicity, let ∆̂ = β̂λ − β̂0. Plugging the above bounds into the first inequality

acquires

(ρ− µ)‖∆̂‖2
2 − τ

log p

n
‖∆̂‖2

1 ≤ 2λ‖∆̂S‖1 − λ/2‖∆̂Sc‖1,

which, under the assumption that

τ log p‖∆̃‖1 ≤ Cτs(log p/n)3/2 ≤ λ/2 (by Assumption)

for some large enough constant C, then yields

λ

2
‖∆̂‖1 ≤ 2λ‖∆̂S‖1 −

λ

2
‖∆̂Sc‖1,

or equivalently

2‖∆̂Sc‖1 ≤ 3‖∆̂S‖1.

The statement follows.
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Applying Lemma A.1.2, we obtain

λ‖β̂λ‖1 − λ〈ζ0, β̂
λ〉 ≤ τ

log p

n
‖β̂λ − β̂0‖2

1 − (ρ− µ)‖β̂λ − β̂0‖2
2 ≤ −

ρ− µ
2
‖β̂λ − β̂0‖2

2,

if 13τs(log p)/n ≤ ρ−µ. Thus λ‖β̂λ‖1−λ〈ζ0, β̂
λ〉 ≤ 0 and we must have λ‖β̂λ‖1 = λ〈ζ0, β̂

λ〉,

which holds only if supp(β̂λ) ⊆ S.

After showing supp(β̂λ) ⊆ S, in order to prove β̂λ = β̂0, it suffices to show the strict

convexity of F over the sparse cone. This can be reduced to show that L̄ = L − h is

strictly convex since λ‖β‖1 is convex. This is obvious by the LRSC condition as long as

ρ > µ + τ(log p)/n. Thus the result follows on the event that {‖∇L(β∗)‖∞ ≤ λ/2} ∩

{‖∇L(β̂0)‖∞ ≤ λ/2}.

A.2 Validation of Assumption 3.8

In this section, we use the examples of L2 loss and Huber loss functions to validate

assumption 3.8.

A.2.1 Example 1: Least squares estimator

Divide the matrix X as X = (XS(d0), XS(d0)C ). For least square estimator, we have

L(β;Y (d0), X) = 1
2n
‖Y (d0)−Xβ‖2

2 and β̂0(d0) = (XT
S(d0)XS(d0))

−1XT
S(d0)Y (d0).

Then by Assumption 3.3, we have

‖bias(β̂0(d0))‖2 := ‖Eβ̂0(d0)− β∗(d0)‖2 = 0

and for any unit vector u ∈ Rp×1 we have

var(uT β̂0(d0)) = var(uT (XT
S(d0)XS(d0))

−1XT
S(d0)ε(d0))

= ‖XS(d0)(X
T
S(d0)XS(d0))

−1u‖2var(
uT (XT

S(d0)XS(d0))
−1XT

S(d0)

‖XS(d0)(XT
S(d0)XS(d0))−1u‖

ε(d0))

≤ uT (XT
S(d0)XS(d0))

−1uσ2 � 1

n
σ2.
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A.2.2 Example 2: Robust regression estimator

For robust regression estimator, we have Ld0(β
∗) = 1

n

∑n
i=1 `τ (εi(d0)) and ∇Ld0(β

∗) =

1
n
XT
S(d0)`

′
τ (ε(d0)) where

`τ (x) =

 x2/2 if |x| ≤ τ

τ |x| − τ 2/2 if |x| > τ
,

`′τ (ε(d0)) = (`′τ (ε1(d0)), · · · , `′τ (εn(d0)))T and `′τ (x) = xI(|x| ≤ τ) + τ sign(x)I(|x| > τ). We

further have

|E`′τ (εi(d0))| ≤ σ2 − E [`′τ (εi)
2]

τ
≤ σ2

τ
,

and Σ`′τ (ε(d0)) := cov(`′τ (ε(d0))) is a diagonal matrix with identical diagonal element var [`′τ (ε1)2].

Refer to the equation (C.25) in Sun et al. (2020) and take expectation with η = 1. Then

for some a0 > 0 and τ �
√
n , we have

E‖β̂0(d0)− β∗(d0)‖2
2 ≤ Ea−2

0 ‖∇Ld0(β
∗)‖2

2 . E‖∇Ld0(β
∗)‖2

2

=
1

n2
E`′τ (ε(d0))TXS(d0)X

T
S(d0)`

′
τ (ε(d0))

=
1

n2
E`′τ (ε(d0))TXS(d0)X

T
S(d0)E`

′
τ (ε(d0)) +

1

n2
tr(XS(d0)X

T
S(d0)Σ`′τ (ε(d0)))

≤ σ4

τ 2
+
E [`′τ (ε1)2]

n2
tr((XS(d0)X

T
S(d0)) .

σ4

τ 2
+
s

n
σ2 .

s

n
σ2

Finally we can have

‖bias(β̂0(d0))‖2 := ‖Eβ̂0(d0)− β∗(d0)‖2 ≤
√
s

n
σ2,

and for any unit vector u ∈ Rp×1

var(uT β̂0(d0)) ≤ s

n
σ2.
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A.3 Proof of Theorem 3.3.2

We prove both upper bound and lower bound. We start with the upper bound.

Upper Bound: For every d0 ∈ D0 ∩ Ω, consider the oracle estimator β̂0(d0) in (3.3.1) and

define the local linear estimator of f ∗Ω(d0) based on β̂0(d0)

f̂ 0
Ω(d0) = (f̂ 0

1 (d0), · · · , f̂ 0
n(d0))T = X

∑
dm∈D0∩Ω

wh(dm,d)β̂0(d0) =
∑

dm∈D0∩Ω

wh(dm,d)f̆(dm),

where wh(dm,d) is defined in (3.2.5) and f̆(dm) = Xβ̂0(dm) = (f̆1(d0), · · · , f̆n(d0))T .

Define N (d0, h) = {d ∈ D0 ∩ Ω, Kh(d − d0) > 0}, then we have |N (d0, h)| � NDh
3.

Further define Z ∈ R|N (d0,h)|×4, F̆0 ∈ R|N (d0,h)|×n and B̆0 ∈ R|N (d0,h)|×p as concatenating

zh(dm−d), f̆(dm) and β̂0(dm) row-wisely for each dm = (dm,1, dm,2, dm,3) ∈ N (d0, h). Then

(3.2.3) can be rewritten as

G(B) =:
∑

dm∈N (d0,h)

‖β̂0(dm)−BTzh(dm − d0)‖2.

Minimizing G(B) with respect to B, we can obtain that B̂ = (ZTZ)−1ZTB̆0 ∈ R4×p and

further have

f̂ 0
Ω(d0) = XB̂Te =

(
(ZTZ)−1ZTF̆0

)T

e,

where e = (1, 0, 0, 0)T.

We rewrite E‖f̂ 0
Ω(d0)(d0)− f ∗(d0)‖2 as

E‖f̂ 0
Ω(d0)−f ∗(d0)‖2 =

n∑
i=1

E(f̂ oi (d0)−f ∗i (d0))2 =
n∑
i=1

{var(f̂ oi (d0))+(E(f̂ oi (d0))−f ∗i (d0))2}.

By the assumption 3.8, we have var(f̂ oi (d0)) � σ2s2n−1eT(ZTZ)−1e. As NDh
3 →∞, we have
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|N (d0, h)|−1ZTZ →M0, where

M0 =



1 1/2 1/2 1/2

1/2 1/3 1/4 1/4

1/2 1/4 1/3 1/4

1/2 1/4 1/4 1/3


is a positive-definite matrix. Hence as long as NDh

3 is large enough, there is a constant

C1 > 0 such that C−1
1 |N (d0, h)| ≤ λmin(ZTZ) ≤ λmax(ZTZ) ≤ C1|N (d0, h)|. Consequently,

we have var(f̂ oi (d0)) � σ2s2n−1|N (d0, h)|−1 � σ2s2n−1N−1
D h−3.

Next we will consider the bias term (E(f̂ oi (d0))− f ∗i (d0))
2. By the assumption 3.8, we

have

|E(f̂ oi (d0))− f ∗i (d0)| = |
∑

dm∈N (d0,h)

ω(dm,d0)Ef̆i(dm)− f ∗i (d0)|

≤
∑

dm∈N (d0,h)

ω(dm,d0)(|f ∗i (dm)− f ∗i (d0)|+ |Ef̆i(dm)− f ∗i (dm)|)

= C0

∑
dm∈N (d0,h)

ω(dm,d0)(‖dm − d0‖∞ + |Ef̆i(dm)− f ∗i (dm)|)

. h+
√
σ2s2n−1.

Consequently, we have

E‖f̂
o

Ω(d0)− f ∗(d0)‖2 . n(σ2s2n−1N−1
D h−3 + h2 + σ2s2n−1).

Using a similar argument, for every d0 ∈ D0 ∩ ΩC we also have

E‖f̂
o

ΩC (d0)− f ∗(d0)‖2 . n(σ2s2n−1N−1
D h−3 + h2 + σ2s2n−1).
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Therefore, define f̂
o
(d0) = 1{d0∈Ω}f̂

o

Ω(d0) + 1{d0∈Ωc}f̂
o

ΩC (d0) and we have

MSEf (f̂ o) =

∑
d0∈D0

E‖f̂
o
(d0)− f ∗(d0)‖2

nND

. (σ2s2n−1N−1
D h−3 + h2 + σ2s2n−1).

Let E be the event {Ŝ(d0, λ) = S(d0) for all d0 ∈ D0}. On the event E , we have β̂(d0, λ) =

β̂0(d0). Consequently, we have

MSEf (f̂) =

∑
d0∈D0

∑n
i=1 E(f̂i(d0)− f ∗i (d0))2

nND

=

∑
d0∈D0

{E‖f̂(d0)− f ∗(d0)‖2I(E) + E‖f̂(d0)− f ∗(d0)‖2I(EC)}
nND

=

∑
d0∈D0

{E‖f̂
o
(d0)− f ∗(d0)‖2I(E) + E‖f̂(d0)− f ∗(d0)‖2I(EC)}

nND

. σ2s2n−1N−1
D h−3 + h2 + σ2s2n−1 +

∑
d0∈D0

{E‖f̂(d0)− f ∗(d0)‖2I(EC)}
nND

.

And since |f̂i(d0)− f ∗i(d0)| ≤ 1 by clipping, we have n−1E‖f̂(d0)−f ∗(d0)‖2I(EC) . P (EC),

which implies that

MSEf (f̂) . σ2s2n−1N−1
D h−3 + h2 + σ2s2n−1 + P (EC)

and

inf
h
Rn(f̂) . (σ2s2n−1N−1

D )2/5 + σ2s2n−1 + P (EC)

when h � (σ2s2n−1N−1
D )1/5. By assumptions 3.3 and 3.6, we take δ = (1/(pND))C1 and we

have

P (EC) = δ = o((σ2s2n−1N−1
D )2/5).

We can further get the upper bound infhRn(f̂) . (σ2s2n−1N−1
D )2/5 ∨ σ2s2n−1.

Lower Bound: Next let us consider the lower bound of the risk Rn(f̂) and we need to
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assume the εi(d)’s are i.i.d. Gaussian random variables with mean 0 and variance σ2. For

arbitrary d0 ∈ D ∪ Ω, we first consider E(f̂i(d0)− fi(d0))2. Define g0(d) ≡ 0 : [0, 1]3 → R1,

and g1(d) = Lh
∏3

j=1 H((dj − dj,0)/h), where h = c0(σ
2s2n−1N−1

D )1/5 for some c0 > 0, and

H(u) = aH0(2u), H0(u) = e−1/(1−u2)I(|u| ≤ 1).

Step 1. g0(·), g1(·) ∈ H3(1, C0).

Step 2. Define A = 1/2Lc0

∏3
j=1H(0), ψ = (σ2s2n−1N−1

D )1/5, and s0 = ψA, then we

have E{ψ−2(f̂i(d0) − fi(d0))
2} ≥ A2P (|f̂i(d0) − fi(d0)| ≥ s0), and |g1(d0) − g0(d0)| =

Lh
∏3

j=1H(0) = 2Aψ = 2s0. Hence

inf
f̂

sup
f∈F

E{ψ−2‖f̂i(d0)− fi(d0)‖2}

≥ A2 inf
f̂

sup
f∈F

P (|f̂i(d0)− fi(d0)| ≥ s0)

≥ A2 inf
f̂

max
f∈{g0,g1}

P (|f̂i(d0)− fi(d0)| ≥ s0).

And we further define pe := inf f̂ maxf∈{g0,g1} P (|f̂i(d0)− fi(d0)| ≥ s0)

Step 3. Define K(Pg0 , Pg1) = EPg0 (log(dPg0/dPg1)), where Pgj is the distribute function

of yi(d0) with fi(d0) = gj(d0) for j = 0, 1. Then we have

K(Pg0 , Pg1) =
∑

d0∈D0

∫
log

φ(x; 0, σ2(d0))

φ(x; g1(d0), σ2(d0))
φ(x; 0, σ2(d0))dx

=
∑

d0∈D0

g1(d0)2

2σ2(d0)

=
1

2σ2
L2h2

∑
d0∈D0

3∏
j=1

H2(
dj − dj,0

h
)

≤ 1

2σ2
L2h2e−6

∑
d0∈D0

3∏
j=1

I(|dj − dj,0| ≤ h/2)

≤ 1

2σ2
L2h2e−6NDh

3

≤ 1

2σ2
L2e−6NDh

5.

Recall that h = c0(σ2s2n−1N−1
D )1/5, then one can see that K(Pg0 , Pg1) ≤ 2L2e−6s2n−1c5

0 := α.
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Consequently, by lemma A.8.1, we have pe ≥ max{e−α/4, (1−
√
α/2)/2}. Hence,

lim inf
n→∞

inf
f̂

sup
f∈F

E{ψ−2‖f̂i(d0)− fi(d0)‖2} ≥ δ1,

where δ1 = A2 max{e−α/4, (1−
√
α/2)/2} = 8−1L2

∏3
j=1 H(0)[α/(L2e−6)]2/5 max{e−α/2, 1−√

α/2}. Because c1 is free of i and d0, we have

inf
h
Rn(f̂h) ≥ R∗n ≥ δ1ψ

2 � (σ2s2n−1N−1
D )2/5

Combing the lower and the upper bound, we have

(σ2s2n−1N−1
D )2/5 . inf

h
Rn(f̂h) . (σ2s2n−1N−1

D )2/5 ∨ σ2s2n−1

If ND . (σ−2s−2n)
3
2 , we have infhRn(f̂h) � R∗n � (σ2s2n−1N−1

D )2/5. This completes the

proof of Theorem 3.3.2.

A.4 Proof of Theorem 3.3.3

Without loss of generality, assume that d0 ∈ Ω. Define the event

E0 = { max
dm∈B(d0,h)

‖β̂(dm, λ)− β∗(dm)‖2 ≤ t}

. When the event E ∩ E0 is true, for dm ∈ Ω
⋂
B(d0, h) and j = 1, · · · p, we have

|β̂j(dm, λ)− β̂j(d0, λ)|

≤ |β∗j (dm)− β∗j (d0)|+ |β̂j(dm, λ)− β∗j (dm)|+ |β̂j(d0, λ)− β∗j (d0)|

≤ C0h+ 2‖β̂(d0, λ)− β∗(d0)‖2

≤ C0h+ 2t,
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and for dm ∈ ΩC
⋂
B(d0, h), there exists d ∈ ∂Ω such that

|β̂j(dm, λ)− β̂j(d0, λ)|

≥ |β∗j (dm)− β∗j (d0)| − |β̂j(dm, λ)− β∗j (dm)| − |β̂j(d0, λ)− β∗j (d0)|

≥ |β∗j,Ω(d)− β∗j,ΩC (d)| − |β∗j,ΩC (dm)− β∗j,ΩC (d)| − |β∗j,Ω(d0)− β∗j,Ω(d)|

− 2‖β̂(d0, λ)− β∗(d0)‖2

≥ 1/C0 − 2C0h− 2t.

Since h = o(1), we can pick, for example, hy = 1
2C0

and t = 1
6C0

such that

C0h+ 2t < hy < 1/C0 − 2C0h− 2t,

then the YF estimator equals the estimator under the oracle case. Consequently,

E(f̂YF
i,h,hy(d0)− f∗,i(d0))2

= E{(f̂YF
i,h,hy(d0)− f∗,i(d0))21E}+ E{(f̂YF

i,h,hy(d0)− f∗,i(d0))21EC}

= E{(f̂YF
i,h,hy(d0)− f∗,i(d0))21E0∩E}+ E{(f̂YF

i,h,hy(d0)− f∗,i(d0))21EC0 ∩E}

+ E{(f̂YF
i,h,hy(d0)− f∗,i(d0))21EC}

≤ E(f̂i(d0)− f∗,i(d0))2 + P (EC
0 ∩ E) + P (EC)

For P (EC
0 ∩ E), by lemma A.1.1,we have

P (‖β̂(dm, λ)− β∗(dm)‖2 ≥ t) ≤ P (‖∇L(β∗(dm))‖∞ ≥ Ct/
√
s)

for some C > 0, which implies

P ( max
dm∈B(d0,h)

‖β̂(dm, λ)− β∗(dm)‖2 ≥ t) ≤ P ( max
dm∈B(d0,h)

‖∇L(β∗(dm))‖∞ ≥ C0t/
√
s).
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Then by assumption 3.3, for t = 1
6C0

= O(1), we take σ .
√
n/s log(pND), δ = h3 and we

have P (EC
0 ∩E) ≤ δ = o((σ2s2n−1N−1

D )2/5). We also have P (EC) = o((σ2sn−1N−1
D )2/5) in the

proofs of Theorem 3.3.2. Therefore, we have

E(f̂YF
i,h,hy(d0)− f ∗i (d0))2 . E(f̂i,h(d0)− f ∗i (d0))2.

Further we have infh,hy R(f̂YF
h,hy

) � infhRn(f̂h). This completes the proof of Theorem 3.3.3.

A.5 Proof of Theorem 3.3.4

In fact, when hP = 1/N
1/3
D , the NLM method degenerates into the YF method. Hence, as

long as the conditions in Theorem 3.3.3 is assumed, the claims of Theorem 3.3.4 is true.

A.6 Validation of Assumption 3.9

In this section, we use the examples of L2 loss and Huber loss functions to validate

assumption 3.9.

A.6.1 Example 1: Least Square estimator

For any dm ∈ B(d0, h), we have β̂0(dm)− β∗(dm) = ∇L(β∗(dm)). Therefore,

max
dm∈B(d0,h)

‖β̄Pdm
− β̄∗Pdm

‖∞ = max
dm∈B(d0,h)

‖m−1
P (

∑
dk∈P0

β̂0(dm + dk)− β∗(dm + dk))‖∞

= max
dm∈B(d0,h)

‖m−1
P

∑
dk∈P0

∇L(β∗(dm + dk))‖∞.

(A.6.1)

Denote the j th element of ∇L(β∗(dm+dk)) as ∇L(j)(β∗(dm+dk)), a = (m−1
P , · · · ,m

−1
P )T ∈

RmP and b ∈ RmP with each element to be ∇L(j)(β∗(dm + dk)) for some dk ∈ P0. Then for

any s > 0 we have

P

{
|m−1
P

∑
dk∈P0

∇L(j)(β∗(dm + dk))| > t

}
≤ Eesa

tb

est

= e−st
mP∏
i=1

Eesbi/mP .
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By Assumption 3.3 and lemma 1.5 in Rigollet and Hütter (2015),

Eesbi/mP ≤ e2σ2s2/(nm2
P ).

Therefore,

P

{
|m−1
P

∑
dk∈P0

∇L(j)(β∗(dm + dk))| > t

}
≤ e−st+2σ2s2/(nmP ).

And by minimizing s, we have

P

{
|m−1
P

∑
dk∈P0

∇L(j)(β∗(dm + dk))| > t

}
≤ e−nmP t

2/(8σ2).

Taking the union bound over j = 1, · · · , p and dm ∈ B(d0, h), we have

max
dm∈B(d0,h)

‖m−1
P

∑
dk∈P0

∇L(β∗(dm + dk))‖∞ . σ
√

log(pNDh3/δ)/(nmP) (A.6.2)

holds with probability at least 1− δ. We take δ = h3 in (A.6.2), and we have

P

{
max

dm∈B(d0,h)
‖m−1
P (

∑
dk∈P0

β̂0(dm + dk)− β∗(dm + dk)‖∞

& σ
s+ log(mPND)

n
+ σ
√

log(pND)/(nmP)

}
≤ P

{
max

dm∈B(d0,h)
‖m−1
P (

∑
dk∈P0

β̂0(dm + dk)− β∗(dm + dk)‖∞ & σ
√

log(pND)/(nmP)

}

≤ δ = o(h2) = o((σ2s2n−1N−1
D )2/5).

A.6.2 Example 2: Robust regression estimator

By Lemma A.8.3, we have for any dm

P
{
‖β̂0(dm)− β∗(dm)−∇L(β∗(dm))‖2 ≥ C3σ

s+ t

n

}
≤ 3e−t.
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Therefore,

P

{
‖m−1
P (

∑
dk∈P0

β̂0(dm + dk)− β∗(dm + dk)−∇L(β∗(dm + dk)))‖2 ≥ C3σ
s+ t

n

}

≤ 1− P
{
‖β̂0(dm + dk)− β∗(dm + dk)−∇L(β∗(dm + dk))‖2 ≤ C3σ

s+ t

n

}mP
= 1− (1− 3e−t)mP

. mPe
−t.

Taking the union bound over dm ∈ B(d0, h), we have

P

{
max

dm∈B(d0,h)
‖m−1
P (

∑
dk∈P0

β̂0(dm + dk)− β∗(dm + dk)−∇L(β∗(dm + dk)))‖2 ≥ C3σ
s+ t

n

}

. mPNDh
3e−t.

(A.6.3)

We take t = log(mPND) in (A.6.3) and δ = h3 in (A.6.2). Combine the two equations

together and we have

P
{

max
dm∈B(d0,h)

‖β̄Pdm
− β̄∗Pdm

‖∞ & σ
s+ log(mPND)

n
+ σ
√

log(pND)/(nmP)

}
= P

{
max

dm∈B(d0,h)
‖m−1
P (

∑
dk∈P0

β̂0(dm + dk)− β∗(dm + dk)‖∞

& σ
s+ log(mPND)

n
+ σ
√

log(pND)/(nmP)

}
≤ P

{
max

dm∈B(d0,h)
‖m−1
P (

∑
dk∈P0

β̂0(dm + dk)− β∗(dm + dk)−∇L(β∗(dm + dk)))‖2

& σ
s+ log(mPND)

n

}
+ P

{
max

dm∈B(d0,h)
‖m−1
P

∑
dk∈P0

∇L(β∗(dm + dk))‖∞ & σ
√

log(pND)/(nmP)

}

≤ δ + h3

= o(h2) = o((σ2s2n−1N−1
D )2/5).

(A.6.4)
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A.7 Proof of Theorem 3.3.5

For arbitrary d0 ∈ D0, if Pd0 ∩ ∂Ω 6= ∅, we have E(f̂NLM
i,h,hy

(d0) − f∗,i(d0))
2 ≤ 1. If

Pd0 ∩ ∂Ω = ∅, without loss of generality we assume that Pd0 ⊂ Ω. For any dm ∈ B(d0, h)

and j = 1, · · · p, we have

β̄j,Pdm
− β̄j,Pd0

= β̄∗j,Pdm
− β̄∗j,Pd0

+ β̄j,Pdm
− β̄∗j,Pdm

+ β̄j,Pd0
− β̄∗j,Pd0

,

where β̄∗j,Pdm
is the average of β∗j (dm) within patch Pdm and we assume that all patches are

of same size with mP � NDh
3
P . Define P0 the generic patch centered at 0 and

EPdm
= { max

dm∈B(d0,h)
‖β̄Pdm

− β̄∗Pdm
‖∞ ≤ ζ := σ

s+ log(mPND)

n
+ σ
√

log(pND)/(nmP)}.

By assumption 3.9, We have P (EC
Pd0

) = o(σ2s2n−1N−1
D )2/5). Moreover, we can rewrite

β̄∗j,Pdm
− β̄∗j,Pd0

as

β̄∗j,Pdm
− β̄∗j,Pd0

= m−1
P

∑
dk∈P0

(β∗j (d0 + dk)− β∗j (dm + dk)).

If dm ∈ Ω with Pdm ⊂ Ω, then by the C0-Lipschitz assumption, we have

|β̄∗j,Pdm
− β̄∗j,Pd0

| ≤ C0‖dm − d0‖∞ ≤ C0h.

If dm ∈ ΩC , then there exists a point d ∈ B(d0) ∩ ∂Ω, such that for dk ∈ Ω, β∗j (dk) =

β∗j,Ω(d) + (β∗j,Ω(dk) − β∗j,Ω(d)) with |β∗j,Ω(dk) − β∗j,Ω(d)| ≤ C0h, and for dk ∈ ΩC , β∗j (dk) =
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β∗j,ΩC (d) + (β∗j,ΩC (dk)− β∗j,ΩC (d)) with |β∗j,ΩC (dk)− β∗j,ΩC (d)| ≤ C0h. Hence

β̄∗j,Pdm
− β̄∗j,Pd0

= β∗j,Ω(d) +m−1
P

∑
dk∈Pdm

[β∗j,Ω(dk)− β∗j,Ω(d)]

− β∗j,Ω(d)
|Pd0 ∩ Ω|
|Pd0|

−m−1
P

∑
dk∈Pd0

∩Ω

[β∗j,Ω(dk)− β∗j,Ω(d)]

− β∗j,ΩC (d)
|Pd0 ∩ ΩC |
|Pd0|

−m−1
P

∑
dk∈Pd0

∩ΩC

[β∗j,ΩC (dk)− β∗j,ΩC (d)]

= (β∗j,Ω(d)− β∗j,ΩC (d))
|Pd0 ∩ ΩC |
|Pd0|

+R

where |R| ≤ 2C0h. Further by lemma A.8.2, we know that |Pdm ∩ ΩC |/|Pdm| ≥ (2C0)
−3.

Then we have |β̄∗j,Pdm
− β̄∗j,Pd0

| ≥ 2−3C−4
0 − 2C0h. Since h → 0, C0 � 1 and ζ → 0 by

assumption 3.6, we can select hy � C−4
0 � 1 such that

C0h+ 2ζ+ ≤ hy ≤ 2−3C−4
0 − 2C0h− 2ζ. (A.7.1)

This can ensure that all voxels dm ∈ B(d0, h) such that Pdm ⊂ Ω are included in the

neighborhood of d0, while no voxels in ΩC are included under the event EPd0
. Define

Bd0 = {d ∈ D0 : d ∈ B(d0, h)}, B0
d0

= {d ∈ D0 : d ∈ B(d0, h),Pd ⊂ Ω}, and Ad0 =

∪j=1,··· ,p{d ∈ D0 : Kadj
j,h,hy

(d0−d) > 0}. Since under EPd0
, we have B0

d0
⊂ Ad0 , which implies

EPd0
⊂ {B0

d0
⊂ Ad0} ⊂ ∪B0

d0
⊂A⊂Bd0

{Ad0 = A} and 1EPd0
≤
∑

B0
d0
⊂A⊂Bd0

1Ad0
=A, and further

E(f̂NLM
i,h,hy(d0)− f ∗i (d0))2

= E{(f̂NLM
i,h,hy(d0)− f ∗i (d0))21E}+ E{(f̂NLM

i,h,hy(d0)− f ∗i (d0))21EC}

= E{(f̂NLM
i,h,hy(d0)− f ∗i (d0))21{EPd0

}∩E}+ E{(f̂NLM
i,h,hy(d0)− f ∗i (d0))21{ECPd0

}∩E}

+ E{(f̂NLM
i,h,hy(d0)− f ∗i (d0))21EC}

≤
∑

B0
d0
⊂A⊂Bd0

P (Ad0 = A)E(f̂NLM
i,h,hy(d0)− f ∗i (d0))2 + P (EC

Pd0
) + P (EC).
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By lemma A.8.2, B0
d0

contains a ball of radius � h. Therefore, |B0
d0
|/|Bd0| � 1 and we have

∑
B0

d0
⊂A⊂Bd0

P (Ad0 = A)E(f̂NLM
i,h,hy(d0)− f ∗i (d0))2

≤
∑

B0
d0
⊂A⊂Bd0

P (Ad0 = A)O(h2 + σ2s2n−1N−1
D h−3 + h2 ∨ σ2s2n−1)

≤ O(σ2s2n−1N−1
D h−3 + h2 ∨ σ2s2n−1).

We also have P (EC
Pd0

) = o(h2) and P (EC) = o(h2). Hence we get that

MSEf (f̂NLM
h,hy ) ≤ |Q|

ND

+O(σ2s2n−1N−1
D )2/5 ∨ σ2s2n−1,

where Q = {d : Pd ∩ ∂Ω 6= ∅} is a subset of {d : dist(d, ∂Ω) < hP}, hence we have

|Q| ≤ C2NDhP . Consequently,

MSEf (f̂NLM
h,hy ) ≤ O(hP + (σ2s2n−1N−1

D )2/5 ∨ σ2s2n−1).

Optimizing the right term of above formula over hP in ζ subject to (A.7.1), one can obtain

that

inf
h,hy
R(f̆NLM

h,hy ) ≤ O(
(σ2n−1 log pND)1/3

N
1/3
D

∨ (σ2s2n−1N−1
D )2/5 + σ2s2n−1)

= O(
(σ2n−1 log pND)1/3

N
1/3
D

∨ σ2s2n−1).

This completes the proof of Theorem 3.3.5.

A.8 Auxiliary Results

This section collects some auxiliary results.

Lemma A.8.1. (Theorem 2.2 (iii) of Tsybakov (2008).) Let P0 and P1 be two probability

measures. If the KL divergence K(P0, P1) ≤ α <∞, then

pe,1 :=
1

2
(P0 (ψ∗ 6= 0) + P1 (ψ∗ 6= 1)) ≥ max

(
1

4
exp(−α),

1−
√
α/2

2

)
,
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where

ψ∗ =

 0, if p0 ≥ p1

1, otherwise

and p0 and p1 are the densities of P0 and P1.

Lemma A.8.2. (Lemma 8.2 of Arias-Castro et al. (2012).) Let φ : R3 → R3 is injective

with both φ, φ−1 C-Lipschitz. The for Ω = φ(B(0, 1)) and

ρ(A) := inf
h∈(0,1)

inf
x∈A

sup

{
Vol(B(y, s))

Vol(B(x, h))
: B(y, s) ⊂ B(x, h) ∩ A

}
,

where Vol denotes the volume. We have min (ρ(Ω), ρ (Ωc)) ≥ (2C)−3.

Lemma A.8.3. (Theorem 7 (II) of Sun et al. (2020).) For t > 0 and τ0 ≥ σ, the estimator

β̂0(dm) with τ = τ0

√
n/(s+ t) satisfies

P
{
‖β̂0(dm)− β∗(dm)−∇L(β∗(dm))‖2 ≥ C3σ

s+ t

n

}
≤ 3e−t

provided n ≥ C2(s+ t).
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APPENDIX B: TECHNICAL DETAILS OF CHAPTER 5

The appendix collects the proofs of Lemmas 5.2.1, 5.2.2 and Theorems 5.2.3 and 5.2.4.

B.1 Proof of Lemma 5.2.1

Proof of Lemma 5.2.1. Define

α := ϕmin(UT
1 DγQ

T
X(XB +ZD)V1) = ϕmin(Σ1 +UT

1 DγQ
T
XXBV1) � ϕk(ZD),

β := ‖UT
⊥DγQ

T
X(XB +ZD)V⊥‖ = ‖UT

⊥DγQ
T
XXBV⊥‖ ≤ γϕ1(XB),

z21 := ‖PU1⊥DγQ
T
XXBPV1‖ = ‖U1⊥U

T
1⊥DγQ

T
XXBV1V

T
1 ‖,

and

z12 := ‖PU1DγQ
T
XXBPV1⊥=‖ = ‖U1U

T
1 DγQ

T
XXBV1⊥V

T
1⊥‖.

We rewrite DγQ
T
XXB as

DγQ
T
XXB = γ

 Iq

0

ΣXBR
T
B.

We further observe that there exist W0 ∈ Rk×k and W ′
0 ∈ Ok,k such that

U1 = Dγ

 αT1
βT1

W0,

and

V1 = RDW
′
0,

with ‖W0‖ ∈ [1, 1/
√

1− ‖α1‖2] . Then we have

z12 ≤ γ2‖W T
0 α1‖ϕ1(XB)

= O(γ2 ‖α1‖√
1− ‖α1‖2

ϕ1(XB)),
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and
z21 ≤ γϕ1(XB)‖τ‖

= O(γϕ1(XB)‖τ‖).

Therefore, following the Theorem 1 in Tony Cai and Zhang (2017) and we have

‖ sin Θ(U1, Ũ1)‖ ≤ αz21 + βz12

α2 − β2 − z2
21 ∧ z2

12

∧ 1

= O(
γ3‖α1‖ϕ2

1(XB)√
1− ‖α1‖2ϕ2

q(ZD)
+
γ‖τ‖ϕ1(XB)

ϕq(ZD)
).

B.2 Proof of Lemma 5.2.2

Proof of Lemma 5.2.2. For convenience, denote Y0 = DγQ
T
XY , X0 = DγQ

T
X(XB +ZD),

M3 = DγQ
T
XE and we have EY0Y

T
0 = X0X

T
0 + pD2

γ. Since

X0X
T
0 =

[
Ũ1 Ũ1⊥

]
·

 Σ̃2
1 0

0 Σ̃2
2

 ·
 Ũ>1

Ũ>1⊥

 ,

it yields EŨT
1 Y0Y

T
0 Ũ1 = Σ̃2

1 + N1 and ϕmin

(
Σ̃2

1 +N1

)
≤ ϕ2

k (X0) + p, where N1 =

pŨT
1 D

2
γŨ1. Let N = (Σ̃2

1 +N1)−
1
2 , then we have ENT ŨT

1 Y0Y
T

0 Ũ1N = Ik. It follows that

ϕ2
k(Y

T
0 Ũ1) ≥ ϕ2

k(Y
T

0 Ũ1N )
{
ϕ2
k (X0) + p

}
=
{
ϕ2
k (X0) + p

}
· ϕk

(
NT ŨT

1 Y0Y
T

0 Ũ1N − ENT ŨT
1 Y0Y

T
0 Ũ1N + ENT ŨT

1 Y0Y
T

0 Ũ1N
)

≥
{
ϕ2
k (X0) + p

}{
1− ϕ1

(
NT ŨT

1 Y0Y
T

0 Ũ1N − Ik
)}

=
{
ϕ2
k (X0) + p

}(
1− ‖NT ŨT

1 Y0Y
T

0 Ũ1N − Ik‖2

)
(B.2.1)
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Step 1. we prove that

P
[
ϕ2
k(Y

T
0 Ũ1) ≥ (1− x)

{
ϕ2
k (X0) + p

}]
≥ 1− c · exp

[
Ck − c

{
ϕ2
k (X0) + p

}
x ∧ x2

]
,

for some constants C and c.

For any unit vector µ ∈ Rk, we have

µ>N>Ũ>1 Y0Y
>

0 Ũ1Nµ− µTIkµ = µ>N>Ũ>1 Y0Y
>

0 Ũ1Nµ− EµTNT ŨT
1 Y0Y

T
0 Ũ1Nµ

= µ>N>Ũ>1 X0X
>
0 Ũ1Nµ− EµTNT ŨT

1 X0X
T
0 Ũ1Nµ

+ 2µ>N>Ũ>1 X0M
>
3 Ũ1Nµ− 2Eµ>N>Ũ>1 X0M

>
3 Ũ1Nµ

+ µ>N>Ũ>1 X0X
>
0 Ũ1Nµ− EµTNT ŨT

1 M3M
T
3 Ũ1Nµ

= 2(XT
0 Ũ1Nµ)TM>

3 Ũ1Nµ+ (Ũ1Nµ)T
[
M3M

T
3 − E(M3M

T
3 )
]

(Ũ1Nµ).

Then for fixed unit vector µ ∈ Rk, we vectorized M3 into −→e ∈ Rnp as follows,

−→e = (m11,m21, . . .mn1,m12,m22, . . .mn2 . . .m1p . . .mnp)
T .

We also repeat (Ũ1Nµ)(Ũ1Nµ)T block for p times and introduce

−→
D =


(Ũ1Nµ)(Ũ1Nµ)T

. . .

(Ũ1Nµ)(Ũ1Nµ)T

 ∈ R(np)×(np)

and we can see that

‖
−→
D‖ = ‖(Ũ1Nµ)(Ũ1Nµ)T‖ = ‖Nµ‖2

2 ≤ ‖N‖2 =
{
ϕ2
k (X0) + p

}−1
,

107



and

‖
−→
D‖2

F = p‖(Ũ1Nµ)(Ũ1Nµ)T‖4
F = p‖Nu‖2

2 ≤ p‖N‖4 = p
{
ϕ2
k (X0) + p

}−2
.

By Hanson-Wright Inequality (Theorem 1 in Rudelson et al. (2013)), we have

P{|(Ũ1Nu)T
[
M3M

T
3 − E(M3M

T
3 )
]

(Ũ1Nu)| > x} = P{|−→e T−→D−→e − E−→e T−→D−→e | > x}

≤ 2 exp

(
−cmin

(
x2 (ϕ2

k (X0) + p)
2

pa4
,
x (ϕ2

k (X0) + p)

a2

))
,

(B.2.2)

where a is the upper bound of the sub-gaussian norm of mij. Next, we bound

(XT
0 Ũ1Nu)TM>

3 Ũ1Nu = tr
{
M>

3 Ũ1Nu(XT
0 Ũ1Nu)T

}
= −→e TVec

{
Ũ1Nu(XT

0 Ũ1Nu)T
}
.

We know that ϕ1

(
XT

0 Ũ1N
)
≤ 1 and

‖Vec{Ũ1Nu(XT
0 Ũ1Nu)T}‖2

2 = ‖Ũ1Nu(XT
0 Ũ1Nu)T‖2

F = ‖Nu‖2
2 · ‖(XT

0 Ũ1Nu)T‖2
2

≤ ‖N‖2 ≤
{
ϕ2
k (X0) + p

}−1
.

Since −→e TVec
{
Ũ1Nu(XT

0 Ũ1Nu)T
}

can be viewed as the summation of the independent

sub-gaussian random variables, we have

P
(
|(XT

0 Ũ1Nu)TMT
3 Ũ1Nu| > x

)
≤ C exp

[
−cx2

{
ϕ2
k (X0) + p

}]
. (B.2.3)
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Combining equations (B.2.2) and (B.2.3) implies

P(|uTNT ŨT
1 Y0Y

T
0 Ũ1Nu− uTIqu| > x)

= P
(
{|(Ũ1Nu)T

[
M3M

T
3 − E(M3M

T
3 )
]

(Ũ1Nu)| > x/2}

∪ {2|(XT
0 Ũ1Nu)TM>

3 Ũ1Nu| > x/2}
)

≤ P
(
{|(Ũ1Nu)T

[
M3M

T
3 − E(M3M

T
3 )
]

(Ũ1Nu)| > x/2}
)

+ P
(
{2|(XT

0 Ũ1Nu)TM>
3 Ũ1Nu| > x/2}

)
≤ c · exp

[
−c
{
ϕ2
k (X0) + p

}
x ∧ x2

]
.

.

Next, the ε-net argument (Lemma 5 in Tony Cai and Zhang (2017)) leads to

P(|NT ŨT
1 Y0Y

T
0 Ũ1N − Ik| > x) ≤ c · exp

[
Ck − c

{
ϕ2
k (X0) + p

}
x ∧ x2

]
.

With equation (B.2.1), we finally have

P
[
ϕ2
k(Y

T
0 Ũ1) ≥ (1− x)

{
ϕ2
k (X0) + p

}]
≥ 1− c · exp

[
Ck − c

{
ϕ2
k (X0) + p

}
x ∧ x2

]
(B.2.4)

Step 2. We prove that

P
[
ϕk+1 (Y0) >

{
ϕ2
k+1 (X0) + p

}
(1 + x)

]
≤ c · exp

[
C(n− k)− c

{
ϕ2
k+1 (X0) + p

}
x ∧ x2

]
for some constants C and c. We first use the fact that

ϕk+1 (Y0) = ϕk+1

(
Y T

0

)
= min

rank(B)=k
‖Y T

0 −B‖ ≤ ‖Y T
0 − Y T

0 [Ũ1,0]‖ = ϕ1(Y T
0 Ũ1⊥),

ϕ2
1(Y T

0 Ũ1⊥) = ϕ1(ŨT
1⊥Y0Y

T
0 Ũ1⊥) = ϕ1(ŨT

1⊥Y0Y
T

0 Ũ1⊥−EŨT
1⊥Y0Y

T
0 Ũ1⊥+EŨT

1⊥Y0Y
T

0 Ũ1⊥),
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and

EŨT
1⊥Y0Y

T
0 Ũ1⊥ = Σ̃2

2 + pŨT
1⊥D

2
γŨ1⊥.

Therefore, we have

ϕ2
1(Y T

0 Ũ1⊥) ≤ ϕ1(ŨT
1⊥Y0Y

T
0 Ũ1⊥ − EŨT

1⊥Y0Y
T

0 Ũ1⊥) + ϕ1(EŨT
1⊥Y0Y

T
0 Ũ1⊥)

= ϕ2
k+1 (X0) + p+ ‖ŨT

1⊥Y0Y
T

0 Ũ1⊥ − EŨT
1⊥Y0Y

T
0 Ũ1⊥‖.

(B.2.5)

Let N ′ = {Σ̃2
2 + pŨT

1⊥D
2
γŨ1⊥}−

1
2 , then

‖ŨT
1⊥Y0Y

T
0 Ũ1⊥ − EŨT

1⊥Y0Y
T

0 Ũ1⊥‖ ≤
{
ϕ2
k+1 (X0) + p

}
‖(N ′)T ŨT

1⊥Y0Y
T

0 Ũ1⊥N
′ − In−k‖

Finally, following the same procedure in Step 1 and replacing N by N ′, we have

P
[
ϕk+1 (Y0) >

{
ϕ2
k+1 (X0) + p

}
(1 + x)

]
≤ c · exp

[
C(n− k)− c

{
ϕ2
k+1 (X0) + p

}
x ∧ x2

]
(B.2.6)

Step3. In this step, we study PY T
0 Ũ1

Y T
0 Ũ1⊥. Note that

‖PY T
0 Ũ1

Y T
0 Ũ1⊥‖ = ‖PY T

0 Ũ1N
Y T

0 Ũ1⊥‖

= ‖(Y T
0 Ũ1N )

{
(Y T

0 Ũ1N )T (Y T
0 Ũ1N )

}−1

(Y T
0 Ũ1N )TY T

0 Ũ1⊥‖

≤ ϕ−1
min(Y T

0 Ũ1N )‖NT ŨT
1 Y0Y

T
0 Ũ1⊥‖.

We analyze ϕmin(Y T
0 Ũ1N ) and ‖NT ŨT

1 Y0Y
T

0 Ũ1⊥‖ separately. For ϕmin(Y T
0 Ũ1N ), we have

ϕ2
min(Y T

0 Ũ1N ) = ϕmin(NT ŨT
1 Y0Y

T
0 Ũ1N ) ≥ 1− ‖NT ŨT

1 Y0Y
T

0 Ũ1N − Ik‖.
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Recall that

P(|NT ŨT
1 Y0Y

T
0 Ũ1N − Ik| > x) ≤ c · exp

[
Ck − c

{
ϕ2
k (X0) + p

}
x ∧ x2

]
,

it follows that

P{ϕ2
min(Y T

0 Ũ1N ) ≥ 1− x} ≥ 1− c · exp
[
Ck − c

{
ϕ2
k (X0) + p

}
x ∧ x2

]
.

Set x = 1/2, we could choose Cgap large enough such that whenever ϕ2
k (X0) ≥ Cgapk, we can

have

Ck − c
{
ϕ2
k (X0) + p

}
x ∧ x2 ≤ − c

8

{
ϕ2
k (X0) + p

}
.

Under this setting,

P{ϕ2
min(Y T

0 Ũ1N ) ≥ 1

2
} ≥ 1− C · exp

[
−c
{
ϕ2
k (X0) + p

}]
. (B.2.7)

For ‖NT ŨT
1 Y0Y

T
0 Ũ1⊥‖, since ŨT

1 X0X
T
0 Ũ1⊥ = 0, we have the following decomposition

NT ŨT
1 Y0Y

T
0 Ũ1⊥ = NT ŨT

1 (X0 +M3)(X0 +M3)T Ũ1⊥

= NT ŨT
1 X0M

T
3 Ũ1⊥ +NT ŨT

1 M3M
T
3 Ũ1⊥ +NT ŨT

1 M3X
T
0 Ũ1⊥

(B.2.8)

For the first term in (B.2.8),

uT1N
T ŨT

1 X0M
T
3 Ũ1⊥u2 = −→e TVec

{
Ũ1⊥u2(XT

0 Ũ1Nu1)T
}
,

for any unit vectors u1 ∈ Rk and u2 ∈ Rn−k. Since

‖Vec
{
Ũ1⊥u2(XT

0 Ũ1Nu1)T
}
‖2

2 = ‖Ũ1⊥u2(XT
0 Ũ1Nu1)T‖2

F = ‖Ũ1⊥u2‖2
2·‖XT

0 Ũ1Nu1‖2
2 ≤ 1,
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it implies

P(|uT1NT ŨT
1 X0M

T
3 Ũ1⊥u2| ≥ x) ≤ C exp(−cx2/‖Ũ1⊥u2(XT

0 Ũ1Nu1)T‖2
F ) ≤ C exp(−cx2).

Similarly, for the third term in (B.2.8),

P(|uT1NT ŨT
1 M3X

T
0 Ũ1⊥u2| ≥ x) ≤ C exp(−cx2).

Therefore, by ε-net argument, we have

P(‖NT ŨT
1 X0M

T
3 Ũ1⊥‖ ≥ x) ≤ C exp(Cn− cx2), (B.2.9)

and

P(‖NT ŨT
1 M3X

T
0 Ũ1⊥‖ ≥ x) ≤ C exp(Cn− cx2). (B.2.10)

Now we study the second term NT ŨT
1 M3M

T
3 Ũ1⊥. Note that ENT ŨT

1 M3M
T
3 Ũ1⊥ =

pNT ŨT
1 D

2
γŨ1⊥. Then we can similarly have

P(|uT1 (NT ŨT
1 M3M

T
3 Ũ1⊥ − ENT ŨT

1 M3M
T
3 Ũ1⊥)u2| ≥ x)

≤ C exp

[
−cmin

{
x2{ϕ2

k (X0) + p}
pa4

,
x
√
ϕ2
k (X0) + p

a2

}]

and ε-net argument leads to

P(‖(NT ŨT
1 M3M

T
3 Ũ1⊥ − ENT ŨT

1 M3M
T
3 Ũ1⊥)‖ ≥ x)

≤ C exp

[
Cn− cmin

{
x2{ϕ2

k (X0) + p}
pa4

,
x
√
ϕ2
k (X0) + p

a2

}] (B.2.11)
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To bound ‖ENT ŨT
1 M3M

T
3 Ũ1⊥‖, we define

t := ‖ENT ŨT
1 M3M

T
3 Ũ1⊥‖ = ‖pNT ŨT

1 D
2
γŨ1⊥‖

≤ p‖N‖ =
p√

ϕ2
k (X0) + p

.

Therefore, for x > t

P(‖(NT ŨT
1 M3M

T
3 Ũ1⊥‖ ≥ x)

≤ P(‖NT ŨT
1 M3M

T
3 Ũ1⊥ − ENT ŨT

1 M3M
T
3 Ũ1⊥‖ ≥ x)

≤ P(‖NT ŨT
1 M3M

T
3 Ũ1⊥ − ENT ŨT

1 M3M
T
3 Ũ1⊥‖+ ‖ENT ŨT

1 M3M
T
3 Ũ1⊥)‖ ≥ x)

≤ P(‖NT ŨT
1 M3M

T
3 Ũ1⊥ − ENT ŨT

1 M3M
T
3 Ũ1⊥‖ ≥ x− t).

(B.2.12)

By combining equations (B.2.8)-(B.2.12), we have

P(‖PY T
0 Ũ1

Y T
0 Ũ1⊥‖ ≤ x)

≥ 1− C · exp
[
−c
{
ϕ2
k (X0) + p

}]
− C exp {Cn− cmin (t1, t2, t3)} .

(B.2.13)

for x > t, where t1 = x2, t2 = p−1(x − t)2{ϕ2
k (X0) + p}, and t3 = (x − t)

√
ϕ2
k (X0) + p.

Through Steps 1-3, we have proved three important inequalities in equations (B.2.4), (B.2.6),

and (B.2.13).

Step 4.1: We first focus on the scenario that ϕ2
k (X0) ≥ Cgap(

√
np + n) for some large

constant Cgap. For equation (B.2.4), we take

x =
ϕ2
k (X0)

3 {ϕ2
k (X0) + p}

,
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and rewrite it as

P
{
ϕ2
k(Y

T
0 Ũ1) ≤ ϕ2

k (X0) + p− 1

3
ϕ2
k (X0)

}
≤ C · exp

[
Ck − cmin

{
ϕ2
k (X0) ,

ϕ4
k (X0)

3 {ϕ2
k (X0) + p}

}]
.

(B.2.14)

and for equation (B.2.6), we take

x =
ϕ2
k+1 (X0)

3
{
ϕ2
k+1 (X0) + p

} ,
and it becomes

P
{
ϕk+1 (Y0) > ϕ2

k (X0) + p+
1

3
ϕ2
k (X0)

}
≤ c · exp

[
C(n− k)− cmin

{
ϕ2
k (X0) ,

ϕ4
k (X0)

3
{
ϕ2
k+1 (X0) + p

}}] . (B.2.15)

When Cgap is large enough, it holds for some C that

ϕ4
k (X0)

ϕ2
k (X0) + p

≥
C2
gap(
√
np+ n)2

Cgap(
√
np+ n) + p

≥ Cn.

Then we have

cmin

[
ϕ2
k (X0) ,

ϕ4
k (X0)

3 {ϕ2
k (X0) + p}

]
− Ck = c

ϕ4
k (X0)

ϕ2
k (X0) + p

− Ck

≥ c
ϕ4
k (X0)

ϕ2
k (X0) + p

− Cn ≥ c

2
· ϕ4

k (X0)

ϕ2
k (X0) + p

and

cmin

[
ϕ2
k (X0) ,

ϕ4
k (X0)

3
{
ϕ2
k+1 (X0) + p

}]− C(n− k)

≥ c
ϕ4
k (X0)

ϕ2
k (X0) + ϕ2

k+1 (X0) + p
− Cn

≥ c
ϕ4
k (X0)

ϕ2
k (X0) + p

− Cn ≥ c

2
· ϕ4

k (X0)

ϕ2
k (X0) + p

.
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For equation (B.2.13), we take

x = −2t+
√
ϕ2
k (X0) + p,

then min(t1, t2, t3) = t1 =
{
−2t+

√
ϕ2
k (X0) + p

}2

and we have

cmin (t1, t2, t3)− Cn = c

{
−2t+

√
ϕ2
k (X0) + p

}2

− Cn

≥ c

2
·
{
ϕ2
k (X0) + p

}
≥ c

2
· ϕ4

k (X0)

ϕ2
k (X0) + p

.

To sum up, we denote the event Q as

Q =
{
ϕ2
k(Y

T
0 Ũ1) ≥ ϕ2

k (X0) + p− 1

3
ϕ2
k (X0) ,

ϕ2
k+1 (Y0) ≤ ϕ2

k+1 (X0) + p+
1

3
ϕ2
k (X0) ,

‖PY T
0 Ũ1

Y T
0 Ũ1⊥‖ ≤ −2t+

√
ϕ2
k (X0) + p

}
.

When ϕ2
k (X0) ≥ Cgap(

√
np+ n) for some large constant Cgap, we have

P (Qc) ≤ C exp

{
−c ϕ4

k (X0)

ϕ2
k (X0) + p

}

By the basic properties of exponential functions,

P (Qc) ≤ C
ϕ2
k (X0) + p

ϕ4
k (X0)

≤ C
(n+ t2) {ϕ2

k (X0) + p}{
ϕ2
k (X0)− ϕ2

k+1 (X0)
}2 . (B.2.16)
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Under event Q, we can use the Proposition 1 in Tony Cai and Zhang (2017) and obtain

‖sinΘ
(
Ũ1, Û1

)
‖2 ≤

ϕ2
k(Y

T
0 Ũ1)‖PY T

0 Ũ1
Y T

0 Ũ1⊥‖2{
ϕ2
k(Y

T
0 Ũ1)− ϕ2

k+1(Y0)
}2 ≤

ϕ2
k(Y

T
0 Ũ1)‖PY T

0 Ũ1
Y T

0 Ũ1⊥‖2{
ϕ2
k(Y

T
0 Ũ1)− ϕ2

k+1(Y0)
}2

≤ C

{
2
3
ϕ2
k (X0) + p

}
‖PY T

0 Ũ1
Y T

0 Ũ1⊥‖2{
1
3
ϕ2
k (X0)− ϕ2

k+1 (X0)
}2

= C
{ϕ2

k (X0) + p} ‖PY T
0 Ũ1

Y T
0 Ũ1⊥‖2{

ϕ2
k (X0)− ϕ2

k+1 (X0)
}2 .

Here we use the fact that x2/ (x2 − y2)
2 is a decreasing function of x and increasing function

of y for x > y ≥ 0. Next, note that ‖sinΘ
(
Ũ1, Û1

)
‖ ≤ 1, it follows that

E‖sinΘ
(
Ũ1, Û1

)
‖2

= E‖sinΘ
(
Ũ1, Û1

)
‖21Q + E‖sinΘ

(
Ũ1, Û1

)
‖21Qc

≤ C
ϕ2
k (X0) + p{

ϕ2
k (X0)− ϕ2

k+1 (X0)
}2E‖PY T

0 Ũ1
Y T

0 Ũ1⊥‖21Q + P(Qc).

(B.2.17)
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It remains to study E‖PY T
0 Ũ1

Y T
0 Ũ1⊥‖21Q. Denote T = ‖PY T

0 Ũ1
Y T

0 Ũ1⊥‖ and we have

ET 21Q ≤ ET 21
{T 2≤

(√
ϕ2
k(X0)+p−2t

)2
}

=

∫ ∞
0

P
(
T 21

{T 2≤
(√

(ϕ2
k(X0)+p)−2t

)2
}
≥ u

)
du

≤
(√

Cxn+ t
)2

+

∫ (√
(ϕ2

k(X0)+p)−2t
)2

(
√
Cxn+t)

2
P
(
T 21

{T 2≤
(√

(ϕ2
k(X0)+p)−2t

)2
}
≥ u

)
du

≤
(√

Cxn+ t
)2

+

∫ (√
(ϕ2

k(X0)+p)−2t
)2

(
√
Cxn+t)

2
C · exp

(
−c
(
ϕ2
k (X0) + p

))
du

+ C exp (Cn) ·
∫ (√

(ϕ2
k(X0)+p)−2t

)2
(
√
Cxn+t)

2
exp (−cu) du

≤
(√

Cxn+ t
)2

+ C

(√
(ϕ2

k (X0) + p)

)2

· exp
(
−c
(
ϕ2
k (X0) + p

))
+ C exp (Cn) ·

∫ (√
(ϕ2

k(X0)+p)
)2

(
√
Cxn+t)

2
exp (−cu) du

≤
(√

Cxn+ t
)2

+ C

(√
(ϕ2

k (X0) + p)

)2

· exp
(
−c
(
ϕ2
k (X0) + p

))
+
C

c
exp (Cn) · exp

(
−c
(√

Cxn+ t
)2
)

≤
(√

Cxn+ t
)2

+ C

(√
(ϕ2

k (X0) + p)

)2

· exp
(
−c
(
ϕ2
k (X0) + p

))
+
C

c
exp (Cn) · exp (−cCxn)

≤
(√

Cxn+ t
)2

+ C +
C

c
exp (Cn) · exp (−cCxn) .

(B.2.18)

As can be seen that we can choose Cx large enough, but only relying on other constants C, c

in the inequalities above, to ensure

ET 21Q ≤ C(n+ t2). (B.2.19)

Now combine equations (B.2.16), (B.2.17), (B.2.19) and the trivial upper bound 1, we
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obtain

E‖sinΘ
(
Ũ1, Û1

)
‖2 ≤ C

(n+ t2) {ϕ2
k (X0) + p}{

ϕ2
k (X0)− ϕ2

k+1 (X0)
}2 ∧ 1.

Step 4.2. We next study the case that ϕ2
k (X0) ≤ Cgap(

√
np+ n). Note that

(n+ t2) {ϕ2
k (X0) + p}{

ϕ2
k (X0)− ϕ2

k+1 (X0)
}2 ≥

(n+ t2) {ϕ2
k (X0) + p}

ϕ4
k (X0)

≥
(n+ t2)

{
Cgap(

√
np+ n) + p

}
C2
gap(2n

√
np+ n2 + np)

≥
Cgap(

√
np+ n) + p

C2
gap(2

√
np+ n+ p)

≥
Cgap(

√
np+ n) + 1

2
tr(Σ)

C2
gap(2

√
np+ n+ p)

≥ min(1,
c

C2
gap

).

Then

E‖sinΘ
(
Ũ1, Û1

)
‖2 ≤ 1 ≤ C

(n+ t2) {ϕ2
k (X0) + p}{

ϕ2
k (X0)− ϕ2

k+1 (X0)
}2 ∧ 1.

In summary, we have

E‖sinΘ
(
Ũ1, Û1

)
‖2 ≤ C

(n+ t2) {ϕ2
k (X0) + p}{

ϕ2
k (X0)− ϕ2

k+1 (X0)
}2 ∧ 1

regardless of ϕ2
k (X0). Finally, by assumption 5.2, we have

E‖sinΘ
(
Ũ1, Û1

)
‖2 ≤ C

n

ϕ2
k (X0)

� n

ϕ2
k(ZD)

= r2
2.

B.3 Proof of Theorem 5.2.3

Proof of Theorem 5.2.3. Followed by the triangle inequality of sin Θ.
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B.4 Proof of Theorem 5.2.4

Proof of Theorem 5.2.4. By the Lemma 1 in Tony Cai and Zhang (2017), there exist W1

and W2 such that

‖(Ũ1 −U1W1)‖ � ‖ sin Θ(U1, Ũ1)‖ = Op(r1)

and

‖(Û1 − Ũ1W2)‖ � ‖ sin Θ(Ũ1, Û1)‖ = Op(r2).

Take W = W1W2 and we have

‖QXD
−1
γ (Û1 −U1W )‖ = ‖QXD

−1
γ (Û1 − Ũ1W2)‖+ ‖QXD

−1
γ (Ũ1 −U1W1)W2‖

≤ 1/γ‖(Û1 − Ũ1W2)[1:k,:]‖+ ‖(Û1 − Ũ1W2)[(k+1):n,:]‖+ 1/γ‖(Ũ1 −U1W1)‖

= Op(r1/γ + r2) = Op(

√
n

ϕ2
q(ZD)

+
γ2‖α1‖ϕ2

1(XB)√
1− ‖α1‖2ϕ2

q(ZD)
+
‖τ‖ϕ1(XB)

ϕq(ZD)
).
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