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Abstract

Among the possible beyond the Standard Model (SM) extensions, the addition of a new
abelian U(1) gauge group is one of the most minimal and simple models that one can think of.
In the secluded scenario, the dark vector boson associated with the extra symmetry interacts
with the SM sector via a kinetic mixing term with the hypercharge gauge boson, whereas for
the generic case we can also afford direct couplings to the SM fermions. In this dissertation we
focus on two different studies concerning the U(1) gauge extension. In the first one, following
the vector meson dominance approach, we computed, for the first time, vector boson decays
into almost arbitrary hadronic final states. The effects of our hadronic improvements lead to
substantial modifications on the dark boson decay widths, branching ratios and even on the
experimental bounds for some cases. We provide the results of our hadronic implementation
in the publicly available python package DELIVER. In the second part of this dissertation,
we consider an ultraviolet completion to the U(1) extension where a new scalar singlet that
mixes with the SM-like Higgs boson and generates the dark boson mass is added. We study
the electroweak precision test constraints of such a model as well as the phenomenological
implications of two different kind of searches. In the first one, we simulate the h ! Z�Z� ! 4µ

decay signal in order to obtain the ATLAS and CMS bounds on the model parameter space. In
the second, we constrain the scalar mixing angle by considering the branching ratio of the
invisible kaon decay K

0
L

! ⇡
0 + inv as limited by the KOTO experiment.

Keywords: Beyond Standard Model physics, Dark Photon, Light Vector Mediators, Dark
Higgs, Hidden Abelian Higgs Model.

https://github.com/preimitz/DeLiVeR




Resumo

Dentre as possíveis extensões além do Modelo Padrão, a adição de um novo grupo de gauge
abeliano U(1) é um dos modelos mais mínimos e simples que se poderia imaginar. No cenário
dito oculto, o bóson vetorial escuro associado à simetria extra interage com o setor do MP
através de um termo de mistura cinética com o bóson medidor da hipercarga, enquanto que
para o caso genérico também podemos permitir acoplamentos diretos com os férmions do MP.
Nesta dissertação, iremos focar em dois estudos diferentes relacionados a esta extensão U(1).
No primeiro, seguindo a abordagem do modelo VMD (vector meson dominance), nós calcu-
lamos, pela primeira vez, os decaimentos de bósons vetoriais em estados finais hadrônicos
praticamente arbitrários. Os efeitos das melhorias no cálculo hadrônico resultam em modifi-
cações substanciais nas larguras de decaimento e nas razões de ramificação do bóson escuro,
até mesmo podendo afetar os limites experimentais em certos casos. Os resultados de nossa im-
plementação hadrônica podem ser encontrados no pacote em python DELIVER que foi disponi-
bilizado publicamente. Na segunda parte desta dissertação, nós consideramos uma realização
ultravioleta para a extensão U(1) em que um novo singleto escalar que se mistura com o bóson
de Higgs do MP e gera a massa do bóson escuro é adicionado. Nós estudamos as restrições
dos testes de precisão eletrofracos em tal modelo, bem como as implicações fenomenológicas
de dois tipos diferentes de buscas experimentais. Na primeira, nós simulamos o sinal do de-
caimento h ! Z�Z� ! 4µ para obter os limites dos experimentos ATLAS e CMS no espaço
de parâmetros do modelo. Na segunda, restringimos o ângulo de mistura escalar através da
razão de ramificação do decaimento invisível do kaon K

0
L

! ⇡
0 + inv, conforme limitado pelo

experimento KOTO.

Palavras Chave: Física Além do Modelo Padrão, Fótons Escuros, Mediadores Vetoriais Leves,
Higgs Escuro, modelo HAHM.

https://github.com/preimitz/DeLiVeR
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Introduction

“Nothing in life is to be feared, it is only to be understood. Now is the time to understand
more, so that we may fear less.”

(Marie Curie)

Up to this date, the Standard Model (SM) of particle physics can be regarded as the most
successful description of the fundamental structure of matter. Almost all SM experimental
predictions have been confirmed over the past few decades, with incredible good precision [2].
For instance, the SM predicted the existence of the W and Z bosons, as well as the gluon and
top quark, even before the observation of such particles. Recently, the CERN Large Hadron
Collider (LHC) confirmed the experimental discovery of the Higgs boson particle, which was
arguably the final missing piece of the SM particle content [60, 61].

However, although the great triumph of the SM, nowadays we know that it is still an incom-
plete theory. The reason for that is due to the increasing number of open questions that continue
to arise and cannot be explained within the SM framework. Just for illustration, we can cite, for
example, the Hierarchy Problem, the failure to explain neutrino masses and the absence of Dark
Matter (DM) candidates. The first issue is related to the huge unnatural discrepancy of 1016

orders of magnitude between the characteristic scales of the weak force and gravity [62]. The
second concerns the fact that in the SM the neutrinos are massless particles, in contradiction to
neutrino oscillation observations [63, 64].

Finally, maybe the major SM open problem is related to the existence of DM. This existence
was confirmed by several astrophysical and cosmological observations [65–68], increasing the
urge to include a consistent DM theory in the SM framework. Within the SM particle content,
the only available candidates for DM would be the neutrinos, but such an option has already
been disfavored by all kinds of experimental and observational data [69]. Hence, we rely on
the addition of extra Beyond the Standard Model (BSM) particles and interactions in order to
explain the DM existence.

All the above mentioned unanswered questions endorse the need of studying new SM ex-
tensions as well as searching for experimental BSM signals. In particular, one of the most
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simple extensions that we can include in the SM is the addition of an extra U(1)Q abelian gauge
symmetry, where Q is the charge of the symmetry group. In such a model we have a new dark
vector boson that kinetically mixes with the hypercharge gauge boson. An important motivation
for this kind of theory is that the kinetic mixing (KM) portal is one of the three possible renor-
malizable portals that one can build in the SM Lagrangian, the others being the Higgs and the
neutrino portal. In the secluded U(1)Q scenario, the coupling between the SM particles and the
new dark boson, which we name dark photon (DP), can only proceed via the KM portal, while
for the generic U(1)Q case, the dark boson can also enjoy direct couplings to the SM fermionic
currents.

The U(1)Q model can also be embedded into an ultraviolet (UV) completion framework to
dynamically explain the origin of the dark boson mass. In the most economical scenario we add
a new singlet scalar s that mixes with the SM-like Higgs boson via the quartic term in the scalar
potential. After the new scalar acquires a vacuum expectation value (VEV), the dark photon
mass is generated via the spontaneous symmetry breaking (SSB) of the new abelian group. Note
that the scalar mixing term corresponds to the above mentioned renormalizable Higgs portal,
which is another feature that makes this minimal UV complete U(1)Q model so interesting.
Let us remark that this model is known in the literature as the Hidden Abelian Higgs Model
(HAHM).

In this dissertation, we focused on the study of U(1)Q extensions with light dark bosons
in the MeV-to-GeV mass range. The motivation for this light energy regime is due to the fact
that, with the rise of new technologies and several experimental upgrades, many detectors have
now the ability and are focused on the search of very low-energy BSM signals. Our study
was divided into two distinct parts. In the first part, our goal was to describe the hadronic de-
cays of baryophilic U(1)Q vector mediators. Since in the generic case the coupling of the dark
boson with the SM fermions is not proportional to the electromagnetic (EM) charge, the com-
putation of such hadronic decays can be very challenging. In order to perform this calculation
we then stick to the vector meson dominance method. With this method we can compute a
specific hadronic channel decay width by dividing the hadronic mode into ⇢, ! and � vector
meson contributions, which couple with the dark vector bosons. We then improved the previ-
ous VMD-based hadronic calculation [1] by including several new hadronic modes, employing
recent cross-section experimental data and also performing the correct vector meson division.
These improvements lead to effects on the dark boson width and branching ratio computation,
which in turn affect the present and future experimental bounds. It is worth mentioning that
the hadronic implementation described here was made publicly available in the python package
DELIVER [70].

https://github.com/preimitz/DeLiVeR
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We structured the first part of this dissertation in the following way. In chapter 1 we outline
the theoretical background behind the abelian U(1)Q extension and elaborate on the dark boson
production as well as on its decays. In chapter 2 we detail the method we follow in order to
describe the dark boson hadronic decays and comment on the improvements of our approach.
Finally, in chapter 3 we analyze the effects that our better assessment of the hadronic widths
provides on the computation of the dark boson widths, branching ratios, current bounds and
future sensitivities.

In the second part of the study, we considered the minimal UV complete U(1)Q scenario. In
chapter 4 we describe the theoretical framework of such a model, including the theory behind
the scalar mixing and the interactions and decay widths of the new HAHM particles. The
inclusion of the KM and Higgs portal lead to the modification of extremely well-measured
EW observables, such as the Z boson and Higgs mass and couplings. Hence, in chapter 5 we
investigate the EW precision tests constraints on the HAHM parameters.

Finally, in the last chapter, we consider the phenomenological implications of two different
HAHM searches. The first one is related to the h ! Z�Z� ! 4µ decay signal. We explain how
we simulate the signal using Monte-Carlo event generator tools and show the obtained ATLAS
and CMS experimental sensitivities to probe the HAHM parameter space. The other search we
consider in this chapter concerns the upper limit recently set by the KOTO collaboration on the
branching ratio of the invisible kaon decay K

0
L

! ⇡
0 + inv. Since this decay can be mimicked

by the HAHM decay K
0
L

! ⇡
0
s, we can use the KOTO limit to constrain the scalar mixing

parameter. We then conclude this last chapter by showing this Higgs portal bound.
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Part I

Light Vector Mediators





Chapter 1

General Theoretical Framework

One of the most simple extensions of the Standard Model (SM) is the addition of a new
U(1)Q gauge group, where Q is the symmetry generator or charge of the group. Although
this idea was first proposed in the context of supersymmetric theories [71, 72], it was also
explored by several authors in different beyond standard model (BSM) frameworks [73–75].
In the minimal model, the new gauge boson associated with the extra U(1)Q enters in the SM
Lagrangian together with the hypercharge gauge boson in a kinetic term that mixes the two
fields. This kinetic mixing (KM) always appears as a consequence of adding an extra gauged
U(1)Q group [76], and it is parametrized by a coupling ✏ that needs to be small in order to fulfill
several experimental constraints. In this secluded scenario, the only portal with the SM particle
content would be due to the mixing with the hypercharge gauge boson, and for this reason the
new vector particle is sometimes called dark photon (DP) 1, but other common names are also
used in the literature, such as dark Z boson, paraphoton and hidden boson [73, 81].

Another interesting feature of this type of model is that the new gauge boson can provide
a vector portal to an unexplored hidden sector, and therefore, to new physics. In this scenario,
even though the SM fermions do not carry any charge Q, the model can include dark sector
particles charged under U(1)Q, implying that the dark photon would work as a mediator or a
portal to this hidden sector. The new dark particles could also be or constitute a fraction of the
dark matter [19, 82–88].

Beyond the minimal dark photon model, there are other extensions where some of the
SM particles are charged under U(1)Q. In this case, one must be concerned with the correct
anomaly-cancellation, which can occasionally result in the need for new particles for a consis-
tent ultraviolet (UV) completion. Some common anomaly-free choices of charges are the dif-

1For recent dark photon reviews, we refer the reader to [77–80].
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ference between the baryonic and leptonic number U(1)B�L, the leptonic number differences
U(1)Li�Lj (i, j = e, µ, ⌧ ) or other combinations, such as U(1)B�3Li and U(1)B�2Li�Lj .

Another popular model in the literature is the U(1)B model, where the new gauge boson
couple only to the baryon number B. Even though this model is anomalous, and hence requires
the introduction of heavier degrees of freedom to cancel the anomalies, it has still plenty of
available parameter space, even with the strong constraints due to the non-conserved currents.

A mutual property of these U(1)Q models is that they can be described very simply. Once
we fixed the charge Q of the group, and hence, the fermion couplings, and, also, if we do not
add any other dark particles, we can parametrize these models by adding only two parameters
to the theory: the dark boson mass mZQ and the kinetic mixing ✏ (gauge coupling gQ) for the
case of the dark photon (generic vector boson ZQ). Note that if we want to describe the generic
U(1)Q extensions with only these two parameters (mZQ and gQ) we also need to assume an
hierarchy where the KM is very suppressed in comparison with gQ. Another strong motivation
for this type of model is the fact that the vector portal is one of the three renormalizable terms
that are allowed in the SM, the others being the Higgs and the neutrino portal.

In this chapter, we will overview the theoretical background of U(1)Q-gauge extensions
of the SM. The first section will introduce the concept of kinetic mixing, together with the
correct Lagrangian diagonalization to obtain the physical degrees of freedom. After that, we
will discuss the anomaly-free gauge extensions and the class of baryophilic models that were
considered in the study. In the second and third sections, we will develop the theory behind the
production and decays of the new gauge boson.

1.1 Kinetic Mixing and the Dark Portal

We will consider an extension of the SM by a new U(1)Q gauge group. The dark vector
boson ZQ associated with it will acquire a mass mZQ after the SSB of the U(1)Q symmetry 2.
The abelian gauge boson Ẑ

µ

Q
will kinetically mix with the hypercharge boson B̂

µ through the
following Lagrangian 3

L0
gauge = �1

4
B̂µ⌫B̂

µ⌫ � 1

4
ẐQµ⌫Ẑ

µ⌫

Q
� ✏

2cW
ẐQµ⌫B̂

µ⌫
, (1.1)

2We will not specify the scalar sector and the mechanism behind this SSB. See chapter 4 for a possible UV
completion scenario.

3Throughout this dissertation we will always use natural units, i.e. ~ = c = 1, the modulus of the electric
charge e > 0 and the fine-structure constant ↵em = e2

4⇡ .
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where Ẑ
µ⌫

Q
and B̂

µ⌫ are the dark boson and hypercharge boson4 field strength tensor, respec-
tively, ✏ parametrizes the kinetic mixing and cW ⌘ cos ✓W is the cosine of the weak mixing
angle. The hatted fields indicate states with non-canonical kinetic terms. In order to recover the
physical states we need to perform the proper kinetic and mass diagonalizations. This can be
achieved by performing the GL(2, R) rotation

 
Ẑ

µ

Q

B̂
µ

!
=

0

@
1p

1�(✏/cW )2
0

� ✏/cWp
1�(✏/cW )2

1

1

A
 

Z̃
µ

Q

B
µ

!
, (1.2)

implying the field redefinitions
Ẑ

µ

Q
= ⌘ Z̃

µ

Q
, (1.3)

B̂
µ = B

µ � ✏

cW
⌘ Z̃

µ

Q
, (1.4)

where we defined
⌘ ⌘ 1q

1 � ✏2

c
2
W

. (1.5)

With these fields modifications, the gauge Lagrangian eq. (1.1) becomes

L0
gauge = �1

4
Bµ⌫B

µ⌫ � 1

4
Z̃Qµ⌫Z̃

µ⌫

Q
. (1.6)

Note that in the limit where ✏ ⌧ 1, which we will focus in this dissertation, we have that ⌘ ⇠ 1.
Now we need to understand what will happen to interactions after these field redefini-

tions. Before electroweak (EW) symmetry breaking, the non-diagonalized gauge interaction
Lagrangian with the SM chiral fermions f was

Lint = g
0
JBµB̂

µ + gJ3µW
3µ + gQJQµẐ

µ

Q
, (1.7)

where g, g
0 and gQ are the SU(2)L, U(1)Y and U(1)Q gauge couplings, respectively, JQ is an

yet unspecified dark current, which will depend on the choice of the U(1)Q group, and JB and
J3 are the usual SM currents,

J
µ

3 = f̄�
µ
fT

3
,

J
µ

B
= f̄�

µ
fY ,

(1.8)

with T
3 the third SU(2)L generator and Y the U(1)Y hypercharge generator.

We will first perform the kinetic mixing shift of eq. (1.3) and (1.4) on the interaction La-

4Note that, before the electroweak SSB and the kinetic diagonalization, the fields ẐQ and B̂ cannot yet be
defined as the physical dark boson and hypercharge fields.
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grangian in eq. (1.7), resulting in

Lint = g
0
JBµB

µ + gJ3µW
3µ +

✓
gQJQµ � g

0
JBµ

✏

cW

◆
⌘Z̃

µ

Q
. (1.9)

After that, we can proceed with the EW symmetry breaking by shifting the B
µ and W

3µ fields
according to

B
µ = A

µ
cW � Z

µ

0 sW , (1.10)

W
µ

3 = A
µ
sW + Z

µ

0 cW , (1.11)

where A
µ is the physical photon field, Z

µ

0 is the SM Z-boson field and sW ⌘ sin ✓W is the sine
of the weak mixing angle. We then obtain

Lint = g
0
JB(AcW � Z0sW ) + gJ3(AsW + Z0cW ) +

✓
gQJQ � g

0
JB

✏

cW

◆
⌘Z̃Q

= (JB + J3)gsWA + g

✓
J3cW � s

2
W

cW
JB

◆
Z0 � g

0
⌘JB

✏

cW
Z̃Q + gQJQ⌘Z̃Q ,

(1.12)

where we dropped the µ indexes for simplification. Now we make the usual SM definitions for
the electromagnetic current JEM and the neutral current JZ

JEM = JB + J3 , (1.13)

JZ = J3cW � s
2
W

cW
JB . (1.14)

Using these two equations we can also express the hypercharge current as

JB = (JEMcW � JZ)cW . (1.15)

Now, if we remember the electric charge e definition in the SM

g
0
cW = gsW = e , (1.16)

we can finally rewrite eq. (1.12) as

Lint = eJEMA + gJZZ0 � e✏JEM⌘Z̃Q + g
0
✏JZ⌘Z̃Q + gQJQ⌘Z̃Q . (1.17)

In this last equation we can see that, apart from the first two terms that represent the usual EM
and neutral currents that couple fermions to the photon and Z boson, respectively, the KM shift
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introduced a coupling of the new gauge boson ZQ to the EM and the neutral Z currents. These
new couplings are both suppressed by the kinetic mixing parameter ✏. However, this is not the
end of the story, there is also a source of mass mixing between Z0 and Z̃Q which depends on
the structure of the extended scalar sector.

To illustrate, let us consider that the scalar that breaks U(1)Q is a singlet (for more details
we refer to chapter 4). In this case, from the Higgs doublet H kinetic term |DµH|2, where the
covariant derivative DµH is given by

DµH = @µH � igWaµ⌧
a
H � 1

2
ig

0
B̂µH , (1.18)

we obtain

|DµH|2 � 1

2
|@µh|2 +

1

8
(v + h)2(�gW

µ

3 + g
0
B̂

µ)2

=
1

2
|@µh|2 +

1

8
(v + h)2


�gW

µ

3 + g
0

✓
B

µ � ✏

cW
⌘ Z̃

µ

Q

◆�2

� 1

8
(v + h)2


�g(Aµ

sW + Z
µ

0 cW ) + g
0

✓
A

µ
cW � Z

µ

0 sW � ✏

cW
⌘Z̃

µ

Q

◆�2
,

(1.19)

where v is the Higgs VEV and in the second and last lines we used the field redefinitions given
by eq. (1.4) and (1.3) and the EW rotations, respectively. Finally, using the identity in eq. (1.16)
we obtain

|DµH|2 � 1

8
(v + h)2


g

cW
Z

µ

0 + g
0

✏

cW
⌘Z̃

µ

Q

�2
, (1.20)

from which we can collect the quadratic terms in v, that correspond to the mass terms

|DµH|2 � 1

2
m

2
Z0

Z
2
0 +

1

2

✓
vg

0
✏⌘

2cW

◆2

Z̃
2
Q

+
1

4

v
2
gg

0
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c
2
W

Z
µ

0 Z̃Qµ , (1.21)

where mZ0 is the SM Z-boson mass, defined as

mZ0 =

✓
vg

2cW

◆
. (1.22)

Similarly, from the spontaneous breaking of U(1)Q we obtain a mass term for the ZQ boson.
Without focusing on the specific mechanism that generates the SSB 5, we can explicitly add the

5For a possible UV completion scenario, see chapter 4.
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mass term to the mass mixing Lagrangian

LZ0�Z̃Q
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⇤
Z̃

2
Q
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2
Z0

tW ✏⌘Z
µ

0 Z̃Qµ ,

(1.23)

where tW ⌘ tan ✓W = sW/cW and we defined

m
2
Z̃Q

= m
2
Z0

�
2
. (1.24)

In the basis Z = (Zµ

0 , Z̃
µ

Q
) we can write

LZ0�Z̃Q
mass =

1

2
ZM2

ZZQ
ZT

, (1.25)

where the squared mass matrix is given by

M2
ZZQ

= m
2
Z0

0

B@
1 tW ✏⌘

tW ✏⌘ �
2 + t

2
W

✏
2
⌘
2

1

CA . (1.26)

This is a symmetric matrix and thus can be diagonalized with an orthogonal transformation
 

Z

ZQ

!
=

 
cos ↵ sin ↵

� sin ↵ cos ↵

! 
Z0

Z̃Q

!
, (1.27)

where
tan 2↵ =

2tW ✏⌘

1 � �2 � t
2
W

✏2⌘2
, (1.28)

or, equivalently,
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2
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4t2

W
✏2⌘2 + (1 � �2 � t
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2tW ✏⌘
. (1.29)

Now, we can finally obtain the mass of the gauge bosons from the mass squared eigenvalues of
the matrix M2

ZZQ

m
2
Z,ZQ

=
1

2
m

2
Z0

✓
1 + �

2 + t
2
W

✏
2
⌘
2 ± Sign(1 � �

2)
q

(1 + �2 + t
2
W

✏2⌘2)2 � 4�2
◆

. (1.30)
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We can thus consider the limit of suppressed kinetic mixing ✏ ⌧ 1 (⌘ ⇠ 1) and also of light
ZQ masses (� ⌧ 1), which is the energy scale we will focus here. The mass eigenvalues then
become

m
2
ZQ

' �
2
m

2
Z0

(1 � ✏
2
t
2
W

) , (1.31)

m
2
Z

' m
2
Z0

(1 + ✏
2
t
2
W

) , (1.32)

which means that we can safely approximate mZQ = m
Z̃Q

+ O(✏2) and mZ = mZ0 + O(✏2).
Therefore, with this last diagonalization we are ready to write the full Lagrangian of the model.
From the Z � ZQ mass diagonalization we have that

Z0 = Z cos ↵ � ZQ sin ↵ , (1.33)

Z̃Q = Z sin ↵ + ZQ cos ↵ . (1.34)

However, the limit where ✏, � ⌧ 1 implies that

tan 2↵ ' 2✏tW
1 � �2

+ O(✏3) ) tan 2↵ ' 2↵ ' 2✏tW (1 + �
2) , (1.35)

resulting in sin ↵ ' ↵ ' ✏tW (1 + �
2) and cos ↵ ' 1. With these approximations it follows that

Z0 = Z � ✏tWZQ + O(✏2, �2, ✏�) , (1.36)

Z̃Q = ZQ + ✏tWZ + O(✏2, �2, ✏�) . (1.37)

Applying these substitutions to the interaction Lagrangian given by eq. (1.17) we get the fol-
lowing terms

Lint = eJEMA + gJZ(Z � ✏tWZQ) � e✏JEM(ZQ + ✏tWZ) + g
0
✏JZ(ZQ + ✏tWZ)

+ gQJQ(ZQ + ✏tWZ)

= eJEMA + gJZZ + JZ(�g✏tW + g
0
✏)ZQ � e✏JEMZQ + gQJQZQ + O(✏2, �2, ✏gQ)

= eJEMA + gJZZ � e✏JEMZQ + gQJQZQ + O(✏2, �2, ✏gQ)
(1.38)

where in the last line we used that gtW = g
0. Therefore, neglecting terms of order O(✏2, ✏�, �2, ✏gQ),

we obtain the relevant terms involving the new physical ZQ boson

LZQ = eJEMA + gJZZ � e✏JEMZQ + gQJQZQ +
1

2
m

2
ZQ

Z
2
Q

. (1.39)
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Finally, we can now analyze the new vector current JQ, which we write as

J
µ

Q
=
X

f

f̄�
µ
q
f

Q
f , (1.40)

where q
f

Q
is the Q-charge of fermion f . The secluded case, i.e. the dark photon Z� case,

corresponds to q
f

Q
= 0 for all fermions, which means that the new gauge boson will couple

universally to all charged fermions and the only portal with SM matter will come from the KM
portal. Appart from this scenario, the current will depend on the particular gauge group U(1)Q

choice. We will always assume e✏ ⌧ gQ, so when charges are present we will neglect the
kinetic mixing contribution.

In the first part of this dissertation, we will focus on the hadronic modes for a light ZQ with
mZQ in the MeV-to-GeV range. Hence, we will consider a class of anomaly-free baryophylic
models where only three right-handed neutrinos were introduced to the particle content of the
SM in order to guarantee the correct anomaly-cancellation. The symmetry generator for these
models can be written as [89]

Q = B � xeLe � xµLµ � (3 � xe � xµ)L⌧ , (1.41)

where B is the baryon number and Le, Lµ and L⌧ are lepton family number operators. To
compare with previous works, we will also present our results for the anomalous B model. In
table 1.1, we list the models we will use here.

In order to make correct predictions and constraints on the available parameter space of
the dark photon and other vector mediator models it is important to understand the production
mechanisms and the decay widths, along with the branching ratios, of such particles. In the
next sections we will focus on the description of the production, decay and detection of the ZQ

gauge boson.

1.2 ZQ Production

In the dark photon case, due to the coupling of Z� to the EM current, it can be produced in
every process related to ordinary photons. Therefore, the following mechanism are primarily
responsible for DP production:

1. Bremsstrahlung process, where either an electron or a proton scatters off the target
nuclei (A), emitting a DP through the reaction eA ! eAZ� or pA ! pAZ� , respectively.
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xe xµ Q q
f

Q

quarks e/⌫e µ/⌫µ ⌧/⌫⌧

1 1 B � L
1
3 -1 -1 -1

3 0 B � 3Le
1
3 -3 0 0

0 3 B � 3Lµ
1
3 0 -3 0

0 0 B � 3L⌧
1
3 0 0 -3

1 0 B � Le � 2L⌧
1
3 -1 0 -2

0 1 B � Lµ � 2L⌧
1
3 0 -1 -2

– – B
1
3 0 0 0

Table 1.1: Symmetry generators and fermion charges for the models considered in this disser-
tation.

2. Annihilation, where a DP is produced, together with a photon, via the annihilation of an
electron-positron pair, e

+
e
� ! �Z� .

3. Drell-Yan (DY) process, characterized by the emission of a DP through the annihilation
of a quark-antiquark pair, qq̄ ! Z� .

4. Meson Decays, where a meson M , that could be either ⇡
0, ⌘, K or D, decays into a

photon and a DP, M ! �Z� .

5. Mixing with QCD vector mesons V (V � Z� mixing), described by the DP directly
mixing with the light dominant mesons V = ⇢, !, �.

In the case of production of generic gauge bosons ZQ, the production mechanisms are the
same as the DP, however re-scaled considering the coupling of the model with the SM particles
included in the process. For example, if we consider the production by electron bremsstrahlung
or e

+
e
� annihilation, we have that the following ratio applies

�(eA ! eAZQ)

�(eA ! eAZ�)
=

�(e+e
� ! ZQ�)

�(e+e� ! Z��)
=

(gQq
e

Q
)2

(✏e)2
. (1.42)
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In a similar way, we can recast the production for the other mechanisms always considering the
ratio of cross-sections. For more details, we refer to [1].

1.3 ZQ Decays

After its production, the new gauge boson ZQ will decay into SM particles proportionally
to the KM parameter, in the dark photon case, or to the the U(1)Q gauge group coupling, in the
generic case. In the low-energy mass range, which is the focus of this dissertation, the ZQ can
decay into charged or neutral leptons as well as into light hadrons, if kinematically allowed. In
the following, we describe its partial decay widths into these channels.

1.3.1 Leptonic Decays

The ZQ partial decay width into a pair of leptons is given by

�(ZQ ! `¯̀) =
C`(gQq

`

Q
)2

12⇡
mZQ

 
1 + 2

m
2
`

m
2
ZQ

!s
1 � 4

m
2
`

m
2
ZQ

, (1.43)

where m` is the lepton mass, C` = 1 (1/2) for ` = e, µ (⌫e, ⌫µ, ⌫⌧ ), gQ is the U(1)Q gauge
coupling and q

`

Q
the corresponding lepton charge of the model according to table 1.1. In the

case of the dark photon, we need to replace gQ with e✏ and q
`

Q
with q

`

em = �1 for all charged
leptons and zero for neutrinos.

When the new boson mass is smaller than two times the electron mass, i.e. mZQ < 2 me, it
can also decay into three photons. The decay width for this process is given by [90]

�(ZQ ! 3�) = ✏
2 ↵

4
em

273652⇡3

m
9
ZQ

m8
e

"
17

5
+

67

42

m
2
ZQ

m2
e

+
128941

246960

m
4
ZQ

m4
e

+ O
 

m
6
ZQ

m6
e

!#
, (1.44)

where ↵em is the EM fine-structure constant. However, for the models and mass range of interest
here, the partial decay width of ZQ ! 3� is negligibly small and hence, we will refrain from
including it into our calculations.

1.3.2 Hadronic Decays

For energies from ⇠ 0.2 GeV up to ⇠ 2 GeV, the spectrum is plagued by several hadronic
resonances. In this regime, perturbative QCD fails to work and we cannot evaluate the gauge
boson hadronic decay rates analytically using the width into quarks.
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In the case of the minimal dark photon model, there is an easy way to handle these hadronic
widths. Since the dark photon coupling structure is inherited from the SM photon with a propor-
tionality factor ✏, in order to obtain the hadronic widths we can directly re-scale the experimental
data of e

�
e
� annihilation into hadrons, according to

�Z�!H = �Z�!µ+µ�R
H

µ
[exp] , (1.45)

where �Z�!H represents the dark photon decay width into the hadronic channel H, �Z�!µ+µ�

is the DP width into a pair of muons and R
H

µ
[exp] is the experimentally known ratio [2]

R
H

µ
[exp] ⌘ �(e+e

� ! H)

�(e+e� ! µ+µ�)
. (1.46)

Whereas eq. (1.45) suits very well for the DP model, it cannot be employed anymore when
we deal with generic U(1)Q gauge bosons that do not have coupling structures proportional
to the SM photon couplings. Instead, we need to rely on techniques based on chiral perturba-
tion theory, such as the vector meson dominance (VMD) [91–93] approach. The VMD model
has recently gained prominence with the application to light vector mediators [1, 94] for the
description of vector boson hadronic decays. The basic principle behind the model idea is to
provide a low-energy effective theory to describe ZQ ! H, where H is a hadronic final state
made of light quarks, via the mixing with the QCD vector mesons. Among other advantages,
the VMD approach was also used to successfully characterize e

+
e
� annihilations into hadrons.

To explain in more details, in the VMD framework we split the EM current of light quarks
(u, d, s) into three components: the isospin I = 0, 1 and the strange quark current. We then
identify these currents with the vector mesons !, ⇢ and �, respectively. In order to accomplish
that, we treat the vector mesons V = (⇢, !, �) as dynamical gauge fields of a local hidden
symmetry U(3)V . Then, we can describe the hadronic decay channels as arising from a V V

0
P

vertex, where V, V
0 represents vector mesons and P the pseudoscalar mesons.

To include gauge bosons associated with U(1) symmetries, we need to add them as external
fields in the covariant derivative of the pseudoscalar Goldstone Matrix of the chiral Lagrangian.
With that, we can obtain the mixing term between the vector meson and the gauge boson, which,
in general, has the form 6

LV ZQ = 2 gQZ
µ

Q
Tr
⇥
VµQ

f
⇤

, (1.47)

6For the details about the construction of this interaction and also a better description of the VMD model, we
refer the reader to appendix A.
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where V
µ = T

a
V

a,µ with T
a the U(3) meson generators and Q

f the diagonal light quark
matrix, i.e. the matrix with entries equal to the U(1)Q charges q

u,d,s

Q
. This equation can even be

applied in the dark photon Z� case, where one must take gQ ! e✏ and q
f

Q
! q

f

em. The relevant
V = (⇢, !, �) vector meson generators are given by

⇢ : ⇢
µ
T⇢ = ⇢

µ
1

2
diag(1, �1, 0) ,

! : !
µ
T! = !

µ
1

2
diag(1, 1, 0) ,

� : �
µ
T� = �

µ
1p
2
diag(0, 0, 1) . (1.48)

As an example, let us consider the baryophilic models of table 1.1 that have quark charges
q
u,d,s

Q
= 1/3. From eq. (1.48) we see that the mixing term with the ⇢ meson is

L⇢ZQ = gQZ
µ

Q
⇢µTr[diag(1, �1, 0) diag(1/3, 1/3, 1/3)] = 0, (1.49)

which means that B-coupled models do not mix with the ⇢ vector meson and hence, only the
! and � mesons will contribute to the description of ZQ hadronic decays. Therefore, it is of
extreme importance an accurate decomposition of the different hadronic channels into ⇢, ! and
� components, in order to obtain the correct gauge boson mixtures and subsequent decays.

Although some previous works [1, 94] already employed the VMD framework to describe
ZQ decays into hadronic channels, they only considered a limited number of hadronic processes,
with several approximations. The focus of the work developed here was exactly to improve the
hadronic decay width description of generic U(1)Q models by including several new hadronic
channels, using new experimental data and also dividing the channels into the correct ⇢, !, �

contributions with the VMD approach. The exact way we managed to succeed on that is de-
scribed in more details in chapter 2.

1.3.3 Perturbative Decay into Quarks

In the energy region close to ⇠ 2 GeV, we expect that the annihilation processes into
hadrons slowly transition into perturbative quark production. In this regime the SM hadronic
ratio R

H

µ
will become

R
H

µ
! Rem = Nc ·

X

f=u,d,s

(qfem)2 = 2 ,

where the number of colors Nc = 3 and the EM quark charges are q
u

em = 2/3 and q
d,s

em = �1/3.
Therefore, for the DP case, we expect that in this energy regime the decay width into hadrons
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will shift into a fully inclusive decay, such that

�Z�!quarks(m) = Rem(m)�Z�!µ+µ�(m) , (1.50)

where Rem(m) = 2 if we consider the three light quarks u, d and s. As the energy scale
m = mZQ gets higher we also need to include in the Rem(m) calculation the charm and bottom
quarks. From the R-ratio experimental measurements, the charm quark c will appear after two
times the mass threshold of the lightest particle which contains a charm quark, which is the
D

0 (cū) meson. Similarly, the bottom quark b will appear after the Upsilon ⌥ (bb̄) meson mass
threshold. Therefore, we have that

Rem(m) =

8
>>><

>>>:

2, if m < 2 mD0

10/3, if 2 mD0 < m < m⌥

11/3, if m > m⌥

(1.51)

For the other B-coupled models, the strategy is very similar, however the cross-section ratio
will be given by

RQ(m) = Nc ·
X

f=quarks

(qf
Q
)2 = Nc ·

X

f=quarks

✓
1

3

◆2

=

8
>>><

>>>:

1, if m < 2mD0

4/3, if 2 mD0 < m < m⌥

5/3, if m > m⌥

(1.52)

For completeness, we will also add in the perturbative quark width calculation an extra factor
�QCD to account for corrections due to QCD effects [2]. With that, the final decay width of ZQ

into quarks can be written as

�ZQ!quarks(m) = RQ(m)(1 + �QCD(m))�̄ZQ!µ+µ�(m) , (1.53)

where �̄ZQ!µ+µ� represent the decay into muons, however, normalized to q
µ

Q
= 1. This is

necessary because in the usual EM R-ratio we need to include the muon charge in order to
cancel the quark EM charge factor of e. In the generic case, we do not have this cancellation
in the ratio. Actually, the normalized width into muons will only act as an inclusion of the
kinematic factors from eq. (1.43) that were cancelled in the R-ratio. This is required even for
U(1)Q models that do not couple with muons, that is why we do not take into account the muon
charges of the model in that width.
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In the case of the QCD correction factor, according to [2] we take �QCD to be

�QCD(m) =
4X

n=1

cn ·
✓

↵s(m2)

⇡

◆n

+ O
✓
⇤4

m4

◆
, (1.54)

where ↵s is the QCD fine-structure constant, that was taken from [95], and the first four terms
in the expansion are [96]

cn =

8
>>>>>><

>>>>>>:

1, (n = 1)

1.9857 � 0.1152 nf , (n = 2)

�6.63694 � 1.20013 nf � 0.00518 n
2
f

� 1.240 ⇠, (n = 3)

�156.61 + 18.775 nf � 0.7974 n
2
f

+ 0.0215 n
3
f

� (17.828 � 0.575 nf ) ⇠, (n = 4)
(1.55)

where nf is the number of considered quarks in that given energy scale and

⇠ ⌘

⇣P
q
f

Q

⌘2

Nc

P
(qf

Q
)2

.

After establishing the general theoretical foundations of the U(1)Q gauged model, and also
discussed the production and decay channels of the the associated new vector boson ZQ, in
the next chapter we will elaborate on how we improved the description of the light mediator
hadronic decays.



Chapter 2

Improvements in the Hadronic Calculation

Light vector mediator models have been extensively studied over the years [1, 28, 97, 98],
with several experiments constraining the available parameter space (see, for example, Refs.
[78, 79, 99]). In general, this type of constraint can be divided into visible and invisible searches.
The former relies on detecting dark boson decays into visible SM channels, mainly e

+
e
� and

µ
+
µ
� decays, and the latter explores the new boson coupling with invisible signature particles,

such as neutrinos, dark matter or other hidden sector particles.
For such searches to be realized, it is important to know the dark boson ZQ branching ratios.

This is not a problem in the case of decays into elementary SM fermions since we can compute
the analytical width directly from the Lagrangian, as established by eq. (1.43). However, when
considering light mediators, we need to be careful with decays into hadrons, that will dominate
in the region between 0.2 GeV and ⇠ 2 GeV. In the dark photon scenario, we saw that the usual
strategy is to use the experimental hadronic ratio R

H

µ
[exp], but when we deal with generic U(1)Q

mediators, that enjoy different couplings to quarks, we cannot employ this technique anymore.
In these generic U(1)Q scenarios, the best approach is to parametrize the hadronic currents

using the vector meson dominance (VMD) model, which considers the mixing of the ⇢, ! and
� vector mesons with the new ZQ mediator. With this strategy one can then divide the hadronic
current into ⇢, ! and � contributions to obtain the separated mixing with the new gauge field
and then calculate the new vector mediator hadronic decay width.

Especially when dealing with baryophilic models, such as the ones in table 1.1, the decays
into hadronic final states can have a significant contribution to the total width, and hence a great
impact on the leptonic branching ratios. Therefore, the correct description of such decays plays
a major role that can even affect the experimental constraints. The main purpose of the first part
of this dissertation is to show how we can improve this description and provide, for the first
time, an almost complete set of ZQ decays into arbitrary leptonic and hadronic final states.
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To this purpose, we explicitly calculated the ZQ width into several hadronic final states that
were not considered in previous studies [1]. To perform the calculation we used a data-driven
approach that relies on fits to e

+
e
� data using the python package IMinuit [100]. The new

hadronic channels considered here include some channels already fitted by [19], but also new
channels relevant near ⇠ 2 GeV, for which we performed the fit for the first time. All fits are up-
dated to the most recent data and are based on state-of-the-art hadronic current parametrizations
of e

+
e
� annihilation processes [101, 102]. We provide the description of hadronic decays of

generic ZQ gauge bosons in the python package DELIVER (Decays of Light Vectors Revised)
that is available for public use on GitHub at https://github.com/preimitz/DeLiVeR with a jupyter
notebook tutorial. Our results can also be found in the manuscript [70], which was accepted for
publication by JHEP .

In this chapter, we will describe the improvements we have implemented in the calculation
of the widths and branching ratios of Z�,Q into light hadrons and compare our results with
the ones from Ref. [1], that are publicly available in the DARKCAST code. The first section
will introduce the calculation method we used to obtain the hadronic widths. After that, we
will show the improvements in the description of the low energy hadronic modes. In the third
section, we will introduce the new channels that we included in our study. Finally, we will show
the results of the vector meson decomposition of all hadronic channels employed, together with
the strategy we used to make the transition from the hadronic to the quark width.

2.1 Decay Width calculation

As we explained in the first chapter, in order to calculate the hadronic decay widths for
generic light mediators we need to decompose the cross-sections e

+
e
� ! hadrons into ⇢, !, �

components according to the VMD approach. In the following discussion, we will first intro-
duce the method that was implemented in a previous work [1] to calculate the hadronic decay
width and then we will explain the strategy employed here for the same calculation.

2.1.1 Previous implementation

In the previous work of Ref. [1], the authors performed a fit to the R
H

µ
ratio data, where

R
H

µ
⌘ �(e+e

� ! H)/�(e+e
� ! µ

+
µ
�) ,

for the six hadronic channels H = ⇡�, ⇡⇡, 3⇡, 4⇡, KK and KK⇡.

https://github.com/preimitz/DeLiVeR
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Their fit was performed according to the following parametrization

R
H

µ
(m) =

9

↵2
em

�����fH(m) ±
X

V

AV

H
(m)

�����

2

, (2.1)

where m is the invariant e
+
e
� mass, V correspond to the ground-state resonances ⇢, !, �, the

real function fH accounts for higher resonance effects V
⇤, which we denote with a ‘prime’

V
⇤ = ⇢

0
, ⇢

00
, ⇢

000
, !

0
, !

00
, . . . and the AV

H
amplitudes have Breit-Wigner forms. They model the

fH function as a bicubic spline and take it to be real in order to neglect possible interference
effects between V

⇤ and V .

Using this method, it is easy to translate the SM photon-mediated cross-section ratio into
a ZQ-mediated ratio by simply exchanging the photon couplings for the new vector mediator
couplings, according to
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6 Tr
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em]
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2 Tr
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T�Q

f
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�

µ
, (2.2)

where Q
em = diag(2/3, �1/3, �1/3) and Q

f are the SM photon and ZQ diagonal light quark
matrix, respectively, T⇢,!,� are the vector meson U(3) generators, given by eq. (1.48), and R

⇢,!,�

µ

are the ⇢, !, � components of the SM R-ratio. We also used the photon/vector mediator coupling
to the vector mesons as given by eq. (1.47).

Nonetheless, the calculation of the total hadronic width cannot be done by directly sum-
ming up the three RZQ vector meson contributions because we must also take into account the
interference terms between the vector mesons. In Ref. [1], the authors calculated the total decay
width �ZQ!hadrons by using the formula

�ZQ!hadrons =
g
2
Q
mZQ

12⇡

"
X

V

R
V

ZQ
(mZQ) + R

!��

ZQ
(mZQ)

#
, (2.3)

where the R
!��

ZQ
term accounts for a mixing between these two vector mesons. Even so, this

implementation is still incomplete since, apart from the inclusion of only six hadronic channels,
they neglected all the other vector meson interference effects.
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2.1.2 New implementation

Given that in this dissertation we considered several new hadronic channels, and also in-
cluded new ⇢, !, � vector meson contributions into the description of the previous and new
channels, we did not follow the same approach as in eq. (2.3) for the sake of taking into account
all the interference effects. Instead, we explicitly calculate the decay width formulas, and the
cross-sections, for each hadronic mode.

Let us now describe here the details of this implementation. The cross-section of the process
e
+
e
� ! V ! H (see figure 2.1) can be evaluated by the computation of the matrix element

M = L µ
Jµ , (2.4)

where J
µ is the hadronic current and L µ is the e

+(k+)e�(k�) leptonic current, given by

L µ = e
2 g

µ⌫

s
v̄(k+)�µu(k�) , (2.5)

with s = (k+ + k�)2 being the square of the center-of-mass (COM) energy and k+(k�) is
the e

+(e�) four-momenta. Using the matrix element, we can then write the differential cross-
section as

d� =
1

4
p

(k+ · k�)2 � m4
e

d�n

��M
��2

=
1

2s
d�n

1

12
[�L µLµ] [�J

µ
Jµ] ,

(2.6)

where d�n is the n-body phase-space element

d�n =
Y

f=1...n

d3
pf

(2⇡)32Ef

(2⇡)4�(4)
⇣
k+ + k� �

X
pf

⌘
, (2.7)

Figure 2.1: Diagrammatic illustration of the e
+
e
� ! V ! H process, where H represents

any hadronic final state.
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with
P

pf representing the sum over the momenta of the final state particles and the factor
of 1/12 comes form the average over the incoming lepton spins (1/4) plus the intermediate
vector meson polarizations (1/3). In the cross-section formula we also used the approximation
me ⇠ 0, since we will consider hadronic decays and the mass of the lightest hadron, i.e. the
pion mass, is much higher than the electron mass (m⇡ � me).

We can further simplify the cross-section calculation by performing the contraction of the
leptonic currents

1

12
[�L µLµ] =

e
4

3s

✓
1 +

2m2
e

s

◆
me=0���! 16⇡2

↵
2
em

3s
, (2.8)

such that we end up with

d� =
16⇡2

↵
2
em

3s

1

2s
d�n [�J

µ
Jµ] . (2.9)

Finally, we calculate the vector meson decay width �(V ! H) from the process e
+
e
� ! V !

H by replacing the leptonic current of the matrix element by the vector meson polarization "µ,
such that MV!H = "µ(V )Jµ. The partial decay width can be expressed as

d�(V ! H) =
1

3
⇥ 1

2 mV

|MV!H|2d�n , (2.10)

where mV is the vector meson mass and the 1/3 factor represents the average over the interme-
diate vector polarizations.

Until now we were only dealing with the SM cross-section e
+
e
� ! V ! H, where V =

⇢, !, � is the intermediate vector meson that will describe the decay into the hadronic mode
within the VMD framework. With the purpose of finding an expression for the light mediator
decay width, we need to translate this process into e

+
e
� ! ZQ ! H, with the light dark

mediator intermediate state. Therefore, to transform the decay width given in eq. (2.10) into a
ZQ hadronic width, we need to multiply the hadronic current by the U(1)Q-SM coupling ratio
in order to rescale the vector-meson-quark coupling to the ZQ-quark coupling. As a result, the
decay width matrix element becomes

MZQ!H = "µ(ZQ)
X

V

r(V )Jµ

H
(V ) , r(V ) =

gQTr
⇥
TV Q

f
⇤

Tr [TV Qem]
, (2.11)

where now "µ(ZQ) is the dark boson polarization, V loops over the vector mesons ⇢, ! and �,
TV=⇢,!,� are the vector meson U(3) generators, given by eq. (1.48), and the hadronic current
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J
µ

H
(V ) is the current associated with the vector meson V

1. Accordingly, we can write the
differential partial decay width, which is given by

d�(ZQ ! H) =
1

3
⇥ 1

2 mZQ

��MZQ!H

��2d�n, (2.12)

where the phase-space element depends on the number of final states. For the case of ZQ decays
into two particles, for example ZQ ! ⇡⇡, �⇡, KK, we can use eq. (B.1) to obtain

�(ZQ ! 2) =
1

3
⇥ 1

8⇡

|pcm|
m

2
ZQ

��MZQ!H

��2 . (2.13)

Now that we succeeded on the decay width formulation we can use eq. (2.12) to individually
calculate the decays of the new light mediators into several hadronic final states H. However,
this is not the end of the story. For the width calculation there is an essential ingredient that
we still need to obtain, which is the hadronic current J

µ

H
. The specific form of this current

will depend on the hadronic mode that we are interested in. It also includes a form-factor FH,
depending on H, that will be responsible for carrying the vector meson structure of the process.
Below, we list some of the hadronic currents for different final state configurations H

J
µ

P1P2
= �(p1 � p2)

µ
FP1P2(q

2), J
µ

P�
= "

µ⌫⇢�
q⌫"�,⇢p�,�FP�(q

2),

J
µ

V P
= "

µ⌫⇢�
q⌫"V,⇢p1,�FV P (q2), J

µ

P1P2P3
= "

µ⌫⇢�
p1,⌫p2,⇢p3,�FP1P2P3(p1, p2, p3) , (2.14)

where Pi=1,2,3, V and � indicate, respectively, the presence of a pseudoscalar meson, a vector
meson, or a photon in the final state. We label the corresponding momenta by pi for the pseu-
doscalars and p� for the photon. The polarizations are given by "�/V , for the vector meson and
photon. The variable q =

p
s is the COM energy, such that in the case of H = (P1P2), (P�)

and (V P ), we have that q = p1 + p2, q = p1 + p� and q = p1 + pV , respectively.

When the final state contains a vector meson and two pseudoscalars, as, for example H =

!⇡⇡ and �⇡⇡, we avoid the inclusion of intermediate structures, such as !f0 ! !⇡⇡, due
to dissenting data observations [54, 55]. As a result, we assume a point-like interaction with
hadronic current given by

J
µ

V P1P2
=

✓
g
µ⌫ � q

µ
q
⌫

q2

◆
"
⇤

V,⌫
FV P1P2(q

2) , (2.15)

1As we explain in appendix B, the form-factors that appear in the hadronic currents are functions of the vector
mesons parameters, usually the sum of the V resonances Breit-Wigners. The hadronic current Jµ

H
(V ) can then be

obtained by considering only the V component of the form-factor.
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where q = pV + p1 + p2. We also consider some channels with more than three final states. In
this case, we directly take expressions from the literature as given in table 2.2.

Last but not least, we need to deal with the form-factor FH calculation. These form-factors
will carry the dependence on the vector meson resonances ⇢, ! and �, usually parametrized in
the form of Breit-Wigner functions. For the specific formula of these form-factors, and also
details about the hadronic current expressions, we refer the reader to appendix B.

2.2 Description of the Hadronic Modes

In the last section we establish the theory behind our method for the light mediator hadronic
width calculation. In a more systematic way, we describe below the step-by-step procedure one
needs to follow in order to obtain �(ZQ ! H)

1. First, we identify the specific hadronic channel H for which we will implement the decay
width. We need to check for possible substructures of this channel. For example, it was
reported [54, 55] that the 5⇡ channel contains intermediate !⇡⇡ and ⌘⇡⇡ states. These
two substructures almost saturate the 5⇡ channel, therefore it is more useful to model
these two states instead of the 5⇡. Note that if we took into account these three modes we
would end up with duplicate information, and hence a overestimation of the cross-section.

2. After deciding the correct final state we want to model, we need to check if there is
some cross-section experimental data available. The method employed here is based on a
data-driven approach, so we can only obtain the decay width through the direct fit of the
cross-section data.

3. In possession of the experimental cross-section data �(e+e
� ! H), we need to parametrize

the form-factor of that channel in terms of the vector meson ⇢, !, � parameters, such as
the vector meson mass mV and width �V , Breit-Wigner amplitude aV and phase 'V ,
among other parameters (see appendix B).

4. With the analytical expression for the form-factor, and hence for the hadronic current, we
perform the fit of the cross-section data according to eq. (2.9). To decide the dominant
vector mesons for a particular channel we rely on isospin-symmetry assumptions and G-
parity conservation (see section B.2 of appendix B). Recall that in the VMD framework
we deal with the neutral intermediate vector mesons, that can either be the ground-state
modes ⇢, !, � or their excited versions,which we label with a ‘prime’ (⇢0

, ⇢
00
, . . . ). The fit

will give the information of the vector mesons parameters that appear in the description
of that particular channel.
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5. With the fit information of the vector meson parameters, we have the final expression for
the hadronic current J

H

µ
, that we can divide into J

H

µ
= J

H

µ
(⇢) + J

H

µ
(!) + J

H

µ
(�) using

the fit values. The final step is to plug the current in eq. (2.12) to obtain the dark mediator
decay width, which will depend on the hadronic channel as well as on the phase-space
element. In appendix B we give the decay width formulas for several types of hadronic
modes. Those formulas represent the SM scenario V ! H, however, to convert to the
BSM approach ZQ ! H we simply change the squared COM energy s by the squared
vector boson mass s ! m

2
ZQ

and re-scale the SM quark couplings according to eq. (2.11).

In this dissertation, we included several hadronic channels contributions for the light medi-
ator decay width. Among them, there are six channels that were already considered by [1], that
correspond to the dominant contributions close to the ⇢, !, and � ground state masses plus the
4⇡ and KK⇡ channels. We list them in table 2.1. We also considered several new hadronic
channels as can be seen in table 2.2. For the majority of these new channels, and also for the
channels of table 2.1, we took the parametrizations and fits from [19]. However, we also in-
cluded four new channels that were not considered before in the literature and for which we
performed the fit using the python package IMinuit [100]. These original channels showed
to be very relevant in the energy range close to ⇠ 2 GeV. For more technical details about the
parametrization and fit procedure, we refer the reader to appendix C.

In what follows, we summarize the improvements we achieved by employing the hadronic
decay width implementation described above. We first comment on the results concerning the
hadronic modes already considered in [1], and then compare the two approaches. After that, we
show the results for the new hadronic modes that were added in this dissertation.

channel resonances data parametrization fit possible final states
⇡� ⇢, !,!0

,!00
,� [3] [3] [3] ⇡�

⇡⇡ ⇢, ⇢
0
, ... [103–105] [106] [106] ⇡⇡

3⇡ ⇢,⇢00
, !, !

0
, !

00
, � [107] [108] [108] 3⇡

4⇡ ⇢, ⇢
0
, ⇢

00
, ⇢

000 [109, 110] [111] [19] 4⇡
KK ⇢, ...,!, ..., �, ... [4–13] [106] [19] KK

KK⇡ ⇢,⇢0
,⇢00

, �, �
0
, �

00 [14–18] [19] [19] KK⇡

Table 2.1: List of the hadronic channels included in this dissertation and also in the DARKCAST
code [1]. The second column shows the resonances that were used in the fit of that particular
channel and we emphasize in boldface the ones which were included here, but not in [1]. We
denote towers of vector meson resonances with ‘...’. The other columns display the references
that we used for the cross-section data, the parametrization of the hadronic current and the fit,
while the last column show the possible final states, composed by low-energy pseudoscalar
mesons, ⇡ and K, as well as photons.
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channel resonances data parametrization fit possible final states
⌘� ⇢, ⇢

0
, !, � [112] [112] [112] 3�, 3⇡�,...

⌘⇡⇡ ⇢, ⇢
0
, ⇢

00 [113, 114] [115] [19] 2⇡2�, 5⇡,...
!⇡ ! ⇡⇡� ⇢, ⇢

0
, ⇢

00 [116] [116] [116] 2⇡�

!⇡⇡ !
00 [53–55] new new 5⇡, 3⇡�

�⇡ ⇢, ⇢
0 [14, 117] [19] [19] 2K⇡, 4⇡,...

⌘
0
⇡⇡ ⇢

000 [54] [115] [19] 4⇡2�,...
⌘! !

0
, !

00 [118] [19] [19] 2⇡2�, 6⇡, ...

⌘� �
0
, �

00 [14, 119] [19] [19] KK2�, KK3⇡, ...

pp̄/nn̄ ⇢, ⇢
0
, ..., !, !

0,... [120–137] [138] [19] pp̄/nn̄

�⇡⇡ �
0
, �

00 [56, 58] new new KK⇡⇡

K
⇤(892)K⇡ ⇢

00
, �

0 [56, 57] new new KK⇡⇡

6⇡ ⇢
000 [59] [59] new 6⇡

Table 2.2: Additional hadronic processes included in this dissertation that are not present in the
DARKCAST code [1]. The resonances used to describe the channel are quoted in the second
column, where we denote with ‘...’ a tower of resonances. We also show the references from
which we extracted the cross-section data, the hadronic current parametrization and the fit. In
the !⇡ channel we only considered the cross-section data coming from the subsequent decay
into ⇡⇡�. The channels marked as ‘new’ represent the original channels that were implemented
here for the first time (for more details see appendix C).

2.2.1 Dominant low-energy hadronic channels

The channels H = ⇡
0
�, ⇡

+
⇡
�, ⇡

+
⇡
�
⇡
0 and KK are the dominant channels close to the

ground state vector meson masses m⇢ = 770 GeV, m! = 782 GeV and m� = 1020 GeV. We
also included the contributions from H = 4⇡ and KK⇡, that are more relevant in the higher
energy range, close to 1.5 GeV. All of these channels are very precisely measured and were
considered before in [1] and included in the DARKCAST code. Table 2.1 lists the resonance
contributions for each one of these channels, as well as the references from which we extracted
the data, parametrizations and fits.

Figure 2.2 shows the R
H

µ
-ratio calculation obtained in this dissertation (solid lines) in com-

parison with the one from DARKCAST (dashed lines), for the hadronic channels of table 2.1.
The black points represent the full �(e+e

�) ! hadrons data extracted from PDG [2]. From
the figure we can see that, close to the peaks of the ground-state vector meson resonances,
the two approaches agree very well, however, we still have several differences in the whole
spectrum. It is worth mentioning that, while in DARKCAST they include higher resonances in
an approximate way by adding a non-resonant background function to mimic the shape of the
data (eq. (2.1)), we stick to the VMD assumption and calculate each channel by considering
resonance contributions. Below we enumerate the main improvements from our method and
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Figure 2.2: Cross-sections for the dominant e
+
e
� ! H channels, normalized by the e

+
e
� !

µ
+
µ
� cross-section. The solid (dashed) lines indicate the results obtained by us (taken from

DARKCAST [1]). The data (black points) was taken from the Particle Data Group compilation
(PDG) [2]. See text for discussions on the differences.

elaborate on the differences that we introduced here for each hadronic channel:

• H = ⇡
0
�

In the case of the ⇡
0
� channel, DARKCAST only considered the ground state ! contri-

bution, that accounts for the first peak close to 0.8 GeV. In our case, employing the fit
from [19], in addition to the inclusion of higher ! resonances, we also consider a � and
a small ⇢ component. The � contribution and the ! � � interference are responsible for
the second peak near 1 GeV and the dip right after it, respectively. The inclusion of these
structures results in major improvements on the description of the ⇡� data, as can be seen
in the left panel of figure 2.3, that shows our (DARKCAST) R-ratio calculation in solid
(dashed) pink together with the experimental data points from the SND collaboration [3].
The right panel of the same figure shows the decomposition of the H = ⇡� into ⇢ (blue),
! (red) and � (green) contributions. The figure highlights that the additional inclusion of
the other vector meson structures provides a better description of the data points. Note
that this channel is of prime importance since it is the first hadronic channel to appear in
the spectrum and the only hadronic mode below the two pion threshold. As a result, we
will see in chapter 3 that, in the case of the U(1)B model, the ⇡� discrepancies outlined
here will have a great impact on the branching ratios and, consequently, may affect the
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model bounds.

Figure 2.3: Normalized cross-section R
H

µ
for the H = ⇡

0
� channel. In the left panel the solid

(dashed) pink line indicates our (DARKCAST) calculation, and the gray data points are from
SND [3]. In the right panel we show our decomposition of the ⇡� channel into ⇢ (blue), ! (red)
and � (green) components.

• H = KK

The H = KK channel can be divided into a charged K
+
K

� and a neutral K
0
K

0 compo-
nent. Although in DARKCAST they claim that their H = KK channel is a combination of
these two components, their data was taken from [11], which only considered the charged
channel. Therefore, they assume that the neutral component is similar to the charged
one and took KK = 2 · K

+
K

�. In contrast, we updated this channel by considering
separately the neutral and charged recent cross-section data from several experiments [4–
13], such that we have the correct description KK = K

+
K

� + K
0
K

0. In figure 2.4
we highlight this argument by showing the individual normalized cross-sections for the
neutral K

0
K

0 (light green) and charged K
+
K

�(dark green) components, along with the
corresponding data points. As one can see, the identification of the neutral mode with
the charged one is misleading, since the neutral cross-section is way smaller. This results
in an overestimation of the KK contribution in the DARKCAST code, and justifies why
their green dashed curve is larger than our solid curve in figure 2.2.

Besides not taking into account the correct neutral channel contribution, DARKCAST

assigned the whole KK channel as a � contribution, while in our approach we also added
an !� and ⇢-like components. As we can see from the right panel of figure 2.4, which
shows the vector decomposition for the charged K

+
K

� component, although the main
peak next to 1 GeV is originated by the � resonance, the extra features of the curve are
mainly a consequence of the other vector mesons. Recall that the correct decomposition
of each channel is very important when we deal with the baryophilic U(1) models, since
they do not couple with the ⇢ meson. Thus, for instance, considering the whole KK
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channel as an � contribution leads to a wrong overestimation of the �(ZQ ! KK) width
and branching ratio.

Figure 2.4: Normalized cross-section R
H

µ
for the H = KK channel. In the left panel the solid

(dashed) gray line indicates our (DARKCAST) total KK calculation (same as the green lines in
figure 2.2), while the dark (light) green line indicated our fit for the K

+
K

� (K0
K̄

0) channel.
The data points correspond to a compilation from several experiments [4–13]. In the right panel
we show the decomposition of the charged K

+
K

� channel (dark green) into ⇢ (blue), ! (red)
and � (green) components.

• H = KK⇡

The last crucial difference appears in the H = KK⇡ channel. As in the previous case, we
can also divide this channel into three contributions; K

0
K

0
⇡
0, K

+
K

�
⇡
0 and K

±
K

0
⇡
⌥.

In [1], the authors mention that they considered the isoscalar component of the KK⇡

channel. However, the cross-section data they used [14] comes from a K
±
K

0
⇡
⌥ analysis,

where the collaboration extracted the isoscalar and isovector contributions from the sub-
process e

+
e
� ! K

⇤(892)K. Hence, in DARKCAST what they call KK⇡ contribution
is actually the isoscalar component of K

⇤(892)K. The problem of this approach is that
K

⇤(892)K is a two-body process and, hence, enjoys different kinematics compared to
the three-body final state KK⇡. The correct approach, which we follow here, is actually
to consider separately the three components of KK⇡. For that, we updated this channel
by using data from several experiments [14–18] that considered the individual KK⇡

components. This discrepancy in the descriptions is the reason why the two KK⇡ curves
(solid and dashed purple) in figure 2.2 do not match.

Apart from this, while in DARKCAST they only considered a �-like contribution, here we
also included ⇢ resonances. In figure 2.5 we show the normalized cross-section obtained
using the fit from [19] for the individually KK⇡ channels, together with the decomposi-
tion into � (green) and ⇢ (blue) contributions and the corresponding data points. The sum
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of these three channels results in the total KK⇡ channel considered by us, in contrast
to the KK⇡ used by DARKCAST, which consists only of the isoscalar component and
agrees with a different set of data [14].

Figure 2.5: Normalized cross-section R
H

µ
for H = K

0
K

0
⇡
0(left), K

+
K

�
⇡
0 (middle),

K
±
K

0
⇡
⌥ (right). The purple lines correspond to the channel contribution, whereas the blue

and green lines indicate the � and ⇢ decomposition, respectively. The data points from [14–18]
are shown in grey.

• H = 3⇡

The main difference of this channel is that we also included a small ⇢ component, while
in DARKCAST they solely used ! and �. The 3⇡ channel was the only mode which they
fit with more than one resonance, and it was due to this channel that they included a !��

mixing in eq. (2.3).

2.2.2 New hadronic channels

Although the channels already discussed in the last section are the dominant lower energy
contributions, there are still several important hadronic modes in the higher resonance region.
This region starts right after the ground-state � mass at 1 GeV and goes up until ⇠ 2 GeV where
we transition to the perturbative QCD regime. The problem now amounts to the fact that this
higher energy region can be very challenging to describe, due to numerous hadronic modes and
poor data available in the literature, especially when dealing with vector mediator decays to
currents involving ! and � contributions.

In order to obtain a more robust description of light mediators decays, we introduced a large
amount of new channels, as listed in table 2.2. To avoid double counting of any channel, and
reduce the possible final states, the first task was to correctly identify the common substructures
of each possible process. For instance, we already cover the final state 2⇡2� by including both
⌘⇡⇡ and ⌘! contributions, because they are substructures of this channel. In the same way, we
do not need to include the 5⇡ channel, because it is covered by ⌘⇡⇡ and !⇡⇡.
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Initially, we started by the inclusion of all channels considered in [19], since we already
had the parametrizations and fits for the currents. However, when we summed them with the
old channels, we still could not reach the PDG data points after energies of ⇠ 1.5 GeV. The
problem was that there were relevant contributions in that regime that were still not taken into
account. Due to that we started to search in the literature [2, 139–142] the possible channels
that we could be neglecting.

The most important modes that we found, and that had experimental cross-section data, were
the KK⇡⇡, the 6⇡ and the !⇡⇡ channels. For the case of the KK⇡⇡ final channel, we found
two relevant substructures; �⇡⇡ and K

⇤
K⇡. The �⇡⇡ was divided into a charged (�⇡

+
⇡
�)

and a neutral (�⇡
0
⇡
0) component, contributing to K

+
K

�
⇡
+
⇡
� and K

+
K

�
⇡
0
⇡
0 states, respec-

tively. For the case of the K
⇤
K⇡ mode we have three components, K

⇤0
K

±
⇡
⌥, K

⇤±
KS⇡

⌥

and K
⇤±

K
⌥
⇡
0, decaying into KSK

±
⇡
⌥
⇡
0, and one component, K

⇤0
K

±
⇡
⌥, decaying into

K
+
K

�
⇡
+
⇡
�. The 6⇡ channel and !⇡⇡ channels were also split into a neutral and a charged

component. For more details about the parametrization and fit of these channels we refer to
appendix C.

In figure 2.6 we show the results of the R
H

µ
ratio for the new implemented channels. The

dashed-dot lines indicate the channels which we took the parametrization and fits from other
references, according to table 2.2, and the dotted lines indicate the four new channels for which
we performed the fit. The solid purple line represents the sum of the contributions of all these
new channels, while the cyan solid line is the sum of the old modes from table 2.1. The orange
solid line correspond to the sum of all hadronic channels included in this study.

Note that, although the new channels have a minor effect in the lower energy region, their
contribution is essential for higher energies, and even reach the old channels curve near 2 GeV.
As a result of their inclusion, we can see that for center-of-mass

p
s & 1.4 GeV the orange

line continues to follow the PDG data to higher energies and almost match with the PDG data
points. Thus, we can conclude that without the addition of these new channels we would not
describe correctly the effects of the ⇢, !, and � meson excited states.

It is also important to highlight that the inclusion of the four extra channels, especially the
6⇡ and K

⇤
K⇡ modes represented by the blue and red dotted lines in figure 2.6, are the major

contributions for energies higher than ⇠ 1.7 GeV. In fact, their inclusion was crucial to lift the
orange curve towards the PDG data.
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Figure 2.6: Normalized cross-sections R
H

µ
for the new channels included in this dissertation,

but not in [1]. The dot-dashed lines indicate the hadronic channels for which we took the
parametrization and fit from [19], while the dotted lines indicate channels we have fitted and
included here for the first time. The solid lines indicate the total R

H

µ
(summed over all hadronic

final states) considering: only the channels shown in figure 2.2 (cyan), only the new channels
on table 2.2 (purple), the sum of all contributions we have calculated (orange).

2.3 Final vector meson decomposition

During the hadronic width calculation procedure it was crucial the division of the hadronic
current into ⇢, ! and � contributions, as given by eq. (2.11). In this same equation, when we
re-scale the quark couplings by the ratio of the traces, the model dependent quark matrix Q

f

determines if a certain vector meson contribution is present or absent, the latter happening if the
trace is zero

�
Tr
⇥
TV Q

f
⇤

= 0
�
.

Figure 2.7 shows the Rµ-ratio decomposed into ⇢- (blue), !- (red) and �-like (green) con-
tributions, considering the sum of all hadronic channels included in this dissertation. The solid
lines represent our results while the dashed ones are from DARKCAST. The orange line corre-
spond to the sum of all contributions, which is therefore a �-like curve, since the photon mixes
with all vector mesons, according to the VMD prescription. In the ideal case, we expect that
this curve would follow the PDG data points [2].

Let us now analyse the results of figure 2.7. The first two features that call attention are that
our �-like curve is lower than the DARKCAST one in the energy range between (1.1�1.7) GeV,
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Figure 2.7: Decomposition of the total hadronic cross-section ratio R
SM
µ

⌘
P

H
R

H

µ
into ⇢-, !-

and �-like contributions for the SM. We also show in orange the total �-like contribution. The
dashed lines indicate results obtained with the DARKCAST code [1].

while our !-like contribution is higher for energies above ⇠ 1.3 GeV. This attribute is a con-
sequence of the differences we highlighted before in the KK and KK⇡ channels description,
since in DARKCAST they assigned these two channels as a � contribution, while we identified
⇢ and ! components. Hence they end up with an overestimation of the �-like contribution and
an underestimation of the others.

The second comment we want to address is that we lift up all the curves for energies above
1.7 GeV. This is an effect of the inclusion of the new channels of table 2.2, that are responsible
for the difference we see in the extent of the two orange lines. While in DARKCAST they
cannot follow the PDG data points after ⇠ 1.6 GeV, in our case the major deviation starts
close to ⇠ 1.8 GeV. Hence, our hadronic width calculation strategy and the inclusion of new
channels and recent data resulted in a better description of the data. Another interesting point is
the deviation on the !-like curve for energies below ⇠ 0.7 GeV. This discrepancy comes from
the differences in the description of the ⇡� mode, and, although small, will have great impact
on the B model branching ratios and limits, as we will see next.

A final remark we want to stress again is the importance of the correct vector meson de-
composition. Remember that for vector mediator models that do not couple with the ⇢ current,
which correspond to all the baryophilic models considered in this dissertation, and listed in
table 1.1, only the !- and �-like components will matter. This means that the differences we
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obtained in comparison with DARKCAST will result in different branching ratios and sometimes
even affect model bounds.

2.3.1 Hadron-quark transition

Even though we exhaustively included all the dominant exclusive hadronic modes described
in the literature, as listed in PDG [2], for higher masses than ⇠ 1.7 GeV we slightly underesti-
mate the e

+
e
� total hadronic cross-section, given by the black points in figure 2.7. The problem

is that in this higher energy region several subdominant multi-meson channels start to appear,
most of them do not even have experimental description in the literature. Although any possible
new channel could be easily added in our approach, the lack of data for these multi-meson pro-
cesses, combined to the fact that in many modes we still do not have a complete description of
the substructures, results in the decline of the ��like curve near 2 GeV. Nevertheless, close to
this energy we expect that the hadronic decay width slowly transition into perturbative decays
into quarks, as described in section 1.3.3.

In order to include a correct and smooth transition, we calculated the intersection point
between the hadronic and perturbative quark widths. For the case of the dark photon model,
this energy point happens at 1.7 GeV, while in the B-coupled models it happens at 1.74 GeV.
In the decay calculation, we then directly replaced the hadronic decay width �(ZQ ! hadrons)

with the total perturbative decay �(ZQ ! quarks), given by eq. (1.53), at the corresponding
energy thresholds for each model. For instance, in the dark photon model this hadron-quark
transition represents the replacement of the �-like curve in figure 2.7 by a perturbative line
R

H

µ
' 2 2 at the energy of 1.7 GeV.
In the case of the DARKCAST code, due to the inclusion of a small number of hadronic

channels in [1], the authors employed a different strategy to reach the total R
SM
µ

curve. First,
they considered their �-like contribution as the PDG experimental curve for energies above
1.48 GeV, and the sum of the vector meson curves for energies below this value. The !-like
curve was considered to be their calculation below 1.6 GeV and the perturbative value R

!

µ
=

Nc · (qu + qd)2/2 = 1/6 above this energy 3. Similarly, the �-like curve was taken to be equal
to R

�

µ
= Nc · (qs)2 = 1/3 above 1.7 GeV. Finally, they define their ⇢-like component to be

described by the 2⇡ and 4⇡ channels below 1.1 GeV and equal to the �-like curve, with the !

and � contributions subtracted, above it. Note that they always use the leading order perturbative
value, hence they do not take into account QCD corrections.

2It would be exactly RH

µ = 2 if we did not consider the QCD corrections �QCD of eq. (1.53).
3Recall that the leading order perturbative Rem

µ = R⇢
µ + R!

µ + R�
µ = 3

2 + 1
6 + 1

3 = 2, where the vector meson
components can be calculated according to eq. (A.24).
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Although they justify the method above by recognizing that they neglect several hadronic
channels, such that it would be necessary to use the PDG data points to include the missing
modes, their approximation imply the wrong assumption that all these modes contribute as ⇢

components. This is a very serious premise, specially for baryophilic U(1)Q models, since
they do not couple to the ⇢ current. Hence, if on the one hand their �-like curve match the R

SM
µ

experimental calculation, on the other hand all the extra hadronic channels they disregard do not
contribute to the baryophilic vector mediator width. This will result in significant consequences
on the branching ratios and limits, which is the subject of the next chapter.

In this chapter we have described the hadronic implementation we used in order to im-
prove the light mediator ZQ decays into hadrons. In the next chapter we will analyze how this
hadronic improvement will affect the new mediator width, branching ratios and also experimen-
tal bounds.



Chapter 3

Results and Effects on Experimental Bounds

In the last chapter, we focused on the description of the VMD-based method that was
used for the calculation of the dark mediator ZQ hadronic decay width. We compared this
method with the previous implementation by [1], that is provided in the paper companion soft-
ware package DARKCAST. Besides the fact that in our method we explicitly calculate the
hadronic width of each channel, and hence took into account all interference terms, we also
included several new channels, and updated the previous modes by the inclusion of recent
cross-section data and a better decomposition into ⇢, ! and � contributions, which is crucial
for the correct U(1)Q boson width determination. As in the case of [1], we provide a nu-
merical package to calculate decay quantities of light vector particles, that can be found at
https://github.com/preimitz/DeLiVeR [70].

All these improvements in the hadronic description lead to substantial effects in the calcu-
lation of the new light mediator hadronic width, which in turn affects the ZQ branching ratios
into hadrons and leptons and can also modify experimental bounds. This last point is justified
since the majority of the available detectors that we employ for dark sector investigation depend
on decays into electrons and/or muons. This means that in the calculation of the number of ob-
servable events the leptonic branching ratios are a key ingredient. Another important factor is
the total decay width of the dark particle. Especially for beam dump experiments, where the
particles propagate for a certain distance before reaching the detector, the ZQ lifetime, together
with its mass and the model coupling, will determine if the light mediator will decay inside the
detector and, hence, produce an observable signal.

Therefore, in summary, the hadronic width modifications we implemented have a great
impact on the leptonic branching ratios and lifetimes, which in turn can influence the model
bounds. How exactly the branching ratios and bounds will be affected is the subject of this
chapter, which is organized in the following way. In the first section we show the modifications

https://github.com/preimitz/DeLiVeR
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in the total hadronic decay width for the dark photon and baryophilic models (see table 1.1). The
second section presents the effect on the ZQ vector mediator branching ratios. Finally, in the
third section, we elaborate on the impact that the hadronic decay width reevaluation generates
on the experimental bounds, considering first current limits and then future predictions.

3.1 Hadronic Decay Width

Figure 3.1 shows the total hadronic decay width, normalized by the vector boson mass
mZQ and coupling gQ, for the case of the dark photon model (blue) and baryophilic models
(red) listed in table 1.1. As usual, the solid curve stands for the total hadronic width from
this dissertation, which was calculated by the direct sum of all the individual channels widths
P

H
�(ZQ ! H), while the dashed one represents DARKCAST calculation given by eq. (2.3).

Near 1.7 GeV, the solid colored curves split into two, which indicates the hadron-quark transi-
tion described in section 2.3.1. The grey lines correspond to the prolongation of the hadronic
width calculation for the corresponding model and the color lines stand for the perturbative
quark width given in eq. (1.53). Let us now enumerate the main differences that appear in the
figure when comparing our results with DARKCAST ones.

Figure 3.1: Normalized light vector mediator hadronic decay width for the dark photon (blue)
and B-coupled (red) models. The solid (dashed) curve indicates the results from this dissertation
(DARKCAST). The grey curves at higher energies indicate the hadron-quark transition, which
happens at mZQ = 1.7 GeV (mZQ = 1.74 GeV) in the dark photon (B-coupled) model.
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B-coupled models

• The discrepancies that appear at energies below 0.7 GeV come from the difference in the
calculation of the H = ⇡� channel.

• Between mZQ = (1.1 � 1.5) GeV, DARKCAST overestimates the hadronic width due to
the incorrect exclusive assignment of the KK and KK⇡ channels as �-like contributions,
while in our description we also included ⇢-like components. Thus, as the ⇢ current does
not couple to baryophilic models, in our approach these two channels do not entirely enter
in the baryophilic mediator width calculation.

• For energies above mZQ = 1.5 GeV, DARKCAST underestimates the hadronic width due
to the absence of several hadronic modes, while in our case we included all the channels
listed in table 2.2, many of them contributing with �- and !- like components. Besides,
as described in section 2.3.1, in DARKCAST they considered all the neglected hadronic
contributions as ⇢-like components, that do not couple to the baryophilic vector mediators.

• At the hadron-quark transition point, we can see that our curve is slightly higher than
DARKCAST one. This is a result of our inclusion of QCD corrections in the perturbative
quark width given by eq. (1.53).

Dark photon model

• Between mZ� = (1.1 � 1.3) GeV we can see that DARKCAST width curve is slightly
higher than ours. This is a consequence of the misleading assumption that KK = 2 ·
K

+
K

�, as we have shown in figure 2.4 the neutral contribution has a smaller cross-
section than the charged one. This behavior also appears in the orange dashed curve of
figure 2.7 in this same energy region.

• Above the hadron-quark transition, our width calculation transforms into a perturbative
quark straight line while in DARKCAST we still see some features. Recall that in DARK-
CAST calculation they considered their R

⇢

µ
curve as being the hadronic ⇢-like contribution

below 1.1 GeV and the PDG experimental curve above this energy. As the dark photon
couples to the ⇢ current, its width follows the PDG data curve for higher energies. How-
ever, although this approach seems to work well, we need to be careful since this method
is only a good choice for models that have couplings proportional to the SM photon
couplings, which is the case of the dark photon. The explanation is that, as stated by
eq. (1.45), the dark photon hadronic width can be obtained by merely re-scaling the R

SM

µ

total ratio. Hence, for the specific case of the dark photon, we do not need to individually
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separate the ⇢, !, � contributions and proceed with the VMD approach, we can just use
the PDG data curve [2]. Nevertheless, this is not the case for baryophilic models, or for
any model that does not enjoy SM proportional couplings.

3.2 Branching Ratios

With the hadronic and perturbative quark width calculation, it is easy to obtain the branching
ratio

Br(ZQ ! F) =
�(ZQ ! F)

�tot
ZQ

,

where F represents any hadronic or leptonic channel, �tot
ZQ

is the total decay width, considering
all possible final states, and we use eq. (1.43) to calculate the leptonic decay widths.

In figure 3.2 we show the branching ratios considering the dark vector mediator decay into
electrons (light blue), muons (dark blue), hadrons (red) and neutrinos (green) as a function of
the vector boson mass and for different U(1)Q models. The results obtained with the hadronic
calculation implemented in this dissertation are shown in solid lines while the results from
DARKCAST are in dashed lines. In the lower panel of each figure we show the deviation �Br

that is equal to this dissertation branching ratio calculation minus DARKCAST one

�Br ⌘ Brour � BrDarkCast
,

i.e. it is the subtraction of the dashed lines from the solid ones. The grey vertical dashed line
indicates the energy of the hadron-quark transition.

From the figure we can see that, in the case of the dark photon model, the differences
between the two calculations are always less than 5%. In contrast, for the case of the B model,
we see that in the window 0.2 . mZB/GeV . 0.4, the discrepancy in the calculation can be
as large as ⇠ 30%. This is a consequence of the disparities we saw on the H = ⇡� channel
description. As we will discuss latter, in the B model the couplings to leptons arise from
kinetic mixing loop corrections, and thus are very suppressed in comparison with the couplings
to hadrons. Hence, the leptonic branching ratio only is dominant in the kinetically forbidden
hadronic region, but when we reach the pion mass threshold the first channel that appears is ⇡�,
and it is the only mode until mZQ ⇠ 2 m⇡. This is the reason why small modifications on the
⇡� channel can lead to major effects on the B model. For energies above 0.3 GeV, the hadrons
always dominate, and therefore, although the width calculation has numerical differences, the
branching ratio into hadrons is always 100%. Note, however, that the width differences imply
modification of the ZQ lifetime, which in turn can affect the bounds, as we will see.
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Figure 3.2: Branching ratio of the vector boson mediator ZQ decaying into electrons (light
blue), muons (dark blue), hadrons (red) and neutrinos (green). Each panel represents a specific
U(1)Q model, as the title label indicate. The solid (dashed) lines correspond to this dissertation
(DARKCAST) results. In the lower panel of each figure we show the branching ratio difference
between the two calculations.

For the other baryophilic models shown in the figure, i.e. the B �L, B �Lµ�2L⌧ , B �3Le

and B�3L⌧ models, the branching ratio deviation is always at most a 10% effect. The deviations
follow the same conclusions from last section; DARKCAST overestimated (underestimated)
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the hadronic width in the window mZQ ⇠ (1.0 � 1.5) GeV (above mZQ = 1.5 GeV) as a
consequence of the KK and KK⇡ modes (new hadronic contributions). We do not show the
branching ratios for the B � 3Lµ and B � Le � 2L⌧ models since they are similar to B � 3Le

and B � Lµ � 2L⌧ , respectively. A final remark is that the compensation of the hadronic Br

numerical modification is split into the leptonic contributions, such that, for example, if we have
a ⇠ 10% modification on the hadronic branching ratio of the B � 3Le model, this will effect by
⇠ 5% the e

+
e
� and ⌫⌫̄ branching ratios.

Figure 3.3 illustrates the branching ratio modifications of the individual hadronic channels
for the B model (left panel) and B � L model (right panel) 1. The solid and dashed lines
indicate this dissertation and DARKCAST results, respectively. The blue line correspond to the
sum of all the other hadronic channels not listed in the figure legend. The vertical grey dashed
line represents the hadron-quark transition, from which our individual hadronic contributions
disappear and are replaced by the perturbative quark contribution. In DARKCAST they do
not consider the quark transition, instead, the individual hadronic widths continue growing to
account for the u, d, s quark contribution, while the other quark widths are included separately
using eq. (1.43) after the respective mass thresholds.

Figure 3.3: Comparison between this dissertation (solid lines) and DARKCAST (dashed lines)
individual hadronic branching ratios for the B model (left panel) and B�L model (right panel).
We do not show the individual branching ratios for the other B-coupled models, as they behave
in a similar way to the B � L model. The vertical dashed gray line indicates the transition from
non-perturbative to perturbative calculations as described in the text.

1The individual branching ratios for the other baryophilic models are similar to the B � L ones.
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3.3 Repercussions on Current Limits and Future Sensitivities

Now that we already distinguished the branching ratio modifications produced by our hadronic
implementation, we can explore the effects on the bounds for the different U(1)Q models in the
relevant mass range 100 MeV  mZQ  2 GeV studied here. In the next two sections we
will discuss these effects for the current available experimental bounds and then for the predic-
tions of future experiments and detector upgrades. To obtain these limits, we implemented our
hadronic branching ratios in two different software packages, that we describe below.

The first software is the DARKCAST code [1], that was already discussed in previous sec-
tions when we compared the hadronic implementation. However, besides the width calculation,
this code can also recast dark photon searches into generic U(1)Q model bounds. The recast
procedure works in the following way; first one needs to obtain the bound values in the pa-
rameter space of the dark photon model, i.e. the limits on the kinetic mixing vs. mass plane
✏ ⇥ mZ� ; then we can recast these values by re-scaling the dark mediator production, decays
and the detector efficiency, as explained in [1]. Therefore, in order to identify the effects on
the bounds, we included in DARKCAST our hadronic width calculation, which in turn modified
both the decays and the detector efficiency, the latter through the change in the ZQ lifetime.

The second software we used was the FORESEE (FORward Experiment SEnsitivity Es-
timator) code [143]. This program can simulate the expected sensitivity reach of experiments
placed in the far-forward direction from the interaction point of proton-proton collisions. In par-
ticular this code is very useful for predicting FASER (ForwArd Search ExpeRiment) [144–147]
sensitivities, and this was exactly the reason why we employed it here.

3.3.1 Current Limits

Table 3.1 shows the experimental searches we considered in the bound plots to constraint
the gQ ⇥ mZQ plane for the different U(1)Q models. In the table we specify each experiment
type, the production channel of the dark mediator and the subsequent decay mode.

In all bound plots displayed here, the constraints in blue (green) represent exclusion regions
for ZQ decaying to e

+
e
� and µ

+
µ
� pairs (neutrinos). We start by the current experimental

limits we obtained for the B-model, which are shown in figure 3.4. Although this model is
not anomaly-free, due to the great differences present in its branching ratios, the bounds high-
light the consequences of the improvements of our calculations. We show in gray the regions
that were excluded before with DARKCAST hadronic implementation, but are allowed by this
dissertation. In the energy region between 0.2 . mZB/GeV . 0.4, we verify that this ef-
fect is particularly visible, which is a consequence of DARKCAST underestimation of the ⇡

0
�
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Experiment ZQ production ZQ decay

Fixed Target

(electronic)

APEX [20]

e-Bremsstrahlung

ZQ ! e
+
e
�

A1 [21, 22] ZQ ! e
+
e
�

NA64 [41–43] ZQ ! ⌫⌫̄ (invisible)

Proton Beam Dumps

LSND [27, 28] ⇡
0 ! �ZQ

ZQ ! e
+
e
�

PS191 [23] ⇡
0 ! �ZQ

NuCal [25]
⇡
0 ! �ZQ

p-Bremsstrahlung

CHARM [26] ⌘ ! �ZQ

Electron Beam Dump E137 [29, 30] e-Bremsstrahlung ZQ ! e
+
e
�

e
+
e
� Colliders

BaBar [31, 39] e
+
e
� ! �ZQ

(radiative return)

ZQ ! e
+
e
�
, µ

+
µ
�

ZQ ! ⌫⌫̄ (invisible)

BESIII [44] ZQ ! e
+
e
�
, µ

+
µ
�

KLOE [32, 33, 37, 38]
e
+
e
� ! �ZQ

� ! ⌘ZQ

ZQ ! e
+
e
�
, µ

+
µ
�

Hadron Collider LHCb [34, 35]
Meson decays

Drell-Yan mechanism

ZQ ! µ
+
µ
�

(displaced or prompt )

Kaon Decay Experiments
NA48/2 [36]

⇡
0 ! �ZQ

ZQ ! e
+
e
�

NA62 [40] ZQ ! ⌫⌫̄ (invisible)

Table 3.1: Current experimental searches used to constraint the dark mediator models in the
relevant mass range from (0.1 � 2.0) GeV. In the table we list the production channel and the
decay mode of each particular search.



3.3 Repercussions on Current Limits and Future Sensitivities 59

contribution, that implies an enhancement of the ZB ! e
+
e
� signal prediction.

In this same figure, we also have regions where our bounds are more excluding. For in-
stance, we highlight DARKCAST NuCal bound contour with a dashed grey line. We can see
that our NuCal limit is more constraining. This is a result of the differences in the mediator
lifetime, which is more prominent for the B model and is particularly important in beam dump
experiments, due to the considerable propagation of the dark boson. Therefore, as we saw be-
fore, although the B model branching ratios are equivalent for masses above 0.4 GeV, if our
hadronic width is numerically larger, this will result in a smaller lifetime. Hence, if for a par-
ticular mass and coupling, the ZB boson was decaying outside the detector, now it can decay
inside, which increases the bound.

Figure 3.4: The excluded regions in blue show the bounds on the gB ⇥ mZB parameter space
for e

+
e
� and µ

+
µ
� decay signatures considering the following experimental searches: the elec-

tron fixed target experiments APEX [20] and A1 [21, 22], the proton beam dump experiments
PS191 [23], NuCal [24, 25], CHARM [26] and LSND [27, 28], the electron beam dump ex-
periment E137 [29, 30], the e

+
e
� colliders BaBar [31] and KLOE [32, 33], the LHCb experi-

ment [34, 35] and the kaon decay experiment NA48 [36]. The grey region indicate the previous
bounds from DARKCAST that are still allowed in this dissertation. The dashed lines represent
the current limits from B ! KZB, K ! ⇡ZB and Z ! �ZB decays, while the dotted orange
curve is the future reach of the B ! KZB decay search.
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We also include in figure 3.4 the limits from the meson decays B ! KZB (orange) and
K

± ! ⇡
±
ZB (maroon) and also for the Z boson decay Z ! �ZB (red), that were extracted

from [148, 149]. The dashed lines represent current constraint while the dotted one is a future
prediction. It is important to mention that these constraints are enhanced for light vector coupled
to non-conserved currents, which is the case of the anomalous B model.

Besides the fact that the B model is anomalous, there is another caveat we need to empha-
size. All the experimental searches we used for this model rely on e

+
e
� and/or µ

+
µ
� decay

signatures. However, the U(1)B model does not have direct coupling to leptons. Instead the lep-
tonic coupling is generated via a one-loop induced kinetic mixing between ZB and the photon,
and hence, the magnitude of the coupling to leptons depends on the choice of the renormaliza-
tion scale and cannot be determined unambiguously. In this dissertation we follow DARKCAST

conventions, so we considered the ZB coupling to leptons to be simply egB/(4⇡)2 [94]. Thus,
when analyzing limits of the ZB boson to charged leptons we need to be careful and remember
this choice.

Figure 3.5: Similar to figure 3.4, but for the B � L model. Due to the coupling with neutrinos,
in green we add the excluded regions from the invisible searches of the following experiments:
KLOE in the µ

+
µ
� final state [37, 38], BaBar [39], NA62 [40] and NA64 [41–43]. We also

include the bound from the e
+
e
� collider BESIII [44]. The red and purple dashed lines indicate

the limits from the neutrino experiments Texono [45–47] and CHARM-II [46–48] that were
extracted from [28].
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Apart from the B model, we also compute the bounds for the other baryophilic models.
Although the modifications that our hadronic implementation introduced for these models are
not sizeable enough to be visible in a plot with several orders of magnitude, they will affect the
sensitivity of future experiments as we will see shortly. Despite that, we decided to also show
some of the bounds, since these models are very relevant in the literature and we have some
recent data from LHCb, NA62 and NA64.

In figure 3.5 we show the bounds for the B � L model. Due to the ZB�L coupling to
neutrinos, we also have in the plot bounds from invisible searches, that are the green exclu-
sion regions. We also included, for completeness, the limits from the neutrino experiments
Texono [45–47] and CHARM-II [46–48] that were taken from [28]. Note that these neutrino
limits come from searches that consider neutrino trident production (CHARM-II) and neutrino-
electron scattering (Texono), hence they do not depend on leptonic decays, implying that they
are independent of the hadronic branching ratios and cannot be recasted. The limit from the
Borexino [150–152] neutrino experiment is omitted from the plot since NA64 and CHARM-II
bounds cover it in the mass range considered in this study.

Figure 3.6: The excluded regions in blue show the bounds on the ✏ ⇥ mZ� parameter space
for e

+
e
� and µ

+
µ
� decay signatures considering the same experimental searches as figure 3.4,

plus the bound from the e
+
e
� collider BESIII [44]. We also show in red a bound of the e

+
e
�

collider KLOE coming from a search that considered dark photon decays into ⇡
+
⇡
�.
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Figure 3.6 shows the experimental bounds of the secluded dark photon model in the param-
eter space that constraints the KM parameter ✏ and the mass of the dark photon mZ� . Since the
dark photon does not couple to neutrinos, we do not have any invisible search. Note also, that
the KLOE bound from a search of ⇡

+
⇡
� decay signature is not present in any other baryophilic

model bound plot, since the ⇡
+
⇡
� channel is entirely described by a ⇢ resonance, that does not

couple to such models.

Figure 3.7: Same as figure 3.5, but for the B � 3Le model. Due to the absence of couplings
with muons we do not have the constraints from the LHCb experiment and the e

+
e
� collider

KLOE in the µ
+
µ
� final state.

Finally, in figures 3.7 and 3.8 we show the bounds for the B � 3Le and B � Le � 2L⌧

models. Since the mediator of these models does not couple to muons, the constraints from
LHCb and KLOE in the µ

+
µ
� final state are absent. We do not display the limits for the

B � 3Lµ, B � Lµ � 2L⌧ and B � 3L⌧ models since the first two only have bounds from LHCb
(prompt), NA62 and Belle-II, while the last one only has NA62 limits. Although we omit them
here, we refer to [153] for a comprehensive analysis of B � 3Li models.

A final remark we want to make is that, although all experimental searches reported in this
dissertation depend on leptonic decay signatures, except from the ⇡

+
⇡
� KLOE bound showed

in red in figure 3.6, hadronic decays could also be probed in other searches (see, e.g., Ref. [154]).
This is the case of the future FASER detector [87], as we will see in the next section.



3.3 Repercussions on Current Limits and Future Sensitivities 63

Figure 3.8: Same as figure 3.7, but for the B � Le � 2L⌧ model.

3.3.2 Future Experimental Sensitivities

In the last section we discussed the bounds obtained using our hadronic implementation
with real data from current experimental searches. Now, we will address the predictions for the
sensitivities of several high intensity frontier experiments that can probe dark light mediators in
the near future.

The first experiment we want to tackle is the ForwArd Search ExpeRiment (FASER) [144–
147]. Located approximately 480 m downstream from the interaction point of the ATLAS
detector, FASER is a relatively small cylindrical detector whose proposal is the search for new
light and weakly coupled long lived particles. The location was specially chosen so the detector
could benefit from the LHC luminosity and highly collimated beam. In the experiment schedule,
two phases are proposed. In the first one, which we call FASER, the detector dimensions are
planned to be 1.5 m long with a diameter of 20 cm and the operation is planned to start during
LHC Run 3 in 2022. In the second phase, denoted as FASER 2, the detector size will be 5 m
long with a diameter of 2 m. The planned schedule is to start operation in the high luminosity
LHC era, which will begin near 2027. While we expect an integrated luminosity of 150 fb�1

for FASER, in FASER 2 detector this number increases to 3 ab�1.

In the context of U(1)Q models, long-lived light mediators, produced in the LHC beam
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through meson decays, pp ! Z� pp (Bremsstrahlung) and direct production in hard scattering,
can reach the FASER detector. Besides the usual leptonic decay signatures, the experiment will
also be sensitive to hadronic final states, such as H = ⇡�, 3⇡ and KK [87].

Figure 3.9 shows the expected sensitivity of the FASER 2 detector for the B (left panel)
and B � L (right panel) models. We separate the constraints according to the ZB decay signa-
tures by using different colors: ⇡� (pink), 3⇡ (orange), KK (green), total hadronic contribution
(red) and leptons (blue). The bounds were obtained by using the FORESEE code [143] with
our hadronic branching ratios (solid lines) and also with the default configuration that employs
DARKCAST branching ratios (dashed lines). In the lower panel of each plot we show the de-
viation �Br that, as before, represents the difference between our and DARKCAST branching
ratios.

Note that, although the differences between the final sensitive regions are not so strong,
the distinct hadronic approach leads to substantial effects in the individual hadronic channels
bounds, specially for the B model. Another interesting feature is the spike that appears near
0.8 GeV, which is a consequence of the ! resonance peak.

Figure 3.9: FASER 2 forecast for constraints of the B (left panel) and B � L (right panel)
models . The solid (dashed) lines indicate the results obtained considering our (DARKCAST)
branching ratios together with the FORESEE code. The different colors indicate the decay final
states following the conventions from figure 3.3: ⇡� (pink), 3⇡ (orange), KK (green), hadrons
(red) and leptons (blue). In the lower panels we show the differences between the branching
ratio calculations.

The second experiment we will consider here is the proposed SHiP (Search for Hidden
Particles) experiment [155]. The SHiP detector is a fixed target facility planned to be installed
at the CERN’s Super Proton Synchrotron (SPS) 400 GeV proton beam. The experiment goal is
exactly the search for hidden sector particles, including dark photons, as well as other U(1)Q

vector mediators, in the GeV mass range. The experiment is capable to detect both visible
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decays and electron/nuclei scattering signatures through two different instruments, which are
the scattering and neutrino detector (SND) and the hidden sector decay spectrometer (HS).
Before reaching these detectors, the beam will hit a Molybdenum and Tungsten target and then
pass through the hadron absorber and by a system of magnets to sweep muons away. After the
SND detector, there is a 50 m long decay volume followed by a tracking system to identify the
decay products of the hidden particles. For more details about the experiment configuration, we
refer to [156].

In figure 3.10 we display SHiP expected sensitivity for the B (left panel) and B � Le � 2L⌧

(right panel) models considering proton Bremsstrahlung production followed by ZQ ! e
+
e
�

decay. The blue solid bounds (dashed contour) represent the excluded region obtained by using
our (DARKCAST) hadronic width calculation in the DARKCAST code for recasting. In the
lower panels we show the branching ratio deviation �Br considering the decay into hadrons
(red), electrons (light blue) and neutrinos (green). For the B model, we also show in the right
vertical axis the lifetime difference �⌧ = (⌧ours/⌧DarkCast) � 1 represented by an orange line.

With the lifetime evaluation we can appreciate how the differences between our and DARK-
CAST SHiP exclusion contour follows the same pattern as the lifetime deviation. When the
lifetime value in our calculation is smaller, which happens for mZB . 0.5 GeV, our limits are
less stringent since now the ZB mediator cannot reach anymore the detector for a set of parame-
ter choices gB ⇥mZB . Now, when the lifetime value in our calculation is higher, which happens
for mZB & 0.5 GeV according to the figure, we are in the opposite situation, and now our limits
are stronger.

In the case of the B�Le�2L⌧ model, we can see in figure 3.10 that our predicted constraints
stop at mZB ⇠ 1.6 GeV, while in DARKCAST original calculation they end at mZB ⇠ 1.7 GeV.
This is an explicit effect of the inclusion of new channels, as can be seen in the lower panel in
the electronic branching ratio difference. Since SHiP rely on e

+
e
� signatures, if the hadronic

width is larger, the electronic branching ratio will be smaller, which weakens the bound.

Finally, we examine the Belle-II experiment, which is the luminosity upgrade of the B me-
son factory Belle at the SuperKEKB e

+
e
� collider in Japan operating at center of mass energies

in the region of the ⌥ resonances. The detector is sensitive to Z� produced via the initial-state
radiation (ISR) reaction e

+
e
� ! �ISR Z� , followed by the subsequent decay into all kinetically

accessible light charged states. The Belle-II upgrade is expected to reach a total integrated lu-
minosity of 50 ab�1. Here, we consider the projected sensitivity of two different searches. The
first one is a visible signature search, Z� ! e

+
e
�
, µ

+
µ
�, which we recast from figure 211

of ref. [157]. The expected signature of this search is a peak in the distribution of the recon-
structed mass of the final lepton pair. Besides the visible final states, Belle-II is also capable
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Figure 3.10: Expected reach of the SHiP experiment sensitivity for the B (left panel) and
B�Le�2L⌧ (right panel) models in the Bremsstrahlung production channel. The solid (dashed)
lines represent the expected bounds obtained using our (DARKCAST) hadronic implementation.
In the lower panel we show the branching ratio deviation and, for the case of the B model, we
also show the lifetime difference, as explained in the text.

of searching invisible decays by looking for mono-energetic ISR single photons via the process
e
+
e
� ! �ISR ZQ, ZQ ! invisible. The projected sensitivity for this invisible decay mode was

taken from figure 209 of ref. [157] and recasted for other U(1)Q models that couple to neutrinos
for the purpose of considering the invisible decays ZQ ! ⌫⌫̄.

In figure 3.11 we show the predicted sensitivity for Belle-II visible search considering the
B � L (top left panel), B � Le � 2L⌧ (top right panel) and B � 3Le (bottom panel) models. In
the lower panel we show, as usual, the branching ratio deviation between our and DARKCAST

calculations. From the figure, we can see that the same behavior happens in all exposed models,
between mZQ masses from 1.5 GeV up to 1.8 GeV our calculations predict a loss of sensitivity
due to the inclusion of the new hadronic modes.

Similarly, we show in figure 3.12 the predicted sensitivity for Belle-II invisible search con-
sidering the B � L (left panel) and B � 3Le (right panel) models. The same behavior from the
visible search appears here again, for masses between (1.0 � 1.5) GeV our exclusion region is
bigger due to the enhancement of the leptonic branching ratios in comparison to DARKCAST,
while for mZQ & 1.5 the opposite happens.

Let us give a brief outlook and summary of the first part of this dissertation. In the first
chapter, we have discussed the general theoretical framework of the U(1)Q gauged group ex-
tension of the SM. This extra symmetry introduces a new BSM particle to the SM Lagrangian,
that mixes with the hypercharge field through kinetic mixing and can also directly couple to SM
fermions. We studied the mechanism of production and decays of such particle, and, in par-
ticular, emphasize the difficulties encountered when dealing with hadronic decays. The main
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Figure 3.11: Expected sensitivity for the B �L (top left panel), B �Le �2L⌧ (top right panel)
and B � 3Le (bottom panel) models for Belle II visible searches according to our calculation
(solid blue) and DARKCAST (dashed lines). In the bottom panels we show for each model the
difference of the branching ratio between the two calculations.

purpose of the work develop here was exactly to give a better description of this hadronic de-
cays, which we did by the inclusion of several new channel and data together with the correct
VMD-based parametrization and decay width calculation. Finally, we showed the phenomeno-
logical consequences of this improved hadronic description by examining the effects on the
widths, branching ratios and bound plots. However, as we highlight in the first chapter, al-
though we introduced a mass term to the new light mediator, we did not enter in details about
the specific mechanism that generated that mass term. This is exactly the focus of the next part
of the work developed in this dissertation.
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Figure 3.12: Expected sensitivity for the B�L (left panel) and B�3Le (right panel) models for
Belle II invisible searches according to our calculation (solid green) and DARKCAST (dashed
lines). In the bottom panels we show for each model the difference of the branching ratio
between the two calculations.



Part II

Hidden Abelian Higgs Model (HAHM)





Chapter 4

General Theoretical Framework

In the first part of this dissertation, we provided an overview of the theoretical background
of the abelian U(1)Q gauge extension model. In the theory construction, we explicitly added
a mass term to the associated U(1)Q gauge boson. However, we did not detail the possible
mechanisms that could generate that mass term, i.e. we did not supply an ultraviolet completion
to the U(1)Q model. In the second part of this dissertation, we will be concerned exactly on
studying a possible mass generation mechanism that will complement the U(1)Q extension.

There are many vector boson mass generation mechanisms reported in the literature, such
as, for example, the Stueckelberg Lagrangian [158]. In this dissertation we will focus on an
‘Higgs’-like mechanism, where the dark boson mediator will acquire a mass through the spon-
taneous symmetry breaking of the U(1)Q group. To this end, we add a new scalar S, which
is the responsible for developing a VEV that breaks the U(1)Q gauge symmetry, and, hence,
gives mass to the dark boson. We denote the new scalar by dark Higgs and this mass generation
method by the dark Higgs mechanism.

The dark Higgs will couple to the SM sector via a mixing term with the SM-like Higgs boson
in the scalar potential. A nice feature of this mechanism is that the new scalar portal, which we
call Higgs portal, is also renormalizable and is one of the three possible renormalizable terms
that we can include in the SM Lagrangian, the others being the KM portal, addressed in the first
part of this dissertation, an the neutrino portal.

Here we will specialize on a scenario where the new mediator is secluded, i.e. it is the dark
photon particle discussed in chapter 1, and the new scalar is a SM singlet that will only couple
to the SM sector through the Higgs mixing quartic term in the potential. This model is the well-
know Hidden Abelian Higgs Model (HAHM), first introduced by [159] and extensively studied
in the literature, in the context of LHC collider searches [51, 160–162] and also in association
with dark matter [163–165].
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In this first chapter we will introduce the theoretical framework of the HAHM model. In
the first section we discuss the scalar sector of the model together with the physics behind the
dark Higgs portal. The second section reviews the gauge sector of the model, which is similar
to what we describe in chapter 1. In the third section we present the new interactions that arise
in this theory and finally, in the last section, we give the decay width formulas for processes
involving the new particles.

4.1 The Scalar Sector

Let us begin by introducing the scalar sector of the HAHM model. Besides the SM-like
Higgs boson doublet H , now we will also have a new scalar particle S that mixes with H via a
quartic term in the scalar potential. The scalar Lagrangian can be written as

Lscalar = |DµH|2 + |DµS|2 � V (H, S) , (4.1)

where the scalar potential V (H, S) is given by

V (H, S) = �µ
2|H|2 + �|H|4 � µ

2
S
|S|2 + �S|S|4 + |H|2|S|2, (4.2)

with  parametrizing the scalar mixing and we require that µ
2
, µ

2
S
, �, �S > 0 in order to break

both SU(2)L ⇥ U(1)Y and U(1)� spontaneously.
The new scalar S, dubbed ‘dark Higgs’, is a SM gauge-singlet with U(1)� charge qS 6= 0,

meaning that it does not couple to any SM gauge sector, only with the secluded new vector
boson. Since we are in the minimal scenario, the new mediator will be the dark photon Z� and
we will follow the conventions from section 1.1. Hence, we can write the SM-like Higgs and
the dark Higgs covariant derivatives according to

DµH = @µH � igWaµ⌧
a
H � 1

2
ig

0
B̂µH , (4.3)

DµS = @µS � iqSgDẐ�µS , (4.4)

where g, g
0 and gD are the SU(2)L, U(1)Y and U(1)� gauge couplings, respectively, and the

hatted fields indicate states with non-canonical kinetic terms.
The dark Higgs develops a VEV hSi = vS/

p
2 responsible for the SSB of the U(1)� gauge

symmetry, which in turn results in a mass term for the dark photon, as we will show in the
next section. Another consequence of the addition of the new scalar is that the Higgs portal
will induce a mixing between the dark Higgs and the SM Higgs. In order to compute this mass
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mixing we need to consider the broken phase after both scalars acquire a VEV

H !
 

0

(v + h0)/
p

2

!
, (4.5)

S ! (vS + s0)p
2

, (4.6)

where we already transformed the fields according to unitary gauge. Remember that the VEV
is exactly the value that minimizes the potential, such that we can express the mass term coeffi-
cients as

@V

@H

���
hHi,hSi

= 0 ) �µ
2 + �v

2 + 
v
2
S

2
= 0

) µ
2 = �v

2 +
1

2
v

2
S

,

(4.7)

@V

@S

���
hHi,hSi

= 0 ) �µ
2
S

+ �Sv
2
S

+ 
v
2

2
= 0

) µ
2
S

= �Sv
2
S

+
1

2
v

2
.

(4.8)

In the broken phase, the scalar potential in eq. (4.2) is given by

V (h0, s0) = �µ
2

2
(v+h0)

2+
�

4
(v+h0)

4� µ
2
S

2
(vS +s0)

2+
�S

4
(vS +s0)

4+


4
(v+h0)

2(vS +s0)
2
.

(4.9)
Let us now collect the quadratic terms of this potential to investigate the mass mixing

Vm(h0, s0) =
1

2

✓
�µ

2 + 3�v
2 +

v
2
S

2

◆
h
2
0 +

1

2

✓
�µ

2
S

+ 3�Sv
2
S

+
v

2

2

◆
s
2
0

+
1

2
2  v vSs0h0

= �v
2
h
2
0 + �Sv

2
S
s
2
0 +  v vSs0h0 ,

(4.10)

where in the second line we used the conditions imposed by eq. (4.7) and (4.8). Therefore, we
find that the mass matrix in the (h0, s0) basis is

M2
s

=

 
2 �v

2
 v vS

 v vS 2 �Sv
2
S

!
. (4.11)
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Since this is a symmetric matrix we can diagonalize it with an orthogonal transformation
 

h

s

!
=

 
cos � � sin �

sin � cos �

! 
h0

s0

!
, (4.12)

where h and s are the physical mass states and � is the scalar mixing angle, defined as

tan2 (2�) =
(2  v vS)2

(m2
h

� m2
s
)2 � (2  v vS)2

'
✓

2  v vS

m
2
h

� m2
s

◆2

+ O
�

4
�
,

(4.13)

assuming the limit of small . The Higss and dark Higgs squared masses, m
2
h

and m
2
s
, respec-

tively, are the eigenvalues of the mass matrix M2
s
, given by

m
2
h,s

= �v
2 + �Sv

2
S

±
q

v4�2 + v
4
S
�
2
S

+ v2v2
S
(2 � 2��S) , (4.14)

where we already considered a specific mass hierarchy mh > ms, which is the relevant one for
our study. Now, in the limit where  ⌧ 1, i.e. in the limit of small mixing angles, we have that

tan 2� ' 2� ' 2 vvS

m2
s
� m

2
h

, (4.15)

and, hence, sh ⌘ sin � ' �, such that

sh ' vvS

m2
s
� m

2
h

. (4.16)

In this limit, the mass eigenvalues become

m
2
h

= 2�v
2 + 2s2

h
(�v

2 � �Sv
2
S
) , (4.17)

m
2
s

= 2�Sv
2
S

� 2s2
h
(�v

2 � �Sv
2
S
) , (4.18)

up to order 
2. Note that the SM-like Higgs mass would be only corrected from the SM value

m
SM
h

= 2�v
2 by a small factor proportional to the sine of the mixing angle. The fields will also

mix according to
h0 = chh + shs , s0 = chs � shh , (4.19)

where ch ⌘ cos � ' 1 + O(2). Now, let us discuss the mass generation in the gauge sector.
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4.2 The Gauge Sector

The gauge sector of the model will behave exactly as described in chapter 1 but considering
the secluded scenario. The hypercharge portal is realized through a kinetic mixing term

L0
gauge = �1

4
B̂µ⌫B̂

µ⌫ � 1

4
Ẑ�µ⌫Ẑ

µ⌫

�
� ✏

2cW
B̂µ⌫Ẑ

µ⌫

�
, (4.20)

that can be canonically normalized according to the field redefinitions of eq. (1.3) and eq. (1.4),
such that

L0
gauge = �1

4
Bµ⌫B

µ⌫ � 1

4
Z̃�µ⌫Z̃

µ⌫

�
. (4.21)

Now, following eq. (1.17), the interaction Lagrangian will be

Lint = eJEMA + gJZZ0 � e✏JEM⌘Z̃� + g
0
✏JZ⌘Z̃� , (4.22)

where we took JQ = 0 since we are in the secluded scenario.

In this UV completion framework, we can dynamically originate the dark photon mass via
the SSB of U(1)� . As in the case of EWSSB, we can extract the dark boson mass term from the
dark Higgs kinetic term |DµS|2, where the covariant derivative is given by eq. (4.4)

|DµS|2 =

����@µ
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(4.23)

and ⌘ was given in eq. (1.5). In the limit where ✏ ⌧ 1 we can approximate ⌘ ⇠ 1, resulting in
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0Z̃

2
�
, (4.24)

where we defined
m

Z̃�
= gDqSvS . (4.25)

Therefore, the mass of the dark photon will depend on the new abelian gauge group coupling,
but also on the dark Higgs VEV and charge. After the SSB of both the EW and U(1)� symme-
tries, we can proceed with the Z0 � Z̃� mass diagonalization according to eq. (1.23) to obtain
the mass eigenstates of eq. (1.30). In the scenario where mZ � mZ� , which is the relevant hi-
erarchy we are interested in, and also for suppressed kinetic mixing, we end up with eq. (1.31)
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and (1.32), which we quote here again

m
2
Z�

' �
2
m

2
Z0

(1 � ✏
2
t
2
W

) , (4.26)

m
2
Z

' m
2
Z0

(1 + ✏
2
t
2
W

) . (4.27)

Hence, we can see that the SM-like Z boson mass will suffer a correction proportional to ✏
2.

Similarly to eq. (1.36) and (1.37), we have that

Z0 ' Z � ✏tWZ� , (4.28)

Z̃� ' Z� + ✏tWZ . (4.29)

4.3 HAHM Interactions

In the last two sections, we discussed the scalar mass mixing that arises from the Higgs
portal as well as the dark photon mass generation mechanism. Now, we can also compute some
of the interaction terms involving the particles of the model. Below we enumerate some of the
useful HAHM interactions following a division by particle type.

4.3.1 Gauge Bosons and Scalars

From the H and S kinetic terms we can derive the interactions between gauge bosons and
scalars. Let us begin with the dark Higgs kinetic term, that was calculated in eq. (4.24). Due to
the scalar and Z � Z� mixing, this term will originate couplings of the dark photon to the dark
Higgs and SM-like Higgs as we see below
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(4.30)
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where we neglected mass terms and quartic interactions and used that
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Now, we can also compute the Higgs doublet kinetic term in order to find the other gauge
boson-scalar interaction terms. From eq. (1.20), we have that
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(4.31)

where in the second line we collect only the term that leads to cubic interactions, we change to
the physical fields s, h, Z and Z� according to the mixing equations from the last sections and
in the last line we neglect interactions of order O(✏2, ✏sh) or higher. Finally, joining the results
from eq. (4.30) and (4.31), we obtain
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(4.32)

Note that the the interaction of the dark Higgs s with the SM Z boson is identical to the hZZ

coupling, but suppressed by an extra sh factor. Similarly, the hZ�Z� coupling is inherited from
the scalar mixing in the dark Higgs kinetic term, and, hence, posses an extra sh suppression in
comparison with the sZ�Z� interaction. In general, the dark Higgs will inherit all the SM-like
Higgs boson couplings to SM particles, but with an extra sh suppression.

Another interesting feature of that result is that we have a sZZ� term among the possible
interactions. This coupling will allow the Z boson to decay into s and Z� , thus contributing to
the Z invisible decay width �(Z ! inv) at tree-level. However, due to the smallness of ✏ and
of mZ� , this contribution is sub-leading and below the present sensitivity. Furthermore, loop
diagrams contributing to this same channel will always be proportional to ✏

2, ✏sh or s
2
h

in the
most optimistic scenarios, turning such processes experimentally inaccessible.



78 HAHM Theoretical Framework

4.3.2 Gauge Bosons and Fermions

Let us first investigate how the interactions of the Z boson with fermions will change in
the HAHM. To this end, we need to open the terms of the interaction Lagrangian given by
eq. (1.17). However, now we want to go up to order O(✏2), so we will change to the physical
fields Z and Z� following eq. (1.33) and (1.34), i.e. without expanding the sine and cosine

Lint � gJZ(Zc↵ � Z�s↵) � e✏⌘JEM(Zs↵ + Z�c↵) + g
0
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fZ ,

(4.33)

where s↵ ⌘ sin ↵ and c↵ ⌘ cos ↵ and we used equations (1.8), (1.13) and (1.14) for the current
expressions and also eq. (1.16) for the electric charge definition. Therefore the interactions
between the SM Z boson and the SM fermions f can be written as

LZf̄f = gZf̄fZµf̄�
µ
f , (4.34)

where
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From this last equation it is easy to obtain the correction to the SM coupling value
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by considering the limit of small ✏ in eq. (4.35)
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(4.36)
where we used that ✏⌘ ⇠ ✏ + O(✏3) and also the angle approximations
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+ O(✏3) , (4.37)

s↵ ' tW ✏

�2 � 1
+ O(✏3) . (4.38)
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Therefore, we can see that the correction to the SM Z coupling to fermions is proportional to
✏
2. Analogously, we can calculate the interaction term between the dark photon and the SM

fermions starting from the same eq. (4.33), but now collecting the Z� terms
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(4.39)

where
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It is important to highlight that in the limit where ✏ ⌧ 1 (⌘ ⇠ 1) the Z� f̄f coupling is ‘photon-
like’ for small �

gZ� f̄f
' e✏Q + O(�2) , (� ⌧ 1) (4.41)

and ‘Z-like’ for � ' 1
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4.3.3 Scalar Interactions

Finally, we can obtain the interactions among the Higgs and dark Higgs scalars by replacing
the physical fields h and s of eq. (4.19) in the scalar potential given in eq. (4.9). Below we list
the triple interaction terms

Lhss = �3hss
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In the mass regime where mh > 2ms, the decay h ! ss is kinetically accessible and is de-
scribed by the interaction Lagrangian Lhss.
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4.4 Decay Widths

Now that we computed the interactions terms which couple the Z and Z� gauge bosons with
the h and s scalars and also the interactions among the gauge bosons and fermions and between
the scalars, we are ready to write down the expressions for the relevant tree-level decay widths.

From the interaction Lagrangian that couples Z� to the fermions, given by eq. (4.39) and (4.40),
we can obtain the partial width of a dark photon decaying into two SM fermions [51]
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where Nc is the number of colors (Nc = 3 for quarks and Nc = 1 otherwise) and we have
divided the gZ� f̄f

coupling into a right-handed gR and a left-handed gL component, such that

LZ� f̄f
= gZ� f̄f

Z�µf̄�
µ
f = Z�µf̄�

µ(gLPL + gRPR)f (4.48)

where gL (gR) is the gZ� f̄f
coupling applied to left-handed (right-handed) fermions. Note that,

on the one hand, for a light dark photon (� ⌧ 1) we are in the ‘photon-like’ regime, and, hence,
the �(Z� ! f̄f) decay width will reduce to the expression given in eq. (1.43) for charged
fermions and similarly for quarks. Actually, in this regime all the Z� decays into leptons,
quarks and hadrons follow the same equations described in section 1.3. On the other hand,
for a massive dark photon (mZ� > 10 GeV), we need to rely on eq. (4.47), that also features
couplings to neutral particles, inherited from the Z neutral current, such as neutrinos.

In the case of decays involving the SM-like Higgs boson h and the dark photon, from
eq. (4.32) we can extract the partial decay width for h ! ZZ� and h ! Z�Z�
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where in the last equation we have defined
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Finally, our last relevant decay width is for the SM-like Higgs decay into a pair of dark
Higgs scalars [166], that can be obtained from eq. (4.43)

�(h ! ss) =
(0)2v2
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2
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. (4.52)

To recap what we did so far, in the first part of this dissertation we focused on the study of
the decays of a light mediator arising from an additional U(1)Q gauge symmetry. However, we
did not detailed the specific mechanism that dynamically generates this light mediator mass. To
give a reasonable UV completion to the U(1)Q model, we extended the scalar sector by adding
a new SM scalar singlet s responsible for the SSB of U(1)Q and, hence, for the generation of the
mediator mass. In particular, we specialize on a model where the dark mediator is the secluded
dark photon and the new scalar mixes with the SM-like Higgs via the quartic interaction in the
scalar potential. This model is known as the Hidden Abelian Higgs Model, and in this chapter
we outlined the physics behind the new scalar portal and also elaborate on the interactions and
decay widths involving the new particles. Now, we are ready to study some of the phenomeno-
logical implications of this model, but first, since we saw in this chapter that the new scalar and
KM portals introduce corrections to some of the well-measured SM electroweak observables,
such as the Z boson mass and couplings, we first need to investigate the EW constraints of the
HAHM, which is the subject of the next chapter.
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Chapter 5

Electroweak Constraints

In the last chapter, we developed the theory behind the HAHM, which is, in a few words,
a SM extension by two additional renormalizable portals: the KM portal in the gauge sector
and the Higgs portal in the scalar sector. By computing the Z � Z� and h � s mass mixing, as
well as the interactions and decay widths involving these particles, we obtained corrections to
some of the SM electroweak observables. For example, from the Z �Z� mixing, we introduced
an extra term to the mass of the Z boson, given by eq. (4.27), and also to the coupling with
fermions in eq. (4.36). Analogously, due to the extra dark particles, we have two additional
invisible decays of the SM-like Higgs boson, which are the decay into a pair of dark photons
and a pair of dark Higgs. These decays will contribute to the SM Higgs total invisible decay
width, which is another well-measured observable.

Hence, since the above mentioned EW observables have been measured extremely well in
all sorts of experiments, especially large e

+
e
� and pp colliders, such as the Large Electron-

Positron Collider (LEP) [167] and the Large Hadron Collider (LHC) [168], the new theory
parameters will suffer strong constraint from EW precision data. It is important to investigate
these constraints before moving to the phenomenological implications of the HAHM, since the
EW precision tests will limit the model parameters that will be used in the next chapter for the
simulation of the Higgs Boson decay into two dark photons.

This chapter is organized in the following way. In the first and second sections, we compute
the constraints that arise from the corrections to the mass and couplings of the Z and Higgs
boson, respectively. The third section focuses on the bound from the Higgs boson invisible
decay width. Finally, in the last section, we summarize all the computed limits and display the
final constraints on the free parameters of the HAHM.
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5.1 Z boson mass and couplings

In section 4.2 we computed the Z � Z� mass mixing and obtained the following expression
for the Z boson mass correction

mZ ' mZ0

q
(1 + ✏2t2

W
) . (5.1)

The PDG [2] value for the Z boson mass was based on [167] and is given by

mZ0 ' m
exp
Z

= 91.1876 ± 0.0021 GeV . (5.2)

For the case of the weak mixing angle ✓W , we have [2]

s
2
W

= 0.23122 ± 0.00004 . (5.3)

Joining the mass and mixing angle values we can constraint the KM parameter ✏ by requiring
that

m
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� n m
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Z,err  m
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exp
Z

+ n m
exp
Z,err , (5.4)

where n quantifies the number of standard deviations � from the experimental value and m
exp
Z,err

is the uncertainty on the Z mass calculation, i.e. m
exp
Z,err = 0.0021. Note that we neglected the

sW uncertainty since the sine of the weak angle appears in the tangent ratio with the cosine.
Now, if we consider the limit where ✏ ⌧ 1, we can express the last equation in terms of the SM
deviation value �mZ

|�mZ | ⌘ |mexp
Z

✏
2
t
2
W

2
|  n m

exp
Z,err . (5.5)

The constraint on the KM parameter ✏ that arises from this last equation is displayed in the
left panel of figure 5.1, which shows the allowed values for the ✏ parameter when varying the
number of deviations n. For a 2� deviation, the allowed interval is

� 0.0175  ✏  0.0175 (2 �) . (5.6)

Now, regarding the Z boson coupling to SM fermions, we computed in eq. (4.36) the cor-
rection introduced by the HAHM to g

SM
Zf̄f

. The SM reference value can be obtained following
the PDG conventions for the vector gV and axial-vector gA couplings

gV = gL + gR , (5.7)
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Figure 5.1: In the left panel we show the allowed ✏ values obtained with the constraint of
eq. (5.5) as a function of the number of standard deviations from the experimental Z mass
given by eq. (5.2). In the right panel, we show the allowed regions on the ✏ ⇥ � plane when
considering the Z boson vector (green region) and axial-vector (orange region) electron cou-
pling constraints. The blue area indicates the valid values for ✏ obtained with the Z boson mass
constraint at 2 �.

gA = gL � gR , (5.8)

which enter in the Lagrangian interaction term according to

LZff = � g

2cW
f̄�

µ(gV � gA�
5)fZµ . (5.9)

Following this notation, we can extract the HAHM Zff coupling deviation from eq. (4.36)

�g
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=
✏
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2
W

2(�2 � 1)2
⇥
T

3 � Q(1 + c
2
W

) + 2Y �
2
⇤
, (5.10)

up to order O(✏2). In order to place the bound in the ✏⇥ � parameter space, we need to compare
with the EW precision value for a specific fermion choice. Here, we will use the coupling
with electrons, since it is the most precise coupling measurement in comparison with the other
fermions. The PDG values for the vector and axial-vector Z boson coupling to electrons are
displayed below

g
e

V
= �0.03817 ± 0.00047 , (5.11)

g
e

A
= �0.50111 ± 0.00035. (5.12)

Now, we can apply the left and right-handed projections on eq. (5.10) to obtain the respective
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SM deviations

�g
e

L
⌘ (�gSM

Zēe
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where the LH and RH electron charges are T
3
eL

= �0.5, YeL = �0.5, YeR = �1 and Qe = �1.
Then, using the PDG values and the above definitions we can constraint g

e

V
and g

e

A
by requiring

that
|�ge

V
| = |�ge

L
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e

R
|  (ge

V
)err , (5.15)

and
|�ge

A
| = |�ge

L
� �g

e

R
|  (ge

A
)err . (5.16)

In the right panel of figure 5.1 we show the allowed regions in the ✏ ⇥ � plane that arise
from the g

e

V
(green) and g

e

A
(orange) constraints considering 1 � deviation. In blue we show

the previous bound from the Z boson mass for a 2 � standard deviation. We can see from the
figure that the mass limit is stronger than the electron coupling bounds. This is a consequence
of the fact that the Z mass measurement is more precise than the coupling measurements. For
example, while the relative uncertainty of the g

e

A
observable is of ⇠ 0.06%, for mZ this value

reaches ⇠ 0.002%.

5.2 Higgs boson mass and couplings

In the extended scalar scenario, the physical Higgs boson is a combination of both undiago-
nalized fields h0 and s0, as established by eq. (4.19). Therefore, all the SM-like Higgs coupling
are shifted by a factor proportional to ch, i.e. proportional to O(2). This implies that any pre-
cision measure on the Higgs boson production and decay can put bounds on the scalar mixing
angle.

In particular, in [168] the authors computed the likelihood contours in the Higgs boson
coupling (F , V ) plane obtained with ATLAS and CMS Run 1 data, where F and V denote
the strength of the Higgs coupling to fermions and vector bosons, respectively. In the SM
scenario, these two parameters are equal to 1, and the measured region with the combined data
lies within a 0.1 unit interval from the SM value. From their results, we can extract the following
values for the Higgs coupling strengths [2]

V = 1.05 ± 0.04, F = 1.05 ± 0.09 . (5.17)
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With this information it is easy to set bounds on the scalar mixing angle, since in order to agree
with the LHC data the cosine of � can introduce a correction of at most V � 2�V = 0.97 at
two sigma. Therefore,

ch � (0.97)2� (5.18)

) sh . (0.24)2� , (5.19)

where the sine constraint was computed using the identity c
2
h

+ s
2
h

= 1.
Let us now proceed and consider the bound from the Higgs mass measurement. The PDG

value for the Higgs boson mass is

m
exp
h

= 125.10 ± 0.14 GeV . (5.20)

In the process of scalar mass diagonalization we obtained the correction �m
2
h

to the SM-like
Higgs squared mass
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2
h
[(mexp

h
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2
S
] ,

(5.21)

as given by eq. (4.17). Therefore, by using the measured mass value of eq. (5.20) we can
constraint sh and ms ⇠

p
2�SvS by requiring that the correction to the experimental Higgs

squared mass value should be smaller than the uncertainty on (mexp
h

)2

|�m2
h
|  (mexp

h
)2err = 35.028 GeV2 (5.22)

Figure 5.2 shows the allowed regions in the ms ⇥ sh plane that meet this requirement at 1
(blue) and 2 (orange) �. The green region represents the parameter space where the dark Higgs
mass is smaller than mh/2, which represents the kinetically accessible region for the h ! ss

decay.

5.3 Higgs boson invisible decays

The last EW precision test constraint that we will analyze here is related to the Higgs boson
invisible decay width. Recall that to compute a total decay width, all possible final states must
be considered, regardless if the final on-shell particles are unstable or not. Following this rea-
soning, we can consider, as a first approximation, only two-body decays for the calculation of
the SM Higgs invisible decay width. Hence, the HAHM introduces three new possible decay
channels for h, namely h ! ss, h ! Z�Z� and h ! ZZ� . The first two contain invisible dark
sector final states, and thus contribute to the invisible h decay width, while the last one will only
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Figure 5.2: Regions in the ms ⇥ sh plane that fulfill the requirement that the correction of the
SM Higgs squared mass should be smaller than the associated error at 1� (blue) and 2� (orange)
deviations. The green region indicates the parameter space where the Higgs mass is at least two
times higher than the dark Higgs mass.

contribute to the total Higgs decay width due to the Z boson final particle.

In spite of these last comments, we can write down the new invisible branching ratio of the
Higgs boson

Br(h ! inv) =
�(h ! ss) + �(h ! Z�Z�)

�exp
tot

, (5.23)

where �exp
tot represents the experimental value of the Higgs boson total width and we can use the

explicit expressions for the tree-level decays given in equations (4.50) and (4.52) for the new
invisible decay widths. Now, we can combine this expression with the measured values [2]

�exp
tot = 3.2+2.8

�2.2 MeV, Br(h ! inv) < 0.19 , (5.24)

to obtain the allowed regions in the mZ� ⇥ ms parameter space that fulfill this branching ratio
constraint, which are shown in the left panel of figure 5.3 for different choices of . Note that
for  < 6 ⇥ 10�3 we are safe to choose any (mZ� , ms) combination and still agree with the
invisible Br constraint.

In the right panel of figure 5.3 we show the branching ratios of the three decays: h !
ss (red), h ! Z�Z� (purple) and h ! ZZ� (green). Note that the �(h ! ZZ�) decay is
subdominant in comparison with the others. The fact that the KM parameter only appears in
this branching ratio justifies why the invisible SM-like Higgs decay constraint is independent
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of ✏. For this branching ratio calculation we fixed  = 5 ⇥ 10�3, ✏ = 0.01 and mZ� = 1 GeV.
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Figure 5.3: In the left panel we show the available regions that agree with the branching
ratio constraint Br(h ! inv) < 0.19 for  = 6 ⇥ 10�3 (blue),  = 7 ⇥ 10�3 (orange) and
 = 8⇥ 10�3 (green). In the right panel we show the branching ratios for the processes h ! ss

(red), h ! Z�Z� (purple) and h ! ZZ� (green) considering  = 5 ⇥ 10�3, ✏ = 0.01 and
mZ� = 1 GeV.

5.4 Summary of EW constraints

Finally, now that we computed and presented all the relevant EW precision constraints, we
can combine the results to obtain the final bounds on the HAHM free parameters. Table 5.1
enumerate all the new independent parameters introduced in the model and distinguish which
of them we choose to fix (right) and which we leave as free observables (left). We also show
the obtained EW constraints on the free parameters and the definitions of the fixed variables in
terms of the free ones.

It is important to highlight that, since in this first part of the project we were just focused
on obtaining some preliminary constraints on the HAHM parameters for the phenomenologi-
cal study, we were not concerned on performing a full EW precision test analysis. Hence, we
decided to follow the simplified approach presented here and employed some approximations,
such as to consider the experimental mass of the Z and Higgs boson very close to the undiago-
nalized fields Z0 and h0, respectively. A better approach would be to perform a global fit or to
consider the oblique electroweak corrections.

Let us now make some comments about the parameters. First, we fixed the scalar U(1)�

charge to qS = 1, and from now on, we will always assume this value. Regarding the �S

quartic coupling, the bound displayed in the table comes from perturbativity and vacuum sta-
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bility constraints, as described in [166]. Finally, since in this dissertation we choose to study
the mass hierarchy mh > ms > mZ� , the dark Higgs and dark photon mass should satisfy
0 < ms < mh/2 and 0 < mZ� < ms/2 in order to enable the h ! ss and s ! Z�Z� decays.

Parameter Status Constraint

✏ Free ✏  10�2

 Free 0 <  . 6 ⇥ 10�3

mZ� Free -

ms Free -

gD Free -

Parameter Status Definition

sh Fixed sh = vvS

m2
s�m

2
h

vS Fixed vS =
mZ�

gD

�S Fixed 
2

4� < �S = m
2
s

2v2S
< 4⇡

s↵ Fixed s↵ ' �✏tW

Table 5.1: Summary of Electroweak precision tests constraints on the HAHM parameters. We
choose ✏, mZ� , ms,  and gD to be the model free parameters (left table) while vS, �S, sh and s↵

are fixed according to the chosen values of the free parameters (right table). For the case of the
free (fixed) variables, we display in the third columns the obtained EW constraints (parameter
definitions). We fix the scalar charge qS = 1.

Now that we have a better assessment of the HAHM free parameters and constraints we
are ready to move on to practical phenomenological studies. In particular, we are interested in
investigating the possible limits we can obtain by considering searches of h ! Z�Z� ! 4µ.
In order to compute these limits we rely on computational softwares for simulating the specific
process we are interested, such as the Monte-Carlo simulation program MADGRAPH [169]. In
fact, the specific choice of ✏, mZ� , ms,  and gD as our free parameters was motivated by this
program, since in the implemented FEYNRULES [170] file these were the available parame-
ters. In the next chapter, we will focus on describing the computational implementation of the
HAHM, together with the methodology we follow for the process simulation and phenomeno-
logical analysis. We will also investigate another HAHM bound by considering the invisible
kaon decay K

0
L

! ⇡
0 + inv measured by the KOTO experiment.



Chapter 6

Searching the Higgs and U(1) portals

In the second part of this dissertation we introduced a UV complete scenario to the U(1)Q

extension described in the first part. In this model, dubbed HAHM, beside the dark photon
gauge boson we also add a new scalar s, which develops a VEV and breaks spontaneously the
secluded U(1)Q symmetry. The specific theoretical implications behind the addition of these
two portals, i.e. the KM and Higgs portal, were described in chapter 4, and we saw that they
lead to modifications of very well-measured EW observables. Therefore, in order to agree with
the EW precision tests, we explored several constraints on the HAHM parameters in chapter 5.
Now, we are concerned with exploring how we can limit the available HAHM parameter space
by performing searches on processes that depend on the model free variables.

In particular, we focus on the study of two different searches that can put bounds on the Hid-
den Abelian Higgs Model. The first one is related to the decay h ! Z�Z� which proceeds via
the s�h mixing, proportional to , followed by Z� ! µ

+
µ
� through the KM portal. Hence, any

search for this process can constrain both the kinetic and scalar mixing parameters. In the work
by [51], the authors considered this same decay in the HAHM framework. However, they did
not implement any collider detector simulator to correctly compute the detection efficiency and
also only consider the decays of the light dark photon inside the MADGRAPH [169] environ-
ment, which applies many approximations, such as neglecting hadronic decays and considering
massless quarks and leptons. Besides, they perform a different treatment for the background
rejection.

Here, we improve their results in several ways. On the one hand, for the computation of the
detector efficiency we use the DELPHES [171] collider simulator to describe the muon decays
inside CMS and ATLAS experiments at the LHC. On the other hand, for the correct description
of the dark photon decays, we used a modified version of the MADDUMP [172] software for
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the computation of decay probabilities. The modifications we add in the source code include
an explicit computation of the light mediator decays into leptons, quarks and hadrons, that
follows the implementation described in the first part of this dissertation and is based on the
DELIVER [70] package.

The second search we explored is related to the KOTO [173, 174] experiment at JPARC. The
goal of this experiment is the observation of the rare Flavor Changing Neutral Current (FCNC)
decay K

0
L

! ⇡
0
⌫⌫. Using data collected during the 2015 run, the collaboration established a

new upper limit on the branching ratio Br(K0
L

! ⇡
0 + inv), where inv represent any invisible

final state. If we consider that this invisible particle is the dark Higgs, we can constrain the
sh ⇥ ms parameter space via the decay K

0
L

! ⇡
0
s.

This chapter is divided into two sections. In the first section, we will focus on the ATLAS
and CMS bounds obtained with a search in the channel h ! Z�Z� ! 4µ. We begin by in-
troducing the considered experiments, then we describe the methodology employed to simulate
the decay and, finally, show the exclusion regions in the HAHM parameter space. In the sec-
ond section, we analyze the KOTO limits obtained with the Br(K0

L
! ⇡

0 + inv) branching
ratio measurement. Similarly, after giving details about the experimental setup we explain the
constraints we need to impose so that both Z� decay outside the detector and conclude with the
final bounds on the sh ⇥ ms parameter space.

6.1 LHC bounds through the h ! Z�Z� ! 4µ decay

The first channel we chose to investigate is the h ! Z�Z� ! 4µ decay. This choice is
justified since we can probe both the kinetic mixing and the Higgs portal with this kind of
search (see figure 6.1). However, to produce the Higgs boson on shell, we need to rely on high-
energy experiments, such as the ones currently running at the LHC proton-proton collider. In
particular, among the four largest LHC experiments, only the CMS and ATLAS detectors were
designed for Higgs particle production and have measured such particles.

This section is divided into three parts. In the first part, we describe the CMS and ATLAS
experimental setup. After that, we explain the procedure we follow to correctly simulate the
h ! Z�Z� ! 4µ decay via a combination of several computational tools. Finally, we conclude
with our results on the exclusion bounds on the HAHM parameter space.

6.1.1 The CMS and ATLAS experiment

In order to exclude the HAHM parameter space, we simulate the search sensitivity of the
ATLAS and CMS experiments considering the h ! Z�Z� ! 4µ decay. These two experiments
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Figure 6.1: Feynman diagram of the h ! Z�Z� ! 4µ decay. The Higgs decay into two Z� can
be used to probe the Higgs portal, while the dark photon decay can probe the KM parameter ✏.

are the best choice for this kind of search since, up to this date, are the only detectors capable of
producing and measuring the Higgs boson, being even known as Higgs factories. The reason is
that the LHC is the only collider that can reach total collision energies of the order of 13 TeV.
Just for illustration, the second biggest hadron collider, which was the Tevatron accelerator at
Fermilab, was only able to reach energies of 980 GeV.

That being said, let us describe in more detail the CMS and ATLAS apparatus. The CMS
experiment [175], which stands for Compact Muon Solenoid, is a general-purpose cylindrical
detector with dimensions of 21 m long per 15 m in diameter. The experiment contains sev-
eral layers of detectors sensitive to different kinds of particles, such as electromagnetic and
hadronic calorimeters, as well as muon detectors (see left panel of figure 6.2). The detector
was built around a huge solenoid magnet, responsible for generating a 4 Tesla magnetic field
that deflects the charged particles track, which helps in the calculation of particle momenta and
charges. Therefore, the particles can be tracked and their momentum and position are very
well-measured. In particular, the efficiency of muon detection, which is relevant for us, is very
high [176].

As the largest LHC detector, the ATLAS (A Toroidal LHC ApparatuS) experiment [50] is
a 46 m long and 25 m in diameter cylindrical general-purpose detector. Similarly to CMS,
the experiment is composed of several detector layers to identify different particles, including
calorimeters, a muon spectrometer and a magnet system (see right panel of figure 6.2). Next to
the interaction point, where the protons collide, there is a tracking system formed by pixel and
silicon detectors. The magnets bend the particle trajectories in order to enable the computation
of particle momenta. Together with the CMS experiment, the ATLAS detector participated in
the Higgs boson discovery in 2012 [60, 61].
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Figure 6.2: Illustration of the different detector layers of CMS (left) and ATLAS (right). Figures
extracted from [49] (left) and [50] (right).

6.1.2 Signal Simulation

In order to simulate the h ! Z�Z� ! 4µ decay we used the MADGRAPH5 [169] Monte
Carlo event generator, which is a computational tool for simulating high-energy collisions
widely employed for LHC physics. A useful feature of this event generator is that it can be
used to explore BSM physics as well. The software allows for the importation of user-defined
models, created via the FEYNRULES [170] Mathematica package, inside the program interface,
such that we can simulate processes with BSM particles. In a nutshell, for creating a new BSM
model we simply need to define the new fields, the model parameters and the Lagrangian inside
the FEYNRULES file. After that, the package will compute the Feynman rules and vertices of
the defined model and output everything into a UFO (Universal FeynRules Output) folder that
can be imported to MADGRAPH.

For the particular case of the HAHM, we employed the publicly available UFO implemen-
tation created by [51, 177] that can be found at http://insti.physics.sunysb.edu/
~curtin/hahm_mg.html. After importing the UFO model into the MADGRAPH 1 inter-
face, we simulated a proton-proton collision p p ! Z�Z� with both dark photons decaying
into muons Z� ! µ

+
µ
�. We also included processes with one and two hadronic jets, i.e.

p p ! Z�Z� j and p p ! Z�Z� j j, where j is the label for the jet. As usual, after gener-
ating the output folder for the relevant process, we can launch it in the MADGRAPH interface
and perform several ‘runs’ in which we can specify a series of variables, such as the HAHM
parameters, the number of requested events, and several kinematic details.

In the process of event simulation, we can also run inside the MADGRAPH interface other
programs, such as the showering and hadronization tool PYTHIA8 [178] and the fast collider
detector simulator DELPHES [171]. In summary, the standard simulation chain begins with

1We used MADGRAPH version 2.6.4, which is the version compatible with the MADDUMP plugin.

http://insti.physics.sunysb.edu/~curtin/hahm_mg.html
http://insti.physics.sunysb.edu/~curtin/hahm_mg.html
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the MADGRAPH software, which computes the matrix elements and generates Monte-Carlo
parton-level events that are exported into a .lhe file. After that, PYTHIA8 realizes the parton
showering and hadronization, returning the hadron-level events in a .hepmc output format. Fi-
nally, DELPHES receives the .hepmc file as an input and simulates the passage of particles
through an LHC-style detector, producing a .lhco file. To correctly calculate the detection effi-
ciency we performed this whole simulation chain for the h ! Z�Z� ! 4µ process generation.

However, for the correct h ! Z�Z� ! 4µ event selection, we applied several kinematic
cuts in the runs. Essentially, there are two ways we can apply such cuts. The first one is by
directly performing the cuts inside the MADGRAPH interface at the event-generation level via
the run_card.dat file in the output decay folder. This card contain important information
about several kinematic variables including the transverse momenta of each particle, the pseudo-
rapidity, minimum and maximum invariant mass for pairs, among others. Although this option
seems to be an easy solution, there are only a limited number of available cut choices. Besides,
when we increase the number of kinematic cuts, we also increase the simulation time.

The second way we can perform the cuts is by using event selection tools after the simula-
tion, such as the MADANALYSIS5 [179] program, or the LHCO_reader [180] python package.
The former can be used for analyzing event files produced by Monte Carlo tools at parton level
(.lhe), hadron level (.hepmc) or after detector simulation (.lhco). The later is a python module
that reads detector-level events in .lhco format and allows the user to perform cuts, plots, inspect
and manipulate the events.

In this analysis we choose to combine both event-generation level and post-simulation cuts.
Below we list the required cuts we apply in the run_card.dat file inside the MADGRAPH

interface:

• The minimum transverse momenta of the jets must be of (pj
T
)min = 20 GeV .

• The maximum pseudo-rapidity for the jets must be of (⌘j)max = 5.0 .

After the conclusion of each run simulation, the remaining necessary cuts were applied at the
detector-level events, i.e. on the .lhco file, by using the MADANALYSIS5 tool. The cuts were
divided into two sets, one for the runs with 2 mµ < mZ� 6 10 GeV (light dark photon cut)
and the other for the runs with mZ� > 10 GeV (heavy dark photon cut). The lower limit in the
dark photon mass window is exactly the production threshold of two muons. Below we list the
applied cuts divided into the common cuts for the two sets and the specific ones.
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Common Cuts

• The number of muons in the final state must be equal to 4.

• The minimum transverse momenta of the muons must be of (pµ
T
)min = 7 GeV .

• The maximum pseudo-rapidity for the muons must be of (⌘µ)max = 2.4, where the
pseudo-rapidity ⌘ ⌘ � ln tan(✓/2) and ✓ is the angle between the particle trajectory
and the beam axis.

• The reconstructed four-muon invariant mass must satisfy 120 GeV < m4µ < 130 GeV.

Light dark photon cut

• We reject the events where the reconstructed invariant mass of the same vertex muon pair
is higher than 10 GeV, i.e. we select mµ+µ� < 10 GeV.

Heavy dark photon cuts

• The invariant mass of the same vertex muon pairs must be smaller than 85 GeV, i.e. we
select mµ+µ� < 85 GeV.

• The invariant mass of the state formed by the highest pT muon and the highest pT anti-
muon must be smaller than 70 GeV.

The muon pairs belonging to the same vertex are selected by looking the transverse mo-
mentum hierarchy. Besides these cuts, we also investigated the effect of performing a selection
on the minimum leptonic angular separation variable �Rµµ ⌘

p
��2 +�⌘2, where � is the

azimuthal angle. We considered three selection criteria: no cut on the angular separation, an
angular separation between all muon pair combinations satisfying �Rµµ > 0.02 and satisfying
�Rµµ > 0.05. From now on, we will label these three choices as cut A, cut B and cut C, respec-
tively. We choose to add this cut since, in order to correctly detect a muon pair, we must have
a minimum angular separation. However, in the literature it is not well established a common
criteria for this observable and different studies employ different isolation cuts since the angular
separation also depends on the muon momenta.

Regarding the other selection cuts, let us make some relevant remarks. First, all the trans-
verse momentum and pseudo-rapidity cuts are related to the detector geometrical and energetic
acceptance, and were motivated by [181, 182]. The cut on the four-muon invariant mass is
extremely important in order to identify the Higgs vertex, since the SM-like Higgs mass was
measured to mh ' 125 GeV.
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For the case of the light and heavy dark photon selection, the choices have different motiva-
tions. While the light dark photon cut is related to the reconstruction of the Z� mass, the heavy
cut was based on a background analysis. Let us explain what we mean by this. To correctly in-
vestigate 4µ final states that can act as background events to our search, we simulated 1 million
events of a proton-proton collision with four muons in the final state p p ! 2(µ+

µ
�), also in-

cluding one and two jets. When applying the selected cuts for the light dark photon case in this
run, we ended with zero events, meaning that we do not have any background effect. However,
in the case of the heavy dark photon selection, there were still some events that remained after
the application of the cuts. The reason for that is because as we increase the mass we approach
the Z boson peak, where the decay h ! ZZ ! 4µ can contaminate our search. Hence, we
tried several observable combinations to obtain a cut that maximizes the signal-to-background
ratio. The best cut that minimizes the background was related to the rejection of the muon pair
masses that are close to the Z boson mass peak, as described above, and this was the chosen
cut to the heavy dark photon search. Nevertheless, even with this cut we still end up with some
background events and we will return to this point later when we discuss the detection efficiency
calculation.

Now that we explained our applied cuts, we can compare our approach to the one of refer-
ence [51]. In [51], the authors also considered the h ! Z�Z� ! 4µ decay channel, but they
did not run any detector simulator tool to properly calculate the detection efficiency. Therefore,
they only applied the event selection cuts at the event-generation level inside the MADGRAPH

interface. This can be a problem since, for instance, the selection cut we applied requiring
four muons in the final state at the detector-level excluded approximately 60% of the generated
events.

Another difference that is important to highlight is that in [51] they included an explicitly
dark photon mass dependent cut which requires the invariant mass of both dimuon pairs to be
close to mZ� . Although this selection criteria was a great choice for background rejection, this
kind of cut is problematic since, even though in the simulation we can fix the dark photon mass,
in a real life search we do not have this information. Hence, this condition cannot be adapted
in practice to a real experimental search. Regarding the background rejection, for high dark
photon masses they employed a method to estimate the background events that are close to a
small signal region on the dimuon mass plane centered at the DP mass. For light dark photon
they only comment that their dark photon mass dependent double dimuon mass cut is so strong
that the background can be completely neglected.

After establishing the general methodology we follow in order to simulate the h ! Z�Z� !
4µ signal, we can explain how we proceed to obtain the bounds on the scalar and kinetic mixing
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HAHM parameters. In the case of the Higgs portal constraint, we considered the prompt decay
of the dark photon into a muon pair. This prompt limit can be achieved by considering a
relatively large ✏. Now, according to the narrow-width approximation, when the Z� is on-shell
its production and decay can be treated separately. This implies that the cross-section of the
process will turn to be a production rate, since, although the decay �(Z� ! µ

+
µ
�) / ✏

2, we
will get another ✏

2 factor in the denominator coming from the total Z� decay rate. Hence, in the
end, the cross-section of the h ! Z�Z� ! 4µ decay, for prompt Z� , is independent of the KM
parameter ✏ (we just need to be sure to choose an ✏ which preserves the prompt condition).

Another feature of this search is that the cross-section is proportional to 
2. Therefore, in the

simulation procedure, we just need to change the mZ� parameter in each run, but we can fix 

and ✏ as well. The dark Higgs mass can also be fixed since we will show the results as limits on

0, which is the only variable in the cross-section that depend on ms. Hence, in order to obtain

the scalar mixing bound we realized 19 different runs for mZ� between [0.3 � 50] GeV, each
one with 250K generated events. As explained before, in the simulation procedure we used
PYTHIA8 and DELPHES tools for the correct hadronization and detector response. After
each run, we applied the described cuts using MADANALYSIS5, such that we end up with the
final number of events Nf for that specific  value. In the case of the heavy dark photon runs,
we need to remember to subtract from Nf the normalized number of background events. Now,
in order to re-scale the final number of events for any luminosity it is useful to remember that

N = L � ,

where N is the number of events, L is the luminosity and � the cross-section. Hence, the final
number of events N

L

f
for a luminosity L is given by

N
L

f
(mZ� ) =

Nf (mZ� )�(mZ� )L

Ni

, (6.1)

where Ni = 250K is the initial number of generated events and the cross-section � is computed
in the simulation 2. Finally, in order to obtain the 

0 value that correspond to N
L

f
= 3 events,

where 3 events represent a 95% confidence level bound, we can simple re-scale  according to


L (mZ� ) =

s
3 · 2

N
L

f
(mZ� )

, (6.2)

2It is worth remarking that, when we run PYTHIA8, the simulation returns the original cross-section � but
also another cross-section �m computed after the jet matching. Here we need to be careful since after the matching
the number of events also decrease to Nm

i , such that the ratio �/Ni is equal to �m/Nm
i and eq. (6.1) is consistent.
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where  = 2.37 ⇥ 10�3 is the value we fixed for  in the simulation. Following this procedure
we were able to obtain the bound on the 

0 ⇥ mZ� parameter space for different integrated
luminosities, as we will show in the next section.

Now, for the case of the constraint in the KM portal, i.e. in the ✏ ⇥ mZ� plane, we consider
the displaced dark photon decay in the h ! Z�Z� ! 4µ process. The number of signal events
in the detector Nevts can be computed via the equation

Nevts = NZ�Pdec "µ , (6.3)

where NZ� is the number of produced dark photons, "µ is the combined efficiency of detector
effects and kinematic cuts and Pdec is the probability that the two dark photons decay into
muons inside the detector, given by

Pdec = fgeom

⇥�
e
�d1/�1 � e

�l1/�1
��

e
�d2/�2 � e

�l2/�2
�⇤⇥

Br(Z� ! µ
+
µ
�)
⇤2

, (6.4)

where fgeom is the detector geometrical acceptance, i.e. the fraction of events that intersect the
detector volume, i = 1, 2 labels the dark photon particles, di and li are the distances at which
the Z

i

�
enters and exits from the detector, and �i = c�i�i/�Z� is the dark photon decay length,

with � the velocity, � the boost factor and �Z� the total decay width.

For the correct calculation of this decay probability we employed the MADDUMP [172]
plugin. Although originally conceived for beam-dump simulations, this tool can be useful for
any search that rely on displaced decays. The python-based source code can be integrated
together with MADGRAPH to correctly calculate the decay probability described in eq. (6.4).
For the proper use of this program we need to modify the pythonic source code in order to
include the specific geometrical configurations of the chosen experiment we are analyzing, as
well as to set the explicit decay probability formula for the process we are studying. In our case,
we choose to investigate the constraints from the ATLAS experiment, such that we implemented
in the code the cylindrical ATLAS geometry as described in section 6.1.1. We also set di = 0

in the decay probability formula since there is no distance from the interaction point and the
detector. It is important to highlight that a more careful analysis would also include boundary
effects of the detector geometry (see [183]).

Besides the usual adaptations we need to apply in the MADDUMP displaced decay python
code, we also modified the decay width calculation. Originally, the MADDUMP software would
read from the MADGRAPH cards the calculated decay widths of the chosen displaced particle.
However, since MADGRAPH was created with the purpose of high-energy physics calculations,
during the decay width computation it generally considers the massless limit for leptons and
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quarks.
In addition to this, except for a few resonances, the MADGRAPH interface does not include

any hadronic calculation. This is not a problem for very massive particle decays, since for
high energies we are in the perturbative quark limit. However, as we saw in the first part of
dissertation, for light particles the hadronic decays are a major component of the particle width
and can widely affect the results. Therefore, in order to correctly calculate the dark photon total
width and branching ratio we wrote an external python program to include the leptonic width
calculation as well as the hadronic decay implementation, as described in the first part of this
dissertation.

Let us now quickly summarize the simulation procedure we follow. The first step was to
generate the p p ! Z�Z� collision via the MADGRAPH interface. In this case we did not
run PYTHIA8 or DELPHES since we only need the .lhe files which contain the dark photon
variables information. We performed several runs for mZ� between [0.3�50] GeV, each one of
them producing a .lhe file. After that, we simulated the displaced decay of the dark photon into
muons in the MADDUMP interface for each mZ� by importing the corresponding .lhe file and
also using the modified python code. In the end of the simulation, the program returns to us the
decay probability of eq. (6.4).

Finally, to conclude the calculation of the number of events given in eq. (6.3), there are still
two elements we need to compute. In the case of the number of produced dark photons NZ� , we
can compute it for a specific luminosity by using the p p ! Z�Z� cross-section given by MAD-
GRAPH. Now, for the case of the combined efficiency "µ, we need to rely on the DELPHES
simulation performed in the previous analysis. Recall that, for each mZ� simulation, we started
with an initial number of events Ni and ended with Nf after the kinematic cuts. We can simply
calculate the efficiency as a function of DP mass with the ratio

"µ(mZ� ) =
Nf � NBKG

Ni

,

where NBKG = 0 for the light DP case and vary with mZ� for the heavy DP case.

6.1.3 Results and Discussion

After describing the procedure we follow in order to simulate the h ! Z�Z� ! 4µ signal,
for both the prompt and displaced searches, we are ready to present the obtained exclusion
regions on the HAHM parameter space.

In figure 6.3 we show the exclusion limits in the 
0 ⇥ mZ� parameter space for the prompt

h ! Z�Z� ! 4µ search described in the last section. We perform the simulation for ms =
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300 GeV and ms = 40 GeV, but, as we explained before, the bounds are independent of this
choice. During the simulation we run the DELPHES software for the detector configurations
of ATLAS and CMS. The final obtained exclusion bounds were similar for both detector simu-
lations, hence, the results presented in figure 6.3 apply for both ATLAS and CMS.

The left panel of figure 6.3 shows the results considering integrated luminosities of 3000 fb�1

(purple), 300 fb�1 (orange), 139 fb�1 (red) and 10 fb�1 (blue). We also exhibit the constraints
for the different muon angular separation cuts, which we divided into a set without the angular
cut (cut A in dashed lines), a minimum angular separation of�Rµµ > 0.02 (cut B in solid lines)
and the more restrictive cut with �Rµµ > 0.05 (cut C in dash-dotted lines). Each one of these
cut choices have four different curves which correspond to the above mentioned luminosities.
Note that the angular separation cut only has an impact for smaller dark photon masses.

Figure 6.3: In the left panel we show the exclusion bounds on the 
0⇥mZ� parameter space for

different luminosities and considering the three distinct angular muon cut. In the right panel we
compare the results obtained in this dissertation with the use of cut B, with the previous results
from [51]. These bounds represent a full simulation of the CMS and ATLAS detector response.
The COM energy was fixed to 13 TeV and the curve with L = 139 fb�1 (red) corresponds to
the current integrated luminosity of ATLAS [52].

The right panel of figure 6.3 shows the comparison between the exclusion bounds obtained
in this dissertation with cut B (solid lines) and the results from [51] (dashed lines) following the
same color convention for the luminosities. From the figure, we can see that for mZ� > 1 GeV

the bounds computed in [51] are stronger than ours. There are several reasons that can explain
this difference, for instance, in the simulation procedure we included the detector response
and performed the cuts at the detector level events. In particular the four muon cut was very
restrictive, since in the DELPHES software the events are reconstructed after passing through
the different detector layers, such as the electromagnetic and hadron calorimeters, as well as the
muon identification system. Although in this procedure we can lost a lot of final muon states,
this must be taken into account since we want to perform a more realistic detector analysis.
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Now, for masses mZ� < 1 GeV, we can see that our limits are more exclusive. This is a
consequence of the fact that we choose to adopt the intermediate angular separation cut B for
the final bound. Let us explain this choice. From the left panel of figure 6.3, we can see the
importance of applying the angular muon cut, since we expect that for very light Z� the detector
response starts to decline. Hence, since we need to apply an isolation cut, we cannot employ
cut A, which left us with the intermediate cut B and the more restrictive cut C. Based on a CMS
muon reconstruction study [176] we chose to select the intermediate �Rµµ > 0.02 cut.

It is important to mention that during the development of the study described here, the
ATLAS collaboration publish a similar analysis [52] were they explored the same h ! Z�Z� !
4µ signal considering a integrated luminosity of L = 139 fb

�1. In particular, in figure 19 of
such paper they also present the exclusion bounds on the 

0⇥mZ� parameter space. Our bounds
show a good agreement with the experimental ATLAS results, which validates the procedure
we follow in the simulation.

In figure 6.4 we show the bounds on the ✏ ⇥ mZ� parameter space obtained with the
h ! Z�Z� ! 4µ displaced decay simulation for a 13 TeV COM energy collider. As we
explained in the last section, we implemented the ATLAS detector geometry inside the MAD-
DUMP interface, such that the exhibit bounds correspond to the ATLAS experiment sensitivity.
The colors indicate different  choices and the regions in grey are the constraints of other ex-
perimental searches on the dark photon model parameter space (same as the exclusion regions
of figure 3.6).

The first evident feature of the new bounds is that they cover an yet unexplored region of
the parameter space. Note also that we have a loss of sensitivity between 0.8 and 1.0 GeV. This
is an effect of the inclusion of hadronic decays in the simulation, since in this region we have
the peak of the ⇢, ! and � resonances. Hence, due to the increase of the dark photon hadronic
width in this mass window, the branching ratio into muons decreases, which in turn weakens
the bound. This effect is not present in the bounds presented in [51], since they do not include
hadrons in their computation.

6.2 KOTO bounds

The last bound we want to address concerning the HAHM model is related to the invisible
decay of the long-lived neutral kaon K

0
L

! ⇡
0 + inv. The KOTO collaboration recently estab-

lish a new upper limit for the branching ratio of such process [173, 174]. By considering the
decay K

0
L

! ⇡
0
s we can simple constraint the HAHM scalar mixing parameter by comparing

Br(K0
L

! ⇡
0
s) with the measured KOTO Brexp(K0

L
! ⇡

0
⌫⌫̄) branching ratio.
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Figure 6.4: Final sensitivity of the ATLAS experiment on the ✏ ⇥ mZ� parameter space com-
puted considering the h ! Z�Z� ! 4µ displaced decay search for  = 3 ⇥ 10�3 (blue),
 = 2 ⇥ 10�3 (purple) and  = 1.5 ⇥ 10�3 (orange). The grey regions represent other dark
photon experimental constraints for the searches displayed in figure 3.6. We considered COM
energies of 13 TeV and the ATLAS luminosity of L = 139 fb

�1 [52].

However, in order to correctly obtain this constraint we need to be careful with the decay
of the dark Higgs into a pair of Z� , since the dark photon can decay into visible final states
spoiling the K

0
L

! ⇡
0 + inv computation. Hence, for an accurate constraint, we require that

the dark photon particle is sufficiently long-lived in order to escape the KOTO detector. Only
in this case, the K

0
L

! ⇡
0
s can be considered as a truly invisible signal.

In this section we will first introduce some details about the KOTO experiment. After
that, we will discuss how we obtained the regions of the DP parameter space that satisfy the
long-lived dark photon condition. Finally, in the last section we show the computed exclusion
bounds.

6.2.1 The KOTO experiment

Located at the J-PARC Hadron Experimental Facility in Japan, the KOTO experiment was
conceived for the search of the rare FCNC K

0
L

decay K
0
L

! ⇡
0
⌫⌫̄. The SM branching ratio of

such process is very suppressed since this decay can only proceed via loop effects. The search
is performed by measuring the ⇡

0 ! �� decay signal, where the photons are detected with an
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EM calorimeter.
Regarding the detector apparatus, the kaons are produced from the collision of a proton

beam with a gold target. After that, they travel a distance of D = 21.5 m in the decay volume
before reaching the detector, which has a length of Ldet = 3 m [184]. Using data collected
during the 2015 experimental run, the KOTO collaboration set the following upper limit on the
Br(K0

L
! ⇡

0
⌫⌫̄) branching ratio

Brexp ⌘ Brexp(K
0
L

! ⇡
0
⌫⌫̄) < 3.0 ⇥ 10�9

. (6.5)

In the SM, the theoretical prediction of such branching ratio is

BrSM ⌘ BrSM(K0
L

! ⇡
0
⌫⌫̄) = 3.0 ⇥ 10�11

. (6.6)

6.2.2 Long-lived dark photon condition

The width of the dark Higgs in the HAHM is dominated by the decay into two dark pho-
tons for any gD parameter value higher than ⇠ 10�7 GeV. Hence, we can assume that s will
predominantly decay into dark photons. Now, in order to the K

0
L

! ⇡
0
s ! ⇡

0
Z�Z� process

to mimic the search signal in the KOTO experiment, we must require that both the DP particles
escape the detector.

Therefore, we need to calculate the probability P (d > Ldet) for the dark photon to decay
after a distance d outside the detector, which is given by

P (d > Ldet) ⌘ PZ� = e
�Ldet/c��⌧ , (6.7)

where � and � are the dark photon velocity and boost factor, respectively. In order to calculate
the DP velocity we can simple compute the kaon and scalar velocities and use a sum rule to
obtain �. We then require that the probability for the two dark photons decay outside the
detector to be higher than 90%, which means that

0.9 < PZ� < 1 ) 0.81 < (PZ� )
2

< 1 . (6.8)
In figure 6.5 we show in green the region on the ✏ ⇥ mZ� parameter space that satisfies

the condition given by (6.8), computed for a scalar mass in the kinematic threshold of the
K

0
L

! ⇡
0
s decay, i.e. for ms = mK

0
L

� m⇡0 ⇠ 360 MeV. Since the scalar s will decay in two
dark photons, the maximum DP mass is mZ� = 180 MeV. The red colored bound represents
the region in which at least one dark photon decay inside the KOTO detector and, hence, spoils
the K

0
L

! ⇡
0 + inv calculation. Therefore, the results we show in the next section are only



6.2 KOTO bounds 105

Figure 6.5: The green region represents the dark photon parameter values that satisfy the
condition given by eq. (6.8), i.e. where we have a high probability that both Z� escape the
KOTO detector such that the decay K

0
L

! ⇡
0
s can mimic the invisible KOTO signal. The red

region is the opposite case, for which the probability of at least one dark photon particle decays
within the detector is dominant.

valid in this green region of the dark photon parameter space. Note that, for the mass hierarchy
where mZ� > ms we do not have this constraint, since, the decay s ! Z�Z� is forbidden. But
given that in this dissertation we choose to focus on the hierarchy mh > ms > mZ� , we will
not consider this other scenario.

6.2.3 Results and Discussion

For the calculation of the KOTO exclusion bound we need to use the formula of the K
0
L

!
⇡
0
s decay branching ratio, given by [185]

Br(K0
L

! ⇡
0
s) = 7.0 ⇥ 10�3 2 p̂(m2

K
, m

2
⇡
, m

2
s
)

mK

s
2
h
, (6.9)

where mK = 497.6 MeV is the K
0
L

mass, sh was defined in eq. (4.16) and

p̂(m2
K

, m
2
⇡
, m

2
s
) =

�(m2
K

, m
2
⇡
, m

2
s
)

2mK

(6.10)

where the � function was given in eq. (B.3).
The constraint can be obtained by requiring the above scalar branching ratio to be smaller

than the measured KOTO upper limit of eq. (6.5), such that we can exclude the HAHM parame-
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Figure 6.6: Bounds obtained with the K
0
L

! ⇡
0+inv branching ratio constraint on the sh⇥ms

parameter space. The purple region represents the limits for the KOTO experiment while the
blue region was computed considering the SM prediction for the K

0
L

! ⇡
0
⌫⌫̄ branching ratio.

ters that would produce a Br(K0
L

! ⇡
0
s) bigger than the value measured by KOTO. Similarly,

we can do the same for the SM branching ratio prediction given in eq. (6.6). We expect that,
with more data and upgrades, the KOTO experiment will reach the SM upper limit in the future.

Figure 6.6 shows the constraints obtained following the above mentioned method consider-
ing the KOTO measurement (purple) and the SM prediction (blue) for the K

0
L

! ⇡
0
⌫⌫̄ branch-

ing ratio. The SM limit represents the maximum possible sensitivity that the KOTO experiment
can reach for such decay. From the figure we can see that this new KOTO limit lowers the previ-
ous EW precision test constraint on the scalar mixing angle from sh . 5⇥10�2 to sh . 7⇥10�4,
for dark Higgs masses smaller than ⇠ 360 MeV, which corresponds to an improvement of two
orders of magnitude.



Conclusions and future perspectives

Up to this date, the Standard Model of particle physics is the most successful theory we
have to describe the fundamental structure of matter. However, due to several questions that
still remain unanswered, such as the dark matter and hierarchy problems, we know that the SM
cannot be the final theory of Nature. As a result, the motivation to study theories that lie Beyond
the Standard Model has increased a lot in the last few decades.

In particular, in this dissertation we studied BSM theories that contain a new light vector
boson mediator particle. This particle is a consequence of the introduction of an extra U(1)Q

abelian symmetry in the SM gauge sector, where Q represents the symmetry charge. In the
secluded case, where the new boson does not enjoy any direct couplings to the SM particles,
the portal that connects the dark sector with the SM is generated by a kinetic mixing term with
the hypercharge boson, and the new boson particle is called dark photon. Besides this minimal
scenario, we can also consider the generic U(1)Q case, where we have an explicit term on the
Lagrangian that couples the new boson ZQ with the SM fermions.

In the first part of this dissertation we investigated the consequences of the decays of the
generic dark U(1)Q vector bosons. In particular, we focused on the hadronic decays of such
particles. Although for the secluded case the hadronic decays can be easily calculated due
to the dark photon photon-like couplings to fermions, in the generic U(1)Q case this task can
become very complicated since we cannot use anymore the experimental R

H

µ
[exp] ⌘ �(e+e

� !
H)/�(e+e

� ! µ
+
µ
�)|exp ratio. Hence, we rely on VMD-based techniques for the computation

of the hadronic ZQ decays. In a nutshell, in the VMD method we divide each hadronic current
into ⇢, ! and � vector mesons components and then we proceed with the ZQ ! hadrons decay
computation by simple considering the mixing between the new vector boson and the vector
meson and the subsequent vector meson decay. This approach has been already considered in
previous studies [1], however with several approximations and only with the implementation of
a limited number of hadronic final states.

The main purpose of the first part of the study developed here was exactly to improve this
hadronic decay description. After establishing the theoretical framework of the U(1)Q model
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in chapter 1, we describe the VMD-based hadronic implementation we employed in chapter 2.
We showed how we improved the hadronic decay computation by the inclusion of several extra
hadronic modes, the use of recent experimental cross-section data and also by dividing the
VMD contributions into the correct ⇢, ! and � components. For the majority of these new
implemented hadronic channels we employed the parametrization and fits of [19], however we
also performed the fit for four new hadronic channels that are very relevant in the higher energy
region close to ⇠ 2 GeV. These channels were modeled for the first time here, and we describe
in detail the fit procedure in appendix C.

All the above mentioned improvements on the hadronic calculation, as well as our final
results, are summarized in reference [70], which was already accepted for publication by JHEP.
We also created a python code for the computation of generic ZQ decays where we included
the hadronic implementation developed here. The code was made publicly available and can be
found at https://github.com/preimitz/DeLiVeR.

To conclude this study, we investigated in chapter 3 the consequences of the implemented
hadronic improvements in the calculation of the ZQ hadronic width, branching ratios and also
the possible effects on the evaluation of current and future experimental bounds. We saw that,
compared to the previous assessment [1], we obtained some relevant differences on the hadronic
decay width calculation of B-coupled U(1)Q models. Since in this kind of model the dark
boson do not couple to the ⇢ current, the correct division of the ⇢, ! and � components is
essential for a precise description of the baryophilic vector boson decays. For these models,
such hadronic width modification lead to differences in the hadronic and leptonic branching
ratios, which in turn can affect the experimental bounds. In particular, we saw that, in the
case of the B model, the branching ratio reaches, for some mass values, a 30% deviation in
comparison with the previous literature computation. Besides the branching ratio calculation,
we also had modifications on the ZQ lifetime, which influenced the B model experimental
constraints, especially for beam-dump detectors.

Regarding the future experimental sensitivities, we showed how our hadronic implementa-
tion impact the expected reach of FASER, SHiP and Belle II. Let us remark that, although all
the other considered searches rely on leptonic signals, the FASER experiment will be able to
detect hadronic final states, such as ⇡�, 3⇡ and KK. Hence, the correct VMD description of
these modes is of extreme importance for baryophilic U(1)Q FASER searches. For more details
on this topic, see our contribution to the FPF White Paper [186].

Although we have described in the first chapter the physics behind the U(1)Q BSM ex-
tension, we did not explain the origin of the dark boson mass term. Hence, motivated by the
inclusion of a UV complete scenario to the dark photon model, in the second part of this disser-

https://github.com/preimitz/DeLiVeR
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tation we explored some phenomenological consequences of the Hidden Abelian Higgs Model.
In this model, besides the dark photon boson, we also add a new SM singlet scalar which mixes
with the SM-like Higgs doublet in the quartic term of the scalar potential. Hence, in addition to
the KM portal we also have a Higgs portal in the HAHM. It is worth mentioning that both these
portals are renormalizable. The dark photon mass generation mechanism proceeds via the SSB
of the U(1)Q symmetry after the new scalar acquires a VEV.

In order to explore the phenomenology of the HAHM model, we first introduced in chapter 4
the physics behind the scalar mixing along with the new interactions and decay widths of the
model. By doing so, we saw that several well-measured EW observables, such as the Higgs
and the Z boson mass and couplings, received extra contributions suppressed by the HAHM
parameters. Hence, we explored in chapter 5 the EW precision test constraints on the scalar and
kinetic mixing variables. This study was important to set the baseline values for the HAHM
parameters that were employed for the model simulation.

Finally, in chapter 6 we focused on some phenomenological implications of the HAHM.
In particular we decided to study two different searches. The first one was related to the h !
Z�Z� ! 4µ process, which proceeds via the scalar and kinetic mixing vertices. Hence, with
such signal we can constraint both the Higgs and the KM portals. For the former constraint,
we considered the ATLAS and CMS bounds with a prompt dark photon decay search in the
h ! Z�Z� ! 4µ channel. For the latter, we performed a ZQ displaced decay search in the
ATLAS experiment.

The methodology we follow in order to obtain such bounds was based on Monte-Carlo event
simulator tools, such as MADGRAPH, PYTHIA8, DELPHES and MADDUMP. We described
in chapter 6 the details of the signal simulation, as well as the employed kinematic cuts and the
detector efficiency evaluation. Compared to the previous analysis of [51] for this same channel,
we have implemented several improvements on the signal simulation. First, whereas in [51]
the authors did not simulate the detector response, we employed the DELPHES software for
the full detector simulation. We also applied the chosen kinematic cuts on the detector-level
events, in order to calculate the combined geometric, energetic, and kinematic efficiency of the
CMS and ATLAS experiments. Besides, we performed a background study to select the best
kinematical cuts that enhance the signal-to-background ratio, while in [51] they used a dark
photon mass dependent cut which is not the best choice for a real experimental search.

Regarding the simulation of the displaced ZQ signal, we employed the MADDUMP soft-
ware for the decay probability computation. We modified the python-based source code of this
program to include the geometry of the ATLAS detector and the decay probability of the two
dark photon displaced decay. In addition, we add the explicit calculation of the Z� leptonic
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and hadronic decays, following the implementation described in the first part of this disserta-
tion. This was crucial since the MADGRAPH software was primarily conceived for high-energy
collision, such that it does not have any hadronic implementation and in general considers lep-
tons and quarks as massless states. Since in [51] the authors only used this software, their
results can be misleading for very light dark photons. A final remark is that we also included in
the displaced search the detector efficiency obtained after applying the kinematical cuts at the
detector-level events generated by the DELPHES software.

After performing the simulation and analysis of the prompt and displaced h ! Z�Z� !
4µ searches, we obtained the final bounds in the  ⇥ mZ� and ✏ ⇥ mZ� parameter spaces,
respectively. In the case of the Higgs portal constraint, our results are compatible with the recent
published results of the ATLAS collaboration [52]. We also highlighted the main differences
when comparing with the previous results from [51]. For the case of the KM constraint, we saw
that the ATLAS experiment is capable of probing an unexplored region of the parameter space
that extends for KM parameters between 10�4 . ✏ . 10�7 and masses between 0.6 GeV .
mZ� . 10 GeV, depending on the  value. Another interesting feature was the appearance of
the effects of our hadronic MADDUMP implementation in the final displaced bounds.

The other HAHM phenomenology analysis we investigated was related to the recently mea-
sured upper limit on the invisible kaon decay K

0
L

! ⇡
0 + inv branching ratio [173, 174]. By

considering the HAHM decay K
0
L

! ⇡
0
s we were able to set a bound on the sh⇥ms parameter

space. Recall that the obtained EW precision test limit to this mixing angle was sh . 5 ⇥ 10�2.
With the KOTO bound we lowered such constraint to sh . 7 ⇥ 10�4 for dark Higgs masses
smaller than ⇠ 360 MeV. We also computed the bound for the SM K

0
L

! ⇡
0
⌫⌫̄ branching ratio

prediction. This limit represents the upper bound on sh that the KOTO sensitivity can reach, i.e.
the KOTO experiments can probe scalar mixing angles down to ⇠ 7 ⇥ 10�5.

Now that we described our main results, let us comment about our future research perspec-
tives. Regarding the study developed in the first part of this dissertation, we plan to extend our
work by including also dark matter candidates in the U(1)Q model framework. The DM can-
didates, which can be complex scalars, Majorana fermions, Dirac fermions, as well as inelastic
DM particles, will couple directly to the dark boson ZQ. In fact, we already started the study of
such model and one can already find in our DELIVER python package the ZQ decays into DM
candidates. Right now we are investigating how the inclusion of this extended dark sector can
impact the recast of the experimental dark photon bounds for other baryophilic models.

For the case of the HAHM, we are also studying other potential searches than can bound
the model parameter space. In particular, we analyzed the sensitivity of the LHCb experiment
to the displaced search B ! Ks ! KZ�Z� ! K 4l, where the dark Higgs is produced via B
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meson decays into kaons, and then it subsequently decay into a dark photon pair which in turn
produce a visible leptonic signal. We considered a scenario where the s decay is prompt while
the dark photon can propagate before the decay. Following the same approach described in
chapter 6, the simulations were made using a modified MADDUMP version with the inclusion
of the correct width implementation, in this case for both the dark Higgs and the dark photon
particles. Now, we are investigating the possibility to bound the HAHM with the B-factory
experiments BaBar and Belle via the Upsilon decay.

To conclude, we just want to emphasize again the importance of studying and searching
for BSM signals. The SM of particle physics was developed more than half century ago, and,
although all the theoretical predictions could be verified with an exceptional good precision,
several other experimental evidences suggest that there is still missing pieces that we are failing
to describe. In this context, we need to rely on SM extensions to shed some light on the yet
unanswered questions. In particular, a very good motivation for U(1)Q models is their simplicity
and renormalizability, which makes them valuable candidates for the portal between our world
and a possible dark sector. Although the search for this possible new dark boson can be very
challenging, there are several future experimental prospects to enlarge the signal sensitivities.
We hope that in the (near) future we can finally confront the truth behind the mysteries that
Nature reserved for us to unravel.
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Appendix A

Chiral Perturbation Theory for Mesons

In this appendix we will discuss in more detail the theoretical background that we used
for the description of the hadronic processes in the width calculation. We will start by giving
an overview of the effective theory that characterizes the low-energy degrees of freedom of
Quantum Chromodynamics (QCD), denoted as Chiral Perturbation Theory (ChPT), that will
cover pseudoscalar meson interactions with external fields. After that, we will introduce the
couplings with an odd number of pseudoscalar mesons by considering the Wess-Zumino-Witten
action. In the third section, we enlarge the ChPT Lagrangian by adding the vector meson
interactions through the Hidden Local Symmetry model. Finally, in the last section we will
comment on the Vector Meson Dominance (VMD) framework, which we employed in the main
analysis of [70] for the decomposition of the hadronic processes into ⇢, ! and � components.

A.1 Chiral Perturbation Theory review

The SM of particle physics gives a good description for three of the four forces we have
observed in Nature, i.e. electromagnetic, strong and weak forces. Within the SM, the theory
that describes strong interactions is called QCD and deals with gluon and quark degrees of
freedom. However, as the name already suggests, the strong force is strongly coupled, meaning
that its perturbativity fails to work in the low-energy regime (energies smaller than ⇠ 1 GeV).
Due to the phenomenon of confinement, the low energy degrees of freedom cease to be quarks
and gluons and become composite states of quarks, called hadrons.

In order to describe this low-energy theory we need to rely on effective field theory (EFT)
methods. ChPT is exactly the EFT that will deal with the low-energy dynamics of QCD, such
as meson interactions, and the approximate chiral symmetry valid in that regime. In order to
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obtain the chiral Lagrangian we start with the pure QCD Lagrangian including only the three
lightest quarks u, d and s

LQCD = �1

4
(Ga

µ⌫
)2 + q̄(i /D � Mq)q , (A.1)

where G
a

µ⌫
is the gluon field strength tensor, q and q̄ are the quark and anti-quark triplets q =

(u, d, s)T , q̄ = (ū, d̄, s̄), Mq is the quark mass matrix Mq = diag(mu, md, ms) and D is the
covariant derivative

Dµ = @µ + igGµ , (A.2)

with Gµ = G
a

µ
T

a the eight gluon fields and T
a the SU(3)c generators. In order to expose

the chiral behaviour of this Lagrangian we can decompose the quarks into their right-handed
PR q = 1

2(1 + �5)q ⌘ qR and left-handed PL q = 1
2(1 � �5)q ⌘ qL projections

LQCD = �1

4
(Ga

µ⌫
)2 + iq̄L /DqL + iq̄R /DqR � q̄RMqqL � q̄LM

†

q
qR . (A.3)

Note that the mass terms spoil the total decoupling of the right-handed (RH) and left-handed
(LH) fields. However, if we remember that the masses of these three quarks are much smaller
than the QCD scale mu, md, ms ⌧ ⇤QCD ⇠ 1 GeV 1, we can safely approximate the quark
masses to zero, ending with

LQCD = �1

4
(Ga

µ⌫
)2 + iq̄L /DqL + iq̄R /DqR . (A.4)

Now, we can see that this Lagrangian has two independent symmetries, that correspond to the
individual rotation of the LH and RH fields, according to

qL ! e
i✓

a
LT

a
qL ⌘ L qL (L 2 SU(3)L) (A.5)

qR ! e
i✓

a
RT

a
qR ⌘ R qR (R 2 SU(3)R) (A.6)

where ✓
a

L,R
parametrize the SU(3)L,R transformation. Hence, we say that LQCD is symmetric

under the chiral SU(3)L ⇥ SU(3)R, where the word ‘chiral’ means that the symmetry acts
differently on LH and RH fields. In fact, the massless QCD Lagrangian is symmetric under
the symmetry group G = SU(3)L ⇥ SU(3)R ⇥ U(1)V ⇥ U(1)A, where the last two groups

1Actually, we have (mu, md, ms) = (2.15, 4.70, 93.5)/MeV, implying that mu, md ⌧ ms and hence
SU(2)L ⇥ SU(2)R is a better symmetry than SU(3)L ⇥ SU(3)R.
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correspond to vector and axial transformations

q ! e
i✓
q (U(1)V ) , (A.7)

q ! e
i✓�5q (U(1)A) . (A.8)

On one side, the vector U(1)V symmetry remains even with the inclusion of quark masses and
represents the conservation of baryon number. On the other side, the axial symmetry U(1)A is
anomalous, i.e. it is broken by quantum effects on what is denoted by the axial anomaly.

Although we have discovered the full symmetry group of the massless QCD Lagrangian,
this is not the end of the story. For instance, right after the beginning of the Universe, when
the temperatures lowered below the ⇤QCD scale, the quarks started to condensate, in what we
call ‘quark condensation’ or ‘chiral condensation’ phenomenon [187]. The quark condensate
acquires a VEV

hūui = hd̄di = hs̄si = V
3
, (A.9)

which in turn spontaneously breaks the SU(3)L⇥SU(3)R symmetry into the diagonal subgroup
SU(3)V , also called SU(3)isospin

SU(3)L ⇥ SU(3)R
hq̄qi��! SU(3)V (A.10)

Note that, according to the Goldstone Theorem, since dim(SU(3)L ⇥ SU(3)R) = 16 and
dim(SU(3)V ) = 8, we must have 16 � 8 = 8 broken generators, and hence, eight Nambu-
Goldstone Bosons (NGB) arising from this SSB pattern. These eight pseudoscalars degrees of
freedom must transform as an octet under SU(3)V and can be identified with the SM pseu-
doscalar mesons, as we will see next. First, let us parametrize the NGBs by the Goldstone
matrix

⌃(x) = e
i�(x)/f⇡ , (A.11)

where f⇡ is the pion decay constant, which is a parameter with mass dimension,

�(x) =
8X

a=1
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where �a are the Gell-Mann matrices normalized to Tr[�a�b] = 2�ab, we identified the eight
mesons with linear combinations of �a, i.e. the mesons manifest as excitations of the chiral
condensate, and ⌘8 mixes with a non-NGB resonance ⌘0 to form the physical ⌘ and ⌘

0 mesons.
Note that the ⇡

0, ⌘ and ⌘
0 generators can be expressed as

T⇡0 =
�3

2
=

1

2
diag(1, �1, 0) ,

T⌘ =
cos ✓

2
�8 � sin ✓p

6
1 ⇡ 1p

6
diag(1, 1, �1) ,

T⌘0 =
sin ✓

2
�8 +

cos ✓p
6

1 ⇡ 1

2
p

3
diag(1, 1, 2) ,

(A.13)

where the ⌘ � ⌘
0 mixing angle ✓ satisfies sin ✓ ' �1/3 and cos ✓ ' 2

p
2/3 [188].

The Goldstone matrix transforms linearly under SU(3)L ⇥ SU(3)R

⌃ ! L⌃R
†
, ⌃† ! R⌃†

L
†
, (A.14)

such that the mesons will transform under infinitesimal transformations according to

�
a ! �

a +
f⇡

2
(✓a

L
� ✓

a

R
) � 1

2
f
abc(✓b

L
+ ✓

b

R
)�c + . . . , (A.15)

where f
abc are the structure constants of the SU(3) algebra [�a, �b] = 2ifabc

�c. Here we used
the Baker–Campbell–Hausdorff formula and that T

a = �a/2. Note that in the broken phase we
have ✓

a

L
= ✓

a

R
, confirming that the mesons will transform in the adjoint representation, given

that the generators of the adjoint representation are the structure constants f
abc themselves. This

is what we expected, since, for example, the physical pions transform according to the adjoint
representation of the isospin group.

In order to build the chiral Lagrangian we must remember that it should contain the same
approximate symmetry as in QCD, meaning that it must be invariant under the chiral transfor-
mation (A.14). Another feature of the low-energy effective theory is that it must behave as an
expansion of operators suppressed by powers of a mass dimension parameter (cutoff). This
cutoff will specify the valid energy regime of the chiral Lagrangian.

Armed with these arguments, we are ready to build the most general consistent chiral La-
grangian. The leading order term is given by [189, 190]

L0
ChPT =

f
2
⇡

4
Tr
⇥
(Dµ⌃)(Dµ⌃)†

⇤
, (A.16)
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and the complete Lagrangian is [191]

LChPT = L0
ChPT + L1

�
Tr
⇥
(Dµ⌃)(Dµ⌃)†

⇤�2
+ L2Tr

⇥
(Dµ⌃)(D⌫⌃)†

⇤
Tr
⇥
(Dµ⌃)(D⌫⌃)†

⇤
+ . . .

(A.17)

where the subleading Li terms have at least four derivatives, resulting in suppressions propor-
tional to an even number of extra f

�1
⇡

powers compared to the leading term. We can also
observe that all the ⌃ terms carry derivatives. This is a consequence of the fact that ⌃⌃† = I

would result in trivial terms.

To include external gauge fields we use a trick where we gauge the SU(3)L ⇥ SU(3)R

symmetry introducing the associated gauge bosons lµ and rµ, respectively. Then, the covariant
derivative that appears in eq. (A.16) acting on the Goldstone Matrix is given by

Dµ⌃ = @µ⌃+ ilµ⌃� i⌃rµ , (A.18)

such that we have the following transformation laws

Dµ⌃ ! L(Dµ⌃)R†
, (A.19)

rµ ! RrµR
† + iR@µR

†
, (A.20)

lµ ! LlµL
† + iL@µL

†
. (A.21)

For illustration, we can add the interaction with the photon field. We know that it couples
identically to LH and RH quarks, therefore we can assign

rµ = lµ = eQAµ , (A.22)

where e is the EM charge, Q = diag(qu, qd, qs) = diag(2/3, �1/3, �1/3) is the quark charge
matrix and Aµ is the photon field. The interactions with the quarks then read

Lint = q̄L�
µ
lµqL + q̄R�

µ
rµqR

= eQAµ(q̄L�
µ
qL + q̄R�

µ
qR) = eQAµq̄�

µ
q

= eA
µ

✓
1p
2

⇥
(qu � qd)J

I=1(3)
µ

+ (qu + qd)J
I=0
µ

⇤
+ qsJ

s

µ

◆

= eA
µ
J
had
µ

,

(A.23)

where we defined the third component of the isospin I = 1, the isospin I = 0, and the strange-
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quark current, respectively, as

J
I=1(3)
µ

=
1p
2
(ū�µu � d̄�µd) ,

J
I=0
µ

=
1p
2
(ū�µu + d̄�µd) ,

J
s

µ
= s̄�µs . (A.24)

As we will see next, in the VMD approach we will assign these currents to the vector mesons
⇢, ! and �.

If we now expand the leading term of the chiral Lagrangian eq. (A.16), including the photon
field, we obtain

L0
ChPT =

f
2
⇡

4
Tr
⇥
(@µ⌃+ ieQAµ⌃� i⌃eQAµ)(@

µ⌃† � i⌃†
A

µ
eQ + iA

µ
eQ⌃†)

⇤

=
1

2
(@µ⇡

0)2 + (@µ⇡
+)(@µ

⇡
�)† + · · · +

ief
2
⇡

2
AµTr

⇥
⌃@

µ⌃†
Q � ⌃Q@

µ⌃†
⇤
+ ...

(A.25)

where in the second line we collected some kinetic terms for the pions as well as the linear term
in Aµ. If we further expand ⌃ up to quadratic terms, the linear photon coupling becomes

L0,�
ChPT =

ie

2
AµTr [Q[�, @

µ�]] , (A.26)

such that we can write down the terms that describe interactions between the photon and the
pseudoscalar mesons

L�PP =eAµi
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� qs

⇥
K

�
@
µ
K

+ � K
+
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µ
K

�
⇤
+ . . .

⌘
,

(A.27)

where the dots represent additional couplings to the K
0
, K̄

0 mesons.

Finally, just for completeness, it is important to include some comments about a possible
mass term for the mesons. As we know, the shift symmetry of eq. (A.15) forbids a mass term
for the mesons, since it would explicitly break the chiral symmetry. A viable solution would be
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to promote the quark mass matrix into a fictitious field that would transform as

Mq ! LMqR
†
, (A.28)

such that we can build a chiral invariant mass term. We then call the mass matrix a spurion,
i.e. an auxiliary field that will be used to determine the invariant operators under the symmetry.
The chiral Lagrangian eq. (A.16) can now also include a mass term

L0
ChPT =

f
2
⇡

4
Tr
⇥
(Dµ⌃)(Dµ⌃)†

⇤
+

f
2
⇡

2
⇤mTr

⇥
M

†

q
⌃+ ⌃†

Mq

⇤
, (A.29)

where ⇤m is a new parameter with dimensions of mass that need to be fixed by experimental
measurements.

A.2 Wess-Zumino-Witten term

Until now, the strategy we follow in the last section allowed us to build a Lagrangian to
describe the dynamics of pseudoscalar mesons in conjunction with the interactions of the photon
with an even number of pseudoscalars, such as the �PP coupling. However, what happens if
we also want to give a description for the processes involving an odd number of pseudoscalars,
like the ⇡

0 ! �� decay? To solve this question Wess, Zumino and Witten [192, 193] proposed
an additional term to the chiral Lagrangian to account for these processes. When considering
only the massless NGBs without external fields, this new term was expressed by the addition of
the following term to the equations of motion of the chiral Lagrangian

@µ

✓
f
2
⇡

2
⌃@

µ⌃†

◆
+ �"

µ⌫⇢�⌃@µ⌃
†⌃@⌫⌃

†⌃@⇢⌃
†⌃@�⌃

† = 0 , (A.30)

where � is a constant and "
µ⌫⇢� is the completely anti-symmetric Levi-Civita tensor. To for-

mally include this term into the action functional of ChPT it is necessary to extend the field
definition adding an extra hypothetical fifth dimension. We will not specialize here on the spe-
cific technical construction of the WZW action 2, but only quote the result for the term with the
smallest number of NGBs,

S
5�
WZW =

1

240⇡2f 5
⇡

Z
d4

x"
µ⌫⇢�Tr [�@µ�@⌫�@⇢�@��] , (A.31)

2We refer to [189, 194] for more details about the WZW action construction.
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where we already performed the integration over the fifth dimension. Now, if we want to include
the external fields, it is necessary to add an extra term to the original WZW action S

0
WZW, given

by [195–197]

SWZW = S
0
WZW + S

ext
WZW

S
ext
WZW = � iNC

48⇡2

Z
d4

x "
µ⌫⇢�Tr [Zµ⌫⇢�] , (A.32)

where NC = 3 is the number of colors and Zµ⌫⇢� contains more than 20 terms which combine
powers of ⌃,⌃†, @µ⌃, @µ⌃†, lµ and rµ. For the special case of the photon field, where rµ =

lµ = eQAµ, we can simplify this expression a lot due to symmetry arguments in the presence
of the total anti-symmetric tensor. In the end, we obtain [189, 194]

Lext
WZW =eAµJ

µ + i
NCe

2

48⇡2
"
µ⌫⇢�

@⌫A⇢A�Tr
h
2Q2(⌃@µ⌃

† � ⌃†
@µ⌃)

� Q⌃†
Q@µ⌃+ Q⌃Q@µ⌃

†

i
,

(A.33)

where the current J
µ is given by

J
µ =

NC"
µ⌫⇢�

48⇡2
Tr
⇥
Q@⌫⌃⌃

†
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†
@�⌃⌃

† + Q⌃†
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†
@⇢⌃⌃

†
@�⌃

⇤
. (A.34)

If we further expand ⌃ = 1+ i
�
f⇡

+ . . . , and use the parametrization of � in terms of the NGBs,
given in eq. (A.12), we can then obtain the EM interactions with the pseudoscalar mesons. For
the case of interactions with three mesons, we find that

J
µ

3� = � i"
µ⌫⇢�

8⇡2f 3
⇡

Tr [Q@⌫�@⇢�@��] . (A.35)

For instance, we can use this equation to obtain the 3⇡ and ⌘⇡⇡ currents

J
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3⇡ = � i"
µ⌫⇢�

4⇡2f 3
⇡
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+
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�
@�⇡
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4
p

3⇡2f 3
⇡

@⌫⌘@⇢⇡
+
@�⇡

�
, (A.36)

respectively, which describe (� 3⇡) and (� ⌘ ⇡
+
⇡
�) interactions.

The second term in eq. (A.33) covers interaction with two photon fields. It can be used, for
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example, to describe the ⇡
0 ! �� decay

L⇡0�� = � e
2

32⇡2
"µ⌫⇢�F

µ⌫
F

⇢�
⇡
0

f⇡
, (A.37)

where F
µ⌫ is the photon field strength tensor.

A.3 Hidden Local Symmetry model

In the last two sections we saw how to build the chiral Lagrangian and we succeed to de-
scribe pseudoscalar meson interactions with the photon, now including even and odd number of
mesons. Nevertheless, the SM particle spectrum contains also vector mesons aside from pseu-
doscalar degrees of freedom. So, the question that we are left to ask is how to include these
vector mesons and correctly describe their interactions within the ChPT framework?

The most popular theoretical framework that succeeds to answer this question is the Hidden
Local Symmetry (HLS) approach [194, 198–202], in which we treat the vector mesons as the
dynamical gauge bosons of a hidden U(3)V local symmetry. In fact, the HLS method can be
applied to any system described by a non-linear realization of the symmetry G that is broken
spontaneously into a subgroup H ⇢ G. The reason is that we have a gauge equivalence between
the nonlinear sigma model, where the NGBs transform non-linear under G/H , and the HLS
model with a larger symmetry Gglobal ⇥ Hlocal, where Hlocal is the HLS.

Let us now explain the idea behind the HLS framework. First, we divide the Goldstone
matrix into two fields

⌃(x) = ⇠
†

L
(x) ⇠R(x) , (A.38)

where the new fields transform under Gglobal ⇥ Hlocal = [U(3)
L

⇥ U(3)
R
]global ⇥ [U(3)

V
]local as

⇠L ! H⇠LL
†

⇠R ! H⇠RR
†
, (A.39)

and H 2 Hlocal. Now, we can introduce the non-Abelian gauge field

Vµ = V
a

µ
T

a
, (A.40)
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by including it in the covariant derivatives

Dµ⇠L = (@µ � igVµ)⇠L + i⇠Llµ

Dµ⇠R = (@µ � igVµ)⇠R + i⇠Rrµ . (A.41)

where we also add the external gauge fields lµ and rµ. The covariant derivatives will follow the
same transformation laws for ⇠L,R while the HLS gauge boson will transform according to

Vµ ! HVµH
† + iH@µH

†
. (A.42)

Using ⇠L,R and Dµ⇠L,R we can build two invariants under the larger symmetry Gglobal ⇥ Hlocal

LV/A = �f
2
⇡

4
Tr

⇣
Dµ⇠L · ⇠

†

L
± Dµ⇠R · ⇠

†

R

⌘2�
, (A.43)

such that we can write down the final Lagrangian

L = LA + aLV + Lkin
gauge , (A.44)

where a is an arbitrary parameter and the gauge Lagrangian Lkin
gauge contains the kinetic terms of

the gauge fields
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2
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V,µ⌫) � 1

2
Tr(fL
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f
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R,µ⌫) . (A.45)

with F
V

µ⌫
= @µV⌫ � @⌫Vµ � ig[Vµ, V⌫ ] the field strength tensor of the HLS gauge boson. Linear

combinations of LV and LA reproduce the original chiral Lagrangian in eq. (A.16).

The next step is to fix the HLS gauge, by choosing ⇠L = ⇠
†

R
⌘ ⇠ = e

i�/2f⇡ . We will also
consider the external field as being the photon field lµ = rµ = �eQAµ. The Lagrangian then
takes the form
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+ . . . , (A.46)
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where we can find in LA the chiral Lagrangian plus terms that describe photon interactions,
while LV comprises the terms involving the vector mesons Vµ. We can then expand ⇠ = 1 �
i�
2f⇡

+ ... in order to get the interactions terms

LA + aLV � � 1

4
igV PP2Tr [Vµ[�, @

µ�]] +
1

4
g�PPAµ2Tr [Q[�, @

µ�]]

+ egV �2AµTr [V µ
Q] + ... , (A.47)

where we defined the couplings with two pseudoscalars as gV PP = 1
2ag and g�PP = 1

2(a � 2)e,
while the vector meson-photon mixing is gV � = agf

2
⇡

.
The gauge field matrix V

µ can be expressed in terms of real vector meson states
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Using the last equation we can obtain the vector meson U(3) generators, such as

T⇢ =
1

2
diag(1, �1, 0) ,

T! =
1

2
diag(1, 1, 0) ,

T� =
1p
2
diag(0, 0, 1) . (A.49)

Now, we can use eq. (A.47), together with the vector meson kinetic term of eq. (A.45), to obtain
the final Feynman rules of the HLS model, which we explicitly show in figure A.1.

One important remark about the HLS model is that we can recover the original chiral La-
grangian with external photon fields in the limit where the vector meson decouples (m2

V
� p

2).
For example, we can describe the annihilation of a photon into two pseudoscalar by the process
� ! V ! PP , where the first vertex arise from the photon-vector-meson mixing (last term
of eq. (A.47)) and the second from the V PP interaction (first term of eq. (A.47)). Now, in the
limit where m

2
V

� p
2, or similarly where p

2 ! 0, the matrix element of this process, obtained
with the HLS approach, reduces to the one from the direct � ! PP interaction from eq. (A.26).
This implies that the point-like �PP vertex behaves as a low-energy limit of the vector meson
HLS.

Now, what about the terms with odd interactions? On the one hand, analogously to the case
of ChPT, we can also add a WZW component to the HLS Lagrangian. On the other hand, the
explicitly construction and addition of the terms that create the WZW action requires the intro-
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Figure A.1: Feynman rules of the HLS vector meson model with an external photon field Aµ.
The V

a

µ
fields represent the vector mesons while the �

a fields are the pseudoscalar mesons.

duction of several differential forms and the further assembly of these forms into Lagrangian
invariants that contain interactions mixing the vector mesons, photons and pseudoscalars, such
as (V ��), (V V �) and (V �3). Here we will not go into the technical details of the WZW-HLS
construction 3, but will only mention that in Ref. [194] the authors present a specific combina-
tion of this Lagrangian invariants with the attribute that all interactions with vector mesons can
be described using the V V � vertex

LV V � =
3g2

4⇡2f⇡
✏
µ⌫⇢�

@µV
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⌫
@⇢V

b

�
�
cTr
⇥
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a
T

b
T

c
⇤

. (A.50)

Now, all the processes that contain vector mesons will be given by the photon-vector-meson
mixing and the V V � vertex, that in general will be the !⇢⇡ coupling

L!⇢⇡ = g!⇢⇡✏
µ⌫⇢�

@µ!⌫@⇢⇢�⇡
0 + ... (A.51)

3For further details, we refer the reader to [194].
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⇡

⇢

!

�

�

Figure A.2: ⇡
0 ! �� decay within the vector meson HLS model.

For illustration, let us consider the ⇡
0 ! �� decay. This process can be described by a !⇢⇡

coupling following two photon-vector-meson mixings, as shown in Figure A.2.

A.4 Vector Meson Dominance framework

In the last section, we showed how to add the vector mesons in the chiral Lagrangian descrip-
tion using the HLS model. When we include the odd interaction terms with the WZW approach
we choose a particular choice of Lagrangian invariants, fixed by experimental observations, in
order to describe the vector meson interactions only with the V V P vertex and mixing with the
photon. This choice already depicts a specific realization in which vector mesons dominate, i.e.
we shift to a representation of hadronic processes where the vector mesons predominate in the
vertices.

The idea behind the VMD framework is that in the regions close to the vector meson masses,
i.e. where the vector mesons dominate, the hadronic components of the vacuum polarization of
the photon consist solely of the know vector mesons [203], as illustrated by Figure A.3.

Figure A.3: Close to the vector meson masses the photon propagator receives dominant con-
tributions from hadronic loops that translate into an effective photon-vector-meson mixing.

In a more specific way, in the VMD theory we identify the light neutral vector mesons, such
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as ⇢
0
, !

0 and �, with the electromagnetic hadronic current Jhad
µ

through the field current-identity

Vµ ⇠ J
had
µ

. (A.52)

To show this relation we reduce the gauge symmetry group to SU(2) with the isospin doublets
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,  ̄q =
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ū d̄

⌘
. (A.53)

We then write a general Lagrangian invariant under this isospin symmetry and including the
isospin I = 1 triplet gauge field ⇢µ
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where m⇢ is the ⇢ field mass, Gµ⌫ is the ⇢ strength tensor and ⌧
a = i

2�
a are the SU(2) group

generators with Pauli matrices �
a. If we expand the interaction term, we can notice that the

third isospin I = 1 mode is neutral and also that it couples to a quark content similar to the
isospin I = 1 component of the EM current in eq. (A.24)
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This suggest that we can shift the third component of the ⇢ field by

⇢
3
µ

! ⇢̂
3 = ⇢

3
µ

+
e0

g0
Aµ ,

in order to incorporate the photon field Aµ in the Lagrangian. If we then add the photon kinetic
terms and write the photon and ⇢ fields equations of motion we can arrive to the well know
result

1p
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⌫

= �
m

2
⇢

g0
⇢
3
⌫
, (A.56)

which is the field-current equation. Thus, we see that the third component of the isovector EM
hadronic current can be identified as the third component of the isospin triplet ⇢µ, which we
associate with the physical ⇢ meson. Similarly, we can identify the isoscalar I = 0 component
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of J
had with the ! meson

!µ ⇠ J
I=0
µ

=
1p
2

�
ū�µu + d̄�µd

�
. (A.57)

If we further expand the quark content by adding the strange quark s, we can identify the �

vector meson with the strange current

�µ ⇠ J
s

µ
= s̄�µs . (A.58)

Thus, we end up with the field-current identity

J
had
µ

=
X

V=⇢,!,�

m
2
V

gV
Vµ . (A.59)

Finally, we can write down the complete Lagrangian of the VMD representation, which
takes the form

LVMD = �1

4
Fµ⌫F

µ⌫ � 1

4
Vµ⌫Vµ⌫ +

1

2
m

2
V
VµVµ � gV ⇡⇡VµJ

had,µ � eAµJ
had,µ � e

2gV
Fµ⌫Vµ⌫

.

(A.60)

So, in other words, the whole purpose of the VMD model is to show that the coupling of the
photon to the electromagnetic quark current can be replaced by a coupling to vector mesons,
with each vector representing a specific component of the EM current.

A.5 Light U(1)Q vector mediators in ChPT

Now that we establish the ideas behind the HLS and VMD models, we can generalize these
theories to a BSM framework by the inclusion of a light U(1)Q vector mediator, such as the
dark photon or any baryophilic boson. This mediator will enter in the ChPT Lagrangian in the
same way as the photon field, i.e. it will behave like an external gauge field as described in
eq. (A.18).

The theoretical details about the extension of the SM by a new U(1)Q gauge symmetry can
be found in chapter 1. Following eq. (A.22), now, in addition to the photon field, we will add
the new vector mediator ZQ via the lµ, rµ prescription

rµ = lµ = Q
f
ZQ,µ + eQAµ , (A.61)
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where Q
f is the diagonal light quark matrix Q

f = diag(qu
Q
, q

d

Q
, q

s

Q
) and q

u,d,s

Q
are the U(1)Q

quark charges. In this equation we also used the fact that the new mediator will couple to LH
and RH fields in the same way. With the addition of the new mediator, the covariant derivative
that acts on the Goldstone Matrix will become

Dµ⌃ = @µ⌃+ i(Qf
ZQ,µ + eQAµ)⌃� i⌃(Qf

ZQ,µ + eQAµ) . (A.62)

The theoretical outcomes of this inclusion will be the simply addition of new terms for the
ZQ boson that are similar to the photon terms, but replacing eQAµ ! Q

f
ZQ,µ, and also some

extra terms mixing the photon and new mediator fields. For instance, the chiral Lagrangian
given by eq. (A.25) will be

LChPT =
f
2
⇡

4
Tr
⇥
Dµ⌃(Dµ⌃)†

⇤

= · · · � if
2
⇡

4
ZQ,µ

⇣
Tr
⇥
⌃(@µ⌃†)Qf + ⌃†(@µ⌃)Qf

⇤

+ 4eAµTr
⇥
QQ

f
⇤
� 2eAµTr

⇥
Q⌃Q

f⌃†
⇤
� 2eAµTr

⇥
Q

f⌃Q⌃†
⇤

� 2Zµ

Q
Tr
⇥
(Qf )2

⇤
+ 2Zµ

Q
Tr
⇥
Q

f⌃Q
f⌃†
⇤ ⌘

+ . . . (A.63)

Note that the couplings of the new mediator to quarks play a major role here, since the inter-
actions with the pseudoscalar mesons will be determined via traces involving the quark matrix
Q

f . Now, analogously to what we did before, we can also generalize eq. (A.27)

LZQPP =ZQ,µ i

⇣
(qu

Q
� q

d

Q
)
⇥
⇡
�
@
µ
⇡
+ � ⇡

+
@
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@
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+ � K
+
@
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(qu
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@
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K

+ � K
+
@
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K

�
⇤
� q

s

Q

⇥
K

�
@
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K

+ � K
+
@
µ
K

�
⇤
+ . . .

⌘
.

We could also include interactions with an odd number of pseudoscalar mesons. In this case we
would obtain similar expressions to eq. (A.36), but with the new vector field ZQ.

Finally, if we want to describe interactions involving vector mesons, we need to follow the
same approach of the HLS section. Recall that, after including the WZW term to the chiral
Lagrangian, we ended with a formulation where all the processes with vector mesons could be
described by combining the V V � vertex with the mixing between the photon and the vector
meson. Now, if we want the same description but for a new vector mediator ZQ, we simply
exchange the photon field by the new boson field, such that now we will use the V V � vertex
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and the vector mediator-vector meson mixing

LV ZQ = 2 gQZ
µ

Q
Tr
⇥
VµQ

f
⇤

. (A.64)

This term is the U(1)Q version of the last term of eq. (A.47), and is exactly the equation that
we use for the formulation of ZQ decays into hadrons (eq. (1.47)) depicted in section 1.3.2.
Therefore, the hadronic decays proceed in the following manner: after its production, the new
vector mediator ZQ converts into a vector meson, according to eq. (1.47), and then the subse-
quent vector meson decays into other mesons via the V V � vertex. The vector mesons can also
decay into photons, in this case we will use the photon-vector meson mixing.



130 Appendix A



Appendix B

Hadronic Current Calculation

The main purpose of this appendix is to explain and derive the formulas of the hadronic
currents that appear in equations (2.14) and (2.15) for several types of hadronic channels, such
that we can obtain the final cross-section and decay width expressions. To this end, we will first
introduce in the next section some kinematic details about the calculation of the phase space
element and then we will make some comments about the underlying symmetry assumptions
that help in the determination of which vector meson will contribute to a certain hadronic cur-
rent. Finally, in the last section we give the complete expression of each hadronic current type,
together with the correspondent form-factor.

B.1 Kinematic Details

In order to calculate the cross-section and decay width formulas of equations (2.9), (2.10)
and (2.12), we need to obtain the expressions for the phase-space element d�n, as we describe
below.

B.1.1 Phase-space element

In the case of e
+
e
� annihilation into two particles, i.e. k+ + k� ! p1 + p2, in the center-of-

momentum frame the phase-space element will be

d�2 =
Y

i=1,2

d3
pi

(2⇡)32Ei

(2⇡)4�(4)(k+ + k� � p1 � p2) =
1

16⇡2

pfp
s
d⌦

) �2 =
1

4⇡

pfp
s

,

(B.1)
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where s = (k+ + k�)2 and pf = |~p1| = |~p2| is the magnitude of the final state particle momenta

pf = p̂(s, m2
1, m

2
2) =

1

2
p

s
�(s, m2

1, m
2
2) (B.2)

and � is the Callan function, which is given by

�(m2
0, m

2
1, m

2
2) =

q
m

4
0 + m

4
1 + m

4
2 � 2m2

0m
2
1 � 2m2

0m
2
2 � 2m2

1m
2
2

=
q

(m2
0 � (m1 + m2)2) (m2

0 � (m1 � m2)2) . (B.3)

Similarly, for a e
+
e
� annihilation into a three-body final state k+ + k� ! p1 + p2 + p3, the

phase-space element will be [2]

d�3 =
Y

i=1,2,3

d3
pi

(2⇡)32Ei

(2⇡)4�(4)(k+ + k� � p1 � p2 � p3) =
1

(2⇡)3
1

16s
dm

2
12dm

2
23 , (B.4)

where m
2
ij

= (pi + pj)2 (i, j = 1, 2, 3). If the integrand (that also includes the hadronic current)
only depends on one mass variable, m12 for example, we can integrate over the other one,
resulting in

d�3 =
dm

2
12

32⇡3s
1
2m12

p̂
3(s, m2

12, m
2
3)p̂

3(m2
12, m

2
1, m

2
2) , (B.5)

where
p̂(m2

0, m
2
1, m

2
2) =

�(m2
0, m

2
1, m

2
2)

2m0
. (B.6)

B.2 Symmetry Assumptions

In order to obtain the correct vector mesons that mediate a specific hadronic channel current,
we need to rely on symmetry arguments. In what follows, we will discuss the two most relevant
symmetries in the context of hadronic interactions that will be useful for us.

B.2.1 G-parity

G-parity is a multiplicative quantum number used in the context of strong interactions, spe-
cially valuable when dealing with pion processes. We define the G-parity number for a particle
p as

G(p) = (�1)L+S+I
, (B.7)
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where L, S and I are the orbital angular momentum, spin and isospin of the particle p, respec-
tively. The G-parity operation is a symmetry of low-energy strong interactions, meaning that all
meson composed of up and down quarks and anti-quarks are eigenstates of the G-parity number
G. This is the case of pions, that have G-parity equals to �1, according to

G(⇡) = (�1)0+0+1 = �1 , (B.8)

where the L, S and I quantum numbers can be extracted from PDG [2]. When the meson state
has G = �1 we call it G-parity odd, while when G = 1, we call it G-parity even.

The G-parity number will be useful when dealing with processes with mesons states com-
posed of u and d quarks and anti-quarks, since it will be conserved in such reactions. So, if we
want to guess which vector meson mediate this type of process we can use G-parity conserva-
tion. Using the quantum numbers from PDG we have that for the vector mesons V

G(V ) = (�1)0+1+I = (�1)(�1)I

) G(⇢) = (�1)(�1)1 = +1

) G(!) = (�1)(�1)0 = �1

) G(�) = (�1)(�1)0 = �1 . (B.9)

For illustration, let us consider the two pion final state H = ⇡
+
⇡
�. Since G-parity is a multi-

plicative number we have that

G(⇡⇡) = G(⇡)G(⇡) = (�1)(�1) = +1 . (B.10)

Hence, due to G-parity conservation, in order to mediate this current we need a vector meson
with isospin I = 1, such that the only candidate is the ⇢ meson that also has G = +1.

However, it is important to emphasize that this symmetry is only approximately conserved
in strong interactions, which means that G-parity violating, or ‘isospin breaking’, minor con-
tributions can appear in the description of a given channel. For instance, as we will see in the
next section, the H = ⇡

+
⇡
�
⇡
0 channel, which has G(3⇡) = �1, has a small G-parity violating

contribution coming from the ⇢ vector mediator. Therefore, we can use G-parity arguments to
determine the dominant contributions for a certain current, that in the case of H = ⇡

+
⇡
�
⇡
0 will

be V = !, �. However, we cannot discard possible small G-parity violation components.

Another interesting feature is that we can identify substructures in the hadronic channels by
using G-parity assumptions. For example, in the H = ⇡

+
⇡
�
⇡
0 channel, we can combine two

pions to create a G = +1 state. This state will be mediated by the ⇢ meson, such that we can
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describe the 3⇡ process with �, ! ! ⇢⇡
0 ! ⇡

+
⇡
�
⇡
0 (see figure B.3).

In summary, we can use G-parity in low-energy strong interactions involving hadronic states
with u and d quarks as a guiding principle to determine with vector mesons will dominate.
Nevertheless, for final state channels that include photons, such as H = ⇡� or ⌘�, we cannot
rely in G-parity conservation anymore since the interactions involved are not purely governed
by the strong force. For these pseudoscalar photon modes H = P� we need to include all
vector mesons in the hadronic current description, and the dominant ones will be determined by
considering the dominant branching ratios Br(V ! P�). Similarly, for mesons that contain s

quarks and anti-quarks, such as the kaons, G-parity fails to work. In this case, we will need to
consider purely isospin symmetry arguments, as we will see next.

B.2.2 Isospin Symmetry

For mesons that are bound states of strange quarks and carry the ‘strangeness’ quantum
number, dubbed as ‘strange mesons’, we cannot use G-parity assumptions anymore. Instead,
we will use isospin symmetry considerations to determine their vector contributions [204, 205].
Unlike in the G-parity case, we will not establish which mesons are forbidden and which are
allowed in each reaction. Rather than this, we will determine the magnitude of the contribution
of each vector meson to the hadronic current. To this end, we first need to express the mesons
as isospin eigenstates. For the kaons we have

��K+
↵

= |1/2, +1/2i ,
��K0

↵
= |1/2, �1/2i , (B.11)

��K̄0
↵

= |1/2, +1/2i ,
��K�

↵
= |1/2, �1/2i , (B.12)

and similarly for K
⇤(892)

��K⇤+
↵

= |1/2, +1/2i ,
��K⇤0

↵
= |1/2, �1/2i , (B.13)

��K̄⇤0
↵

= |1/2, +1/2i ,
��K⇤�

↵
= |1/2, �1/2i . (B.14)

The pion states are expressed as

��⇡+
↵

= |1, +1i ,
��⇡0
↵

= |1, 0i ,
��⇡�
↵

= |1, �1i . (B.15)

For instance, let us consider the H = KK⇡ channel. In order to obtain the isospin contribu-
tions to this channel, we first need to describe the K

⇤(892) decays by combining the different
isospin states. For example, consider the decays K

⇤(892) ! ⇡
0
K

+ and K
⇤(892) ! ⇡

+
K

0.
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Combining the final states, we obtain

��⇡0
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3
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3
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, (B.16)

and
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��K⇤+
↵

, (B.17)

where we used Clebsch-Gordon coefficients in the isospin tensor product. Therefore our calcu-
lations show that the weight of the ⇡

0
K

+ and ⇡
+
K

0 final states are
p

1/3 and
p

2/3, respec-
tively. In a similar way, we can extract the weights of all K⇡ final state combinations
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(B.18)

Now that we have the K
⇤ decays, we can follow the same strategy to obtain the isospin

I = 0 and I = 1 contributions of the K̄K
⇤ combinations. For instance

��K�
↵

⌦
��K⇤+

↵
= |1/2, �1/2i ⌦ |1/2, +1/2i

=

r
1

2
|1, 0i �

r
1

2
|0, 0i

=

r
1

2
(A1 � A0) , (B.19)

where A0 and A1 represent isospin I = 0 and I = 1 amplitudes, respectively. Hence, for
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example

K
�
K

⇤+ :
1p
2
(A1 � A0)

K̄
0
K

⇤0 :
1p
2
(A1 + A0) . (B.20)

Finally, we can join the results of eq. (B.18) and (B.20) to obtain the relative signs and coeffi-
cients of the isospin I = 0 and I = 1 amplitudes in the KK

⇤ ! K(K⇡) process cross-sections
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⇡
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⇡
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0(K+
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�)) :
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3
|A0 + A1|2,

�(K+(K̄0
⇡
�) + K

�(K0
⇡
+)) :

1

3
|A0 � A1|2 . (B.21)

Following this same method we can also describe, for example, the H = KK⇡⇡ channel.
This mode is one of the new channels that we performed the parametrizations and fit and we
refer to appendix C for more details.

B.3 Final Hadronic Current Expression

Now that we already have the expressions for the phase-space element, and have explored
the symmetry arguments that help identifying the vector meson contributions, we can finally
obtain the formulas of the hadronic currents, given by equations (2.14) and (2.15), for several
types of hadronic channels. We will also elaborate on the expressions of the corresponding
form-factors. Recall that for all the hadronic channels listed in table 2.2, and not marked as
‘new’ 1, we follow the parametrization and used the fits from [19]. For more details on the
parametrization and the explicit values of the fit parameters for each hadronic channel, including
the modes not considered below, we refer to appendix A of [19]. All the calculations described
below, including the form-factor formulas for all the considered hadronic channels, can be found
in the package DELIVER [70], available at https://github.com/preimitz/DeLiVeR.

1Regarding the ‘new’ channels of table 2.2, we give a detailed description on appendix C.

https://github.com/preimitz/DeLiVeR
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B.3.1 Two pseudoscalar mesons

The relevant two pseudoscalar channels H = P1P2 which we considered in this dissertation
are e

+
e
� ! ⇡

+
⇡
� and e

+
e
� ! K

+
K

�
, K

0
S
K

0
L

neutral modes. The former is described by
an isospin I = 1 current mediated by the ⇢ resonance, while the latter is described by isospin
I = 0, 1 currents mediated by ⇢, ! and � vector mesons, as we show in figure B.1. We can
obtain an expression for the H = P1P2 hadronic current by using the HLS Feynman rules for
the diagram in figure A.1. In this case, the useful rule is the one for the V PP vertex, from
which we can conclude that

J
µ = �(p1 � p2)

µ
F⇡/K(q2) , (B.22)

where q =
p

s = p1 + p2, resulting in

�J
µ
Jµ = q

2

 
1 �

4m2
⇡/K

q2

!
��F⇡/K(q2)

��2 , (B.23)

where F⇡/K is the ⇡⇡ / KK form-factor. Thus, we can use this hadronic current, combined with
the 2-body phase-space element given in eq. (B.1), in the cross-section formula of eq. (2.9) to
get

�(e+e
� ! ⇡⇡/ KK) =

⇡↵
2
em

3 q2

 
1 �

4m2
⇡/K

q2

!3/2 ��F⇡/K(q2)
��2 . (B.24)

Figure B.1: V ! ⇡
+
⇡
� and V ! KK currents mediated by V = ⇢ and V = ⇢, !, � vector

mesons, respectively.

Similarly, we can use eq. (2.10) to obtain the partial vector meson decay width

�(e+e
� ! V ! ⇡⇡/ KK) =

1

48⇡
mV

✓
1 �

4m2
⇡,K

m
2
V

◆3/2

|F⇡,K |2 . (B.25)

Now, regarding the form-factors, for the case of the ⇡⇡ channel, we took as in [19] the
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Figure B.2: The decay of a vector meson into a pseudoscalar meson and a photon proceeds via
the VVP vertex followed by the vector meson-photon mixing in one leg.

F⇡ form-factor from [106], which considers a sum of Breit-Wigner propagators plus a ⇢ � !

mixing contribution. The KK channel form-factor FK was also taken from [106] with a similar
parametrization.

B.3.2 Pseudoscalar meson and photon

For the case of the production of a photon together with a pseudoscalar meson, we consider
the two channels H = ⇡

0
� and H = ⌘�. The production will proceed via a V V P vertex plus

a photon-vector meson mixing, as illustrated in figure B.2. From eq. (A.50) we can obtain the
hadronic current

J
µ = ✏

µ⌫⇢�
q⌫✏�,⇢p�,�FP�(q

2) , (B.26)

where q is the sum of the final state momenta, q =
p

s = p1 + p� , and all the HLS parame-
ters where absorbed in the form-factor FP� in the form of an effective coupling. The current
contraction will be given by

�J
µ
Jµ = 2 q

2
p
2
f

��FP�(q
2)
��2 , (B.27)

with final momenta pf = (q2 � m
2
P
)/(2 q), where we used eq. (B.2) with the pseudoscalar

meson mass m1 = mP and the massless photon m2 = 0.

Plugging the hadronic current contraction and the two-body phase-space eq. (B.1) in the
cross-section formula of eq. (2.9) and the decay width given in eq. (2.10), we get

�(e+e
� ! P�) =

4⇡↵
2
em

3s3/2
p
3
f
|FP�(s)|2 , (B.28)
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�(e+e
� ! V ! P�) =

1

12⇡
p
3
f
|FP�(s)|2 . (B.29)

The form-factor of the ⇡� channel was based on the model by [3], where they fit the cross-
section measured by the SND experiment. The explicit form-factor formula can be expressed
by the conventional sum of Breit-Wigner resonances

F =
X

V

aV e
i'V BWV (s) , (B.30)

where aV and 'V are the vector meson resonance amplitude and phase, respectively, and the
Breit-Wigner function is given by

BWV (s) =
m

2
V

m
2
V

� s � i
p

s�V (s)
, (B.31)

where mV and �V are the vector meson mass and width. Remember that this decay width is
related to the process e

+
e
� ! V ! P�, such that s = q

2 corresponds to the squared COM
energy of the system. Hence, when the COM energy approaches the resonance mass we have a
peak, represented in the Breit-Wigner function.

For the particular case of F = FP� , we have the form-factor sum over V = ⇢, !, �, !
0
, !

00

resonance Breit-Wigner functions. In the case of the ⌘� channel the form-factor was taken
from [112], and has the same form as in eq. (B.30), but with V = ⇢, !, �, ⇢

0. For more details
on the form-factor parametrization, we refer to [19].

B.3.3 Pseudoscalar meson and vector meson

In this dissertation we considered the following pseudoscalar plus vector meson production
channels: ⇡⇢, ⇡!, ⇡�, ⌘⇢, ⌘! and ⌘�. However, since ⇢ is a broad resonance, it is better to
consider the ⇢ ! ⇡⇡ subsequent decay. Hence, we used only the ⇡!, ⇡�, ⌘! and ⌘� final
states, and included the two modes with the ⇢ vector meson, i.e. ⇡⇢ and ⌘⇢, as 3⇡ and ⌘⇡⇡

contributions, respectively.

For the H = V P hadronic current calculation, we can directly use the V V P vertex,
eq. (A.50), together with the generators from eq. (A.13) and eq. (A.49), to obtain

J
µ = "

µ⌫⇢�
q⌫"V,⇢pP,�FV P (q2) , (B.32)
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following the conventions of eq. (2.14). The current contraction will be

�J
µ
Jµ = 2 p

2
f

��FV P (q2)
��2 , (B.33)

where pf = p̂(q2, m2
V
, m

2
P
) and the HLS dependent factors were absorbed in the form-factor

FV P . Using this current we obtain the cross-section

�(e+e
� ! V P ) =

4⇡↵
2
em

3s3/2
p
3
f

��FV P (q2)
��2 , (B.34)

and the vector meson decay width

�(e+e
� ! V ! V P ) =

1

12⇡
p
3
f
|FV P (q2)|2 . (B.35)

The form-factors of all these channels can be calculated using eq. (B.30), where the sum over
the intermediate vector meson resonances V include all vector mesons that contribute to that
corresponding mode, as listed in table 2.2.

B.3.4 Three pseudoscalar mesons

The three pseudoscalar meson current can also be viewed as a V P current followed by a
V ! PP decay, as we mention in the last H = V P current subsection. However, the kine-
matics are very different since V P is a two-body process while P1P2P3 involves three bodies,
resulting in different expressions for the cross-section and decay width. The channels with three
pseudoscalar mesons that we considered here are H = 3⇡, ⌘⇡⇡, ⌘

0
⇡⇡ and KK⇡. In Figure B.3

we show the two diagrams that contribute to the 3⇡ current, one of them correspond to the
dominant contribution via the ⇢ ! ⇡

+
⇡
� decay, and the other represents a small amplitude that

proceeds via the G-parity violating decay ! ! ⇡
+
⇡
�.

In appendix A we already obtained an expression for the three pseudoscalar current, eq. (A.36),
which originated from the inclusion of the WZW term. Using this equation, we can express the
current in momentum space as

J
µ = "

µ⌫⇢�
p1,⌫p2,⇢p3,�FP1P2P3(p1, p2, p3) , (B.36)

where p1,2,3 represent the final state momenta and the pre-factors were again absorbed in the
form-factor. Likewise, we can arrive in the same result using the V V P vertex eq. (A.50).

In the case where the Breit-Wigner functions that appear in the form-factor only depend on
one mass variable mij = (pi + pj), we can integrate over the other one, as we did in eq. (B.5),
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Figure B.3: Diagrams that contribute to the H = ⇡
+
⇡
�
⇡
0 current. In the left we show the

dominant isospin I = 0 component while in the right the G-parity violating isospin I = 1
component.

such that

d�3(�JµJ
µ) =

1

(2⇡)3
1

16s
dm

2
12

Z
(�JµJ

µ) dm
2
23

=
s
1/2

48⇡3

dm
2
12

m12
p̂
3(m2

12, m
2
1, m

2
2)p̂

3(s, m2
12, m

2
3)|FP1P2P3(p1, p2, p3)|

2
. (B.37)

We can use this result to obtain the final expression for the cross-section in eq. (2.9) and decay
width in eq. (2.10)

d� =
↵
2
em

18⇡s3/2

dm
2
12

m12
p̂
3(m2

12, m
2
1, m

2
2)p̂

3(s, m2
12, m

2
3)|FP1P2P3(p1, p2, p3)|

2
, (B.38)

d� =
1

288⇡3

dm
2
12

m12
p̂
3(m2

12, m
2
1, m

2
2)p̂

3(s, m2
12, m

2
3)|FP1P2P3(p1, p2, p3)|

2
. (B.39)

The form-factor of the 3⇡ current was based on the model from [108], while the form-factors of
⌘⇡⇡ and ⌘

0
⇡⇡ are from [115, 193, 206]. Finally, the KK⇡ mode proceeds via the decay chain

e
+
e
� ! KK

⇤ ! K(K⇡). The possible final states are obtained through isospin relations,
given by eq. (B.21) of section B.2, and the KK⇡ form-factor corresponds to a sum of Breit-
Wigner amplitudes, as described in [19].

B.3.5 Two pseudoscalar mesons and a vector meson

The channels with two pseudoscalars and one vector meson are the H = !⇡⇡, �⇡⇡, K
⇤
K⇡

original channels for which we performed the parametrizations and fit. In appendix C we de-
scribe in detail how we model each one of these modes and also show the fit values and statistics.
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Here, we just mention that the hadronic current for the V PP current can be written as

J
µ =

✓
g
µ⌫ � q

µ
q
⌫

q2

◆
"
⇤

V,⌫
(pV )F (q2) , (B.40)

where q =
p

s = pV +p1 +p2, according to eq. (2.15), and the form-factor already includes the
Breit-Wigner propagator of the resonant vector meson and other possible intermediate states.
In the case where F only depends on one mass variable, we can integrate over the other one in
the phase-space element, resulting in

d�3(�JµJ
µ) =

1

(2⇡)3
1

16s

Z
dm

2
12dm

2
23(�J

µ
Jµ)

=
3

32⇡3
p

ŝ

dm
2
12

m12

✓
1 +

p̂
2(s, m2

12, m
2
V
)

3m2
V

◆
p̂(s, m2

12, m
2
V
)p̂(m2

12, m
2
P1

, m
2
P2

)|F (s)|2 ,

(B.41)

which we can use to calculate the cross-section in eq. (2.9) and the decay width in eq. (2.10)

d� =
↵
2
em

4⇡s5/2

dm
2
12

m12

✓
1 +

p̂
2(s, m2

12, m
2
V
)

3m2
V

◆
p̂(s, m2

12, m
2
V
)p̂(m2

12, m
2
P1

, m
2
P2

)|F (s)|2 , (B.42)

d� =
1

64⇡3ŝ

dm
2
12

m12

✓
1 +

p̂
2(s, m2

12, m
2
V
)

3m2
V

◆
p̂(s, m2

12, m
2
V
)p̂(m2

12, m
2
P1

, m
2
P2

)|F (s)|2 . (B.43)

Before concluding, it is important to mention that, as explained in appendix A, in the low-
energy limit where m

2
V

� q
2, or, in other words, where q

2 ! 0, we should always recover the
ChPT theory predictions with only photon-pseudoscalar meson couplings. This is ensured by
the form-factor normalization condition that F (q2) ! 1 for q

2 ! 0, which is valid for all the
presented form-factors in this section.

Let us also remark that, although all the decay width expressions obtained in this section
apply for SM decays e

+
e
� ! V ! H, it is easy to re-express the decay formulas considering

the hadronic decays of the new light mediator e
+
e
� ! ZQ ! H. To this end, we only need to

interpret the COM squared energy s as the square of new mediator mass m
2
ZQ

and also re-scale
the SM quark coupling into the quark coupling with the new light mediator, as expressed in
eq. (2.11). We used this prescription in order to obtain the light mediator hadronic decay widths
in our calculations.
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Calculation of the New Hadronic Modes

Besides the hadronic modes considered in [19], that we describe in appendix B, we also
included four new channels in this dissertation. These channels, marked as ‘new’ in table 2.2,
are relevant in the higher energy region close to 2 GeV. In order to describe them, we follow
the steps depicted in section 2.2, i.e. we identified the intermediate structures, then we col-
lected the experimental data and performed a fit following a specific parametrization in terms
of vector mediators. For the fit, we used the python package IMinuit [100]. Below, we pro-
vide additional details concerning the specific parametrization and the obtained fit values for
each one of these channels. The cross-section and decay widths of these channels, together
with the form-factor expressions, can be found in the package DELIVER [70], available at
https://github.com/preimitz/DeLiVeR

C.1 H = !⇡⇡

The !⇡⇡ final state can be divided into a charged mode !⇡
+
⇡
� and a neutral mode !⇡

0
⇡
0,

that dominantly lead to the five pion final state combinations 2(⇡+
⇡
�)⇡0 and ⇡

+
⇡
�3⇡0, respec-

tively. This channel is formed by one vector meson and two pseudoscalar mesons, such that we
can use the parametrization of the hadronic current given by eq. (2.15)

J
µ

!⇡⇡
=

✓
g
µ⌫ � q

µ
q
⌫

q2

◆
"
⇤

V,⌫
F!⇡⇡(q

2) , (C.1)

where q = p! + p⇡1 + p⇡2 . We will not consider possible intermediate substructures, such as
!f0(980) ! !⇡

+
⇡
� [54] and b1(1285)⇡ ! !⇡⇡ [207], since so far they have not been clearly

seen in the data.

https://github.com/preimitz/DeLiVeR


144 Appendix C

Parameter Fit Value Parameter Fit Value
m!00 1.661 ± 0.007 GeV �!00 0.398 ± 0.021 GeV
a!00 2.73 ± 0.09 '!00 0 (fixed)

�
2
/n.d.f. = 1.67

Table C.1: Fit values for the e
+
e
� ! !⇡⇡ current and the corresponding chi-square of the fit.

The phase was fixed during the fit to '!00 = 0.

For the parametrization of the form-factor, we will use a G-parity symmetry argument to
conclude that only isospin I = 0 mediators are allowed. Therefore, we assume a point-like
! ! !⇡⇡ interaction and the form-factor can be written as

F!⇡⇡ =
X

V=!00

aV m
2
V
e
i'V

m
2
V

� s � i
p

s�V

, (C.2)

where aV , mV , 'V and �V are the vector meson amplitude, mass, phase and decay width. Ac-
cording to the data, which we extracted from [53–55], the only relevant vector meson that can
describe this channel is V = !

00, which corresponds to the !(1650) meson. Table C.1 lists the
fit parameters obtained with the IMinuit python package and figure C.1 shows the best fit
curve together with the hadronic data.

Figure C.1: Cross-section for the charged !⇡
+
⇡
� (left panel) and neutral !⇡

0
⇡
0 (right panel)

hadronic final states. The blue curve shows the best fit solution to the cross-section, obtained
considering the fit values of table C.1. The black points and error bars represent data from [53–
55].
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C.2 H = K
⇤(892)K⇡

In order to describe the KK⇡⇡ final state we took into account two different channel sub-
structures. The first and dominant one was the K

⇤(892)K⇡ channel, and the second is a minor
�⇡⇡ contribution. For the case of the K

⇤(892)K⇡ channel, we consider the most relevant com-
binations K

⇤0
K

±
⇡
⌥, K

⇤±
KS⇡

⌥ and K
⇤⌥

K
±
⇡
0 decaying into KSK

±
⇡
⌥
⇡
0, and K

⇤0
K

±
⇡
⌥

decaying into K
+
K

�
⇡
+
⇡
�.

The K
⇤(892)K⇡ mode is another example of a H = V PP current. As we saw, this type of

channel can be described with the hadronic current of eq. (2.15), however, since we are dealing
with kaons, in order to calculate the vector meson contributions in the form-factor we need to
use isospin symmetry arguments, as described in section B.2. For illustration, let us consider the
process K

⇤+
K

�
⇡
0 ! KSK

�
⇡
+
⇡
0, which proceeds via the decay K

⇤+ ! KS⇡
+. Following

the same method outlined in section B.2, we can first write the tensor product of KS and ⇡
+

isospin eigenstates as

��K0
S

↵
⌦
��⇡+
↵

=
1p
2

���K0
↵

�
��K̄0

↵�
⌦
��⇡+
↵

=
1p
2
(|1/2, �1/2i � |1/2, +1/2i) ⌦ |1, +1i

=
1p
2

r
2

3
|1/2, +1/2i + . . .

=
1p
3

��K⇤+
↵

+ . . . (C.3)

where we used the usual convention for the definition of the short-lived neutral kaon (‘K-short’)
K

0
S

= (K0 � K̄
0)/

p
2 together with the Clebsh-Gordon coefficients. Now, we can write the

full process tensor product by using the coefficient of the K
⇤+ ! KS⇡

+ decay

��K0
S
⇡
+
↵

⌦
���K�

↵
⌦
��⇡0
↵�

=
1p
3

|1/2, +1/2i ⌦ (|1/2, �1/2i ⌦ |1, 0i)

=
1

3

✓
1p
2

|1, 0i � 1p
2

|0, 0i
◆

=
1p
18

(A1 � A0) , (C.4)

where we neglected other isospin in the calculation and in the last line we already converted
the isospin states into the amplitudes that will appear in the form-factor. Hence, using isospin
symmetry assumptions we end up with the magnitude and relative sign of the I = 0 and I = 1

amplitudes, which correspond to � and ⇢ contributions, respectively. We can generalize this
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calculation to all the other K
⇤(892)K⇡ states listed above, resulting in the following form-

factors

K
⇤0

K
±
⇡
⌥ ! KSK

±
⇡
⌥
⇡
0 : F(K⇤0K±⇡⌥)n =

1p
18

(A1 + A0) ,

K
⇤±

KS⇡
⌥ ! KSK

±
⇡
⌥
⇡
0 : FK⇤±KS⇡

⌥ =
1p
18

(A1 � A0) ,

K
⇤⌥

K
±
⇡
0 ! KSK

±
⇡
⌥
⇡
0 : FK⇤±K⌥⇡0 =

1p
18

(A1 � A0) ,

K
⇤0

K
±
⇡
⌥ ! K

+
K

�
⇡
+
⇡
� : F(K⇤0K±⇡⌥)c =

r
2

9
(A1 + A0) ,

where we denote the form-factor of the K
⇤0

K
±
⇡
⌥ state decaying into the neutral (charged)

KSK
±
⇡
⌥
⇡
0 (K+

K
�
⇡
+
⇡
�) with a n (c) superscript and the isospin amplitudes are given by

A0 =
X

�

a�e
i'�m

2
�

m
2
�

� s � im���

,

A1 =
X

⇢

a⇢e
i'⇢m

2
⇢

m2
⇢
� s � im⇢�⇢

. (C.5)

KSK
±
⇡
⌥
⇡
0

K
+
K

�
⇡
+
⇡
�

Parameter Fit Value Parameter Fit Value

m�0 1.7 GeV (fixed) m�0 1.65 GeV (fixed)
a�0 2.49 ± 0.6 a�0 4.52 ± 0.5

��0 0.3 GeV (fixed) ��0 0.103 ± 0.009

'�0 1.02 ± 0.09 '�0 ⇡ (fixed)
m⇢00 1.898 ± 0.012 GeV m⇢00 1.842 ± 0.011 GeV
a⇢00 13.5 ± 0.5 a⇢00 15.7 ± 1.0

�⇢00 0.504 ± 0.021 GeV �⇢00 0.403 ± 0.016 GeV
'⇢00 0 (fixed) '⇢00 0.000 ± 0.006

�
2
/n.d.f. = 2.68 �

2
/n.d.f. = 1.59

Table C.2: Values obtained by the fit to the e
+
e
� ! K

⇤
K⇡ ! KSK

±
⇡
⌥
⇡
0 current (left) and

to the e
+
e
� ! K

⇤
K⇡ ! K

+
K

�
⇡
+
⇡
� current (right). The parameters marked as ‘fixed’ were

fixed to the displayed values during the fit procedure.

To perform the fits of the K
⇤
K⇡ ! KSK

±
⇡
⌥
⇡
0 and K

⇤0
K

±
⇡
⌥ ! K

+
K

�
⇡
+
⇡
� processes
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we used data from BaBar [56, 57]. The vector meson resonances found by the fit to mediate
these channels were V = �

0
, ⇢

00, which correspond to the �(1680) and ⇢(1700) mesons of
PDG [2]. Table C.2 summarizes the obtained fit parameters and figure C.2 shows the curve of
the best fit solution for each of these four KK⇡⇡ intermediate states.

Figure C.2: Cross-section for the charged K
⇤0

K
±
⇡
⌥ (upper left panel), neutral K

⇤0
K

±
⇡
⌥ (up-

per right panel), K
⇤±

KS⇡
⌥ (lower left panel) and K

⇤⌥
K

±
⇡
0 (lower right panel) hadronic final

states. The blue curve shows the best fit solution to the cross-section data, obtained considering
the fit values of table C.2. The black points and error bars represent data from [56, 57].

C.3 H = �⇡⇡

The �⇡⇡ channel is another example of a H = V PP current. This mode can be divided
into a charged (�⇡

+
⇡
�) and a neutral (�⇡

0
⇡
0) component, that act as minor intermediate sub-

structures of the final K
+
K

�
⇡
+
⇡
� and K

+
K

�
⇡
0
⇡
0 channels, respectively, through the decay

of the � meson into two kaons, �(1020) ! K
+
K

�.

In the relevant hadronic energy region, which extends from 0.2 GeV up to ⇠ 2 GeV, we can
describe both �⇡⇡ states by the first two excited � resonances, i.e. �

0 and �
00, that correspond to
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Parameter Fit Value Parameter Fit Value
m�0 1.680 ± 0.012 GeV m�00 2.162 ± 0.015 GeV
a�0 1.44 ± 0.16 a�00 0.69 ± 0.11

��0 0.226 ± 0.021 GeV ��00 0.209 ± 0.025 GeV
'�0 2.6 ± 0.4 '�00 0 (fixed)

�
2
/n.d.f. = 0.55

Table C.3: Values obtained by the fit for the e
+
e
� ! �⇡⇡ current.

the �(1680) and �(2170) states, respectively. Hence, the form-factor will be given by

F�⇡⇡ =
X

V

aV m
2
V
e
i'V

m
2
V

� s � i
p

s�V

, (C.6)

with V = �
0
, �

00. The data used for the fit was taken from [56, 58] and the values of the
parameters extracted from the fit are shown in table C.3. One can find the curve of the best fit
for both charged and neutral modes, together with the corresponding data points, in figure C.3.

Figure C.3: Cross-section for the charged �⇡
+
⇡
� (left panel) and neutral �⇡

0
⇡
0 (right panel)

hadronic final states. The blue curve shows the best fit solution to the cross-section, obtained
considering the fit parameters of table C.3. The black points and error bars represent data from
[56, 58].

C.4 H = 6⇡

Finally, in the case of the 6⇡ channel we considered a charged 3(⇡+
⇡
�) and a neutral

2(⇡+
⇡
�
⇡
0) contribution. For this particular channel, we cannot use Breit-Wigners to identify

which resonances contribute since the available data does not indicate any clear intermediate
structure. Hence, we can only describe the 6⇡ channel by the inclusion of decays of many dif-
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3(⇡+
⇡
�) 2(⇡+

⇡
�
⇡
0)

Parameter Fit Value Parameter Fit Value

m⇢000 1.88 GeV (fixed) m⇢000 1.86 GeV (fixed)
a⇢000 0.0037 ± 0.0005 GeV1/2

a⇢000 �0.0072 ± 0.0009 GeV1/2

�⇢000 0.13 GeV (fixed) �⇢000 0.16 GeV (fixed)
'⇢000 0.367 (fixed) '⇢000 �0.052 (fixed)
c0 0.0153 ± 0.0029 GeV1/2

c0 �0.028 ± 0.009 GeV1/2

c1 �1.082 ± 0.017 GeV(5/2�a)
c1 2.4 ± 0.7 GeV(5/2�a)

b 1.40 ± 0.01 GeV b 1.54 ± 0.32 GeV
a 0.89 ± 0.04 a 0.85 ± 0.23

m0 1.262 ± 0.012 GeV m0 1.20 ± 0.04 GeV

�
2
/n.d.f. = 0.6 �

2
/n.d.f. = 0.7

Table C.4: Values of the parameters obtained by the best fit to the e
+
e
� ! 3(⇡+

⇡
�) current

(left) and e
+
e
� ! 2(⇡+

⇡
�)⇡0

⇡
0 current (right) cross-section data. The fixed values of m⇢000 ,

�⇢000 and '⇢000 were taken from [59].

ferent vector states. Following [59, 208], the fit of the 6⇡ cross-section was made according to
the parametrization given by

�6⇡ =
4⇡↵

2

s3/2

✓
aV m

2
V
e
i'V

s � m
2
V

+ i
p

s�V

+ Acont

◆2

, (C.7)

where

Acont = c0 + c1
e
�b/(

p
s�m0)

(
p

s � m0)2�a
(C.8)

is a Jacob-Slansky amplitude [209] that accounts for the mixture of several broad resonances
and the parameters c0, c1, a, b, m0 are free variables. Using G-parity symmetry arguments we
can identify the resonance contribution V with the higher excitation of the ⇢ vector meson,
namely V = ⇢

000, which correspond to the PDG particle ⇢(1900). Table C.4 exhibits the values
of the free parameters obtained by our fit using the parametrization described above and the data
from [59]. The best fit solution to the cross-section data points, for both charged and neutral 6⇡

modes, can be found in figure C.4.
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Figure C.4: Cross-section for the charged 3(⇡+
⇡
�) (left panel) and neutral 2(⇡+

⇡
�
⇡
0) (right

panel) hadronic final states. The blue curve shows the best fit solution to the cross-section,
obtained considering the parameterization described in eq. (C.7) and (C.8) and the fit values of
table C.4. The black error bars represent data from BaBar [59].
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Additional Plots

In this appendix we will provide additional relevant plots and figures that we choose to omit
from the main text, in order to avoid repetition.

D.1 Branching Ratios

In section 3.2 we show several branching ratio plots considering different U(1)Q models.
Here we will also exhibit the plots for the B � 3Lµ and B � Le � 2L⌧ , that can be found in
figure D.1.

Figure D.1: Branching ratio of the vector boson mediator ZQ decaying into electrons (light
blue), muons (dark blue), hadrons (red) and neutrinos (green) for the B � 3Lµ (left) and B �
Le � 2L⌧ (right) models. The solid (dashed) lines correspond to this dissertation (DARKCAST)
results. In the lower panel of each figure we show the branching ratio difference between the
two calculations.
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[138] H. Czyż, J. H. Kühn, and S. Tracz, “Nucleon form factors and final state radiative
corrections to e

+
e
� ! pp̄�,” Phys. Rev. D 90 no. 11, (2014) 114021,

arXiv:1407.7995 [hep-ph].

[139] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “Reevaluation of the hadronic
vacuum polarisation contributions to the Standard Model predictions of the muon g � 2

http://dx.doi.org/10.1103/PhysRevC.71.055202,%2010.1103/PhysRevC.71.069902
http://arxiv.org/abs/nucl-ex/0501018
http://arxiv.org/abs/nucl-ex/0501018
http://dx.doi.org/10.1103/PhysRevC.85.045203
http://arxiv.org/abs/1102.5737
http://arxiv.org/abs/1102.5737
http://dx.doi.org/10.1103/PhysRevC.64.038202
http://dx.doi.org/10.1103/PhysRevLett.104.242301
http://dx.doi.org/10.1103/PhysRevLett.104.242301
http://arxiv.org/abs/1005.3419
http://dx.doi.org/10.1103/PhysRevC.98.019907,%2010.1103/PhysRevC.96.055203
http://arxiv.org/abs/1707.08587
http://dx.doi.org/10.1007/s100500170046
http://dx.doi.org/10.1103/PhysRevC.73.025205
http://dx.doi.org/10.1103/PhysRevC.73.025205
http://arxiv.org/abs/nucl-ex/0511025
http://dx.doi.org/10.1103/PhysRevLett.101.042501
http://dx.doi.org/10.1103/PhysRevLett.101.042501
http://arxiv.org/abs/0803.3827
http://dx.doi.org/10.1103/PhysRevD.50.5491
http://dx.doi.org/10.1103/PhysRevD.90.114021
http://arxiv.org/abs/1407.7995


166 Bibliography

and ↵(m2
Z
) using newest hadronic cross-section data,” Eur. Phys. J. C 77 no. 12, (2017)

827, arXiv:1706.09436 [hep-ph].

[140] V. P. Druzhinin, S. I. Eidelman, S. I. Serednyakov, and E. P. Solodov, “Hadron
Production via e+e- Collisions with Initial State Radiation,” Rev. Mod. Phys. 83 (2011)
1545, arXiv:1105.4975 [hep-ex].

[141] K. Hagiwara, A. D. Martin, D. Nomura, and T. Teubner, “Predictions for g-2 of the
muon and alpha(QED) (M**2(Z)),” Phys. Rev. D 69 (2004) 093003,
arXiv:hep-ph/0312250.

[142] M. R. Whalley, “A Compilation of data on hadronic total cross-sections in e+ e-
interactions,” J. Phys. G 29 (2003) A1–A133.

[143] F. Kling and S. Trojanowski, “Forward experiment sensitivity estimator for the LHC
and future hadron colliders,” Phys. Rev. D 104 no. 3, (2021) 035012,
arXiv:2105.07077 [hep-ph].

[144] FASER Collaboration, A. Ariga et al., “FASER’s physics reach for long-lived
particles,” Phys. Rev. D 99 no. 9, (2019) 095011, arXiv:1811.12522 [hep-ph].

[145] FASER Collaboration, A. Ariga et al., “Technical Proposal for FASER: ForwArd
Search ExpeRiment at the LHC,” arXiv:1812.09139 [physics.ins-det].

[146] FASER Collaboration, A. Ariga et al., “Letter of Intent for FASER: ForwArd Search
ExpeRiment at the LHC,” arXiv:1811.10243 [physics.ins-det].

[147] FASER Collaboration, H. Abreu et al., “Detecting and Studying High-Energy Collider
Neutrinos with FASER at the LHC,” Eur. Phys. J. C 80 no. 1, (2020) 61,
arXiv:1908.02310 [hep-ex].

[148] J. A. Dror, R. Lasenby, and M. Pospelov, “New constraints on light vectors coupled to
anomalous currents,” Phys. Rev. Lett. 119 no. 14, (2017) 141803,
arXiv:1705.06726 [hep-ph].

[149] J. A. Dror, R. Lasenby, and M. Pospelov, “Dark forces coupled to nonconserved
currents,” Phys. Rev. D 96 no. 7, (2017) 075036, arXiv:1707.01503 [hep-ph].

[150] G. Bellini et al., “Precision measurement of the 7Be solar neutrino interaction rate in
Borexino,” Phys. Rev. Lett. 107 (2011) 141302, arXiv:1104.1816 [hep-ex].

http://dx.doi.org/10.1140/epjc/s10052-017-5161-6
http://dx.doi.org/10.1140/epjc/s10052-017-5161-6
http://arxiv.org/abs/1706.09436
http://dx.doi.org/10.1103/RevModPhys.83.1545
http://dx.doi.org/10.1103/RevModPhys.83.1545
http://arxiv.org/abs/1105.4975
http://dx.doi.org/10.1103/PhysRevD.69.093003
http://arxiv.org/abs/hep-ph/0312250
http://dx.doi.org/10.1088/0954-3899/29/12A/R01
http://dx.doi.org/10.1103/PhysRevD.104.035012
http://arxiv.org/abs/2105.07077
http://dx.doi.org/10.1103/PhysRevD.99.095011
http://arxiv.org/abs/1811.12522
http://arxiv.org/abs/1812.09139
http://arxiv.org/abs/1811.10243
http://dx.doi.org/10.1140/epjc/s10052-020-7631-5
http://arxiv.org/abs/1908.02310
http://dx.doi.org/10.1103/PhysRevLett.119.141803
http://arxiv.org/abs/1705.06726
http://dx.doi.org/10.1103/PhysRevD.96.075036
http://arxiv.org/abs/1707.01503
http://dx.doi.org/10.1103/PhysRevLett.107.141302
http://arxiv.org/abs/1104.1816


Bibliography 167

[151] R. Harnik, J. Kopp, and P. A. N. Machado, “Exploring nu Signals in Dark Matter
Detectors,” JCAP 07 (2012) 026, arXiv:1202.6073 [hep-ph].

[152] D. W. P. d. Amaral, D. G. Cerdeno, P. Foldenauer, and E. Reid, “Solar neutrino probes
of the muon anomalous magnetic moment in the gauged U(1)

Lµ�L⌧
,” JHEP 12 (2020)

155, arXiv:2006.11225 [hep-ph].

[153] M. Bauer, P. Foldenauer, and M. Mosny, “Flavor structure of anomaly-free hidden
photon models,” Phys. Rev. D 103 no. 7, (2021) 075024, arXiv:2011.12973
[hep-ph].

[154] C. Fanelli and M. Williams, “Photoproduction of leptophobic bosons,” J. Phys. G 44
no. 1, (2017) 014002, arXiv:1605.07161 [hep-ph].

[155] S. Alekhin et al., “A facility to Search for Hidden Particles at the CERN SPS: the SHiP
physics case,” Rept. Prog. Phys. 79 no. 12, (2016) 124201, arXiv:1504.04855
[hep-ph].

[156] W. Bonivento et al., “Proposal to Search for Heavy Neutral Leptons at the SPS,”
arXiv:1310.1762 [hep-ex].

[157] Belle-II Collaboration, W. Altmannshofer et al., “The Belle II Physics Book,” PTEP
2019 no. 12, (2019) 123C01, arXiv:1808.10567 [hep-ex]. [Erratum: PTEP
2020, 029201 (2020)].

[158] H. Ruegg and M. Ruiz-Altaba, “The Stueckelberg field,” Int. J. Mod. Phys. A 19 (2004)
3265–3348, arXiv:hep-th/0304245.

[159] R. M. Schabinger and J. D. Wells, “A Minimal spontaneously broken hidden sector and
its impact on Higgs boson physics at the large hadron collider,” Phys. Rev. D 72 (2005)
093007, arXiv:hep-ph/0509209.

[160] S. Gopalakrishna, S. Jung, and J. D. Wells, “Higgs boson decays to four fermions
through an abelian hidden sector,” Phys. Rev. D 78 (2008) 055002,
arXiv:0801.3456 [hep-ph].

[161] J. D. Wells, “How to Find a Hidden World at the Large Hadron Collider,”
arXiv:0803.1243 [hep-ph].

[162] S. Y. Choi, C. Englert, and P. M. Zerwas, “Multiple Higgs-Portal and Gauge-Kinetic
Mixings,” Eur. Phys. J. C 73 (2013) 2643, arXiv:1308.5784 [hep-ph].

http://dx.doi.org/10.1088/1475-7516/2012/07/026
http://arxiv.org/abs/1202.6073
http://dx.doi.org/10.1007/JHEP12(2020)155
http://dx.doi.org/10.1007/JHEP12(2020)155
http://arxiv.org/abs/2006.11225
http://dx.doi.org/10.1103/PhysRevD.103.075024
http://arxiv.org/abs/2011.12973
http://arxiv.org/abs/2011.12973
http://dx.doi.org/10.1088/0954-3899/44/1/014002
http://dx.doi.org/10.1088/0954-3899/44/1/014002
http://arxiv.org/abs/1605.07161
http://dx.doi.org/10.1088/0034-4885/79/12/124201
http://arxiv.org/abs/1504.04855
http://arxiv.org/abs/1504.04855
http://arxiv.org/abs/1310.1762
http://dx.doi.org/10.1093/ptep/ptz106
http://dx.doi.org/10.1093/ptep/ptz106
http://arxiv.org/abs/1808.10567
http://dx.doi.org/10.1142/S0217751X04019755
http://dx.doi.org/10.1142/S0217751X04019755
http://arxiv.org/abs/hep-th/0304245
http://dx.doi.org/10.1103/PhysRevD.72.093007
http://dx.doi.org/10.1103/PhysRevD.72.093007
http://arxiv.org/abs/hep-ph/0509209
http://dx.doi.org/10.1103/PhysRevD.78.055002
http://arxiv.org/abs/0801.3456
http://arxiv.org/abs/0803.1243
http://dx.doi.org/10.1140/epjc/s10052-013-2643-z
http://arxiv.org/abs/1308.5784


168 Bibliography

[163] S. Gopalakrishna, “Hidden Sector Dark Matter and LHC Signatures,” AIP Conf. Proc.
1200 no. 1, (2010) 778–781, arXiv:0909.5579 [hep-ph].

[164] J. Berger, K. Jedamzik, and D. G. E. Walker, “Cosmological Constraints on Decoupled
Dark Photons and Dark Higgs,” JCAP 11 (2016) 032, arXiv:1605.07195
[hep-ph].

[165] Y. Cui and F. D’Eramo, “Surprises from complete vector portal theories: New insights
into the dark sector and its interplay with Higgs physics,” Phys. Rev. D 96 no. 9, (2017)
095006, arXiv:1705.03897 [hep-ph].

[166] A. Falkowski, C. Gross, and O. Lebedev, “A second higgs from the higgs portal,”
Journal of High Energy Physics 2015 no. 5, (May, 2015) .
http://dx.doi.org/10.1007/JHEP05(2015)057.

[167] ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD
Electroweak Group, SLD Heavy Flavour Group Collaboration, S. Schael et al.,
“Precision electroweak measurements on the Z resonance,” Phys. Rept. 427 (2006)
257–454, arXiv:hep-ex/0509008.

[168] CMS Collaboration, “Measurements of the Higgs boson production and decay rates and
constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp
collision data at sqrt s = 7 and 8 TeV,”.

[169] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and
next-to-leading order differential cross sections, and their matching to parton shower
simulations,” JHEP 07 (2014) 079, arXiv:1405.0301 [hep-ph].

[170] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, “FeynRules 2.0 - A
complete toolbox for tree-level phenomenology,” Comput. Phys. Commun. 185 (2014)
2250–2300, arXiv:1310.1921 [hep-ph].

[171] DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco,
V. Lemaître, A. Mertens, and M. Selvaggi, “DELPHES 3, A modular framework for fast
simulation of a generic collider experiment,” JHEP 02 (2014) 057,
arXiv:1307.6346 [hep-ex].

http://dx.doi.org/10.1063/1.3327728
http://dx.doi.org/10.1063/1.3327728
http://arxiv.org/abs/0909.5579
http://dx.doi.org/10.1088/1475-7516/2016/11/032
http://arxiv.org/abs/1605.07195
http://arxiv.org/abs/1605.07195
http://dx.doi.org/10.1103/PhysRevD.96.095006
http://dx.doi.org/10.1103/PhysRevD.96.095006
http://arxiv.org/abs/1705.03897
http://dx.doi.org/10.1007/jhep05(2015)057
http://dx.doi.org/10.1007/JHEP05(2015)057
http://dx.doi.org/10.1016/j.physrep.2005.12.006
http://dx.doi.org/10.1016/j.physrep.2005.12.006
http://arxiv.org/abs/hep-ex/0509008
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1310.1921
http://dx.doi.org/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346


Bibliography 169

[172] L. Buonocore, C. Frugiuele, and P. deNiverville, “Hunt for sub-GeV dark matter at
neutrino facilities: A survey of past and present experiments,” Phys. Rev. D 102 no. 3,
(2020) 035006, arXiv:1912.09346 [hep-ph].

[173] KOTO Collaboration, J. K. Ahn et al., “Study of the KL ! ⇡
0
⌫⌫̄ Decay at the J-PARC

KOTO Experiment,” Phys. Rev. Lett. 126 no. 12, (2021) 121801,
arXiv:2012.07571 [hep-ex].

[174] KOTO Collaboration, C. Lin, “Recent Result on the Measurement of K
0
L

! ⇡
0
⌫⌫̄ at

the J-PARC KOTO Experiment,” JPS Conf. Proc. 33 (2021) 011105.

[175] CMS Collaboration, S. Chatrchyan et al., “The CMS Experiment at the CERN LHC,”
JINST 3 (2008) S08004.

[176] CMS Collaboration, A. M. Sirunyan et al., “Performance of the CMS muon detector
and muon reconstruction with proton-proton collisions at

p
s = 13 TeV,” JINST 13

no. 06, (2018) P06015, arXiv:1804.04528 [physics.ins-det].

[177] D. Curtin et al., “Exotic decays of the 125 GeV Higgs boson,” Phys. Rev. D 90 no. 7,
(2014) 075004, arXiv:1312.4992 [hep-ph].

[178] T. Sjostrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1”
Comput. Phys. Commun. 178 (2008) 852–867, arXiv:0710.3820 [hep-ph].

[179] E. Conte, B. Fuks, and G. Serret, “MadAnalysis 5, A User-Friendly Framework for
Collider Phenomenology,” Comput. Phys. Commun. 184 (2013) 222–256,
arXiv:1206.1599 [hep-ph].

[180] A. Fowlie, “LHCO_reader: A new code for reading and analyzing detector-level events
stored in LHCO format,” arXiv:1510.07319 [hep-ph].

[181] ATLAS Collaboration, “Measurements of the properties of the Higgs-like boson in the
four lepton decay channel with the ATLAS detector using 25 fb�1 of proton-proton
collision data,”.

[182] CMS Collaboration, S. Chatrchyan et al., “Measurement of the Properties of a Higgs
Boson in the Four-Lepton Final State,” Phys. Rev. D 89 no. 9, (2014) 092007,
arXiv:1312.5353 [hep-ex].

http://dx.doi.org/10.1103/PhysRevD.102.035006
http://dx.doi.org/10.1103/PhysRevD.102.035006
http://arxiv.org/abs/1912.09346
http://dx.doi.org/10.1103/PhysRevLett.126.121801
http://arxiv.org/abs/2012.07571
http://dx.doi.org/10.7566/JPSCP.33.011105
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1748-0221/13/06/P06015
http://dx.doi.org/10.1088/1748-0221/13/06/P06015
http://arxiv.org/abs/1804.04528
http://dx.doi.org/10.1103/PhysRevD.90.075004
http://dx.doi.org/10.1103/PhysRevD.90.075004
http://arxiv.org/abs/1312.4992
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1016/j.cpc.2012.09.009
http://arxiv.org/abs/1206.1599
http://arxiv.org/abs/1510.07319
http://dx.doi.org/10.1103/PhysRevD.89.092007
http://arxiv.org/abs/1312.5353


170 Bibliography

[183] CMS Collaboration, A. Tumasyan et al., “Search for long-lived particles decaying into
muon pairs in proton-proton collisions at

p
s = 13 TeV collected with a dedicated

high-rate data stream,” JHEP 04 (2022) 062, arXiv:2112.13769 [hep-ex].

[184] T. Kitahara, T. Okui, G. Perez, Y. Soreq, and K. Tobioka, “New physics implications of
recent search for KL ! ⇡

0
⌫⌫̄ at KOTO,” Phys. Rev. Lett. 124 no. 7, (2020) 071801,

arXiv:1909.11111 [hep-ph].

[185] J. L. Feng, I. Galon, F. Kling, and S. Trojanowski, “Dark Higgs bosons at the ForwArd
Search ExpeRiment,” Phys. Rev. D 97 no. 5, (2018) 055034, arXiv:1710.09387
[hep-ph].

[186] J. L. Feng et al., “The Forward Physics Facility at the High-Luminosity LHC,” in
2022 Snowmass Summer Study. 3, 2022. arXiv:2203.05090 [hep-ex].

[187] K. G. Wilson, “Confinement of Quarks,” Phys. Rev. D 10 (1974) 2445–2459.

[188] T. Feldmann, “Quark structure of pseudoscalar mesons,” Int. J. Mod. Phys. A 15 (2000)
159–207, arXiv:hep-ph/9907491.

[189] S. Scherer, “Introduction to chiral perturbation theory,” Adv. Nucl. Phys. 27 (2003) 277,
arXiv:hep-ph/0210398.

[190] S. Scherer and M. R. Schindler, “A Chiral perturbation theory primer,”
arXiv:hep-ph/0505265.

[191] J. Gasser and H. Leutwyler, “Chiral Perturbation Theory: Expansions in the Mass of the
Strange Quark,” Nucl. Phys. B 250 (1985) 465–516.

[192] E. Witten, “Global Aspects of Current Algebra,” Nucl. Phys. B 223 (1983) 422–432.

[193] J. Wess and B. Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B 37
(1971) 95–97.

[194] T. Fujiwara, T. Kugo, H. Terao, S. Uehara, and K. Yamawaki, “Nonabelian Anomaly
and Vector Mesons as Dynamical Gauge Bosons of Hidden Local Symmetries,” Prog.
Theor. Phys. 73 (1985) 926.

[195] C. Kuang-chao, G. Han-ying, W. Ke, and S. Xing-chang, “On the gauge invariance and
anomaly-free condition of the wess-zumino-witten effective action,” Physics Letters B
134 no. 1, (1984) 67–69. https://www.sciencedirect.com/science/
article/pii/0370269384909869.

http://dx.doi.org/10.1007/JHEP04(2022)062
http://arxiv.org/abs/2112.13769
http://dx.doi.org/10.1103/PhysRevLett.124.071801
http://arxiv.org/abs/1909.11111
http://dx.doi.org/10.1103/PhysRevD.97.055034
http://arxiv.org/abs/1710.09387
http://arxiv.org/abs/1710.09387
http://arxiv.org/abs/2203.05090
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1142/S0217751X00000082
http://dx.doi.org/10.1142/S0217751X00000082
http://arxiv.org/abs/hep-ph/9907491
http://arxiv.org/abs/hep-ph/0210398
http://arxiv.org/abs/hep-ph/0505265
http://dx.doi.org/10.1016/0550-3213(85)90492-4
http://dx.doi.org/10.1016/0550-3213(83)90063-9
http://dx.doi.org/10.1016/0370-2693(71)90582-X
http://dx.doi.org/10.1016/0370-2693(71)90582-X
http://dx.doi.org/10.1143/PTP.73.926
http://dx.doi.org/10.1143/PTP.73.926
http://dx.doi.org/https://doi.org/10.1016/0370-2693(84)90986-9
http://dx.doi.org/https://doi.org/10.1016/0370-2693(84)90986-9
https://www.sciencedirect.com/science/article/pii/0370269384909869
https://www.sciencedirect.com/science/article/pii/0370269384909869


Bibliography 171

[196] N. Pak and P. Rossi, “Gauged goldstone boson effective action from direct integration of
bardeen anomaly,” Nuclear Physics B 250 (12, 1985) 279–294.

[197] J. Bijnens, “Chiral perturbation theory and anomalous processes,” Int. J. Mod. Phys. A 8
(1993) 3045–3105.

[198] M. Bando, T. Kugo, and K. Yamawaki, “On the Vector Mesons as Dynamical Gauge
Bosons of Hidden Local Symmetries,” Nucl. Phys. B 259 (1985) 493.

[199] M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T. Yanagida, “Is rho Meson a
Dynamical Gauge Boson of Hidden Local Symmetry?,” Phys. Rev. Lett. 54 (1985)
1215.

[200] M. Bando, T. Kugo, and K. Yamawaki, “Nonlinear Realization and Hidden Local
Symmetries,” Phys. Rept. 164 (1988) 217–314.

[201] K. Yamawaki, “Hidden Local Symmetry and Beyond,” Int. J. Mod. Phys. E 26
no. 01n02, (2017) 1740032, arXiv:1609.03715 [hep-ph].

[202] M. Harada and K. Yamawaki, “Hidden local symmetry at loop: A New perspective of
composite gauge boson and chiral phase transition,” Phys. Rept. 381 (2003) 1–233,
arXiv:hep-ph/0302103.

[203] H. B. O’Connell, B. C. Pearce, A. W. Thomas, and A. G. Williams, “⇢ � ! mixing,
vector meson dominance and the pion form-factor,” Prog. Part. Nucl. Phys. 39 (1997)
201–252, arXiv:hep-ph/9501251.

[204] C. Bruch, A. Khodjamirian, and J. H. Kuhn, “Modeling the pion and kaon form factors
in the timelike region,” Eur. Phys. J. C 39 (2005) 41–54, arXiv:hep-ph/0409080.

[205] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “Reevaluation of the Hadronic
Contributions to the Muon g-2 and to alpha(MZ),” Eur. Phys. J. C 71 (2011) 1515,
arXiv:1010.4180 [hep-ph]. [Erratum: Eur.Phys.J.C 72, 1874 (2012)].

[206] G. Kramer, W. F. Palmer, and S. S. Pinsky, “Testing Chiral Anomalies With Hadronic
Currents,” Phys. Rev. D 30 (1984) 89.

[207] N. N. Achasov and A. A. Kozhevnikov, “Isoscalar resonances with J(PC) = 1– in e+ e-
annihilation,” Phys. Rev. D 57 (1998) 4334–4342, arXiv:hep-ph/9703397.

http://dx.doi.org/10.1016/0550-3213(85)90482-1
http://dx.doi.org/10.1142/S0217751X93001235
http://dx.doi.org/10.1142/S0217751X93001235
http://dx.doi.org/10.1016/0550-3213(85)90647-9
http://dx.doi.org/10.1103/PhysRevLett.54.1215
http://dx.doi.org/10.1103/PhysRevLett.54.1215
http://dx.doi.org/10.1016/0370-1573(88)90019-1
http://dx.doi.org/10.1142/S0218301317400328
http://dx.doi.org/10.1142/S0218301317400328
http://arxiv.org/abs/1609.03715
http://dx.doi.org/10.1016/S0370-1573(03)00139-X
http://arxiv.org/abs/hep-ph/0302103
http://dx.doi.org/10.1016/S0146-6410(97)00044-6
http://dx.doi.org/10.1016/S0146-6410(97)00044-6
http://arxiv.org/abs/hep-ph/9501251
http://dx.doi.org/10.1140/epjc/s2004-02064-3
http://arxiv.org/abs/hep-ph/0409080
http://dx.doi.org/10.1140/epjc/s10052-012-1874-8
http://arxiv.org/abs/1010.4180
http://dx.doi.org/10.1103/PhysRevD.30.89
http://dx.doi.org/10.1103/PhysRevD.57.4334
http://arxiv.org/abs/hep-ph/9703397


172 Bibliography

[208] N. N. Achasov and A. A. Kozhevnikov, “Rho primes in analyzing e+ e- annihilation,
MARK III, LASS and ARGUS data,” Phys. Rev. D 55 (1997) 2663–2671,
arXiv:hep-ph/9609216.

[209] M. Jacob and R. Slansky, “Nova model of inclusive reactions,” Phys. Rev. D 5 (Apr,
1972) 1847–1870.
https://link.aps.org/doi/10.1103/PhysRevD.5.1847.

http://dx.doi.org/10.1103/PhysRevD.55.2663
http://arxiv.org/abs/hep-ph/9609216
http://dx.doi.org/10.1103/PhysRevD.5.1847
http://dx.doi.org/10.1103/PhysRevD.5.1847
https://link.aps.org/doi/10.1103/PhysRevD.5.1847

	Acknowledgments - Agradecimentos
	Abstract
	Resumo
	Introduction
	I Light Vector Mediators
	General Theoretical Framework
	Kinetic Mixing and the Dark Portal
	ZQ Production
	ZQ Decays
	Leptonic Decays
	Hadronic Decays
	Perturbative Decay into Quarks


	Improvements in the Hadronic Calculation
	Decay Width calculation
	Previous implementation
	New implementation

	Description of the Hadronic Modes
	Dominant low-energy hadronic channels
	New hadronic channels

	Final vector meson decomposition
	Hadron-quark transition


	Results and Effects on Experimental Bounds
	Hadronic Decay Width
	Branching Ratios
	Repercussions on Current Limits and Future Sensitivities
	Current Limits
	Future Experimental Sensitivities



	II Hidden Abelian Higgs Model (HAHM)
	General Theoretical Framework
	The Scalar Sector
	The Gauge Sector
	HAHM Interactions
	Gauge Bosons and Scalars
	Gauge Bosons and Fermions
	Scalar Interactions

	Decay Widths

	Electroweak Constraints
	Z boson mass and couplings
	Higgs boson mass and couplings
	Higgs boson invisible decays
	Summary of EW constraints

	Searching the Higgs and U(1) portals
	LHC bounds through the h ZZ4  decay 
	The CMS and ATLAS experiment
	Signal Simulation
	Results and Discussion

	KOTO bounds
	The KOTO experiment
	Long-lived dark photon condition
	Results and Discussion


	Conclusions and future perspectives
	Chiral Perturbation Theory for Mesons
	Chiral Perturbation Theory review
	Wess-Zumino-Witten term
	Hidden Local Symmetry model
	Vector Meson Dominance framework
	Light U(1)Q vector mediators in ChPT 

	Hadronic Current Calculation
	Kinematic Details
	Phase-space element

	Symmetry Assumptions
	G-parity
	Isospin Symmetry

	Final Hadronic Current Expression
	Two pseudoscalar mesons
	Pseudoscalar meson and photon
	Pseudoscalar meson and vector meson
	Three pseudoscalar mesons
	Two pseudoscalar mesons and a vector meson 


	Calculation of the New Hadronic Modes
	H = OmegaPiPi
	H = K*KPi
	H = PhiPiPi
	H = 6Pi

	Additional Plots
	Branching Ratios



