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ABSTRACT

Machine learning algorithms are increasingly used by decision making systems that

affect individual lives in a wide variety of ways. Consequently, in recent years concerns

have been raised about the social and ethical implications of using such algorithms.

Particular concerns include issues surrounding privacy, fairness, and transparency in

decision systems. This dissertation introduces new tools and measures for improving

the social desirability of data-driven decision systems, and consists of two main parts.

The first part provides a useful tool for an important class of decision making

algorithms: collaborative filtering in recommender systems. In particular, it intro-

duces the idea of improving socially relevant properties of a recommender system by

augmenting the input with additional training data, an approach which is inspired by

prior work on data poisoning attacks and adapts them to generate ‘antidote data’ for

social good. We provide an algorithmic framework for this strategy and show that

it can efficiently improve the polarization and fairness metrics of factorization-based

recommender systems.

In the second part, we focus on fairness notions that incorporate data inputs

used by decision systems. In particular, we draw attention to ‘data minimization’,

v



an existing principle in data protection regulations that restricts a system to use

the minimal information that is necessary for performing the task at hand. First, we

propose an operationalization for this principle that is based on classification accuracy,

and we show how a natural dependence of accuracy on data inputs can be expressed

as a trade-off between fair-inputs and fair-outputs. Next, we address the problem

of auditing black- box prediction models for data minimization compliance. For this

problem, we suggest a metric for data minimization that is based on model instability

under simple imputations, and we extend its applicability from a finite sample model

to a distributional setting by introducing a probabilistic data minimization guarantee.

Finally, assuming limited system queries, we formulate the problem of allocating a

query budget to simple imputations for investigating model instability as a multi-

armed bandit framework, for which we design efficient exploration strategies.
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Chapter 1

Introduction

1.1 Responsible Machine Learning

Over the past few decades, machine learning has been transformed from a mostly

academic field to a technology that is integrated into all kinds of services and devices

used by the public. Nowadays, machine learning algorithms largely shape the choices

we make in our daily lives ranging from what news we read and which movies we

watch, to whose products we buy. They are also used to make decisions such as

whether an applicant should be offered a loan, or a defendant should be detained

while awaiting trial. The increasing use of such data-driven decision making systems

in modern society has raised concerns about their social and ethical implications,

particularly about issues surrounding privacy, fairness, and transparency.

These concerns are amplified by a series of recent empirical studies that show

how algorithmic decision systems are prone to unfair treatment of their users. For

example, Larson et al. (2016) analyzed an algorithmic tool used by U.S. courts to

assess the likelihood of a defendant becoming a recidivist, and their study showed

that black defendants were twice as likely as whites to be labeled as high-risk but do

not actually re-offend. (Examples from other domains are (Buolamwini and Gebru,

2018), (Sweeney, 2013).)

These findings have raised public awareness about the need for responsible decision-

making in machine learning, which is responded by regulatory authorities in different

countries (House, 2016; Goddard, 2017). Such regulations not only aim to combat
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discrimination against some individuals or groups of users, but also highlight other

user rights including privacy protection or the right to ask for explanations of system

decisions.

Despite the efforts made by policy makers to address the above social concerns,

there is often a lack of operational interpretation of social responsibility concepts and

regulations for particular algorithmic decision systems. This in turn has created an

active research area focusing on developing notions to define, measures to quantify,

and methods to achieve certain socially desirable properties in decision systems. From

the perspective of system designers, taking the social responsibility dimension into

account translates into setting new objectives under which the system performance

is evaluated. In other words, traditional learning objectives such as the expected loss

over a population are no longer the only performance metrics to optimize for.

Recent years have witnessed a fast-growing number publications in the area of

responsible machine learning. However, as stated by Chouldechova and Roth (2020)

“Our understanding of the fundamental questions related to fairness and machine

learning remain in its infancy.” In particular, much work remains to be done in

formalizing social and ethical objectives in different circumstances, developing efficient

mechanisms for both achieving and auditing social objectives, and understanding the

inherent trade-offs between different objectives. This thesis contributes in further

developing all the above-mentioned directions. In the following we discuss the specific

contributions of this thesis in details.

1.2 Contributions of This Thesis

The first contribution of this thesis (Chapter 3) is introducing a new mechanism for

improving social desirability of an important class of decision making algorithms:

collaborative filtering in recommender systems. As these algorithms rely on user-
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provided data to learn models that are used to predict unknown user preferences, the

recommendations made by such systems may carry undesired properties which are

inherent in the observed data. Existing approaches to mitigate this effect mainly rely

on in-processing techniques, i.e., they modify the system by by using loss functions

that incorporate the fairness objective (Burke et al., 2018; Kamishima et al., 2012).

As a result, they require the recommender system to be modified each time a different

social objective is considered.

We introduce a new method for improving socially relevant properties of a rec-

ommender system. Our approach is based on augmenting the system inputs with

additional training data, an approach which is inspired by prior work on data poison-

ing attacks and adapts them to generate antidote data for social good. We develop

a generic algorithmic framework for this strategy and show that it can efficiently

improve the polarization and fairness metrics of factorization-based recommender

systems.

As a strategy for improving recommendations, the data augmentation approach

has multiple advantages. Adding new input data may be easier than modifying

existing data inputs, as when a system is already running. Additional data can be

provided to the system by a third-party who does not need the ability to modify the

system’s existing input, nor the ability to modify the system’s algorithms. Finally,

unlike existing in-processing approaches that require changing the learning objective

for each desired objective, our approach is applicable to a wide range of socially

relevant properties of a system.

The next contributions of this thesis are focused on the social concerns regarding

the data inputs used by decision systems, which are less studied to date. In particular,

we draw attention to ‘data minimization’, an existing principle in data protection

regulations such as the GDPR (article 5.1.c) (Goddard, 2017). This principle restricts
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a system to use the minimal information that is necessary for performing the task

at hand. However, interpreting (i.e., operationalizing) this principle for particular

prediction systems remains largely unclear.

In Chapter 4 we propose an operationalization for data minimization principle

that is based on classification accuracy. We call this operationalization the need-to-

know property. Furthermore, we propose another input property, fair-privacy, which

requires the decision system use the same data inputs about all individuals when

making decisions. We explore the interaction between these properties and fairness

in the outputs (fair prediction accuracy), and show that for an optimal classifier these

three properties are in general incompatible. We explain what common properties

of data make them incompatible and provide an algorithm to verify if the trade-off

between the three properties exists in a given dataset. Given that achieving optimal

accuracy is a traditional goal of designing classifiers, this result pose a new challenge to

the design of classifiers that aim at optimality: “how much one needs to compromise

on optimality in order to simultaneously achieve fairness in the inputs and outputs

of a classifier?”

Finally, Chapter 5 addresses the problem of auditing black-box prediction models

for data minimization compliance. For this problem, we propose an operationaliza-

tion that is based on model instability. Given the challenge of the black-box setting,

our key idea is to check if each of the prediction model’s input features are individ-

ually necessary, by simply imputing (i.e., assigning) them some constant value and

measuring the extent to which the prediction model’s outcomes would change. We

introduce a metric for data minimization that is based on model instability under

different simple imputations. we extend the applicability of this metric from a finite

sample model to a distributional setting by introducing a probabilistic data minimiza-

tion guarantee, which we derive using a Bayesian approach. Furthermore, we address
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the auditing problem under a constraint on the number of queries to the prediction

system. We formulate the problem of allocating a query budget to feasible simple

imputations for investigating model instability as a multi-armed bandit framework

with probabilistic success metrics, for which we design efficient algorithms.
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Chapter 2

Background

This chapter provides an overview of fairness in machine learning (related to Chapters

3 & 4), and the data minimization principle (related to Chapters 4 & 5) in the

literature. The related work specific to each chapter is reviewed in the corresponding

related work section of that Chapter.

2.1 Fairness in Machine Learning

In recent years several empirical studies have shown how data-driven decision algo-

rithms may amount to discrimination against some users in different areas such as

online advertisement (Sweeney, 2013) and criminal justice (Larson et al., 2016). More

examples of such empirical studies are provided in survey papers (Romei and Rug-

gieri, 2014; Barocas and Selbst, 2016). These findings have raised awareness about

the potential for social harm by the use of machine learning algorithms in life-affecting

decision making scenarios and the importance of fair decision-making systems (Baro-

cas and Selbst, 2016; Boyd and Crawford, 2012), which are highlighed by regulatory

authorities as well (Munoz et al., 2016; Regulation, 2016).

One line of research on fair machine learning focuses on formulating fairness met-

rics. Numerous fairness notions have been proposed so far for machine learning tasks

as varied as classification (Zafar et al., 2017a,b; Hardt et al., 2016; Zemel et al., 2013),

regression (Berk et al., 2017), ranking (Biega et al., 2018; Singh and Joachims, 2018;

Zehlike et al., 2017), and set selection (Celis et al., 2016). The proposed notions
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fall under two broad categories: those measuring unfairness at the level of individual

users and those that measure unfairness at the level of user groups (Speicher et al.,

2018; Dwork et al., 2012).

The group-level unfairness measures can be further sub-divided into those that

prohibit the use of information related to a user’s sensitive group membership when

making predictions and those that require users belonging to different sensitive groups

to receive, on average, equal quality of service. The quality of service received by user

groups can in turn be measured either conditioned or unconditioned on the outcomes

deserved by the users. That is, one might be concerned about the discrepancy between

the rate of beneficial outcomes in different user groups regardless of the ground truth

labels (disparate impact). On the other hand, when ground truth labels are available,

considering the discrepancy in misclassification rates across different groups might be

preferred (disparate mistreatment) (Zafar et al., 2017b).

Another active area in fair machine learning is developing techniques to improve

the fairness of algorithmic systems. Fairness-enhancing techniques in general fall into

three categories based on the stage of the machine learning pipeline that they are

employed: (i) pre-processing,i.e., transform the training data to reduce the potential

for unfair outcomes when using traditional learning models (Kamiran and Calders,

2012; Calmon et al., 2017), (ii) in-processing, i.e., change the learning objectives and

models to ensure fair outcomes even using unmodified training data (Kamishima

et al., 2011; Agarwal et al., 2018; Zafar et al., 2017b), and (iii) post-processing, i.e.,

modify potentially unfair outcomes from existing pre-trained learning models (Hardt

et al., 2016; Corbett-Davies et al., 2017).
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2.2 Data Minimization

Privacy in information systems is generally understood using two concepts: limitation

theory and control theory (Tavani, 2007). Using those theories, several methods have

been proposed to protect the privacy of the users in practice such as differential pri-

vacy (Dwork et al., 2014) k-anonymity (Aggarwal, 2005) and cryptography (Stinson,

2005). The proposed methods mostly assume a privacy adversary who is different

from the party that collects and processes personal data. In many practical scenar-

ios however, the decision system itself is considered as the privacy adversary. On the

other hand, achieving complete privacy has been the goal of cryptography approaches

such as secure multi-party computation (SMC), which have limited practicality due

to constraints such as computational efficiency, and regulatory auditing purposes that

require recording some user data (e.g., attributes such as race or gender for detecting

discrimination).

Consequently, the alternative goal of acquiring minimum necessary data has be-

come important as stated by regulations in different countries. In particular the EU

General Data Protection Regulation (GDPR) (Regulation, 2016) defines the data

minimization principle to control the extent to which personal data can be acquired

and used by prediction models. This principle states that:

Personal data shall be adequate, relevant and limited to what is necessary

for the purposes for which they are processed. (article 5.1.c)

Only a few recent works have addressed the problem of operationalizing data min-

imization in prediction systems. Biega et al. (2020) propose definitions that are based

on recommender systems’ performance, and conduct an empirical study to check the

original recommender performance can be preserved, while limiting the number of

known user ratings. Galdon Clavell et al. (2020) interpret data minimization as lim-

iting the use of sensitive personal data and do an experimental analysis that suggests
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data minimization should not be applied without consideration of other social con-

cerns such as fairness.

Our focus here is on operationalizing data minimization, which is one of the users

rights mentioned in the GDPR. The GDPR however consists of various principles

for protecting individuals who interact with computational system, and efforts have

been made for putting those principles into practice. Examples include proposals for

operationalizing the right to explanation (Kaminski, 2019), the right to be forgot-

ten (Koops, 2011; Ginart et al., 2019), the notion of singling out (Cohen and Nissim,

2020), and the right to withdraw consent (Politou et al., 2018; Utz et al., 2019).
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Chapter 3

Antidote Data Framework

3.1 Introduction

Recommender systems are at the core of many online platforms that influence the

choices we make in our daily lives ranging from what news we read (e.g., Facebook,

Twitter) and whose products and services we buy (e.g., Amazon, Uber, Netflix) to

whom we meet (e.g., OKCupid, Tinder). As users increasingly rely on recommender

systems to make life-affecting choices, concerns are being raised about their inad-

vertent potential for social harm. Recently, studies have shown how recommender

systems predicting user preferences might offer unfair or unequal quality of service

to indvidual (or groups of) users (Beutel et al., 2017b; Burke et al., 2018) or lead to

societal polarization by increasing the divergence between preferences of individual

(or groups of) users (Dandekar et al., 2013).

Collaborative filtering recommender systems rely on user-provided data to learn

models that are used to predict unknown user preferences. As a result, the recom-

mendations made by such systems may carry undesired properties which are inherent

in the observed data. A natural approach then is to consider transformations of input

data that ameliorate those properties.

In this chapter we explore a new approach. Rather than transforming the system’s

exisiting input data, we investigate whether simply augmenting the input with addi-

tional data can improve the social desirability of the resulting recommendations. We

explore this question by developing a generic framework that can be used to improve a
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variety of socially relevant properties of recommender systems. Our framework turns

a technique that has previously been thought of as anti-social attacks on learning

systems into a method with socially desirable outcomes.

As a strategy for improving recommendations, the data augmentation approach

has multiple advantages. Adding new input data may be easier than modifying

existing data inputs, as when a system is already running. Additional data can be

provided to the system by a third-party who does not need the ability to modify the

system’s existing input, nor the ability to modify the system’s algorithms. Further,

the approach is applicable to a wide range of socially relevant properties of a system

– essentially any property that can be expressed as a differentiable function of the

systems inputs (ratings) and/or outputs (predictions).

The framework we develop starts from an existing matrix-factorization recom-

mender system organized according to users and items, that has already been trained

with some input (ratings) data. We consider the addition to the system of new users

who provide ratings of existing items. The new users’ ratings are chosen according

to our framework, so as to improve a socially relevant property of the recommenda-

tions that are provided to the original users. We call the additional ratings provided

‘antidote’ data (by analogy to existing work studying data poisoning). While our

presentation is organized in terms of adding new users to the system, it is entirely

symmetric and can be equally applied to the addition of new items to the system.

In this thesis we instantiate the framework by proposing metrics that capture the

polarization and unfairness of the system’s recommendations. These metrics build on

and extend previous proposals, and include measures of both individual and group

unfairness. We show how to generate antidote data for these metrics, and we present a

number of computational efficiencies that can be exploited. In the process we consider

the relationship between improvements to socially-relevant measures and changes to



12

overall system accuracy. Finally, we show that the small amounts of antidote data

(typically on the order of 1% new users) can generate a dramatic improvement (on the

order of 50%) in the polarization or the fairness of the system’s recommendations.

3.2 Related Work

In this section, we first discuss how our measures of fairness and polarization for

recommender systems relate to those discussed in prior works. Later, we describe how

we leverage insights and methods explored in adversarial machine learning to cause

social harm towards social good in recommender systems. For a general overview of

fairness in machine learning see Section 2.1.

Fairness in recommender systems. The past years have witnessed a growing

awareness about the potential for social harm by the use of machine learning algo-

rithms in different areas (Barocas and Selbst, 2016; Boyd and Crawford, 2012). A

detailed description of the related works in this area is provided in Chapter 2.

Compared to learning tasks such as classification and regression, few studies have

explored fairness notions in the context of recommender systems. Recently, Burke

et al. (2018) observed that recommender systems predicting user preferences over

items would have to consider fairness from two-sides namely, from the perspective of

users receiving the recommendations and from the perspective of items being recom-

mended. Some of the early works by Kamishima et al. (2012, 2018); Kamishima and

Akaho (2017) focused on notions of group-level fairness, where the learning model

is modified to ensure that item recommendations are independent of users’ features

revealing sensitive group membership such as race and gender. More recently, Beutel

et al. (2017b) and Yao and Huang (2017) have defined notions of group-level fair-

ness in recommender systems based on the accuracy of predictions across different

groupings of users or items.
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Here, we not only build upon the group-level notions of fariness proposed by Beutel

et al. (2017b) (by generalizing them to scenarios with more than two groups), but we

also extend them to individual-level. We further note that our fairness notions can

be applied either from the perspective of users or items.

Mechanims for fair recommender systems. Prior works have explored a number

of approaches to incorporating fairness in learning models and recommender systems.

These approaches can be broadly categorized into those that rely on (i) pre-processing,

i.e., transform the training data to reduce the potential for unfair outcomes when using

traditional learning models (Kamiran and Calders, 2012; Calmon et al., 2017), (ii)

in-processing, i.e., change the learning objectives and models to ensure fair outcomes

even using unmodified training data (Kamishima et al., 2011; Agarwal et al., 2018),

and (iii) post-processing, i.e., modify potentially unfair outcomes from existing pre-

trained learning models (Hardt et al., 2016; Corbett-Davies et al., 2017).

We explore a different approach to incorporating our fairness notions in recom-

mender systems. Our approach is in contrast to existing approaches to fair recom-

mendations that primarily rely on in-processing (Burke et al., 2018; Kamishima et al.,

2012). Unlike in-processing approaches, our approach does not require us to modify

the recommendation algorithm for each of our desired notions of fairness.

Leveraging adversarial machine learning for social good. Our approach relies

on methods that have been traditionally used in adversarial learning literature to

cause social harm (Huang et al., 2011). Our key insight is that we can retarget adver-

sarial methods designed to “poison” training data and cause social harm to generate

“antidote” training data for social good. Specifically, our antidote data generation

methods are inspired by prior work on data poisoning attacks on factorization-based

collaborative filtering (Li et al., 2016).

Most pre-processing approaches target learning new fair (latent and transformed)
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representations of original data. Recently, Beutel et al. (2017a) leveraged adversarial

training procedures to remove information about sensitive group membership from the

latent representations learned by a neural network. In contrast, our approach leaves

the original training data untouched and instead adds new antidote data to achieve

fairness objectives. As our evaluation results presented later in the chapter will show,

by leaving the original training data unmodified, our approach also achieves good

overall prediction accuracy (the traditional objective of recommender algorithms).

Polarization. Polarization refers to the degree to which opinions, views, and sen-

timents diverge within a population. Several prior works have raised and explored

concerns that recommender systems might increase societal polarization by tailoring

recommendations to individual user’s preferences and trapping users in their own

“personalized filter bubbles” (Pariser, 2011; Hannak et al., 2013). Dandekar et al.

(2013) show how many traditional recommender algorithms used on Internet plat-

forms can lead to polarization of user opinions in society.

We propose to measure the polarization of a recommender system as the extent to

which predicted ratings for items vary (diverge) across users. Our polarization metric

is consistent with those proposed in (Dandekar et al., 2013; Matakos et al., 2017).

We show how our antidote data generation framework can be used to target reducing

(or in certain scenarios, increasing) polarization in predicted ratings.

3.3 Optimal Antidote Data Problem

We start by presenting the system setup, notation, and problem definition. Assume

X ∈ Rn×d is a partially observed rating matrix of n users and d items such that

element xij denotes the rating given by user i to item j. Let Ω be the set of indices

of known ratings in X. Also Ωi denotes the indices of known item ratings for user i,

and Ωj denotes the indices of known user ratings for item j.
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For a matrix A, PΩ(A) is a matrix whose elements at (i, j) ∈ Ω are aij and zero

elsewhere. Similarly, for a vector a, PΩj
(a) is a vector whose elements at i ∈ Ωj

are the corresponding elements of a and zero elsewhere. Throughout the chapter, we

denote the column j of A by the vector aj and the row i of A by the vector ai. All

vectors are column vectors.

We assume a factorization based collaborative filtering algorithm is applied to es-

timate the unknown ratings in X, i.e., for each user i and item j we find `-dimensional

representations ui and vj such that ` << min(n, d) and the rating xij is modeled by

xij ≈ uᵀivj.

More specifically, we consider a factorization algorithm Θ that finds factors U ∈

R`×n and V ∈ R`×d by solving the following optimization problem:

argmin
U,V

||PΩ(X−UᵀV)||2F + λ(||U||2F + ||V||2F ) (3.1)

where columns of U are the user latent vectors, and columns of V are the item latent

vectors. The first term in 3.1 denotes the estimation error over known elements of

X and the second term is an `2-norm regularizer added to avoid overfitting. The

unknown ratings are then estimated by setting X̂ = UᵀV.

We can think of our factorization algorithm as a function that maps a partially

observed rating matrix X to matrices U and V, and has additional parameters ` and

λ, i.e, Θ`,λ(X) = (U,V). We assume that the factorization rank and the regularizer

parameter are set in a validation phase and remain fixed afterwards and we use Θ(X)

and Θ`,λ(X) interchangeably throughout the chapter.

We use R to denote the socially relevant objective function that we seek to opti-

mize by adding antidote data. R is a function of estimated ratings X̂ and possibly

(depending on the objective) other parameters such as original ratings, user labels,

etc. For example, consider an objective that minimizes the difference of average es-
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Figure 3·1: The effect of antidote data on a matrix factorization system. Initially
the system learns factors U and V from a partially observed rating matrix X. The
latent factors are then used to find the estimated rating matrix X̂ which is an input
to the socially relevant metric R. Adding antidote ratings X̃ introduces the new
user latent factor Ũ and modifies the item latent factor V, generating a new X̂
that improves R(X̂).

timation errors between two groups of users. In that case, R is a function defined

over X, X̂, and another parameter that indicates the group membership of each user.

The specific objective functions we study in this chapter are presented in Section 3.5.

Now we can formally state the optimal antidote data problem:

Problem 1 (Optimal Antidote Problem). Given a partially observed rating matrix

X ∈ Rn×d, a budget n′ = αn, a factorization algorithm Θ`,λ, and an objective function

R, find the antidote data X̃ ∈ Rn′×d such that R is optimized when Θ`,λ is applied

jointly on X and X̃.

Note that we may want to either maximize or minimize R depending on the

objective. Also, although in our notation X̃ corresponds to a set of artificial users,

we can apply problem 1 to generate a set of artificial items by using the symmetry of

the problem, i.e., by transposing X.

Although some objective functions have additional parameters such as the original

observed ratings (X) or a list of group memberships (which we denote K), adding

antidote data only affects the output of the factorization algorithm and hence the

rating estimations X̂. Therefore, we denote the general objective function by R(X̂)

instead of R(X̂,X, K) for notational convenience. Assuming our goal is to minimize
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some objective function R, we can rewrite problem 1 as:

argmin
X̃∈M

R(X̂) (3.2)

where M ⊂ Rn′×d is the set of feasible antidote data matrices.

Let Θ(X; X̃) denote the factorization algorithm when applied jointly on the orig-

inal and the antidote data. In this case, the output consists of the item latent vectors

forming the columns of factor V ∈ R`×d, and the user latent vectors which can be

split into a matrix of original users latent vectors U ∈ R`×n, and a matrix of antidote

users latent vectors Ũ ∈ R`×n′ ; therefore, we have Θ(X; X̃) = (U, Ũ,V).

Furthermore, X̂ is a function of original users latent vectors and item latent vec-

tors1, i.e., X̂(Θ(X; X̃)) = UᵀV. This allows us to write (3.2) in the explicit form:

argmin
X̃∈M

R(X̂(Θ(X; X̃))) (3.3)

In other words, we are looking for antidote data X̃ that modifies the outputs of Θ

such that X̂ is modified to optimize R. Figure 3·1 shows a schematic representation

of the antidote data effect on matrix factorization models. In the next section, we

introduce an iterative method to solve (3.3).

3.4 Computing Antidote Data

In this section we introduce the framework for generating antidote data. We apply

a projected gradient descent/ascent algorithm (GD/GA) to optimize the antidote data

with respect to a socially relevant objective function. In section 3.4.1 we review a

gradient descent method, introduced by Li et al. (2016), for optimizing data poisoning

attacks on matrix factorization models, and which we adapt to optimize antidote data.

1Note that here U and V are the users and items latent vectors after adding the antidote data
to the system, which can be different from initial U and V.
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Then, in section 3.4.2 we show how the characteristics of the antidote problem can

be exploited for significant improvements in algorithmic efficiency.

3.4.1 A Projected Gradient Descent Approach

In this section we describe a projected gradient descent algorithm to solve the con-

strained optimization problem (3.2). A parallel approach is taken in (Li et al., 2016)

for optimizing data poisoning attacks, which is itself an instance of the more general

machine teaching problem introduced by Mei and Zhu (2015). We note that the

framework introduced by Mei and Zhu (2015) can be used to extend the applicability

of antidote data approach beyond matrix factorization models.

The algorithm starts from an initial antidote data with size of a given budget. At

each iteration, the factorization algorithm is applied jointly on the original data and

the current antidote data to find updated factors U,Ũ,V, and estimated ratings X̂.

Then the gradient of the antidote utility with respect to antidote data at the current

point is computed and the algorithm chooses a step size and updates the antidote

data. After each update, a projection function is applied to get a feasible solution.

In this work we only consider range constraints on the ratings, i.e., for each rating

x̃ij we assume Mmin < x̃ij < Mmax where Mmin and Mmax indicate the minimum

and maximum feasible rating in the system. Therefore the projection function simply

truncates all the ratings in X̃ at Mmin and Mmax.

Algorithm 1 presents the details of our antidote data optimization method. If the

goal is to maximize R, we can apply a gradient ascent algorithm by simply changing

the sign of the gradient step in line 6. The learning algorithm Θ`,λ is an input to

Algorithm 1. This is a realistic assumption in a white-box scenario, i.e., a party

with the full knowledge of the recommender system seeks to generate antidote data,

which is an important case. However, we emphasize that there are settings in which

other parties with only partial knowledge of the system can successfully adopt the
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antidote data approach as well. First of all, recent work (Wang and Gong, 2018)

introduces a method for estimating the hyper-parameters of a learning algorithm.

Using that method we need not input Θ`,λ to Algorithm 1, instead only providing the

original factors (U,V). Moreover, in Section 3.6 we introduce heuristic algorithms

that require less information about the recommender system than does Algorithm 1.

Algorithm 1: Optimizing antidote data via projected gradient descent

Input: Observed ratings X ∈ Rn×d, budget n′, factorization algorithm Θ`,λ,
utility R, feasible set M

Output: Antidote data X̃
Initialization
:

initialize X̃(0) ∈ Rn′×d, t = 0

1 while convergence do

2 U, Ũ,V = Θ(X; X̃(t))

3 X̂ = UᵀV

4 Compute ∇X̃R(X̂)
5 Find step size α

6 X̃(t+1) = X̃(t) − α∇X̃R(X̂)

7 X̃(t+1) = PM(X̃(t+1))
8 t← t+ 1

9 return X̃(t)

In order to compute ∇X̃R(X̂) in line 4 of algorithm 1, we consider the explicit

form of the objective function given in (3.3). Applying the chain rule we get:

∇X̃R(X̂) = ∇ΘR(X̂) ∇X̃(Θ(X; X̃)) (3.4)

∇X̃(Θ(X; X̃)) is the Jacobian matrix that contains partial derivatives of factors

(U, Ũ,V) with respect to each element in X̃. These partial derivatives can be ap-

proximately computed by exploiting the KKT conditions of the factorization problem

as explained in (Li et al., 2016; Mei and Zhu, 2015). However, in section 3.4.2 we

show cases where the full computation of such partial derivatives is not required and

we explain how to derive the necessary elements.
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By applying the chain rule one more time on ∇ΘR(X̂) we get:

∇X̃R(X̂) = ∇X̂R(X̂) ∇ΘX̂(Θ) ∇X̃(Θ(X; X̃)) (3.5)

The first term in (3.5) is the gradient of the antidote utility with respect to the

estimated ratings. In this work we only consider differentiable utilities, as described

in more detail in section 3.5.

The second term in (3.5) is the gradient of the estimated ratings with respect to

factors (U, Ũ,V). This term is straighforward to compute since the ratings are linear

in each factor, i.e., X̂ = UᵀV.

In this work we do not make assumptions (e.g. convexity) about the antidote

utility other than being differentiable; the framework is a general method to improve

a socially relevant metric rather than one that seeks the global optimum of function

R. However, we note that introducing antidote objectives with certain provable prop-

erties, which can provide convergence guarantees or more efficient ways to find the

step size in Algorithm 1, is a potential direction for future research.

3.4.2 Efficient Computation of the Gradient Step

In this section we show how to further simplify (3.5) to make the update step of

Algorithm 1 more efficient.

First, we write ∇ΘX̂(Θ) in terms of the block matrices that contain the partial

derivatives of the estimated ratings in X̂ with respect to each factor U, Ũ,V, i.e.2,[
∂X̂
∂U
, ∂X̂
∂Ũ
, ∂X̂
∂V

]
. Notice that X̂ = UᵀV does not depend on Ũ and therefore ∂X̂

∂Ũ
= 0.

Furthermore, we write ∇X̃(Θ(X; X̃)) in terms of the block matrices that contain

the partial derivatives of each factor U, Ũ,V with respect to each element in X̃, i.e.,[
(∂U
∂X̃

)ᵀ, (∂Ũ
∂X̃

)ᵀ, (∂V
∂X̃

)ᵀ
]ᵀ

. Assuming that an infinitesimal change in x̃ij only results in

2For matrices A ∈ Rm×n and B ∈ Rr×s, we use ∂A
∂B to denote an mn× rs matrix that contains

the partial derivatives
∂aij

∂bk`
for each aij and bk`.
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first order updates in vectors ũi and vj, we get ∂U
∂X̃

= 0.

Exploiting the fact that ∂U
∂X̃

= ∂X̂
∂Ũ

= 0, we can simplify (3.5) to:

∇X̃R(X̂) = ∇X̂R(X̂)
∂X̂

∂V

∂V

∂X̃
(3.6)

Now we derive ∂R(X̂)
∂x̃ij

for each element of the antidote data x̃ij. Let v1, . . . ,vd be the

item vectors forming the columns of V . Then starting from the last term in (3.6) and

assuming first order updates, we know that ∂vk

∂x̃ij
is non-zero only if k = j and can be

approximately computed as3:

∂vj
∂x̃ij

= (
∑
i∈Ωj

uiu
ᵀ
i + ŨŨᵀ + λI`)

−1ũi (3.7)

On the other hand, ∂x̂lk
∂vj

= uᵀl if k = j and an `-dimensional zero vector otherwise.

Therefore, we need to compute ∂R(X̂)
∂x̂lk

only for k = j and we have:

∂R(X̂)

∂x̃ij
=

(
n∑
l=1

∂R(X̂)

∂x̂lj

∂x̂lj
∂vj

)
∂vj
∂x̃ij

(3.8)

Let G be a matrix formed by reshaping ∇X̂R(X̂) into an n × d matrix such that

gij = ∂R(X̂)
∂x̂ij

. Then we can write (3.8) as:

∂R(X̂)

∂x̃ij
= gj

ᵀUᵀS−1
j ũi (3.9)

where Sj =
∑

i∈Ωj
uiu

ᵀ
i + ŨŨᵀ + λI`.

By using (3.9) instead of the general formula in (3.5) we can significantly reduce

the number of computations required for finding the gradient of the utility function

with respect to the antidote data. Furthermore, the term gj
ᵀUᵀS−1

j appears in all

the partial derivatives that correspond to elements in column j of X̃ and can be

precomputed in each iteration of the algorithm and reused for computing partial

3Details are provided in appendix A.1.
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derivatives with respect to different antidote users.

3.5 Social Objective Functions

The previous section developed a general framework for improving various proper-

ties of recommender systems; in this section we show how to apply that framework

specifically to issues of polarization and fairness.

As described in Section 3.2, polarization is the degree to which opinions, views,

and sentiments diverge within a population. Recommender systems can capture this

effect through the ratings that they present for items. To formalize this notion, we de-

fine polarization in terms of the variability of predicted ratings when compared across

users. In fact, we note that both very high variability, and very low variability of rat-

ings may be undesirable. In the case of high variability, users have strongly divergent

opinions, leading to conflict. Recent analyses of the YouTube recommendation sys-

tem have suggested that it can enhance this effect (Nicas, 2018; O’Callaghan et al.,

2015). On the other hand, the convergence of user preferences, i.e., very low variabil-

ity of ratings given to each item across users, corresponds to increased homogeneity,

an undesirable phenomenon that may occur as users interact with a recommender

system (Chaney et al., 2017). As a result, in what follows we consider using antidote

data in both ways: to either increase or decrease polarization.

As also described in Section 3.2, unfairness is a topic of growing interest in machine

learning. Following the discussion in that section, we consider a recommender system

fair if it provides equal quality of service (i.e., prediction accuracy) to all users or all

groups of users (Zafar et al., 2017b).

Next we formally define the metrics that specify the objective functions associated

with each of the above objectives. Since the gradient of each objective function is

used in the optimization algorithm, for reproducibility we provide the details about
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derivation of the gradients in appendix A.2.

3.5.1 Polarization

To capture polarization, we seek to measure the extent to which the user ratings

disagree. Thus, to measure user polarization we consider the estimated ratings X̂,

and we define the polarization metric as the normalized sum of pairwise euclidean

distances between estimated user ratings, i.e., between rows of X̂. In particular:

Rpol(X̂) =
1

n2d

n∑
k=1

∑
l>k

||x̂k − x̂l||2 (3.10)

The normalization term 1
n2d

in (3.10) makes the polarization metric identical to

the following definition: 4

Rpol(X̂) =
1

d

d∑
j=1

σ2
j (3.11)

where σ2
j is the variance of estimated user ratings for item j. Thus this polarization

metric can be interpreted either as the average of the variances of estimated ratings

in each item, or equivalently as the average user disagreement over all items.

3.5.2 Fairness

Individual fairness. For each user i, we define `i, the loss of user i, as the mean

squared estimation error over known ratings of user i:

`i =
||PΩi(x̂i − xi)||22

|Ωi|
(3.12)

4We can derive it by rewriting (3.10) as Rpol(X̂) =
1

d

d∑
j=1

1

n2

n∑
k=1

∑
l>k

(x̂kj − x̂lj)2.
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Then we define the individual unfairness as the variance of the user losses:5

Rindv(X, X̂) =
1

n2

n∑
k=1

∑
l>k

(`k − `l)2 (3.13)

To improve individual fairness, we seek to minimize Rindv.

Group fairness. Let I be the set of all users/items and G = {G1 . . . , Gg} be a

partition of users/items into g groups, i.e., I =
⋃
i∈{1,...,g}Gi. We define the loss of

group i as the mean squared estimation error over all known ratings in group i:

Li =
||PΩGi

(X̂−X)||22
|ΩGi
|

(3.14)

For a given partition G, we define the group unfairness as the variance of all group

losses:

Rgrp(X, X̂, G) =
1

g2

g∑
k=1

∑
l>k

(Lk − Ll)2 (3.15)

Again, to improve group fairness, we seek to minimize Rgrp.

3.5.3 Accuracy vs. Social Welfare

Adding antidote data to the system to improve a social utility will also have an effect

on the overall prediction accuracy. Previous works have considered social objectives

as regularizers or constraints added to the recommender model (eg, (Burke et al.,

2018; Zafar et al., 2017d; Kamishima et al., 2011)), implying a trade-off between the

prediction accuracy and a social objective.

However, in the case of the metrics we define here, the relationship is not as

simple. Considering polarization, we find that in general, increasing or decreasing

polarization will tend to decrease system accuracy. In either case we find that system

accuracy only declines slightly in our experiments; we report on the specific values

5Note that for a set of equally likely values x1, . . . , xn the variance can be expressed without

referring to the mean as: 1
n2

∑
i

∑
j>i

(xi − xj)2.
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in Section 3.6. Considering either individual or group unfairness, the situation is

more subtle. Note that our unfairness metrics will be exactly zero for a system with

zero error (perfect accuracy). As a result, it is possible that as the system decreases

unfairness, overall accuracy may either increase or decrease. We illustrate these effects

in our experiments in Section 3.6.

3.6 Effectiveness

In this section we use the tools developed in previous sections to study the effectiveness

of antidote data in varying the polarization and reducing the unfairness of a matrix-

factorization based recommender system.

We consider a recommender system that estimates unknown ratings by solving

the regularized matrix factorization problem as defined by (3.1). We implemented

an alternating least squares algorithm (Hastie et al., 2015; Hardt, 2014) to find the

factors. We use the MovieLens 1M dataset which contains around 1 million ratings

of ∼4000 movies made by ∼6000 users, with ratings on a 5-point scale (Harper and

Konstan, 2016). We choose the 1000 most frequently rated movies, and use different

subsets of users in different experiments as described below.

For each dataset we perform a validation process to choose the hyper-parameters

(`, λ) so as to obtain realistic settings. The hyper-parameters are selected based on

the average root-mean-square error (RMSE) of the factorization in multiple random

splits of observed ratings into training and validation sets. We assume that the hyper-

parameters are fixed during the antidote data generation process since the antidote

data is generated for a fixed recommender system.

First we show the effectiveness of antidote data in modifying the user polariza-

tion as defined in section 3.5.1. In section 3.6.2 we describe different heuristics that

can significantly speed up the construction of antidote data. Finally, section 3.6.3
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demonstrates the effectiveness of applying antidote data for improving fairness.

3.6.1 Polarization

To explore modifying user polarization, we choose a random subset of 1000 users

yielding a matrix in which 11% of the elements are known. As previously mentioned,

it may be of interest to either increase or decrease the polarization metric in different

scenarios. We present an example for each case. We do so by taking advantage of the

fact that different hyperparameter combinations can yield models that are very close

in overall accuracy but that differ significantly with respect to initial user polarization

in the system.

In particular, we observe that the average validation RMSE over ten random splits

of observed ratings into training and validation sets for (rank = 8, λ = 10) is 0.87

and for (rank = 4, λ = 0.1) is 0.90. However, the polarization (Rpol) of the estimated

rating matrix for (rank = 8, λ = 10) is 0.2 whereas for (rank = 4, λ = 0.1) the

polarization goes up to 0.55. We use the former setting as an example where the goal

is to increase the polarization metric (to avoid homogeneity), and the latter setting

as an example of a polarized system where the goal is to reduce polarization.

For each of the maximization and minimization objectives, we compare the per-

formance of the antidote data generation framework with a baseline algorithm. When

seeking to minimize polarization, we use baseline min. This algorithm tries to re-

duce the variance of estimated ratings in each item by setting the ratings given to the

corresponding item in the antidote data to the average of known ratings for that item

in the original data. When seeking to maximize polization, we use baseline max.

This algorithm generates antidote data by setting half of the user ratings in each

item to the maximum feasible rating value and the other half of the ratings to the

minimum feasible rating value.

Furthermore, we consider two different initializations for the optimization process:
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Figure 3·2: Modifying user polarization.

in the case of GD(fixed init), all the ratings in the initial antidote data are set to

the same value. In the case of GD(random init), we run the optimization multiple

times starting from random initializations and return the best solution.

Figure 3·2 compares the effects of adding antidote data constructed by different

methods on polarization. After each injection of the antidote data, the new polar-

ization is computed using the original data only, i.e., we ignore the injected data in

evaluating polarization. We present our results for different budgets varying from a

single antidote user to 5% of the number of original users. We also show the effect of

ratings that are randomly generated over the feasible range, when used as antidote

data.

Our results show that the antidote data generation framework can successfully

either minimize or maximize polarization. Antidote data generated by our method

are considerably more effective than the baseline algorithms as well as random data.

We observe that a 2% budget is enough to reduce the initial polarization in a polarized

setting by 50% and increase the polarization in a less polarized setting by 10%.

Furthermore, we observe that random initialization is more effective for minimizing

polarization whereas initializing all the antidote ratings from the same value is more
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effective for maximizing polarization.
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Figure 3·3: Minimizing polarization with 1% budget.

To better understand the effect of antidote data on user polarization, in Figure

3·3 we demonstrate the effect of antidote data with a 1% budget for the minimization

case. Note that the effect on estimation error of adding antidote data is negligible:

RMSE of rating estimations for known elements changes from 0.80 to 0.83. In

other words, antidote data modifies the prediction model such that its predictions

still approximately agree with the known ratings but the polarization of the new

estimated rating matrix is significantly different.

Figure 3·3a shows the distributions of per-item polarization (σ2
j in (3.11)) along
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with Rpol (the distributional mean) before and after antidote data injection. The

figure shows that without antidote data, a small set of items make large contributions

to overall polarization – they have quite high variance in ratings, shown by the long

distributional tail. The addition of antidote data dramatically reduces this effect, and

also significantly lowers Rpol from 0.55 to 0.29.

Figure 3·3b shows the effect of adding antidote data on the estimated ratings of

Patch Adams (1998), one of the movies for which the variance of estimated ratings is

large before adding antidote data. We observe that the distribution of known ratings

for this movie indicates a polarized case with two peaks at 2 and 4. The initial

rating estimations in this case lie in an interval that is much larger than the range

of observed ratings. Adding antidote data modifies the extreme rating estimations;

resulting in a unimodal distribution over the range of original ratings.

While the goal of adding antidote data is to modify the system’s predicted ratings,

an important use case for such a system is to output the top rated items as the system’s

recomendations. Hence, it is important to ask how modifying predicted ratings will

change the ranking of unrated items, i.e., the output of a top-k recommender system.

Therefore, we consider the top-k recommended items on a per-user basis and measure

the degree of change in the recommendations before and after adding antidote data.

We use the Jaccard similarity of the sets of recommended items to measure this

change.

Figure 3·3c shows the average of Jaccard similarities across all users. Our re-

sults show that the antidote data significantly changes the output of a top-k recom-

mender system. For example, adding 1% additional antidote data changes the top-

recommended item for 84% of all users. We observe that, in general, as the number

of considered top items grows, the effect lessens (Jaccard similarity grows). However,

the changes in the set of recommended items are still significant up to k = 30.
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Figure 3·4: Optimal antidote data with 0.5% budget.

3.6.2 Heuristic Algorithms

In this section we introduce heuristic algorithms that dramatically reduce the com-

putational cost of antidote data generation. Notice that the computational cost of

Algorithm 1 is dominated by performing the matrix factorization algorithm (evalu-

ating Θ) in each pass through the gradient descent loop. The heuristics are designed

based on various approximations that can be made in different steps of Algorithm 1

to minimize the number of times Θ is evaluated. The approximations are motivated

by certain patterns observed in the antidote data generated by Algorithm 1.

Figure 3·4 shows the antidote data generated by GD(random init) for minimizing

polarization (Fig. 3·4a) and minimizing individual unfairness (Fig. 3·4b). We observe

that: (i) most of the ratings in the resulting antidote data are equal to one of the

boundary values in the feasible set, Mmin or Mmax (0 or 5 in our experiments), and

(ii) in the fairness case, most of the users (rows) in the antidote data converge to a

nearly-identical pattern of ratings over items, even if they are initialized with different

random values.

Based on the above observations, in our evaluations we consider two heuristics

for generating antidote data for fairness. The first (heuristic1) offers considerable
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Table 3.1: Effect of antidote data on individual unfairness Rindv in the
held-out ratings. Rindv before antidote is 0.1087.

Budget
Algorithm 1 0.5% 1% 2% 5%

GD(random init) 0.1086 0.1084 0.1054 0.1157 0.1086
GD(fixed init) 0.1086 0.1083 0.0929 0.0985 0.0968
heuristic1 0.1086 0.1084 0.0816 0.0800 0.0830
heuristic2 0.1086 0.1084 0.0817 0.0818 0.0811

computational savings, and the second (heuristic2) offers even more savings, while

additionally removing the need for access to the factorization algorithm or its hyper-

parameters (`,λ)6.

heuristic1 reduces the number evaluations of Θ to a single call by combining

observations (i) and (ii). It works by considering the addition of only a single row of

antidote data, and computes gradients for that row. Rather than performing gradient

descent over a series of small steps, it then simply sets each value in the antidote data

row to either Mmin or Mmax depending on the sign of the gradient. It then replicates

the resulting row as many times as dictated by the antidote data budget.

In the case of heuristic2, in addition to using the above observations, we ap-

proximate the direction of the gradient without the need to perform matrix factor-

ization, given access to factors U and V. In this case, access to the factorization

algorithm or its hyper-parameters is not required. Notice that (3.9) can be rewritten

as ∂R(X̂)
∂x̃1j

= aᵀjbj where aj =
[
gᵀjU

ᵀ
]ᵀ

and bj = S−1
j ũ1. For sufficient level of reg-

ularization λ, we can approximate aᵀjbj ≈ caᵀj1` where c is a constant and 1` is an

`-dimensional vector of 1’s. This leads to a modification of heuristic1 in which all

the values in column j of the antidote data are set to Mmin or Mmax depending on

the sign of gᵀjU
ᵀ1`.
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Figure 3·5: Improving fairness.

3.6.3 Fairness

In this section we show how antidote data as generated by our various algorithms

improves fairness. We again use the MovieLens dataset; to study group fairness,

we group movies by genre as specified in the dataset. In contrast to the case for

polarization, the fairness objective is a function of both the known and predicted user

ratings. Hence we choose the 1000 most active users and the 1000 most frequently

rated movies. This gives us a rating matrix in which ∼36% of the elements are known.

For this dataset we run the matrix factorization algorithm with hyper-parameters

(rank = 8, λ = 1).

To verify that adding antidote data improves the fairness of unseen ratings, we

hold out 20% of the known ratings per user as a test set. We use the remaining

data (training set) to generate antidote data; we then measure the effectiveness of

the resulting antidote data in both training and test sets.

We start by assessing the effect of antidote data on fairness in the training data.

We show the impact of antidote data on individual unfairness (Rindv) in Figure 3·5a

and on group unfairness (Rgrp) in Figure 3·5b. The figures compare the effect of

6Pseudocodes are provided in appendix B.
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Table 3.2: Effect of antidote data on group unfairness Rgrp in the held-out
ratings. Rgrp before antidote is 0.0088.

Budget
Algorithm 1 0.5% 1% 2% 5%

GD(random init) 0.0087 0.0035 0.0041 0.0042 0.0045
GD(fixed init) 0.0087 0.0042 0.0040 0.0040 0.0044
heuristic1 0.0087 0.0055 0.0056 0.0057 0.0058
heuristic2 0.0087 0.0055 0.0056 0.0057 0.0058

antidote data as generated by four different algorithms: Algorithm 1 with two dif-

ferent initializations as described in Section 3.6.1, and the two heuristic algorithms

introduced in Section 3.6.2.

The results show that all algorithms improve fairness considerably. In fact most

of the benefits of antidote data can be obtained by only adding 1% additional users

in the individual fairness case and 0.5% additional users in the group fairness case.

The figures also show that the much simpler heuristics, in which all rows of the

antidote data are identical, are effective: for individual fairness, they provide almost

all the benefits of Algorithm 1 while for group fairness they provide around half of

the benefits of Algorithm 1.

Tables 3.1 and 3.2 show the resulting values of the individual and group unfairness

metrics in the test set after antidote data addition for different budgets and different

algorithms. We observe that the antidote data generated to reduce unfairness in the

training data is also effective for reducing unfairness on the the held-out test data.

The optimal value (minimum unfairness) in each table is highlighted. We observe that

even in the test set, a 2% budget using heuristic1 can reduce individual unfairness

by over 25% (from 0.1087 to 0.0800), and group unfairness can be lowered by more

than 50% (from 0.0088 to 0.0035) using GD(random init) and a 0.5% budget.

Figure 3·6 provides more insight into how adding antidote data reduces individual

and group unfairness. In each case, we consider the setting that reaches the minimum

unfairness in the test set as presented in tables 3.1 and 3.2.
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Figure 3·6: Antidote data effect on fairness.

Figure 3·6a shows the effect of optimal antidote data on per-user RMSEs. The

figure demonstrates a number of points. First, adding antidote data results in a model

with less variation in per-user RMSE of rating estimations in both training and test

sets. Second, a noticeable way in which adding antidote data improves fairness is

by reducing the magnitude of the outliers that drive unfairness in both training and

testing. Finally, the figure shows that in this example adding antidote data actually

improves overall accuracy of the model predictions.

Figure 3·6b shows the effect of optimal antidote data on per-group RMSE in the

test set. For each group (genre) of movies, the corresponding point shows the group’s

RMSE before and after adding antidote data. Additionally, the boxplots on each

axis illustrate the distribution of RMSE values across groups before and after adding

antidote data.

First, we observe that all points are below the line y = x, i.e., adding antidote

data improves the prediction accuracy of all genres and thus the overall accuracy of

the model. Moreover, the boxplots show that improvements in rating estimations are
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so that the cross-group variability in RMSE is decreased to reach a fairer situation.

Finally, we see that outliers particularly benefit from addition of antidote data; this

can be seen as larger RMSE improvements in genres that initially had larger RMSE. In

particular, Documentary and Horror have the largest prediction errors before adding

antidote data, and their RMSEs are the most improved (furthest below y = x) after

adding antidote data.

3.7 Summary

In this chapter we proposed a new strategy for improving the socially relevant

properties of a recommender system: adding antidote data. We have presented

an algorithmic framework for this strategy and applied it to a range of socially

important objectives. Using this strategy, one does not need to modify the orig-

inal system input data or the system’s algorithm. We show that the resulting

framework can efficiently improve the polarization or fairness properties of a

recommender system. We conclude that the developed framework can be a flex-

ible and effective approach to addressing the social impacts of a recommender system.
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Chapter 4

Fair Inputs and Fair Outputs

4.1 Introduction

As data-driven decision making systems are increasingly used in modern society in

ways that affect individual lives, concerns have been raised about their ethical impli-

cations. In particular, recent years have witnessed a fast-growing number of studies

on fairness in the decisions made by such systems, including works on developing

notions to define, measures to quantify, and mechanism to ensure fair outputs (i.e.,

whether a decision system provides an equitable service to all of its users or groups of

users). Despite the natural dependence of decision outcomes on data inputs, fairness

concerns that incorporate the inputs of decision system are however less studied.

Traditionally, ethical concerns about the inputs to (i.e., data used by) decision

systems have been the focus of “privacy” studies, while ethical concerns about the

outputs from decision systems have been the focus of “fairness” studies. However,

we observe that privacy and fairness originate from fundamentally different epistemic

arguments. At a high-level, privacy concerns are rooted in a desire to protect indi-

viduals by limiting or enabling control over the information they reveal to the world.

Fairness concerns, on the other hand, are rooted in a desire for equitable treatment

of individuals (or groups of individuals). As such, privacy and fairness concerns can

independently arise for both the inputs used and the outputs generated by decision

systems.

As a motivating example, consider a decision problem where the goal is to decide
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whether an applicant should be offered a loan. The decision for each applicant is made

based on answers that are collected to a number of demographic and financial status

questions. In settings similar to this example, we recognize certain social concerns

regarding the information that is gathered from each applicant. In particular, we

raise two questions motivated by previous proposals and legal regulations:

First, considering each applicant individually, we ask “what information is neces-

sary for (i.e., what questions are relevant to) solving the decision problem at hand?”

In the loan eligibility problem for example, it seems unnecessary to ask about an

applicant’s height. Moreover, although it may often be necessary to ask about ed-

ucation level, an applicant who has an excellent credit score and a secure job may

find a question about his education level to be unnecessary. Notice that as revealing

each piece of information to the decision system is associated with a potential loss in

privacy, this concern is related to protecting individuals’ privacy.

The above consideration is reflected in the EU General Data Protection Regulation

(GDPR) (Regulation, 2016) as a principle called data minimization, which is defined

as: “Personal data shall be adequate, relevant and limited to what is necessary in

relation to the purposes for which they are processed.”

The second ethical question arises when comparing the information used (i.e., set

of questions asked) from different applicants. In particular, we ask “how can using

different pieces of information from different applicants amount to discrimination?”

For instance, a loan applicant may find it unfair that she is asked to answer a different

set of questions comparing to another applicant.

In order to study these questions in a concrete setting, we consider a classifier and

a set of input variables (features). We assume that the classifier is trained using all

the features, and we study properties of the classifier when it is applied to a test set.

Furthermore, we assume that the classifier is able to classify a given data point using
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any subset of the input features. In other words, for a given classification instance

at the test time, the values of only a subset of input features may be revealed to the

classifier, and the remaining feature values are set to unknown1.

We observe that in such scenarios, one may ask “What properties can make the

set of data inputs used for each classification instance more socially desirable?” Our

first contribution is proposing two properties of classifiers regarding their inputs to

address the above question; namely the need-to-know principle and the fair privacy

principle. In the following we introduce each principle and their formal definitions

will be presented in section 4.4.

Notice that we are not concerned with how a set of feature values are selected to

be used for classifying each instance, but we are rather interested in checking whether

an arbitrary set of features meets these properties2.

The need-to-know principle. This property presents one way of formalizing “data

minimization” (Regulation, 2016) in a classification setting. We propose a formula-

tion that is based on classification accuracy. Intuitively, the need-to-know principle

requires that the decision system use only the minimal amount of information that is

necessary for classifying a data point with a certain accuracy. This may for example

result in restricting the use of irrelevant or proxy features.

The justification for this principle is rooted in respecting the privacy rights of

individuals to not divulge information about themselves that is not needed for the

task at hand. Such a consideration is an important argument for emerging privacy

1While we do not make additional assumptions about the classification algorithm, practical ex-
amples of classification with partially known inputs are using models that can handle different sets
of input features (e.g. the naive Bayes), or using some imputation procedure to estimate unknown
feature values.

2In practice, one needs to specify how the features are selected (e.g., by using methods that are
suggested in Shim et al. (2018); Maliah and Shani (2018); Trapeznikov and Saligrama (2013); Yang
and Honavar (1998)). However, by studying these properties and their interaction regardless of the
feature selection procedure, we show inherent trade-offs that cannot be avoided using any feature
selection procedure.
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regulations in different countries that require data aggregators to justify the need to

collect information about individuals (Regulation, 2016; Reidenberg, 1994; of Health

et al., 2003).

The fair privacy principle. Intuitively, the fair privacy principle requires that the

decision system use the same information (i.e., data inputs) about all individuals

when making decisions. Put differently, the fair privacy principle prohibits a decision

system from using more or less or different pieces of information about different

individuals. The justification for the fair privacy principle is two-fold:

First, we observe that in many scenarios it is preferable to use the same data inputs

for all individuals since it equalizes the opportunity to get beneficial outcomes. In the

loan eligibility problem for example, if a decision system uses different input features

for two different individuals say, Alice and Bob, Alice might wonder if she might have

been offered a loan had she been asked to provide the same inputs as Bob, and vice

versa.

We do not expect this argument to be desirable in every situation. For example,

in the case of predicting recidivism rates, it may seem reasonable to ask for more

information from one individual comparing to the others in order to achieve an accu-

rate prediction. However, in other domains such as recruiting, it is often considered

best practice for all candidates to be asked the same questions, i.e., provide the same

data inputs. In fact such considerations have been the main inspiration for structured

interviews.

Second, note that one approach to achieve “equitable treatment of individuals”—

as the basic idea behind fairness— is equitable protection of individuals against dis-

closure of their private data. Ekstrand et al. (2018) suggest that a desirable property

for a privacy protection mechanism is to provide its protections equitably to all its

subjects. From this perspective, In decision scenarios where individuals would prefer
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to not divulge their private data and there is cost to revealing such data, it is prefer-

able that all individuals bear equal cost, and our fair privacy principle guarantees

such an equatable share of privacy costs.

Our running assumption in this chapter is that the decision system (classifier)

itself is a privacy adversary. This assumption is consistent with scenarios such as our

loan application example. Thus we do not consider privacy notions that assume an

adversary who is different from the party that collects and processes personal data

(e.g., differential privacy (Dwork et al., 2014)).

The trade-off. Our second contribution lies in exposing the trade-offs in simultane-

ously achieving the proposed fairness and privacy considerations for inputs as well as

previously proposed fairness considerations for outputs. Specifically, after formalizing

our proposed principles of need-to-know and fair privacy, we show that in general, an

optimal classifier cannot simultaneously satisfy both principles and achieve fairness

in outputs (defined as equal prediction accuracy for all individuals). We then provide

a formal specification of all datasets in which this trade-off exists, and a practically

efficient algorithm to verify whether a given dataset presents the trade-off.

While each of need-to-know and fair privacy is a desirable property by itself and

it is natural to seek a classifier that satisfies both, we further explain why achieving

these two properties simultaneously is particularly interesting. Assume a classifier is

applied to solve our loan eligibility example. One may decide to achieve fair privacy

by asking all applicants to provide answers to all the input features. While this trivial

approach will satisfy fair privacy, we observe that for all applicants whose prediction

would not change if using a subset of feature values, the need-to-know principle is

violated3.

3Another solution is to use a trivial classifier that does not use any feature values from all
applicant. Notice that this trivial classifier violates the adequacy requirement of input data in the
“data minimization” principle.
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Therefore, imposing need-to-know constraint can be seen as a way to eliminate

trivial solutions for achieving fair privacy. On the other hand, using the same subset

of input features for all the applicants such that need-to-know is respected will affect

the prediction accuracy of those applicants for whom more data inputs are required.

Our incompatibility result in fact formalizes this intuitive argument.

Finally, note that although optimal classifiers are rarely used in practice, our

results pose a new challenge to the design of classifiers that aim at optimality: “how

much one needs to compromise on optimality in order to simultaneously achieve

fairness in the inputs and outputs of a classifier?”

4.2 Related Work

While some recent work has focused on both privacy and fairness considerations for

outputs (Cummings et al., 2019; Feldman et al., 2015; Melis et al., 2019; Bagdasaryan

et al., 2019; Jagielski et al., 2019), relatively little work (e.g., (Grgic-Hlaca et al.,

2018)) has examined fairness considerations for inputs. In this Chapter we introduced

new notions that simultaneously capture both privacy and fairness properties of inputs

in algorithmic decision systems, and explore their interaction with fairness properties

of outputs. In the following we review more related work on different societal aspects

of decision-making systems including privacy and fairness. For a general overview of

fairness in machine learning see Section 2.1.

Cost-sensitive learning and privacy as cost. Our definitions of fairness in privacy

can be expressed in terms of a cost associated with each feature. This follows a line

of research in machine learning that focuses on settings in which acquiring feature

values is associated with some cost. The goal then is to make the best possible

prediction with minimum cost users incurred at the test time. Some examples are

decision trees with minimal cost (Ling et al., 2004), test-cost sensitive Naive Bayes
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classification (Chai et al., 2004), and using a Markov decision process to sequentially

acquire feature values (Shim et al., 2018; Maliah and Shani, 2018; Trapeznikov and

Saligrama, 2013).

A number of previous papers have associated privacy more explicitly with a

cost (Pattuk et al., 2015; Early et al., 2016). Note however that while these works

consider privacy as feature costs, the general goal is that the privacy loss of each

individual is minimized; there is no consideration of fairness of privacy.

Privacy and fairness. Recently both privacy and fairness researchers have rec-

ognized the importance of understanding the interaction between privacy and fair-

ness in algorithmic decision systems (Cummings et al., 2019; Jagielski et al., 2019;

Bagdasaryan et al., 2019; Hajian et al., 2015; Ruggieri et al., 2014). However, as

eloquently argued by Ekstrand et al. (2018), much work remains to be done in “char-

acterizing under what circumstances and definitions privacy and fairness are simul-

taneously achievable?”. Our results in this chapter can be seen as an effort to answer

this question by specifying some of the circumstances in which the interaction between

privacy and fairness can be formally studied.

Ekstrand et al. (2018) also interpret fair privacy as whether a privacy scheme

protects all individuals equally, and they raise questions about the implications of

this property on other fairness notions; however their discussion remains at a high

level.

From a practical viewpoint, some studies have proposed techniques to improve

fairness and privacy at the same time (Hajian et al., 2015, 2012; Ruggieri et al.,

2014). Furthermore, Pratesi et al. (2018, 2020) provide a framework for empirical

assessment of privacy risks associated with different individuals when different subsets

(dataviews) of a dataset are used. This framework allows studying the trade-off

between privacy risk and data utility (which in turn is linked to accuracy). However,
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they do not consider an explicit notion of fairness in privacy or in accuracy.

Differential Privacy and fairness. Another recent line of work considers a com-

mon pivacy notion, differential privacy (Dwork et al., 2014), and studies its interaction

with existing fairness notions. In particular, Cummings et al. (2019) prove that differ-

ential privacy is incompatible with satisfying equal false negative rates among groups,

and they provide a differentially private classification algorithm that approximately

satisfies group fairness guarantees with high probability. Furthermore, it has been

shown that applying differential privacy implies unequal accuracy costs over different

subgrups which results in decreasing fairness (Bagdasaryan et al., 2019).

In this chapter, instead of differential privacy, we use a privacy notion that is

based on the set of revealed features of users, which allows us to compare the privacy

loss of different users.

Incompatibility results. There are incompatibility results in the area of fairness

in machine learning (Chouldechova, 2017; Kleinberg et al., 2016); however, they all

consider different fairness measures defined for the output of a learning system, e.g.,

the trade-off between calibration, equal false positive rates, and equal false negative

rates. In contrast, this chapter introduces a trade-off between fairness properties

related to the outputs and inputs of a classifier.

4.3 Formulation and Setting

We start by establishing notation and a number of definitions. We consider a set of

features F = {f1, . . . , fd} in which each feature fi takes values from the domain Fi.

A dataset D is a set of data points (feature vectors) xi ∈ X where X = F1× · · ·×Fd

together with the corresponding labels yi ∈ Y , i.e., D ⊂ {(xi, yi)|xi ∈ X , yi ∈ Y}.

For notational convenience, we use DX to denote the set of feature vectors in D, i.e.,

DX = {xi|∃y ∈ Y s.t. (xi, y) ∈ D}. For any S ⊆ F and xi, ΩS(xi) denotes feature
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vector xi in which only values of the features in S are revealed.

Let X be a multivariate random variable that takes on values x ∈ DX , and Y (X)

be a random variable that denotes the true label of X in D. If no information about

X is known, the probability that the label of X is c ∈ Y equals to4

Pr[Y (X) = c] =
|{(x, y) ∈ D|y = c}|

|D|

This probability changes if some features values in X are revealed. In particular,

given that ΩS(X) = ΩS(xi) we have:

Pr[Y (X) =c |ΩS(X) = ΩS(xi)] =

|{(x, y) ∈ D|ΩS(x) = ΩS(xi) ∧ y = c}|
|{(x, y) ∈ D|ΩS(x) = ΩS(xi)}|

A classifier Ŷ is a function that predicts the label of a given feature vector. We

assume that Ŷ is trained on all the features in F , and at the test time it is applied to

data points in a dataset D. Furthermore, We assume that Ŷ can make a prediction

using any subset of the feature values (see footnote 1). In particular, Ŷ (ΩS(xi))

denotes the predicted label for xi by Ŷ using feature set S. We do not make any

assumption about Ŷ being a deterministic or a probabilistic function.

Ŷ (X) is a random variable that denotes the label predicted for X by Ŷ ; similarly,

Ŷ (ΩS(X)) is a random variable that denotes the label predicted for X by the classifier

Ŷ based on the features in S.

4.3.1 Predictive Power of a Feature Set

For a given dataset D, we define the predictive power ΦS(xi) of a feature set S ⊆ F

for a data point xi ∈ DX , as the probability of the most probable label for X given

4In this chapter we assume a finite sample model using the given dataset. Thus our setting is an
instance of transductive learning as opposed to inductive learning in which the dataset is a sample
from some distribution.
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that the values of the features in S are revealed by xi, i.e., ΩS(X) = ΩS(xi). In other

words,

ΦS(xi) = max
c∈Y

Pr[Y (X) = c|ΩS(X) = ΩS(xi)]

If ΦS(xi) = 1, we say that xi is distinguishable in D using feature set S.

4.3.2 Optimal Classifier

We first define the accuracy of a classifier for a data point using a subset of features.

Prediction Accuracy. The accuracy of the prediction Ŷ (ΩS(xi)) is the probability

that the label predicted for X using the features in S is equal to the true label of X,

given the feature values revealed by ΩS(xi). In other words,

acc(Ŷ (ΩS(xi))) = Pr[Ŷ (ΩS(X)) = Y (X)|ΩS(X) = ΩS(xi)]. (4.1)

An optimal classifier is then defined as follows.

Optimal Classifier. Given a dataset D, an optimal classifier Ŷopt is a classifier that

for all data points in D and using any subset of features S ⊆ F , has the highest

prediction accuracy. In other words, Ŷopt satisfies the following5

∀xi ∈ DX , ∀S ⊆ F, ∀Ŷ ; acc(Ŷ (ΩS(xi))) ≤ acc(Ŷopt(ΩS(xi)))

The following lemma provides a convenient way for computing the accuracy of the

predictions made by an optimal classifier. In particular, it states that for any data

point in a given dataset, the accuracy of an optimal classifier using a set of features can

be computed by finding the predictive power of that feature set for the corresponding

data point. We later use this result to measure the performance of an optimal classifier

by studying the characteristics of the dataset to which the classifier is applied.

5This is an extension of the Bayes optimal classifier to the settings where any subset of features
can be used to make a prediction.
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Lemma 1. A classifier is optimal for a given a dataset D, if and only if for any

ΩS(xi) it returns the most probable label for X given that ΩS(X) = ΩS(xi).

The proof of Lemma 1 is presented in appendix C.1.

Corollary 1. The prediction accuracy of an optimal classifier for ΩS(xi) is equal to

the predictive power of set S for xi, i.e., ΦS(xi).

4.4 Desired Properties

We now present formalizations of three properties that involve privacy and fairness

of classifiers. The properties that we define in this section depend on both the input

features used, and the predictions made by a classifier. For a dataset D, we use

Si ⊂ F to denote the set of features used by a particular classifier to predict the label

of data point xi ∈ DX . Note that the following properties can be validated for any

arbitrary choice of Si for each data point.

We emphasize that here we are not concerned about how Si is selected for a given

data point and a particular classifier, but we are rather concerned with the social

properties of using Si compared to other feature sets S ′i ⊂ F. (see footnote 2.)

4.4.1 Output Property: Fair Prediction Accuracy

In order to define a measure for the fairness in the outputs of a classifier, we use the

accuracy equality notion (Verma and Rubin, 2018), and extend it to the individual

level as has been suggested by Speicher et al. (2018).

For a classifier Ŷ and a dataset D, let Si be the set of features used to predict

the label of xi. Ŷ satisfies fair prediction accuracy if labels of all data points are

predicted with equal accuracy, i.e.,

∃γ ∈ (0, 1] s.t. ∀xi ∈ DX , acc(Ŷ (ΩSi
(xi))) = γ (4.2)
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4.4.2 Input Property: Need to Know

The need-to-know property states that for any data point, using any proper subset

of the features used by the classifier will decrease the prediction accuracy (i.e., the

feature set Si is minimal with respect to the prediction accuracy):

∀xi ∈ DX , ∀S ′ ⊂ Si, acc(Ŷ (ΩS′(xi))) < acc(Ŷ (ΩSi
(xi))) (4.3)

Note that the need-to-know property does not imply that the prediction accu-

racy must improve monotonically as the number of features that are used by the

classifier increases. Furthermore, although we consider accuracy as the criterion for

which the use of data is minimized, other measures (e.g., false negative rate) may be

more appropriate in specific applications. We leave studying the implications of such

alternative definitions of need-to-know for future work.

4.4.3 Input Property: Fair Privacy

Fair privacy is determined by the input features used by classifier for each data point.

We assume each feature is associated with a non-negative cost that denotes the privacy

cost of revealing that feature, and that the privacy cost of each feature is the same

across all users. Let vector c ∈ Rd
≥0 denote the privacy costs of the features.

Fair privacy states that the total privacy costs of the used features are equal for

all data points, i.e.,

∃` ∈ R s.t. ∀xi ∈ DX ,
∑
fk∈Si

c(k) = ` (4.4)

There are at least two natural cases for the cost vector c:

Feature Count. One may choose to treat the privacy costs of all features as equal.

Setting c = c.1d implies that privacy fairness holds when the number of used
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features is the same for all data points, i.e.,

∃k ∈ N s.t. ∀xi ∈ DX , |Si| = k (4.5)

Feature Match. Another natural approach is to treat two feature sets as equal-

privacy-cost if and only if they contain the same features. This can be formalized

by making the total cost of every subset of the features distinct (e.g. c = {2n|0 ≤

n ≤ d − 1}). In this case, privacy fairness means that the exact same set of

features are used to make a prediction for all data points:

∃S ⊆ F s.t. ∀xi ∈ DX , Si = S (4.6)

4.5 The Trade-off

In this section we study how the different socially important properties of a classifier

defined in Section 4.4 interact. In particular, since all the three properties have im-

portant social values, it is natural to ask whether they can be satisfied simultaneously.

In other words, we ask whether it is possible for a classifier to use a particular set of

input features for each test instance, and satisfy all three properties while maximizing

prediction accuracy.

First, we show that there are situations (i.e., datasets) in which an optimal classi-

fier cannot simultaneously satisfy fair privacy, fair accuracy, and need-to-know. Then

we present a theorem that precisely characterizes all the datasets in which such a

trade-off exists under our definitions. This implies that in general, achieving fairness

in the inputs and the outputs of an optimal classifier are incompatible goals.

4.5.1 Presenting the Incompatibility

We show that the following proposition is true:
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Table 4.1: An illustrative dataset.

features
data point f1 f2 label

x1 0 0 -
x2 0 1 -
x3 0 3 +
x4 2 3 -

Table 4.2: Predictive power of each feature set.

feature sets
data point Φ∅ Φ{f1} Φ{f2} Φ{f1,f2}

x1 3/4 2/3 1 1
x2 3/4 2/3 1 1
x3 3/4 2/3 1/2 1
x4 3/4 1 1/2 1

Proposition 1. When applied to an arbitrary dataset, an optimal classifier cannot

be guaranteed to simultaneously satisfy fair privacy, fair accuracy, and need-to-know,

unless it is the trivial classifier that does not use any feature values for all data points.

Proof. We provide an example of a dataset for which any optimal classifier can satisfy

at most two of fair privacy, fair accuracy, and need-to-know. Table 4.1 presents our

example dataset. The dataset contains two features (f1 and f2), and four data points

with class labels y ∈ {+,−}. Figure 4·1 shows the data points in a 2D plane.

We present our arguments using two different feature cost vectors; each corre-

sponds to one of feature count and feature match cases introduced in section 4.4.3.

Feature Count. Assume that privacy costs of all features are 1, i.e., c = 12.

Using corollary (1), we know that the prediction accuracy of an optimal classifier for

each data point is equal to the predictive power of the selected feature set for that

data point. Table 4.2 shows the predictive power of each subset of features for each

data point in the dataset.

First, assume an optimal classifier that satisfies fair privacy. Considering the given

feature cost vector, the privacy cost for each data point can be either 1 (the classifier

uses either f1 or f2) or 2 (the classifier uses both f1 and f2). (Notice that the case of
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Figure 4·1: Example dataset in a 2D plane

using no feature values for all data points is excluded from proposition1.) Therefore,

in order to satisfy fair privacy, the privacy cost of all data points should be equal,

and is either 1 or 2.

If the privacy cost is 1 for all data points (using either f1 or f2), from Table 4.2 we

observe that it is not possible to have equal prediction accuracy for all data points.

In particular, the prediction accuracy for x3 is 2
3

using f1 and 1
2

using f2. However,

there is no way to have prediction accuracy of 2
3

for x4, or 1
2

for x1 and x2 using either

f1 or f2. This violates fair prediction accuracy.

If the privacy cost is 2, all the labels can be predicted with accuracy 1.0. However,

this violates the need to know property for data points x1,x2,x4 because the same

prediction accuracy could be reached using only f2 for x1 and x2, or using f1 for x4.

Therefore, any optimal classifier that satisfies fair privacy when applied on this

dataset violates either the fair prediction accuracy or the need to know property. �

Feature Match. We could get the same result by assuming feature costs such

that the total cost of every feature subset is distinct. In that case, fair privacy reduces
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to using the same set of features for every data point. From Table 4.2, we observe

that the only feature set that satisfies fair accuracy, i.e., the only column with equal

predictive power for all data points, is {f1, f2}; and using this set violates need-to-

know for x1,x2,x4.

4.5.2 Formal Specification

The previous section presents a dataset for which at most two of the properties from

Section 4.4 can be satisfied. However, it remains to formalize when precisely a given

dataset exhibits the trade-off, which we do in this section. We do this for an optimal

classifier under the Feature Match definition of fair privacy (eq.4.6) and we leave

generalizing to other definitions of fair privacy for future work. In the common case

where privacy costs of the features are unknown, the Feature Match definition— i.e.,

using the same set of features for all individuals— is a reasonable choice. Similar to

Section 4.5.1, in the following we exclude the trivial classifier that does not use any

feature values for all data points.

Theorem 1. There exists an optimal non-trivial classifier that satisfies fair privacy,

fair accuracy, and need-to-know when applied to a dataset D, if and only if D satisfies

the following condition:

∃ “non-empty S” ⊆ F s.t.,

∃γ ∈ (0, 1] s.t. ∀xi ∈ DX , ΦS(xi) = γ

∧
∀xi ∈ DX ,∀S ′ ⊂ S, ΦS′(xi) < ΦS(xi)

(4.7)

The proof of Theorem 1 is presented in appendix C.2.

Theorem 1 provides a necessary and sufficient condition (eq.4.7) to identify

datasets for which an optimal classifier can simultaneously satisfy all the three prop-

erties. Notice that this condition is an statement about a dataset and can be verified

independently of any classifier. The statement can be written as the following de-
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scription of a dataset:

“There is a non-empty feature set that has equal predictive power for all data points

in the dataset. Furthermore, all subsets of that feature set have lower predictive power

for all points in the dataset.”

Consequently, the negation of (4.7) provides a necessary and sufficient condition

for the case where any optimal classifier can satisfy at most two of fair prediction

accuracy, fair privacy, and need to know (i.e., datasets in which there is a trade-off

between the abovementioned properties of any optimal classifier). By negating (4.7)

we find the following characterization of such datasets:

∀ “non-empty S” ⊆F,

∃xi,xj ∈ DX s.t. ΦS(xi) 6= ΦS(xj)

∨

∃xi ∈ DX ,∃S ′ ⊂ S s.t. ΦS′(xi) ≥ ΦS(xi)

(4.8)

For an intuitive interpretation of the above statement, assume an optimal clas-

sifier that satisfies fair privacy, i.e., set S is used for all data points in the dataset.

Therefore, in order to exhibit the trade-off, using S the classifier should either vio-

late fair prediction accuracy (first clause in (4.8)), or need-to-know (second clause in

(4.8)). Thus, showing that for all non-empty S ⊆ F either fair prediction accuracy

or need-to-know are violated implies that no optimal non-trivial classifier can satisfy

all three properties.

Corollary 2. Given a data set D and a non-trivial classifier Ŷ , if D satisfies (4.8)

and Ŷ satisfies fair privacy, fair accuracy, and need-to-know when applied to D, then

Ŷ is not optimal.
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4.6 The Trade-off in Real Data

Given the results in the previous section, it is worthwhile to ask whether this trade-

off is typical – does it occur often in real-world data? We first develop a practical

approach to answering this question for a given dataset, and then we apply our

approach to various datasets from the standard UCI machine learning repository Dua

and Graff (2017a).

Algorithm 2: Verify if a given dataset holds the trade-off.
Input: Dataset D with feature set F
Output: Yes/No

1 initialize queue Q
2 C = [ ]
3 Q.put({})
4 for f in F do
5 if f has identical value over all data points then
6 remove f from F

7 while Q is not empty do
8 S = Q.get()
9 if S 6= ∅ then

10 C.append(S)

11 compute ΦS(xi) for all xi ∈ D
12 if ΦS(xi) 6= 1 for all xi ∈ D then
13 for all features f in F whose index is larger than the largest index in S do
14 Q.put(S ∪{f})

15 for candidate S in C do
16 if S satisfies the 1st clause in (4.8) then
17 continue

18 if S satisfies the 2nd clause in (4.8) then
19 continue

20 else
21 return No

22 return Yes
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4.6.1 A Verification Algorithm

For any given dataset, we may apply (4.8) to test it, since (4.8) is a predicate that

identifies all and only those datasets for which the trade-off is present. A naive

approach to evaluating (4.8) consists of computing ΦSk
(xi) for all subsets Sk ⊆ F

and all xi ∈ D. If for each Sk at least one of the two clauses in (4.8) are satisfied,

no optimal classifier can simultaneously satisfy fair accuracy, fair privacy, and need-

to-know when applied on D. However, the universal quantifier in (4.8) implies a

search over the exponential number of subsets in the power set of F . Hence, we must

consider how to efficiently verify that a given dataset satisfies (4.8). In this section,

we introduce a verification algorithm that exploits several structures in the feature

susbsets to prune the search space and is efficient in practice.

The pseudocode of our dataset verification algorithm is provided in algorithm 2.

The algorithm first generates feature subsets (candidates) for which an optimal clas-

sifier could possibly satisfy both fair accuracy and need-to-know. Then it eliminates

each candidate that satisfies at least one of the two clauses in (4.8). The algorithm

uses an incremental method to generate candidates (i.e., larger sets are generated by

adding more features to each of the existing candidates.) This allows the algorithm

to recognize many of the candidates that will satisfy (4.8) before actually generat-

ing them. This is a key tool for pruning the search space and obtaining a practical

algorithm.

The first pruning step is to notice that if a feature fi has identical values for all

data points, removing fi from a feature subset S does not change the predictive power

of that feature subset. That is, ΦS(xi) = ΦS\fi(xi) for all xi ∈ D. Therefore, any

feature subset that contains fi violates need-to-know. Consequently, we do not use

such features in our candidate generation procedure (lines 4-6).

The second pruning step is to notice that if ΦSk
(xi) = 1 for some Sk ⊆ F and
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some xi, then any superset S∗k of Sk violates need to know property (i.e., second clause

of (4.8)). This is because predictive power cannot be larger than 1. Therefore, we

can prune from our search space all the supersets of any feature set whose predictive

power is 1 for at least one data point. As we generate new subsets, we compute the

predictive power of each subset for all data points, and we stop adding more features

to that subset once a data point is distinguishable in the dataset using that subset

(lines 7-14).

Finally, for each generated feature subset (candidate) we first verify the first clause

of (4.8); if it is not satisfied we verify the second clause (lines 15-21). Notice that

the time complexity of verifying the first clause is linear in the size of the feature

subset while the complexity of verifying the second clause is exponential in the size

of the feature subset. If all the candidates satisfy at least one of the two clauses in

(4.8), we conclude that the given dataset holds the trade-off, i.e., an optimal classifier

can satisfy at most two of fair accuracy, fair privacy, and need-to-know for the given

dataset.

4.6.2 Verifying Real Data

Using Algorithm 2, we find that it is possible to test reasonable-sized datasets and

determine whether they exhibit the trade-off introduced in Section 4.5. We obtain 18

datasets which have discrete feature domains from the UCI machine learning repos-

itory Dua and Graff (2017a), and apply our verification algorithm to check if the

trade-off exists in each dataset. Table D.1 in appendix D summarizes the datasets

and the performance of the verification algorithm for each dataset.

We observe that the size of the largest generated candidate for most of the datasets

is significantly smaller than the number of features in that dataset, which shows that

the superset pruning procedure is effective. The verification algorithm terminates in

less than a minute for all cases even though a complete search over the power set of
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the features would be infeasible in most cases. Also notice that except in one case

(Nursery dataset), only verifying the first clause of (4.8) is enough for all data points.

Our algorithm verifies that every dataset we examined exhibits the trade-off be-

tween the three properties— hinting that the trade-off is prevalent in real-world data

with discrete feature domains.

4.7 Summary and Concluding Remarks

In this chapter we argue that the fairness notions for algorithmic decision-making

systems should expand to incorporate the inputs (i.e., features) used by a system,

and we formulate two of such input properties: fair privacy and need-to-know.

We prove that in general an optimal non-trivial classifier cannot satisfy all of

fair privacy, need-to-know, and fair accuracy. Furthermore, we characterize all the

datasets in which the above trade-off exists using logical predicates. Finally, we

provide an algorithm that exploits several computational efficiencies to verify if the

trade-off is present in a given dataset.

Figure 4·2: Summary of the trade-offs

The tetrahedron in Figure 4·2 can be used to summarize our results. In particular,



57

in general the properties at all four vertices cannot be satisfied together. Moreover,

each vertex offers a potentially interesting direction for future exploration.

First, if one sets aside optimality to achieve the three socially desirable properties,

the question arises then how close to optimal can the performance of such a fair-input

and and fair-output classifier be on a given dataset6.

Second, if one instead sets aside fair privacy, one may seek to achieve the other

goals, perhaps following in the general style taken by Noriega-Campero et al. (2019),

i.e., using different input features from different individuals.

Third, one may rather choose to set aside need-to-know. For example, Canetti

et al. (2019) equalize false positive, false negative, false discovery, and false omission

rates across the protected groups by deferring on some decisions (i.e., avoid making a

decision for some individuals). However, deferred decisions violate our need-to-know

principle which requires the system to use only data inputs that are necessary for

improving its predictions.

Finally, one may set aside fair accuracy, perhaps in favor of weaker conditions

such as fair mistreatment (Zafar et al., 2017c; Canetti et al., 2019). In that case, the

question remains open whether other properties are achievable.

6An example of such non-optimal classifier is provided in appendix E.
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Chapter 5

Auditing Black-Box Prediction Models for

Data Minimization Compliance

5.1 Introduction

Concerns about the widespread use of data-driven prediction models and their grow-

ing reliance on personal data of individuals, have led to a number of data protection

laws and regulations in recent years (Munoz et al., 2016; Regulation, 2016; Voigt and

Von dem Bussche, 2017). Prominent amongst such regulations is the GDPR (Reg-

ulation, 2016) that proposes the data minimization principle to control the extent

to which personal data can be acquired and used by prediction models. Data mini-

mization is an example of privacy by design approach and it is defined in the GDPR

as:

Personal data shall be adequate, relevant and limited to what is necessary

for the purposes for which they are processed. (article 5.1.c)

Despite considerable public debate about GDPR and the data minimization prin-

ciple, to date, only a few works have attempted to operationalize (i.e., formally in-

terpret) the legal principle in prediction models. These early works have focused on

finding operationalizations of data minimization that tie the purpose of data process-

ing to some performance metric such as prediction accuracy (e.g. in recommender

systems (Biega et al., 2020)). Specifically, these works study whether a prediction

model can be redesigned to achieve similar prediction performance, while using fewer
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input features. In the process, these works assume transparent prediction models,

where the training data and desired performance metrics are available to the auditor

testing the prediction model for compliance to data minimization principle.

In the previous chapter we proposed an operationalization for the data mini-

mization principle that ties the purpose of data processing to classification accuracy.

Furthermore, our analysis in Chapter 4 was based on studying the feasibility of data

minimization under a transparent model assumption. In other words, given the full

knowledge of the prediction algorithm, we studied whether the input data can be re-

duced while maintaining the model performance measured by classification accuracy.

When operationalizing data minimization, an important case is when an external

third-party auditor who does not have access to the prediction model internals would

like to audit the system for data minimization compliance. Given that prediction

algorithms are often an important business asset, the transparent model assumption is

not realistic in this scenario and thus it is reasonable to consider auditing mechanisms

in a black-box setting.

In this chapter, we propose an operational definition of the data minimization

principle that allows auditing black-box prediction models for compliance at deploy-

ment time. In our setting, the auditor does not have access to how the prediction

model works or the training data or information about the purpose of the prediction

model. All an auditor can do is to query the given black-box prediction model us-

ing data points, with a fixed set of input features, and observe the outcomes. We

believe our black-box model setting covers many real-world scenarios, as it only re-

quires the designers of prediction models to allow regulators to query their models

with prediction instances, but not reveal anything more.

Our key insight is that the auditor can test whether an input feature is needed by

the prediction model, by imputing (i.e., guessing) its value and checking the extent to
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which the outcomes change (i.e., are unstable) for different prediction instances. Intu-

itively, if the actual value of an input feature is not needed (i.e., can be replaced with a

constant) to arrive at similar (stable) outcomes for most prediction instances, then the

use of the feature violates the data minimization principle. Note that our instability-

based operatlonalization does not require knowledge of the purpose of the prediction

model and is independent of performance metrics. Such an operational definition is

particularly important given that it is common for companies who provide personal-

ized services to justify data collection simply as “for improving service” (Finck and

Biega, 2021).

We show how simple imputations, where the actual values of individual features

are replaced with (or assigned) a constant value, can be leveraged as a strategy

for limiting data inputs to a prediction system at deployment time. We define a

data minimization guarantee that is based on a metric of model instability under

feasible simple imputations. While this guarantee induces a procedure for auditing

data minimization assuming a finite sample model, we extend the applicability of

our auditing framework in two ways. First, we introduce a probabilistic audit that

allows the auditor to provide a data minimization guarantee at a fixed confidence

level with respect to an underlying data distribution. We adopt a Bayesian approach

to provide such a probabilistic guarantee. Second, we address the auditing problem

under a constraint on the number of queries to the prediction system and we design

auditing algorithms that use the query budget strategically in order to provide a data

minimization guarantee.

We cast the problem of allocating a query budget to feasible simple imputations

into a multi-armed bandit framework, and we formulate two bandit problems that

correspond to different probabilistic audits for some fixed confidence level: a decision

problem given a data minimization level, and a measurement problem given a fixed
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query budget. We provide auditing algorithms for the above problems that use some

exploration strategy for investigating the arms. Furthermore, we propose efficient

exploration strategies: two inspired by Thompson sampling for Bernoulli bandits,

and two that are custom for our setting.

Finally, we use three real-world prediction systems to study the effectiveness of our

auditing algorithms. Our experiments show that our auditing algorithms significantly

outperform simpler benchmarks in both measurement and decision problems.

5.2 Related Work

Data Minimization A few papers have addressed the problem of operationalizing

data minimization in prediction systems. Biega et al. (2020) propose definitions that

are based on accuracy in recommender systems and Galdon Clavell et al. (2020)

interpret data minimization as limiting the use of sensitive personal data. For a

detailed review of data minimization principle in the literature see Section 2.2

Model Instability in Machine Learning The instability of prediction models

is studied in both adversarial and non-adversarial settings. The traditional non-

adversarial setting is concerned with the instability of a model under different training

data (Li and Belford, 2002; Dwyer and Holte, 2007). The adversarial setting studies

the effects of data perturbations on the model predictions. Perturbations in training

data is often called data poisoning and has been studied for various prediction mod-

els (Steinhardt et al., 2017). The more relevant problem to our setting is however

studying the effect of test data perturbations, which is known as evasion attacks at

test time (Biggio et al., 2013; Nelson et al., 2010).

Works on evasion attacks generally fall under two categories: computing adver-

sarial instances (i.e., solving the evasion problem) for different models (Kantchelian

et al., 2016; Laskov et al., 2014; Szegedy et al., 2013), and certifying the robustness
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of prediction systems, e.g., in neural networks (Zhang et al., 2018; Weng et al., 2018;

Wong et al., 2018; Singh et al., 2018; Gehr et al., 2018; Raghunathan et al., 2018;

Wong and Kolter, 2018), or decision trees (Chen et al., 2019).

A key difference between our instability metric and model instability under evasion

attacks is in the type of perturbation that we define. While evasion attacks consider

perturbations defined as modifying a data instance inside a fixed-radius ball under a

particular norm, we consider perturbations defined as projections induced by simple

imputations. Moreover, the evasion attack problem concerns the instability of a model

prediction locally at each data point whereas the audit problem is concerned with a

global notion of instability (see Section 5.3).

5.3 Model Instability-based Data Minimization

In this section we first specify the setting in which we consider the auditing problem

for data minimization compliance. Then we explain how simple imputations can be

exploited to limit the input features used by a prediction model, and we define a

metric for model instability under simple imputations. Finally, we introduce a data

minimization guarantee that ensures every input feature is necessary for reaching the

model predictions for at least a certain fraction of prediction instances.

5.3.1 Notation and Setting

We consider a prediction model being audited at deployment time for adherence to

data minimization principle. The model has a fixed set of inputs variables (features)

and an output variable from a discrete domain. We assume a black-box setting, i.e.,

for any prediction instance, an auditor can query the model by specifying the values

of all input features and observe the produced output, while the procedure used for

generating the output from the inputs is unknown to the auditor. The auditor’s goal
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then is to measure the level of data minimization satisfied by the prediction model

using a limited number of queries.

Formally, let ŶF denote a prediction model over a set of input features F =

{f1, . . . , fd}, where each feature fi takes values from domain Xi. X =
∏d

i=1Xi denotes

the input space of ŶF . For any prediction instance x ∈ X , ŶF (x) ∈ Y denotes the

prediction made by ŶF for x, and Y is the discrete set of targets in the output space.

We also consider a distribution PX over the input space from which samples (data

points) are drawn in deployment1. The auditor’s challenge is to test whether the the

model ŶF satisfies data minimization principle over PX . Figure 5·1 demonstrates our

setting for auditing black-box prediction models.
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Figure 5·1: Audit setting.

5.3.2 Model Instability under Simple Imputations

Assessing the need for individual features with simple imputations To as-

sess the need for individual features, we propose using simple imputations. Simple

1 We also assume that labeled samples from the joint distribution PX ,Y were available for training

ŶF ; however, we do not make further assumptions about how the training data is used for building
the prediction model, i.e., ŶF can be any arbitrary function.
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imputation is a procedure that is commonly used for handling missing data, and it

works by assigning a constant value to a feature fi in any prediction instance in which

fi is missing. If an auditor finds that imputing a constant value to an input feature

fi has no or small effect on outcomes across different prediction instances, then the

auditor can conclude that information about the actual values of fi are not needed

by ŶF to arrive at prediction outcomes. Our idea is to quantify the instability or

changes in prediction outcomes to determine the level or extent to which the data

minimization principle has been satisfied or violated.

A metric for model instability under simple imputations We now define a

metric for instability of a prediction model, ŶF , under simple feature imputations.

Formally, we define an imputation function τfi,b such that for any prediction instance

x, τfj ,b(x) returns a vector in which the value of feature fi is replaced with b ∈ Xi.

Let IŶF (x, fj, b) be a binary indicator variable that is 1 if the prediction made by ŶF

for x changes after imputing fj with b, or 0 otherwise. Formally,

IŶF (x, fj, b) =


1 if ŶF

(
x
)
6= ŶF

(
τfj ,b(x)

)
0 otherwise

(5.1)

Let X be a random variable that takes on values x ∈ X according to an underlying

data distribution PX . We define the instability of ŶF over PX with respect to feature

fj and imputation value b as:

βbj = EX∼PX
[
IŶF (X, fj, b)

]
(5.2)

In other words, βbj denotes the probability that the prediction for a data point drawn

randomly from PX changes after imputing fj by b.
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5.3.3 Instability-based Data Minimization Guarantee

We now define a data minimization guarantee an auditor can offer using our model

instability metric βbj . Intuitively, the imputation b that induces the minimum pre-

diction instability for a feature fj determines how necessary the feature fj is for

generating the predicted outcomes. So a natural data minimization guarantee can be

arrived at by finding the greatest lower bound on the need for each individual fea-

ture fj (which in turn requires finding a feasible imputation for each fj that induces

minimum instability).2 Formally we define:

Definition 1. A prediction model ŶF satisfies data minimization at level β if there

does not exist any feature fj ∈ F and any imputation value b ∈ Xj such that βbj < β.

The highest level β at which data minimization is satisfied constitutes the best data

minimization guarantee an auditor can offer for ŶF .

Intuitively, a data minimization guarantee at level β ensures that every input

feature used by a prediction model is indeed necessary to reach the predictions made

for at least a certain fraction, β, of prediction instances. Note that if a prediction

model satisfies data minimization at level β, it also satisfies data minimization at any

level β′ < β. In practice, the auditor would be interested in finding the best guarantee,

i.e., the largest value of β at which a prediction system satisfies data minimization.

5.4 Audit Mechanisms for Data Minimization Guarantees

We now consider the challenge of designing efficient black-box audit mechanisms for

producing the data minimization guarantee discussed in the previous section. Notice

that we defined model instabilities as the expected value of an indicator random

variable over an underlying data distribution PX . In practice, however, the auditor

can only query the black-box model with a finite number of samples drawn from the

2We only consider the necessity of each individual feature for achieving system outputs, and leave
the more general case of considering all feature combinations for future work.
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distribution to estimate the model instability. We call this set of available query

samples (prediction instances) the audit dataset DAudit.

5.4.1 Population Audit

Given an audit dataset and assuming a finite sample model, the model instability

with respect to each simple imputation, i.e., each feasible (feature, imputation value)

pair, can be computed using the the population mean over all prediction instances in

the dataset. In particular, the model instability with respect to feature fj ∈ F and

imputation value b ∈ Xj is:

β̂bj =
1

|DAudit|
∑

x∈DAudit

[
IŶF (x, fj, b)

]
(5.3)

The auditor can then measure the data minimization level by exhaustively searching

over all features and imputation values and finding the minimum instability based on

the the population mean over all prediction instances in the audit dataset. We call

this procedure the “population audit”.

However, in many practical auditing scenarios, population audit may not be fea-

sible because the number of queries an auditor can issue to the prediction system is

limited and an exhaustive search would exceed the query budget many times over.

Furthermore, auditors are often interested in a guarantee that is valid over yet unseen

samples drawn from the underlying data distribution. In the following, we address

these concerns by defining a probabilistic data minimization guarantee, and introduc-

ing the notion of a probabilistic audit which we provide using a Bayesian approach.

5.4.2 Probabilistic Data Minimization Guarantee

We address the shortcomings of population audit by introducing a probabilistic audit.

In a probabilistic audit, the auditor investigates the black-box prediction model’s

instability by observing its outputs for a limited number of query data points, and
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offers a probabilistic guarantee about the data minimization level satisfied by the

model. This guarantee allows the auditor to extend the applicability of our instability-

based data minimization metric from a finite sample model to a distributional setting.

In particular, analogous to the data minimization guarantee in Definition 1, we

define the probabilistic data minimization guarantee as follows:

Definition 2. A prediction model ŶF satisfies data minimization at level β with α

percent confidence if the probability that βbj < β for at least one feature fj ∈ F and

one imputation value b ∈ Xj is less than or equal to 1− α.

Intuitively, satisfying this guarantee at a high confidence α means that with high

probability, there does not exist a simple feature imputation using which the model

prediction changes for less than β fraction of samples drawn from distribution PX .

5.4.3 Probabilistic Audit

The probabilistic auditor can adopt a Bayesian approach to measure the uncertainty

about the model instability under different simple imputations. Assuming a prior

distribution for each βbj , the success probability of the Bernoulli variable IŶF (X, fj, b),

the auditor can apply the Bayesian update rule to achieve its posterior distribution

based on the observations about the model instability under τfj ,b(). Each observation

corresponds to querying the prediction model for investigating the model instability

under this imputation for a data point drawn randomly from PX .

In particular, let Sbj denote the number of observations for which the simple im-

putation τfj ,b() changes the model prediction, and F b
j be the number of observations

whose prediction does not change. Using the standard choice of modeling the mean

of a Bernoulli variable with the Beta distribution and the resulting update rule, we

get the posterior distribution βbj ∼ Beta(a + Sbj , c + F b
j ) when the prior belief is

βbj ∼ Beta(a, c) for each feature fj and imputation value b ∈ Xj.

Next, we explain how an auditor can use the the posterior distributions of all
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βbjs to infer a probabilistic data minimization guarantee, i.e., verify whether with

high probability α, all βbjs are greater than some level β. To satisfy the probabilistic

data minimization guarantee at level β with confidence α, Definition 2 requires the

probability of the following event to be small (less than or equal to 1 − α): “for at

least one feature fj ∈ F and one imputation value b ∈ Xj, it is true that βbj ≤ β.”

Formally, we can rewrite the statement as:

Pr[∃(fj ∈ F, b ∈ Xj) s.t. βbj ≤ β] ≤ 1− α (5.4)

We can use Boole’s inequality to find an upper bound for the the probability in the

left hand side of (5.4). We can find a lower bound for the same using the observation

that the probability that βbj ≤ β for at least one feature fj and imputation b is greater

or equal than the probability that βbj ≤ β for any arbitrary fj and b. In particular

we have:

max
fj∈F,b∈Xj

Pr[βbj ≤ β] ≤ Pr[∃(fj ∈ F, b ∈ Xj) s.t. βbj ≤ β] ≤
∑

fj∈F,b∈Xj

Pr[βbj ≤ β] (5.5)

Given the posterior distribution of βbj , let Lbj(β) = FBeta(β; a+ Sbj , c+ F b
j ) denote

its cumulative distribution function. We can rewrite (5.5) as:

max
fj∈F,b∈Xj

Lbj(β) ≤ Pr[∃(fj ∈ F, b ∈ Xj) s.t. βbj ≤ β] ≤
∑

fj∈F,b∈Xj

Lbj(β) (5.6)

The auditor can use the bounds to decide whether or not a prediction system satisfies

data minimization at a given level β and a given confidence level α as follows:

If the upper bound in (5.6) is less than or equal to (1− α), then the auditor can

declare that prediction system satisfies the probabilistic data minimization guarantee

(as the probability that at least one βbj is less than β is smaller than (1 − α)). Fig-

ure 5·2a demonstrates an example of posterior distributions that correspond to this
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(a) Data minimization is satisfied.

0.0 0.2 0.4 0.6 0.8 1.0
0

2

P
D

F

Beta(10, 5)

0.0 0.2 0.4 0.6 0.8 1.0
0

5

P
D

F

Beta(80, 30)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.5

5.0

P
D

F

Beta(15, 40)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

P
D

F

Beta(15, 9)

𝛽 = 0.4

(b) Data minimization is not satisfied.

Figure 5·2: Example posterior distributions of model instability with
respect to different imputations, and a probabilistic data minimization
audit at level 0.4 with 90% confidence.

situation.

On the other hand, if the lower bound in (5.6) is greater than or equal to α, the

auditor can declare that with confidence α the prediction system does not satisfy the

probabilistic data minimization guarantee at level β since with confidence α there

exists at least one simple imputation under which the model-instability is less than

β. Figure 5·2b shows an example of this situation.

If neither of the above conditions apply, the auditor cannot make a decision. That

is, it cannot accept or reject data minimization at level β with confidence α. In this

case, the auditor would need to issue more queries to the black-box model and improve

its estimate of posterior distributions of βbjs . Figure 5·3 demonstrates an example of

posterior distributions that correspond to this situation.
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Figure 5·3: An example of a situation where a decision cannot be
made based on the posterior distributions.

Alternately, if the the auditor is concerned with measuring the best data mini-

mization level that the prediction system satisfies with given confidence α, they can

leverage the observation that the upper bound in (5.6) is a monotonically increasing

function of β, and apply a binary search to find β such that the upper bound in (5.6)

is equal to 1−α. The resulting β would be the best data minimization level that can

be guaranteed with confidence α based on the posterior distributions.

5.5 Auditing With a Limited Query Budget

Using the framework introduced in Section 5.4, an auditor can provide a probabilistic

data minimization guarantee based on the posterior distributions that are created

for the model instability with respect to each simple imputation. As an auditor

investigates the model instability with respect to different imputations, each posterior
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distribution is updated based on the queries that explore the model instability for that

imputation. While a probabilistic guarantee can be provided using the procedure

introduced in Section 5.4.3 based on any arbitrary set of observed queries, clearly

reducing the uncertainty about the instabilities of certain imputations may be more

effective than others in finding a data minimization guarantee with high confidence.

Since it is desirable to limit or minimize the total number of queries used, a

challenging problem faced by the auditor is how to distribute queries to investigate

the effect of different simple imputations on the model instability. In particular,

while a naive auditing approach may allocate equal numbers of queries for updating

each posterior distribution, reducing the uncertainty about the model instability with

respect to certain imputations might be more helpful than others, when providing

a probabilistic data minimization guarantee. Thus an intelligent auditing strategy

would spend more queries on investigating those imputations.

We address the above query allocation problem by introducing auditing algorithms

that query the prediction system strategically. Hence we cast the problem of allocating

a query budget to simple imputations into a bandit framework. Within this framework

we consider two stopping criteria, corresponding to the two auditing task types. In

particular, we formally define two bandit problems that correspond to the following

tasks: (i) measuring the greatest data minimization level satisfied by a prediction

model given a fixed query budget, and (ii) deciding whether or not data minimization

is satisfied at a given level using the minimum number of system queries. In Section 5.6

we introduce auditing algorithms for each of the above problems.

5.5.1 A Multi-armed Bandit Framework

The multi-armed bandit problem (Lattimore and Szepesvári, 2020) is a standard

framework for modeling sequential decision problems under uncertainty, in which

the actions (choices) are defined by a set of arms. A player sequentially chooses
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arms to play, and observes noisy signals of their quality, also known as rewards.

The goal is then to optimize some utility while acquiring new knowledge about the

arms. The query allocation problem for an auditor can be appropriately formulated

as a stochastic bandit in which the rewards are modeled by a Bernoulli distribution

associated with each arm.

In particular, we consider an arm for each pair (fj, b) of input feature fj ∈ F and

feasible imputation value b ∈ Xj. In each round, the auditor chooses an arm (fj, b)

and observes a binary reward that is a sample from a Bernoulli distribution with

success probability βbj . More specifically, each observation of arm (fj, b) corresponds

to evaluating IŶF (X, fj, b) at a data point x drawn randomly from PX . This evaluation

requires querying the prediction system to check whether the model prediction for x

changes using the simple imputation associated with (fj, b). The success probabilities,

i.e., the mean rewards of the arms, are unknown to the auditor. Furthermore, we

incorporate the Bayesian assumption introduced in Section 5.4 and model the success

probability of each arm using a Beta distribution whose shape parameters depend on

the observations from that arm.

Bandit algorithms are traditionally developed for optimizing cumulative reward, a

goal that requires both exploration and exploitation. However, our auditing problem

is a pure exploration bandit since the auditor’s objective is to explore arms in order

to obtain a good estimation of the mean rewards (i.e., model instabilities). Previous

approaches to pure exploration problems have focused on two main objectives: min-

imizing simple regret (Bubeck et al., 2009), and the best arm identification problem

(Audibert et al., 2010). Our objective however is different from these, as we explore

arms in order to provide a probabilistic data minimization guarantee. As explained

in Section 5.4, equation (5.6) can be used to provide two types of guarantees depend-

ing on whether the data minimization level β is fixed or not. Consequently, in the
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following we define two pure exploration bandit problems, where each is associated

to a different auditing task: a decision problem, and a measurement problem. Both

problems use the bandit setting described above, but each has a different set of in-

put parameters and a different stopping condition, which results in a different data

minimization guarantee.

5.5.2 Decision Problem: Fixed Confidence and Fixed Level.

In this problem, the auditor’s goal is to guarantee with a given confidence α that

whether or not a prediction system satisfies data minimization at a given level β. A

good auditing strategy for this problem tries to use a small number of system queries

to provide this guarantee. Formally, based on equation (5.6) and using the bandit

framework introduced in 5.5, the auditor seeks to solve the following problem:

“Given confidence α and data minimization level β, iteratively select an arm (fj, b)

to explore, and update the posterior distribution of βbj based on the observed rewards;

such that the resulting posteriors induce
∑
fj∈F
b∈Xj

Lbj(β) ≤ (1−α) or α ≤ max
fj∈F
b∈Xj

Lbj(β) using

the minimum number of observations.”

5.5.3 Measurement Problem: Fixed Confidence and Fixed Budget.

Alternatively, in this problem the auditor is given a fixed query budget and the goal

is to measure β, the highest level of data minimization that the prediction system is

guaranteed to satisfy, with a given confidence α. Note that as explained in Section 5.4,

for a fixed confidence α and at any state of posterior beliefs, β can be computed using

a binary search. A good auditing strategy however uses its query budget to provide

the highest level of data minimization guarantee it can. Formally, we define the

following bandit problem:

“Given confidence α and query budget T , iteratively select an arm (fj, b) to explore,

and update the posterior distribution of βbj at each round; such that after T rounds
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the value β that satisfies
∑

fj∈F,b∈Xj

Lbj(β) = (1− α) is maximized.”

5.6 Auditing Algorithms

In this section we present heuristic algorithms for addressing the auditing problems

defined in Section 5.5. Our algorithms provide a framework for meeting the prob-

abilistic guarantees required by the decision and measurement versions of a data

minimization audit. Furthermore, we address the need to make audits efficient. The

key challenge in making an audit efficient is to intelligently select which queries to

present to the system under audit. We present a number of strategies, including novel

strategies designed for our probabilistic setting. The efficiency of these algorithms in

auditing real-world prediction systems is demonstrated in Section 5.7.

Algorithms 3 and 4 present solution strategies for the two versions of the auditing

problem. Each algorithm is assumed to be able to query the prediction model YF ,

and to be able to sample an audit dataset D. Algorithm 3 summarizes the auditing

procedure for solving the decision problem with confidence α and data minimization

level β, where α and β are provided as the inputs to the algorithm. The auditing

procedure for solving the measurement problem is presented in Algorithm 4. In this

algorithm instead of fixing the data minimization level, a fixed query budget T is

given as the input and the algorithm returns the level of data minimization that can

be guaranteed to be satisfied with confidence α.

Each algorithm has at its core an exploration strategy, i.e., a decision about the

next query to present to the system, which we denote SelectArm() (reflecting the

bandit problem viewpoint) in the pseudocodes. This decision uses the current knowl-

edge about the reward distributions of the arms, and some exploration strategies use

a given level β as well (exploration strategies are presented in section 5.6.1). As de-

scribed in the previous section, the choice of which bandit arm to sample corresponds
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to a choice of (fj, b) and the sampling itself consists of querying IYF (x, fj, b) where x

is a random data point from D. The algorithms accumulate knowledge about an arm

(fj, b) by maintaining success and failure counters Sbj and F b
j .

When solving the decision problem (Algorithm 3), the arms are explored itera-

tively until a decision can be made based on the posterior distributions of the success

rates of arms. That is, until the auditor can accept or reject that the prediction

model satisfies data minimization at level β with confidence α using Eq.(5.6). For the

measurement problem on the other hand (Algorithm 4), the auditing algorithm keeps

selecting arms and querying the system until all the query budget is used. The largest

data minimization level that can be guaranteed with confidence α is then computed

using a binary search as explained in section 5.5.

Algorithm 3: Audit procedure (Decision Problem)

Input: YF , D, confidence α, level β

1 Sbj ← 0, F bj ← 0; (∀fj ∈ F ∀b ∈ Xj)
2 repeat
3 (fj , b)← SelectArm(β)
4 Draw x from D uniformly at random
5 Query YF to evaluate r = IYF (x, fj , b)

6 Increment either Sbj or F bj based on r

7 until A decision can be made for α and β;
8 return The binary decision made using Eq.(5.6)

5.6.1 Exploration Strategies

Now we present the strategies for SelectArm(), the subroutine that selects which

imputation to apply to the query sample used in each iteration of the auditing algo-

rithms. While the bandit setting is a natural one for our problems, the probabilistic

nature of our problems does not correspond to any classical bandit problem. In Sec-

tion 5.5 we specified what an optimal exploration strategy is expected to achieve in
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Algorithm 4: Audit procedure (Measurement Problem)

Input: YF , D, confidence α, budget T

1 Sbj ← 0, F bj ← 0; (∀fj ∈ F ∀b ∈ Xj)
2 for t in 1 to T do
3 Find β∗ using a binary search
4 (fj , b)← SelectArm(β∗)
5 Draw x from D uniformly at random
6 Query YF to evaluate r = IYF (x, fj , b)

7 Increment either Sbj or F bj based on r

8 return β∗

each of the two auditing problems. Hence, we propose and evaluate heuristic strate-

gies that are either based on classical approaches or new approaches we design in

light of the specific nature of our problems.

In particular, we propose four exploration strategies: the first two algorithms are

based on Thompson Sampling (originally designed for maximizing the cumulative

reward), while the second two are designed specifically for obtaining a lower bound

guarantee on the mean reward. Pseudocode for these algorithms is provided in the

appendix.

Thompson Sampling (TS) Our first approach is based on Thompson sampling

(Russo et al., 2017). Thompson sampling is a heuristic for maximizing the expected

reward when choosing actions sequentially under uncertainty, and it is shown to have

good performance in practice (Chapelle and Li, 2011). It uses Bayesian modeling and

a decision strategy called probability matching. In particular, in the Bernoulli bandit

setting it chooses arms according to their probability of being optimal (maximizing

the expected reward) given the current knowledge of the arms at each iteration. It

can be efficiently implemented by sampling the posterior beliefs of the mean rewards

of the arms at each iteration, and choosing the arm that corresponds to the maximum

sample.
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We adapt Thompson sampling to be used in our auditing algorithms as an arm

selection procedure. In particular, at each iteration and for each arm (fj, b) a sample

θbj is drawn from Beta(x;Sbj +a, F b
j +c) given the current success and failure counters.

The arm that corresponds to the minimum sample is then selected to be explored

next. The idea behind Thomson sampling is to explore an arm according to the

chance that reducing the uncertainty about its mean reward would better help finding

a data minimization guarantee, which is a probabilistic lower bound on all success

probabilities. Therefore, we choose the arm that corresponds to the minimum sample

rather than the maximum sample which is selected in original Thompson sampling.

Top-Two Thompson Sampling (TTTS) While Thompson sampling is effective

in maximizing the expected cumulative reward, it is not a good strategy if the goal

is to identify the optimal arm. That is because TS may select a suboptimal arm at

the beginning, and as the uncertainty about that arm is being reduced (its posterior

belief becomes dense), the algorithm keeps sampling the suboptimal arm and there is

hardly any chance for other arms to be explored. In fact it is known that algorithms

achieving small cumulative regret cannot be optimal for the best arm identification

problem (Bubeck et al., 2009).

Consequently, modifications to TS are proposed to enforce sampling less explored

arms more frequently. Top-Two TS (Russo, 2016) addresses this drawback by ran-

domly choosing between two of the best alternatives at each iteration. In particular,

with probability γ it returns the arm selected by TS, and with probability 1 − γ it

returns an alternative arm by repeating the sampling procedure of TS until a different

arm is selected.

Intuitively, identifying the arm with minimum mean reward with high confidence

induces a probabilistic lower bound on all mean rewards. Thus TTTS is a natural

strategy for our problem as well. However, notice that exact identification of the
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minimum arm is not necessary for providing a lower bound guarantee.

Greedy The previous two algorithms use the posterior beliefs about the mean rewards

of the arms, and select arms with respect to their probability of having the minimum

mean reward. However, the data minimization guarantee that we seek depends on

the probability mass that is below some threshold β in all arms. Based on this

observation, we develop two new approaches.

In the first approach, instead of sampling the posterior distributions at each itera-

tion, we first evaluate Lbj(β), the cumulative distribution function at β, for all arms3.

Then, using a greedy approach, we select the arm whose posterior beta distribution

has the maximum probability mass below β. Given that our data minimization guar-

antee for both decision and measurement problems depends on either the total sum

or the maximum value over all Lbj(β)’s, the greedy selection more closely matches our

algorithmic goal.

Probability Matching Using CDFs (PM) Our second new algorithm adopts the

probability matching strategy of TS, and applies it to the cumulative distribution

functions of arm rewards at the given threshold β. That is, it selects arms in propor-

tion to the amount of probability mass that is below β in each reward distribution,

thus allowing more arms to be explored compared to Greedy.

5.6.2 Convergence and Sampling Complexity

From a high level, the sampling strategies are designed to reduce the uncertainty about

the mean rewards such that a probabilistic lower bound on all mean rewards can be

achieved. While this bound can be inferred if all posterior beliefs are concentrated

enough around the true mean of each arm, the sampling strategies focus on exploring

the arms updating whose posterior distribution better helps finding a lower bound and

3Notice that β is an input to SelectArm().
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stop exploring arms whose mean is unlikely to be close to the minimum instability.

For this task, a problem instance in which multiple arms have a mean reward close

to the minimum instability of all arms is harder to solve. However this problem is

easier than the best arm identification problem in the sense the exact identification

of the best arm is not required as far as a probabilistic lower bound on all arms can

be achieved.

The sample complexity of the best arm identification problem is previously studied

by Bubeck et al. (2009), and the convergence rate of TS-based strategies are studied

for both the expected cumulative regret (Russo and Van Roy, 2014) and the best arm

identification problem (Russo, 2016). In particular it is shown that using Top-Two

TS, the probability of selecting a sub-optimal arm converges to zero at an exponential

rate (Russo, 2016).

Intuitively, identifying the arm with minimum mean reward with high confidence

induces a probabilistic lower bound on all mean rewards. However, the bandit prob-

lems introduced in this chapter does not correspond to the classical bandit problems

and better convergence rates might be achievable using the exploration strategies in

this chapter.

Finally, note that the measurement algorithm (Algorithm 4) is applicable given

any query budget, i.e., for any status of posterior beliefs. Therefore, if the decision

algorithm cannot make a decision using some given query budget and confidence,

Algorithm 4 can be applied to find the largest data minimization level that the auditor

can guarantee.

5.7 Auditing Real-world Prediction Systems

In this section we study the effectiveness of the algorithms introduced in section 5.6

in auditing real-world prediction systems for data minimization compliance.
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Figure 5·4: Population audit of three real-world prediction models.

We build prediction systems using datasets from the UCI machine learning repos-

itory (Dua and Graff, 2017b). We use three datasets that have discrete features and

discrete target variables, and we apply different learning algorithms together with

standard feature selection and model validation methods to build a prediction model.

In particular, we use the following prediction systems.

Digits/SVM A dataset of 3823 images of hand-written digits from the MNIST (Le-

Cun et al., 1998) database is used. Each data point is an 8×8 matrix whose elements

are integers from the range [0, 16], along with a label from the set {0, 1, . . . , 9}. A

support vector machine with linear kernel is used to build a classifier that predicts the

label associated with each image. 50% of data points are used to train the classifier,
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and a recursive feature elimination procedure is applied to select 9 features.

Census/Decision Tree A dataset of ∼ 30K individuals from the US Census

database is used. Eleven features with a discrete domain are available for each in-

dividual, and the goal is to predict whether a person makes over $50K a year. A

decision tree is built using 20% of data samples as the training data, and a recursive

feature elimination procedure is applied to select 5 features.

Nursery/Decision Tree This dataset contains 8 discrete features from ∼ 13K

applicants for nursery schools in Slovenia. A label from a set of 5 priority groups is

assigned to each applicant, and we use 20% of data samples to build a decision tree

for predicting the priority group of each applicant.

First, we assume unlimited system queries are allowed and we apply the population

audit procedure introduced in Section 5.4.1, which measures data minimization with

respect to an audit dataset. The bar charts in figure 5·4 show the computed empirical

instabilities with respect to each input feature for the above prediction systems. For

each input feature, we show the instability in the case of using the imputation value

which results in the lowest instability. The corresponding imputation value is printed

on each bar. We observe that in all the three systems, all input features have non-zero

instability. And the data minimization level is between 2% to 6% in these systems.

Now we apply our algorithms which are designed for the more realistic scenario

of auditing with a limited query budget, and provide a probabilistic guarantee with

respect to the underlying data distribution. In the following experiments, for each

system we use the whole data as the audit dataset from which query samples are

drawn. All prior distributions for β parameters are Beta(1/2, 1/2) (i.e., the Jeffreys

prior). The decision parameter γ in TTTS strategy is set to 1/2.

In our first experiment, we apply Algorithm 3 to decide whether each of the above

systems satisfy data minimization at 1% level. We perform this task for 0.95 and
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Figure 5·5: Auditing for 1% data minimization.

0.99 confidences, and using the exploration strategies introduced in section 5.6.1. As a

baseline algorithm, we also implement a uniform exploration strategy that investigates

all (feature, imputation value) pairs uniformly until a decision can be made.

The bar chart in Figure 5·5 shows the average number of system queries used by

each exploration algorithm and for each confidence level over 20 runs. The error bars

show one standard deviation and the resulting Yes/No decisions are printed over each

bar. (the frequencies of decisions are shown in parentheses.) We observe that all three

systems satisfy data minimization at 1% level, and our exploration algorithms reach

this decision using significantly fewer queries, compared to the uniform exploration

method. Furthermore, the algorithms designed specifically for our auditing purpose

(Greedy and PM) are on average slightly more effective than algorithms that are based
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Figure 5·6: Measuring data minimization with 95% confidence.

on standard Thomson sampling.

Next we apply Algorithm 4 to measure the level of data minimization satisfied

by each system using different query budgets. We consider a .095 confidence for this

measurement task, and in order to have a comparison point if the were no limit on

the query budget, we compute the probabilistic data minimization level using the

population audit, i.e., using all the data points in the audit dataset.

Figure 5·6 shows the level of data minimization that each algorithm can guarantee

for each system and using different query budgets. In each experiment we increase

the budget until one of the algorithms reaches the level measured by population

audit. We observe that all of our exploration strategies significantly outperform the

uniform exploration, i.e., they can guarantee a higher level of data minimization at
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Figure 5·7: Auditing a prediction model with excessive inputs

the given confidence for each query budget, and they can reach the level guaranteed

by population audit using less than 5% of queries used by population audit. Finally,

we observer that for smaller query budgets Greedy and PM are more effective than

standard Thomson sampling algorithms.

Finally, we illustrate the performance of our methods for a hypothetical scenario

in which a data minimization audit may be particularly needed. We consider a case

in which a prediction system has an input that is not actually used by the prediction

model, i.e., the system collects excessive information from its users. We obtain such

system by embedding the Census/DT model in another prediction system that asks for

an additional attribute of the Census dataset but returns the output of the embedded

model.

We apply the decision auditing algorithm for 1% data minimization level to this

systems. Figure 5·7 presents the number of queries used, and the output of the

auditing algorithms for each exploration strategy and two confidence levels. We

observe that all algorithms return “No”, i.e., detect that data minimization is not

satisfied, as desired. More importantly, the exploration algorithms we propose use

an order of magnitude less queries to make this decision. And we particularly note

that our Greedy strategy is significantly more effective than the other exploration
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strategies considered.

5.8 Summary and Concluding Remarks

In this chapter we provide an operationalization of data minimization principle that

is applicable to auditing prediction models. We propose using model instability as

the purpose for which data needs to be minimized and we suggest exploiting simple

imputations as a tool for limiting data inputs at the test time. Adopting a Bayesian

approach and a bandit framework, we provide efficient auditing algorithms that mea-

sure model instability with respect to different simple imputations and provide a

probabilistic data minimization guarantee.

We initiated the audit framework assuming discrete feature values. In the scenar-

ios where feature domains are relatively large (e.g., integers), more efficient bandit

algorithms can be developed using ideas similar to (Yue et al., 2012; Jedor et al.,

2019; Kumar et al., 2019), or Wang et al. (2008) for infinitive domains. Other direc-

tions for future research include extending our individual features guarantee to the

case of all feature combinations, and studying the implications of instability-based

data minimization on different fairness notions similar to works that have done it for

accuracy-based data minimization (Rastegarpanah et al., 2020).

Also it is interesting to explore the relationship between our model-instability

metric for the necessity of features and other feature importance metrics, or more

broadly, the feature engineering methods. In our experiments, we had applied stan-

dard backward elimination feature selection methods in order to build the example

systems. Alternatively, one can study the effect on model instability of other feature

selection methods. Furthermore, our model-instability metric itself suggests a feature

importance metric that might be useful for feature selection too. Similar instability-

based feature importance metrics are previously proposed by Datta et al. (2015).
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However, to the best of our knowledge, the distributional instability metric and the

idea of using a lower bound on the instabilities with respect to all possible simple

imputations are novel.

Finally, we emphasize that our approach in this chapter does not solve the general

data minimization problem in its full social context. Rather, we are proposing tools

that help address some aspects of the bigger data minimization problem.
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Chapter 6

Conclusions

The increasing interest in responsible machine learning has resulted in a fast-growing

number of publications in recent years. Research in this area covers a wide range of

topics, from formalizing notions and trade-offs, to developing responsible algorithms

and practical auditing tools. Despite the volume and variety of published results,

the field is still at its early stages considering open questions about its conceptual,

theoretical, and practical aspects.

The first part of this thesis, Chapter 3, introduced a new technique for improving

socially relevant properties of collaborative filtering recommender systems. Previous

proposals for this problem are often not easily adapted to different measures, and they

generally require the ability to modify either existing system inputs, the recommender

algorithm, or the system outputs. Alternatively, this thesis proposed a method that

is based on the idea of perturbing the training data distribution by augmenting the

system input with additional user-item ratings, which we call antidote data. We took

as our model system the matrix factorization approach to recommendation, and we

developed optimization-based solutions for computing antidote ratings.

Although we developed the antidote data generation framework for matrix factor-

ization recommender algorithms, the applicability of this approach can be extended

beyond factorization-based models using previous proposals for poisoning attacks in

different models. Finally, the effectiveness of antidote data framework was demon-

strated using a set of measures that are based on existing notions for polarization
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and fairness of recommender systems. However, our generic framework is applicable

for improving any property that can be expressed as a differentiable function of the

predicted ratings.

The second part of this thesis, Chapters 4 and 5, focused on operationalizing data

minimization, a privacy principle that exists in data protection regulations. Chapter 4

proposed a formalization of data minimization that is based on classification accuracy.

We called the resulting property the need-to-know principle, and described how this

principle provides a basis for expanding fairness notions to incorporate data inputs

used by a decision system. In particular, we introduced another input property, the

fair-privacy principle, and proved that in general an optimal classifier cannot simulta-

neously satisfy need-to-know, and fair-privacy and fair-accuracy. This incompatibility

result offers an interesting direction for future research: if one sets aside any of the

properties in Chapter 4, are the remaining properties achievable simultaneously? And

in what circumstances is satisfying that subset of properties desirable?

Since the results in Chapter 4 are obtained assuming a Bayes optimal classifier

that returns the most probable label given any arbitrary subset of feature values, the

presented trade-off cannot be avoided regardless of how partially known inputs are

handled by a classifier. However, in practice we are usually given a prediction model

with a fixed set of input features at the test time and the model internals (e.g., the

prediction algorithm) are unknown.

Therefore, in Chapter 5 we addressed the problem of auditing black-box prediction

models for compliance with the data minimization principle, and we argue that an

operationalization based on model instability is more practical in this setting. Given

that the set of input features are fixed, we showed how simple imputations can be

leveraged as a strategy for limiting data inputs to a prediction system at deployment

time.
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In practice, usually the number of system queries available to an auditor is lim-

ited. Therefore, we adopted a Bayesian approach and a bandit framework to provide

efficient auditing algorithms that measure model instability with respect to different

simple imputations and provide a probabilistic data minimization guarantee.

Finally, the auditing tool introduced in Chapter 5 suggests a potentially inter-

esting direction for future research where the auditing problem is viewed from the

perspective of the system designer. In particular, a system designers may want to

assure that the prediction system will satisfy the instability-based data minimiza-

tion guarantee introduced in this thesis. Given that the system designer has access

to the prediction algorithm, this problem translates into providing provable lower

bounds (verification algorithms) on the model instability under simple imputations

for particular prediction models.



90

Appendix A

Derivation of the Gradients

A.1 Derivation of ∂V
∂X̃

Let E be the value of the objective function in (1). Assuming that the factorization

algorithm finds a local optimum of E, we have ∂E
∂vj

= 0, which give us the following:

∑
i∈Ωj

(xij − uᵀivj)ui +
n′∑
i=1

(x̃ij − ũᵀivj)ũi = λvj (A.1)

From the above equation we can show that the following formula for vj holds at a

local optimum of E:

vj = (
∑
i∈Ωj

uiu
ᵀ
i + ŨŨᵀ + λI`)

−1(
∑
i∈Ωj

xijui +
n′∑
i=1

x̃ijũi) (A.2)

Therefore, assuming that an infinitesimal change in x̃ij only results in first order

corrections we can write:

∂vj
∂x̃ij

= (
∑
i∈Ωj

uiu
ᵀ
i + ŨŨᵀ + λI`)

−1ũi (A.3)
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A.2 Gradients of the objective functions

A.2.1 Polarization

∂Rpol

∂x̂ij
=

2

n2d

∑
k 6=i

(x̂ij − x̂kj) (A.4)

=
2

nd
(x̂ij −

1

n

n∑
k=1

x̂kj) (A.5)

=
2

nd
(x̂ij − µj) (A.6)

where µj is the average estimated rating for item j.

A.2.2 Individual fairness

For (i, j) ∈ Ω we have:

∂Rindv

∂x̂ij
=

1

n2
(
∑
k>i

2(`i − `k)
∂`i
∂x̂ij

+
∑
k<i

−2(`k − `i)
∂`i
∂x̂ij

) (A.7)

=
2

n2

∑
k 6=i

(`i − `k)
∂`i
∂x̂ij

(A.8)

=
4(x̂ij − xij)
n2|Ωi|

∑
k 6=i

(`i − `k) (A.9)

=
4(x̂ij − xij)

n|Ωi|
(`i −

1

n

n∑
k=1

`k) (A.10)

therefore,

∂Rindv

∂x̂ij
=


4(x̂ij−xij)

n|Ωi| (`i − µindv) (i, j) ∈ Ω

0 (i, j) /∈ Ω

(A.11)

where µindv is the average of user losses.
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A.2.3 Group fairness

Assume G() is a function that maps each user/item to its group label. For (i, j) ∈ Ω

we have:

∂Rgrp

∂x̂ij
=

2

g2

∑
k 6=G(i)

(LG(i) − Lk)
∂LG(i)

∂x̂ij
(A.12)

=
4(x̂ij − xij)
g2|ΩG(i)|

∑
k 6=G(i)

(LG(i) − Lk) (A.13)

=
4(x̂ij − xij)
g|ΩG(i)|

(LG(i) −
1

g

g∑
k=1

Lk) (A.14)

therefore,

∂Rgrp

∂x̂ij
=


4(x̂ij−xij)

g|ΩG(i)|
(LG(i) − µG) (i, j) ∈ Ω

0 (i, j) /∈ Ω

(A.15)

where µG is the average of group losses.
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Appendix B

Heuristic Algorithms

In this section we present the pseudocode of the heuristic algorithms introduced in

section 6.2 for generating antidote data to improve individual and group fairness.

B.1 Heuristic 1

1. Start from a single antidote user x̃
(0)
1 .

2. Compute U, ũ1,V = Θ(X; x̃
(0)
1 ).

3. Compute ∂R(X̂)
∂x̃1j

for each item j using (9).

4. If ∂R(X̂)
∂x̃1j

> 0 set x̃1j = Mmin Else set x̃1j = Mmax.

5. Copy x̃1 α times to generate X̃ for a given budget α.

B.2 Heuristic 2

1. Compute ∇X̂R(X̂) and reshape it into an n× d matrix G.

2. Set d[j] = gᵀjU
ᵀ1` for each item j using G and the original factor U.

3. If d[j] > 0 set x̃1j = Mmin Else set x̃1j = Mmax.

4. Copy x̃1 α times to generate X̃ for a given budget α.
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Appendix C

Proofs

C.1 Lemma 1

We write the right hand side of (4.1) as:

∑
c∈Y

Pr[Ŷ (ΩS(X)) = c, Y (X) = c|ΩS(X) = ΩS(xi)] (C.1)

Since Ŷ (ΩS(X)) only depends on the values of the features in S, Ŷ (ΩS(X)) and Y (X)

are conditionally independent given a set of fixed values ΩS(X) = ΩS(xi). Therefore

(C.1) is equal to:

∑
c∈Y

Pr[Ŷ (ΩS(X)) = c|ΩS(X) = ΩS(xi)]Pr[Y (X) = c|ΩS(X) = ΩS(xi)] (C.2)

For any ΩS(xi), let pc = Pr[Y (X) = c|ΩS(X) = ΩS(xi)] and p∗ = max
c∈Y

pc. Also

let p̂c = Pr[Ŷ (ΩS(X)) = c|ΩS(X) = ΩS(xi)] for an arbitrary classifier Ŷ . Using (C.2)

we can write the following for any classifier Ŷ :

acc(Ŷ (ΩS(xi))) =
∑
c∈Y

pcp̂c ≤
∑
c∈Y

p∗p̂c = p∗

Therefore, p∗ is an upper bound for the prediction accuracy of any classifier applied

on ΩS(xi). Now let c∗ = arg max
c∈Y

pc, the prediction accuracy of a classifier that

deterministically returns c∗ for ΩS(xi) (i.e., p̂c = 0 for all c 6= c∗, and p̂c∗ = 1) is p∗;

therefore, such classifier is optimal.
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Finally, we show that the prediction accuracy of any classifier with p̂c∗ < 1 is lower

than p∗. Assume a classifier Ŷ ′ for which p̂c∗ = 1− ε and p̂c′ = ε for some ε > 0 and

some c′ ∈ Y such that pc′ < p∗. Thus,

acc(Ŷ ′(ΩS(xi))) = p∗(1− ε) + pc′ε = p∗ + ε(pc′ − p∗) < p∗ �

C.2 Theorem 1

For a classifier Ŷ applied to a dataset D, let Si denote the set of features used from

xi. First we repeat and name the following definitions from section 4.4,

Fair Accuracy (p1):

∃γ ∈ (0, 1] s.t. ∀xi ∈ DX , acc(Ŷ (ΩSi
(xi))) = γ

Fair Privacy (p2):

∃S ⊆ F s.t. ∀xi ∈ DX , Si = S

Need-To-Know (p3):

∀xi ∈ DX ,∀S ′ ⊂ Si, acc(Ŷ (ΩS′(xi))) < acc(Ŷ (ΩSi
(xi)))

Let Hopt be the set of all optimal non-trivial classifiers for D. Assume there exists

an optimal non-trivial classifier that satisfies all of p1, p2, and p3 when applied on

D, i.e., the following statement is true:

∃Ŷ ∈ Hopt s.t. p1 ∧ p2 ∧ p3 (C.3)

From p2 we infer that the same set of features is used by the classifier to predict the

label of all the data points. We call this set S and we replace Si with S in p1 and p3

(S is non-empty since Ŷ is non-trivial). Moreover, since Ŷ is an optimal classifier, by

Corollary (1) we can replace the prediction accuracy of Ŷ for any data point and any

feature set with the predictive power of that feature set for that data point. Thus,
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from (C.3) we infer that the following statement is true:

∃ “non-empty S” ⊆ F s.t.,

∃γ ∈ (0, 1] s.t. ∀xi ∈ DX , ΦS(xi) = γ

∧

∀xi ∈ DX ,∀S ′ ⊂ S, ΦS′(xi) < ΦS(xi)

(C.4)

On the other hand, assume we are given a dataset for which statement (C.4) is

true. We can then define a classifier Ŷ such that it uses the features in S for all

xi ∈ D, and it returns arg max
c∈Y

Pr[Y (X) = c|ΩSk
(X) = ΩSk

(xi)] for any Sk ⊆ F and

xi ∈ D, i.e., Ŷ is optimal. Therefore, acc(Ŷ (ΩSk
(xi))) = ΦSk

(xi) and from (C.4) we

infer that Ŷ satisfies p1 and p3. Furthermore, Ŷ satisfies p2 because it uses S for all

data points, and is optimal by definition. Therefore, statement (C.3) is satisfied for

D.

Thus the property defined in (C.4) is a necessary and sufficient condition to rec-

ognize datasets for which there exists an optimal classifier that satisfies all properties

p1, p2, and p3. �
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Appendix D

Dataset Verification Results

Table D.1: The results of applying our verification algorithm to 18
UCI datasets.

Dataset size # features # labels
largest

candidate size
all candidates satisfy

the 1st condition
both 1st and 2nd

conditions were verified trade-off

Handwritten Digits 1797 64 10 4 ! 8 YES
Haberman’s Survival 306 3 2 2 ! 8 YES
Letter Recognition 20000 16 26 2 ! 8 YES
Somerville Happiness 143 6 2 2 ! 8 YES
Vehicle Silhouettes 846 18 4 2 ! 8 YES
Caesarian 80 5 2 3 ! 8 YES
Musk (Version 1) 476 166 2 1 ! 8 YES
Musk (Version 2) 6598 166 2 1 ! 8 YES
Optical Digits 3823 64 10 2 ! 8 YES
Pen-Based Digits 7494 16 10 2 ! 8 YES
Mushroom 5644 22 2 3 ! 8 YES
Nursery 12960 8 5 8 8 ! YES
Census Income 32561 14 2 3 ! 8 YES
Chess 28056 6 18 5 ! 8 YES
Contraceptive Method 1473 9 3 4 ! 8 YES
Balance Scale 625 4 3 3 ! 8 YES
Breast Cancer 277 9 2 4 ! 8 YES
Car Evaluation 1728 6 4 4 ! 8 YES
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Appendix E

A Non-optimal Classifier That Satisfies

All the Three Properties

As we discussed in Section 4.7, one may give up optimality in order to achieve a

classifier that simultaneously satisfies all the three properties defined in Section 4.4.

In this section, we present an example of such a non-optimal classifier for the dataset

in Table 4.1.

We use a probabilistic classifier for our discussion. Let x.fi denote the value of

feature fi in data point x. Now consider the classifier defined by equation (E.1). This

classifier first selects a linear classifier based on the set of known feature values S.

Then it returns a binary label using an additional randomization step.

Table E.1 shows the accuracies of the predictions made by this classifier for each

data point and each feature set. The values in the table are calculated using equation

(4.1). First observe that by using feature set {f1, f2} for all the data points, the

classifier satisfies fair privacy. Furthermore, the accuracy of the classifier for all data

points using this feature set is 4
5
, meaning that fair accuracy is also satisfied. Finally,

we observe that using any subset of {f1, f2} will result in a lower prediction accuracy

for all the data points in the dataset, thus the need-to-know principle is also satisfied.
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Table E.1: Accuracies of the predictions made by the classifier in
equation (E.1).

∅ {f1} {f2} {f1, f2}
x1 1/2 5/12 3/4 4/5
x2 1/2 5/12 3/4 4/5
x3 1/2 5/12 1/2 4/5
x4 1/2 3/4 1/2 4/5

Ŷ (ΩS(x)) =



S = {f1, f2}


x.f2 − x.f1 ≥ 2 + w.p.4

5

otherwise − w.p.4
5

S = {f1}


x.f1 ≥ 1 − w.p.3

4

otherwise + w.p.3
4

S = {f2}


x.f1 ≥ 2 + w.p.3

4

otherwise − w.p.3
4

S = ∅


+ w.p.1

2

− w.p.1
2

(E.1)

In order to see that the classifier defined by equation (E.1) is not optimal, notice

that our optimality definition requires the classifier to be optimal for all data points

and using any subset S ⊂ F . However, using {f1, f2} we see that the accuracy of

the classifier for all the data points is 4
5

while all the data points are distinguishable

using {f1, f2}, i.e., the accuracy of an optimal classifier using {f1, f2} is 1 for all data

points in the dataset.

This example illustrates an interesting direction for future research, which can be
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stated as the following question: “how much one needs to compromise on optimality

in order to simultaneously achieve all the three socially desirable properties introduced

in this paper?”
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Appendix F

Exploration Strategies

This section presents the Pseudocodes for the four exploration algorithms introduced

in Section 5.6

Algorithm 5: Thompson Sampling

(TS)

Input: Success and failure counters

1 for fj ∈ F do

2 for b in Xj do
3 θbj ∼ Beta(x;Sbj + a, F bj + c)

4 j∗, b∗ = argminj,b θ
b
j

5 return (fj∗ , b
∗)
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Algorithm 6: Top-Two Thompson

Sampling (TTTS)

Input: Success and failure counters

1 for fj ∈ F do

2 for b in Xj do
3 θbj ∼ Beta(x;Sbj + a, F bj + c)

4 j∗, b∗ = argminj,b θ
b
j

5 K ∼ Bernoulli(1/2)

6 if K=1 then

7 return (fj∗ , b
∗)

8 else

9 repeat

10 for fj ∈ F do

11 for b in Xj do
12 θbj ∼ Beta(x;Sbj + a, F bj + c)

13 j̃, b̃ = argminj,b θ
b
j

14 until (j̃, b̃) 6= (j∗, b∗);

15 return (fj̃ , b̃)
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Algorithm 7: Greedy
Input: Success and failure counters, β∗

1 for fj ∈ F do

2 for b in Xj do
3 pbj = FBeta(β

∗;Sbj + a, F bj + c)

4 j∗, b∗ = argmaxj,b p
b
j

5 return (fj∗ , b
∗)

Algorithm 8: Probability Matching

(PM)

Input: Success and failure counters, β∗

1 for fj ∈ F do

2 for b in Xj do
3 pbj = FBeta(β

∗;Sbj + a, F bj + c)

4 Randomly choose an arm (fj , b) with

probability
pbj∑

(fj ,b)

pbj

5 return (fj , b)



References

Agarwal, A., Beygelzimer, A., Dud́ık, M., Langford, J., and Wallach, H. (2018). A
reductions approach to fair classification. arXiv preprint arXiv:1803.02453.

Aggarwal, C. C. (2005). On k-anonymity and the curse of dimensionality. In
Proceedings of the 31st international conference on Very large data bases, pages
901–909. VLDB Endowment.

Audibert, J.-Y., Bubeck, S., and Munos, R. (2010). Best arm identification in multi-
armed bandits. In COLT, pages 41–53.

Bagdasaryan, E., Poursaeed, O., and Shmatikov, V. (2019). Differential privacy has
disparate impact on model accuracy. In Advances in Neural Information Processing
Systems, pages 15453–15462.

Barocas, S. and Selbst, A. D. (2016). Big data’s disparate impact. Cal. L. Rev.,
104:671.

Berk, R., Heidari, H., Jabbari, S., Joseph, M., Kearns, M., Morgenstern, J., Neel,
S., and Roth, A. (2017). A convex framework for fair regression. arXiv preprint
arXiv:1706.02409.

Beutel, A., Chen, J., Zhao, Z., and Chi, E. H. (2017a). Data decisions and theoret-
ical implications when adversarially learning fair representations. arXiv preprint
arXiv:1707.00075.

Beutel, A., Chi, E. H., Cheng, Z., Pham, H., and Anderson, J. (2017b). Beyond
globally optimal: Focused learning for improved recommendations. In Proceedings
of the 26th International Conference on World Wide Web, pages 203–212.

Biega, A. J., Gummadi, K. P., and Weikum, G. (2018). Equity of attention: Amor-
tizing individual fairness in rankings. arXiv preprint arXiv:1805.01788.
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