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ON THE USE OF INCONSISTENT NORMALIZERS FOR

STATISTICAL INFERENCE ON DEPENDENT DATA

QIAO PAN

Boston University, Graduate School of Arts and Sciences, 2021

Major Professor: Ting Zhang, PhD
Assistant Professor of Mathematics and Statistics

ABSTRACT

Statistical inference, such as confidence interval construction, change point de-

tection and nonparametric regression estimation, has been widely explored in many

fields including climate science, economics, finance, industrial engineering and many

others. The inference has been well developed in the literature under independent

settings, while dependent data, especially time series data, is not uncommon to be

observed in these areas. Self-normalization is then proposed to analyze statistical

inference for time series data. This thesis first explores asymptotic behavior of op-

timal weighting in generalized self-normalization, then proposes self-normalized si-

multaneous confidence regions for high-dimensional time series, and lastly explores

unsupervised self-normalized break test for correlation matrix.

The basic idea of self-normalization is that it uses an inconsistent variance esti-

mator as studentizer. The original self-normalizer only considered forward estimators

and recently it is generalized to involve both forward and backward estimators with

deterministic weights. In the first project, we propose a data-driven weight that

corresponds to confidence intervals with minimal lengths and study the asymptotic

behavior of such a data-driven weight choice. An interesting dichotomy is found

v



between linear and nonlinear quantities.

In the second project, we would like to overcome the dimension limitation of

self-normalization and propose a different perspective to make statistical inference

of general quantities of high-dimensional time series. Taking the advantage of data

with sparse signals, we develop an asymptotic theory on the maximal modulus of self-

normalized statistics. We further establish a thresholded self-normalization method

to produce simultaneous confidence regions. The method is able to detect uncommon

signals among NASDAQ100 in 2016-2019 in terms of mean and median log returns.

In the last project, we move on to unsupervised test for correlation matrix breaks.

We develop a self-normalized test tailored to detect correlation matrix breaks. This

method is unsupervised and directly compares the estimated correlation before and

after the hypothesized change point. We apply the test to the stock log returns of 10

companies and volatility indexes of 5 options on individual equities to show its power

of detecting correlation matrix breaks.
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data-driven self-normalizer ΛN(ŵN). The results are based on 50,000

realizations for each configuration. . . . . . . . . . . . . . . . . . . . . 86

A.3 Average size-adjusted lengths of 95% confidence intervals constructed

for the median, marginal variance and first-order autocorrelation (acf1)

of the autoregressive process (A.12) using (i) the conventional self-

normalizer of Shao (2010), denoted by S10; (ii) the T-symmetric self-

normalizer of Lavitas and Zhang (2018), denoted by LZ18; and (iii) the
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Chapter 1

Introduction

1.1 Self-Normalization under Independent Settings

Self-normalization has a very long history in analyzing statistical inference that can

be traced back to the studies of Student (1908). Student’s t-statistic is the first

prototypical example of self-normalization, which contains closed form expression for

asymptotic variance. Let (Xi)
n
i=1 be normal random variables sampled from N(µ, σ2),

where (µ, σ2) are unknown. Denote the sample mean by X̄n = n−1
∑n

i=1Xi and the

sample variance by S2
n = (n − 1)−1

∑n
i=1(Xi − X̄n)2. To test H0 : µ = µ0 versus

Ha : µ 6= µ0, the t-statistic is constructed as

tn(µ0) =
X̄n − µ0

Sn/
√
n
.

Under H0, tn(µ0)
D
= tn−1, where tn−1 represents t distribution with n-1 degrees of

freedom. This Gosset’s t-statistic has been further generalized to studentized statistic

of general quantities. For any quantity θ = T(F) ∈ R, where F is the marginal CDF of

random sample (Xi)
n
i=1 and T is a functional. A natural estimator of θ is θ̂n = T(Fn),

where Fn is the empirical CDF. Under certain assumptions, we may be able to derive

√
n(θ̂n − θ)

D−→ N(0, σ2
F ), where σ2

F is the asymptotic variance. With this limiting

distribution given, we are able to construct confidence intervals for θ based on the

studentized quantity

Gn(θ) =

√
n(θ̂n − θ)
σ̂F

,
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where σ̂2
F is a consistent estimator of σ2

F . Therefore, deriving a closed form expres-

sion for the asymptotic variance is crucial and makes studentization an important

procedure in conducting statistical inference.

1.2 Self-Normalization under Time Series Settings

Similarly, in time series analysis, if we are interested in constructing a confidence

interval for the mean, we also need to find a consistent estimator for the asymptotic

variance. Suppose we have a strictly stationary time series (Xt)
n
t=1, and we would like

to construct a confidence interval for its mean µ = E(Xt). Under suitable moment

and weak dependence conditions,

√
n(X̄n − µ)

D−→ N(0, s2),

where s2 =
∑∞

k=−∞ γ(k) with γ(k) = cov(X0, Xk). In spectral analysis s2 = 2πf(0),

where f(·) is the spectral density function ofXt. Estimating the density function would

be hard and the performance depends on the choice of bandwidth. In the testing

context, the optimal bandwidth can be derived but it depends on the derivatives of

the spectral density. Estimating the derivatives would be even more difficult than

estimating the density function in terms of nonparametric convergence rate, see Sun

et al. (2008).

Self-normalization is proposed to avoid choosing the bandwidth parameter. The

basic idea of self-normalization in time series analysis is that it uses an inconsistent

variance estimator as the studentizer. The resulting test statistic is still (asymptoti-

cally) pivotal and its limiting null distribution and critical values can be approximated

by Monte Carlo simulations. Therefore, it requires no tuning parameters for some

problems or fewer tuning parameters compared to existing inference procedures.
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Self-normalization is first proposed by Lobato (2001) helping construct statistical

inferences for the mean in time series. Assuming the functional central limit theorem

(FCLT) holds, that is,
√
n(X̄1,n − µ)⇒ sB(1),

where ⇒ denotes the weak convergence, B(·) is standard Brownian motion and s2 =

2πf(0). Then by the continuous mapping theorem,

Un =
1

n2

n∑
k=1

(Sk − kX̄1,n)2 D−→ s2

1∫
0

{B(t)− tB(1)}2dt

and

n(X̄1,n − µ)2

Un

D−→ Q :=
B(1)2∫ 1

0
{B(t)− tB(1)}2dt

, (1.1)

where Sk =
∑k

i=1 Xi. Unlike the t-statistic, Un is not consistent for s2 but is propor-

tional to s2. Since the nuisance parameter s is proportional to both the numerator

and the denominator in (1.1), it gets canceled out and the distribution of Q becomes

pivotal. Similar to the t distribution, the numerator B(1)2 and the denominator∫ 1

0
B(t)− tB(1)2dt are independent. Lobato (2001) shows that the distribution of Q

has heavier tails than that of χ2
1 using Monte Carlo simulations.

Shao (2010) extended self-normalization to construct confidence intervals (regions)

for a large class of quantities that are encountered in time series analysis. Let θ =

T (F ), where T is a functional and F is the marginal CDF of a stationary univariate

time series Xt. The estimator of θ is calculated as θ̂1,n = T (F̂1,n). Here we denote θ̂i,j

as an estimator of θ based on the subsample (Xi, ..., Xj), i ≤ j. Replace Sk/k in the

mean self-normalizer by the recursive estimator T (F̂1,k), then

√
n(θ̂1,n − θ)⇒ φB(1),
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Vn =
1

n2

n∑
t=1

t2(θ̂1,t − θ̂1,n)2 D−→ φ2

1∫
0

{B(t)− tB(1)}2dt,

and

n(θ̂1,n − θ)2

Vn

D−→ Q

With the developed theory, we are able to construct confidence intervals for θ without

user-chosen parameters and the confidence intervals have asymptotically correct cov-

erage. Shao (2010) also describes its connection to the fixed b approach and examine

the finite sample performance.

The self-normalizer Vn is not unique and this specific form of Vn was influenced by

Lobato (2001), since it corresponds to Lobato’s mapping and reduces to Lobato’s self-

normalizer in the mean case. However, it only uses forward recursive estimator, which

can result in an unbalanced use of data. Some modification were introduced by Shao

(2015) to overcome this problem. For example, use all recursive subsample estimates

in the formation of self-normalizer (W2n) or take the average of the conventional

self-normalizers for both the original process and its reversed counterpart (W3n), i.e.,

W2n =
1

n3

n∑
i=1

n∑
j=1

(j − i+ 1)2(θ̂i,j − θ̂1,n)2,

and

W3n =
1

n2

{
n∑
t=1

t2(θ̂1,t − θ̂1,n)2 +
n∑
t=1

t2(θ̂n−t+1,n − θ̂1,n)2

}
/2,

Both W2n and W3n are invariant to the direction of application, so we say they are

T-symmetric. However, W2n is computationally expensive and does not unify with

the conventional approach in the mean case. W3n can be reduced to the conventional

self-normalizer in the mean case, while resulting in wider confidence intervals. More

explanation and simulation comparison can be found in Shao (2015). To develop an

effective self-normalizer, Lavitas and Zhang (2018) further proposed a T-symmetric
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generalization to the conventional self-normalizer with theoretical implication of de-

terministic weight choices, including zero, one-half, and one. Their generalization

is T-symmetric and can be reduced to the conventional self-normalizer in the mean

case. Moreover, this generalization possibly leads to narrower confidence intervals

when compared with the conventional self-normalizer.

1.3 Self-Normalization for Statistical Inference

Besides the intense discussion of self-normalization properties, its applications in con-

structing statistical inference in various fields have also been widely investigated. For

example, Shao and Zhang (2010) proposed a framework for change point detection

based on self-normalization. Let (Xt)
n
t=1 be time series observations and θt = T (Fm

t ),

where Fm
t is the marginal distribution of Yt = (Xt, ..., Xt+m−1)′ and T is a functional.

The interest is to test for a change point in θt, that is,

H0 : θ1 = θ2 = ... = θn

against the alternative hypothesis

H1 : θ1 = ... = θk 6= θk+1 = ... = θn,

where the location of the change point 1 ≤ k ≤ n − 1 is unknown. Shao and Zhang

(2010) proposed a self-normalization based test statistics as, for k = 1, ..., n− 1,

Gn := sup
k=1,...,n−1

Tn(k)′V −1
n (k)Tn(k). (1.2)

where

Tn(k) =
k√
n

(θ̂1,k − θ̂1,n),
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and

Vn(k) =
1

n2

{ ∑k
t=1 t2(θ̂1,t − θ̂1,k)(θ̂1,t − θ̂1,k)

′

+
∑n

k+1 (n− t+ 1)2(θ̂t,n − θ̂k+1,n)(θ̂t,n − θ̂k+1,n)′
}
.

The limiting distribution of Gn and simulated critical values are given in Shao

and Zhang (2010). The test doesn’t involve any user-chosen parameter or nuisance

parameter estimation and is able to test for various quantities with encouraging finite

sample performance. However, this test is initially designed against one single change

point and it becomes computationally expensive if two or more change points exists.

Moreover, the number of change points is needed before conducting the test and the

test may suffer severe power loss if the number of change points is misspecified. Zhang

and Lavitas (2018) further developed a new unsupervised self-normalized change-

point test in terms of requiring no prior knowledge of the number of total change

points. In addition, they proposed a contrast-based test to handle quantities other

than the mean and the test is more powerful in detecting change points for robust

quantities like the median. Self-normalization has also been well explored in many

other areas, such as nonparametric time series regression, long memory time series,

locally stationary time series, functional time series, and spatial data and spatial-

temporal data. Many applications are mentioned in Shao (2015).

Among all these works, self-normalization has presented encouraging finite sample

performance. However, most of these works focus on univariate or low-dimensional

time series data. Recently, a few works start to investigate applications in high-

dimensional settings. Wang and Shao (2020) considered hypothesis testing for high-

dimensional time series via self-normalization. They demonstrated that directly ap-

plying self-normalization to high-dimensional objects can fail easily due to singulari-
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ties or substantial size distortions. To handle the high dimensionality, they considered

summarizing the high-dimensional mean by a U-statistic following the work of Chen

and Qin (2010), and then applying the conventional self-normalization technique to

the one-dimensional U-statistic. Their test mainly targets dense and weak alterna-

tives, whereas the self-normalized test for high dimensional time series for strong and

sparse alternatives remains as an interesting topic and needs further investigation.

1.4 Tests for Correlation Matrix Breaks

Recently, there is a growing interest in analyzing correlation matrix, especially for

high dimensional data. Correlation coefficient is one of the most often used measure

of dependence between random variables. With multivariate data given, changes

in correlation matrix reveal the behavior of a system structure and may be more

powerful than those of individual variables in describing system characteristics when

the variables don’t react in an isolated way. Therefore, correlation matrix break

testing has a wide application in many fields, such as psychology, economics and

EEG analysis, see Mauss et al. (2005); Krishnan et al. (2009); Cabrieto et al. (2017).

Wied et al. (2012) first proposed a CUSUM-type correlation constancy test and

then Wied and Galeano (2013) designed a sequential monitoring procedure for test-

ing the constancy of the correlation coefficient of a sequence of random variables.

However, the test only considers bivariate correlations, whereas, in many cases, the

constancy of the whole correlation matrix is of interest. Wied (2017) extended the

methodology to higher dimensions. Let Xt = (X1,t, X2,t, ..., XP,t)
T
t=1 be a sequence of

P -variate random vectors with correlation matrix Rt = (ρijt )1≤i,j≤P , where

ρijt =
Cov(Xi,t, Xj,t)√
V ar(Xi,t)V ar(Xj,t)

.
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We are interested in testing the correlation matrix constancy Rt during the observa-

tion period. The null hypothesis is

H0 : ρij1 = ... = ρijT for all i,j,

against the alternative hypothesis

H1 : ρij1 = ... = ρijt0 6= ρijt0+1 = ... = ρijT for some i,j,

for some correlation break time t0 ∈ {1, ..., T −1}. The designed test in (Wied, 2017)

is

DWT = sup
z∈[0,1]

τT (z)√
T

∥∥∥Ê−1/2(vecho(R̂1,τT (z))− vecho(R̂1,T ))
∥∥∥

1
(1.3)

where τT (z) = [2 + z(T − 2)], z ∈ [0, 1] and

vecho(R̂l,k) = (ρ̂12
l,k, ρ̂

13
l,k, ..., ρ̂

1P
l,k , ρ̂

23
l,k, ..., ρ̂

2P
l,k , ..., ρ̂

(P−1)P
l,k )′, ρ̂ijl,k is the sample correlation

estimated from the paired sample {(Xit, Xjt), t = l, l + 1, ..., k}. Ê is a consistent

estimator of the P (P−1)
2
× P (P−1)

2
long-run covariance matrix E of

√
Tvecho(R̂1,T ).

The test DWT has the asymptotic null distribution sup0≤s≤1

∥∥∥∥B P (P−1)
2

0 (s)

∥∥∥∥
1

, where

BN
0 (·) is an N-dimensional standard Brownian bridge. The asymptotic critical values

of the test DWT depend on P . The test was extended to cases that P > 2. However,

when P is not small relative to T , DWT is unstable. For moderate P , DWT tends to be

under-sized and has low power. For large P , it is over-sized due to (near) singularity of

variance matrix estimator. The details and simulation results are discussed in Posch

et al. (2019); Demetrescu and Wied (2019); Choi and Shin (2020a). To overcome

the high dimension limitation, Choi and Shin (2020a) has tried to test correlation

breaks based on self-normalization. Compared with the previous work, this test is

free of singular problem and has less size distortion in high dimensional settings under

multiple dependence structure. However, their test was designed for a single break
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alternative and it becomes less powerful when testing against multiple breaks.

1.5 Contributions and Organization of the Thesis

In this chapter, we introduced the concept of self-normalization and provided an

overview of its development and application. We can see that even though self-

normalization has been investigated under different scenarios, there are still remain-

ing problems. The conventional self-normalizer is not T-symmetric. Limited effort

has been made to apply self-normalization to hypothesis testing in high-dimensional

settings. A little attention has been paid to test correlation matrix break using self-

normalization.

The goal of this thesis is to further explore properties of generalized self-

normalization and develop statistical theory and methods to construct inference in

multiple high dimensional time series settings. The contribution lies in several as-

pects as listed below, together with the outline of the thesis. In Chapter 2, we explore

asymptotic behavior of optimal weighting in generalized self-normalization for time se-

ries. Then we applied self-normalization method to construct simultaneous confidence

regions for high-dimensional time series in Chapter 3. Chapter 4 describes an unsu-

pervised break test for correlation matrix in time series based on self-normalization.

Lastly, Chapter 5 summarizes the work of this thesis with potential future research

directions.
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Chapter 2

Asymptotic Behavior of Optimal

Weighting in Generalized

Self-Normalization for Time Series

2.1 Introduction

In statistics, inference procedures of interested quantities often involve additional nui-

sance parameters that are not of direct interest but need to be appropriately handled

to yield valid results. For example, when one is interested in the mean of independent

and identically distributed observations, then the marginal variance appears in the

distribution of the sample mean as a nuisance parameter. A common approach used

in the literature is to plug in a consistent estimator of the nuisance parameter, such

as using the sample variance in the inference of the mean. However, in the time series

setting, the nuisance parameter can have a complicated form owing to the dependence,

and its estimation itself can be a quite nontrivial problem. For instance, when making

inference about the mean in the dependent case, the nuisance parameter that appears

in the asymptotic distribution of the sample mean is no longer simply the marginal

variance but the sum of autocovariances of all orders, which may require sophisticated

procedures for its consistent estimation; see for example Flegal and Jones (2010), Liu

and Wu (2010), Politis (2011), Xiao and Wu (2011), Paparoditis and Politis (2012),

Zhang (2018) and references therein for recent developments in this direction. When

the quantity of interest is beyond the mean, the task of consistently estimating the
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associated nuisance parameter can be even more involved. In addition, such plug-in

methods have been found to have certain unsatisfactory aspects in their finite-sample

performance, mainly due to the difficulty of obtaining efficient and robust nuisance

parameter estimates under dependence; see for example the discussion in Kiefer et al.

(2000) and Shao (2010).

Self-normalization has emerged as a convenient and flexible alternative for infer-

ence of time series, which does not require direct estimation of the nuisance param-

eter yet still leads to valid statistical inference procedures. The idea was explored

by Kiefer et al. (2000) in the linear regression setting with ordinary least squares

estimators and by Lobato (2001) for inference of autocorrelations. Shao (2010) ex-

tended their results and considered self-normalization techniques for quantities of a

more general form, namely quantities that can be expressed as functionals of the

cumulative distribution function; see also discussions therein for its connection with

the fixed b asymptotic scheme (Kiefer et al., 2000; Kiefer and Vogelsang, 2005). The

self-normalization scheme of Shao (2010) uses a sequence of recursive estimators to

pivotalize the asymptotic distribution of the statistic of interest, and has been adopted

in various statistical inference problems regarding dependent data; see for example

Shao and Zhang (2010), Zhou and Shao (2013), Kim et al. (2015b), Bai et al. (2016)

and references therein. However, as observed in Shao (2015), this commonly used

self-normalization scheme only uses recursive estimators of one direction and as a

result may exhibit certain degrees of asymmetry resulting in an unbalanced use of

the data. To address this, Shao (2015) considered an alternative that uses recursive

estimators from all possible blocks to construct the self-normalizer. However, such an

approach requires substantially more computation and its performance in the mean

case can be noticeably worse than that of the conventional self-normalizer; see the

discussion and simulation results in Shao (2015). Given these concerns, under the
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influence of Professor Michael Stein, Shao (2015) considered another approach to in-

volve recursive estimators from both directions, which is to compute the conventional

self-normalizer for both the original process and its reversed counterpart and take

the average. Although such a self-normalization scheme maintains the same order of

computation as that of the conventional self-normalizer, it has been found to have the

tendency of yielding wider confidence intervals as observed in the simulation study of

Shao (2015).

Recently, Lavitas and Zhang (2018) considered a more sophisticated approach in

using recursive estimators from both directions to construct self-normalizers for time

series. Their approach exploits the mathematical property of the cumulative sum

(CUSUM) process to obtain a decomposition into forward and backward components.

Compared with the simple averaging scheme of Shao (2015), the self-normalization

scheme of Lavitas and Zhang (2018) is theoretically guaranteed to lead to confidence

intervals that are narrower, or at least of the same length, while maintaining the same

order of computation. The self-normalization scheme of Zhang and Lavitas (2018)

leads to the definition of a generalized class of self-normalizers, which involves a weight

choice where the choice of one corresponds to the conventional self-normalizer of Shao

(2010). Zhang and Lavitas (2018) studied the theoretical implication of simple deter-

ministic weight choices, including zero, one-half and one. In this chapter, we consider

a data-driven weight choice that is optimal in the sense of minimizing the length of

the associated confidence interval. We study the asymptotic behavior of such a data-

driven weight choice, and find an interesting dichotomy between linear and nonlinear

quantities. In particular, for linear quantities such as the mean, we found that the op-

timal weight obtained by minimizing the length of the associated confidence interval

will always have a degenerated distribution, making the generalized self-normalizer

equivalent to the conventional self-normalizer of Shao (2010). This means that the
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self-normalizer in its original form (Shao, 2010) is already optimal for linear quantities

such as the mean. On the other hand, if one is interested in a nonlinear quantity such

as the variance, then the optimal weight will generally distribute over an uncount-

able set, but in the limit it will converge to a discrete distribution. In this case, the

conventional self-normalizer of Shao (2010) no longer represents the optimal choice.

This chapter is based on Zhang et al. (2019). In Section 2.2, we introduce the data-

driven weight choice that minimizes the length of the associated confidence interval in

self-normalized inference procedures. We study its asymptotic behavior for the mean

and variance cases in Section 2.3.1. A mathematical framework for handling more

general quantities is provided in Section 2.3.2, and the associated asymptotic theory

is established. Section 2.4 concludes this chapter. The theoretical proofs, implication

and simulation for confidence interval construction can be found in Appendix A.

2.2 Weight Choice in Generalized Self-Normalization

Suppose we observe X1, . . . , Xn from a stationary time series with mean µ, then the

sample average X̄1,n = n−1
∑n

i=1Xi provides a consistent estimator of µ. Under

certain regularity conditions (Hannan, 1979; Herrndorf, 1984; Wu, 2005), one can

obtain the central limit theorem

√
n(X̄1,n − µ)

D−→ N(0, g), (2.1)

where g is the long-run variance defined as the sum of autocovariances of all orders.

Although one can construct confidence intervals for µ based on (2.1), it requires con-

sistent estimation of the long-run variance g which can itself be a nontrivial problem.

As an alternative, the self-normalization approach uses a function of recursive estima-

tors to pivotalize the asymptotic distribution to make it free of the nuisance long-run
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variance; see also discussions in Kiefer et al. (2000), Lobato (2001) and Shao (2010)

for advantages of using self-normalization. Let S1,k =
∑k

i=1 Xi be the partial sum

process, then the self-normalizer introduced in Section 1.2 takes the form

Un =
1

n2

n∑
k=1

(S1,k − kX̄1,n)2. (2.2)

Let ⇒ denotes the weak convergence (van der Vaart and Wellner, 1996), the self-

normalization approach relies on the following assumption to derive the asymptotic

distribution.

(IP) There exists a s > 0 such that

n−1/2

bntc∑
i=1

(Xi − µ)⇒ sB(t), t ∈ [0, 1],

where B(·) represents a standard Brownian motion.

Assumption (IP) is generally referred to as the invariance principle in the literature,

and has been studied under various short-range dependence conditions where it has

been found that s2 = g, the long-run variance; see for example Hannan (1979), Her-

rndorf (1984), Wu (2007), Berkes et al. (2014) and references therein. By assumption

(IP), one can show that the self-normalized statistic satisfies

n(X̄1,n − µ)2

Un

D−→ s2B(1)2∫ 1

0
{sB(t)− tsB(1)}2dt

=
B(1)2∫ 1

0
{B(t)− tB(1)}2dt

, (2.3)

where the nuisance parameter s gets cancelled out and does not show up in the

asymptotic distribution. Therefore, one can use (2.3) to construct confidence intervals

of µ, which is free of the nuisance parameter s due to self-normalization.

In the seminal work of Shao (2010), the above self-normalization scheme was gen-

eralized to handle quantities other than the mean. Following their framework, suppose



15

the quantity of interest θ can be expressed as a functional of the distribution function,

namely θ = T (F ), where T is a functional and F is the cumulative distribution func-

tion of the random vector Yi, which can be either the vector (Xi, . . . , Xi+d−1)′ itself or

its transform. Here d is a fixed but arbitrary integer and ′ denotes the transpose. Let

F̂i,j be the empirical distribution function of Yi, . . . , Yj, 1 ≤ i ≤ j ≤ N = n − d + 1,

then a natural estimator of θ = T (F ) is given by θ̂1,N = T (F̂1,N). Note that in the

self-normalizer (2.2) for the mean case, the partial sum satisfies S1,k = kX̄1,k, where

X̄1,k can be viewed as a recursive estimator of the mean. Therefore, a natural strategy

as proposed by Shao (2010) and advocated in its subsequent works is to replace X̄1,k

in (2.2) by the recursive estimator θ̂1,k = T (F̂1,k), k = 1, . . . , N , which gives rise to

the self-normalizer

VN = N−2

N∑
k=1

k2{T (F̂1,k)− T (F̂1,N)}2. (2.4)

Assuming an invariance principle on the process {T (F̂1,bNtc)}t∈[0,1] similar to that in

condition (IP), one can show that

N{T (F̂1,N)− θ}2

VN

D−→ B(1)2∫ 1

0
{B(t)− tB(1)}2dt

,

which can then be used to construct confidence intervals for θ. The aforementioned

generalization due to Shao (2010) gradually became a standard in self-normalized

inference and has been adopted into various settings. However, as noted by Shao

(2015), the self-normalizer in (2.4) only uses forward recursive estimators, which can

result in an unbalanced use of the data. To address this, Shao (2015) proposed to

calculate the self-normalizer (2.4) for the original data Y1, . . . , YN and its reversed

counterpart YN , . . . , Y1 and take the average. This simple averaging scheme of Shao

(2015) leads to a self-normalizer that uses both forward and backward recursive es-
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timators, but it has been found to have the tendency of producing wider confidence

intervals when compared with the conventional self-normalizer of Shao (2010). Re-

cently, Zhang and Lavitas (2018) considered a more sophisticated approach in using

forward and backward recursive estimators to construct self-normlizers, which leads

to a class of generalized self-normalizers having the form

ΛN(w) = N−2

N∑
k=1

{wk(θ̂1,k − θ̂1,N)− (1− w)(N − k)(θ̂k+1,N − θ̂1,N)}2, (2.5)

where w ∈ [0, 1] is a weight choice, and θ̂1,k = T (F̂1,k) and θ̂k+1,N = T (F̂k+1,N)

are the forward and backward recursive estimators respectively. Note that the self-

normalizer (2.5) incorporates the forward and backward recursive estimators in a

nontrivial manner, and such a mechanism is due to the mathematical property of

the CUSUM process; see the discussion in Zhang and Lavitas (2018). The general-

ized self-normalizer (2.5) includes the conventional self-normalizer (2.4) as a special

case by letting w = 1. It is also theoretically guaranteed to yield confidence in-

tervals that are narrower, or at least of the same length, when compared with the

simple averaging scheme of Shao (2015); see Theorem 1 of Lavitas and Zhang (2018).

The aforementioned paper studied the theoretical implication of the generalized self-

normalizer (2.5) with a set of deterministic weight choices, such as zero, one-half and

one, and we shall here consider a data-driven weight choice that minimizes the length

of the associated confidence interval. By Theorem 2 of Lavitas and Zhang (2018),

the asymptotic distribution of (2.5) remains the same for any w ∈ [0, 1], and as a

result the length of the resulting confidence interval depends on w only through the

self-normalizer (2.5). Therefore, by the monotonic relationship, it is equivalent to

selecting the weight w by minimizing the self-normalizer (2.5), which motivates us to
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consider the data-driven weight choice

ŵN = argmin
w∈[0,1]

ΛN(w).

If the set of minimizers contains more than one element, then we define ŵN as the

supremum of that set. We study the asymptotic behavior of such a data-driven weight

choice in Section 2.3.

2.3 Asymptotic Behavior of Optimal Weighting

2.3.1 Special Cases: Mean and Variance

We shall first consider the case where the quantity of interest is the mean. In this

case, we can write

θ = T (F ) =

∫
xdF (x), (2.6)

where F is the cumulative distribution function of Yi = Xi and N = n. Therefore,

by replacing F with its empirical counterpart we obtain the forward and backward

recursive estimators

θ̂1,k = T (F̂1,k) = k−1

k∑
i=1

Xi, θ̂k+1,N = T (F̂k+1,N) = (N − k)−1

N∑
i=k+1

Xi.

Note that in this case k(θ̂1,k−θ̂1,N) = −(N−k)(θ̂k+1,N−θ̂1,N), we have ΛN(w) ≡ ΛN(1)

and thus pr(ŵN = 1) = 1. This means that, in the mean case, the conventional self-

normalizer of Shao (2010) in its original form is already optimal in the sense that

it produces the narrowest confidence interval among the class of generalized self-

normalizers (Lavitas and Zhang, 2018).

We shall in the following consider the case of the variance, which is a nonlinear
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quantity. In this case, we can write

θ = T (F ) =

∫
x2dF (x)−

{∫
xdF (x)

}2

, (2.7)

where F is the cumulative distribution function of Yi = Xi and N = n. By replacing

F with its empirical counterpart, we obtain the forward and backward recursive

estimators

θ̂1,k = T (F̂1,k) = k−1

k∑
i=1

X2
i −

(
k−1

k∑
i=1

Xi

)2

(2.8)

and

θ̂k+1,N = T (F̂k+1,N) = (N − k)−1

N∑
i=k+1

X2
i −

{
(N − k)−1

N∑
i=k+1

Xi

}2

, (2.9)

which relate to the method of moments estimators. Let S◦N(t) = {S◦N,1(t), S◦N,2(t)}′

where

S◦N,1(t) =

bNtc∑
i=1

(Xi − µ), S◦N,2(t) =

bNtc∑
i=1

{X2
i − E(X2

i )},

are the centered partial sum process of Xi and X2
i respectively. We shall here make

the following assumption.

(IPv) There exists a positive definite matrix Σ such that

N−1/2S◦N(t)⇒ ΣB(t), t ∈ [0, 1],

where B(·) is a standard two-dimensional Brownian motion.

Assumption (IPv) requires an invariance principle of the two-dimensional process

(Xi, X
2
i )′, which can be viewed as a multivariate extension of condition (IP) in Sec-

tion 2.2 and can be verified under similar short-range dependence conditions; see for

example Wu and Zhou (2011) and references therein. The following theorem states

that, in case of the variance, the optimal weight choice that corresponds to confidence
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intervals with minimal lengths as described in Section 2.2 converges in distribution

to a discrete random variable that has a symmetric distribution around one-half.

Theorem 2.3.1. Assume that T (F ) =
∫
x2dF (x)−

{∫
xdF (x)

}2
as in the variance

case and condition (IPv) holds. Then

ŵN
D−→ Z,

where Z is a Bernoulli random variable whose probability mass function is given by

pr(Z = 0) = pr(Z = 1) = 1/2.

By Theorem 2.3.1, the data-driven weight choice ŵN as described in Section 2.2

converges in distribution to a Bernoulli random variable, indicating that the con-

ventional self-normalizer of Shao (2010) in this case no longer represents the opti-

mal choice that minimizes the length of the associated confidence interval in self-

normalized inference of time series. This, along with the observation in the mean

case, suggests an interesting dichotomy that the asymptotic behavior of the data-

driven weight choice ŵN defined in Section 2.2 can be different depending on the

quantity of interest. We shall in the following consider the case with a general func-

tional T and investigate the cause of the dichotomous asymptotic behavior of ŵN .

2.3.2 The General Case: A Framework and Its Asymptotic Theory

In this section, we consider the general case where the functional T is not necessarily

of the special forms as considered in Section 2.3.1. For this, we need a framework to

study the asymptotic behavior of forward and backward recursive estimators

θ̂1,k = T (F̂1,k), θ̂k+1,N = T (F̂k+1,N).

To achieve this, Shao (2010) in his seminal work proposed to approximate recursive

estimators by partial sums of a sequence of influence functions, which was then used
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to derive the asymptotic distribution of their self-normalized statistic. However, their

approximation scheme cannot be used to fully recover the dichotomous asymptotic

behavior as needed here. This is mainly because the approximation scheme of Shao

(2010) relies on the partial sum process of influence functions, which has a linear

form and is thus always attracted to the first regime of the dichotomy as described

in the mean case. To recover the second regime as described in Theorem 2.3.1 and

to understand the cause of the dichotomy, we propose to consider the von Mises

expansion (von Mises, 1947; Fernholz, 2001) of the general functional T using Gâteaux

derivatives, namely

T (F̂i,j)−T (F ) =

∫
ϕ1(x)d(F̂i,j−F )(x)+

1

2

∫∫
ϕ2(x, y)d(F̂i,j−F )(x)d(F̂i,j−F )(y)+Ri,j,

(2.10)

where

ϕ1(x) =
∂T{(1− ε)F + εδx}

∂ε

∣∣∣∣
ε=0

;

ϕ2(x, y) =
∂2T{(1− ε1 − ε2)F + ε1δx + ε2δy}

∂ε2∂ε1

∣∣∣∣
ε1=0,ε2=0

are the von Mises kernels with δx denoting the Dirac measure at x, and Ri,j is the

remainder term. Let

ψ1(x) = ϕ1(x)−
∫
ϕ1(x)dF (x)

and

ψ2(x) = ϕ2(x)−
∫
ϕ2(x, y)dF (x)−

∫
ϕ2(x, y)dF (y) +

∫∫
ϕ2(x, y)dF (x)dF (y)

be the centered von Mises kernels, then by (2.10) we obtain the von Mises expansions

θ̂1,k = θ +
1

k

k∑
i=1

ψ1(Yi) +
1

2k2

k∑
i=1

k∑
j=1

ψ2(Yi, Yj) +R1,k (2.11)
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and

θ̂k+1,N = θ +
1

N − k

N∑
i=k+1

ψ1(Yi) +
1

2(N − k)2

N∑
i=k+1

N∑
j=k+1

ψ2(Yi, Yj) +Rk+1,N (2.12)

for forward and backward recursive estimators respectively.

Motivated by the special cases considered in Section 2.3.1, we say that the pa-

rameter θ = T (F ) is probabilistically linear if the associated functional T is linear.

Therefore, the mean parameter (2.6) is probabilistically linear while the variance pa-

rameter (2.7) is not. The following theorem states that, for probabilistically linear

parameters, the data-driven weight choice ŵN as described in Section 2.2 has a distri-

bution that puts a unit mass at one thus belongs to the first regime of the dichotomy

as described in the mean case.

Theorem 2.3.2. If θ = T (F ) is probabilistically linear, then (i) the von Mises ex-

pansion of recursive estimators admits the form

θ̂1,k = θ +
1

k

k∑
i=1

ϕ1(Yi), θ̂k+1,N = θ +
1

N − k

N∑
i=k+1

ϕ1(Yi);

and (ii) ΛN(w) ≡ ΛN(1) and thus pr(ŵN = 1) = 1.

By Theorem 2.3.2, von Mises expansions of recursive estimators of probabilistically

linear quantities admit a linear form, which makes the data-driven weight choice ŵN

belong to the first regime of the dichotomy as described in the mean case. We shall

in the following consider the case where the functional T is nonlinear. For this, we

make the following assumptions.

(IPg) There exists a nondegenerate stochastic process W (t) = {W1(t),W2(t),W3(t)}′
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such that 

N−1/2

bNtc∑
i=1

ψ1(Yi)

N−1

bNtc∑
i=1

bNtc∑
j=1

ψ2(Yi, Yj)

N−1

N∑
i=bNtc+1

N∑
j=bNtc+1

ψ2(Yi, Yj)


⇒ W (t), t ∈ [0, 1].

(N) The remainder terms satisfy

N∑
k=1

{k2R2
1,k + (N − k)2R2

k+1,N +N2R2
1,N} = op(N).

Compared with the commonly adopted invariance principle on the partial sum process

as in conditions (IP) and (IPv), Assumption (IPg) in addition requires an invariance

principle regarding the von Mises differentiable statistical function, namely the double

integral of ψ2(x, y) with respect to the empirical distribution functions which relates

to the U-statistic. Invariance principles of U-statistics and von Mises differentiable

statistical functions have been established and studied by Miller and Sen (1972) and

Dehling et al. (1984) for independent observations and more recently by Kanagawa

and Yoshihara (1994) and Sharipov (2003) for dependent observations; see also ref-

erences therein. Since W (t) is nondegenerate, it does not overlap with the class of

probabilistically linear parameters as considered in Theorem 2.3.2. Assumption (N)

basically requires that the remainder term in the von Mises expansion is negligible

when compared with the leading terms in the expansion. Note that the data-driven

weight choice ŵN defined in Section 2.2 is restricted to be searched within the unit

interval, and we shall here consider in addition its unrestricted version

w̃N = argmin
w∈R

ΛN(w).
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The following theorem provides the connection between ŵN and w̃N , and establishes

their asymptotic distributions for cases where the functional T is nonlinear.

Theorem 2.3.3. Assume that θ = T (F ) is probabilistically nonlinear and conditions

(IPg) and (N) hold. If

lim sup
t→0+

E{W2(t)2}+ E{W3(1− t)2}
t2

<∞, (2.13)

then (i)

ŵN = max{min(w̃N , 1), 0},

namely ŵN can be obtained from w̃N through truncation; (ii)

N−1/2w̃N
D−→

2
∫ 1

0
{tW1(1)−W1(t)}{t−1W2(t) + (1− t)−1W3(t)−W2(1)}dt∫ 1

0
{t−1W2(t) + (1− t)−1W3(t)−W2(1)}2dt

;

and (iii)

ŵN
D−→ Z?, (2.14)

where Z? is a Bernoulli random variable whose probability mass function is given by

pr(Z? = 0) =1− pr(Z? = 1)

=pr

 1∫
0

{tW1(1)−W1(t)}{t−1W2(t) + (1− t)−1W3(t)−W2(1)}dt ≤ 0

 .
Theorem 2.3.3 states that, for probabilistically nonlinear parameters, the corre-

sponding optimal weight choice ŵN as described in Section 2.2 converges in distribu-

tion to a Bernoulli random variable, suggesting that the conventional self-normalizer

of Shao (2010) no longer represents the optimal choice in this case. In addition, it

reveals a deeper result, namely the distribution of ŵN can be viewed as a truncated

version of that of an unrestricted optimizer w̃N which diverges at a rate of N1/2.

Therefore, ŵN typically distributes over the unit interval in finite-sample problems

but in the limit it converges to a discrete distribution with a finite support. Inspired

by the special cases considered in Section 2.3.1, Theorems 2.3.2 and 2.3.3 confirms
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the dichotomous asymptotic behavior of ŵN , and provides a criterion to distinguish

the two regimes of the dichotomy, that is, whether the asymptotic distribution of ŵN

will be attracted to the first or second regime of the dichotomy depends on whether

the parameter of interest is probabilistically linear or not. We shall in the following

consider an application to smooth function models (Bhattacharya and Ghosh, 1978;

Hall, 1992; Shao, 2010) to illustrate the implications of the conditions in Theorems

2.3.2 and 2.3.3.

In smooth function models, parameters are modeled as differentiable functions of

vector means, namely θ = g{E(Yi)} where g : Rd → R is a differentiable function

and Yi ∈ Rd is a random vector which can be either the vector (Xi, . . . , Xi+d−1)′

itself or its transform {h1(Xi, . . . , Xi+d−1), . . . , hd(Xi, . . . , Xi+d−1)}′. As commented

by Polansky (2008), many standard problems in statistical inference can be studied

in terms of a smooth function model; see also the discussion in Hall (1992). Shao

(2010) adopted the smooth function model with Yi = (Xi, . . . , Xi+d−1)′ to study the

practical meaning of their technical conditions for self-normalized inference of time

series, and commented that such a class of models is sufficiently wide to include many

statistics of practical interest. We shall here consider the situation where Yi can be

of the form {h1(Xi, . . . , Xi+d−1), . . . , hd(Xi, . . . , Xi+d−1)}′. Let ν = E(Yi), then the

von Mises kernels have the form

ϕ1(x) =
∂g
[∫
zd{(1− ε)F (z) + εδx(z)}

]
∂ε

∣∣∣∣∣
ε=0

= ∇g(ν)′(x− ν)

and

ϕ2(x, y) =
∂2g

[∫
zd{(1− ε1 − ε2)F (z) + ε1δx(z) + ε2δy(z)}

]
∂ε2∂ε1

∣∣∣∣∣
ε1=0,ε2=0

= (y − ν)′Hg(ν)(x− ν),
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where ∇g and Hg are the gradient and Hessian of g respectively. Therefore,

ψ1(x) = ϕ1(x)−
∫
ϕ1(x)dF (x) = ∇g(ν)′(x− ν),

and

ψ2(x) = ϕ2(x)−
∫
ϕ2(x, y)dF (x)−

∫
ϕ2(x, y)dF (y) +

∫∫
ϕ2(x, y)dF (x)dF (y)

= (y − ν)′Hg(ν)(x− ν).

Assume the conventional invariance principle on (Yi), namely

(IPy) there exists a positive definite matrix Σ? such that

N−1/2

bNtc∑
i=1

(Yi − ν)⇒ Σ?B?(t), t ∈ [0, 1],

where B?(·) is a standard d-dimensional Brownian motion,

then

N−1/2

bNtc∑
i=1

ψ1(Yi)

N−1

bNtc∑
i=1

bNtc∑
j=1

ψ2(Yi, Yj)

N−1

N∑
i=bNtc+1

N∑
j=bNtc+1

ψ2(Yi, Yj)


=



∇g(ν)′

N−1/2

bNtc∑
i=1

(Yi − ν)


N−1

bNtc∑
i=1

(Yi − ν)′Hg(ν)

bNtc∑
j=1

(Yj − ν)

N−1

N∑
i=bNtc+1

(Yi − ν)′Hg(ν)
N∑

j=bNtc+1

(Yj − ν)


,

and thus condition (IPg) holds with

W (t) =


W1(t)
W2(t)
W3(t)

 =

 ∇g(ν)′Σ?B?(t)
B?(t)′Σ?′Hg(ν)Σ?B?(t)
{B?(1)−B?(t)}′Σ?′Hg(ν)Σ?{B?(1)−B?(t)}

 . (2.15)

Let ι = (ι1, . . . , ιd)
′ be an element in (Z+ ∪ {0})d, and denote ι! = ι1! · · · ιd! and
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|ι| = ι1 + · · ·+ ιd. For a vector τ = (τ1, . . . , τd) ∈ Rd, we write τ ι = τ ι11 · · · τ
ιd
d and

∂ιg(τ) =
∂|ι|g(τ)

∂ι1τ1 · · · ∂ιdτd
.

Let Ȳ1,k = k−1
∑k

i=1 Yi, then the remainder term in this case can be written as

R1,k =
1

ι!

∑
|ι|=3

∂ιg{ν + ck(Ȳ1,k − ν)}(Ȳ1,k − ν)ι

for some ck ∈ [0, 1]. Assume that the derivative ∂ιg is bounded as in Shao (2010), then

by condition (IPy) and Theorem 1 of Wu (2007), one can obtain that max1≤k≤N |k(Ȳ1,k−

ν)| = Op(N
1/2), and thus max1≤k≤N |k3R1,k| = Op(N

3/2). Let M1,N = bNρc for some

ρ ∈ (3/4, 1), then M−4
1,N max1≤k≤N |k6R2

1,k| = Op(N
3−4ρ) = op(1), and thus

1

N

N∑
k=1

k2R2
1,k =

1

N

M1,N∑
k=1

k2R2
1,k +

N −M1,N

N

max1≤k≤N |k3R1,k|2

M4
1,N

=
M1,N

N

 1

M1,N

M1,N∑
k=1

k2R2
1,k

+ op(1).

Define recursively that Ml,N = bMρ
l−1,Nc for 2 ≤ l ≤ L = b− log 4/ log ρc+ 1, then by

iterating the above argument we have

1

N

N∑
k=1

k2R2
1,k =

ML,N

N

 1

ML,N

ML,N∑
k=1

k2R2
1,k

+ op(1) = Op

(
ML,N

N
·
M3

L,N

14

)
+ op(1).

Since M4
L,N = O(N4ρL) = o(N), we have

∑N
k=1 k

2R2
1,k = op(N), and condition (N)

follows by a similar argument for
∑N

k=1(N −k)2R2
k+1,N . We shall now consider (2.13)

in the statement of Theorem 2.3.3. By (2.15) and properties of the Brownian motion,

W3(1− t) has the same distribution as W2(t), and W2(t)/t has the same distribution
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as W2(1). Therefore, we have

lim sup
t→0+

E{W2(t)2}+ E{W3(1− t)2}
t2

= 2 lim sup
t→0+

E{W2(t)2}
t2

= 2 lim sup
t→0+

E{W2(1)2},

which is finite and thus (2.13) in Theorem 2.3.3 is satisfied.

2.4 Conclusion

This chapter studies the asymptotic behavior of a data-driven weight choice that

minimizes the length of the associated confidence interval. Our results reveal an

interesting dichotomy, namely the asymptotic distribution can be different depending

on whether the parameter of interest is probabilistically linear or nonlinear. Note

that the approximation scheme used by Shao (2010) in their proof is not enough

for the current problem, as their approximation relies on the partial sum process

of influence functions, which has a linear form and is thus always attracted to the

first regime of the dichotomy. To fully recover the dichotomous asymptotic behavior

and to understand its cause, we consider the von Mises expansion (von Mises, 1947;

Fernholz, 2001) with Gâteaux derivatives. We also consider an application to the class

of smooth function models to illustrate the implications of our technical conditions.
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Chapter 3

Self-Normalized Simultaneous Confidence

Region Construction for

High-Dimensional Time Series

3.1 Introduction

Statistical inference of high-dimensional data has been an active area of research. This

is mainly due to the fact that statistical methods developed in the low-dimensional

setting can fail frequently in high-dimensional settings due to various issues related

to the phenomenon called the curse of dimensionality. To accommodate the high

dimensionality and provide valid statistical inference procedures, Bai and Saranadasa

(1996), Srivastava and Du (2008) and Srivastava et al. (2013) considered the mean

case and proposed to modify the popular low-dimensional test of Hotelling (1931) by

removing the off-diagonal components in the sample covariance matrix. Motivated

by the work of Bai and Saranadasa (1996), Chen and Qin (2010) proposed to trim

additional cross terms to improve the power of the associated test. Cai et al. (2014)

considered an approach that uses the maximum of componentwise t-statistics, which

is suitable for detecting sparse and strong signals; see also Wang et al. (2019). On

the other hand, Gregory et al. (2015) considered a sum of squared approach on com-

ponentwise t-statistics, which can be more powerful in detecting dense signals; see

also Xu et al. (2016), Chen et al. (2019) and references therein for additional con-

tributions. However, the aforementioned results mainly focused on making inference
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about the mean of independent and identically distributed samples, and thus may

not be suitable for analyzing high-dimensional time series.

High-dimensional time series have emerged frequently in many fields, and exam-

ples include large panel data in economics, functional magnetic resonance imaging

(fMRI) data in neuroscience, and high-resolution spatio-temporal data in climate sci-

ence. A crucial task in addressing statistical inference problems such as hypothesis

testing and confidence interval construction for time series data is to appropriately

accommodate the effect of temporal dependence, as ignoring it can lead to distorted

p-values and erroneous conclusions; see for example the demonstration in Zhang and

Wu (2011). Although there is a huge literature on developing rigorous inference pro-

cedures for time series data, existing methods mostly focused on the finite- or low-

dimensional setting and their validity in the high-dimensional setting remains largely

unknown. Recently, Zhang and Wu (2017) and Zhang and Cheng (2018) extended the

results of Chernozhukov et al. (2013) and considered Gaussian approximation for sam-

ple means of high-dimensional time series. Chen and Wu (2019) considered a sum of

squared test for trend functions of high-dimensional linear processes; see also Degras

et al. (2012) and Zhang (2013) for related contributions in this direction. However, the

aforementioned results mostly require knowledge on the long-run covariance matrix,

whose direct estimation can be quite nontrivial in the high-dimensional setting and

often involves additional bandwidth parameters. To alleviate this, Wang and Shao

(2020) in their important work considered an alternative that applies the technique of

self-normalization (Kiefer et al., 2000; Lobato, 2001; Shao, 2010). They demonstrated

that directly applying self-normalization to high-dimensional objects can fail easily

due to singularities or substantial size distortions. Instead, they considered the mean

case and proposed to first summarize the high-dimensional mean by a U-statistic fol-

lowing the work of Chen and Qin (2010), and then the conventional self-normalization
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technique becomes straightforwardly applicable to that one-dimensional U-statistic.

An application to the covariance was also given by viewing it as the mean of a trans-

formed time series. To handle the temporal dependence, however, the U-statistic

of Wang and Shao (2020) has to be trimmed, making it less ideal for constructing

simultaneous confidence regions.

Instead of seeking a proxy U-statistic to which the conventional self-normalization

can be directly applied as in Wang and Shao (2020), we propose new approaches that

accommodate the high dimensionality by studying its effect on the maximum modu-

lus of self-normalized statistics. This chapter is based on Zhang and Pan (2021). We

in Section 3.2 use the parabolic cylinder functions from harmonic analysis and their

connections with the Meijer G-functions to explicitly characterize the tail behavior

of self-normalized distributions. The results then enable us to develop an asymptotic

theory on the maximum modulus of self-normalized statistics. In addition, we pro-

pose a thresholded self-normalization method, which is capable of taking advantage

of data with sparse signals to yield simultaneous confidence regions with much re-

duced volumes. Monte Carlo simulations are conducted in Section 3.4 to examine

the finite-sample performance of the proposed methods and compare with the re-

cent high-dimensional self-normalization method of Wang and Shao (2020). Section

3.5 contains an application to a stock price data to further illustrate the proposed

methods. Section 3.6 concludes this chapter, and technical proofs are deferred to the

Appendix B.

3.2 Tail Asymptotics of Self-Normalized Distributions

We first provide a brief review of the conventional self-normalization (Shao, 2010) in

the univariate setting. For this, suppose we observe y1, . . . , yn from a stationary time
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series, which can be a univariate time series itself or a component from a multivariate

or even high-dimensional time series, and we are interested in an unknown quantity

θ that can be the mean, variance, quantiles, interquartile range, and other quantities

associated with the observed time series; see the discussion in Shao (2010). Let θ̂i be

the recursive estimator of θ based on y1, . . . , yi, then the self-normalization method

of Shao (2010) considers the use of

Tn =
n(θ̂n − θ)2

Vn
,

where

Vn =
1

n2

n∑
i=1

{i(θ̂i − θ̂n)}2

is the self-normalizer which is closely related to the cumulative sum (CUSUM) process

in the mean case; see for example the discussion in Zhang and Lavitas (2018). The

above formulation also includes the test statistic of Wang and Shao (2020) by letting

θ̂i be the recursive U-statistic. Assume that we have the invariance principle

(IP) there exists a σ > 0 such that

{n−1/2bntc(θ̂bntc − θ), t ∈ [0, 1]} ⇒ {σB(t), t ∈ [0, 1]},

where B(·) is a standard Brownian motion and⇒ denotes the weak convergence

in the sense of Hoffmann-Jørgensen (van der Vaart and Wellner, 1996),

which can be verified using the influence function approach of Shao (2010) or the func-

tional delta method of Volgushev and Shao (2014), then by the continuous mapping

theorem one can obtain that

lim
n→∞

pr(Tn > z) = pr{Z(B) > z}, (3.1)
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where the functional Z has the form

Z(B) =
{σB(1)}2∫ 1

0
{σB(t)− tσB(1)}2dt

=
{B(1)}2∫ 1

0
{B(t)− tB(1)}2dt

. (3.2)

Note that the nuisance parameter σ is cancelled out in (3.2), the self-normalized dis-

tribution in (3.1) does not depend on any nuisance parameter and can be immediately

used to construct confidence intervals for the unknown quantity θ; see also the review

paper by Shao (2015) for more discussions and advantages of using self-normalization.

To construct simultaneous confidence regions for high-dimensional time series,

however, the uncertainty measured by (3.1) for each component will have to be incor-

porated into the inference procedure in a simultaneous manner. For this, we propose

to study the effect of an increasing dimension on the maximum modulus of self-

normalized statistics. Since they all share the same pivotalized limiting distribution

given by (3.2), we aim at determining if it belongs to the maximum domain of at-

traction of a given type. This, however, requires an analytical characterization of the

tail distribution of Z(B), which does not seem to be a trivial task. In particular,

the specific form of the functional Z makes Z(B) a squared mixed normal random

variable, and the problem of deriving closed form formulae for densities of mixed

normals may require a case by case study and involve nontrivial tools in probabil-

ity; see for example Abadir and Paruolo (1997). In Abadir and Paruolo (1997), the

density function of two mixed normals were studied, both coming from the limit of

optimal bivariate cointegration estimators. However, the limit Z(B) in (3.2) from

self-normalized statistics involves a different mixing variate from that investigated by

Abadir and Paruolo (1997), and thus their result is not directly applicable. Let Gm,n
p,q

be the Meijer G-function (Beals and Szmigielski, 2013), the following theorem pro-

vides a complete characterization of the density function of Z(B). For two positive
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functions, we write f(z) ∼ g(z) as z →∞ if limz→∞ f(z)/g(z) = 1.

Theorem 3.2.1. Let fZ(·) be the density function of Z(B), then for any z > 0, it

admits the expansion

fZ(z) = 21/2π−1z−3/4

∞∑
k=0

(
−1/2

k

)
(−1)kG3,0

1,3

{
(k + 1/4)2z

∣∣∣∣−1/4

1/4,1/2,0

}
.

In addition, as z →∞,

fZ(z) ∼ (2πz)−1/2 exp
(
−z1/2/2

)
.

Theorem 3.2.1 provides an analytical characterization, especially for the tail be-

havior. This confirms the observation in Lobato (2001) that the distribution of (3.2)

has a heavier tail than χ2
1-distribution. The following theorem states that the self-

normalized distribution in (3.2) belongs to the Gumbel maximum domain of attrac-

tion.

Theorem 3.2.2. Let FZ(·) be the cumulative distribution function of Z(B), then for

any z ∈ R,

lim
p→∞
{FZ(cpz + dp)}p = exp{− exp(−z)},

where

cp = 8 log p− 4 log π + 12 log 2, dp = (2 log p− log π + 3 log 2)2.

We shall in the following use the results developed in Theorems 3.2.1 and 3.2.2 to

devise self-normalized inference procedures for high-dimensional time series.

3.3 Self-Normalized Inference under High Dimensions

Suppose we observe Yi = (y1,i, . . . , yp,i)
′, i = 1, . . . , n, from a high-dimensional sta-

tionary time series, and we are interested in making simultaneous inference about

θ1, . . . , θp, where θj is the parameter associated with the j-th component. For exam-



34

ple, one may consider the special case when θk = E(yk,i), k = 1, . . . , p, by testing the

null hypothesis of no signal, namely θ1 = · · · = θp = 0. Wang and Shao (2020) in

their important work proposed an extension of self-normalization to high-dimensional

time series for inference of the mean. However, their method relies on the availabil-

ity of a suitable U-statistic When the quantity of interest cannot be written in the

form of a mean, then it can be a nontrivial task to identify a generally suitable U-

statistic for such purpose, and thus the method of Wang and Shao (2020) may not

be versatile in handling general quantities of high-dimensional time series in a unified

manner. In Section 3.3.1, we propose new approaches of using self-normalization for

inference of high-dimensional time series that are universally applicable to different

target quantities of the observed time series. Section 3.3.2 provides their theoretical

justifications.

3.3.1 Proposed Methodology

For θk associated with the k-th component, following the notation in Section 3.2,

let θ̂k,i be the recursive estimator of θk based on yk,1, . . . , yk,i, then we can form the

self-normalized distance

Tk,n =
n(θ̂k,n − θk)2

Vk,n
, Vk,n =

1

n2

n∑
i=1

{i(θ̂k,i − θ̂k,n)}2 (3.3)

for each k = 1, . . . , p. Because of the self-normalization, the distances Tk,n, k =

1, . . . , p, are all properly normalized to share the same pivotalized limiting distribution

given by (3.2) regardless of what θk represents. This allows one to have the flexibility

of considering different quantities for different components, for example quantiles of

different levels. To construct simultaneous confidence regions for θ1, . . . , θp in the
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high-dimensional setting, we first consider the maximum modulus

∆p,n = max
1≤k≤p

Tk,n. (3.4)

By the theoretical justification in Section 3.3.2, ∆p,n converges in distribution to a

Gumbel random variable after proper centering and scaling, which can then be used

to guide the construction of simultaneous confidence regions for θ1, . . . , θp. Given

that the convergence to extreme value distributions is well known to be slow (Hall,

1979; Kim et al., 2015a; Zhang, 2016), instead of using the asymptotic theory to

determine the critical value, we consider the following simulation-assisted maximum

self-normalization (SAMSN) procedure.

(i) Given observations Y1, . . . , Yn, compute the parameter estimator θ̂k,n and the

associated self-normalizer Vk,n for each k = 1, . . . , p.

(ii) Generate independent standard normal random variables y◦k,i for k = 1, . . . , p

and i = 1, . . . , n, and calculate theoretical values of the associated θ◦1, . . . , θ
◦
p.

(iii) Compute the self-normalized distances T ◦k,n, k = 1, . . . , p, and their maximum

modulus ∆◦p,n = max1≤k≤p T
◦
k,n.

(iv) Repeat (ii) and (iii) above to obtain the (1−α)-th quantile of ∆◦p,n, denoted by

q1−α(∆◦p,n).

(v) Then we can construct the asymptotic (1−α)-th simultaneous confidence region

for θ1, . . . , θp as

RSAMSN
p,n,1−α = {(θ1, . . . , θp) : |θ̂k,n − θk| ≤ n−1/2q1−α(∆◦p,n)1/2V

1/2
k,n , k = 1, . . . , p}.

(3.5)
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Since the distribution of ∆p,n is approximated by that from Gaussian observations,

it relates to the Gaussian approximation of Zhang and Wu (2017) and Zhang and

Cheng (2018), but more in the spirit of Wu and Zhao (2007) and Zhang and Wu

(2012) to improve the finite-sample performance. Note that the Gumbel convergence

will remain the same under weak cross-sectional dependence among different compo-

nents; see for example Xiao and Wu (2013) and Cai et al. (2014). In addition, for the

temporal dependence, due to the self-normalization, it does not require direct esti-

mation of the long-run variance and can be directly applied to quantities beyond the

mean. By the results in Section 3.3.2, the constructed simultaneous confidence region

for θ1, . . . , θp has projected length Op(n
−1/2 log p) in each of its individual dimensions.

Therefore, the confidence region projected onto each of its axes will shrink to the true

parameter value if the dimension p increases at a slower rate than exp
(
n1/2

)
, and the

same will hold in terms of the total volume due to the geometry of a hypercube. Note

that it can also be applied to test the null hypothesis when θ1, . . . , θp equal to some

prespecified values θ0
1, . . . , θ

0
p. Without loss of generality we can assume that θ0

k = 0,

k = 1, . . . , p, and consider testing the null hypothesis

H0 : θ1 = · · · = θp = 0; (3.6)

The proposed test is able to detect any local alternative where there exists one com-

ponent whose signal is stronger than O(n−1/2 log p).

As observed by Cai et al. (2014), sparse and strong alternatives prevail in a range

of applications, where noticeably strong signals exist only in a small amount of com-

ponents out of a high-dimensional vector. Although the maximum modulus (3.4) can

be used to guide the construction of simultaneous confidence regions, it does not take

direct advantage of such a phenomenon. We in the following consider using it as
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a regularization tool and propose a new thresholded self-normalization method that

can lead to confidence regions with much reduced volumes for data with sparse and

strong signals. Let 1{·} be the indicator function and Vk,n be the self-normalizer in

(3.3), we propose to consider the thresholded recursive estimator

θ̃·,i = (θ̂1,i1{V −1
1,n θ̂

2
1,n>λp,n}

, . . . , θ̂p,i1{V −1
p,n θ̂2p,n>λp,n}

)′, (3.7)

where self-normalized statistics are used for the thresholding, and construct the as-

sociated thresholded self-normalizer

Λp,n =
1

n2

n∑
i=1

i2(θ̃·,i − θ̃·,n)(θ̃·,i − θ̃·,n)′.

Write θ = (θ1, . . . , θp)
′ and let Λ+

p,n be the Moore-Penrose inverse of Λp,n, we then

consider the thresholded self-normalized distance

Ωp,n = n(θ̃·,n − θ)′Λ+
p,n(θ̃·,n − θ), (3.8)

and construct sparse simultaneous confidence regions using the following simulation-

assisted thresholded self-normalization (SATSN) procedure.

(i) Given observations Y1, . . . , Yn and a threshold λp,n, compute the thresholded

recursive estimators θ̃·,i, i = 1, . . . , n, and the associated thresholded self-

normalizer Λp,n.

(ii) Calculate d̂ =
∑p

k=1 1{V −1
k,n θ̂

2
k,n>λp,n}

, and generate independent standard normal

random variables y◦k,i for k = 1, . . . , d̂ and i = 1, . . . , n.

(iii) Compute the non-thresholded self-normalized distance Ω◦
d̂,n

for the generated

data.

(iv) Repeat (ii) and (iii) above to obtain the (1−α)-th quantile of Ω◦
d̂,n

, denoted by
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q1−α(Ω◦
d̂,n

).

(v) Then we can construct the asymptotic (1−α)-th simultaneous confidence region

for θ1, . . . , θp as

RSATSN
p,n,1−α = {(θ1, . . . , θp) : Ωp,n ≤ q1−α(Ω◦

d̂,n
)}�(1{V −1

1,n θ̂
2
1,n>λp,n}

, . . . ,1{V −1
p,n θ̂2p,n>λp,n}

),

(3.9)

where � represents the Hadamard product.

Compared with the SAMSN method (3.5) that relies directly on the maximum mod-

ulus of self-normalized statistics, the SATSN method (3.9) takes direct advantage of

the signal sparsity to produce simultaneous confidence regions with much reduced

volumes that are sparse by themselves.

3.3.2 Theoretical Justification

We shall in this section provide theoretical justifications for the proposed methods.

Let F̄Z(z) = 1 − FZ(z) be the complementary cumulative distribution function of

Z(B), and for 1 ≤ k1, . . . , km ≤ p write

F̄T,k1,...,km,n(z) = pr(Tk1,n > z, . . . , Tkm,n > z), z > 0,

then F̄T,k,n(z) = pr(Tk,n > z) represents the marginal complementary cumulative

distribution function. We first provide a result concerning the stochastic bound of

the maximal self-normalized deviation (3.4), and we make the following assumption.

(A1) For any z > 0, limn→∞ F̄T,k,n(z) = 1− FZ(z) holds for each k = 1, . . . , p.

Condition (A1) is a direct result of (3.1), which has been extensively studied by Shao

(2010), Volgushev and Shao (2014), Zhang and Lavitas (2018) and references therein.
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Theorem 3.3.1. Assume (A1). Then there exists a sufficiently large constant c > 0

such that

lim
p→∞

lim
n→∞

pr{∆p,n > c(log p)2} = 0.

By Theorem 3.3.1, the maximal self-normalized deviation ∆p,n given in (3.4) is of

order Op{(log p)2}, which can also be useful in guiding the selection of the threshold

value in (3.7). To understand theoretical properties of the simultaneous confidence

region (3.5) produced by the SAMSN procedure, we study the asymptotic distribution

of ∆p,n, for which we need the following assumption.

(A2) For any z > 0,

lim
p→∞

lim
n→∞

∣∣∣∣∣
∑

1≤k1<···<km≤p F̄T,k1,...,km,n(cpz + dp)(
p
m

)
{1− FZ(cpz + dp)}m

− 1

∣∣∣∣∣ = 0

holds for any m ≥ 1, where cp and dp are sequences defined in Theorem 3.2.2.

Condition (A2) can be viewed as a multivariate generalization of condition (A1). In

particular, one can show that condition (A2) will be satisfied for m = 1 if condi-

tion (A1) holds. For the case when m > 1 is considered, condition (A2) is expected

to be satisfied when the cross-sectional dependence among different components has

a sparse or diagonal structure. Note that condition (A2) typically does not lead

to any additional restriction on the temporal dependence part, as that is expected

to be handled by the self-normalization. Intuitively, under a sparse or diagonal

cross-sectional dependence structure, out of the total
(
p
m

)
summands, most of the

m-index combinations k1, . . . , km will exhibit very weak or no dependence, in which

case F̄T,k1,...,km,n(cpz + dp) will be very close to {1− FZ(cpz + dp)}m, making the sum∑
1≤k1<···<km≤p F̄T,k1,...,km,n(cpz+dp) close to

(
p
m

)
{1−FZ(cpz+dp)}m. For example, in

the diagonal case, one can show that condition (A2) automatically reduces to condi-

tion (A1). The following theorem states that the maximal self-normalized deviation
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∆p,n in (3.4), after proper centering and scaling, follows an asymptotic Gumbel distri-

bution, and that the associated SAMSN procedure proposed in Section 3.3.1 produces

simultaneous confidence regions with the desired coverage probability.

Theorem 3.3.2. Assume (A2). Then for any z > 0,

lim
p→∞

lim
n→∞

pr{∆p,n ≤ cpz + dp} = exp{− exp(−z)}.

If in addition (A1) holds for independent Gaussian data, then for any α ∈ (0, 1),

lim
p→∞

lim
n→∞

pr{(θ1, . . . , θp) ∈ RSAMSN
p,n,1−α} = 1− α.

Note that in practice q1−α(∆◦p,n) has to be replaced by its empirical counterpart.

The difference, however, can be made arbitrarily small as we can generate as many

independent Gaussian data in the simulation-assisted step as we want. As a re-

sult, we assume for simplicity that q1−α(∆◦p,n) is available in our theoretical analyses,

and alternatively it can be handled by either involving an arbitrarily small constant

or another limit when the number of simulated replications goes to infinity. Since

cp = O(log p) and dp = O{(log p)2}, the hypercube RSAMSN
p,n,1−α constructed as the si-

multaneous confidence region for θ1, . . . , θp has projected length Op(n
−1/2 log p) in

each of its individual dimensions. We shall now study asymptotic properties of the

thresholded self-normalized deviation Ωp,n in (3.8) and its associated SATSN pro-

cedure that are designed particularly for data with sparse signals. For this, we let

S0 = {k : θk = 0} and S1 = {k : θk 6= 0} be subsets of {1, . . . , p} that represent

components with zero and nonzero signals respectively, and we use d to denote the

cardinality of S1, namely the total number of nonzero signals. Under signal sparsity, d

is expected to be either finite or growing at a very slow rate, so that the conventional

self-normalization of Shao (2010) can still be applicable to this sparse subset. We

shall in the following summarize this into a mathematical condition. For this, let θ̂S1,i
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be the recursive estimator on S1, then one can form the self-normalized distance

TS1,n = n(θ̂S1,n− θS1)′V −1
S1,n(θ̂S1,n− θS1), VS1,n =

1

n2

n∑
i=1

i2(θ̂S1,i− θ̂S1,n)(θ̂S1,i− θ̂S1,n)′.

Let Bd(·) be a standard d-dimensional Brownian motion, then the self-normalization

method of Shao (2010) and Shao (2015) approximates the distribution of TS1,n by

that of

Zd(Bd) = Bd(1)′

 1∫
0

{Bd(t)− tBd(1)}{Bd(t)− tBd(1)}′dt

−1

Bd(1).

(A3) The number of nonzero components d grows with p slowly enough such that

lim
p→∞

lim
n→∞

|pr(TS1,n ≤ z)− pr{Zd(Bd) ≤ z}| = 0

holds for any z > 0.

Let q1−α{Zd(Bd)} be the (1− α)-th quantile of Zd(Bd), the following theorem states

that the distribution of the thresholded self-normalized distance Ωp,n in (3.8) can

be asymptotically approximated by that of Zd(Bd), and that the associated SATSN

procedure proposed in Section 3.3.1 produces sparse simultaneous confidence regions

with the desired coverage probability.

Theorem 3.3.3. Assume (A3) and that the threshold satisfies λp,n = c?n−1(log p)2

for some c? > 4. If the invariance principle (IP) holds marginally for each component

with possibly different σ1, . . . , σp that are bounded away from zero and infinity and the

minimal nonzero signal satisfies

lim
p→∞

lim
n→∞

mink∈S1 |θk|
(n−1/2 log p)(log d)1/2

= +∞,

then for any z > 0,

lim
p→∞

lim
n→∞

pr[Ωp,n ≤ q1−α{Zd(Bd)}] = 1− α.
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If in addition (A3) holds for d-dimensional independent Gaussian data, then for any

α ∈ (0, 1),

lim
p→∞

lim
n→∞

pr{(θ1, . . . , θp) ∈ RSATSN
p,n,1−α} = 1− α.

Compared with the SAMSN confidence region RSATSN
p,n,1−α from (3.5), the SATSN

procedure takes advantage of the sparse signal structure and produces confidence

regions with reduced volumes that only reside in a low-dimensional subspace. We shall

here provide a discussion about how to choose the threshold value λp,n in practice.

For this, a simple approach is to use Theorem 3.3.3 and choose λp,n = c?n−1(log p)2

for some constant c? > 4. Alternatively, since the threshold λp,n is mainly used to

screen out components with zero signals, as a rule of thumb, one can use Theorem

3.3.2 and choose λp,n as the 99% cut-off value for testing the null hypothesis of no

signal. It can be seen from our numerical results in Sections 3.4.1 and 3.4.2 that such

a rule of thumb choice seems to perform reasonably well.

3.4 Simulation Results

3.4.1 Simulation Results: The Mean Case

We shall here carry out Monte Carlo simulations to examine the finite-sample perfor-

mance of the proposed SAMSN and SATSN methods for constructing simultaneous

confidence regions for high-dimensional time series. We first consider the mean case,

where we can make a comparison with the recently developed self-normalized method

of Wang and Shao (2020) based on trimmed U-statistics. We also consider the case of

the median in Section 3.4.2, where the method of Wang and Shao (2020) is not directly

applicable. Let (εk,i)k,i be an array of independent standard normal random variables,

and (ek,i)i be an autoregressive process satisfying the recursion ek,i = ρek,i−1 + εk,i

for each k = 1, . . . , p. Let n = 500 and e·,i = (e1,i, . . . , ep,i)
′, we consider constructing
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simultaneous confidence regions for the mean of

Yi = θ + Σ1/2e·,i, i = 1, . . . , n, (3.10)

where θ = (3, 5,−4, 5, 0, . . . , 0) represents the true value and Σ takes the block diag-

onal form Σ = diag{Bm, . . . , Bm, Bp−mbp/mc} with Bm = (0.5|i−j|)1≤i,j≤m. Note that

the block diagonal form with m = 2 gives a tri-diagonal matrix; see for example the

setting in Wang and Shao (2020). For each realization of the process (3.10), we apply

the proposed SAMSN and SATSN methods to construct simultaneous confidence re-

gions for its mean, and compare them with the self-normalized U-statistic method of

Wang and Shao (2020). Note that the method of Wang and Shao (2020) requires the

selection of a trimming parameter to handle the temporal dependence, and we shall

here follow their setting and consider choosing the trimming parameter as 5, 10, 20

and 30, and denote the associated methods by WS205, WS2010, WS2020 and WS2030

respectively. For p ∈ {50, 100, 200}, ρ ∈ {0.3, 0.6,−0.3,−0.6} and m ∈ {1, 2, 5},

the results are summarized in Tables 3.1 and 3.2 based on 1000 realizations for each

configuration, from which we can observe the followings.

First, the empirical coverage probabilities of the proposed SAMSN and SATSN

methods are reasonably close to their nominal levels, namely 90% in Table 3.1 and

95% in Table 3.2. As a comparison, the performance of the self-normalized U-statistic

method of Wang and Shao (2020) can be affected by the choice of trimming in a

nonnegligible way, especially when ρ = −0.6 for which noticeable size distortions can

be identified for WS205. Second, we report in parentheses the average projected length

(APL) of the constructed simultaneous confidence region on each of the coordinates

for the proposed SAMSN and SATSN methods, from which we can see that the

SATSN method is capable of taking direct advantage of the signal sparsity to produce
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p m ρ SAMSN(APL) SATSN(APL) WS205 WS2010 WS2020 WS2030

50 1 0.3 0.885(0.637) 0.889(0.034) 0.883 0.886 0.891 0.889
0.6 0.886(1.099) 0.863(0.058) 0.877 0.896 0.884 0.884

-0.3 0.905(0.345) 0.910(0.019) 0.884 0.882 0.877 0.883
-0.6 0.918(0.282) 0.912(0.016) 0.706 0.914 0.903 0.905

2 0.3 0.907(0.636) 0.896(0.030) 0.892 0.890 0.890 0.889
0.6 0.895(1.103) 0.887(0.050) 0.857 0.880 0.872 0.870

-0.3 0.898(0.344) 0.905(0.016) 0.894 0.897 0.895 0.890
-0.6 0.918(0.280) 0.926(0.014) 0.738 0.901 0.894 0.888

5 0.3 0.891(0.636) 0.896(0.028) 0.888 0.889 0.873 0.876
0.6 0.898(1.104) 0.877(0.048) 0.899 0.896 0.902 0.889

-0.3 0.909(0.344) 0.894(0.016) 0.888 0.898 0.891 0.884
-0.6 0.920(0.282) 0.919(0.013) 0.716 0.914 0.896 0.895

100 1 0.3 0.896(0.698) 0.894(0.017) 0.884 0.885 0.888 0.879
0.6 0.874(1.212) 0.857(0.030) 0.846 0.885 0.896 0.885

-0.3 0.905(0.379) 0.886(0.009) 0.895 0.914 0.904 0.899
-0.6 0.915(0.311) 0.909(0.008) 0.641 0.901 0.904 0.895

2 0.3 0.906(0.699) 0.891(0.015) 0.900 0.901 0.901 0.887
0.6 0.865(1.213) 0.875(0.025) 0.866 0.892 0.881 0.877

-0.3 0.915(0.380) 0.903(0.008) 0.899 0.902 0.898 0.902
-0.6 0.905(0.310) 0.932(0.007) 0.656 0.910 0.898 0.890

5 0.3 0.884(0.699) 0.897(0.014) 0.905 0.905 0.888 0.895
0.6 0.885(1.212) 0.873(0.024) 0.869 0.893 0.893 0.888

-0.3 0.912(0.379) 0.908(0.008) 0.889 0.889 0.885 0.887
-0.6 0.935(0.310) 0.925(0.006) 0.668 0.896 0.901 0.900

200 1 0.3 0.877(0.766) 0.869(0.009) 0.900 0.900 0.891 0.896
0.6 0.882(1.334) 0.870(0.015) 0.796 0.878 0.882 0.872

-0.3 0.915(0.416) 0.899(0.005) 0.896 0.894 0.893 0.892
-0.6 0.927(0.340) 0.909(0.004) 0.607 0.896 0.904 0.901

2 0.3 0.899(0.767) 0.900(0.007) 0.891 0.894 0.883 0.885
0.6 0.872(1.333) 0.850(0.013) 0.835 0.896 0.893 0.898

-0.3 0.914(0.416) 0.904(0.004) 0.903 0.906 0.907 0.897
-0.6 0.936(0.340) 0.907(0.003) 0.598 0.897 0.881 0.896

5 0.3 0.893(0.765) 0.903(0.007) 0.901 0.900 0.891 0.877
0.6 0.886(1.333) 0.894(0.012) 0.863 0.905 0.896 0.889

-0.3 0.906(0.417) 0.885(0.004) 0.888 0.889 0.890 0.889
-0.6 0.921(0.341) 0.913(0.003) 0.637 0.911 0.906 0.904

Table 3.1: Empirical coverage probabilities for the 90% simultaneous
confidence regions of the high-dimensional mean constructed by the
proposed SAMSN and SATSN methods (with average projected lengths
in parentheses), and the self-normalized U-statistic method of Wang
and Shao (2020) with different trimming parameters.



45

p m ρ SAMSN(APL) SATSN(APL) WS205 WS2010 WS2020 WS2030

50 1 0.3 0.949(0.710) 0.946(0.040) 0.949 0.951 0.951 0.942
0.6 0.948(1.225) 0.918(0.067) 0.929 0.944 0.936 0.932

-0.3 0.949(0.385) 0.951(0.022) 0.941 0.943 0.934 0.941
-0.6 0.959(0.315) 0.958(0.018) 0.835 0.964 0.965 0.960

2 0.3 0.951(0.709) 0.943(0.035) 0.949 0.947 0.948 0.953
0.6 0.938(1.230) 0.935(0.058) 0.936 0.939 0.935 0.938

-0.3 0.954(0.384) 0.952(0.019) 0.941 0.941 0.945 0.950
-0.6 0.969(0.313) 0.963(0.016) 0.860 0.953 0.951 0.939

5 0.3 0.949(0.709) 0.948(0.033) 0.945 0.945 0.933 0.931
0.6 0.946(1.230) 0.930(0.055) 0.938 0.942 0.944 0.943

-0.3 0.959(0.383) 0.939(0.018) 0.946 0.948 0.944 0.943
-0.6 0.961(0.314) 0.952(0.015) 0.845 0.954 0.951 0.952

100 1 0.3 0.948(0.769) 0.944(0.020) 0.945 0.938 0.937 0.942
0.6 0.921(1.334) 0.916(0.034) 0.904 0.939 0.945 0.946

-0.3 0.958(0.417) 0.945(0.011) 0.955 0.947 0.951 0.947
-0.6 0.958(0.342) 0.956(0.009) 0.787 0.956 0.954 0.951

2 0.3 0.958(0.769) 0.945(0.017) 0.955 0.951 0.953 0.947
0.6 0.933(1.335) 0.931(0.029) 0.933 0.942 0.935 0.939

-0.3 0.955(0.418) 0.949(0.010) 0.952 0.947 0.945 0.944
-0.6 0.957(0.341) 0.964(0.008) 0.800 0.954 0.946 0.950

5 0.3 0.947(0.769) 0.946(0.016) 0.942 0.946 0.943 0.941
0.6 0.938(1.335) 0.932(0.028) 0.927 0.948 0.953 0.945

-0.3 0.962(0.417) 0.947(0.009) 0.944 0.949 0.940 0.944
-0.6 0.962(0.341) 0.968(0.007) 0.802 0.945 0.952 0.935

200 1 0.3 0.928(0.834) 0.926(0.010) 0.947 0.942 0.945 0.949
0.6 0.948(1.451) 0.932(0.017) 0.882 0.945 0.940 0.941

-0.3 0.955(0.453) 0.941(0.005) 0.953 0.947 0.949 0.947
-0.6 0.962(0.370) 0.953(0.005) 0.806 0.946 0.950 0.950

2 0.3 0.939(0.835) 0.945(0.008) 0.944 0.945 0.945 0.944
0.6 0.923(1.451) 0.917(0.015) 0.901 0.953 0.952 0.946

-0.3 0.958(0.453) 0.945(0.005) 0.945 0.948 0.945 0.946
-0.6 0.975(0.371) 0.955(0.004) 0.779 0.946 0.936 0.954

5 0.3 0.941(0.833) 0.943(0.008) 0.945 0.943 0.939 0.934
0.6 0.932(1.450) 0.937(0.014) 0.920 0.950 0.952 0.947

-0.3 0.952(0.453) 0.938(0.004) 0.941 0.948 0.942 0.945
-0.6 0.963(0.371) 0.961(0.004) 0.811 0.955 0.955 0.958

Table 3.2: Empirical coverage probabilities for the 95% simultaneous
confidence regions of the high-dimensional mean constructed by the
proposed SAMSN and SATSN methods (with average projected lengths
in parentheses), and the self-normalized U-statistic method of Wang
and Shao (2020) with different trimming parameters.
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a much smaller simultaneous confidence region as its APL is significantly smaller

than that of SAMSN. In contrast, due to the use of a trimmed U-statistic, the shape

of the simultaneous confidence region produced by the method of Wang and Shao

(2020) can be very difficult to understand, and as a result it can be quite a nontrivial

challenge to find its average projected length. Third, the simultaneous confidence

regions constructed by the proposed SAMSN and SATSN methods center at Ȳ1,n =

n−1
∑n

i=1 Yi and its thresholded counterpart, while the center of the simultaneous

confidence region induced by the method of Wang and Shao (2020) can be difficult

to identify. Compared with the self-normalized U-statistic method of Wang and Shao

(2020), the proposed SAMSN and SATSN methods seem to be more desirable for the

purpose of constructing simultaneous confidence regions for high-dimensional time

series.

3.4.2 Simulation Results: The Median Case

We shall in this section apply the proposed SAMSN and SATSN methods to con-

struct simultaneous confidence regions for the median of the process in (3.10), for

which the self-normalized U-statistic method of Wang and Shao (2020) is not directly

applicable. The results are summarized in Table 3.3, from which we can observe the

followings. First, the empirical coverage probabilities of the proposed SAMSN and

SATSN methods for the median case, though being slightly worse that those in Tables

3.1 and 3.2 for the mean case, are still reasonably close to their 90% and 95% nom-

inal levels. Second, when compared with the SAMSN method, the SATSN method

continues to produce much smaller simultaneous confidence regions in the median

case due to its capability of taking direct advantage of the signal sparsity. Third, the

average projected lengths in Table 3.3 for the median are generally longer than those

in Tables 3.1 and 3.2 for the mean, indicating that simultaneous confidence regions
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constructed for the median can be bigger than those constructed for the mean at the

same nominal level.

SAMSN(APL) SATSN(APL)

p m ρ 90% 95% 90% 95%

50 1 0.3 0.904(0.894) 0.962(1.014) 0.904(0.042) 0.938(0.050)
0.6 0.921(1.457) 0.964(1.653) 0.902(0.068) 0.943(0.080)

-0.3 0.877(0.606) 0.943(0.688) 0.898(0.030) 0.945(0.035)
-0.6 0.859(0.600) 0.921(0.681) 0.883(0.030) 0.932(0.035)

2 0.3 0.922(0.894) 0.961(1.015) 0.896(0.039) 0.945(0.046)
0.6 0.914(1.462) 0.964(1.659) 0.909(0.062) 0.953(0.073)

-0.3 0.882(0.606) 0.935(0.688) 0.887(0.029) 0.932(0.034)
-0.6 0.865(0.600) 0.917(0.681) 0.881(0.029) 0.927(0.034)

5 0.3 0.916(0.891) 0.953(1.011) 0.870(0.038) 0.941(0.045)
0.6 0.919(1.468) 0.955(1.666) 0.891(0.060) 0.941(0.071)

-0.3 0.875(0.604) 0.926(0.685) 0.890(0.028) 0.940(0.033)
-0.6 0.851(0.599) 0.905(0.679) 0.887(0.029) 0.931(0.034)

100 1 0.3 0.906(1.030) 0.957(1.170) 0.903(0.021) 0.949(0.025)
0.6 0.936(1.682) 0.965(1.911) 0.879(0.034) 0.937(0.040)

-0.3 0.888(0.700) 0.942(0.795) 0.888(0.015) 0.937(0.017)
-0.6 0.866(0.692) 0.923(0.786) 0.882(0.015) 0.937(0.017)

2 0.3 0.933(1.028) 0.965(1.167) 0.890(0.020) 0.945(0.023)
0.6 0.954(1.689) 0.978(1.918) 0.886(0.031) 0.941(0.037)

-0.3 0.877(0.700) 0.932(0.795) 0.897(0.014) 0.940(0.017)
-0.6 0.847(0.693) 0.922(0.787) 0.865(0.014) 0.922(0.017)

5 0.3 0.930(1.031) 0.967(1.171) 0.893(0.019) 0.944(0.023)
0.6 0.935(1.686) 0.971(1.915) 0.875(0.030) 0.934(0.035)

-0.3 0.895(0.701) 0.936(0.796) 0.894(0.014) 0.942(0.017)
-0.6 0.870(0.691) 0.929(0.784) 0.884(0.014) 0.938(0.017)

200 1 0.3 0.929(1.157) 0.965(1.309) 0.899(0.011) 0.948(0.012)
0.6 0.932(1.891) 0.966(2.140) 0.866(0.017) 0.916(0.020)

-0.3 0.862(0.784) 0.934(0.887) 0.894(0.007) 0.943(0.009)
-0.6 0.818(0.777) 0.896(0.879) 0.872(0.007) 0.936(0.009)

2 0.3 0.922(1.159) 0.965(1.312) 0.896(0.010) 0.947(0.012)
0.6 0.934(1.890) 0.973(2.138) 0.881(0.015) 0.940(0.018)

-0.3 0.883(0.784) 0.938(0.887) 0.884(0.007) 0.930(0.008)
-0.6 0.847(0.775) 0.916(0.877) 0.880(0.007) 0.925(0.009)

5 0.3 0.932(1.158) 0.973(1.310) 0.879(0.010) 0.942(0.011)
0.6 0.956(1.892) 0.978(2.140) 0.888(0.015) 0.936(0.018)

-0.3 0.890(0.785) 0.938(0.888) 0.881(0.007) 0.933(0.008)
-0.6 0.847(0.777) 0.916(0.879) 0.879(0.007) 0.924(0.009)

Table 3.3: Empirical coverage probabilities for the 90% and 95% simulta-
neous confidence regions of the high-dimensional median constructed by the
proposed SAMSN and SATSN methods (with average projected lengths in
parentheses).
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3.5 Application to a Stock Price Data

We shall here apply the developed results to a financial data that contains daily

adjusted close prices for a set of NASDAQ-100 companies during the period from

2016 to 2019. The set of companies are chosen based on the NASDAQ-100 list

in April 2020, and we removed a few with incomplete data (for example, ZOOM

started trading in 2019). A complete list can be found in Table 3.4, and we consider

constructing simultaneous confidence regions for the mean and median of their daily

rates of return.

ATVI ADBE AMD ALXN ALGN GOOGL GOOG AMZN AMGN ADI

ANSS AAPL AMAT ASML ADSK ADP BIDU BIIB BMRN BKNG

AVGO CDNS CDW CERN CHTR CHKP CTAS CSCO CTXS CTSH

CMCSA CPRT CSGP COST CSX DXCM DLTR EBAY EA EXC

EXPE FB FAST FISV GILD IDXX ILMN INCY INTC INTU

ISRG JD KLAC KHC LRCX LBTYA LBTYK LULU MAR MXIM

MELI MCHP MU MSFT MDLZ MNST NTAP NTES NFLX NVDA

NXPI ORLY PCAR PAYX PYPL PEP QCOM REGN ROST SGEN

SIRI SWKS SPLK SBUX SNPS TMUS TTWO TSLA TXN TCOM

ULTA UAL VRSN VRSK VRTX WBA WDAY WDC XEL XLNX

Table 3.4: The complete list of stock tickers used in the data analysis
in Section 3.5.

In our analysis, n = 1003 and p = 100. For the mean rate of return, both the

SAMSN and SATSN methods reject the null hypothesis of zero return at 1% signif-

icance level, which is in line with the test of Wang and Shao (2020) if the trimming

parameter in their test is chosen to be 20. However, the test of Wang and Shao (2020)

can be affected by the trimming, and its use of a trimmed U-statistic to summarize the

high-dimensional mean makes it difficult to provide any additional information about
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which stock has a nonzero mean beyond rejecting the null hypothesis. In contrast, the

proposed SAMSN and SATSN methods are able to produce simultaneous confidence

regions for the high-dimensional mean, based on which practitioners can further ob-

tain individual level information such as which stock has a nonzero mean that caused

the rejection of the null. In particular, simultaneous confidence regions constructed

by both the SAMSN and SATSN methods suggest that it is the stock CTAS that

has a nonzero mean rate of return, which corroborates with the assumption of signal

sparsity. The 99% SAMSN simultaneous confidence region is in the shape of a hy-

percube and its projection onto the CTAS dimension is 0.00124 ± 0.00122. On the

other hand, the 99% SATSN simultaneous confidence region in this case is a sparse

ellipsoid which occupies 0.00124± 0.00069 on the dimension of CTAS. Note that the

SATSN method produces a narrower interval than the SAMSN method.

Stock SAMSN SATSN

ISRG 0.00188± 0.00139 0.00188± 0.00107

KLAC 0.00206± 0.00197 0.00206± 0.00152

NVDA 0.00247± 0.00207 0.00247± 0.00160

Table 3.5: Projected 99% simultaneous confidence regions produced
by the SAMSN and SATSN methods for the median rate on each of
the stock dimensions.

We then consider the median case, for which the proposed SAMSN and SATSN

methods identify three stocks ISRG, KLAC and NVDA with positive median rates

of return, meaning that they have more days of gaining than losing. The 99% si-

multaneous confidence regions produced by the SAMSN and SATSN methods are

summarized in Table 3.5 in terms of their projections onto the dimensions ISRG,

KLAC and NVDA respectively. Note that the simultaneous confidence region pro-

duced by the SATSN method in this case is in the shape of a low-dimensional ellipsoid,



50

and we report the maximal area of its projection onto each of the ISRG, KLAC and

NVDA axes. The method of Wang and Shao (2020) is no longer applicable in this

case as it was developed only for the mean case, and therefore we do not include it for

comparison. It can be seen from our empirical examples that the proposed SAMSN

and SATSN methods not only complement the method of Wang and Shao (2020) by

being able to produce simultaneous confidence regions that provide practitioners with

valuable information beyond simply rejecting the null hypothesis of no signal, they

are also readily applicable to quantities beyond the mean which can be a very useful

feature in practice.

3.6 Conclusion

The chapter aims at proposing new approaches of using self-normalization to make

statistical inference of general quantities of high-dimensional time series. Instead

of seeking a proxy U-statistic on which the conventional self-normalization can be

applied as in Wang and Shao (2020), we propose to study the effect of an increasing

dimension on the maximum modulus of self-normalized statistics. We analyze the

tail behaviour of the self-normalized distribution with parabolic cylinder functions

and then develop an asymptotic theory on the maximum modulus of self-normalized

statistics. In addition, we propose a thresholded self-normalization method, which can

yield simultaneous confidence regions with much reduced volumes. Our methods seem

to perform reasonably well in our simulation study and application. Compared with

existing results on self-normalized inference, this work is not only the first to consider

self-normalized simultaneous confidence region in the high-dimensional setting, but

also directly applicable to quantities beyond the mean with a unified inference protocol

that can be very convenient to use in practice.
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Chapter 4

Unsupervised Self-Normalized Break Test

for Correlation Matrix

4.1 Introduction

Correlation coefficient is a statistical method, and it is widely applied to many areas,

such as psychology, economics and EEG analysis in trend analysis and classification

analysis. This is because the correlation coefficient of a system characterizes its

system structure and it becomes a favorable metric when variables of a system don’t

react in isolated ways. For example, in emotion psychology, researchers believe that

to cope with environmental opportunities or threats quickly and efficiently, one need

to enable physiological, experiential, and behavioral reactions synchronously (Mauss

et al., 2005). Economists observe that during financial crisis, the correlation structure

of financial returns changes informatively, see, e.g., Krishnan et al. (2009). Therefore,

correlations among financial returns are widely used in risk management. In an EEG

report, correlation coefficient changes can also be used to detect the presence of

epileptiform discharges in different electrodes (Zhou et al., 2020). Hence, correlation

matrix break testing has attracts much attention with a wide application. Many other

examples are mentioned in (Cabrieto et al., 2017).

To reveal the change pattern of correlation structure, many methods are devel-

oped in testing correlation constancy. Wied et al. (2012) proposed a CUSUM-type

correlation coefficient break test and then Wied and Galeano (2013) applied the test
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to detect structural changes on global minimum-variance portfolios. The test was

further extended to detect multiple breaks in the correlation structure of random

variables in (Galeano and Wied, 2014). This multiple-breaks-test was widely applied

in financial areas. For example, Adams and Glück (2015) applied the test to identify

the impact of financialization in commodity markets and Berens et al. (2015) used

it to forecast value-at-risk of financial portfolio. However, the tests only consider bi-

variate correlations condition, which doesn’t account for high dimensional time series

data.

Recently, Wied (2017) constructed a new test with bootstrap variance matrix es-

timator to detect change in correlation matrix. As mentioned in Chapter 1, the test

becomes unstable and has over-size issue when the number of variables (P) is rela-

tively large to the time series dimension (T) of data. Moreover, when P is moderate

to T, it tends to be under-sized and have low power. To overcome these weaknesses,

Choi and Shin (2020a) integrated the idea of self-normalization in Lobato (2001) and

Shao and Zhang (2010) and proposed a self-normalization break test for correlation

matrix, CST . The test CST doesn’t involve estimating covariance matrix of the sam-

ple correlations, and therefore it doesn’t have issues such as instability or singularity.

Moreover, Choi and Shin (2020a) showed that CST has better size performance than

DWT (Eq 1.3) proposed by Wied (2017) under various simulation settings.

However, CST was mainly designed for a single break alternative and it becomes

less powerful when testing against multiple breaks. They proposed a method of scan-

ning subsamples to detect multiple breaks, whereas the performance highly depends

on how many subsamples they choose to split the data. Zhang and Lavitas (2018) pro-

posed a contrast-based approach in generalizing self-normalized statistics tailored for

change-point testing. In this chapter, we follow Zhang and Lavitas (2018) scheme and

propose an unsupervised correlation matrix break test based on self-normalization.



53

This chapter is based on Pan et al. (2021). The method can test against multiple

breaks without knowing the number of breaks as the prior information.

This chapter is organized as follows: Section 4.2 reviews the idea of the self-

normalized correlation matrix break test and the extended scanning test proposed by

Choi and Shin (2020a) and then introduces our unsupervised correlation matrix break

test. Section 4.2.1 describes the framework of the test procedure and the theoreti-

cal properties are given in Section 4.2.2. Moreover, we introduce an approximation

scheme in Section 4.2.3 so that the computational cost of testing procedure could be

largely reduced. The simulation performance is illustrated in Section 4.3 and then

we apply the method with two real data sets in Section 4.4 and Section 4.5. Lastly,

Section 4.6 concludes this chapter.

4.2 Self-Normalized Test for Correlation Matrix Breaks

To illustrate the idea, let’s assume we have a sequence of P -variate random vectors,

Xt = (X1,t, X2,t, ..., XP,t)
T
t=1 with correlation matrix Rt = (ρijt )1≤i,j≤P , where

ρijt =
Cov(Xi,t, Xj,t)√
V ar(Xi,t)V ar(Xj,t)

.

We are interested in testing the correlation matrix constancy during the observation

period, so the null hypothesis is

H0 : ρij1 = ... = ρijT for all i,j,

against the alternative hypothesis

H1 : ρij1 = ... = ρijt0 6= ρijt0+1 = ... = ρijT for some i,j,
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for some correlation break time t0 ∈ {1, ..., T −1}. Choi and Shin (2020a) proposed a

self-normalized correlation matrix break test extended from Shao and Zhang (2010).

The test is

CST = sup
z∈[0,1]

z2(1− z)2{
∑

1≤i<j≤P (ρ̂ij1,[Tz] − ρ̂
ij
[Tz]+1,T )}2

1
T

∑[Tz]
t=1{

∑
1≤i<j≤P

t
T

(ρ̂ij1,t − ρ̂
ij
1,[Tz])}2

+ 1
T

∑[T ]
t=[Tz]+1{

∑
1≤i<j≤P (1− t

T
)(ρ̂ijt,T − ρ̂

ij
[Tz]+1,T )}2

where ρ̂ijl,k is the sample correlation estimated from the the paired sample

{(Xit, Xjt), t = l, l + 1, ..., k}. The asymptotic null distribution of CST is established

by Choi and Shin (2020a).

Theorem 4.2.1 (Choi and Shin (2020a), Theorem 3.3). With certain assumptions,

under H0, with fixed P and T −→∞,

CST
D−→ sup

z∈[0,1]

[B0(z)]2∫ z
0

[B0(s)− s
z
B0(z)]2ds+

∫ 1

z
[B0(1)−B0(s)− 1−s

1−z{B0(1)−B(z)}]2ds
(4.1)

CST has the same limiting distribution as Gn (Eq 1.2) mentioned in Chapter

1.3. The limiting distribution is free of P and typical cut-off values are q0.01 = 68.6,

q0.05 = 40.1, q0.1 = 29.6. CST is exempted from estimating the covariance matrix and

has capability of handling high dimensional scenarios. However, it is mainly designed

against single correlation matrix break and suffers sever power loss in multiple breaks

situations. This can be shown in our simulation results in Section 4.3. We would like

to apply the framework from Zhang and Lavitas (2018) and propose an unsupervised

self-normalized test against multiple breaks.
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4.2.1 Proposed Methodology

Our test is tailored to correlation matrix break test against multiple change points

as the alternative. We consider the problem of testing the null hypothesis

H0 : ρij1 = ... = ρijT for all i,j,

versus the alternative that there exist M ≥ 1 breaks points k0 = 1 < k1 < ... < kM <

T = kM+1 such that

ρijt0 6= ρijt0+1, t0 ∈ {k1, ..., kM}

and ρijt0 = ρijt0+1 otherwise. Choi and Shin (2020a) mentioned that their method could

also be extended for multiple break alternatives using the spirit of scan method. They

split the sample size T into L subsamples as A = {t : t ∈ ( (l−1)T
L

, lT
L

], l = 1, ..., L} and

(L− 1) subsamples as B = {t : t ∈ ( T
2L

+ (l−1)T
L

, T
2L

+ lT
L

], l = 1, ..., L− 1}. The set of

samples corresponding to A∪B is similar to a set of moving window samples. Then,

the subsample extension of CST is CSST = max{max1≤l≤LCS
A
lT ,max1≤l≤L−1CS

B
lT}.

The test CSST rejects H0 at level α if CSST > qLα
2
, where qLα

2
is the α

2
-quantile of

max1≤l≤LCS(l) and CS(l), l = 1, ..., L are iid from the limiting distribution in Eq

(4.1). Bonferroni-type adjusted p-values of CSST = q, CSAlT = q or CSBlT = q can

be approximated by 2pr{max1≤l≤LCS(l) > q} by Choi and Shin (2020b). Compared

with CST , this test largely improve the power when testing against multiple breaks.

However, the performance highly depends on the choice of L.

We would like to propose a test that is powerful against both single and multiple

breaks alternatives and is free of nuisance parameter. Let θ̂j1,j2 =
∑

1≤i<j≤p ρ̂
ij
j1,j2

.

Then, calculate the forward recursive statistics as

DT,f (j1, j2, j3) =
(j2 − j1 + 1)(j3 − j2)

(j3 − j1 + 1)3/2
(θ̂j1,j2 − θ̂j2+1,j3),
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LT,f (j1, j2, j3) =

j2∑
i=j1

(i− j1 + 1)2(j2 − i)2

(j3 − j1 + 1)2(j2 − j1 + 1)2
(θ̂j1,i − θ̂i+1,j2)

2,

RT,f (j1, j2, j3) =

j3∑
i=j2

(i− 1− j2)2(j3 − i+ 1)2

(j3 − j1 + 1)2(j3 − j2)2
(θ̂i,j3 − θ̂j2+1,i−1)2,

and backward recursive statistics as

DT,b(j1, j2, j3) =
(j2 − j1)(j3 − j2 + 1)

(j3 − j1 + 1)3/2
(θ̂j2,j3 − θ̂j1,j2−1),

LT,b(j1, j2, j3) =

j2−1∑
i=j1

(i− j1 + 1)2(j2 − 1− i)2

(j3 − j1 + 1)2(j2 − j1)2
(θ̂j1,i − θ̂i+1,j2−1)2,

RT,b(j1, j2, j3) =

j3∑
i=j2

(i− j2)2(j3 − i+ 1)2

(j3 − j1 + 1)2(j3 − j2 + 1)2
(θ̂i,j3 − θ̂j2,i−1)2.

Let

ΞT,f (j1, j2, j3) = LT,f (j1, j2, j3) +RT,f (j1, j2, j3),

and

ΞT,b(j1, j2, j3) = LT,b(j1, j2, j3) +RT,b(j1, j2, j3).

Then, the test statistic is given by

UT = max
(l1,l2)∈ΩT (ε)

DT,f (1, l1, l2)′ΞT,f (1, l1, l2)−1DT,f (1, l1, l2)

+ max
(m1,m2)∈ΩT (ε)

DT,b(m1,m2, T )′ΞT,b(m1,m2, T )−1DT,b(m1,m2, T ),

where Ω(ε) = {(t1, t2) : ε ≤ t1 < t2 ≤ 1− ε, t2− t1 ≥ ε} and ΩT (ε) = {(bTt1c, bTt2c) :

(t1, t2) ∈ Ω(ε)}.

4.2.2 Theoretical Properties

Unlike the scanning test by Choi and Shin (2020a), which detects change points by

scanning samples with a moving window according to a prespecified window width,
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this test is unsupervised and detects change points by recursive scanning. The follow-

ing theorem provides the asymptotic property of UT under the null and alternative

hypothesis.

Theorem 4.2.2 (Zhang and Lavitas (2018), Theorem 3). Under certain conditions,

(i) under the null hypothesis, we have

UT
D−→ U(B) := sup

(r1,r2)∈Ω(ε)

D(B, 0, r1, r2)′Ξ(B, 0, r1, r2)−1D(B, 0, r1, r2)

+ sup
(s1,s2)∈Ω(ε)

D(B, s1, s2, 1)′Ξ(B, s1, s2, 1)−1D(B, s1, s2, 1)

where

D(B, t1, t2, t3) =
1√

t3 − t1

[
B(t2)−B(t1)− t2 − t1

t3 − t1
{B(t3)−B(t1)}

]
,

Ξ(B, t1, t2, t3) =
1

(t3 − t1)2

( t2∫
t1

[
B(s)−B(t1)− s− t1

t2 − t1
{B(t2)−B(t1)}

]2

ds

+

t3∫
t2

[
B(t3)−B(s)− t3 − s

t3 − t2
{B(t3)−B(t2)}

]2

ds

)
;

and (ii) under the alternative with min0≤i≤M |ki+1−ki|/T > ε and θki+1−θki = T−1/2Ci

for some Ci 6= 0, i = 1, ...,M , we have UT −→∞ in probability if min1≤i≤M |Ci| −→ ∞.

Hence, we reject H0 if UT > qα, where qα is the α-quantile of U(B). Typical

simulated critical values of U(B) can be found in Zhang and Lavitas (2018) as q0.1 =

142.237, q0.05 = 171 and q0.01 = 246.437.

4.2.3 An Approximation Scheme

The test statistic UT involves a maximum of O(T 2) terms. It is independent of the

total number of change points, so the testing procedure and its computational cost

remains the same regardless the numbers of change points. To further reduce the

computational cost, Zhang and Lavitas (2018) implemented a grid approximation
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scheme, with which the maximum only needs to be searched over O(T ) partitions.

Let Gε = {(1+kε)/2, k ∈ Z}∩ [0, 1] be a grid on the unit interval, which is symmetric

around the middle point. Let Gε,T,f = {(bTt1c, bTt2c) : (t1, t2) ∈ ([0, 1]×Gε) ∩Ω(ε)}

and Gε,T,b = {(bTt1c, bTt2c) : (t1, t2) ∈ (Gε × [0, 1]) ∩ Ω(ε)}. The test statistic is

U�T = max
(l1,l2)∈Gε,T,f

DT,f (1, l1, l2)′ΞT,f (1, l1, l2)−1DT,f (1, l1, l2)

+ max
(m1,m2)∈Gε,T,b

DT,b(m1,m2, T )′ΞT,b(m1,m2, T )−1DT,b(m1,m2, T ).

The asymptotic distribution of U�T is given in the following theorem along with its

consistency.

Theorem 4.2.3 (Zhang and Lavitas (2018), Proposition 2). With certain assump-

tions, under the null hypothesis, we have

U�T
D−→ U�(B)

where

U�(B) = sup
(r1,r2)∈([0,1]×Gε)∩Ω(ε)

D(B, 0, r1, r2)′Ξ(B, 0, r1, r2)−1D(B, 0, r1, r2)

+ sup
(s1,s2)∈(Gε×[0,1])∩Ω(ε)

D(B, s1, s2, 1)′Ξ(B, s1, s2, 1)−1D(B, s1, s2, 1).

Under the alternative with min0≤i≤M |ki+1 − ki|/T > 3ε/2 and θki+1 − θki = T−1/2Ci

for some Ci 6= 0, i = 1, ...,M , we have U�T −→∞ in probability if min1≤i≤M |Ci| −→ ∞.

Hence, we reject H0 if U�T > qα, where qα is the α-quantile of U�(B). The cut-

off values can be obtained by simulating the distribution of U�(B). Typical cut-off

values are q0.1 = 118.379, q0.05 = 144.723 and q0.01 = 208.462. Zhang and Lavitas

(2018) showed with simulation results that the above grid approximation scheme gives

reasonably good performance in terms of both size and power.

Remark (Trimming parameter ε) As mentioned before, we don’t estimate

or tune any nuisance parameter in the process. However, the procedure involves a
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trimming parameter ε. This trimming parameter accounts for the limiting distri-

bution and its approximation, which is different from the smoothing parameter in

nonparametric estimation. This effect was discussed by Zhou and Shao (2013) and

they suggested a rule of thumb choice of ε = 0.1.

4.3 Simulation Results

In this section, we would like to compare the finite performance of our method UT

with CST and CSST proposed in Choi and Shin (2020a). In their paper, they claimed

that their method has stabler sizes than the previous test in Wied (2017) as P gets

larger under multiple dependent structure and has reasonable power against single

break while no power for up-down (or down-up) type double breaks. Here we use

the same setting as Choi and Shin (2020a) and the results show that we obtained

significant increase in power with a little increase in size distortion.

The data was generated from a vector autoregression of order 1,

Xt = φXt−1 + at. (4.2)

where Xt = (X1t, ..., XPt)
′ and the error at = (a1t, ..., aPt)

′ has zero mean and co-

variance matrix Σt = ΞtRtΞt with Ξt = diag(σ1t, ..., σPt) and correlation matrix Rt.

Serial independence and dependence are considered by φ ∈ {0, 0.8}. We consider

homoscedastic and conditionally heteroscedastic errors at given by

at = Σ
1/2
t et, σ

2
it = (1− α1 − β1) + α1a

2
i,t−1 + β1σ

2
i,t−1, i = 1, ..., P,

(α1, β1) ∈ {(0, 0), (0.1, 0.89)}, where et = (e1t, ..., ePt)
′ is a vector of independent

standard normal errors. Size comparison is made for the correlation matrix Rt =
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R0 =


1 ρ0 · · · ρ0

1 · · · ρ0

. . .

1

, ρ0 ∈ {0, 0.5}. We compare the empirical size, empirical

power and empirical size-adjusted power based on 1000 repetitions with (P, T ) ∈

{50, 200} ∗ {50, 200} among our test UT , Choi and Shin (2020a) test CST and Choi

and Shin (2020a) scan test CSST (L) with multiple choices of window width L.

The results of sizes comparison with homoscedastic and conditionally heteroscedas-

tic errors are given in Table 4.1 and Table 4.2 respectively. CST is designed specifically

against single break and has the best performance in sizes comparison in terms of clos-

est empirical sizes to 5% with both homoscedastic and conditionally heteroscedastic

errors. The performance of CSST largely depends on the choice of L. When L = 2

and L = 3, the performance are acceptable, while L = 5 and L = 8, the empirical

size may be far away from the test level and the results generally present a large size

distortion. The problem is that there is no clear guidance of choosing L. Our test

UT seems to deliver more reasonable performance under various settings than CSST .

It has size distortion compared to CST , but we will next show that CST can suffer

serious power loss against multiple breaks.

Homoscedasticity

φ ρ P T UT CST CSST CSST CSST CSST CSST
(L=2) (L=3) (L=4) (L=5) (L=8)

0 0 50 50 0.091 0.052 0.077 0.169 0.265 0.451 0.954

0 0.5 50 200 0.070 0.060 0.057 0.100 0.113 0.117 0.174

Table 4.1: Empirical sizes of the 5% level tests with homoscedastic
errors constructed by (i) the proposed unsupervised test (UT ); (ii) the
self-normalized test in (Choi and Shin, 2020a) (CST ); and (iii) the
scanning self-normalized test in (Choi and Shin, 2020a) with different
values of window width (CSST (L)).
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Conditional Heteroscedasticity

φ ρ P T UT CST CSST CSST CSST CSST CSST
(L=2) (L=3) (L=4) (L=5) (L=8)

0 0.5 50 200 0.067 0.059 0.053 0.076 0.121 0.124 0.186

0.8 0.5 50 50 0.176 0.065 0.077 0.147 0.267 0.412 0.975

Table 4.2: Empirical sizes of the 5% level test with conditional het-
eroscedastic errors constructed by (i) the proposed unsupervised test
(UT ); (ii) the self-normalized test in (Choi and Shin, 2020a) (CST ); and
(iii) the scanning self-normalized test in (Choi and Shin, 2020a) with
different values of window width (CSST (L)).

We next compare powers of the tests CST , CSST and UT . The data is generated

from model (4.2) with the correlation matrix Rt = R01I(t ≤ t0)+R02I(t > t0) having

a correlation change at t0 ∈ {T/10, T/4} and the values R01 and R02 with equal

correlation ρ0 = 0 and 0.2, respectively. We further investigate the power under

double breaks. For double breaks, we consider Rt = R01I(1 ≤ t ≤ T
3
) + R02I(T

3
<

t ≤ 2T
3

) + R03I(2T
3
< t ≤ T ). The values of ρ0 in R01, R02, R03 are 0.2, 0.7, 0.2

respectively. (P, T ) ∈ {4, 10} ∗ {200, 2000}. Table 4.3 gives the result of empirical

powers with single break and Table 4.4 presents the result with double breaks.

Single break (ρ : 0 −→ 0.2)

P T Break UT CST CSST CSST CSST CSST CSST
(L=2) (L=3) (L=4) (L=5) (L=8)

4 200 T/10 0.131 0.067 0.089 0.130 0.132 0.143 0.176

10 200 T/4 0.811 0.653 0.676 0.504 0.360 0.319 0.237

Table 4.3: Empirical powers of the 5% level tests against single breaks
constructed by (i) the proposed unsupervised test (UT ); (ii) the self-
normalized test in (Choi and Shin, 2020a) (CST ); and (iii) the scanning
self-normalized test in (Choi and Shin, 2020a) with different values of
window width (CSST (L)).
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Double breaks (ρ : 0.2 −→ 0.7 −→ 0.2)

P T UT CST CSST CSST CSST CSST CSST
(L=2) (L=3) (L=4) (L=5) (L=8)

4 200 0.986 0.002 0.900 0.877 0.763 0.602 0.418

10 200 1 0 0.995 0.985 0.920 0.824 0.561

Table 4.4: Empirical powers of the 5% level tests against double breaks
constructed by (i) the proposed unsupervised test (UT ); (ii) the self-
normalized test in (Choi and Shin, 2020a) (CST ); and (iii) the scanning
self-normalized test in (Choi and Shin, 2020a) with different values of
window width (CSST (L)).

From Table 4.3 and Table 4.4, we can see that CST presents some power under

single breaks, but the power drop to 0 against double breaks. It indeed has good size

performance under no break setting, but in real cases of no prior knowledge of number

of breaks, the test result of CST may be misleading. Similar situations happen in

CSST results. When there is no break, CSST could give sizes as good as 0.057 or as

bad as 0.975, while with double breaks, CSST could give powers as good as 0.995 or

as bad as 0.418. No suggestion about choosing L will result in unreliable conclusions

in real application. We will show that opposite conclusions could be drawn based

on different choices of L in Section 4.4 and Section 4.5. In contrast, our method

gives a steady power under multiple settings. When we have a break at T/10 with

only 200 time points, it is pretty hard to detect the break, whereas our test still has

comparable power. Other than that, UT gives empirical power over 0.8 for different

settings. This is a significant improvement from CST especially for testing double

breaks. As mentioned before, UT gives better power with a cost of size distortion,

so we may compare the performance of empirical size-adjusted power (Table 4.5 and

Table 4.6).

Table 4.5 and Table 4.6 show that UT has the highest empirical size-adjusted
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power under various settings compared with CST and CSST with different values of

L, so it is able to provide more reliable results in real applications when we have no

information of data structure and number of correlation matrix breaks.

Single break (ρ : 0 −→ 0.2)

P T Break UT CST CSST CSST CSST CSST CSST
(L=2) (L=3) (L=4) (L=5) (L=8)

4 200 T/10 0.127 0.077 0.081 0.084 0.077 0.100 0.089

10 200 T/4 0.793 0.627 0.709 0.461 0.272 0.229 0.139

Table 4.5: Empirical size-adjusted powers of the 5% level tests against
single breaks constructed by (i) the proposed unsupervised test (UT );
(ii) the self-normalized test in (Choi and Shin, 2020a) (CST ); and (iii)
the scanning self-normalized test in (Choi and Shin, 2020a) with differ-
ent values of window width (CSST (L)).

Double breaks (ρ : 0.2 −→ 0.7 −→ 0.2)

P T UT CST CSST CSST CSST CSST CSST
(L=2) (L=3) (L=4) (L=5) (L=8)

4 200 0.967 0 0.908 0.809 0.634 0.395 0.234

10 200 0.998 0 0.996 0.972 0.873 0.756 0.353

Table 4.6: Empirical size-adjusted powers of the 5% level tests against
double breaks constructed by (i) the proposed unsupervised test (UT );
(ii) the self-normalized test in (Choi and Shin, 2020a) (CST ); and (iii)
the scanning self-normalized test in (Choi and Shin, 2020a) with differ-
ent values of window width (CSST (L)).

4.4 Application to a Stock Price Data

We would like to show the performance of our test with a real data set of the stock

log returns of the top 10 companies of the NASDAQ 100 index on August 1, 2019.

The company names are listed in Table 4.7. The period of stock returns considered
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here is 06/01/2010 - 06/30/2019 (T = 2286), see Figure 4·1. The stock prices can

be downloaded from Yahoo Finance (https://finance.yahoo.com/). The data

presents weak serial dependence and strong conditional heteroscedasticity (Choi and

Shin, 2020a).

Microsoft Corp (MSFT) Apple Inc(AAPL) Amazon.com Inc (AMZN)

Alphabet Inc (GOOG) Cisco Systems Inc (CSCO) Intel Corp (INTC)

Comcast Corp (CMCSA) PepsiCo Inc (PEP) Adobe Inc (ADBE)

Netflix Inc(NFLX)

Table 4.7: The list of company names (and tickers) in the stock price
data set.

.

Figure 4·1: Log returns of stock prices for the top 10 companies of
NASDAQ 100 index on August 1, 2019 during the period of 06/01/2010
- 06/30/2019.

We apply all the three tests, UT , CST and CSST , to the data. The test statistics

and cut-off values at 5% significance level are shown in Table 4.8. CST concludes

no correlation matrix break exists for stock returns. Since CST is designed for single

break alternative, the non-rejection conclusion may be a consequence of more than one

https://finance.yahoo.com/
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break. The scanning test results are uninformative. CSST with L = 4 says no break

exists, while CSST with L = 5 gets the opposite conclusion claiming the existence of

correlation matrix break. This shows that their results highly depends on the choice

of L. Our method reports a test statistic that is slightly larger than the cut-off value,

so we conclude that correlation matrix breaks exist, which agrees with CSST (L = 5).

UT CST CSST (L=4) CSST (L=5)

Test statistic 171.196 18.915 41.913 106.996

Cut-off value 171 40.1 76.6 84.6

Table 4.8: Test statistics and the corresponding cut-off values at 5%
significance level for the log return of stock price data.

The data spans a long time of 9 years of 109 months involving European debt crisis

(June/2012) and Greek debt crisis (June/2015). European events induce correlation

matrix change for American stock returns, so it is likely that more than one break

exist. Here, we would like to use time lagged cross correlations plots to show the

correlation patterns between two stocks, for example Amazon and Cisco. Time lagged

cross correlations plot is a great way to visualize the fine-grained dynamic interaction

between two signals such as the leader-follower relationship and how they shift over

time. Figure 4·2 splits the time series into 20 even chunks and computes the cross

correlation in each window. The figure shows that in the seventh or eighth window

(row), blue mainly occupies the row. This suggests Cisco mainly leads the interaction.

However, Amazon leads the interaction in some other windows, like the thirteenth

and sixteenth row. Figure 4·3 computes the time lagged cross correlation continuously

resulting in a smoother plot. The plot shows that the interaction is first leaded by

Cisco. Then Amazon and Cisco lead the interaction alternatively. In the end, Amazon

mainly leads the interaction.
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.

Figure 4·2: Windowed time lagged cross correlation between log re-
turns of Amazon and Cisco.

.

Figure 4·3: Rolling windowed time lagged cross correlation between
log returns of Amazon and Cisco.



67

In summary, the time lagged cross correlation plots show that the correlation

structure between a pair of stocks indeed changes during the selected period and the

correlation structure among all ten stocks is also likely to change during the European

and Greek debt crisis. Our test is able to detect the break, whereas CST couldn’t

and CSST can discover the break only with valid choice of L.

4.5 Application to a Option Data

We would like to show another real data application, which contains five volatility

indexes for options on individual equities. The company names are listed in Table

4.9. The period of volatility indexes considered here is 06/01/2010 - 06/30/2019

(T = 2286), see Figure 4·4. The volatility indexes can be downloaded from Chicago

Board Options Exchange (CBOE) website (http://www.cboe.com/products/vi

x-index-volatility/volatility-indexes). The data presents strong serial

dependence and strong conditional heteroscedasticity (Choi and Shin, 2020a).

Company name: Amazon Apple Goldman Sachs Google IBM

Company ticker: VXAZN VXAPL VXGS VXGOG VXIBM

Table 4.9: The list of company names and tickers in the option volatil-
ity index data set.

Again, we apply all the three tests and Table 4.10 presents the test statistics and

corresponding cut-off values at 5% significance level. CST concludes no correlation

matrix break exists for volatility index data. CSST (L = 4) points out the existence

of breaks, while CSST (L = 5) has a test statistic that is slightly smaller than the

cut-off value and concludes that correlation matrix break doesn’t exist. Our method

reports a test statistic that is much larger than the cut-off value and concludes that

correlation matrix breaks exist. This result agrees with CSST (L = 4).

http://www.cboe.com/products/vix-index-volatility/volatility-indexes
http://www.cboe.com/products/vix-index-volatility/volatility-indexes
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.

Figure 4·4: Volatility index of 5 options during the period of
06/01/2010 - 06/30/2019.

UT CST CSST (L=4) CSST (L=5)

Test statistic 304.944 3.403 199.855 84.314

Cut-off value 171 40.1 76.6 84.6

Table 4.10: Test statistics and the corresponding cut-off values at 5%
significance level for the volatility index data.

As we explained in the previous application, the selected period involves European

and Greek debt, so it is likely to have more than one break. From the windowed and

rolling windowed time lagged cross correlation plots between Amazon and Google

(Figure 4·5 and Figure 4·6), we can see that the alternation frequency of leading

interaction changes with time. The leadership changes more frequently between ten

to thirty-two windows and forty-two to fifty-eight windows.

Therefore, it is very likely that correlation structure of volatility index among the

five options changed during the period. Our method is able to detect the break while

CST cannot. Without a valid choice of L, the conclusion of CSST could be unreliable.

In real cases, when we have no prior information about the number of breaks, it may
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be hard to draw a conclusion based on the results of CST and CSST .

.

Figure 4·5: Windowed time lagged cross correlation between volatility
index of Amazon and Google.

.

Figure 4·6: Rolling windowed time lagged cross correlation between
volatility index of Amazon and Google.
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4.6 Conclusion

In this chapter, we proposed a contrast-based unsupervised correlation matrix break

test based on self-normalization. This method can test against multiple breaks with-

out knowing the number of breaks as the prior information. The simulation shows

the method is more powerful than the existing methods especially against multiple

breaks. The application shows that the method is able to detect the correlation ma-

trix break in stock log returns and volatility indexes and outperformed Choi and Shin

(2020a) since their conclusion is sensitive to the choice of L.
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Chapter 5

Conclusions

5.1 Summary of the Thesis

The contributions of this thesis to self-normalization properties and self-normalized

statistical inference come in several aspects. We start from analyzing a generaliza-

tion of traditional self-normalization. As mentioned in the introduction, the original

self-normalizer uses only recursive estimators of forward direction. In Chapter 2, we

would like to consider both the forward and backward estimators and propose a data-

driven weight to balance the forward and backward estimators. Then we move on to

self-normalized statistical inference involving constructing simultaneous confidence

regions for high dimensional time series and hypothesis test for correlation matrix

breaks. Self-normalization is originally developed for univariate or low-dimensional

multivariate time series, and its direct application to high-dimensional time series can

fail easily due to singularities or substantial size distortions. In Chapter 3, we design

a self-normalized statistic with maximal modulus and construct simultaneous confi-

dence regions for high-dimensional time series with much reduced volumes. Chapter

4 describes a new contrast-based unsupervised test for correlation matrix break with

self-normalization.

In Chapter 2, we focus on a data-driven weight that corresponds to confidence in-

tervals with minimal lengths. We study the asymptotic behavior of such a data-driven

weight choice, and find an interesting dichotomy between linear and nonlinear quan-
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tities. We apply the von Mises expansion (von Mises, 1947) with Gâteaux derivatives

to explain the dichotomous asymptotic behavior. Another interesting phenomenon

is that, for nonlinear quantities, the data-driven weight typically distributes over an

uncountable set in finite-sample problems but in the limit, it converges to a discrete

distribution with a finite support. The phenomenon are built on technical conditions

that can be verified with smooth function models. We then compare the average

confidence intervals length and empirical coverage probability constructed for differ-

ent quantities using our method and literature methods in simulations. Our method

indeed provide the minimal interval lengths with the cost of larger size distortion.

Chapter 3 aims at proposing new approaches of using self-normalization to make

statistical inference of general quantities of high-dimensional time series. To achieve

this goal, we first use the parabolic cylinder functions to characterize the tail behav-

ior of self-normalized distributions, and then develop an asymptotic theory on the

maximal modulus of self-normalized statistics. In addition, we incorporate regular-

ization technique into the self-normalization paradigm and further propose a thresh-

olded self-normalization method, which is capable of taking advantage of data with

sparse signals to produce simultaneous confidence regions with much reduced volumes.

Monte Carlo simulations are conducted to examine the finite-sample performance of

the proposed methods and compare with existing self-normalized methods. A real

data application is also provided to illustrate the developed results.

In Chapter 4, we propose an unsupervised self-normalization test for correlation

matrix constancy. The test statistic is contrast-based and directly compares the corre-

lation before and after the hypothesized change point. This unsupervised test doesn’t

require prespecifying the number of change points and outperforms the existing tests

when more than one change points exist. The framework is extended from the un-

supervised self-normalized change-point test by Zhang and Lavitas (2018). They
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established the asymptotic distribution and theoretical consistency of the test. Here,

we compare and discuss the performance under multiple simulation settings and with

two real data applications.

5.2 Potential Future Research Topics

In Chapter 3, we introduced that Wang and Shao (2020) designed a test against

dense alternatives, while our test targets at sparse alternatives. In some cases, we

may not have the prior knowledge on whether the alternative is sparse or not. It may

be interesting to develop an adaptive test in the high-dimensional time series setting.

In Chapter 4, we borrow the theoretical results from (Zhang and Lavitas, 2018).

It would be great to establish theoretical conditions and provides the asymptotic

distribution and theoretical consistency tailored for correlation matrix break tests.

The test procedure involves a trimming parameter ε. The performance may be further

improved if we come up with a data-driven value for ε. As mentioned in Chapter 4, we

extended the correlation matrix break tests framework from testing against one single

break to multiple breaks. However, since we test breaks in terms of
∑

1≤i<j≤P ρ
ij, the

test has no power against cancelling breaks. We may further consider vectorized test

statistics to detect cancelling breaks.

We shall leave these topics for future research.
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Appendix A

Appendix A: Theoretical Justification,

Implication and Simulation for Chapter 2

Theoretical Justification

Proof. (Theorem 2.3.1) Let X̄i,j = (j − i + 1)−1
∑j

k=iXk be the sample average of

Xi, . . . , Xj, 1 ≤ i ≤ j ≤ N , then

X̄2
i,j = (X̄i,j − µ)2 + 2µ(X̄i,j − µ) + µ2,

and thus by (2.8) and (2.9) we have

k(θ̂1,k − θ̂1,N) =
k∑
i=1

X2
i −

k

N

N∑
i=1

X2
i − k(X̄2

1,k − X̄2
1,N)

= S◦N,2(k/N)− k

N
S◦N,2(1)−

[{S◦N,1(k/N)}2

k
− k

N
·
{S◦N,1(1)}2

N

]
−2µ

{
S◦N,1(k/N)− k

N
S◦N,1(1)

}
and

(N − k)(θ̂k+1,N − θ̂1,N) =
N∑

i=k+1

X2
i −

N − k
N

N∑
i=1

X2
i − (N − k)(X̄2

k+1,N − X̄2
1,N)

= S◦N,2(1)− S◦N,2(k/N)− N − k
N

S◦N,2(1)

−
[{S◦N,1(1)− S◦N,1(k/N)}2

N − k
− N − k

N
·
{S◦N,1(1)}2

N

]
−2µ

{
S◦N,1(1)− S◦N,1(k/N)− N − k

N
S◦N,1(1)

}
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respectively. By adding the aforementioned two equations, we obtain that

k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N) =
{S◦N,1(1)}2

N
−
{S◦N,1(k/N)}2

k

−
{S◦N,1(1)− S◦N,1(k/N)}2

N − k
.

Let BΣ(t) = {BΣ,1(t), BΣ,2(t)}′ be a centered Brownian motion with the same covari-

ance structure as ΣB(t) and write

Ψ(BΣ,1, t) = BΣ,1(1)2 − BΣ,1(t)2

t
− {BΣ,1(1)−BΣ,1(t)}2

1− t
, (A.1)

then by assumption (IPv) we have the convergence of the cumulative distribution

function

pr

[
N∑
k=1

k(θ̂1,k − θ̂1,N){k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)} ≤ 0

]

= pr

[
1

N3/2

N∑
k=1

k(θ̂1,k − θ̂1,N){k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)} ≤ 0

]

→ pr

 1∫
0

[BΣ,2(t)− tBΣ,2(1)− 2µ{BΣ,1(t)− tBΣ,1(1)}]Ψ(BΣ,1, t)dt ≤ 0

 .

Similarly, note that BΣ,2(1)−BΣ,2(t)−(1−t)BΣ,2(1) = tBΣ,2(1)−BΣ,2(t) and BΣ,1(1)−
BΣ,1(t)− (1− t)BΣ,1(1) = tBΣ,1(1)−BΣ,1(t), we have

pr

[
N∑
k=1

(N − k)(θ̂k+1,N − θ̂1,N){k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)} ≤ 0

]

= pr

[
1

N
3
2

N∑
k=1

(N − k)(θ̂k+1,N − θ̂1,N){k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)} ≤ 0

]

→ pr

 1∫
0

[tBΣ,2(1)−BΣ,2(t)− 2µ{tBΣ,1(1)−BΣ,1(t)}]Ψ(BΣ,1, t)dt ≤ 0

 .
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Since BΣ(t) has the same distribution as −BΣ(t), by (A.1) we have

pr

 1∫
0

[BΣ,2(t)− tBΣ,2(1)− 2µ{BΣ,1(t)− tBΣ,1(1)}]Ψ(BΣ,1, t)dt ≤ 0


= pr

 1∫
0

[−{BΣ,2(t)− tBΣ,2(1)}+ 2µ{BΣ,1(t)− tBΣ,1(1)}]Ψ(−BΣ,1, t)dt ≤ 0


= pr

 1∫
0

[BΣ,2(t)− tBΣ,2(1)− 2µ{BΣ,1(t)− tBΣ,1(1)}]Ψ(BΣ,1, t)dt ≥ 0

 ,

and thus

pr

[
N∑
k=1

k(θ̂1,k − θ̂1,N){k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)} ≤ 0

]
→ 1/2 (A.2)

and

pr

[
N∑
k=1

(N − k)(θ̂k+1,N − θ̂1,N){k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)} ≤ 0

]
→ 1/2.

(A.3)

By viewing the generalized self-normalizer (2.5) as a function of w, one can show that

the second order partial derivative satisfies

inf
w∈[0,1]

∂2ΛN(w)

∂w2
≥ 0,

and thus for its minimizer ŵN we have

pr(ŵN = 1) = pr

{
∂ΛN(w)

∂w

∣∣∣∣
w=1

≤ 0

}
= pr

[
N∑
k=1

k(θ̂1,k − θ̂1,N){k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)} ≤ 0

]
,

which converges to 1/2 by (A.2). On the other hand, by a similar argument using

(A.3), we can obtain the convergence

pr

{
∂ΛN(w)

∂w

∣∣∣∣
w=0

≥ 0

}
→ 1/2.
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Note that in this case,

1− pr(ŵN = 1) ≥ pr(ŵN = 0) ≥ pr

{
∂ΛN(w)

∂w

∣∣∣∣
w=0

≥ 0,
∂2ΛN(w)

∂w2

∣∣∣∣
w=0

> 0

}
, (A.4)

where

pr

{
∂2ΛN(w)

∂w2

∣∣∣∣
w=0

> 0

}
≥ 1−pr

[
N∑
k=1

{k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)}2 = 0

]
→ 1

because of the assumed positive definiteness of Σ. Therefore, by (A.4) and the

sandwich theorem, we have pr(ŵN = 0)→ 1/2 and the result follows.

Proof. (Theorem 2.3.2) For probabilistically linear parameters, the functional T is

linear and thus

T (F̂i,j)− T (F ) =
1

j − i+ 1

j∑
k=i

T (δXk)− T (F ) =
1

j − i+ 1

j∑
k=i

{T (δXk)− T (F )}.

Since

T{(1− ε)F + εδx} = (1− ε)T (F ) + εT (δx),

we have

ϕ1(x) =
∂T{(1− ε)F + εδx}

∂ε

∣∣∣∣
ε=0

= T (δx)− T (F ),

and (i) follows. In this case, we have

k(θ̂1,k − θ̂1,N) =
k∑
i=1

ϕ1(Yi)−
k

N

N∑
i=1

ϕ1(Yi)

and

(N − k)(θ̂k+1,N − θ̂1,N) =
N∑

i=k+1

ϕ1(Yi)−
N − k
N

N∑
i=1

ϕ1(Yi),
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based on which we can show that

ΛN(w) =
1

N2

N∑
k=1

[k(θ̂1,k − θ̂1,N)− (1− w){k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)}]2

=
1

N2

N∑
k=1

{k(θ̂1,k − θ̂1,N)}2 = ΛN(1),

and (ii) follows.

Proof. (Theorem 2.3.3) By the von Mises expansions (2.11) and (2.12), we have

k(θ̂1,k − θ̂1,N) =
k∑
i=1

ψ1(Yi)−
k

N

k∑
i=1

ψ1(Yi) + k(R1,k −R1,N)

+
1

2

{
1

k

k∑
i=1

k∑
j=1

ψ(Yi, Yj)−
k

N2

N∑
i=1

N∑
j=1

ψ(Yi, Yj)

}

and

(N − k)(θ̂k+1,N − θ̂1,N) =
N∑

i=k+1

ψ1(Yi)−
N − k
N

N∑
i=k+1

ψ1(Yi) + (N − k)(Rk+1,N −R1,N)

+
1

2

{
1

N − k

N∑
i=k+1

N∑
j=k+1

ψ(Yi, Yj)−
N − k
N2

N∑
i=1

N∑
j=1

ψ(Yi, Yj)

}
.

Let

Υi,j(ψ1) =

j∑
k=i

ψ1(k), Ξi,j(ψ2) =

j∑
k=i

j∑
l=i

ψ2(Yk, Yl),

then by the linearity of partial sums we have Υ1,k(ψ1) + Υk+1,N(ψ1) = Υ1,N(ψ1), and

thus

k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N) = kR1,k + (N − k)Rk+1,N −NR1,N

+
1

2

{
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}
.
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For any given M ≥ 0, by the invariance principle (IPg), we have the convergence

pr

[
1

N

N∑
k=1

{
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}2

> M

]

→ pr

 1∫
0

{
W2(t)

t
+
W3(t)

1− t
−W2(1)

}2

dt > M

 ,
and thus

1

N

N∑
k=1

{
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}2

= Op(1).

Let ∆k,N = kθ̂1,k+(N−k)θ̂k+1,N−Nθ̂1,N , then by condition (N) the remainder terms

satisfy
N∑
k=1

{kR1,k + (N − k)Rk+1,N −NR1,N}2 = op(N), (A.5)

and thus by Hölder’s inequality we have∣∣∣∣∣ 1

N

N∑
k=1

∆2
k,N −

1

4N

N∑
k=1

{
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}2
∣∣∣∣∣

≤ 1

N

[
N∑
k=1

{
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}2
]1/2

× op(N1/2) + op(1), (A.6)

which converges to zero in probability. On the other hand, since (N − k)2R2
1,N ≤

N2R2
1,N , by condition (N) and Hölder’s inequality we have∣∣∣∣∣

N∑
k=1

(N − k)(Rk+1,N −R1,N)

{
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}∣∣∣∣∣
≤

[
N∑
k=1

{
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}2
]1/2

× op(N1/2) = op(N),
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and ∣∣∣∣∣
N∑
k=1

{kR1,k + (N − k)Rk+1,N −NR1,N}
(

Υk+1,N −
N − k
N

Υ1,N

)

+
N∑
k=1

{kR1,k + (N − k)Rk+1,N −NR1,N}
{

Ξk+1,N(ψ2)

N − k
− (N − k)Ξ1,N(ψ2)

N2

}∣∣∣∣∣
≤

[ N∑
k=1

(
Υk+1,N −

N − k
N

Υ1,N

)2
] 1

2

+

[
N∑
k=1

{
Ξk+1,N(ψ2)

N − k
− (N − k)Ξ1,N(ψ2)

N2

}2
] 1

2


×

[
N∑
k=1

{kR1,k + (N − k)Rk+1,N −NR1,N}2

]1/2

,

which by the invariance principle (IPg) and (A.5) is of order op(N
3/2). Therefore, we

have ∣∣∣∣∣
N∑
k=1

(N − k)(θ̂k+1,N − θ̂1,N)∆k,N

−1

2

N∑
k=1

(
Υk+1,N −

N − k
N

Υ1,N

){
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}∣∣∣∣∣
≤1

4

∣∣∣∣∣
N∑
k=1

{
Ξk+1,N(ψ2)

N − k
− (N − k)Ξ1,N(ψ2)

N2

}{
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}∣∣∣∣∣
+

∣∣∣∣∣
N∑
k=1

(N − k)(Rk+1,N −R1,N){kR1,k + (N − k)Rk+1,N −NR1,N}

∣∣∣∣∣+ op(N
3/2).

Since ∣∣∣∣∣
N∑
k=1

(N − k)(Rk+1,N −R1,N){kR1,k + (N − k)Rk+1,N −NR1,N}

∣∣∣∣∣
≤

[
N∑
k=1

(N − k)2(Rk+1,N −R1,N)2

]1/2 [ N∑
k=1

{kR1,k + (N − k)Rk+1,N −NR1,N}2

]1/2

,
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which is of order op(N) by condition (N), we have∣∣∣∣∣ 1

N1/2

N∑
k=1

(N − k)(θ̂k+1,N − θ̂1,N)∆k,N −
1

2

N∑
k=1

(
Υk+1,N

N1/2
− (N − k)Υ1,N

N3/2

)
{

Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}∣∣∣∣→ 0 (A.7)

in probability. Note that by the invariance principle (IPg), one has the convergence
1

4N

N∑
k=1

{
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}2

1

2N

N∑
k=1

(
Υk+1,N

N1/2
− (N − k)Υ1,N

N3/2

){
Ξ1,k(ψ2)

k
+

Ξk+1,N(ψ2)

N − k
− Ξ1,N(ψ2)

N

}


D−→


1

4

1∫
0

{
W2(t)

t
+
W3(t)

1− t
−W2(1)

}2

dt

1

2

1∫
0

{W1(1)−W1(t)− (1− t)W1(1)}
{
W2(t)

t
+
W3(t)

1− t
−W2(1)

}
dt

 ,

and therefore by (A.6) and (A.7) we have
1

N

N∑
k=1

{kθ̂1,k + (N − k)θ̂k+1,N −Nθ̂1,N}2

1

N3/2

N∑
k=1

(N − k)(θ̂k+1,N − θ̂1,N){kθ̂1,k + (N − k)θ̂k+1,N −Nθ̂1,N}



D−→


1

4

1∫
0

{
W2(t)

t
+
W3(t)

1− t
−W2(1)

}2

dt

1

2

1∫
0

{W1(1)−W1(t)− (1− t)W1(1)}
{
W2(t)

t
+
W3(t)

1− t
−W2(1)

}
dt

 .

For the generalized self-normalizer (2.5), by viewing it as a function of w, one can

show that its second order partial derivative satisfies

inf
w∈R

∂2ΛN(w)

∂w2
≥ 0,
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where

pr

{
∂2ΛN(w)

∂w2
= 0

}
→ 0

holds for all w ∈ R. Therefore, unrestricted minimizer w̃N of ΛN(w) can be obtained

by solving the equation
∂ΛN(w)

∂w

∣∣∣∣
w=w̃N

= 0,

which gives us the explicit expression

w̃N =

∑N
k=1(N − k)(θ̂k+1,N − θ̂1,N){k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)}∑N

k=1{k(θ̂1,k − θ̂1,N) + (N − k)(θ̂k+1,N − θ̂1,N)}2
,

and (ii) follows. If w̃N < 0, then by the positiveness of the second order partial

derivative, the first order partial derivative must be nonnegative uniformly on the

unit interval, and thus the minimum within the unit interval will be achieved at

ŵN = 0. On the other hand, if w̃N > 1, then by a similar argument one can show

that the minimum within the unit interval in this case will be achieved at ŵN = 1,

which entails (i). For (iii), note that {W1(t),W2(t),W3(t)}′ has the same distribution

as {−W1(t),W2(t),W3(t)}′, we have

pr(ŵN = 0) =pr(w̃N ≤ 0)

→pr

 1∫
0

{tW1(1)−W1(t)}{t−1W2(t) + (1− t)−1W3(t)−W2(1)}dt ≤ 0

 .
We shall now prove that, with probability tending to one, ŵN does not take values in

the open set (0, 1). For this, let ζ(W ) denote the limit of N−1/2w̃N as derived in (ii),

then for any given ε > 0 there exists an ε? such that

pr{0 < ζ(W ) < ε?} < ε/2.

Therefore, by the weak convergence in (ii), there exists an N? > 0 such that

|pr(0 < N−1/2w̃N < ε?)− pr{0 < ζ(W ) < ε?}| < ε/2 (A.8)

holds for all N ≥ N?. Let N◦ = max{N?, (b1/ε?c + 1)2}, then for any N ≥ N◦, we

have

N−1/2 ≤ (b1/ε?c+ 1)−1 ≤ ε?,
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and thus

pr(0 < ŵN < 1) = pr(0 < N−1/2w̃N < N−1/2)

≤ pr(0 < N−1/2w̃N < ε?) < ε

by (A.8), indicating that

lim
N→∞

pr(0 < ŵN < 1) = 0.

Therefore,

lim
N→∞

pr(ŵN = 1) = 1− lim
N→∞

pr(ŵN = 0)− lim
N→∞

pr(0 < ŵN < 1) = 1− lim
N→∞

pr(ŵN = 0),

and (iii) follows.

Implication for Confidence Interval Construction

By the discussion in Section 2.2, we consider the data-driven weight choice ŵN that

minimizes the generalized self-normalizer (2.5), which in turn is expected to lead to

confidence intervals with the minimal length. To provide a theoretical guarantee for

this, we need an asymptotic theory on the self-normalized quantity

N(θ̂1,N − θ)2

ΛN(ŵN)
. (A.9)

Compared with the asymptotic results in Shao (2010) and Lavitas and Zhang (2018),

the key difference in (A.9) is the use of a data-driven weight choice, and it is not

quite clear if this will make the asymptotic distribution of (A.9) different from that

in the aforementioned papers. Fortunately, by Theorems 2.3.2 and 2.3.3, the distri-

bution of ŵN will be attracted to a finite set with probability tending to one for both

probabilistically linear and nonlinear quantities, which makes it possible to derive the

asymptotic distribution for (A.9).

Corollary A.0.1. Assume conditions of either Theorem 2.3.2 or 2.3.3. Then we
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have

pr{ΛN(ŵN) = ΛN(0)}+ pr{ΛN(ŵN) = ΛN(1)} → 1. (A.10)

If in addition the invariance principle as in Theorem 2 of Lavitas and Zhang (2018)

holds, then
N(θ̂1,N − θ)2

ΛN(ŵN)

D−→ B(1)2∫ 1

0
{B(t)− tB(1)}2dt

, (A.11)

where B(·) represents a standard Brownian motion.

Proof. By Theorems 2.3.2 and 2.3.3, for both probabilistically linear and nonlinear

quantities we have

pr(ŵN = 0) + pr(ŵN = 1)→ 1,

and thus (A.10) follows. For (A.11), let Λ?
N = min{ΛN(0),ΛN(1)}, then by the

argument above we have

pr{ΛN(ŵN) = Λ?
N} → 1.

By the invariance principle, following a similar proof as that of Theorem 2 in Lav-

itas and Zhang (2018), one can obtain a joint convergence result for {N1/2(θ̂1,N −
θ),ΛN(0),ΛN(1)}′, which leads to the convergence

N(θ̂1,N − θ)2

Λ?
N

D−→ B(1)2∫ 1

0
{B(t)− tB(1)}2dt

.

Since ΛN(ŵN)/Λ?
N = 1 with probability tending to one, the result (A.11) follows by

Slutsky’s theorem.

By Corollary A.0.1, the data-driven self-normalization scheme (A.9) is guaranteed

to yield narrower confidence intervals when compared with the conventional self-

normalizer ΛN(1) of Shao (2010), denoted by S10 hereafter, and the T-symmetric

self-normalizer ΛN(1/2) of Lavitas and Zhang (2018), denoted by LZ18 hereafter.

Monte Carlo Simulation

In addition to the above asymptotic result, we in the following provide a small Monte

Carlo study to examine its finite-sample effectiveness in reducing the confidence in-
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Median Variance acf1

ρ S10 LZ18 ΛN (ŵN ) S10 LZ18 ΛN (ŵN ) S10 LZ18 ΛN (ŵN )

0.3 0.597 0.580 0.497 0.602 0.593 0.573 0.349 0.338 0.295

0.6 0.960 0.941 0.819 1.100 1.062 1.000 0.320 0.298 0.238

0.8 1.796 1.767 1.545 2.689 2.470 2.242 0.293 0.252 0.186

-0.3 0.405 0.392 0.324 0.609 0.605 0.594 0.335 0.331 0.304

-0.6 0.403 0.387 0.315 1.128 1.124 1.105 0.288 0.283 0.242

-0.8 0.456 0.433 0.342 2.812 2.808 2.766 0.231 0.223 0.169

Table A.1: Average lengths of 95% confidence intervals constructed
for the median, marginal variance and first-order autocorrelation (acf1)
of the autoregressive process (A.12) using (i) the conventional self-
normalizer of Shao (2010), denoted by S10; (ii) the T-symmetric self-
normalizer of Lavitas and Zhang (2018), denoted by LZ18; and (iii) the
data-driven self-normalizer ΛN(ŵN). The results are based on 50,000
realizations for each configuration.

terval length. For this, we consider the autoregressive model

Xi = ρXi−1 + εi, i = 1, . . . , n, (A.12)

where (εi) is a sequence of independent standard normal random variables. Let n =

200 and ρ ∈ {±0.3,±0.6,±0.8} to represent situations with different strengths of

dependence. The results are summarized in Table A.1-A.3, from which we can observe

the followings.

First, by Table A.1, the data-driven self-normalizer ΛN(ŵN) can be useful in

reducing the finite-sample length of the resulting confidence interval when compared

with the conventional S10 self-normalizer of Shao (2010) and the T-symmetric LZ18

self-normalizer of Lavitas and Zhang (2018), which corroborates with our theoretical

findings. Second, it can be seen from Table A.2 that the minimal length benefit of

ΛN(ŵN) typically comes at a price of a larger size distortion. To further investigate

the tradeoff between the length and coverage probability, we in Table A.3 consider
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Median Variance acf1

ρ S10 LZ18 ΛN (ŵN ) S10 LZ18 ΛN (ŵN ) S10 LZ18 ΛN (ŵN )

0.3 0.935 0.941 0.902 0.941 0.937 0.930 0.945 0.942 0.917

0.6 0.933 0.938 0.903 0.922 0.914 0.899 0.949 0.945 0.911

0.8 0.925 0.928 0.894 0.885 0.869 0.844 0.956 0.949 0.906

-0.3 0.931 0.941 0.892 0.941 0.939 0.936 0.942 0.942 0.925

-0.6 0.932 0.942 0.888 0.932 0.931 0.928 0.940 0.941 0.918

-0.8 0.929 0.946 0.880 0.910 0.910 0.907 0.939 0.944 0.905

Table A.2: Empirical coverage probability of 95% confidence inter-
vals constructed for the median, marginal variance and first-order au-
tocorrelation (acf1) of the autoregressive process (A.12) using (i) the
conventional self-normalizer of Shao (2010), denoted by S10; (ii) the
T-symmetric self-normalizer of Lavitas and Zhang (2018), denoted by
LZ18; and (iii) the data-driven self-normalizer ΛN(ŵN). The results
are based on 50,000 realizations for each configuration.

the size-adjusted length defined as 2N−1/2ΛN(w)1/2q
1/2
1−α, where q1−α is the empirical

(1 − α)th quantile of ΛN(w)−1N(θ̂1,N − θ)2. Note that ΛN(w)q1−α depends on the

realization through the self-normalizer ΛN(w), and thus ΛN(w)q1−α is different from

the (1−α)th quantile of N(θ̂1,N−θ)2. From Table A.3, we can see that the data-driven

choice ΛN(ŵN) yields the shortest size-adjusted length for the autocorrelation case.

However, the results are quite comparable for the variance case, and the advantage

seems to disappear for the median case. Therefore, although the data-driven self-

normalizer ΛN(ŵN) is guaranteed to lead to narrowest confidence intervals among the

class of generalized self-normalizers, its superiority in terms of the size-adjusted length

is not uniform and depends on the quantity of interest. The problem of identifying

the exact class of quantities for which the data-driven choice provides the best finite-

sample tradeoff between the length and coverage probability is left as a possible future

research topic.
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Median Variance acf1

ρ S10 LZ18 ΛN (ŵN ) S10 LZ18 ΛN (ŵN ) S10 LZ18 ΛN (ŵN )

0.3 0.653 0.616 0.641 0.635 0.642 0.645 0.359 0.353 0.347

0.6 1.068 1.018 1.045 1.315 1.322 1.321 0.323 0.307 0.285

0.8 2.097 2.017 2.075 3.980 3.936 3.906 0.280 0.254 0.230

-0.3 0.458 0.416 0.440 0.644 0.647 0.646 0.351 0.347 0.347

-0.6 0.457 0.408 0.436 1.270 1.274 1.275 0.306 0.298 0.285

-0.8 0.527 0.445 0.494 3.631 3.645 3.647 0.247 0.233 0.210

Table A.3: Average size-adjusted lengths of 95% confidence inter-
vals constructed for the median, marginal variance and first-order au-
tocorrelation (acf1) of the autoregressive process (A.12) using (i) the
conventional self-normalizer of Shao (2010), denoted by S10; (ii) the
T-symmetric self-normalizer of Lavitas and Zhang (2018), denoted by
LZ18; and (iii) the data-driven self-normalizer ΛN(ŵN). The results
are based on 50,000 realizations for each configuration.
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Appendix B

Appendix B: Theoretical Justification for

Chapter 3

Proof. (Theorem 3.2.1) Let U be the functional that satisfies U(B) =
∫ 1

0
{B(t) −

tB(1)}2dt, then by properties of the Brownian motion we have

cov{B(s)− sB(1), B(t)− tB(1)} = s ∧ t− st,

and thus by Theorem 1 of Tolmatz (2002), the density function of U(B) can be

expressed as

fU(u) = u−5/4

∞∑
k=0

(−1)k

k! · Γ(1/2− k)
exp{−(k + 1/4)2/u}D3/2{(2k + 1/2)u−1/2},

where Γ(v) =
∫∞

0
xv−1 exp(−x)dx is the gamma function and Da(·) is the parabolic

cylinder function (Whittaker, 1902) that commonly appears in harmonic analysis.

We need a little preparation before being able to provide an explicit formula for the

density of Z(B). In particular, by the results on page 251 and page 615 of Prudnikov

et al. (1992), we have

∞∫
0

u−3/4 exp{−uy2/2− (k + 1/4)2/u}D3/2{(2k + 1/2)u−1/2}du

= 23/4(2π)0{25/2π1/2Γ(−3/2)}0(y2/2)−1/4G0,3
3,1

{
(k + 1/4)−2y−2

∣∣∣∣3/4,1/2,1
5/4

}

= 2y−1/2G0,3
3,1

{
(k + 1/4)−2y−2

∣∣∣∣3/4,1/2,1
5/4

}
,
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and thus by a change of variable one can obtain that

Ξk(z) =

∞∫
0

( u

2πz

)1/2

u−5/4 exp{−uz/2− (k + 1/4)2/u}D3/2{(2k + 1/2)u−1/2}du

= (2/π)1/2z−3/4G0,3
3,1

{
1

(k + 1/4)2z

∣∣∣∣3/4,1/2,1
5/4

}
.

On the other hand, by properties of the gamma function, we have Γ(1/2) = π1/2 and

1

k! · Γ(1/2− k)
=

∏k
l=1(1/2− l)
k! · Γ(1/2)

= π−1/2

(
−1/2

k

)
.

Note that

cov{B(t)− tB(1), B(1)} = 0

holds for all t ∈ [0, 1], the density function of Z(B) then follows the relation

fZ(z) =

∞∫
0

fZ|U(z | u)fU(u)du

=
∞∑
k=0

(−1)k

k! · Γ(1/2− k)
Ξk(z)

= 21/2π−1z−3/4

∞∑
k=0

(
−1/2

k

)
(−1)kG0,3

3,1

{
1

(k + 1/4)2z

∣∣∣∣3/4,1/2,1
5/4

}
.

The first claim follows by using the mathematical equivalency on page 209 of Erdélyi

(1953). For the second claim, we shall apply the asymptotic expansion of the parabolic

cylinder function as in Abadir and Paruolo (1997), through which one can obtain that,

as |y| → ∞,

∞∑
k=0

(
−1/2

k

)
(−1)kG0,3

3,1

{
1

(k + 1/4)2y2

∣∣∣∣3/4,1/2,1
5/4

}
∼ 2−1π1/2|y|1/2 exp(−|y|/2).
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Therefore, by letting z = y2 we have

fZ(z) = 21/2π−1z−3/4

∞∑
k=0

(
−1/2

k

)
(−1)kG0,3

3,1

{
1

(k + 1/4)2z

∣∣∣∣3/4,1/2,1
5/4

}
∼ (2πz)−1/2 exp

(
−z1/2/2

)
,

and the second claim follows.

Proof. (Theorem 3.2.2) Let $(u) = 4u1/2, u > 0, then $(·) is a positive function

whose derivative satisfies d$(u)/du = 2u−1/2 → 0 as u→∞. Then for any z ∈ R,

lim
u→∞

[{u+$(u)z}1/2 − u1/2] = lim
u→∞

$(u)z

{u+$(u)z}1/2 + u1/2
= 2z,

and thus by Theorem 3.2.1,

lim
u→∞

1− FZ{u+$(u)z}
1− FZ(u)

= lim
u→∞

(1 + 2zu−1/2)fZ{u+$(u)z}
fZ(u)

= lim
u→∞

{u+$(u)z}−1/2 exp
[
−{u+$(u)z}1/2/2

]
u−1/2 exp(−u1/2/2)

= lim
u→∞

exp
(
−[{u+$(u)z}1/2 − u1/2]/2

)
= exp(−z).

Therefore, by Section 3.3.3 of Embrechts et al. (1997), the distribution function FZ(·)
belongs to the Gumbel maximum domain of attraction, and it suffices to show that

cp and dp can be chosen in the given form. For this, note that dp → ∞ as p → ∞,

we have, by Theorem 3.2.1,

lim
p→∞

p{1− FZ(dp)} = lim
p→∞

p2fZ(dp) · 4p−1(2 log p− log π + 3 log 2)

= lim
p→∞

4p(2π)−1/2 exp{− log p+ (log π − 3 log 2)/2}

= 4(2π)−1/2 · π1/22−3/2 = 1.

Since cp = $(dp) holds for all large p, Theorem 3.2.2 follows by the results in Mikosch

and Yslas (2019).
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Proof. (Theorem 3.3.1) By Theorem 3.2.1,

lim
p→∞

p[1− FZ{c(log p)2}] = lim
p→∞

p2fZ{c(log p)2} · (2cp−1 log p)

= lim
p→∞

(2cp) · (2πc)−1/2 exp{−(c1/2 log p)/2}

= lim
p→∞

(2c)1/2π−1/2p1−c1/2/2,

whose limit is zero if c > 4. Then by condition (A1) and Boole’s inequality, we have

lim
p→∞

lim
n→∞

pr{∆p,n > c(log p)2} ≤ lim
p→∞

p[1− FZ{c(log p)2}] = 0

if we choose the constant c to be sufficiently large, and Theorem 3.3.1 follows.

Proof. (Theorem 3.3.2) We first prove the first claim, and it suffices to show that

lim
p→∞

lim
n→∞

pr{∆p,n > cpz + dp} = 1− exp{− exp(−z)}.

For k = 1, . . . , p, let Ak,p,n be the set that represents the event {Tk,n > cpz+dp}, then

we can write {∆p,n > cpz + dp} =
⋃p
k=1Ak,p,n as their union, and by the Bonferroni

inequality we have

pr(∆p,n > cpz + dp) ≥
2M∑
m=1

(−1)m−1
∑

1≤k1<···<km≤p

pr

(
m⋂
l=1

Akl,p,n

)
,

and

pr(∆p,n > cpz + dp) ≤
2M−1∑
m=1

(−1)m−1
∑

1≤k1<···<km≤p

pr

(
m⋂
l=1

Akl,p,n

)
.

By condition (A2),

lim
p→∞

lim
n→∞

∑
1≤k1<···<km≤p

pr

(
m⋂
l=1

Akl,p,n

)
= lim

p→∞
lim
n→∞

(
p

m

)
{1− FZ(cpz + dp)}m,

while by the proof of Theorem 3.2.2,

lim
p→∞

lim
n→∞

p{1−FZ(cpz+dp)} = lim
p→∞

lim
n→∞

p{1−FZ(dp)}·
1− FZ(cpz + dp)

1− FZ(dp)
= exp(−z).
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Combining all the above results, we have

2M∑
m=1

(−1)m−1

m!
exp(−mz) ≤ lim

p→∞
lim
n→∞

pr(∆p,n > cpz + dp) ≤
2M−1∑
m=1

(−1)m−1

m!
exp(−mz)

holds for any fixed M > 0. Note that by the Taylor expansion, the series

M∑
m=1

(−1)m−1

m!
exp(−mz) = 1−

M∑
m=0

(−1)m

m!
exp(−mz)→ 1− exp{− exp(−z)}

as M → ∞, and the first claim follows. Note that for independent Gaussian data,

condition (A1) entails condition (A2), and thus by the same argument one can show

that c−1
p (∆◦p,n − dp) shares the same asymptotic distribution as c−1

p (∆p,n − dp). As a

result,

lim
p→∞

lim
n→∞

pr{(θ1, . . . , θp) ∈ RSAMSN
p,n,1−α} = lim

p→∞
lim
n→∞

pr{∆p,n ≤ q1−α(∆◦p,n)} = 1− α,

and the second claim follows.

Proof. (Theorem 3.3.3) By the proof of Theorem 3.3.1,

lim
p→∞

lim
n→∞

pr{∆p,n ≤ c(log p)2} = 1

holds for any c > 4, and therefore

lim
p→∞

lim
n→∞

pr

(
max
k∈S0

V −1
k,n θ̂

2
k,n ≤ λp,n

)
= 1.

On the other hand,

pr

(
min
k∈S1

V −1
k,n θ̂

2
k,n > λp,n

)
≥ pr(V −1

k,n θ
2
k > 2λp,n, 2|θ̂k,n − θk| ≤ 2−1|θk|, ∀k ∈ S1),

where

pr(|θ̂k,n − θk| ≤ 4−1|θk|, ∀k ∈ S1) ≥ 1−
∑
k∈S1

pr(|θ̂k,n − θk| > 4−1|θk|).

By the invariance principle (IP) and the condition on the minimal nonzero signal, we
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have

lim
p→∞

lim
n→∞

∑
k∈S1

pr(|θ̂k,n − θk| > 4−1|θk|)≤ lim
p→∞

lim
n→∞

∑
k∈S1

pr

(
|θ̂k,n − θk| > 4−1 min

k∈S1
|θk|
)

≤ lim
p→∞

lim
n→∞

∑
k∈S1

pr(n1/2|θ̂k,n − θk| > c� log p)=0

holds for a sufficiently large choice of c� > 0, and therefore

lim
p→∞

lim
n→∞

pr(2|θ̂k,n − θk| ≤ 2−1|θk|, ∀k ∈ S1) = 1.

Note that

pr(V −1
k,n θ

2
k > 2λp,n, ∀k ∈ S1) ≥ pr

(
min
k∈S1

θ2
k > 2λp,n max

k∈S1
Vk,n

)
≥ 1−

∑
k∈S1

pr

{
Vk,n ≥ (2λp,n)−1 min

k∈S1
θ2
k

}
,

where

lim
p→∞

lim
n→∞

∑
k∈S1

pr

{
Vk,n ≥ (2λp,n)−1 min

k∈S1
θ2
k

}
= 0

when d <∞ is fixed, and by Theorem 11 of Tolmatz (2002) we have

lim
p→∞

lim
n→∞

∑
k∈S1

pr

{
Vk,n ≥ (2λp,n)−1 min

k∈S1
θ2
k

}
≤ lim

p→∞
lim
n→∞

∑
k∈S1

pr
{
Vk,n ≥ c] log d

}
= 0

holds for a sufficiently large choice of c] > 0. Combining the above results, we obtain

that

lim
p→∞

lim
n→∞

pr

(
min
k∈S1

V −1
k,n θ

2
k > 2λp,n

)
= 1,

and

lim
p→∞

lim
n→∞

pr

(
min
k∈S1

V −1
k,n θ̂

2
k,n > λp,n

)
= 1.

Therefore, we have limp→∞ limn→∞ pr(Ωp,n = TS1,n) = 1, and as a result,

lim
p→∞

lim
n→∞

pr[Ωp,n ≤ q1−α{Zd(Bd)}] = lim
p→∞

lim
n→∞

pr[TS1,n ≤ q1−α{Zd(Bd)}] = 1− α,

which entails the first claim. For the second claim, a similar argument can be used
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to show that limp→∞ limn→∞ pr(d̂ = d) = 1, and thus by condition (A3),

lim
p→∞

lim
n→∞

pr{Ωp,n ≤ q1−α(Ω◦
d̂,n

)} = lim
p→∞

lim
n→∞

pr{Zd(Bd) ≤ q1−α(Ω◦
d̂,n

)}

= lim
p→∞

lim
n→∞

pr{Ω◦
d̂,n
≤ q1−α(Ω◦

d̂,n
)} = 1− α.

Since the sparse vector (1{V −1
1,n θ̂

2
1,n>λp,n}

, . . . ,1{V −1
p,n θ̂2p,n>λp,n}

) used to form the Hadamard

product in (3.9) satisfies

lim
p→∞

lim
n→∞

pr

(
max
1≤k≤p

|1{V −1
k,n θ̂

2
k,n>λp,n}

− 1{k∈S1}| = 0

)
= 1,

we have

lim
p→∞

lim
n→∞

pr{(θ1, . . . , θp) ∈ RSATSN
p,n,1−α} = lim

p→∞
lim
n→∞

pr{Ωp,n ≤ q1−α(Ω◦
d̂,n

)} = 1− α,

and Theorem 3.3.3 follows.
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