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ABSTRACT 

Human sustainability is one of the most pressing issues of the 21st century. 

Coupled Human and Natural Systems (CHANS) offers a useful framework to focus on 

understanding the complex process and pattern that characterizes the dynamical 

interactions between human and natural systems. This dissertation research integrates the 

geospatial analysis into the CHANS framework from three perspectives: temporal, 

spatial, and organizational coupling. 

Using the temporal coupling aspect, we monitor the risk of deforestation and 

biodiversity threats from energy investments in Southeast Asia. We assess the energy 

investment evaluate changes to forest morphology and the risk to biodiversity. In terms of 

land cover change, we find that hydroelectric power plants tend to have more extensive 

biodiversity impacts than coal-fired plants, which are usually built within proximity to 

major population centers. 

Next, we explore spatial coupling by examining the spatial heterogeneity and 

homogeneity in home prices across Massachusetts, using Geographically Weighted 

Regression models with natural and socio-demographic variables. We discovered models 
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that utilized spatial heterogeneity perform better. However, statistical tests of significance 

are required to determine the model specification to avoid over-fitting. 

In the fourth chapter, we examined a critical refugium for endangered fish species 

in East Africa by mapping the organizational dynamics of aquatic vegetation on Lake 

Kyoga, Uganda. A CHANS organizational coupling involving the natural infrastructure 

of aquatic vegetation and fishes can adversely impact endangered species and the 

surrounding human communities. Floating aquatic vegetation can protect the native 

fishes from predation by Nile Perch by creating hypoxic barriers between water bodies. 

We developed an algorithm to locate and identify various types of aquatic vegetation. 

Profiles of lakes are created to examine the spatiotemporal dynamics of refugia. The 

results are valuable in shaping strategies to conserve both fish species and human 

livelihoods. 

The fifth chapter explores emerging technologies, Virtual Reality, in 

communicating the complex CHANS coupling of green (trees) and gray infrastructure 

(gas pipelines). This chapter demonstrates the building of 3D urban landscapes from 

remote sensing data and the emerging use of VR to communicate, educate and empower 

the stakeholders on sustainability issues related to aging natural gas infrastructure and 

resulting methane emissions. 

This dissertation research aims to build a set of methodologies based on extensive 

geospatial data, spatially explicit models, and tools essential for operationalizing and 

monitoring CHANS in studies ranging from local to regional scales. Each application 

builds or revises a new model or algorithm to address a real-world CHANS problem.  
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CHAPTER 1 – Introduction 

 
 Human sustainability is one of the most pressing issues of the 21st century. 

Humans alter the ecological, hydrological, and thermal characteristics of their 

environment through deforestation, urbanization, transportation, modifications to the 

landform and vegetation cover, and many other infrastructure activities, resulting in an 

inextricable coupling of human and natural systems. Coupled Human and Natural 

Systems (CHANS) offers a useful framework to focus on understanding the complex 

process and pattern that characterizes the two-way dynamical interactions between 

human and natural systems. These are highly dependent on the spatial and temporal scale. 

This dissertation research integrates the geospatial analysis components into the CHANS 

framework from three perspectives: temporal, spatial, and organizational coupling. 

Using the temporal coupling aspect, we monitor the risk of deforestation and 

biodiversity threats that play out over time from energy investments related to coal and 

hydroelectricity in Southeast Asia. We assess the energy investment in terms of 3 years 

prior and post-construction to evaluate the risk to biodiversity. We find that hydroelectric 

power plants (though much lower in carbon emissions than the burning of coal or other 

fossil fuels) tend to have more extensive biodiversity impacts than coal-fired plants. We 

used forest morphology metrics to examine the nature and magnitude of these impacts. 

We found that there are statistical differences in energy investments with versus without 

Chinese financing. China invests more in coal power plants in this region, where the 

power plants are usually built within proximity to major population centers. As such, 
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these power plants have a lower impact on total forest cover but must contend with a high 

ratio of forest edges and bridges (bridges connect fragments or edges with core forest). 

Next, we explore spatial coupling by examining the spatial heterogeneity as well 

as spatial homogeneity in determining home prices across the state of Massachusetts, 

using Geographically Weighted Regression models. There are ten independent variables 

in this model, describing both natural and socio-demographic variables. We examined the 

impact of each determinant on the home value. For example, unprotected forest or 

available green space acts as a non-stationary determinant. It adds a positive value, 

resulting in an increase in home prices in the eastern part of the state, around suburban 

towns of the greater Boston area. In contrast, it adds a negative value in the western part 

of the state, resulting in decreased home prices.  

In the third chapter, we examined a critical refugium for endangered fish species 

in East Africa by mapping the organizational dynamics of aquatic vegetation on Lake 

Kyoga, Uganda, and its associated satellite lakes. We did this using a long-time series of 

Landsat images. Societies that reside in the Lake Kyoga region have traditionally fished 

in and farmed beside the waters of this lake. A CHANS organizational coupling 

involving the natural infrastructure of aquatic vegetation and fishes can result in adverse 

impacts both to endangered species and to the surrounding human communities. Floating 

aquatic vegetation (e.g., papyrus, hippo grass, water hyacinth, water lettuce) can protect 

the native fishes from predation by Nile Perch by creating hypoxic barriers between 

water bodies difficult for the perch to cross. This work makes it easier to quantify and 

track shifts in floating vegetation over space and time. We developed an algorithm to 
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identify the location of aquatic vegetation as well as differentiate floating versus 

emergent vegetation. We also created profiles of satellite lakes that are refugia for 

endangered fish species to examine the spatiotemporal dynamics of these small lakes and 

changes over time in suitable fish habitats. The results are valuable in shaping strategies 

to conserve both fish species and human livelihoods in this region. 

The fourth chapter explores emerging technologies, Virtual Reality, in 

communicating the complex CHANS coupling of green (trees) and gray infrastructure 

(gas pipelines). This chapter demonstrates the building of 3D urban landscapes from 

remote sensing data and the emerging use of VR to communicate, educate and empower 

the stakeholders on sustainability issues related to gas leaks. Thus, VR is bridging a 

broken gap in knowledge by enabling the stakeholders to see the invisible infrastructure 

and better understand the CHANS urban infrastructure. 

This dissertation research aims to build a set of methodologies based on extensive 

geospatial data, spatially explicit models, and tools essential for operationalizing and 

monitoring CHANS in studies ranging from local to regional scales. Each application 

builds or revises a new model or algorithm to address a real-world CHANS problem. The 

purpose of each application is to find. sustainable solutions and provide decision and 

policy insights to stakeholders. 
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CHAPTER 2 – A Big Data Spatial Analytical Framework for Deforestation and 

Biodiversity Risks of Power Generation Projects in Southeast Asia  

 
 Ecosystem destruction and biodiversity loss due to human activities are 

widespread and now extremely rapid. They are rated among the top global risks both in 

terms of likelihood and in terms of impact. When considering development projects, 

thorough environmental impact evaluation requires good analysis of local ecological 

data, among other information besides social and economic impacts. Understanding 

deforestation and attendant biodiversity risks from existing projects is essential for 

conservation purposes and informing future project planning. Multiple geospatial data 

sources related to location, type, and the characteristics of energy investments and 

landcover data from various sources are used to integrate, analyze, and characterize the 

deforestation and biodiversity impact of energy investments in this study. Spatial 

morphological pattern analysis is also used on forest cover data to examine the 

relationships between forest core and edge effects on biodiversity. The analysis enables 

us to address conservation questions relevant to developmental finance in energy in 

different forest structures. We found that there are statistical differences in energy 

investments with and without Chinese development finance. The locational siting of 

investments and the capacity differences in energy production drive the spatial pattern in 

biodiversity risks.  
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2.1 Introduction 

 Southeast Asia is one of the regions with the world's highest species richness and 

endemism (Mittermeier et al. 1999, Duckworth et al. 2012). Its tropical ecosystems- 

freshwater, terrestrial, and marine- are characterized by rich biodiversity and complex 

biotic interactions among their species. Unfortunately, today this region exhibits the 

world's highest vertebrate extinction rates, primarily due to severe habitat loss (Sodhi et 

al. 2010). The countries in this region have seen deforestation rates that are unchecked 

and higher than in any other major tropical region globally, with forest cover has 

decreased anywhere from 20% to 70% in the past four decades. Southeast Asia is 

expected to lose three-quarters of its original forests by 2100 and up to 42% of its 

biodiversity (Sodhi et al. 2004, Estoque et al. 2019), a massive rate of species decline and 

extinction (Schipper et al. 2008). Human activities such as clear-cutting, illegal logging 

(Schipper et al. 2008), agriculture, and, most importantly, infrastructure projects, 

including energy (Drollette 2013), are the underlying drivers of this loss. In addition, 

there are many other drivers of biodiversity loss, including the harvest of wild species for 

luxury food, medicine, tonics, horns, and other trophy parts, and captive animals (Uhm 

2016). 

Prior studies have studied the culprits and mechanisms of deforestation and 

biodiversity loss, focusing on habitat fragmentation (Hughes 2018), increased roadkill 

(Coffin 2007), increased wildlife trafficking (Bush et al. 2014), eroding indigenous 

populations (AIIB 2016), and biosecurity concerns from the introduction of invasive 

species (Liu et al. 2019). Deforestation often begins with the construction of road 
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networks and fences that have negative direct and indirect impacts on biodiversity 

(Forman and Alexander 1998, Forman et al. 2002, Ree et al. 2015, Borda-de-Água et al. 

2017). Indirect impacts from illegal logging, poaching, mining, and urban encroachment 

often accompany or result from road construction (Wilkie et al. 2000, Laurance et al. 

2008, 2009, Ali et al. 2015, Bebbington et al. 2018). Any existing road in a forested area 

leads to further deforestation; about 5% of deforestation occurs within a five-kilometer 

buffer of a road network or a one-kilometer buffer of a navigable river (Benítez-López et 

al. 2010, Barber et al. 2014). The greatest threat to wild orangutan populations in Borneo 

and Sumatra is the loss of their habitat to road development, which exacerbates 

agricultural expansion, illegal timber harvesting, mining, and human encroachment. As 

connectivity within and among remaining forest patches is compromised, the negative 

impacts to biodiversity accelerate (Laurance et al. 2009). The infrastructure impacts on 

existing biodiversity and forests in the area can further weaken ecosystems and increase 

anthropogenic carbon emissions (Zadek 2019). Loss of biodiversity also disrupts 

ecosystem processes, and ecosystem service flows that benefit human well-being (Turner 

1996, Sodhi et al. 2010). 

The trade-offs between biodiversity conservation and human development 

activities (Adams et al. 2004, Redford and Fearn 2007, Reed et al. 2016) can be analyzed 

at multiple spatial scales from both conservation and sustainable development 

perspectives (ideally, they should be part of a single, systemic perspective). At the 

landscape scale, forest loss and fragmentation severely affect biodiversity (Morris 2010, 

Alroy 2017). Deforestation creates patterns of remnant forest fragments and ecologically 
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degraded forest edges. Species richness decreases in fragmented forests because remnants 

may be too small for species to persist, too exposed to edge effects, or too isolated to be 

colonized from other remnants (Gillespie et al. 2012). Edge effects and spill-over of 

species from secondary habitats (Vetter et al. 2011) impacts species composition in 

fragmented forests. Thus, there is a growing need to understand the impact of particular 

spatial patterns of deforestation and degradation, as these areas may be open to strategic 

modification even if the overall amount of deforestation is challenging to influence. The 

application of spatial ecology can also set a strategy for reforestation. All this should be 

incorporated into relevant environmental impact assessments, environmental education 

programs, and management plans to strengthen habitat protection and reforestation 

activities and other efforts to preserve and protect natural habitats and biodiversity 

(Quintero 2007, Buntaine 2011, Buchanan et al. 2016).  

2.1.2 Development finance and energy investment 

 Development banks and development finance institutions (DFIs) serve as 

important channels for infrastructure finance and have adopted safeguards systems to 

minimize and manage the environmental and social risks associated with their projects 

(Morgado and Taşkın 2019). The banks have to address Sustainable Development Goals 

(S.D.G.s), laid out by the United Nations in 2015. Different development banks also 

apply differing levels of safeguards. Development projects have to comply with various 

national and international biodiversity regulations and protect the vulnerable and 

indigenous groups' rights and sustainable harvesting of forest products (Vardon et al. 

2016). However, the effectiveness of these environmental regulations in different 
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countries is open to debate. We need timely and accurate spatial data to analyze the 

impacts of development projects on biodiversity loss. 

 In 2013, China introduced the Belt and Road Initiative (B.R.I.) to strengthen 

infrastructure, trade, and investment links between China and the participating countries. 

The B.R.I. has reached a vast portion of the world, particularly China's neighbors in 

Southeast Asia. All eleven countries in Southeast Asia - Brunei, Cambodia, East Timor, 

Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Vietnam 

have signed B.R.I. cooperation agreements with China. China's Policy Banks have 

emerged as significant players in investing in development projects in Southeast Asia. 

Figure A1 shows international development finance commitments in the region between 

2013 and 2019 (a period when data is available for all institutions listed). Figure A1 also 

indicates that in this period, the energy sector received a significant share of China's 

development finance in Southeast Asia (specifically, the power sector). Note that this 

investment amount is greater than the combined amount of all the other major 

development banks active in the region (Buchanan et al. 2016, Gallagher 2019, A.D.B. 

n.d., Japan International Cooperation Agency n.d., KfW n.d., World Bank n.d.). The two 

Chinese development banks that engage in international businesses are the China 

Development Bank (C.D.B.) and the Export-Import Bank of China (CHEXIM). The total 

amount of development finance committed by the two banks over this period has 

exceeded all other major development financiers in the region, including the World Bank 

(W.B.), the Asian Development Bank (A.D.B.), and the Japan International Cooperation 

Agency (JICA). However, compared with the multilateral development banks and some 
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western national development institutions, the Chinese development banks have lax 

internal environmental standards and principles that defer local regulations. While the 

trend in the multilateral development banks safeguards is moving toward a country 

systems approach, local regulations and local execution can be insufficient. Thus, China's 

development finance in the energy sector in Southeast Asia is critical in examining 

changes in biodiversity. 

Many parts of the B.R.I. intersect terrestrial and marine biodiversity hotspots, 

wilderness areas, and critical conservation areas in Southeast Asia, including primary 

dipterocarp forests and the Coral Triangle (Lechner et al. 2018). Recent studies have 

investigated deforestation from the B.R.I. and its impact on biodiversity (Hughes 2019), 

species interactions, and ecosystem processes in tropical forests (Schleuning et al. 2011, 

Liu et al. 2019).  

Although prior studies have considered how electricity generation impacts other 

aspects of the environment, few have looked specifically at how much land different 

energy sources require (Stevens et al. 2017). Electricity production in the U.S. shows that 

coal, natural gas, and nuclear power all feature physical footprints of about 4.85 Hectares 

per megawatt installed capacity. Solar and wind power respectively take up 17.6 and 28.6 

hectares per megawatt installed capacity, while hydroelectricity generated by large dams 

has a significant footprint of 127.56 hectares per megawatt installed capacity (Stevens et 

al. 2017). Land cover changes associated with power projects include the construction of 

the plant, resource production, and the inundation of forested valleys by reservoirs. 

Transmission and transportation can also lead to deforestation, fragmentation of habitats 
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and migration routes, as well as pollution that could harm the ecosystems. The 

development of hydroelectric dams in the Mekong River basin illustrates the trade-offs 

and impacts of energy development on biodiversity (Ascensão et al. 2018, Shi and Yao, 

2019). Hydropower produces relatively cheap and sustainable electricity for the lifetime 

of a dam (which is often not very long), flood and drought protection (Hecht 2017), and 

new economic and employment opportunities (Sabo et al. 2017). However, dam 

construction impacts water flow and fish migrations (Wild et al. 2016) and ultimately can 

cause the loss of traditional livelihoods and a significant reduction in the seasonal 

monsoon-driven flooding that had long brought nutrient-rich sediments out onto the 

floodplain. The dams also impede the downstream flow of these sediments (Baird 2016, 

Middleton et al. 2019). Such energy projects spotlight the need for strengthened project 

evaluation and monitoring and reforestation and conservation plans in any future 

infrastructure development through ecosystem trade-off analysis.  

2.1.3 Framework 

 Our paper examines the increasing deforestation and threat to biodiversity fueled 

by power generation projects across the region by China and other countries. We adopt a 

"big data" spatial analytical framework to catalog deforestation and biodiversity changes 

in different ecoregions that have potentially resulted from power generation projects 

financed by China and other (including domestic) entities. The study utilizes a time series 

of forest cover and loss data (2000-2018) derived from Landsat to map the baseline 

information of forests, biodiversity, and energy investment locations to analyze forested 

areas bisected by the B.R.I. corridors. Forest cover data are analyzed four years prior and 



 

 

11 

as of the commission of the project. In contrast to prior studies, our study does not treat 

all forests as equivalent. We characterized the spatial structure of forest cover distribution 

using distinctions such as core, edges, and bridges. The spatial data and analysis enable 

us to investigate the morphological patterns of deforestation impact and specific 

biodiversity risks of power generation projects with different financing sources, energy 

sources, characteristics, and locations. Specifically, this paper attempts to:  

• Based on forest cover and loss data from 2000-2018, inspect if deforestation 

patterns four years prior and as of the commission of energy projects are different 

and if the potential impacts of projects financed by Chinese development banks 

differ from non-Chinese financing. 

• Investigate the biodiversity risks using IUCN criteria within critical buffer 

distances of power generation investments with and without Chinese development 

finance. Are there statistical differences? 

• Examine habitat criticality and forest cover changes near different types of power 

plants (coal or hydro) with and without Chinese development finance in Southeast 

Asia before and after the project's commission to estimate if there are significant 

differences in biodiversity risks and deforestation impacts. Do the biodiversity 

impacts differ based on energy sources? How can our analysis inform policy on 

the ground? 

• Using a forest spatial pattern methodology, we identify core, periphery, and other 

spatial fragmentation metrics to analyze the relationships between forest core and 

edge effects in more detail for energy investments in Southeast Asia. 
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Our project offers metrics and a replicable analytical framework to identify critical 

areas where forest and habitat preservation should be most heavily emphasized in 

Southeast Asia and other regions in the world. In particular, it demonstrates the merit of 

looking at deforestation in ways that dig deeper into its particulate causes and their 

specific impacts on forest structure and ecological integrity. 

 

2.2 Materials and methods 

2.2.1 Data 

 This study's spatial domain covers eight countries in Southeast Asia - Cambodia, 

Indonesia, Laos, Malaysia, Myanmar, Philippines, Thailand, and Vietnam, all of which 

are also signatories of B.R.I. with China and are fit for comparison. Our methodology 

requires a selection of biodiversity factors, including habitats, forest boundaries and 

corridors, locations of power generation facilities, and a list of endangered and threatened 

species differentiated by ecoregions. China's Overseas Development Finance Database 

(Ray et al. 2021) provides projects’ financial information financed by Chinese 

development banks. Figure 2.1 shows the data and methodology framework of the 

research. 



 

 

13 

 
Figure 2.1. Research data and framework 

 

2.2.1.1 Forest cover 

 Infrastructure constructions are likely to erode forest cover and further exacerbate 

impacts on biodiversity. We perform a time-series analysis characterizing forest extent 

and change in Southeast Asia based on a published data product, Global Forest Change 

v1.6 (Hansen et al. 2013), processed using Google Earth Engine. In this product, the 

variables are defined as follows: 

• Trees are defined as vegetation taller than 5 m in height and are expressed as a 

percentage per output grid cell using the base year 2000 (denoted as ‘2000 

Percent Tree Cover'). Tree cover makes up 25% or more at the Landsat pixel scale 

(30-m × 30-m spatial resolution) represents forest cover in this scheme. 

• Forest Cover Loss is defined as a stand-replacement disturbance or a change from 

a forest to a non-forest state during 2000–2018. 

• Forest Loss Year is a disaggregation of total 'Forest Loss' to annual time scales. 
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Based on forest cover data, it is possible to describe spatial patterns of forests in 

conjunction with non-forests, including fragmentations occurring within the forest and 

along its exterior boundaries. These fragmentations have differential impacts on related 

landscape properties, especially structural connectivity, that can be extracted and 

evaluated. Figure 2.2 shows the deforestation loss in different countries. Every country in 

this region has seen deforestation, from 2000 to 2018, the most severe being in Indonesia 

and Malaysia, 17% and 28% of their total tree cover respectively. The least amount of 

deforestation is in Brunei (5.2%), mainly attributable to its leadership, and East Timor 

(3.8%) in the south, which is dry and has little or no wet forest. 

 

Figure 2.2 The map shows deforestation between 2000-2018 where red indicates the highest 

area of deforestation. 
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2.2.1.2 W.W.F.'s ecoregions 

 It is vital to interpret biodiversity loss in the context of ecoregions to account for 

the magnitude and nature of loss correctly.  World Wildlife Fund (W.W.F.) defines an 

ecoregion as a "relatively large unit of land or water containing a characteristic set of 

natural communities that share a large majority of their species dynamics, and 

environmental conditions" (Olson and Dinerstein 2002). Each ecoregion has its distinct 

species, whose populations in an area of interest can be critically endangered or 

endangered, vulnerable, or relatively intact. We consider twelve ecoregions (Figure A2) 

in Southeast Asia, identified by W.W.F. Ecoregions vary significantly in population 

density, type and amount of vegetation cover, biodiversity, and development projects. 

Thus, it is possible to compare and contrast relatively undisturbed from more disturbed 

areas. For example, the Cardamom Mountains, a part of the regional Indo-Burma 

Hotspot, represent a rainforest ecoregion. It is (or was) home to several large mammals, 

including the Asian elephant (Elephas maximus) and tiger (Panthera tigris, now 

extirpated). Its remote location, protected status, and investment in enforcement had until 

recently prevented deforestation, which has now seen severe degradation. 

In contrast, the peat swamp and heath forests, characterized by sandy soils, have 

no large mammals. The peat forest called kerangas forest on the islands of Indonesia 

(Borneo, Belitung, and Bangka) is home to some iconic specialist plants such as 

carnivorous Nepenthes pitcher plants and myrmecophiles (or ant plants). These peat 

forests are impacted by two forces, rapid clearing for human settlements and large-scale 

development projects, resulting in a highly vulnerable ecoregion (Dohong et al. 2017). 
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Each ecoregion in Southeast Asia, characterized by a different mix of plants and animals, 

is experiencing different threat levels due to human settlement expansion and logging. 

Hence, the increasing threats fueled by energy investments across the region by China 

and other countries further exacerbate biodiversity in Southeast Asia. 

The W.W.F. has produced a global ecoregion map of the world of 867 ecoregions. 

In the present study, the Global Forest Change (G.F.C.) is overlaid on the ecoregion map 

to characterize deforestation and morphological spatial pattern trends in Southeast Asia. 

2.2.1.3 The IUCN Red List of Threatened Species 

 The world's most complete inventory of the global conservation status of 

amphibians, fish, birds, and mammals is the IUCN Red List of Threatened Species (also 

known as the IUCN Red List or Red Data List). This global analysis of all species' status 

and distributions is based on the best available data and expert analysis for each species. 

(Lamoreux et al. 2003, Rodrigues et al. 2006). The IUCN Red List classifies species into 

nine groups, set through criteria such as the rate of decline, population size, area of 

geographic distribution, and degree of population and fragmentation. The IUCN criteria 

recognize significant differences between species and the circumstances leading to their 

extinction risk. This methodology categorizes each species' threat level based on the 

available data and the specified quantitative thresholds. IUCN's goal is to provide 

information and analyses on the status, trends, and threats to species to inform and 

catalyze biodiversity conservation action (Mace et al. 2008). The IUCN list can inform 

global and regional biodiversity targets, aid conservation planning, evaluate conservation 

actions, and inform legislative frameworks to protect species (Hoffmann et al. 2010). 
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IUCN Red List criteria cover three threatened categories -- Critically Endangered, 

Endangered, and Vulnerable. Species are allocated to one of the three types of extinction 

risk based on population size, range area, and decline rate. This allocation can aid in 

studies of biodiversity. There is also a probability of extinction in the wild associated 

with these three categories. The Red List has become an increasingly powerful tool for 

global conservation, management, monitoring, and decision making. 

2.2.1.4 Power generation project locations and Chinese development finance 

 The paper compared and combined the Global Power Plant Database published by 

the World Resources Institute (Byers et al. 2018), the WEPP (World Electric Power 

Plant) database (Platts 2018), and power generation project information in China's 

Overseas Development Finance database (Ray et al. 2021). According to the data 

compiled, as of 2018, Southeast Asia has approximately 184.3GW of installed power 

generation capacity. About 59.3% of the current installed capacity is commissioned after 

2000. However, the energy mix has remained almost unchanged. Coal, natural gas, and 

hydropower are the dominant power generation sources in the region (Figure 2.3). China 

Development Bank (CDB) and the Export-Import Bank of China (CHEXIM) are the two 

major Chinese state-owned development- and policy-oriented banks that engage in 

overseas development finance (DF). Among the 109.3 GW power generation capacity 

added between 2000 and 2018 in Southeast Asia, more than 19% have some Chinese 

development finance involvement. According to China’s Overseas Development Finance 

database, which is the best available database on the overseas lending of China 

Development Bank and Export-Import Bank of China compiled from public sources, 
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during this period in Southeast Asia, the Chinese development banks only financed coal 

and hydropower in the power sector. More than 36.9% of the coal power generation 

capacity and over 10.2% of the hydropower added over this period in the region have the 

Chinese development banks’ financial participation. Thus, to make a fair comparison, this 

study only examines coal and hydropower projects in the region that are the foci of the 

Chinese development finance. 

 

Figure 2.3. Energy mix and Chinese development finance involvement of the electricity 

sector in Southeast Asia, compiled from the Global Power Plant Database, World Resources 

Institute; the Platts World Electric Power Plant Database, and China’s Overseas 

Development Finance database. Note: b) does not include projects whose commission year is 

not available. The capacity with Chinese development finance does not include project 

expansion on older projects commissioned before 2000. 

The spatial database also includes relevant spatial data related to forest cover and 

biodiversity for assessing the impact of the energy investments. There are 398 coal or 

hydro energy investments without Chinese development finance and 51 with Chinese 

development finance in this database. The two sets of investments in coal and hydro are 

shown in Table A1. 
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2.2.2 Methods 

 To visualize Southeast Asia's biodiversity, we created a species richness map 

using IUCN Red List species geographic ranges at a raster resolution of the GFC dataset. 

IUCN has assessed terrestrial taxonomic groups and prepared polygon maps. This study’s 

first step rasterized the vector IUCN ranges, to sum up across all species, resulting in a 

species richness count, representing the number of species potentially occurring in each 

pixel. Figure 2.4 shows the IUNC’s species richness in Southeast Asia. Each panel uses a 

range of colors from red to blue, indicating high to low species richness. Panel 3a 

displays amphibians, while 6b - 6e shows reptiles, mammals, freshwater groups, and 

marine fish. Each panel shows a different pattern of richness. Mammals (6c) exhibit the 

highest species richness in peninsular Malaysia, Borneo, Sumatra, northern Vietnam, and 

eastern Myanmar. Reptiles are similar but are limited to only peninsular Malaysia, 

Borneo, and Sumatra. Panel 6e shows sharks, rays, and chimeras with the highest 

concentration near Taiwan. 

2.2.2.1 Species richness & weighted range size rarity 

 Many studies aimed at identifying high-priority areas have utilized species 

richness to highlight biodiversity hotspots. As high/moderate-resolution land cover and 

climate data are more readily available from remote sensing, some studies have suggested 

rasterizing IUCN geographic ranges with high-resolution cell size. However, doing so 

would overestimate the actual species richness value due to scale mismatch (Hurlbert and 

Jetz 2007). Instead of using species richness as a metric for biodiversity, we calculated 

species weighted range size rarity for each energy investment buffer zone to address the 
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scaling issue. We calculated a weighted range size rarity for buffer zones in R (R Core 

Team, 2020) based on species range maps of IUCN, which is defined as: 

𝑤𝑟𝑠𝑖𝑖 = ∑ 𝑤𝑗𝑞𝑖𝑗

𝑗

 

where 𝑤𝑗 is the weight assigned to species 𝑗 in the prioritization and 𝑞𝑖𝑗 is the fraction of 

species 𝑗's range falling within the buffer zone of energy investment 𝑖 (Moilanen et al. 

2014). This measure lowers the contribution of wide-ranging species to overall species 

richness and highlights areas with a relatively high proportion of narrow-range species. 

 

Figure 2.4. Species richness of a. amphibians; b. reptiles; c. mammals; d. freshwater 

groups; e. marine fish; f. sharks, rays, and chimaeras. 

Our choice of weights assigned to species is guided by the severity level in the 

IUCN categories. We assign the following weights: critically endangered = 8; endangered 

= 6; vulnerable = 4; near Threatened = 2; least concern = 1; data deficient = 2 (Montesino 

Pouzols et al. 2014) 
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A high value of weighted range size rarity within the buffer zone indicates that 

this buffer zone can have one of the following: 

• High species count overall. 

• High species count with greater weight. 

• Species with narrow geographic ranges. 

• Any of the combination above. 

2.2.2.2 Deforestation estimation 2000-2018 in Southeast Asia 

 Deforestation is estimated using Hansen’s Global Forest Change. Google Earth 

Engine is utilized to estimate forest loss every observation year in each Southeast Asia 

country in the WWF ecoregions and energy investment buffer zones. The year 2000 is 

selected as our baseline to estimate subsequent yearly forest loss. We also looked at the 

forest cover changes for each energy investment four years before the commission year. 

A four-year window was chosen because it is the average time from construction to a 

typical power plant commission. 

2.2.2.3 Geocoding and buffering power generation projects 

 The impact of power generation projects could reach beyond the site of the power 

plant. For thermal power facilities, transporting fuels and electricity transmission are the 

main factors that cause landuse change; for hydropower, wind, and solar power, the 

generation facilities are much more land intensive (Stevens et al. 2017). Meanwhile, 

indirect impacts such as other road constructions, land clearing for agriculture, human 

migration, increased poaching, etc., might result from the construction of power facilities. 
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As comprehensive location data is only available for power generation facilities, this 

study only compares deforestation trends near power plants, using spatial buffer areas for 

accounting for transportation impacts of fuel and electricity transmission. 

Power plants have two labels - type of fuel source and whether they involve 

finance from Chinese development banks. They are geocoded as point information on the 

map, and each location is buffered at 1, 2, and 10km distances to estimate biodiversity 

species richness that faces potential impact and deforestation (Benítez-López et al. 2010). 

World bank and available local guidelines require buffer distances of within 1km. We 

expand the minimum buffer to 1km for safe estimates. However, past studies find 

significant differences in disturbance sensitivity between species groups and specific 

cases. Bird populations seem to be affected within a few hundred meters from 

infrastructure. In contrast, a reduction in mammal populations has been found at distances 

of a few hundred meters up to several kilometers from infrastructure (McLellan and 

Shackleton 1989, Cameron et al. 1992, Ortega and Capen 1999, Nellemann et al. 2003). 

Therefore, larger buffer distances, which may better reflect the impact on different 

species and footprints of transportation, transmission, or other indirect impacts related to 

the power generation project, are also used in this study (Benítez-López et al. 2010).  

The section below elaborates the study’s specific methodology. On deforestation 

trends, we analyzed deforestation in buffer areas of projects commissioned between 2000 

and 2018, four years before the commission of each investment. This scope limitation 

narrows the number of projects studied in this paper down to 272 projects without 

Chinese development finance and 30 with Chinese development finance. Past studies 
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found that mammal and bird population densities significantly declined with their 

proximity to infrastructure on biodiversity risks. Bird populations were more impacted at 

a shorter distance to infrastructure than mammal populations. We categorize three levels 

of risk based on buffer distances around each energy investment. Each level is selected 

based on sensitivity to impact. Level 1 impact is defined with a buffer distance of 1 km, 

considering the IUCN categories in the immediate vicinity; Level 2 impact is a distance 

of 2 km, while Level 3 impact is a buffer of 10 km. Each IUCN level is examined in each 

risk buffer, providing insights on conservation risk priorities resulting in a total of 18 

combinations (3 risk categories, 6 species groups). We then examine those combinations 

in each category using multivariate ANOVA (MANOVA) and ANOVA tests. We used 

MANOVA to extend ANOVA’s capabilities to assess multiple dependent variables 

simultaneously. MANOVA tests helped differentiate the group significance of energy 

investments based on five variables, weighted range size rarity, power capacity, and 

changes in deforestation area, core, and bridge areas during the four-year period. 

ANOVA enabled us to test the significance of one variable at a time. We used the R (R 

Core Team, 2020) to derive MANOVA and ANOVA results. 

2.2.2.4 Morphological analysis 

 We estimated spatial forest pattern and landscape connectivity using a 

morphological spatial pattern analysis (MSPA) toolbox (GuidosToolbox 2.6 version 4) 

(Vogt and Riitters 2017). The Global Forest Change was preprocessed into binary 

foreground/background image (forest/non-forest) for each year from 2000 to 2018. We 

selected a threshold of 900-m to define intact forest patches, forest corridors, and islet 
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forest-isolated patches. Due to Southeast Asia's geographic extent, the yearly tree cover 

image was recoded and split into tiles with dimensions of 9984 pixels (multiple of 

shardSize, an export parameter of GEE). This tiling process allows for parallel processing 

and overcomes computing memory constraints (10,000 pixels). The MPSA explicitly 

addresses the forest’s morphology and segments the image into seven distinct forest 

landscape elements. Core forest refers to interior areas of forest located at a distance of 

(≥900 m) from the nearest forest edge, while edge forest refers to external forest 

perimeter of (<900 m). The 900 m edge distance threshold is the midrange indicator of 

the potential edge effect on forest patches (Alamgir et al. 2019). Next, a loop refers to a 

corridor connecting the same core area on either side, while a bridge refers to a corridor 

connecting different sections of a core-forest patch. Islet refers to disjoint and small 

locations of intact forest in contrast to a perforation that characterizes an internal object 

perimeter (Vogt and Riitters 2017, Alamgir et al. 2019). We deploy the MSPA 

application to examine the deforestation process and use the segmentation methodology 

to characterize differential impacts in China and other countries’ energy investments. 

Workflow using the GFC dataset: 

• Using the Tree Cover of 2000 as a baseline, we can determine which forest 

cover pixels are lost per year based on a simple differencing. Each loss is 

denoted by the specific loss year. 

• Power plant buffer zones, country boundaries, and ecoregion boundaries were 

used to generate deforestation areas (for the boundaries mentioned above). 
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• The remaining forest cover each year (determined by Tree Cover 2000 and 

loss year), were used as input for GuidosToolbox for MSPA analysis. 

• The MSPA analysis results were tabulated with the Power plant buffer zones, 

country boundary, and ecoregion boundary. 

2.2.2.2 Ecoregions 

 We used the WWF Global 200 ecoregion product and filtered Southeast Asia 

ecoregions. Figure A3 shows each ecoregion’s distribution based on country boundaries. 

Indonesia has the largest number of ecoregions. The two largest ecoregions in terms of 

area are Borneo Lowland and Montane Forests and Sumatran Islands Lowland and 

Montane Forests. An ecoregion can be distributed across one or multiple countries. For 

instance, Naga-Manapuri-Chin Hills Moist forest is found mainly in Myanmar, while 

Indo-China dry forest is located over multiple countries, Vietnam, Thailand, Laos, and 

Cambodia. 

 

2.3 Results 

2.3.1 Characterizing deforestation trends in Southeast Asia based on MSPA 

 First, we estimate the deforestation areas in countries during this period based on 

a time series of global forest change, assessing deforestation impacts in forest patch 

morphology. Most lowland Southeast Asia was historically covered in hyperdiverse 

mixed dipterocarp forest of various types, with higher altitudes under a lower stature but 

still diverse montane forest. Nearly all of the original forest cover is already gone 
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(Grantham et al. 2020), with bridges and loops the dominant deforestation morphological 

structures. Bridges connecting different core areas (shown in red) are usually somewhat 

degraded and strongly modified by edge effects. A single core forest patch can be broken 

up into smaller areas, connected by loops (shown in yellow). Other morphological 

structures such as perforations or islets are often not visible at this scale due to their small 

sizes. The net result is a degraded forest in which only minimal areas are free of edge 

effects from some or all directions. We have yet to examine the impact of this pattern of 

erosion on tree species loss, but it could have a major impact on the current forest 

structure and its future trajectory. For example, tree species that require deep shade to 

germinate and mature are likely to be at higher risk than sun-tolerant forms. These tree 

species composition shifts will likely have knock-on consequences for animal 

communities as well as structurally dependent plant life forms such as lianas and 

epiphytes, with multiplicative impacts on all other taxa. Figure 2.5 shows the MSPA 

analysis for Southeast Asia in 2000 and 2018 with an Edge distance of 900 m. Figure A4 

shows that deforestation is consistently increasing within the region, particularly in 

Cambodia, Indonesia, Vietnam, and Laos, as viewed from the perspective of a rapidly 

expanding matrix (green line) of non-forested landuse. Core forest loss, shown in pink, 

has been phenomenal, particularly in Indonesia in the last two decades. There are very 

few intact core areas (shown in green) left in Indonesia during this time. The MSPA 

analysis shows other countries, including Cambodia, Laos, Malaysia, and Vietnam, as 

having experienced core and edge forest losses over the last decade. These are of varying 

degrees but uniformly alarming with respect to the implications for biodiversity loss. 
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Figure 2.5. MSPA for 2000, 2006, 2012, and 2018 with edge distance of 900m; green 

represents core forest area (interior intact forest) while red represents the bridges 

connecting different core areas, often fragmented or deforested areas. 

Next, we examine the types of significant differences in the morphological 

patterns of deforestation in various ecoregions. The core forest in Sulawesi moist forest 

and Sumatran lowland and montane forest has been roughly halved, dropping from 

around 50,000 km2 to less than 25,000 km2 in the last two decades. Even more dramatic 

is the core forest loss in the Borneo lowland and montane forest ecoregion, which have 

dropped from 190,000 to 50,000 km2. Cardamom mountain moist forest has similarly 

lost core forest from 100,000 to less than 50,000 km2 within the last two decades- this 

despite periods of relative stasis when conservation measures were episodically effective.  
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The patch morphology called “bridge” is of critical importance as wildlife 

highways, preserving the value of diminishing core forest patches by connecting them 

and maintaining gene flow and population viability. Here changes in forest bridge habitat 

are shown in purple. In some countries (Myanmar, Cambodia, Indonesia, Laos, Malaysia, 

Philippines), forest bridges increase at first and then decrease, indicating forest 

encroachment, followed by development and rising or total deforestation. The feature 

called "edge" is too small to be displayed in these graphs but plays a vital role in the 

forest disturbance and recovery regimes. Such morphological changes in deforestation 

have impacts on animal ranges and habitats. Orangutans once lived in large contiguous 

areas of intact rainforest, both in Borneo and Sumatra, but are now increasingly found at 

the edges of agricultural (oil palm) plantations and forest fragments, placing them at 

considerable risk. Another iconic species is the loris (Loris tardigradus), living in human-

modified landscapes in Java, needing to use bridges to move from one patch of forest to 

another. Increasing human expansion (Birot et al. 2020) results in forest fragmentation, 

leading to an ever-greater reliance on bridges connecting population fragments of forest-

dependent species. The morphological change in the forest may have altered the loris’ 

habitat, and now the loris is on the IUCN critically endangered list. 

Figure A5. shows the MSPA results by ecoregion from 2000 to 2018, profiling 

temporospatial change in forest patch morphology. The Cardamom Mountains rain 

forests ecoregion (top right first row) spans 44,288.8 km2 of rain forest plus some drier 

dipterocarp forest, a part of the Indo-Burma global biodiversity hotspot. It contains or 

until recently had included many rare, threatened, and endemic species, including the 
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Asian elephant (Elephas maximus), tiger (Panthera tigris), and clouded leopard 

(Pardofelis nebulosa). It is also home to 450 birds and reptiles, such as the Cardamom 

Mountains wolf snake (Lycodon cardamomensis) and the Cardamom Mountains bent-

toed gecko (Cyrtodactylus cardamomensis). Waterways in the Cardamoms are some of 

the last redoubts of many critically endangered freshwater species, including the Asian 

arowana (Scleropages spp.) and Siamese crocodile (Crocodylus siamensis). Its remote 

location and rugged terrain offered some protection in prior decades, but now this region 

is experiencing rapid and rampant deforestation. Its core forest has decreased from 9,500 

to around 2,500 km2. Another ecoregion, the Borneo lowland, and montane forests have 

experienced a loss in core forests from close 170,000 to less than 52,000 km2 in this 

period (Cushman et al. 2017). This core forest loss has impacted several endangered and 

iconic species, including the Bornean orangutan, twelve other primate species, the 

Bornean bearded pig, and the Bornean yellow muntjac deer (Cheyne et al. 2016, Alamgir 

et al. 2019). While these species vary in their degree of dependence on intact primary 

forest, its rapid loss and the drivers responsible for this loss pose an imminent existential 

risk to them all. 

2.3.2 Differences between power plants with and without Chinese development finance 

in Southeast Asia 

 We examine the differences between the impacts of power plants with and 

without Chinese development finance. The number of coal power plants with Chinese 

development finance is slightly higher (19 vs. 11), while for hydro investments, Chinese 

investments are lower (63 vs. 209). Chinese coal energy investments have greater power 
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generation capacity on average (661 MW) than their counterparts (501MW). Similarly, 

Chinese hydro investments have a greater average power generation, around 234 MW, 

compared with the hydro plants without Chinese development finance (average around 

110 MW). Chinese invested power plants consistently have the same power generation 

capacity. However, it is worth noting that power plants (coal or hydro) with the largest 

capacity are non-Chinese investments. The maximum capacity of the Chinese invested 

coal and hydro energy power plants in Southeast Asia is 1244 MW and 790 MW; 

corresponding non-Chinese invested coal and hydro energy project capacities in 

Southeast Asia are 4180 MW and 2400 MW, respectively. Figure 2.6 shows the total 

power plant capacity in MW and GWh power production of power projects with Chinese 

investment (in red) and projects without Chinese investments (blue). The spread in the 

range of plant capacity of the latter group is visible. 

 

Figure 2.6. Power plant capacities of energy investments with and without Chinese 

development finance. 
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2.3.2.1 Significance testing of differences in the biodiversity impact of power plant 

projects at different buffer distances 

We conducted MANOVA analyses to test if the impact of power plants with and without 

Chinese development finance within critical buffer distances are significantly different, 

with variables representing power plant characteristics and biodiversity metrics. Table 1 

shows differences in statistical significance between the two investments in terms of 

buffer distances and species. We find that all three IUCN categories differ significantly in 

Chinese vs. non-Chinese financing at various buffer distances. This signifies differences 

between Chinese and non-Chinese energy investments, probably attributable to 

differences in investment strategy and location. 
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Table 2.1. Statistical significance testing at various buffer intervals between powerplants with and without Chinese 

development finance. *p<0.1; **p<0.05; ***p<0.01 

Buffer Species MANOVA 
Weighted 

rarity 
Deforested 

area 
Core area 

change 
Bridge area 

change 
Capacity 

1 km 

Amphibians 0.010* 0.196 

0.445 0.692 0.785 

4.94E-04*** 

Freshwater groups 0.013* 0.540 

Mammals 0.002** 0.027* 

Marine Fish 0.004** 0.028* 

Reptiles 0.013* 0.556 

Sharks/Rays/ Chimaeras 3.85E-05*** 6.79E-06*** 

2 km 

Amphibians 0.016* 0.231 

0.974 0.454 0.744 

Freshwater groups 0.018* 0.514 

Mammals 0.002** 0.035* 

Marine Fish 0.005** 0.015* 

Reptiles 0.017* 0.485 

Sharks/Rays/ Chimaeras 3.36E-06*** 1.59E-07*** 

10 km 

Amphibians 0.003** 0.233 

0.044* 0.800 0.093 

Freshwater groups 0.004** 0.373 

Mammals 0.003** 0.214 

Marine Fish 0.001*** 0.003** 

Reptiles 0.001** 0.066 

Sharks/Rays/ Chimaeras 5.09E-10*** 7.22E-12*** 
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ANOVA tests for marine fish like vertebrates are significant at all buffer 

distances. The number of species in the buffer zone is also higher for power plants with 

Chinese development finance (shown in Figure 2.7) This is probably because Chinese 

invested power plants are closer to the coast compared with their counterparts. 

 

Figure 2.7. Biodiversity statistics of Marine Fish and Sharks / Rays / Chimaeras. 

The weighted rarity for mammals in 1 km and 2 km buffer zones is significant, 

mainly because of one Chinese-funded power plant with a relatively high weighted range 

size rarity, the highest point in Figure A6. For example, PLTU Tanjung Kasam in 

Indonesia is a coal plant with a power capacity of 110MW. Although the 2 km buffer 

zone of this plant overlaps with 49 mammal species, the weights based on IUCN 

categories are high, resulting in a biased estimate for weighted rarity for mammals 

resulting from Chinese coal investment. In the following Table A2, the total weighted 

rarity of species is around 86, where the three endangered and one critically endangered 

makes 26 of the 86 in the index. PLTU Tanjung Kasam is the highest point in Figure A6, 
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and its weighted range size rarity value is more than twice as much as the second highest 

power plant in the lower right panel. 

2.3.2.2. Significance testing of differences in the deforestation impacts of power plant 

with and without Chinese development finance 

We use ANOVA tests to find significant discrepancies between the two groups of 

investments four years before and after the commission year. Figure A7 displays the 

statistical differences in the amount of forested area impacted by Chinese and non-

Chinese investments at a 10km buffer distance. We compare the top left panel in Figure 

A7 with the lower right panel. The range in the amount of forest area before and during 

the commission years is higher for Chinese than non-Chinese power investments. Also, 

both groups show deforestation during the four-year period. The rate of deforestation and 

the area of deforestation are higher for energy investments without Chinese development 

finance. The proportion of hydro power plants is likely higher in the non-Chinese 

investment group. Since Chinese invested coal power plants are closer to the coast and 

population center, the available forest is lower in their buffer zones 

2.3.3 Differences between coal and hydro power plants in Southeast Asia 

We run the similar MANOVA and ANOVA test on coal and hydro power plants 

to determine if the corresponding differences emerge as the previous tests. We found no 

significant differences in deforested areas during the four years before commissioning. 

However, there are critical differences between coal and hydro energy power plants in the 

changes occurring in the core and bridge area in the same period. For hydroelectric 
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investments, the morphological differences (Figure 2.8) are noticeable in larger buffer 

zones (10 km). In general, flooding areas associated with a hydroelectric reservoir results 

in the loss of core forest in a dam's buffer zones. For example, Nam Ngum 2 Dam, 

located on the Nam Ngum River, one of the major tributaries to the Mekong, is a Chinese 

financed hydroelectric project in Laos. The forest cover decreased by 7.3 square 

kilometers within the 10 km buffer area. Interestingly, the loss of bridge forest in buffer 

zones of hydroelectric and coal energy investments is similar, but some hydroelectric 

investment buffer zones lead to an extensive bridge area. Increasing forest area may be 

related to tree plantations, including non-native species such as rubber, eucalyptus, and 

acacia (Holt et al. 2016, Ingalls et al. 2018). 

 
Figure 2.8. Bridge area and core area summaries in 10 km buffer showing four years before 

commission years, at commission years, and changes during the construction of coal and 

hydro power plants. 

These patterns need to be understood based on the differences between coal and 

hydropower projects. Coal power plants generally have greater power capacity. However, 
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four of the top five power plants in power generation in Southeast Asia are hydroelectric. 

Some morphological differences in the energy investments may stem from the variation 

in coal and hydro power plants' site selection factors. Coal power plants are located in 

relatively densely populated areas with high end-use demand nearby. Since large 

hydroelectric energy investments are constrained by proximity to rivers, they tend to be 

situated in forested or unpopulated areas that would “only” directly impact the indigenous 

population. 

 
Figure 2.9. Biodiversity statistics of Marine Fish and Sharks / Rays / Chimaeras for coal 

and hydro power plants. 

There are significant statistical differences in weighted range size rarity for 

amphibians as well as for marine fishes, sharks, rays, and chimaeras. The weighted range 

size rarity is much higher in the buffer zones of coal power plants than for hydro plants 

(Figure 2.9). That is perhaps due to coal power plants’ location near major population 

centers and major cities in Southeast Asia, mainly near the coasts. 
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Table 2.2. Statistical significance testing at various buffer intervals between coal and hydro power plants. *p<0.1; 

**p<0.05; ***p<0.01 

Buffer Species MANOVA 
Weighted 

rarity 
Deforested 

area 
Core area 

change 
Bridge area 

change 
Capacity 

1 km 

Amphibians 2.47E-11*** 0.025** 

0.588 0.465 0.989 

9.22E-14*** 

Freshwater groups 1.38E-11*** 0.145 

Mammals 2.03E-11*** 0.358 

Marine Fish 9.47E-25*** 6.02E-19*** 

Reptiles 5.10E-11*** 0.319 

Sharks/Rays/ Chimaeras 5.56E-16*** 2.61E-11*** 

2 km 

Amphibians 5.83E-12*** 0.029** 

0.372 0.090* 0.618 

Freshwater groups 3.35E-12*** 0.189 

Mammals 5.84E-12*** 0.548 

Marine Fish 4.06E-29*** 4.50E-24*** 

Reptiles 9.43E-12*** 0.248 

Sharks/Rays/ Chimaeras 3.01E-19*** 9.25E-15*** 

10 km 

Amphibians 1.58E-14*** 0.029** 

0.225* 1.49E-05*** 0.021** 

Freshwater groups 1.52E-14*** 0.434 

Mammals 4.11E-14*** 0.939 

Marine Fish 9.47E-38*** 3.02E-31*** 

Reptiles 9.05E-15*** 0.003*** 

Sharks/Rays/ Chimaeras 4.41E-15*** 6.78E-19*** 
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2.4. Discussion and conclusion 

Our study in Southeast Asia provides a big data spatial framework to analyze the 

impact of energy investments on deforestation and biodiversity throughout Southeast 

Asia. We use the Global Forest Change - an extensive remote sensing dataset to estimate 

deforestation at 30 m resolution enabling us to examine yearly deforestation trends in 

every location. We further enriched our analysis by capturing the forest’s morphological 

structure through MSPA analysis. We utilized the IUCN data to analyze further 

biodiversity risk, a proxy for the complex biotic interactions among component species in 

Southeast Asia's twelve ecosystems. Our study is one of the few studies to analyze 

deforestation highlighting the forest's morphological structure, a key to understanding the 

impact of biodiversity loss in each ecoregion. Our study metrics would be relevant to 

developing robust, smart conservation plans in each country as they grapple with energy 

development and biodiversity trade-offs, the focus in a future study. 

The path to sustainable development in Southeast Asia emphasizes energy 

investments. China’s energy investments in Southeast Asia are compared with other 

countries’ investments to understand and compare the risk to biodiversity in both coal 

and hydroelectricity. We analyzed the energy investments in terms of specific locations, 

power production, and impacts at various buffer distances. There are statistical 

differences in energy investments with and without Chinese development finance, mainly 

driven by the capacity differences and the locations of the two investment groups. We 

show the differential impact of forest core and edge relationships of each power plant 
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type on weighted species richness and species richness, based on statistical significance 

tests.  

The rapid rate of tropical forest loss poses such a great and immediate threat to 

global biodiversity that most authors have gone for the throat and looked exclusively at 

total forest area lost. Operationally, however, the morphology of forest loss is of 

enormous biological importance and is also the scale at which policy modifications could 

make a big difference in species conservation, even independent of deforestation rates per 

se. The total forest area remaining tells only half the story: if core forest vanishes and 

corridor habitats are amputated, the days are numbered for all obligately forest-interior 

species. Prior studies in biodiversity and energy development rarely consider either the 

extraordinary diversity of forest types in Southeast Asia or their spatial disposition and 

morphology. A lack of accurate representation of ecosystem processes or proxies for 

them at a regional scale is the primary source of uncertainty in these studies. Our 

approach identifies the deforestation and biodiversity risk at a regional ecosystem scale. 

We are able to differentiate biodiversity impacts in Borneo montane rain forest from peat 

swamp ecosystems in Borneo using existing data sources for species richness and 

weighted rarity of species. While there is ubiquitous globally relevant earth observation 

data, challenges remain in translating the resulting analysis into biodiversity strategies on 

a regional scale. In this paper, we analyzed the morphological structure of the forest to 

further differentiate the impacts of the loss of core and edge forests in each ecoregion. 

The loss of core forests is critical in many regions. The apparent regeneration or 

restoration of corridor and bridge forests can look good superficially, but if the trees 
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involved are exotic species, this can result in the substitution of weedy species for a large 

fraction of the native biota. 

The tropical forest estate of Southeast Asia is very close to ruin. However, the 

remaining pockets and protected areas still provide a basis for maintaining much of the 

indigenous biodiversity and for restoring viable tracts of forest habitat that could then be 

self-sustaining, along with all of their contained wildlife, once again. For this to happen, 

in addition to a development plan, each country and every major development initiative- 

particularly the Belt and Road Initiative- must also have a rigorous conservation plan. 

First, they must consider alternative development scenarios so that initial impacts can be 

minimized. Second, they must include an aggressive restoration program and timeline 

complete with the full extent of both remote and on-the-ground monitoring required for 

accountability and adaptive management in the development process. We propose that 

deforestation and afforestation morphology analysis, in conjunction with regular on-the-

ground biodiversity survey work, can be a valuable tool in providing the much-needed 

accountability to provide metrics in assessing such trade-offs. 

 

Funding: This research was funded by support from the Climate and Land Use Alliance 

(G-1812-55950) and David and Lucile Packard Foundation (2020-68743) to the Global 

Development Policy Center at Boston University. 

 

Appendix A contains additional figures, and additional tables.  
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CHAPTER 3 – Geographically Weighted Regression Models in Estimating Median 

Home Prices in Towns of Massachusetts Based on an Urban Sustainability 

Framework 

 

Housing is a key component of urban sustainability. The objective of this study was to 

assess the significance of key spatial determinants of median home price in towns in 

Massachusetts that impact sustainable growth. Our analysis investigates the presence or 

absence of spatial non-stationarity in the relationship between sustainable growth, 

measured in terms of the relationship between home values and various parameters 

including the amount of unprotected forest land, residential land, unemployment, 

education, vehicle ownership, accessibility to commuter rail stations, school district 

performance, and senior population. We use the standard geographically weighted 

regression (GWR) and Mixed GWR models to analyze the effects of spatial non-

stationarity. Mixed GWR performed better than GWR in terms of Akaike Information 

Criterion (AIC) values. Our findings highlight the nature and spatial extent of the non-

stationary vs. stationary qualities of key environmental and social determinants of median 

home price. Understanding the key determinants of housing values, such as valuation of 

green spaces, public school performance metrics, and proximity to public transport, 

enable towns to use different strategies of sustainable urban planning, while 

understanding urban housing determinants—such as unemployment and senior 

population—can help modify urban sustainable housing policies. 
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3.1 Introduction 

3.1.1 Background 

 More than 83 percent of the US population now lives in cities, up thirty percent 

from 50 years ago. By 2050, the US urban population is projected to increase to more 

than 90 percent (of 423 million in 2050). Urbanization is transforming farmland, 

wetlands, forests, and other natural ecosystems into urban landscapes at an unprecedented 

rate resulting in urban sprawl. Urban landscape patterns and dynamics are the physical 

manifestation of complex interactions between environment, society, and economy 

(Alberti, 1999; Grimm et al., 2000; Ostrom, 2009; Pickett et al., 1997). Thus, urban areas 

are highly relevant, if not central, to any discussion on sustainable development.  

The central goal of urban sustainability is efficient use of natural resources within 

a city region, while simultaneously improving its livability, through social amenities, 

economic opportunity, and health (Newman & Kenworthy, 1998). We offer a conceptual 

framework to understanding urban sustainability through the lens of urban housing that is 

at the intersection of economic, ecological and social dimensions. Housing plays a pivotal 

role in determining the financial (economic) security and well-being of individuals, 

neighborhoods, and cities. Owning a home is part of the “American Dream”. Research on 

housing has focused on determining home prices, traditionally modeled in economics 

using hedonic models (Shiller, 2007). Some factors that are typically included in hedonic 

price analyses are socio-economic and demographic factors such as housing age/tenure, 

vacancy rates, racial and ethnic demographics (Harris, 1999). Boston metro has been well 

studied in the context of hedonic pricing models for the last 3 decades. An early paper 
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(Case & Mayer, 1996) studied patterns of home price appreciation in the Boston area 

from 1982 to 1994 and showed that changes in the cross-sectional pattern of home prices 

are related to differences in manufacturing employment, demographics, new construction, 

proximity to the downtown, and to aggregate school enrollments. Hedonic pricing models 

use parcel level housing data to estimate model parameters. Social factors including 

income, population density, race, and education impact urban housing and school 

districts. This has led to a renewed interest in social justice addressing accessibility to 

parks (Wolch et al., 2014), food (Alkon & Agyeman, 2011), and environmental health 

(Cutts et al., 2009) in the context of urban sustainability. Ecological studies in the urban 

sustainability context have examined challenges and opportunities in addressing 

imbalances between green and built landscapes (Wu et al., 2014) and more recently in 

mitigating urban carbon footprint (Wang et al., 2015). Urban sustainability research 

traditionally has addressed only a single ecological issue in individual neighborhoods 

(Wachsmuth et al., 2016). We need to expand this research to include regional or state 

level scales in order to address sustainability in a larger context.  

In the last two decades, spatial econometric studies have been introduced that 

demonstrate the fundamental role of spatial autocorrelation and spatial heterogeneity in 

the analysis of housing in varied regional contexts (Anselin, 2013; A. C. Goodman & 

Thibodeau, 2003; LeSage, 2008). Spatial models use a variety of spatial scales, ranging 

from parcel level data to census town level data, to address different questions in relation 

to urban patterns and dynamics. Prior studies have focused either on individual housing 

units (Bitter et al., 2007; Helbich et al., 2014; Huang et al., 2010), or slightly larger scale, 



44 
 

 

i.e., districts or metro areas (Collins & Woodcock, 1996; Hasse & Lathrop, 2003; 

Paulsen, 2013). At a regional or continental scale, remote sensing instruments are the 

most viable option for data-driven mapping, monitoring, and assessment of the urban 

systems (Jeon et al., 2014; Kennedy et al., 2010; Maliene & Malys, 2009). Given the 

ready availability of remote sensing data, many studies have incorporated the ecosystem 

service valuation of green space (forest, woodland, or parks) into pricing models (Wolch 

et al., 2014), thus opening new avenues of research in urban sustainability in the coming 

decades.  

The objective of this study was to assess the significance of key economic, 

environmental and social determinants of median home prices in Massachusetts towns 

using spatial models at the level of the state, including many urban agglomerations. We 

used a sustainability lens in setting our theoretical framework and incorporated the effects 

of environmental, economic and social factors over a time period. In a sustainable 

development context, the dynamics of housing growth need to be examined in order to 

formulate relevant policy or development decisions. Real estate market dynamics are 

inseparable from the sustainability concept as cities are designing green buildings, public 

housing, and affordable housing (Maliene & Malys, 2009). This analysis uses a select set 

of determinants based on prior empirical research. Population density (Case & Shiller, 

2003) is often correlated to income levels; wealthier affluent communities are 

characterized by higher value homes. Proximity to highways or public transport impacts 

home values (Higgins & Kanaroglou, 2016). Residential development is also constrained 

by specific town conservation laws and regulations, therefore woodlands and forests not 
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protected are open to development (Wolch et al., 2014). Economic factors, such as 

unemployment, impacts home prices especially in periods of economic downturn (C. J. 

Goodman & Mance, 2011). Social factors such as age demographics (Myers & Ryu, 

2008), public schools (Gibbons & Machin, 2008) and education (Aughinbaugh, 2013) 

may also impact home prices. The benefit of investigating the change in housing prices 

on a town scale is that demographic and socio-economic data are available over multiple 

years of observation. The data can be used to investigate the changing pattern of spatial 

non-stationarity that can be modeled and mapped using GIS. Such a mapping shows the 

non-stationarity in urban housing and sustainability. 

The main contribution of our approach is the introduction of determinants related 

to urban sustainability at a town scale rather than the traditional hedonic home pricing 

related to individual houses. Our approach incorporates a plethora of data including 

remote sensing, census, and other published state reports. This “big data” approach to 

sustainability science is needed to develop public policies on housing, conservation, 

transportation and employment. We believe that our approach provides a broader 

perspective on urban home values and enables the characterization of patterns of spatial 

non-stationarity across Massachusetts. There are policy implications related to 

development, demographics, housing and transportation. What forest or woodland to cut 

depends on value placed on open lands in various towns across the state? Suburban towns 

north and west of Boston place a higher premium on forest compared with rural western 

Massachusetts. Senior populations living in suburban Boston homes have seen 

considerable increase in their home prices and seniors choose to continue to live in these 
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towns with greater access to senior services (free rides to malls or hospitals). A town may 

adopt stricter regulations to protect unprotected forests open from development, or to 

improve the quality of education by imposing more taxes on its citizens, knowing that 

school performance positively impacts home prices in these towns. 

The structure of the paper is as follows: the next section examines the modeling 

framework and the long history of hedonic and GWR modeling. Section 2 outlines the 

data sources and discusses the methodology including spatial modeling considerations. 

Section 3 provides the results of analysis relating to spatio-temporal patterns of median 

home prices derived from the ordinary least squares (OLS), and two types of GWR 

models. We highlight the differences in the degree of spatial non-stationarity in the 

determinants of the median home price in Massachusetts, as well as characterize the 

temporal differences in median home prices in the period of bust and boom. Section 4 

provides conclusions related to the theory and practice of GWR in this field. 

3.1.2 Modeling framework 

 From the methodological point of view, the hedonic price function f, typically 

describes the property price P as a function of three categories of independent variables: 

structural, locational, and environmental characteristics. Traditional hedonic approaches 

adopt a model structure which reduces heteroscedasticity and nonlinearity to produce a 

single solution for the intercept term, along with the coefficients that determine the 

significance of independent locational, structural, or environmental characteristics, and 

the overall model’s goodness-of-fit. Hedonic modeling has been executed at a variety of 

spatial scales ranging from a block or neighborhood (Bitter et al., 2007; Helbich et al., 
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2014; Huang et al., 2010), to the district or metro scale (Hasse & Lathrop, 2003; Paulsen, 

2013). However, these models cannot account for spatial autocorrelation resulting from 

spatially correlated omitted variables or spatial externalities and spatial heterogeneity (A. 

C. Goodman & Thibodeau, 2003).  

Spatial autocorrelation indicates that homes in a neighborhood tend to be more 

similar. Real estate companies (including the popular Zillow), in effect, use spatial 

autocorrelation to determine the price of a home at a certain location based on the prices 

of nearby (similar) homes. Furthermore, many homes in a neighborhood tend to be built 

around the same time, and proximity to both positive and negative externalities has 

similar effects on the market values of nearby properties (Fotheringham et al., 2015). 

However, spatial heterogeneity or spatial non-stationarity results when the relationship 

between two or more variables determining the median home price is not constant across 

space, resulting in locally varying submarkets. Ignoring spatial non-stationarity leads to 

misspecification in the model including missing local effects that can have profound 

implications for understanding the temporal and spatial relationship between housing 

prices, location and housing attributes (Huang et al., 2010; Wu et al., 2014). 

The spatial modeling literature provides a variety of local and global models to 

deal with spatial dependence (Anselin, 1998; Pace et al., 2009), as well as models that 

explicitly incorporate spatial heterogeneity such as the geographically weighted 

regression (GWR) methodology (Fotheringham et al., 2002). GWR calibrates a series of 

local regression models separately at each location and offers the ability to map local 

estimates of the intercept, variable coefficients, and other regression diagnostics and a 



48 
 

 

check for spatial variations in the relationships between dependent and independent 

variables at each location (Bitter et al., 2007; Yu et al., 2007). The keys to GWR 

modeling are the spatial kernel functions, with fixed or varying bandwidth that impact the 

shape and size of local neighborhood at each location (e.g., a circular neighborhood of 

fixed radius or a fixed number of neighbors for each location), and the weighting 

functions that determine the significance of neighbors with fixed or varying bandwidth. 

The definition of spatial neighborhood is a critical consideration in the analysis. GWR 

has been applied in the contexts of determining home prices in many cities (Crespo et al., 

2007; Demšar et al., 2008; Helbich et al., 2014; Lu, Charlton, et al., 2014; Saphores & Li, 

2012). 

The basic GWR model assumes the same degree of spatial smoothness for each 

coefficient, which may not hold true in all contexts. GWR therefore overfits the data and 

produces a bias. Hence the basic GWR has undergone the following significant revisions: 

First, traditional GWR models define distances as straight line or Euclidean, while more 

recent modifications of the distance function adopt non-Euclidean distance metrics (Lu, 

Charlton, et al., 2014) to improve the model fit. Second, traditional GWR models use a 

fixed bandwidth for all variables to estimate the spatial relationship between variables 

while a revised GWR can use a flexible bandwidth (Yang, 2014) to estimate spatially 

varying relationships at various geographical scales within one model. The resulting 

model estimates coefficient surfaces that may vary at different spatial scales for different 

variables leading to better model fits. Third, Wheeler (Wheeler, 2007, 2010) proposed 

regularized GWR models, by combining ridge and/or lasso regression with GWR that 
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have shown robustness in addressing the multicollinearity problem. Fourth, there has 

been a focus on diagnostics to check the model fit such as cross-validation (CV) score 

(Bowman, 1984) to derive an optimal kernel bandwidth for GWR regression to reduce 

model bias. Another measure is the Akaike Information Criterion (AIC) (Akaike, 1974) 

that is traditionally used to account for model parsimony dealing with the trade-off 

between prediction accuracy and complexity. In GWR, a corrected version of the AIC is 

used that accounts for sample size (Hurvich et al., 1998) and entails fitting bandwidths 

with different penalty functions. Fifth, the incorporation of temporal non-stationarity into 

GWR model is providing more insights on market trends and depreciation of home prices 

through time (Huang et al., 2010). Finally, not all variables in GWR models exhibit non-

stationarity in all contexts; hence assuming that all of the independent variables in the 

GWR exert a spatial influence on the dependent variable can lead to biased estimations 

(Wei & Qi, 2012). For example, real estate markets may be economically connected 

through common federal policies such as governmental subsidies while some price-

determining effects vary across space resulting in spatial heterogeneity. It would be 

wrong to assume that both factors exert a spatial influence. Research addressing this issue 

has led to the formulation of the Mixed Geographically Weighted Regression model 

(MGWR) that incorporates both linear regression and the GWR (Fotheringham et al., 

2002). MGWR is a regression model in which the first step involves differentiating non-

stationary and stationary variables by explicitly testing for spatial variability. This testing 

results in some independent variable coefficients being held constant, which are 

considered global parameters, while some others spatially vary, denoted as local 
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parameters (Brunsdon et al., 2000). The second step in MGWR involves in mapping 

spatial variability of local parameters while global parameters have no spatial variability. 

Thus, MGWR differs from GWR, where all independent variables are assumed to have 

spatial variability resulting in different spatial distributions of local parameters. 

 

3.2 Materials and methods 

3.2.1 Study area 

 Massachusetts is located in the northeastern United States and has an area of 

27,340 km2, 25.7% of which is water and 61% is covered by forest. It is the 7th-smallest 

state in the United States and accounts for around 2.75% of the total GDP. The state has a 

population of 6.8123 M (2016) of which 4.7 M live in the Boston Metro region. Boston is 

the 10 largest metropolitan area in the US. The population of the state is mostly urban 

(83%). Figure 3.1 shows the location of Boston and other towns mentioned throughout 

this paper. Metro Boston (#7 on Figure 3.1) is located on the eastern coast of the state. 

The GWR analysis is conducted at the town and city scale. There are 351 towns 

and cities in Massachusetts. Each town’s data across the time period was selected for 

census years 2000 and 2010 (Bureau, n.d.-b) and ACS data for years 2009, 2011–2013 

(Bureau, n.d.-a). We only included 336 towns and cities due to data availability. Our data 

includes the Great Recession, a highly influential period for housing prices in the US 

economy. The period of the Great Recession, from 2008 to 2009, was characterized by 

loss of wealth, reduction in consumer spending, and massive job loss that resulted in a 

decline of home prices (Elsby et al., 2010; C. J. Goodman & Mance, 2011).  
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3.2.2 Data sources—socio-economic and environmental variables 

 Our data was collected from various sources including the census, remote sensing 

(land cover), transportation, tax department, and labor statistics. We describe our data 

shown in Table 3.1. Our dependent variable is the Median Home Prices, recorded from 

the census (2000 and 2010) and ACS (2009, 2011, 2012, and 2013). Our choice of time 

periods was dictated by the availability of relevant data. We differentiated our temporal 

analysis into two sets based on the source of data—decennial census collected in 2000 

and 2010, and ACS data from 2009 to 2013. (Note ACS data for 2008 is unavailable). 

The American Community Survey (ACS) data are estimates and therefore cannot be 

compared with census data directly. We used the ACS data since it represents the period 

of Great Recession starting in 2009. We used inflation-adjusted median home prices in 

order to compare today’s real estate prices to their historical norm.  
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Figure 3.1. Location of Boston and other towns in Massachusetts mentioned in the paper. 
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The independent variables used in our models were selected based on past theoretical and 

empirical works examining their relevance in estimating home values. Population 

Density and Unemployment Rate have an impact on home prices (Case & Shiller, 2003; 

Rogers & Winkler, 2013; Shiller, 2006). The impact of unemployment on housing during 

the Great Recession (Byun, 2010; Higgins & Kanaroglou, 2016) shows that employment 

was key for recovery in some metro areas of the US. Unemployment was a significant 

factor in the wake of the housing collapse in 2008 in Massachusetts and impacted home 

prices (Holly et al., 2010). Therefore, we assume that unemployment is likely to impact 

the housing prices in our study context. The impact of education (college degree) and 

home price highlight that since 1988, those who completed college owned homes at 

higher rates in the US than those with no college education (Aughinbaugh, 2013). Sellers 

of existing homes provide a major share of the annual supply of homes sold in the US; 

home sales are driven by the aging of the population since seniors are net home sellers 

(Myers & Ryu, 2008). Older homeowners have emerged as a dominant segment of the 

housing market following the housing collapse in 2008. The homeownership rate for 

Americans aged 65 and over has remained at 80 percent while dropping for every other 

age group. Seniors typically have less mortgage debt than younger homeowners; they 

typically downsize and sell, or increasingly some stay at the same home (Projections and 

Implications for Housing a Growing Population, 2016). Seniors play a significant role in 

housing dynamics and hence are included in our analysis. 

Residential property tax rates vary across the state related to home values and the 

mix of residential and commercial holdings in each town. Suburban towns such as 
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Weston and Wellesley have some of the lowest residential tax rates in the state while 

Longmeadow in western Massachusetts, with few business establishments, relies heavily 

on residential property taxes to fund town services. Residential taxes may therefore 

reflect the economic structure of each town and is included in our analysis. Prior studies 

identified and measured land value uplift (LVU) resulting from rapid transit and other 

mass transit (Higgins & Kanaroglou, 2016; Mulley, 2014). Thus, we have included 

distances from town centroids to commuter rail stations as an independent variable.  

Vehicle ownership is derived by normalizing the census variable called vehicle 

availability for each town by the population of each town. This data may provide 

information on town’s travel accessibility and modal choices. More vehicle ownership 

may imply more travel by car while less vehicle ownership may imply the use of public 

transport, walking or biking (Rodrigue et al., 2016). Vehicle ownership has direct 

implications in urban sustainability studies. The city of Boston is planning to go carbon 

neutral by 2050 and is seeking solutions for reducing air pollution caused by automobile 

transportation. 
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Variables Description Source 

Median Home Price 
Median home value in thousand dollars (adjusted for 

inflation) 
Census, ACS 

Population Density Population density (number of people per hectare) Census, ACS 

Unprotected Forest Percent coverage of unprotected forest in each town Landsat 

Unemployment Rate Percent of unemployed people in each town 
Mass. Labor and Workforce 

Development 

Residential Area Percent coverage of residential areas Landsat 

Vehicle ownership Number of vehicles per capita  Census, ACS 

Higher Education 
Percent of people have bachelor’s or higher degree above the 

age of 25 
Census, ACS 

Senior Population Percent of senior population (over age 65) Census, ACS 

Distance to Commuter Rail 

Sta. 
Distance from town centroid to nearest Commuter Rail Station MassGIS, MBTA 

Residential Property Tax Amount per $1000 assessed home price Mass. Department of Revenue 

Composite Performance 

Index 
Students’ performance on Mathematics  

Mass. Department of Elementary and 

Secondary Education 

Table 3.1. Variables used in the study. 
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There is strong evidence to suggest that school quality substantially affects home 

prices in the US (Brasington & Haurin, 2006; Clapp et al., 2008). Earlier studies focused 

on the relationship between home prices and the quality of local education, using public 

school expenditures per pupil as the key school variable. However, more recent research 

highlights that the measure of K-12 student achievement is a more appropriate variable in 

home value estimations. We use the Composite Performance Index (CPI) scores of 

school districts in our analysis. The CPI is a measure of the extent to which students are 

progressing toward proficiency (a CPI of 100) in ELA (English Language Arts) and 

mathematics on the state’s MCAS (Massachusetts Comprehensive Assessment System) 

(2010 Glossary of AYP Reporting Terms, 2010). CPIs are generated separately for ELA 

and mathematics at all levels in Massachusetts. For this study, we considered CPI for 

mathematics performance in public school district. In order to estimate the MCAS score 

for each individual town, we used Area Interpolation Tool in ArcGIS. First, we created 

an interpolated surface based on CPI from all public school districts. Then we applied 

Massachusetts Town and City boundary shapefile to estimate the CPI for each district. 

The State implemented and collected CPI data starting 2003. Hence, we substituted the 

CPI score of 2003 for 2000 since we did not have data for 2000. Better public schools’ 

CPI (MCAS) generally correlates with a higher home price (Gibbons & Machin, 2008), 

exploited by realtors (such as Zillow) in selling homes.  

In our study, we obtained the land cover classes designated as residential (low and 

high) and forest from the Mass Audubon’s publication called Losing Ground 

(Lautzenheiser et al., 2014), derived from processing and classifying Landsat time series 
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of Landsat-5, 7, and 8 data for this time period. Two thematic classes called low and high 

residential classes described in the Losing Ground report were summed up to define the 

residential class in our study. A recent study by Cunningham et al., (Cunningham et al., 

2015) used Landsat archives to examine the change from undeveloped (forest) to 

developed land-use during the real estate bubble (2000–2006) and the subsequent bust 

(2006–2013) in Massachusetts. The results in this paper further highlight the significance 

of the land cover change during this period.  

According to US Forest Service, Massachusetts had an estimated 3.0 million acres 

of forest land in 2014. About 61% of the land area of Massachusetts meets the Forest 

Inventory and Analysis (FIA) definition of forestland (Butler, 2016). Forests are not 

evenly distributed across the state, and are largely influenced by development patterns. 

The lowest occurrences of forestland are seen in areas surrounding Metro Boston, 

Springfield, and Worcester, as well as along the coast and the major transportation 

corridors. Unprotected forest is an important determinant of home price and hence we 

created this new class of forest that is at the greatest risk for development. We derived 

this class based on two different data sources—Losing Ground (Lautzenheiser et al., 

2014) report and MassGIS data, as follows: First, forest areas were extracted from the 

Losing Ground dataset for the entire study period. Second, MassGIS dataset called 

Protected and Recreational Open Space layer was extracted; this class includes 

recreation, conservation, surface water supply protection areas and wellhead protection 

areas, or scenic sections (MassGIS (Bureau of Geographic Information) | Mass.Gov, 

n.d.). Third, we created a new class called unprotected forest by differencing layers 
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created in Step 1 and 2 to derive forest that is at risk for development. This thematic class 

provides us the areas at risk for conversion from forest to some form of development in 

the towns of Massachusetts. 

3.2.3 Spatial model considerations 

In this study, we use conventional ordinary least squares (OLS) as a benchmark, 

GWR and MGWR to describe spatial heterogeneity in housing across the towns in the 

state of Massachusetts.  

The first step in the analysis was to use a traditional OLS of the form: 

𝑦𝑖 = 𝑎0 + ∑ 𝑎𝑗𝑥𝑖𝑗 + 𝑒𝑖

𝑝

𝑗=1

, 𝑖 = 1,2, . . . , 𝑛  

where 𝑦𝑖 is home price of each town 𝑖 at a specified time of the study and 𝑥𝑖𝑗 is a row 

vector of explanatory variables for town 𝑖, 𝑎𝑗 is a column vector of regression 

coefficients, and 𝑒𝑖 is the random error for town 𝑖. The first element of the equation is the 

intercept. The initial model considered the relationship of the median price of a home in 

each town using independent variables—Population Density, Unprotected Forest, 

Unemployment rate, Percent Residential Area, Vehicle Ownership, Higher Education, 

Senior Population, distance to the nearest Commuter Rail station, Residential Property 

Taxes and CPI (Composite Performance Index) for each town. OLS results were 

interpreted based on an assessment of multicollinearity, adjusted R2 and Akaike’s 

information criterion (AIC) (Akaike, 1974). The variance inflation factor (VIF) statistic, 

which measures redundancy among explanatory variables, was used to assess 

multicollinearity. Explanatory variables with large VIF values—above a threshold of 
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7.5—were considered to be multicollinear. This process ensured that the model became 

unbiased. 

The next step in the analysis was to use GWR that explicitly incorporates the spatial 

structure of the variables into the estimation of the regression and shows how those 

estimates vary across space. We have selected an adaptive kernel whose bandwidth was 

found by minimizing the AIC value. The bandwidth is a count of the number of nearest 

observations to be included under the kernel. Preference is given to lower values of AIC 

since they indicate a closer fit to the data.  

𝑦𝑖 = 𝑎0(𝑢𝑖, 𝑣𝑖) + ∑ 𝑎𝑗(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑗 + 𝑒𝑖

𝑝

𝑗=1

, 𝑖 = 1,2, . . . , 𝑛  

𝑦𝑖 is the dependent variable at location 𝑖 

𝑥𝑖𝑗 is the 𝑗th independent variable at location 𝑖 

𝑝 is the number of independent variables 

We explore the spatial variability of relationships between median home prices 

and the explanatory variables by mapping GWR coefficients and local R2 values. We also 

performed an F3 test to probe whether the GWR estimates are a significant improvement 

on the conventional globally estimated OLS (Leung et al., 2000). The Akaike 

Information Criterion (AIC) is used in this study as a test diagnostic to select flexible 

bandwidth b (Gollini et al., 2015; Lu, Harris, et al., 2014) from: 

𝐴𝐼𝐶𝑐(𝑏)  = 2𝑛 𝑙𝑛(�̂�) + 𝑛 𝑙𝑛(2𝜋) + 𝑛{
𝑛 + 𝑡𝑟(𝑆)

𝑛 − 2 − 𝑡𝑟(𝑆)
}  
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where 𝑛 is the local sample size (according to bandwidth); �̂� is the estimated standard 

deviation of the error term; and 𝑡𝑟(𝑆) represents the trace of the hat matrix 𝑆. The hat 

matrix denotes the projection matrix from the observed 𝑦 to the fitted values. 

As highlighted before, GWR is not always appropriate if some of the variables do 

not exhibit spatial non-stationarity and can be held constant. We used a Mixed 

Geographically Weighted Regression model (MGWR) after testing for spatial variability 

of all variables (Mei et al., 2006). In MGWR, some contributing factors that have no 

spatial variability will generate a global parameter, while others with spatial variability 

will produce a local parameter. The MGWR is defined as: 

𝑦𝑖 = 𝑎0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝑎𝑗𝑥𝑖𝑗 + ∑ 𝑎𝑗(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑗

𝑝

𝑗=𝑞+1

+ 𝑒𝑖

𝑞

𝑗=1

, 𝑖 = 1,2, . . . , 𝑛  

𝑎𝑗 are global coefficients 

We used a Monte Carlo approach to test for significant (spatial) variation in each 

regression coefficient of the basic GWR against a series of randomized data sets (Lu, 

Harris, et al., 2014). If the true variance of the coefficient did not fall in the top 5% tail of 

the ranked results, the corresponding variable was treated as a global variable in the 

specification of MGWR. 

 

3.3 Results 

We discuss three sets of results. We first examine the spatio-temporal patterns of 

median home prices derived by comparing and validating the results of the OLS and 

GWR models. Our second set of results show the application of MGWR to highlight the 
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differences in the degree of spatial non-stationarity in the determinants of the median 

home price in towns of Massachusetts, while the third set of results describes the urban 

sustainability from the perspective of economic, social and ecological determinants. The 

OLS results are presented in Tables 3.2–3.4; GWR results are presented in Tables B1–B6 

and Table 3.5; and MGWR are presented in Tables B7-B12 and Table 3.6. Summary 

results for each model are presented in Tables 3.4 (OLS), 3.5 (Basic GWR) and 3.6 

(MGWR). 

3.3.1 Spatial-temporal patterns of home prices 

We first explore and model the spatiotemporal variability of median home prices 

and associated determinants in the state of Massachusetts by benchmarking the 

performance of the global regression model (OLS) with its GWR counterpart with the 

same set of variables. Table 3.2 shows the results from the OLS regression for the median 

home prices using decennial census data from 2000 and 2010, while Table 3.3 shows 

similar results for the ACS years—2009, 2011, 2012, and 2013. Table 3.4 shows overall 

summary results for the OLS model. 
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Median Home Price 

 OLS Model (2000) OLS Model (2010) 

Variables Coeff. t-Value p-Value Sig. VIF Coeff. t-Value p-Value Sig. VIF 

Intercept 289.69 3.53  4.77 × 10−4 *** - 252.91 1.66 0.099 . - 

Population Density 0.79 0.93 0.353 - 4.01 0.04 0.04 0.971 - 3.40 

Unprotected Forest 30.66 0.73 0.468 - 4.00 −52.01 −0.91 0.363 - 3.94 

Unemployment Rate −7.31 −1.94 0.053 . 1.53 −8.69 −3.28 1.15 × 10−3 ** 1.43 

Residential Area −63.12 −1.35 0.179 - 6.61 −65.83 −1.10 0.272 - 5.95 

Vehicle ownership −390.28 −5.13 5.11 × 10−7 *** 2.34 −427.09 −5.91 8.45 × 10−9 *** 2.09 

Higher Education 1634.22 14.75 <2 × 10−16 *** 2.26 1527.87 10.50 <2 × 10−16 *** 1.98 

Senior Population 162.68 1.36 0.176 - 1.90 335.00 2.20 0.028 * 2.09 

Dist. to Stations −0.60 −4.019 7.26 × 10−5 *** 2.01 −0.95 −4.495 9.69 × 10−6 *** 2.26 

Property Tax −7.61 −5.64 3.80 × 10−8 *** 1.35 −13.03 −6.52 2.73 × 10−10 *** 1.29 

CPI 1.95 3.21 1.48 × 10−3 ** 2.24 5.14 3.56 4.28 × 10−4 *** 2.44 

Table 3.2. Ordinary least squares (OLS) results for home prices in MA towns 2000 and 2010. (Signif. Codes: 0 ‘***’, 0.001 ’**’, 

0.01 ‘*’, 0.05 ‘.’). The coefficients, intercept and 10 independent variables along with t-values, p-values, significance, VIF values are 

listed. VIF is a metric for testing multicollinearity (threshold 7.5). 
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Median Home Price 

 OLS Model (2009) OLS Model (2011) 

Variables Coeff. t-value p-Value Sig. VIF Coeff. t-Value p-Value Sig. VIF 

Intercept 129.38 0.93 0.351 - - 220.08 1.544 0.124 - - 

Population Density 0.69 0.64 0.520 - 3.54 1.27 1.335 0.183 - 3.51 

Unprotected Forest 16.39 0.30 0.767 - 3.73 5.81 0.119 0.905 - 3.65 

Unemployment Rate −7.47 −2.86 4.54 × 10−3 ** 1.35 −9.60 −4.006 7.65 × 10−5 *** 1.59 

Residential Area −17.39 −0.30 0.766 - 5.72 −70.84 −1.351 0.177 - 5.75 

Vehicle ownership −394.14 −4.82 2.21 × 10−6 *** 2.25 −363.62 −4.911 1.44 × 10−6 *** 2.31 

Higher Education 1520.59 10.85 < 2e−16 *** 1.88 1326.71 9.754 < 2 × 10−16 *** 2.21 

Senior Population 237.89 1.54 0.125 - 2.07 355.34 2.527 0.012 * 2.14 

Dist. to Stations −0.90 −4.29 2.33 × 10−5 *** 2.20 −1.06 −5.696 2.75 × 10−8 *** 2.20 

Property Tax −13.68 −6.31 9.17 × 10−10 *** 1.35 −10.27 −5.779 1.76 × 10−8 *** 1.41 

CPI 5.68 4.27 2.57 × 10−5 *** 2.30 4.38 3.238 1.33 × 10−3 ** 2.67 

 OLS Model (2012) OLS Model (2013) 

Variables Coeff. t-Value p-Value Sig. VIF Coeff. t-Value p-Value Sig. VIF 

Intercept 198.77 1.66 0.097 . - 101.55 0.75 0.457 - - 

Population Density 1.32 1.55 0.122 - 3.37 0.98 1.15 0.251 - 3.33 

Unprotected Forest 9.66 0.21 0.831 - 3.63 0.71 0.01 0.988 - 3.67 

Unemployment Rate −10.95 −4.99 9.66 × 10−7 *** 1.55 −10.19 −4.85 1.88 × 10−6 *** 1.57 

Residential Area −85.82 −1.76 0.079 . 5.73 −77.12 −1.58 0.116 - 5.68 

Vehicle ownership −391.33 −5.81 1.50 × 10−8 *** 2.35 −449.96 −6.45 4.04 × 10−10 *** 2.51 

Higher Education 1234.99 10.05 < 2 × 10−16 *** 1.99 1157.21 9.32 < 2 × 10−16 *** 2.05 

Senior Population 403.83 3.12 1.98 × 10−3 ** 2.11 487.12 3.87 1.31 × 10−4 *** 2.06 

Dist. to Stations −1.02 −6.09 3.23 × 10−9 *** 2.08 −1.00 −6.05 4.05 × 10−9 *** 2.01 

Property Tax −10.31 −6.60 1.64 × 10−10 *** 1.39 −9.88 −6.46 3.81 × 10−10 *** 1.41 

CPI 4.94 4.53 8.45 × 10−6 *** 2.09 6.24 4.84 2.05 × 10−6 *** 2.26 

Table 3.3. OLS results for home prices in MA towns 2009, 2011–2013. (Signif. Codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’). The 

coefficients, intercept and 10 independent variables along with t-values, p-values, significance, VIF values are listed. VIF is a metric for 

testing multicollinearity (threshold 7.5). 

 

 



64 
 

 

Of the covariates, only population density, unprotected forest, and residential area 

are not significant (at significance level 0.05) in the model in any year of observation, 

while others including unemployment, vehicles owned, residential taxes, educated 

population above 25 years, senior population, or distance to commuter rail stations, were 

statistically significant in all years. Unemployment rate was consistently significant from 

2009 to 2013 as seen in other studies. Suburban towns exemplify this pattern the best 

indicating that an increase in unemployment causes a drop in median home prices in 

suburban towns such as Natick, Framingham, Wayland, Wellesley and Cambridge. 

Senior population impacted median home prices more significantly in 2013 (at 

significance level 0.001) and to a lesser degree from 2010 to 2012 (at significance level 

0.05). Perhaps this segment of population held on to their homes that depreciated in value 

(in 2008) and sold their home starting 2010. The ownership of homes by seniors and its 

impacts on median home prices deserve further empirical scrutiny. Coefficients, 

associated with unemployment rate and residential taxes, are negative indicating that a 

decrease in home price is associated with an increase in both unemployment and 

residential taxes. Unprotected forest may not have overall significance in the state, but it 

may have more significance in the eastern part of the state around Boston where 

development of housing in unprotected forest has resulted in urban sprawl (Wolch et al., 

2014) and the building of “McMansions”. Such non-stationarity patterns in this 

determinant have to be explored using GWR since traditional OLS is unable to account 

for spatial heterogeneity in local submarkets.  
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Figure 3.2 shows the OLS residuals in the median price of homes in various 

towns in different time periods. In general, OLS underestimates median home price in 

eastern Massachusetts, which is more populated with greater housing density, and 

overestimates the median home price in the rural western part of the state. This pattern is 

consistent over the entire time period. The ratio of unprotected forest to residential area in 

2013 is computed to highlight such price variations. Eastern towns around Boston have 

ratios ranging from 0 to 0.626, while in western and central Massachusetts, the ratios 

range from 5.82 to 75. Higher ranges of ratio in the west suggest that more expansive 

forest is not influencing median home prices in these towns, while the opposite may be 

true in the eastern towns. Therefore, unprotected forest may be characterized by non-

stationarity and needs to be explored using GWR. 

 

Figure 3.2. OLS residuals of 2000 and 2009–2013. 

 

 



66 
 

 

Decennial Census Years ACS Years 

Year 2000 2010 2009 2011 2012 2013 

RSS 1,609,745 2,946,544 2,918,609 2,332,915 1,993,794 2,033,210 

AIC 3825.92 4029.05 4025.85 3950.59 3897.81 3904.38 

Adjusted R2 0.71 0.73 0.64 0.65 0.67 0.66 

Table 3.4. OLS diagnostics for home prices in MA towns. RSS, AIC and adjusted R2, for 

decennial years (2000 and 2010), ACS years (2009, 2011–2013). 

Table 3.4 shows the overall OLS results. The coefficient of determination (R2) 

across the time period ranges between 0.71 (2000) and 0.73 (2010) in the census years 

and from 0.64 (2009) to 0.65 (2011), 0.67 (2012), and 0.66 (2013). The standard error for 

the intercept is not significant in any year, except 2000. We expect that median home 

prices exhibit spatial heterogeneity and vary in the state from east to west reflecting 

proximity to Boston. As highlighted before, most of western Massachusetts is rural with 

large areas of forest. Hence unprotected forest may not impact overall home prices in the 

west but may have an impact for residential development in the east. 

GWR results are presented in Tables B1–B6; each table pertains to one year of 

observation and shows the medians and ranges in the values of each coefficient across all 

towns (Columns 1–3). These coefficient numbers, in general, have large ranges. Hence, 

the results are next summarized using percentages of coefficient estimates that were 

positive and negative (columns 4 and 5) for each variable across all towns. GWR results 

for census years are shown in Tables B1–B2 along with p-value (F3 test) and 

significance. Population density is not a significant factor in both census years. The 

public-school CPI scores are less significant in all years. The remaining determining 

variables are highly significant across both census years.  

The ACS survey years are shown in Tables B3–B6. Examining the impact of 

determinants, CPI score is significant in all ACS years (at significance level 0.001). 
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Population density is only significant in recent years 2012–2013, probably driven by 

increasing urban growth in towns such as Everett, Lawrence, Malden, Arlington and 

Brookline (see Figure 3.1). Overall population increased the most in Boston, Cambridge, 

Somerville, Chelsea and Brookline 2011–2013. Other factors are significant across all 

years. To summarize, GWR results highlight that most determinants are characterized by 

non-stationarity leading to spatial variation in median home prices.  

We next interpret columns 4 and 5 in Table B6 for 2013. Most towns (65.77%) 

seem to value unprotected forest (positive coefficient) while some towns (34.2%) in the 

rural west (negative coefficient) may not. Senior population accounts for 91.96% in the 

positive coefficient column, indicating that most senior citizens may have higher 

incomes, and better homes (longer tenure of ownership). The coefficient of this 

determinant is negative only in 8.04% of towns. This pattern is exemplified in towns 

outside of Boston Metro, such as Wales, Richmond, and Bernardston, where the total 

population of the town may be decreasing due to migration of all segments of population 

except seniors. Overall, the results across census and ACS years, show that 

unemployment rate, vehicles ownership, residential property taxes, residential area and 

distance to commuter rail stations have a larger percentage of towns with negative 

coefficients (column 5 in all tables). The model predicts a negative relationship between 

these determinants and median home prices across most towns. On the other hand, CPI, 

educated population above 25 years, population density, unprotected forest and senior 

population have a range between 60% and 100% of towns with positive coefficients 

(column 4 in all tables). The model predicts a positive relationship between these 
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determinants and median home prices across most towns. The model fit in terms of 

positive and negative coefficient signs is consistent across most years highlighting the 

strong role of the selected determinants in determining the median home prices in the 

state.  

Figure B1 maps the estimated coefficients of senior population in 2000, and 2009 

to 2013 which indicate that proximity to Boston plays a strong role in differentiating 

eastern (colored red) and western towns (blue). Figure B2 shows coefficients of 

unprotected forest class for the time period are highly significant in towns northwest of 

Boston including Lexington, Winchester, Woburn, and Belmont. Finally, the R2 values 

are examined to measure the fit of GWR in each town displayed in Figure 3.3 for year 

2013. Metro Boston has good GWR R2 values. The towns of Bernardston, East 

Longmeadow, Hampden, Longmeadow, Ludlow, and Springfield have higher R2 values. 

These towns are located in the central and western regions of the state. Bernardston 

(Route 91 south of NH Border) had the highest GWR R2 value. In contrast, Seekonk, 

Somerset, Swansea, Taunton, and Freetown had lower GWR R2 values. These towns are 

all located south of Boston closer to Providence RI and therefore may be impacted by the 

determinants in Rhode Island. Table 3.5 shows the overall results in terms of bandwidth, 

RSS, AIC and Adjusted R2. The R2 value was the highest in 2000 and averages around 

0.80 over other years. To summarize, most determinants in our study are characterized by 

spatial non-stationarity. 
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Decennial Census Years ACS Years 

Year 2000 2010 2009 2011 2012 2013 

Bandwidth 84 98 98 91 77 90 

RSS 531,883.1 111,8276 1,166,110 951,077.8 633,734.2 786,608.1 

AIC 3684.43 3888.25 3904.78 3858.53 3778.99 3798.11 

Adjusted R2 0.86 0.81 0.80 0.79 0.84 0.81 

Table 3.5. Basic geographically weighted regression (GWR) diagnostics for home prices in 

MA towns. Bandwidth, RSS, AIC and adjusted R2, for decennial years (2000 and 2010), ACS 

years (2009, 2011–2013). 

 
Figure 3.3. Local R2 of Basic GWR for 2013 

 

3.3.2 Are all determinants of median home price non-stationary? 

We next examine the question of non-stationarity of determinants using MGWR 

that differentiates the spatially non-stationary from stationary determinants. Results are 

shown in the Tables B7–B12 where variables with p-value (Monte Carlo simulations) in 

column 7 greater than 0.05 are spatially stationary and should be treated as fixed global 

variables (listed in the lower section of the table). Vehicle ownership and residential taxes 

should be treated as fixed global variables in most years. The importance of vehicle 
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ownership is uniform across the state, as are town taxes. These should be treated as fixed 

global variables, while MCAS CPI scores were spatially non-stationary (local) in 2009 

and 2011. Population density presents contrasting results in GWR and MGWR analysis. 

It is not a fixed global variable in MGWR suggesting spatial non-stationarity; population 

density was not significant in the GWR analysis until 2012–2013, coinciding with the 

increase in population in metro Boston area in this time period. 

A closer examination of unprotected forest indicates that towns such as Belmont, 

Billerica, Carlisle, Lexington and Burlington, within the Greater Boston region, 

consistently perform highest on this coefficient indicating the greatest potential for 

residential development in these towns, if town regulations permit. On the other hand, 

towns such Provincetown (on the Cape), North Attenborough (on the intersection of 

Routes 95 and 295), and Norfolk rank the lowest for at least two years on this coefficient, 

indicating they have less potential for development. 

Figure B3 displays unemployment coefficient maps of the GWR and MGWR that 

differentiate the spatial non-stationarity in this determinant around Worcester (west of 

Boston) and suburbs south of Boston. Similarly, results are shown for the display of 

senior population coefficient maps of the GWR and MGWR in Figure B4. Differences 

emerge in the western suburbs of Boston. Both determinants are non-stationary using 

GWR and MGWR but are producing different spatial patterns of coefficients around 

Boston. They produce similar patterns of coefficients in western part of the state. 

MGWR results presented in Table 3.6 show better results compared with GWR 

results shown in Table B7 across both census and ACS years. As shown in Figure B5, 



71 
 

 

GWR and MGWR have similar AIC in 2009, 2010, but display some differences in the 

remaining years. MGWR produces consistently the lowest AIC values for all years. GWR 

is the second-best performer using the AIC measure while OLS is the worst performer. 

This result highlights the spatial non-stationary of some factors—Population Density, 

Unemployment Rate, Residential Area, Vehicle Ownership, Senior Population, Distance 

to Commuter Rail Stations and Property Tax—that influence median home prices in 

Massachusetts towns. The highest difference between two model results occurs in 2013 

indicating that MGWR is a better choice for this year since the nature of spatial non-

stationarity of some determinants has changed. 

Decennial Census Years ACS Years 

Year 2000 2010 2009 2011 2012 2013 

Bandwidth 84 98 98 84 77 90 

RSS 635,797 1,402,213 1,479,242 1,188,077 944,864 922,170 

AIC 3666 3883 3905 3840 3765 3778 

Table 3.6. Mixed GWR diagnostics for home prices in MA towns. Bandwidth, RSS and AIC 

for decennial years (2000 and 2010), ACS years (2009, 2011–2013). 

 

3.3.3 Impact of housing on urban sustainability 

Economically, our study captures the Great Recession period of bust and its 

aftermath based on the ACS data 2009, as well as census 2010 and recovery in 2011–

2013 ACS data. Determinants such as unemployment rate show differences from 2009 to 

2013, while unprotected forest is significant beginning in 2009, suggesting that housing 

demand is impacted forests in the period of boom that followed the economic recovery. 

Population density is significant in recent years 2012–2013 and was likely driven by 

increasing employment in Metro Boston. Our spatial models capture the economic boom 

and bust in the various towns from 2009 to 2013 displaying the linkages between 



72 
 

 

economic, social, and ecological factors in urban environments during critical periods. 

Addressing real estate expansion during periods of boom, one has to consider ecological 

and social impacts, while during periods of bust, urban planning has to consider the social 

implications of unemployment and drop in housing value. Social factors such as 

unemployment impacted certain towns in Metro Boston (such as Natick, Framingham, 

Wayland, Wellesley, and Somerville) during this time period. This perspective on social 

determinants may inform policy makers about provisioning social services and 

employment opportunities in these towns. Ecological factors related to unprotected forest 

are also significant in Metro Boston towns (such as Bedford, Lexington, Burlington, 

Woburn, and Waltham), suggesting these towns should balance residential expansion and 

forest cover in the future. 

 

3.4 Discussion 

Our data driven approach to model housing in this study calls for the integration 

of remote sensing, socio-economic, town and other data. The study covers 336 towns and 

cities in the state of Massachusetts for the period 2000–2013 that was characterized by 

periods of boom and bust in the US economy following the housing market collapse in 

2008 (Elsby et al., 2010). Our modeling approach of GWR and MGWR, enables us to 

analyze how spatial non-stationarity of environmental, economic and social determinants 

lead to changes in median home prices. The basic OLS model appears least suited in 

modeling median home prices, while both GWR and MGWR models using adaptive 

bandwidths perform better.  
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The analysis presented here can help us address a series of questions focused on 

social determinants: What is the relationship between an educated workforce and home 

prices? Boston and Cambridge are home to sectors that attract educated workforce with 

high-wage jobs. Hence, people with higher education and income move closer to the 

suburban towns around Boston. This finding is shown in our analysis with marked 

differences between 2009 and 2013. What is the impact of senior citizens on home 

prices? Our GWR and MGWR suggests that senior citizens living in close vicinity to 

metro Boston exerted an influence on median home prices in 2013 and not in the period 

2009–2012. Perhaps this segment of population held on to their homes that depreciated in 

value (in 2008) and sold their home starting 2010. The ownership of homes by seniors 

and its impacts on home prices deserve further empirical scrutiny. We used public school 

CPI scores as a determinant on home value. We found that these scores were significant 

using GWR model but were fixed as global variables using MGWR in 2000, 2010, 2012, 

and 2013. For future studies, we could incorporate other test scores (such as English 

Language Arts) to obtain a more nuanced understanding of the correlation between test 

performance across school districts in each town and their corresponding home prices. 

What are the implications of spatial non-stationarity on environmental determinants? 

Unprotected forest cover in the eastern part of the state is more valuable than in the rural 

western Massachusetts. This may give towns an opportunity to build resilient 

communities that can preserve unprotected forest or mobilize citizen activists to 

transform the unprotected forest into protected forest. This investigation has implications 

in urban planning as it can guide us in conservation of key species. Work presented here 
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can be extended to address reducing ecological footprints, reducing carbon emissions 

through reduction in deforestation, and conservation in towns that could benefit from 

taking actions to be resilient in the future. How does unemployment impact home prices? 

Unemployment rate is significant in determining home prices in all years using the GWR 

model. Suburban towns exemplify this pattern, indicating that an increase in 

unemployment causes a drop in home prices. The model predicts a negative relationship 

between these determinants and home prices across most towns. Property tax is another 

significant variable in our GWR analysis in determining home prices.  

Housing impacts household behavior, policy, and the environment and therefore 

directly relates to urban sustainability (Saiz, 2010). Housing construction includes land, 

energy, and materials. Housing is directly connected to transportation and other 

externalities since people need to move back and forth from their homes for employment, 

recreation and other activities (Mills, 1967; Muth, 1969). Given the complex connectivity 

between housing, transportation, and other economic sectors, sustainability in housing 

has typically been examined as a function of resource and location efficiency (Koebel et 

al., 2015). Home prices are related to environmental determinants, as described in our 

paper and elsewhere (Rauterkus et al., 2010; Tsatsaronis & Zhu, 2004; Tu & Eppli, 

2001), that will be transformed given the sustainability focus of many cities, including 

Boston. Attributes such as green homes and solar panels may increasingly impact future 

home prices. Many new housing units are built with a focus on energy efficiency. 

Modern urban architecture emphasizes eco-friendly, or “green” homes that use materials 

and building methods with less energy requirements as well as result in reduced energy 
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bills for the homeowner. The decreasing price in solar panels and their increasing 

availability will impact home prices in the future. Accessibility to public transport is 

relevant in this paper today but in the future, accessibility to electric car charging stations 

may become equally important. We discussed the nature and valuation of open space that 

is relevant in any discussion of urban sustainability as cities lower energy consumption, 

reduce emissions, and promote healthier lifestyles. Our approach can incorporate and 

estimate the non-stationarity of these sustainability driven factors that may impact future 

home prices. Thus, home prices can inform us of the changing public attitudes towards 

sustainability in cities across the US in the coming decades. 

 

3.5 Conclusions 

 We proposed an urban sustainability framework centered on housing that could 

address issues involving economic, social and ecological dimensions. We used GWR 

model to examine spatial non-stationarity of key economic, ecological and social 

dimensions that are easily available at a larger spatial scale. Traditional approaches both 

in economics and in spatial econometrics involve hedonic and spatial models that 

estimate prices of individual homes using block level census data or town parcel data. 

Such models do not account for spatial non-stationarity at a regional or state scale. Our 

approach is to address urban sustainability at a broader spatial scale to encapsulate the 

entire state. We show that a data driven approach to modeling home prices at this broad 

scale calls for integration of geospatial data from a number of sources, including remote 

sensing, and census data to address multiple facets of sustainability. The understanding of 
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key determinants to housing enables towns to take different strategies to sustainability 

such as valuation of green spaces and proximity to public transport, while unemployment 

rates and public-school performance can help shape urban housing policies. We hope to 

incorporate other variables such as green homes, residential solar panels, charging 

stations, air quality and other components to make our work relevant for assessing future 

urban sustainability. 
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CHAPTER 4 – Mapping the Dynamics of Aquatic Vegetation in Lake Kyoga and Its 

Linkages to Satellite Lakes 

This study focuses on the dynamics of aquatic vegetation in the water bodies of 

Lake Kyoga in East Africa. Lake Kyoga is one of the outflows of Lake Victoria, which is 

the second-largest freshwater lake in the world. As a result, the inflow from Lake 

Victoria strongly influences Lake Kyoga’s water balance. The fluctuation in the water 

level would cut off the linkages from the satellite lakes to the main lake. Furthermore, 

aquatic vegetation usually covers these linkages, creating a refugia of a hypoxic 

environment that protects native fish species from Nile perch, a near-top-level predator 

introduced in the 1950s. Societies that reside in the Lake Kyoga region have traditionally 

fished in and farmed beside the waters of this lake. Any changes in the CHANS 

organizational coupling between aquatic vegetation and ecosystems of the lakes can 

adversely impact both the endangered species and the surrounding human communities 

that depend on fisheries and other ecosystem services provided by the lake. 

This research aims to develop a new and improved algorithm to map the spatial 

distribution and dynamics of floating and emergent aquatic vegetation. The study utilizes 

a time series of 440 Landsat images dating from 1986-2020. A series of water and 

vegetation indices are designed to characterize and map the maximum extent of water 

bodies and identify aquatic vegetation. First, two types of water masks are derived using 

a majority rule - a separate water mask for each image and a composite water mask of the 

region over the study period. Second, the difference between the two masks is then used 

to delineate the potential location of macrophytes over the image. Third, an algorithm is 
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developed to separate the floating vegetation from emergent vegetation; this algorithm 

uses Landsat spectral bands and two additional spatial and temporal metrics that 

considerably improve classification accuracy. The algorithm and data products developed 

in this research are valuable in shaping strategies to conserve fish species and human 

livelihoods in this region. The goal of this research is to design a decision support system 

focused on environmental risk and resource management related to fisheries in the Lake 

Victoria basin. 

4.1 Introduction 

The Lake Victoria Basin (LVB) is transforming with rapid increases in human 

population, climate change and geopolitical tensions for access to natural resources, 

including water rights and fisheries. Lake Victoria (Figure 4.1) is the world’s second 

largest freshwater lake by surface area bordered by Kenya, Tanzania, and Uganda. The 

LVB is part of the East African Rift valley lakes containing about 25% of the Earth’s 

unfrozen surface fresh water and 10% of the world's fish species.  About 40 million 

people live in this region, with an annual growth rate of 3.5 percent (compared with the 

global population’s annual growth rate of 1.05%). LVB is facing environmental and 

social challenges. Hence the CHANS framework applied in this context enables us to 

model the intrinsic coupling between the natural environment of the basin and its 

surrounding ecosystem and the population living around the basin supported by 

ecosystem services including fisheries, forests, wetlands, and rangelands. 

Anticipated changes in climate pose a great risk to human wellbeing and natural 

resource flows in LVB that imperil the character and tradition of the system via reduced 
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food security due to reductions in fish yield (the principal protein source for people); 

reduced access to safe drinking water; and the irreversible loss of native species that 

underlie the region’s exceptional natural capital (Cohen et al., 1996). LVB is at the 

epicenter of unique biodiversity, harboring more than 350 species of cichlid species. 

Although cichlids are small fish, they were a major food resource for 60 million people in 

the three countries surrounding the lake. The value of the catch is estimated to be more 

than US$ 550 Million (Outa et al., 2020). The problems facing LVB are significant 

reduction and risk of extinction of some fish species, including the endemic tilapiine 

species (Oreochromis esculentus and Oreochromis variabilis), catfishes (Xenoclarias 

eupogon), haplochromines and cyprinids (Labeo victorianus and Barbus altinialis) in the 

lake. (Achieng et al., 2020; Njiru et al., 2018; Tungaraza et al., 2012; Yunana et al., 

2017). The reduced biodiversity, as well as extinctions within the lake, has been 

attributed to the introduction of alien fish species, e.g., Nile perch (Lates niloticus) and 

Nile tilapia (Oreochromis niloticus) into the lake resulting in habitat loss and cultural 

eutrophication (Marshall, 2018; Yongo et al., 2018). If left unchecked, these changes will 

have devastating effects on the lake's resources, as well as on people living around the 

lake and beyond who depend on the lake fisheries for their livelihood. Additionally, 

climate fluctuations impact the distribution of Nile Perch, which is favored over cichlids 

resulting in a complete change in the lake ecosystem. (Marshall, 2018; Yongo et al., 

2018). Thus, this region is a hotspot of global biodiversity risk stemming from 

anthropogenic activity as well as climate change.  
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The focus of this study is to examine one facet of the CHANS related to the 

spatial dynamics of aquatic vegetation in a satellite lake called Lake Kyoga in LVB. 

Areas of Lake Kyoga are covered by aquatic vegetation, a distinct type of photosynthetic 

vegetation that grows periodically or permanently in water bodies (Twongo et al., 1995). 

This vegetation serves a critical ecological and biological role in inland water bodies, 

maintaining water quality, regulating oxygen levels, providing food and shelter for 

organisms and wildlife. Aquatic vegetation is characterized by rapid biomass 

accumulation and a faster growth rate (Gunnarsson & Petersen, 2007). Areas of Lake 

Kyoga less than 3 meters deep are completely covered by water lilies from the lake 

shores to the open water zone, while much of the swampy shoreline is covered with 

papyrus and the invasive water hyacinth (Eichhornia crassipes (Mort.) Solms 

(Pontederiaceae)). Aquatic vegetation colonized the habitat and can be divided into the 

following groups: emergent - rooted in the sediment with foliage extending into the air 

(papyrus, Cyperus papyrus), floating - plants that float on or under the water surface with 

or without roots in the sediments (water lilies, Nymphaea spp, and water hyacinth, 

Eichhornia crassipes), and submerged -plants that grow submerged with roots in the 

sediment (elodea, Elodea canadensis) (Thomaz et al., 2008). 

Satellite remote sensing is the only feasible and economic means of continuously 

monitoring Earth's surface at multiple spatial and temporal scales for the identification 

and change detection of land cover. Prior to satellite remote sensing, traditional in situ 

measurements and aerial images were utilized to identify and map aquatic vegetation 

(Marshall et al., 1994, Welch et al, 1994). Current remote sensing technologies offer 
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better alternatives ranging from moderate-resolution imaging spectroradiometer 

(MODIS) satellite images with coarse resolution but higher frequency (Fusilli et al., 

2013; Zhang et al., 2016) to Landsat thematic mapper (Donchyts et al., 2016), enhanced 

thematic mapper plus (ETM+); as well as QuickBird, IKONOS, and PlanetScope high-

resolution images resulting in better mapping and change detection (Gabr et al., 2020). 

PlanetScope provides images of the entire land surface of the Earth every day (a daily 

collection capacity of 200 million km²/day) at approximately 3 meters per pixel 

resolution. It offers limited but higher resolution data for validation and ground-truthing. 

Both data streams can be used to monitor changes in the aquatic vegetation of the lake 

basin. 

Rivera et al. (2013) used a simple band ratio and NDVI as input datasets for 

regression trees to monitor aquatic vegetation cover. Villa et al. (2015) used a rule-based 

classification scheme for mapping different aquatic vegetation types based on vegetation 

indices. Both studies showed decent accuracy in extracting floating vegetation from 

Landsat Images but less than satisfactory results in classifying submerged vegetation and 

separating emergent vegetation from terrestrial vegetation. This is similar to previous 

studies on aquatic vegetation based on remote sensing data (Albright & Ode, 2011; Birk 

& Ecke, 2014; Jiang et al., 2012; Zhao et al., 2012). Pixel-based classification has 

relatively less accuracy for certain aquatic vegetation classes due to sensor resolution 

limitation and mixed pixels, where vegetation classes are confused with one another. 

Another study used UAV (Unmanned aerial vehicle) to collect high resolution, sub 1 

meter, images for visual interpretation and manual mapping to monitor aquatic plant 
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species and achieved an accuracy of over 90% (Husson et al., 2014). Studies on aquatic 

vegetation monitoring via remote sensing mostly rely on in situ sample collection, which 

is labor and time consuming and often covers a small section of the study area (Cavalli et 

al., 2009; Damtew et al., 2021; Thamaga & Dube, 2018). UAVs are cost-efficient; 

however, the data collected are rarely consistent in terms of quality and temporal 

resolution compared to satellite observations. 

This research aims to derive thematic products, delineating floating vegetation 

and emergent vegetation maps from multi-temporal medium-resolution Landsat Images 

with the aid of additional spatial and temporal metrics. This research addresses the design 

and derivation of the thematic products. Ultimately, the derived data products would 

capture the ecosystem dynamics to develop a decision support system dedicated to 

environmental resource management, including threats to the native fish population and 

fisheries. 

 

4.2 Materials and methods 

4.2.1 Study area 

Lake Victoria is the largest freshwater lake in Africa and the second largest in the 

world. Lake Kyoga, an outflow of Lake Victoria, is located north of Lake Victoria in 

central Uganda. As a result, Lake Kyoga’s water balance is strongly influenced by the 

inflow from Lake Victoria. The fluctuation in the water level would cut off the linkages 

from the satellite lakes to the main lake. Furthermore, the linkages are usually covered by 

aquatic vegetation (i.e., papyrus swampland and water hyacinth), which would create a 
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refugium of hypoxic environments that protect native fish species from Nile perch, a 

near-top-level predator introduced in LVB. Nile perch and four tilapiine species were 

introduced in the late 1950s and early 1960s (Mbabazi et al., 2004) in LVB to improve 

the stocks of the declining fishery but have led to a massive decline of native species. 

Haplochromine species and trophic groups have been depleted from this lake as well as 

the other lakes in the LVB. As stocks of introduced species increased, those of the native 

species declined rapidly or disappeared altogether. The contribution of haplochromines 

dropped from about 80% of the fish biomass in Lake Victoria in the 1970s to less than 

1% in the 1980s (Ogutu-Ohwayo, 1990). 

Lake Kyoga (south) and two connected lakes, Kwania and Kojweri (north) in 

Uganda, are the focus of the study. We use the term Lake Kyoga to describe all three 

connected lakes. Victoria Nile is the only outflow of the entire LVB that passes through 

Lake Kyoga. The lake has a depth ranging from less than 3 meters to about 5.7 meters. 

Lake Kyoga has 14 fish species (Mbabazi et al., 2004), with an additional 37 species in 

its satellite lakes (Ogutu-Ohwayo, 1990). In the Kyoga satellite lakes, harbor 

haplochromine species and trophic groups (not found elsewhere) are separated from the 

main lake by papyrus swamps; swamps serve are effective barriers as fish movement 

across the swamps is limited to hypoxia‐tolerant species (and not the Nile perch). Thus, 

satellite lakes of the LVB are potential refugia for the native fish species, enhancing 

trophic diversity and serving as a significant fishery resource. Therefore, analyzing 

vegetation dynamics of the satellite lakes, based on new metrics derived from remote 
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sensing time series data, may offer new critical insights.  The fringe of the shoreline 

between land and water is occupied by papyrus and swampland.  

Swamps separate the Kyoga satellite lakes from the main lake; there was no 

introduction of exotic species in most of the satellite lakes. These lakes share water via 

the papyrus swamps, but fish movement across the swamps is limited to hypoxia‐

tolerant species (Chapman et al., 1996). Nile perch requires high concentrations of 

oxygen, while some haplochromines can tolerate a low oxygen environment for extended 

periods. The swamps are thus effective barriers to the dispersal of Nile perch (Kaufman 

et al., 1997). These satellite lakes harbor some haplochromine species and trophic groups 

depleted from the Kyoga and Victoria main lakes.  Hence satellite lakes have been 

characterized as possible refugia for the Lake Victoria fish species and trophic diversity 

as well as a significant fishery resource. Apart from overexploitation and invasive 

species, major systematic drivers of loss of aquatic species include land cover and land-

use change (LUCC). Figure 4.1 shows the location of Kyoga in LVB and false-color 

Landsat images of Lake Kyoga in Panel a (on the right side), Lake Nawampasa in panel 

c, and some satellite lakes are shown in panel d. 
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Figure 4.1. Location and false-color Landsat images (December 14, 2016) of Lake Kyoga. a) 

Lake Kyoga. b) Aquatic vegetation near Victoria Nile. c) Lake Nawampasa. d) Satellite 

lakes 

 

4.2.2 Data 

This research utilized imagery from different satellites and spatial resolutions. 

They are Landsat, from January 1986 to April 2020, at 30 meters resolution, and 

PlanetScope archived from June and December during the period 2015-2020, at 4.77 

meters resolution. 

4.2.2.1 Landsat 

Landsat is the source of the data for change detection. Landsat scene WRS-2 127-

043 covers almost the entire Lake Kyoga. A total of 449 scenes from 127-043 from 
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Landsat 4 and 5 TM, Landsat 7 ETM+ and Landsat 8 OLI images are included in this 

analysis, starting from January 1986 to April 2020. We used an atmospherically corrected 

surface reflectance data product, where cloud and cloud shadow pixels were masked 

using the Pixel Quality Assurance (pixel_qa) band, provided with Landsat Surface 

Reflectance products (Landsat Collection 1 Level-1 Quality Assessment Band, n.d.). 

Early data observations were limited; 2 to 4 years of data gaps existed before 

1999. Only 20 images were available until 1995, followed by a period of four years with 

no images. Starting from 1999 and onwards, the observation density (the number of 

images per year) increased due to Long-Term Acquisition Plans and the launch of 

Landsat 7 (Pickens et al., 2020). The study included early observations since they can 

still provide invaluable insights regarding the dynamics of aquatic vegetation, which is 

closely linked to the eutrophication of water bodies. 

The primary constraints in mapping aquatic vegetation are the difficulties 

differentiating them from terrestrial classes based on spectral bands alone in a single 

image.  It is challenging to separate marginal vegetation on the shores from aquatic 

vegetation using just one optical remote sensing image, especially when dense. However, 

because of the movement and life cycle of aquatic vegetation, it is possible to map 

aquatic vegetation when there are enough observations. With enough images, we can 

delineate the maximum extent of the lake by combining clear water pixels from all 

available images. To address this constraint, we first identify the spatial location and the 

dynamics of movement of aquatic vegetation captured by the time series of imagery. 

Second, we identify the type of vegetation- floating and emergent. While emergent 
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vegetation is in the edge or margins of the lake, floating vegetation can be located in the 

middle of the lake. Further, spatial and temporal metrics can facilitate identifying the 

location and type of aquatic vegetation, floating and emergent.  

Due to the difficulty of separating the terrestrial vegetation from aquatic 

vegetation based on a single image, we used all Landsat images available for the study 

period to map the maximum extent of Lake Kyoga. In addition, we also used all images 

to analyze the change in aquatic vegetation coverage, semi-terrestrial vegetation, and 

open water. 

4.2.2.2 NICFI imagery 

The second data source for this research consists of PlanetScope’s tropical 

mosaic, high-resolution images from Norway’s International Climate and Forests 

Initiative (O’Shea, 2021) satellite program. This data enables us to identify the type of 

aquatic vegetation for ground-truthing. The PlanetScope Surface Reflectance Mosaics are 

optimized for scientific analysis, display, and visual interpretation (NICFI DATA 

Program, 2021). The mosaic covers global tropic regions with sub 5 meters per pixel 

resolution per band (visible bands and near-infrared bands). In terms of temporal 

resolution, images are available every June and December between 2015 and August 

2020, monthly after September 2020. 

We used tropical mosaic images consistently available in June and December as 

ground truth for training and reference data collection. The mosaics are assembled from 

individual date images.  The exact dates of acquisition of the PlanetScope images are 

unclear, making it difficult to determine the lapse of time between ground truth and 
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Landsat images. However, we have confidence in using PlanetScope’s high-resolution 

data for ground-truthing since the growth of aquatic vegetation in a short amount of time 

(number of days) is not expected to create a significant difference in type and coverage of 

vegetation. 

 

Figure 4.2 Methodological flowchart showing steps in the extraction of water bodies (left) 

and classification of aquatic vegetation (right). 

4.2.3 Methods 

Figure 4.2 shows the methodology used in this study. The left panel shows the 

processing of Landsat data to derive the water body, and the right panel shows the steps 

involved in locating and classifying aquatic vegetation. The data of the Landsat archive in 

the left panel of Figure 4.2 shows steps in processing, including cloud masking, derived 

water indices, adaptive binary classification, water masks, majority voting, and finally, 
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extracted water body. The final product, combined extracted water body across the time 

period of observations, serves as the input to the right panel focused classifying aquatic 

vegetation. Details are described below. 

4.2.3.1 Water indices 

The first step in our study is the identification of the water body. When and where water 

is found on the earth’s surface is highly significant since it influences the climate system, 

species distribution, food, and water security of regions and countries. Global to regional 

surface water dynamics has been recorded using satellite imagery. Prior research has 

focused on the development of various water indices to highlight water bodies in remote 

sensing images across the globe (Donchyts et al., 2016; Hui et al., 2008; Li et al., 2016; 

Shen & Li, 2010). The simplest measure is the Normalized Difference Water Index 

(NDWI) that was introduced to delineate open water features using the green band and a 

single near-infrared band (McFEETERS, 1996), where all positive values would be 

labeled as water, and negative values would be labeled as non-water. The next measure is 

NDWI (Rogers & Kearney, 2004), which uses the red and short-wave infrared bands for 

water extraction. However, NDWI was found to misclassify built-up surfaces as water 

when a threshold value of 0 is applied (Xu, 2006). This limitation was overcome in the 

modified NDWI (MNDWI) method using the green and short-wave infrared bands (Xu, 

2006). Thus, NDWI has become one of the most widely used water indices for surface 

water mapping (Feyisa et al., 2014). 

The disadvantage of using two-band ratio water indices for surface water mapping 

is that the accuracy suffers when the albedo of background landcovers is low, such as 
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cloud shadows, mountain valleys, asphalt surfaces, etc. (Feyisa et al., 2014). Automated 

Water Extraction Index (AWEI), a multiband water index, was introduced to improve the 

accuracy of surface water mapping by suppressing classification noise from dark surfaces 

and shadows (Feyisa et al., 2014). There are two formulas for the AWEI; while AWEInsh 

is optimized for images where shadows and dark surfaces are not a significant concern, 

AWEIsh is designed for effectively eliminating shadows and dark surfaces from 

classification noise. However, AWEIsh may misclassify land cover with high albedo as 

water (Feyisa et al., 2014). Thus, in this study, both versions of AWEI are used as water 

indices to overcome the limitations of the individual index. 

Index Formula References 

NDWI1 (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅)/((𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑁𝐼𝑅) McFeeters, 1996 

NDWI2 (𝜌𝑅𝑒𝑑 − 𝜌𝑆𝑊𝐼𝑅1)/(𝜌𝑅𝑒𝑑 + 𝜌𝑆𝑊𝐼𝑅1) Rogers and Kearney, 2004 

MNDWI (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1)/((𝜌𝐺𝑟𝑒𝑒𝑛 +  𝜌𝑆𝑊𝐼𝑅1) Xu, 2006 

AWEIsh 𝜌
𝐵𝑙𝑢𝑒

+ 2.5 ∗  𝜌𝐺𝑟𝑒𝑒𝑛  −  1.5 ∗ (𝜌𝑁𝐼𝑅  + 𝜌𝑆𝑊𝐼𝑅1)  −  0.25 ∗  𝜌𝑆𝑊𝐼𝑅2 

Feyisa et al., 2014 
AWEInsh 4 ∗ (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1)  −  (0.25 ∗ 𝜌𝑁𝐼𝑅  + 2.75 ∗ 𝜌𝑆𝑊𝐼𝑅2) 

Table 4.1. Water indices used in this study (band designation according to Landsat 

satellites) 

In this study, as shown in Table 4.1, two versions of NDWI and MNDWI are used 

as the three water indices. Table 4.1 shows each index’s formulae used in this research 

and lists prior research that utilized each index. 

4.2.3.2 Waterbody delineation 

The single band thresholding method is widely used to separate surface water 

from the background because of its ease of use, computational efficiency, and greater 
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precision in specific conditions (Hui et al., 2008). However, water bodies are seldom 

clear. Variations in water turbidity, depth, chlorophyll, etc., make it challenging to use 

spectral indices with a single threshold which is often manually determined, to delineate 

water bodies from other land covers. Otsu thresholding (Otsu, 1979) is deployed to 

perform automatic image thresholding based on a histogram of spectral index values 

located within the edge buffer zones of water bodies. A threshold value is detected that 

best separates the two groups, water, and non-water. A global threshold per image is still 

not satisfactory in a highly variable water color condition, as it fails to differentiate water 

and non-water.  

We adopted the Bradley method (Bradley & Roth, 2007), an adaptive binary 

classification that binarizes the image using a locally adaptive threshold. It computes a 

threshold per pixel using the local mean intensity within the window of the pixel (that 

could be ⅛ of the image). We used this method on the five versions of water indices (See 

Table 4.1) for each Landsat image to extract foreground features (water bodies) from the 

background.  

Even improved water indices cannot accurately highlight water bodies in areas 

with low-albedo surface backgrounds. Water indices have their strengths and weaknesses 

in addressing water features and suppressing non-water features. To reduce noise, we 

utilized a majority rule: for a pixel to be labeled as water, in one Landsat image, at least 

three binary classification results out of the five water indices (described in Table 4.1) 

have to agree on the label. This step results in the derivation of the water mask for the 

given Landsat scene. Finally, the pixels with an NDVI value greater than 0.3 are removed 
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from the water mask to eliminate the pixels where some dark vegetation is misclassified 

as water. 

A recent product called the JRC Global Surface Water provides monthly water 

history (extent), maximum extent, and occurrence. The JRC maps are generated using 

Landsat 5, 7, and 8 satellites, where the pixels were classified using an expert system 

(Pekel et al., 2016). This product provides the location and temporal distribution of global 

surface water from 1984 to 2020. A metric called monthly water history is estimated by 

combining water body masks for each month over the time period. Each month may have 

more than one Landsat image. Thus, the JRC Global Surface Water product is useful for 

deriving monthly water history by combining water body masks for each month over the 

time period. However, JRC Global Surface Water product cannot extract aquatic 

vegetation extent for each individual Landsat image due to the aggregation over the 

month. Thus, JRC Global Surface Water is used to validate our water extent product. 

4.2.3.3 Characterizing the maximum extent of Lake Kyoga and potential locations of 

aquatic vegetation 

Unlike open water, extracting the actual extent of water bodies from a single 

image is not trivial due to the dynamic nature of aquatic vegetation. However, the 

movement and life cycle of aquatic vegetation facilitate determining the maximum extent 

by combining all extracted water bodies from each Landsat image. We propose three 

mapped products, Aggregated Water Occurrence (AWO), Aggregated Maximum Extent 

(AME), and Aquatic Vegetation Extent using the following steps: 
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1) Cell-wise sum of water bodies. For each water body layer, we estimate the pixel 

value. We give a value of 1 for water and 0 for non-water. In this step, we sum up 

or aggregate all water pixels. 

2) Aggregated Water Occurrence (AWO). AWO is the frequency with which water 

was present in each pixel covering the study period of Landsat observations. It is 

the ratio between the number of times the pixel is classified as water and the 

number of valid observations (not counting cloud, cloud shadow, and Landsat & 

ETM+ SLC-off gap). 

𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 =  
# 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒

# 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 −  (# 𝑜𝑓 𝑐𝑙𝑜𝑢𝑑 +  # 𝑜𝑓 𝑐𝑙𝑜𝑢𝑑 𝑠ℎ𝑎𝑑𝑜𝑤)
 

3) Aggregated Maximum extent (AME). Areas with occurrences greater than 2% (to 

reduce noise) are established as the maximum extent of Lake Kyoga. 

4) Aquatic Vegetation Extent. The potential location of aquatic vegetation for a 

specific image is estimated from the difference between the maximum extent (of 

water) image and the water mask of the image (see Figure 4.3). 
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Figure 4.3. Left: shows Landsat 8 OLI image (March 23, 2018) masked by maximum extent. 

Right: Same Landsat 8 OLI image masked by the difference mask. (of the AME and water 

mask of Landsat image on March 23, 2018) 

4.2.3.4 Adding spatial and temporal metrics to spectral bands 

Similar to terrestrial vegetation, aquatic vegetation has the same spectral 

characteristics, high reflectance in infra-red wavelength and low in red and blue 

wavelengths (Cavalli et al., 2009). At the micro-level, the leaf density, orientation, and 

distribution are important. Plants with broad leaves and dense canopy reflect more light. 

At the macro level, not only the biomass and density influence the spectral signal, but 

also the water in the background. Because water absorbs electromagnetic radiation 

strongly in the visible and shortwave infrared spectrum, reflectance measurement of 

floating aquatic vegetation is highly variable when mixed with or submerged in water 

(Silva et al., 2008). In addition, the bottom of water bodies affects the absorption and 

scattering of light, which also needs to be considered when interpreting optical satellite 

images of aquatic vegetation in shallow water (Silva et al., 2008). 

In order to improve the accuracy of aquatic vegetation classification, occurrence 

and distance to the shoreline (see Figure 4.2 right panel) were added to the spectral bands 

of Landsat Images: 

• Occurrence is the frequency with which water was present. It is the intermediate 

step when deriving the maximum extent of Lake Kyoga. Thus, occurrence acts as 

a temporary measure in our estimation algorithm. 

• Distance to the banks of the lake is a spatial measure of how far the aquatic 

vegetation is to the boundary of the maximum extent of Lake Kyoga. It was 
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calculated on the Google Earth Engine using the cumulative cost function 

(Cumulative Cost Mapping | Google Earth Engine, n.d.). 

Aquatic plants may be free-floating or rooted in the bottom of the sediments 

emerging from the water. As a result, floating vegetation pixels should have relatively 

high occurrence and are near or in the open lake waters, at a greater distance from the 

bank of the lake. Emergent rooted vegetation is often located in shallow littoral waters 

with low occurrence. 

4.2.3.5 Aquatic vegetation using unsupervised and supervised classification 

A combination of unsupervised and supervised image classification was 

performed. Earth Engine’s K-means (unsupervised) clustering (WekaKMeans | Google 

Earth Engine, n.d.) was applied on potential aquatic vegetation pixels of images of June 

and December covering the period, 2015 to 2019. A total of 40 clusters for each image 

are derived from the unsupervised clustering. An expert interpreted and merged similar 

clusters using PlanetScope Surface Reflectance Mosaics. This data served as the ground 

truth for cluster labeling of the pixels. Finally, the expert (LK) labeled seven clusters. 

There are three dominant aquatic vegetation classes - high density floating vegetation, 

low density floating vegetation, and emergent vegetation as shown in Figure 4.4. 

Additionally, water, semi-terrestrial vegetation, mudflat, and cloud, were included as 

target classes as well. To summarize, labeling of unsupervised clusters, NICFI 

PlanetScope Tropic mosaics, and expert labeling resulted in the identification of seven 

classes. The above steps created training data for random forest supervised classification 

of images. 
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Figure 4.4 Papyrus (left) and water hyacinth (right) in Lake Victoria (Photo credit: Ann 

Weru/IRIN and Shutterstock) 

The random forest classification was performed using the randomForest package 

in R (Cutler & Wiener, 2018). The input data consists of spectral bands from Landsat 

images, occurrences, and distance to the shoreline. Subsequently, the random forest 

classifier was calibrated using the tuneRF function in the randomForest package to look 

for optimal ntree and mtry parameters. Finally, the classification map and area estimation 

of each class distribution were estimated. 

A total of 500 stratified probability samples were drawn from the 1986 - 2020 

aquatic vegetation maps by stratifying along the 3 major classes: water (n=109); Low 

density floating vegetation (n=70); High density floating vegetation (n=102); Emergent 

vegetation (n=117) and 4 other target classes: Semi-terrestrial vegetation (n=24); Mudflat 

(n=11); Cloud (n=7). Each 30m pixel sample was analyzed using Landsat images, 

PlanetScope Tropic mosaics and Google Earth images. An error matrix was constructed 

from the reference sample points to assess user and producer’s accuracy. 
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4.3 Results 

The analysis enables us to map the extent of open water in the lakes. This water 

resource is the most accessible to human populations living around the lakes, and 

provides wide-ranging ecosystem services, including fisheries. The proposed AWO and 

AME is validated against another method called JRC Global Surface Water product. 

Next, dynamics of the open water and aquatic vegetation for the main and satellite lakes 

are compared to understand the trend through time. Finally, we provide results in 

classification accuracy of floating vegetation with and without consideration of the 

distance to shoreline and occurrence. 

4.3.1 Temporal dynamics and maximum extent of water bodies - AWO and AME 

Our first set of mapped products, Aggregated Water Occurrence (AWO) and 

Aggregated Maximum extent (AME) account for temporal dynamics and the maximum 

extent of water bodies. We compare AWO and AME mapped products with the JRC 

Global Surface Water product (2016) to validate our approach. Figure 4.5 left panel 

highlights differences in percentiles between the proposed AWO and the JRC Global 

Surface Water occurrence (2016).  The 1% and 99% percentile differences map to -0.273 

and 0.085 respectively (negative value shows JRC product has larger occurrence). The 

most significant differences are 1 percentile (shown in yellow). The highest differences 

between the two are found at the edge of the lake and satellite lakes. Closer to the edge or 

in satellite lakes, JRC occurrence has a higher occurrence value. Overall, there is very 

little difference between AWO and JRC occurrence, especially in the middle of the lake, 

where the differences range between -0.022 to 0.007. 
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The right panel of Figure 4.5 looks at the maximum extent of water bodies using 

the two methods; the JRC Maximum extent (green) is very similar to the AME (blue). 

While JRC Global Surface Water’s maximum extent estimated area is 3650.8437 km2, 

the AME estimated area is 3569.30 km2. The area of overlap between the two is 3511.75 

km2, which is 96.2% of JRC’s maximum extent and 98.4% of the AME. This analysis 

shows that our proposed methods, AWO and AME in particular, are valid in capturing 

the maximum extent of water in the context of aquatic vegetation. As previously 

highlighted, JRC cannot be used for mapping aquatic vegetation due to its composite 

nature.  

In summary, both AWO and AME are underestimating water areas since our 

overall objective is to identify aquatic vegetation. Overestimating water will remove the 

aquatic vegetation pixels. 
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Figure 4.5. Left: Difference between proposed Aggregated Water Occurrence (AWO) and JRC Global Surface Water occurrence 

is shown as percentiles. Right: Overlay of Proposed Aggregated Maximum Extent (AME) and JRC Global Surface Water 

maximum extent. 
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4.3.2 Dynamics of open water in the main and satellite lakes over the entire period 

Landsat images are often contaminated with clouds and hence we cannot directly 

estimate the area of open water; instead, we need to take a ratio estimate of water area to 

the area of the pixel clear of clouds, yielding an open water ratio for every image. This 

metric allows us to compare open water dynamics of the main and satellite lakes over the 

entire period of observation, yielding insights on climate signals and rainfall. Figure 4.6 

plots the entire time series of the open water ratio over time that can be summarized as 

follows: 

• The open water ratio is consistent over the entire study period. The open water 

ratio is around the lower 80% range and then elevated to around 90% during 1999 

and 2006 and then a drop to around 80%. This trend agrees with the G-REALM 

radar altimetry data (G-REALM - Kyoga, n.d.), providing us greater confidence in 

our approach. 

• There are high fluctuations in the open water ratio, for example, September 2001, 

November 2004, and August 2018.  These trends are mainly observed in high 

cloud cover images and indicate that there could be a bias in the estimated open 

water ratios since the number of valid pixels is reduced in that image. 

To summarize, the proposed open water ratio corresponds well with the G-REALM 

radar water level altimetry data. 
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Figure 4.6. Open water ratio (vs. valid observation) for each Landsat image. Images with high cloud coverage (over 70%) are 

marked in red. 
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4.3.3 Spatio-temporal changes in aquatic vegetation 

Aquatic vegetation is classified using the methodology described in Section 

4.2.3.5. Aquatic vegetation includes three types - high density, low density, and emergent 

vegetation. The vegetation coverages are estimated as ratios of vegetation to the area of 

the pixel clear of clouds in each image (similar to open water ratios in Section 4.3.2). 

Areas of vegetation are high during the mid-1990s with a peak value of around 22% 

recorded in March 1995 (1995-03-24). Vegetation consists of three types - high density 

(9.6%) and low density (8.3%) floating vegetation, and emergent (6.2%) vegetation 

around March 24, 1995. Before 1999, the aquatic vegetation ratio was high, probably due 

to low water level, exposing the shallow lake bottom. However, from 1997 to 2000, the 

water level increased by around 2 meters, submerged the exposed section of the Lakebed 

(G-REALM - Kyoga, n.d.), resulting in a reduction of aquatic vegetation as shown in 

Figure 4.7. 

• Before 1999, there were two major data gaps, Jan 1991 to Oct 1994, and Apr 

1995 to Oct 1999. Missing data during the nineties makes it impossible to 

interpret what happened to patches of floating vegetation subsequently.  

• Starting from 1999, images are more frequent, there are some large spikes in 

terms of aquatic vegetation coverage. Some are skewed by cloud coverage. 
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Figure 4.7. Left: False color Landsat 5 TM (11/10/1986); Right: Landsat 7 ETM+ (01/25/2000) 
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Figure 4.8. Aquatic vegetation ratio (vs. valid observation) for each Landsat image. Images with high cloud coverage (over 70%) 

are marked in red. 
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In general, there is an inverse relationship between the aquatic vegetation ratio 

and open water ratios. As water areas decrease, aquatic vegetation tends to increase. 

Figure 4.8 shows the aquatic vegetation ratio. The ratio ranges from 10% to 20% before 

1999. Then it dropped to 5% to 10% from 2000 to 2011. In the recent decade, the ratio 

slowly increased to around 12 % with occasional spikes to mid-20%. Further, high-

density floating vegetation area was prevalent before 1999 and is less in the last two 

decades.  Emergent vegetation dynamics were stable in the last two decades. 

3.3.4 Dynamics of the satellite lakes: the case of Lake Nawampasa 

The satellite lake called Nawampasa (Figure 4.1c), south-east of Lake Kyoga, is 

examined in detail to characterize vegetation dynamics.  Figure 4.9 shows 3 aquatic 

vegetation classes in four time periods (01/10/1986, 12/24/1999, 02/14/2016, and 

07/10/2017) (left panel) and plots of AWO and distance to the shoreline (right). Lake 

Nawampasa had some high-density floating vegetation in the southwest and southern 

regions in 1986 (top left image). In 1999, the second time period (top right image), 

vegetation increased by a small amount in the north; in 2016 (lower left image), it 

increased in the south and central regions, and finally in 2017 (lower right image), there 

is smaller vegetation cover. Four corresponding scatter plots on the right panel show 

similar trends. The horizontal axes of each scatter plot show distance to the shore (M) 

while the vertical shows the percent occurrence of 3 types of vegetation. Emergent is 

very close to the shoreline in all four plots characterized by low occurrence.  The plots 

also show that the swath of both low and high density is higher in 2016 compared with 

2017. To summarize, lake Nawampasa had no floating vegetation in 1986, a slight 
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increase in 1999, the greatest increase in 2016, with a marked decrease in 2017. This 

pattern of progressive eutrophication needs further study and field validation. 

The study of floating vegetation is crucial for conservation of endangered fish, 

because submerged aquatic vegetation is a source of food and shelter. However, once the 

surfaces of the satellite lakes are covered by floating vegetation, it hinders the 

development of submerged vegetation by denying sunlight and oxygen. Too much 

floating vegetation could harm the main habitat of the endangered fish and other ones 

needed for fishery. The total amount of floating vegetation is influenced by many factors, 

one of which is nutrient washing into the lake. The whole Lake Kyoga area is heavily 

farmed, and the soil is nutrient rich due to volcanic ash. On the other hand, the biomass 

and spatial distribution of aquatic vegetation is heavily influenced by water level in 

shallow lakes. Both factors are directly related to rainfall which is predicted to be more 

variable manifested through climate change. Such a trend has already been observed in 

recent years, water level in Lake Kyoga has increased around 3 meters since early 2020. 

Future flood events could become more frequent and would have a more serious impact 

on the shallow lake ecosystem. 
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Figure 4.9. Left: classification results on Lake Nawampasa. Right: Scatter plot showing occurrence vs. distance to shoreline of 

classified pixels. 
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4.3.5 Improvement in accuracy with spatial and temporal data 

In this analysis, we estimated the accuracy of different land cover classes based 

on spectral bands using a random forest classifier. These results are shown in Table 4.2. 

The overall accuracy is 60.2%. The best user’s accuracy is seen in water followed by 

emergent vegetation; low-density floating vegetation has lower accuracy, indicating 

confusion with water. The producer’s accuracy is higher for emergent vegetation 

compared with low and high-density floating vegetation. This classification suggests that 

spectral bands alone are not sufficient for classifying aquatic vegetation. 

Table 4.3 shows the estimated accuracy of different land cover classes based on 

spectral bands, and two additional factors, distance to shoreline and AWO. The random 

forest classifier results are shown in Table 4.3. The overall accuracy is 86.8%, a 

considerable (26.6%) improvement over the accuracy shown in Table 4.2. The best user’s 

accuracy is seen in high density floating vegetation class while emergent vegetation has 

lower accuracy. The opposite is true for producer’s accuracy where emergent vegetation 

is more accurate than high density floating vegetation. Low density floating vegetation 

has the lowest accuracy since it is often confused with water. 

The two accuracy assessment results highlight the following: 

• The accuracy assessment based on spectral bands, AWO, and distance to shore 

produced higher overall accuracy (86.8%) compared with spectral bands alone 

(60.2%).  Producer’s and user’s accuracy are also higher using 3 measures 

(spectral bands, AWO, and distance to shore) compared with spectral band 
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classification. Thus, adding spatial and temporal measures greatly improves the 

overall classification of aquatic vegetation. 

• Because water is distinctive spectrally, it has the highest producer’s and user’s 

accuracy. 

• Cloud has the lowest producer’s and user’s accuracy due to a variety of reasons.  

Note that most of the cloudy pixels were masked/removed from the Landsat 

image using CFmask. But the remaining cloudy pixels may be missed by 

CFmask, usually on the edge of the cloud where some cloudy pixels still remain. 

In addition, the presence of some cirrus clouds or low cumulus clouds causes 

confusion. The cloud and cloud shadow could hide subtle spectral differences of 

different land covers. 

• The producer’s accuracy of semi-terrestrial vegetation is also low, because they 

share a similar spectral signature with emergent vegetation, as well as have low 

occurrence and are located close to the shoreline. 
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Cloud 

Emergent 

Vegetation 

Floating - 

HD 

Floating - 

LD 
Mudflat 

Semi-terrestrial 

Vegetation 
Water Total 

User’s 

Accuracy 

Cloud 4 1 0 0 1 0 3 9 44.4% 

Emergent 

Vegetation 
1 108 46 9 0 11 1 176 61.4% 

Floating - HD 0 26 49 4 0 5 0 84 58.3% 

Floating - LD 5 6 5 36 0 2 24 78 46.2% 

Mudflat 0 2 1 0 7 4 0 14 50.0% 

Semi-terrestrial 

Vegetation 
1 0 16 1 1 15 0 34 44.1% 

Water 4 3 1 15 0 0 82 105 78.1% 

Total 15 146 118 65 9 37 110 500  

Area estimates 

[ha] 
355,966 4,089,576 3,365,740 1,697,703 183,536 891,528 2,983,004   

95% CI [ha] 172,058 407,749 461,717 355,674 94,090 268,270 314,533   

Producer’s 

Accuracy 
26.7% 73.9% 41.5% 55.4% 77.8% 40.5% 74.5%   

Overall 

Accuracy 
60.2%         

Table 4.2. Accuracy assessment of aquatic vegetation using only spectral bands, 
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Cloud 

Emergent 

Vegetation 

Floating - 

HD 

Floating - 

LD 
Mudflat 

Semi-terrestrial 

Vegetation 
Water Total 

User’s 

Accuracy 

Cloud 6 0 0 0 0 0 1 7 85.7% 

Emergent 

Vegetation 
2 145 13 4 0 8 0 172 84.3% 

Floating - HD 0 5 100 1 0 0 0 106 94.3% 

Floating - LD 6 0 1 53 0 2 8 70 75.7% 

Mudflat 0 0 0 0 8 3 0 11 72.7% 

Semi-terrestrial 

Vegetation 
0 1 2 1 0 21 0 25 84.0% 

Water 1 0 0 6 1 0 101 109 92.7% 

Total 15 151 116 65 9 34 110 500  

Area estimates 

[ha] 
389,448 4,218,744 3,069,918 1,764,575 238,672 915,575 2,988,739   

95% CI [ha] 163,526 290,576 244,082 265,187 96,362 211,226 209,194   

Producer’s 

Accuracy 
40% 96.0% 86.2% 81.5% 88.8% 61.7% 91.8%   

Overall 

Accuracy 
86.8%         

Table 4.3. Accuracy assessment of aquatic vegetation using spectral bands with distance to shoreline and AWO 
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4.4 Discussion 

Remote sensing methods have been widely used for monitoring aquatic vegetation 

over the in-situ field survey, as remote sensing provides images with consistent and 

repeatable data which reduces the cost and makes the measurement across time 

comparable. Prior research focused on the aquatic vegetation classification based on the 

spectral differences of different vegetation types, and spectral libraries of signatures 

collected from field samples. However, limited radiometric and spatial resolution satellite 

sensors pose great challenges for accurately distinguishing certain aquatic vegetation 

types from terrestrial vegetation from individual images. This study demonstrated that a 

long time series of remote sensing data is useful for mapping the spatial distribution and 

dynamics of aquatic vegetation, addressing the gaps in the earlier data. 

In this study, water bodies are identified using five versions of the water spectral 

index; each index consists of various combinations of spectral bands to suppress noise 

and non-water features. In many water indices, the threshold that separates water and 

non-water features is non-stable, changing from image to image. Ostu thresholding 

provides an adequate solution to determine the optimal global threshold per image. But in 

complex scenes, global thresholding is less effective. The Bradley method, a moving 

window approach, was applied to determine the threshold on a pixel level. To further 

improve accuracy, a majority voting approach was applied to produce the final water 

body masks. 

Deriving the water masks, two data products were proposed: aggregated water 

occurrence and aggregated maximum extent. Comparison with the JRC Global Surface 
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Water showed almost identical results in the open lake region and minor underestimation 

in edges and satellite lakes. This is mainly due to the algorithm being tuned 

conservatively to avoid removing potential aquatic vegetation pixels.  

Different types of aquatic vegetation possess distinct spatial and temporal 

characteristics. Distance to shoreline and AWO that were added to spectral signals from 

Landsat images, which greatly improved the classification accuracy. Drastic changes in 

water level can negatively impact the accuracy of aquatic vegetation identification when 

the distance to shoreline and AWO are added. During the early period of the 

observations, the water level of the Lake region was 1032 MSL (mean sea level) in 1994 

which increased to 1035 MSL at the beginning of 2000. A patch of land in the western 

region close to Victoria Nile of Lake Kyoga was submerged. However, the same patch of 

land never re-emerged when the water level dropped back to 1032 MSL in 2010. 

Therefore, prior to 2000, the vegetation at that location was misclassified as high-density 

floating vegetation due to its low occurrence and high distance to the shoreline. Changes 

in land use could also negatively affect the classification results, as the AWO and AME 

metrics were generated using water history from the past 30 years. In the later years of 

observation, nearshore areas of the lake with agricultural landuse may be misidentified as 

emergent vegetation. To reduce the limitations, a more granular control can be 

implemented on what images are used to construct the AWO and AWE. For example, to 

reduce the influence of change in water level on misclassification is to use images with 

similar water levels, which can be measured through satellite radar altimetry data. 
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Another issue is cloud cover, which influences the ratio of aquatic vegetation area and 

open water, and therefore affects the classification accuracy. When the number of clear 

pixels is low, (or cloud cover is high),  it can often result in bias particularly if the clear 

pixels are clustered mainly on land or water. Also, the cloud mask algorithm used in this 

study has limited ability to detect thin cirrus, low cumulus clouds, and cloud edges, 

which obscures spectral signature for certain classes. Data fusion using images from 

multiple types of sensors and resolutions could increase the data availability. Influences 

from clouds can be reduced from fusing data from optical sensors and SAR sensors since 

clouds are transparent to radar waves. High temporal resolution sensors can be fused with 

Landsat images through mathematical models to create near real time tracking of aquatic 

vegetation dynamics. 

 

4.5 Conclusion 

A novel algorithm is proposed in this study to classify and map the spatial 

distribution and dynamics of aquatic vegetation in the Lake Kyoga region in Uganda 

using Landsat imagery. The mapped products include Aggregated Water Occurrence 

(AWO), Aggregated Maximum Extent (AME), and Aquatic Vegetation Extent (AQE).  

Water occurrence is a measure of the number of times the pixel is classified as water 

from 1986 to 2020. Lake Kyoga’s maximum water extent is identified using a 

combination of water indices ranging from the Normalized Difference Water Index 

(NDWI) to modified NDWI (MNDWI) and Automated Water Extraction Index (AWEI). 

The disadvantage of using two-band ratio water indices for surface water of NDWI 
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mapping is overcome using AWEI, a multiband water index.  AWO and AME enable us 

to identify aquatic vegetation and separate aquatic vegetation pixels from lake water 

pixels. The classification procedure requires class labels and training data generated in 

this study using an unsupervised SOM clustering algorithm. An expert identified the 

clusters and labeled them aided by high-resolution PlanetScope imagery. The experts 

selected seven meaningful clusters out of 40 clusters generated by the algorithm, which 

was then used to create training data for a supervised decision tree classifier.  Thus, the 

study provides a valuable methodology for generating class labels and training data in the 

classification of aquatic vegetation when such data is sparse and unavailable. 

Two additional spatial and temporal variables better classify aquatic vegetation in 

Lake Kyoga in the random forest classification procedure. The resulting classification 

maps have better overall accuracy and vegetation class accuracies than the basic spectral 

imagery, indicating that distance to shore and temporal dynamics (captured in AWO) 

produced higher overall accuracy and class accuracies. Floating and emergent aquatic 

vegetation are clearly differentiated using additional variables. Hence spectral bands 

alone cannot differentiate aquatic vegetation. We envision that our algorithms could 

monitor the aquatic dynamics in lakes in other regions where their environments are 

similar to the Lake Kyoga region. 
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CHAPTER 5 – Seeing the Invisible: From Imagined to Virtual Urban Landscapes 

 
 Urban ecosystems consist of infrastructure features working together to provide 

services for inhabitants. Infrastructure functions akin to an ecosystem, having dynamic 

relationships and interdependencies. However, with age, urban infrastructure can 

deteriorate and stop functioning. Additional pressures on infrastructure include 

urbanizing populations and a changing climate that exposes vulnerabilities. To manage 

the urban infrastructure ecosystem in a modernizing world, urban planners need to 

integrate a coordinated management plan for these co-located and dependent 

infrastructure features. To implement such a management practice, an improved method 

for communicating how these infrastructure features interact is needed. This study aims 

to define urban infrastructure as a system, identify the systematic barriers preventing 

implementation of a more coordinated management model, and develop a virtual reality 

tool to provide visualization of the spatial system dynamics of urban infrastructure. Data 

was collected from a stakeholder workshop that highlighted a lack of appreciation for the 

system dynamics of urban infrastructure. An urban ecology VR model was created to 

highlight the interconnectedness of infrastructure features. VR proved to be useful for 

communicating spatial information to urban stakeholders about the complexities of 

infrastructure ecology and the interactions between infrastructure features.  
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5.1 Introduction 

5.1.1 Urban ecology 

 Cities function akin to ecosystems, consisting of complex features and systems 

that are interconnected and dependent on one another. These urban ecosystems are fragile 

and face many challenges. As the population in many areas of the world continues to 

grow and urbanize, cities are forced to adapt and, as a result, the functioning urban 

ecosystem becomes stressed while trying to supply services to more people (Colding & 

Barthel, 2017). Additionally, the urban ecosystem is threatened by a changing climate 

and extreme weather events - from flooding and land subsidence in New Orleans (Qiang, 

2019), to wildfires destroying areas on the west coast of the United States (Schweizer, 

Cisneros, Traina, Ghezzehei, & Shaw, 2017), environmental hazards test urban 

ecosystems worldwide with increasing frequency and extremity (Salas & Yepes, 2018). 

The combination of environmental threats and an ever-growing population has put 

unprecedented stress on aging urban ecosystems, exposing vulnerabilities and posing a 

risk of collapse. Improving these ecosystems and increasing the resiliency of 

infrastructure systems is going to be crucial for cities moving into the future. 

 5.1.2 Infrastructure systems 

Urban infrastructure system (UIS) is a term that will be referred to throughout this 

paper. The UIS is defined as the dynamically interrelated pieces of individual 

infrastructure, both above and below the ground, that make cities function. The UIS can 

change as a whole in response to a shift in one individual feature (Pandit, Lu, & 
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Crittenden, 2015). An UIS is expansive and is maintained by a variety of stakeholders, 

including local governance, municipal and public facilities, municipal utilities, and 

engineers (Ferrer, Thomé, & Scavarda, 2018). In the UIS framework, it is important to 

understand that a change or failure in one infrastructure feature can cause a ripple effect 

throughout an urban environment. As stated in Upadhyaya, Biswas, and Tam (2014): 

“There are multiple and layered negative effects on societal health and well-being when 

infrastructure systems break down and are unable to adapt to sudden increased demands 

… Unsustainable and inadequate infrastructure can fail causing stress on resources and 

endangering public health.” 

There have been countless incidents where a piece of infrastructure fails and 

causes damage and inconvenience to large urban populations. Power outages, flooding, 

and major repair projects are just a few examples of the inconveniences and dangers that 

occur when the UIS is disrupted (Upadhyaya et al., 2014). Unfortunately, in many 

municipalities care for infrastructure as separate features and approach management with 

a narrow technological approach rather than holistically addressing the entire system 

(Pandit et al., 2015). This separation in infrastructure management is demonstrated in the 

separation of management between above and belowground infrastructure features. 

Seldom do the stakeholders at the parks and recreation department interact with the water 

and sewage workers on coordinating repairs. This siloed approach has created an urban 

infrastructure management system in which there is little professional and/or public 

understanding of how these two infrastructure environments interact as a system (Nelson, 

2016). 
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To understand how infrastructure below the ground affects infrastructure above 

the ground (Rinaldi, Peerenboom, & Kelly, 2001), it is important to distinguish between 

the components of above and belowground infrastructure. Aboveground infrastructure 

encompasses the infrastructure citizens walk on, live in, and ride on. Roads, sidewalks, 

buildings, parking lots, green spaces, and public transportation comprise the above 

ground infrastructure ecosystem (Andersson et al., 2014). Belowground infrastructure is 

less conspicuous but is equally, if not more, important to care for in order to reach 

resilient urbanization goals (Ferrer et al., 2018). Below city streets there is a complex 

system of utilities, transportation, biomass, and structures that enable urban areas to run. 

Gas lines, water pipes, sewage, stormwater management, electricity, and cable provide 

services to urban citizens upon which they rely (Guneralp et al., 2015). Subway lines, 

tunnels, and skyscrapers' massive foundations also have to find a niche underground to 

provide ease of movement and support for people living above the ground (Sun & Cui, 

2018). In addition to these human requirements, the natural world is a strong competitor 

below the ground. Microbial communities and root structures compete for space in this 

highly disturbed environment (Mullaney, Lucke, & Trueman, 2015). 

Above and belowground infrastructure features are separate “adaptive entities” 

that interact and relate to one another in complex ways (Pandit et al., 2015). 

Unfortunately, infrastructure management in many urban areas is focused on the 

individual utility. Shifting this focus from the current short-term ad hoc repairs to a 

comprehensive integrative repair plan will be necessary for cities to be more sustainable 

and resilient (Derrible, 2017). To make this transition possible, an increased 
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understanding of the relationship between above and belowground infrastructure will be 

crucial for all infrastructure stakeholders to promote a healthy urban ecosystem. 

In order to efficiently plan for cities of the future that are resilient in a changing 

climate and an urbanizing world, coordinated infrastructure management of both above 

and belowground utilities will be necessary. For this study, we focus on the City of 

Boston, MA and other Massachusetts municipalities that are currently tackling aging 

belowground infrastructure (Hendrick, Ackley, Sanaie-Movahed, Tang, & Phillips, 

2016). Our team hosted a workshop for stakeholders involved in all realms of urban 

infrastructure management to sit down together and discuss the systematic and 

foundational barriers that exist for implementing a more coordinated infrastructure 

management approach. From the conversations,our team uncovered a need for a tool that 

could not only help stakeholders visualize spatial information but highlight the 

interconnectedness of various infrastructure features. Virtual Reality (VR) became a clear 

choice for communicating the complexity of interrelated spatial data to the stakeholders 

and so our team created an immersive VR tool to demonstrate the UIS. 

 

5.2 Data and methodology 

5.2.1 Virtual reality for urban planning (virtual landscapes) 

An emerging tool with exciting and growing application in urban planning is 

Virtual Reality (VR) (Kersten, Deggim, Tschirschwitz, Lindstaedt, & Hinrichsen, 2018). 

VR is an immersive tool that allows a user to experience and “reproduce a realistic… 

detailed and accurate visual and audio model as similar as possible” to the real world in 
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the comfort of their own office or home (Echevarria Sanchez, Van Renterghem, Sun, De 

Coensel, & Botteldooren, 2017). VR models create an environment that stakeholders can 

enter, providing a “common language” for them to use and relate to while making 

planning decisions (Lovett, Appleton, Warren-Kretzschmar, & Von Haaren, 2015). A VR 

environment is immersive; creating a “multisensory' visualization… [that] track[s] user 

movements [and] show[s] a virtual environment wherever the user is looking” (Berger & 

Bill, 2019). Additional benefits of a VR model is that this environment can be created in 

an office building, not requiring stakeholders to travel to a location to visualize 

infrastructure like an augmented reality (AR) model would require (Cirulis & Brigmanis, 

2013). Conclusions drawn from the urban stakeholder workshop, hosted as a part of this 

study, demonstrated a need amongst stakeholders for a better way to communicate and 

visualize spatial data in the complex urban infrastructure environments, paving the way 

to the creation of this VR tool. 

Traditionally, urban planning stakeholders have been trained with tools such as 

computer-aided design (CAD) and geographical information system (GIS) drawings (Wu, 

He, & Gong, 2010). These tools are helpful in visualizing city streets and networks but do 

not show the dynamic and inter-connectivity of the different features in the UIS. VR 

tools, however, has the ability to facilitate a more comprehensive approach to urban 

planning and infrastructure management by showcasing all features in the infrastructure 

ecosystem and demonstrating how they interact with one another (Santos, Zarraonandia, 

Díaz, & Aedo, 2018). Creating a VR rendering of a city street, with both above and 

belowground infrastructure components, provides urban planners with the answers to 
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questions such as, what is the spatial relationship between sewage and drinking water 

supply? How are belowground utilities organized under the street? How vulnerable is the 

infrastructure network to collapse? Industry experts have a heuristic understanding of the 

placement of various utilities in relation to one another, but a VR realization could make 

this more concrete (Nelson, 2016). Ideally, having a tool that enables stakeholders to 

visualize co-located urban infrastructure features would allow for a more coordinated 

infrastructure management approach that could increase the resiliency and efficiency of 

the entire infrastructure system. 

VR, while pioneered in the gaming industry, has transformed over time through 

innovations in application (Edler, Kühne, Keil, & Dickmann, 2019). Recent 

advancements in cartographic methods and GIS technology have allowed for data 

representation in the third- and fourth- dimension (height and time respectively), giving 

cartographers access to new realms of mapping (Wolfartsberger, 2019). Unfortunately, 

there are technical challenges to bridging a GIS database into an AR or VR database but 

when done successfully, adding the third- and fourth-dimensions, 3D GIS decision 

support systems can create three-dimensional scenarios from overlapping spatial datasets, 

e.g., street measurements of different infrastructure features. This integrative model is 

helpful in enabling urban planners to see the interconnectedness of the urban 

infrastructure system and has added depth representation to spatial data and enhanced 

visualization (Hruby, 2019). AR is useful for many of the same applications in urban 

planning as VR, however, with AR technology the user must travel to the real-world 

location in order to envision the virtual model (Carozza & Tingdahl, 2014). AR has 
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proven useful in urban applications in countless studies (Allen, Regenbrecht, & Abbott, 

2011; Imottesjo & Kain, 2018; Ishii et al., 2002) but for the immersive and portable 

experience associated with VR, our team decided VR would be more applicable for 

communicating spatial interactions in the UIS. 

VR models create an environment of spatial data that enables the user to visualize, 

interact, and immerse themselves into the unique map from anywhere in the world 

(Kersten et al., 2018). VR models have huge potential to revolutionize urban planning 

and the mapping of ‘smart cities’ because they allow planners to simulate future 

scenarios (Tao, 2013). This extensive immersion mapping technology was attractive to 

our team because it would allow stakeholders to envision the interactions between 

infrastructure features and see the dynamics of the UIS. Using VR for urban planning is 

not a novel idea. In a study by Fairbairn and Parsley (1997), the authors examined the use 

of VR and virtual reality modeling language for cartographic presentation, and provided 

several examples that demonstrate successful virtual campus construction. Prior studies 

by Batty, Dodge, Doyle, and Hudson-Smith (1998) and Doyle, Dodge, and Smith (1998) 

have described the ‘Virtual London’ project that marries a range of VR and Internet GIS 

technologies. Urban stakeholders benefit from VR technology because it is useful in 

exploring ways to plan, model, and simulate urban planning and aid in impact assessment 

(Kamel Boulos, Lu, Guerrero, Jennett, and Steed, 2017). The creation of these virtual 

models has enabled planners to interface with the complex physical and social data 

incorporated in planning and managing cities in a realistic and meaningful interactive 

way. 
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VR has additional applications in risk assessment and urban resiliency in a variety 

of contexts, including wind damage (Repetto et al., 2017), forest fires (Gaudreau, Perez, 

& Drapeau, 2016), and other natural disasters (Breunig et al., 2015). ESRI (the company 

making GIS software) has created a mobile VR solution for urban planners, architects, 

and GIS professionals called CityEngine that can create a VR tool to compare urban 

planning scenarios on a mobile device. Standard 3D GIS packages include 3D city 

modeling applications, such as City Engine (Neukom, 2018) and CityGML (issued by the 

Open Geospatial Consortium) to render and store digital 3D models of cities and 

landscapes (Pouliot, Larrivée, Ellul, & Boudhaim, 2018). The standard ArcGIS API 

enables users to build full-featured 3D applications powered by web scenes consisting of 

terrain, integrated mesh layers, and 3D objects. Additionally, the open-source JavaScript 

library Cesium can create web-based globes and maps, also useful for visualizing 

dynamic data. iTowns, written in JavaScript/WebGL, is frequently used for precise 3D 

visualization of street view images and terrestrial LiDAR point cloud. Unfortunately, due 

to the massive size of spatial data, web-based GIS applications can create network 

latency as well as bottlenecks when handling multiple users. Despite these difficulties, 

VR-GIS packages are becoming increasingly popular for addressing and solving urban 

problems because of their ability to incorporate the dynamics of aboveground and 

underground features (Boulos et al., 2017). 

VRGIS has become an increasingly popular for tool for urban planners looking 

for an interactive way to model urban decision-making processes (Sameeh El halabi et 

al., 2019). VRGIS establishes a three-dimensional model in a virtual environment, and 
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operates via personal computers, mobile devices and smart glasses. Examples of VR 

technologies include Google Daydream View VR, and its' cheaper predecessor 

Cardboard (2014), which utilizes a smartphone's gyroscope for head tracking. VRGIS is 

almost seven decades old, however, recent innovations and developments in technology, 

such as big data, augmented reality, graphic processing units (GPUs), and the Internet of 

Things (IoT), has enabled VRGIS to have better performance and more intuitive human–

computer interactive modes. These advancements in VRGIS have encouraged its 

applicability in visualizing, experiencing, and solving more complex, real-world 

problems (Boulos et al., 2017; Li et al., 2015). 

5.2.2 Workshop 

In order to provide a tool to aid in implementing a more coordinated infrastructure 

management approach, a baseline understanding of the current management practices 

amongst infrastructure stakeholders had to be established. To obtain this baseline data, 

our team hosted an urban infrastructure workshop in June of 2017 that brought urban 

stakeholders together to discuss current infrastructure management protocol. Elected 

officials, city planners, engineers, utility workers, students, concerned citizens, activist 

groups, academics, and several other parties invested in making cities work efficiently 

attended. The goal of the workshop was to encourage groups of people who did not 

typically interact to discuss the systematic difficulties, educational obstacles, and/or 

communication barriers in managing urban infrastructure in Massachusetts. 
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Baseline data was collected in the form of visual maps and talk-back sessions in response 

to two exercises. In an effort to establish a baseline understanding of the attending 

stakeholders in regard to their perceptions of above and belowground infrastructure, they 

were asked to draw a cross-section of a typical city street. The stakeholders were 

randomly assigned to different groups and presented a prompt (Figure. 5.1) that asked 

them to draw a cross-section of a city street in fictional Anytown, USA and to highlight 

the interactions between the features of infrastructure they included and the stakeholders 

responsible for managing those features. For example, were they to include gas pipes and 

water pipes in their drawing, our hope was that they would list the water company and 

the gas company as the administrators of those infrastructure features and also include 

that those features co-existed underneath the street? Additionally, we asked the 

stakeholders to include what barriers existed that prevented a more coordinated 

management approach. For example, if the water company and the gas company ever 

worked together to repair pipes to avoid traffic disruption along the same segment of the 

street. 

In the second exercise, attendees were presented with a problem posed by the 

fictional community requesting more green space and buried utility lines. The attendees 

had to work together to identify the stakeholders that would need to be involved in such a 

project and to list any existing partnerships or communication tools that would be useful 

for such a project. Lastly, they were asked to identify any institutional, systematic, or 

functional barriers that existed in implementing such an infrastructure project. 
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The five groups completed the two exercises and presented their visual maps back 

to the larger group. The visual maps displayed cumulative team insight into current 

infrastructure design and management processes in and around Boston, MA. 

 

Figure. 5.1. Prompt with two exercises for five randomly chosen stakeholder groups to work 

through and discuss. Results were collected in visual maps that were presented back to the 

larger audience. 

 

5.2.3 VR design 

For the VR model, a neighborhood in South Boston was chosen as the study area, 

namely the Dorchester Ave corridor between the MBTA Red Line stations Broadway and 
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Andrew because of the planned redevelopment in this neighborhood. The study area (4.6 

km2) can be covered by two USGS Lidar point cloud scenes, which were obtained from 

USGS 3DEP (U.S. Geological Survey, 2015a, U.S. Geological Survey, 2015b). Building 

height can be derived from LiDAR point cloud. Combining with the building footprint, 

we can populate the VR scene with buildings with the appropriate height. A schematic of 

the VR tool created for this research project is shown in Figure. 5.2. 

 

Figure. 5.2. Schematic representation and flow chart of the VR tool creation. 

 

For this analysis, Google Street View was used. Street View is a service provided 

by Google that allows a user to view panoramic street-level images across the world. 

Google collects panoramic images using a vehicle-mounted 360-degree camera that are 

made publicly available on Google Maps. Google recollects Street View images every 3 
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to 4 years for populated areas. Information on the location and type of utilities was 

collected by locating pipeline locations marked on the street with spray paint. Cities 

around the world mark with spray paint color-coded pipeline locations on the streets 

indicating the utility type, the location, orientation, diameter, and material of the pipe 

(Figure. 3) (APWA, 2019). Obtaining spatial information about belowground utilities is 

difficult because utility companies limit the distribution of underground infrastructure 

data to the public. This is a national security issue, as utility companies do not want to put 

service areas in a vulnerable position, were the exact location of all infrastructure to be 

public knowledge. 

 

Fig. 5.3. Example of a spray painted marking on a road by utility company. 

 

Designing a VR environment to highlight above and belowground infrastructure 

features proved difficult due to these stakeholder regulations. However, by utilizing the 

street markings left behind by utility companies, we were able to collect enough street 
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markings to build a comprehensive model of the pipeline network. Using Google Street 

View for this analysis was beneficial because of the historical record of images Google 

has. The spray-painted utility markings can fade due to traffic and dust so looking at a 

selection of photos from a single vantage point enabled our team to collect as much data 

as possible. There are no existing tools that allow the user to collect the street marker 

information directly, so the tool “Underground Utility” was created for this purpose. 

Although time intensive, this method of collecting, converting, and visualizing natural 

gas infrastructure created for this study can be applied to other underground utilities. 

“Underground Utility” was written in JavaScript, using the Google Maps 

JavaScript API. The main interface was split into two sections: the left side has the 

Google Maps, and the right side is Google Street View (Figure. 5.4). The tool allowed a 

user to place custom markers on the Google Street View panel that sync to the Street 

View panel. The markers could be customized with information such as utility type, pipe 

material, and pipe diameter. Addresses were reverse geocoded from the coordinates of 

the markers and after enough markers are placed for post-processing, the location and 

attributes of markers were exported to an Excel file and added to a GIS software to 

generate a spatial display of the underground utility data. 

In some cases, utility maps were public domain, allowing us to convert these 

maps into shapefiles and import them directly into a GIS software. For this study, we 

obtained natural gas pipeline distribution maps from National Grid territory in 

Massachusetts (National Grid, 2010). These pipelines were represented in vector (as 

opposed to represented in pixel in raster maps) so it was possible to convert the polylines 
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directly to shapefiles. To convert a PDF to a shapefile, AutoCAD was used as the 

medium to extract the polylines and export them to ArcMap. Then the spatial information 

was added using the Georeference and Spatial Adjustment tools. 

Combining the utility pipeline data along with spatial information allowed us to 

create a tool modeling a comprehensive pipeline network. On traditional GIS platforms, 

we could visualize pipeline data as latitude and longitude. However, because most of the 

utility pipeline was buried belowground, it was difficult to differentiate above versus 

belowground. Therefore, a third dimension was introduced. 3D models are an excellent 

way of visualizing data in three dimensions. Airborne LiDAR data can be used to create 

DSM (Digital Surface Model). The main difference between DSM and DEM is that DSM 

captures the surface height, that includes the building height, canopy height. Combined 

with building footprints, we could create 3D models of buildings. The LiDAR data we 

used were USGS Lidar Point Cloud MA Sndy (U.S. Geological Survey, 2015a, U.S. 

Geological Survey, 2015b), and the first return was used to estimate building height 

above mean sea level. 
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Figure. 5.4. Screenshot of Underground Utility interface. Google Maps display of 

Dorchester Ave, Boston, MA (left panel) and Google Street view of the same street (right 

side). 

 

In order to display the 3D model and to add more details, the shapefile was 

imported to Trimble SketchUp using a modified plugin in which we could select the field 

containing building height information. This plugin can also be used to import roads as 

polylines to create road models that follow the polylines. Sketchup s useful for creating 

3D models because of its access to the world's largest open-source assets library. 3D 

models limited to shapefiles are commonly plain-looking because shapefiles contain only 

buildings, utility pipelines, and roads. Adding auxiliary assets, such as ground cover, 

cars, humans, and streetlights to the 3D model created a more realistic user experience. A 

3D model is useful to highlight the third dimension that distinguishes above and 

belowground infrastructure features, unfortunately, the models are still constrained to a 

flat computer monitor limiting user perception. VR became the logical next step to 
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creating an environment in which the user could observe and interact with objects as they 

are in the real world. 

There are two requirements for a VR experience, hardware and software. For 

hardware, we used the HTC Vive platform. This platform contains a head mounted 

display (HMD) and a pair of hand-held controllers. Two wall-mounted lighthouses track 

the X, Y and Z position of the user in real time. It allows the user to move within the VR 

environment by moving their heads, body, and hands. A minimum of 2 m by 2 m of 

unobstructed space is recommended for a room scale setup because it provides the 

greatest user immersion. Unfortunately, rendering a VR environment is a heavy load on 

the computer because the graphics card needs to drive two full HD screens in the HMD at 

90 frames per second (FPS). According to HTC, a GTX 970 or equivalent graphics card 

is the minimum requirement for VR. 

There are multiple software packages possible for the user to view 3D models in a 

VR environment. SYMMETRY is a software tool that converts CADs, in this case 

SketchUp models, to VR and is currently available on Steam, a video game digital 

distribution service by Valve. The import feature converts .skp files along with SketchUp 

layers and textures into VR. Additionally, there are two viewer modes: the “Studio 

Mode” that provides the user with an overview, as if viewing a model inside a studio; and 

the “Immerse Mode” that brings the user inside the model where they can use the markup 

tool, camera, and memo to communicate with other users and exchange ideas. 
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Figure. 5.5. Cross section of the VR model “Virtual Reality & Urban Ecology”. 

 

We created our 3D urban infrastructure experience using the HTC Vive platform. 

Our VR experience allowed users to dive beneath city streets and look at the variety of 

utilities that exist and interact with one another. The VR entitled “Virtual Reality & 

Urban Ecology” allowed the user not only to explore belowground utilities but also see a 

city block of aboveground infrastructure, including cars, bike lanes, public transportation 

lanes, buildings, sidewalks, and pedestrians (Figure. 5.5). With this VR environment, we 

aimed to teleport urban stakeholders to an environment which highlights the 

interconnections of above and belowground infrastructure features. 
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5.3 Results and discussion 

5.3.1 Visual maps 

From the five visual maps (Figure. 5.6) collected in response to the two Anytown, 

USA prompts, several common themes emerged, which suggested a variety of reasons as 

to why a coordinated infrastructure management plan is difficult to implement: 1) Elected 

officials expressed concern with aboveground infrastructure only; 2) Engineers and utility 

workers did not communicate efficiently outside of their particular utility to coordinate 

infrastructure repair and replacement projects; 3) There was a general lack of 

understanding and/or appreciation for how urban infrastructure functions as a system; 4) 

Budgetary and practical concerns exist, preventing future urban infrastructure 

innovations, like the utilidor, from being implemented. 

Elected officials, city managers, and park officials concentrated on infrastructure 

elements people can see. Elected officials especially, focused their campaigns and time in 

office bettering what people can see in the aboveground environment. Many admitted to 

an underappreciation for how the aboveground built environment was influenced by 

belowground infrastructure. For example, when traffic is disrupted because of pipe repair 

and uneven streets result from trenching and cement patchwork. Green infrastructure, like 

parks and street trees are also affected by belowground systems. For example, leaky gas 

lines pollute street tree pits with methane and kill vegetation along sidewalks (Hendrick 

et al., 2016). Transitioning from an aboveground infrastructure mindset to one focusing 

on the system dynamics of all urban infrastructure became crucial for implementing a 

coordinated management plan. 
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Inefficient communication between belowground utilities has created problems in 

project efficiency and coordination, resulting in more street disruptions and more 

expensive projects. Even though belowground utilities work in the same space, there is 

commonly no notification across utility companies alerting to a street dig up for repair. If 

all utilities needing to do repairs on that street could do the repairs simultaneously, the 

street and traffic could be disrupted just once. This coordination could decrease excess 

noise, traffic disruption, and patchy/uneven streets. 

Generally, workshop attendees admitted to considering above and belowground as 

separate entities rather than thinking about urban infrastructures as a system. However, 

when presented with the UIS approach many understood how more coordinated repair 

projects and management could benefit city functioning. The system dynamics of urban 

infrastructure highlights the interactions and impacts belowground infrastructure has on 

aboveground and vice versa. These interactions are worthwhile to educate urban 

stakeholders on in order to reconstruct the management of urban infrastructure. 

The visual maps drawn by each group modeled what stakeholders imagined as the 

most ideal infrastructure system. Unfortunately, many of the features were idealistic 

because of concerns over budgetary constraints. For revolutionizing belowground 

utilities, most groups preferred a utilidor solution. A utilidor is a tunnel that consolidates 

and co-locates multiple utilities, with street access at an easy-to-access point (preferably 

on the sidewalk to discourage traffic interruption) for maintenance or repair (Hunt, Nash, 

& Rogers, 2014). Placing all utilities in a single corridor would enable companies to 

complete repairs through the sidewalk without disrupting traffic or disturbing another 
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utility. Unfortunately, discussion of utilidors amongst stakeholders uncovered safety, 

liability, and budgetary concerns making utilidors an unrealistic solution in the near 

future (Canto-Perello, Curiel-Esparza, & Calvo, 2016). 

 

Fig. 5.6. Two examples of visual maps drawn by break out groups at stakeholder workshop. 

After analyzing the elements stakeholders decided to include in their visual maps, 

some commonalities appeared. All of the groups included private buildings, sidewalks, 

and lanes for traffic and public transportation. Only one group included a parking lot and 

only two included a utilidor or on-street parking. Only three of the five groups included 

belowground utilities such as water, sewer, storm water, gas, electric, and/or cable. What 

groups included and what they omitted provided insight into what the stakeholders 

considered important elements of urban infrastructure. 

From the talkback session, a clear need for a spatial communication tool emerged. 

Stakeholders understood the necessity of viewing urban infrastructure as a system and 

admitted there was a challenging lack of coordination in current management tactics. 



138 
 

 

Unfortunately, demonstrating the system dynamics of the UIS is a challenge because half 

of the system environment is out of sight below the streets. These results inspired the 

development of the VR tool to aid stakeholders in seeing the interactions within the UIS 

and to help them visualize belowground infrastructure and its influence on the street. A 

visualization tool would benefit all utility stakeholders because it can demonstrate how 

utilities interact and behave in the UIS. The VR program developed provided a good 

starting place because it emerged the user into an urban environment where they could 

interact with all features of infrastructure. 

5.3.2 User responses: “Virtual Reality & Urban Ecology” 

In response to the results gathered from the stakeholder workshop, the VR tool, 

“Virtual Reality & Urban Ecology” was created and user experience was collected. Two 

demonstrations were held in October and November of 2017 and participants included 

researchers, academics, students, non-profit people, businessmen, and lawyers. Each 

participant was fitted with the VR headset and hand-controllers and immersed in our 

model for a fifteen-minute session (Figure. 5.7). Aboveground, the user could interact 

with cars and cyclists, in addition to exploring the layout of sidewalks, roads, public 

transportation lanes, and bike lanes. By simply looking downwards, the participant could 

dive beneath the street and see the relative location of multiple belowground utilities. A 

user could explore gas, water, sewage, and other pipelines, as well as a rendering of a 

utilidor. 
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Fig. 5.7. VR user perspective, while using the “Virtual Reality & Urban Ecology” VR model 

during October 2017 test. 

 

After using the VR, each user was asked to complete an exit survey where they 

answered questions about their likes/dislikes of the VR, what their overall satisfaction 

was, and whether or not they thought VR would be a helpful tool in urban planning. 

Nearly 60 participants were surveyed. Most users (90%) were excited about the VR and 

enjoyed the experience. The most common complaints included motion sickness, 

difficulty wearing the headset over glasses, and dizziness. Nearly all (95%) people 

surveyed were first time VR users and most were satisfied with the experience. 

Additionally, about 95% of our users encouraged the use of VR for urban planning and 
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thought the VR model helped them further understand the system dynamics of urban 

infrastructure. 

VR has been used in urban planning contexts over the years. VR and VRGIS has 

been used in urban planning because of its “powerful immersive visualization 

approach… [that] can be used to better engage with, and collect the opinion of, 

stakeholders and citizens/communities about any proposed future city plans affecting the 

places they live and work in” (Kamel Boulos et al., 2017). Typically, more than 90% of 

information required for a city's administration has a spatial component, such as location 

of facilities, routing delivery and provision of facilities, meaning GIS has been seen as an 

essential technology for urban management. Our proposed VR application for urban 

infrastructure management along with GIS gives planners the potential and ability to 

make advised choices in the spatial decision-making framework by incorporating a 

combination of computer and information technology, urban growth models, and 

computer-based visualization techniques to support community-based planning. Planners, 

surveyors, utilities and engineers primarily rely on GIS technology to design and map 

facilities in the cities to assist in the urban planning process. 

Recent developments in 3D-GIS and urban data modeling are leading to 

innovations in the representation, storage and analysis based on 3D city and landscape 

models (Breunig & Zlatanova, 2011; Tang & Zhang, 2008; Wang, 2005). Incorporating 

the belowground urban infrastructure environment will be critical moving forward with 

these technologies, especially when construction activity inadvertently but commonly 

disrupts and damages underground infrastructure. Cities are building better models to 
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address this problem and incorporating VR technology will advance these efforts even 

further. For example, the City of Las Vegas has developed a 3D CAD model of their 

above- and below-ground infrastructure in the core downtown area to improve safety and 

awareness of below ground utilities (Haala and Kada, 2010a, Haala and Kada, 2010b). 

The city wanted an accurate and up-to-date source of information for urban planning, 

designing, and maintenance of its infrastructure that included both above and 

belowground infrastructure components. 

VR can be an exceptional tool for communicating spatial information and 

sparking excitement in areas of the urban environment previously unexplored. However, 

there are many shortcomings to this technology that can prevent its implementation on a 

wide scale. In the VR community, it is “widely acknowledged that creating [VR models] 

is challenging, and requires carefully-crafted research and technological progress” 

(Çöltekin, Oprean, Wallgrün, & Klippel, 2019). Additionally, because of the complexities 

of the interaction modalities, implementing an intuitive large-scale VR model is cost-

intensive and time-consuming for urban stakeholders already preoccupied with other 

concerns. An ongoing area of research includes improving the accessibility of large-scale 

VR environments so that these communication tools can be more widely dispersed 

(Çöltekin et al., 2019). VR models are impressively time demanding, especially in an 

urban environment where an accurate model requires a large amount of geometric, 

satellite, LiDAR, and aerial or street-level data (Kamel Boulos et al., 2017). VR is also 

made to be an interactive technology and require a relatively advanced rendering 

technology to gain the full effect, that is not always available to people interested in 
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utilizing the technology (Kamel Boulos et al., 2017). However, there are limitations as to 

what can be successfully communicated using VR. With a lack of data provided from the 

utilities, characteristics such as material, diameter, age, and pressure are important data 

that cannot be included in a VR model. Additionally, infrastructure is fragile and there 

are environmental factors beyond a municipality's control that can cause damage and can 

alter the integrity of the infrastructure. The unpredictability of the UIS is difficult to 

display in a VR model but can be crucial information for urban stakeholders to 

understand. 

The VR model, “Virtual Reality & Urban Ecology”, is a tool meant to be shared. 

It's success in our team's initial pilot launch suggested that this tool would be useful to 

share with stakeholders involved in all branches of urban planning. Applying this VR as 

an educational tool would ideally pique the curiosity of people involved in aboveground 

infrastructure to learn how their infrastructure features play a role in the overall UIS and 

vice-versa. 

 

5.4 Conclusion 

Providing key stakeholders with spatial information about the system dynamics of urban 

infrastructure will be key for managing aging urban infrastructure in the most efficient 

and coordinated way (Pandit et al., 2015). Unfortunately, communicating spatial data to 

stakeholders that highlights the interactions of infrastructure elements above and below 

the ground is challenging. The complex system that exists below city streets is difficult to 

visualize but its impact on aboveground infrastructure is critical and its role cannot be 
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overlooked when making urban planning decisions. VR has been used in urban planning 

for many years as an effective method for conveying spatial data in the built 

environment. Our team utilized VR to visualize and communicate the specific spatial and 

dynamic relationships between infrastructure features above and below city streets in 

response to a clear lack of such a tool in current management practices. Our VR tool 

benefitted stakeholders by helping to address the issues uncovered in our stakeholder 

workshop relating to a lack of foundational understanding of the interactions of above 

and belowground infrastructure features. VR enabled us to provide an interactive 

experience to promote a better understanding of the built urban environment and the 

system dynamics of the infrastructure ecosystem (Billger, Thuvander, & Stahre 

Wästberg, 2016). Using VR as a spatial communication tool will be beneficial in 

informing urban stakeholders about how infrastructure features work together and 

encourage the implementation of a more coordinated urban infrastructure management 

plan (Howard & Gaborit, 2007). To build upon this research into the future, a more 

complete neighborhood could be modeled in the next VR, perhaps highlighting a 

proposed infrastructure reconstruction plan. Climate change models and growing 

population metrics could be incorporated into a VR to help plan a more efficient 

infrastructure project that would be resilient into the future. 

Acknowledgements: Thanks to Conor Leblanc and Katharine Lusk of the Boston 

University Initiative on Cities for organizing the stakeholder workshop described in this 

paper. 
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CHAPTER 6 – CONCLUSION 

Continued population growth and development have increased the intensities of 

natural resource use and environmental degradation, threatening the stability and security 

of our planet. Coupled Human and Natural System (CHANS) offers a valuable 

framework to focus on understanding the process and pattern that characterizes the two-

way dynamical interactions between human and natural systems. These interactions in 

CHANS are complex, where the degree of heterogeneity is highly dependent on the scale 

of the study. CHANS research often integrates data and methods across multiple spatial 

and temporal scales. The goal of CHANS is to find a pathway highlighting the 

development process with less impact on the biosphere and ecosystems to ensure a 

sustainable future. CHANS research results in analysis and insights to inform policy and 

decision-making in the form of spatially explicit models. 

My dissertation research aims to build a set of methodologies and spatially 

explicit models and tools essential for operationalizing and monitoring CHANS, in 

studies ranging from local to regional scales across time span and multiple levels of 

interactions. In the second chapter, we explored the potential impact of energy 

investments on biodiversity and deforestation. A weighted site-wise biodiversity metric 

was employed to address the spatial scale mismatch due to the coarseness of IUCN 

geographic ranges. In addition to traditional deforestation area/rate measurement, we 

conducted a morphological spatial pattern analysis on Landsat derived annual tree cover. 

We found that energy investments with Chinese development finance disproportionately 

impact marine vertebrate species, which is caused by a higher number of coal power 
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plants in China’s energy investment portfolio in Southeast Asia. Coal power plants have 

less geographic restriction in site location and are more likely to be within close 

proximity to the coastline near major population centers. Also, we discovered that 

deforestation area/rate doesn’t exhibit all information on changes in land cover. 

Morphological Spatial Pattern Analysis (MSPA) shows that the construction of 

hydropower plants has a significantly higher impact on core forests. The morphology of 

forest loss is of great biological importance and could lead to better policy 

implementation in species conservation. Such as protecting connecting pathways and 

conservation of forest core dependent species. 

The third chapter demonstrated the effect of spatial non-stationary models. 

Tobler’s first law of geography says that “everything is related to everything else, but 

near things are more related than distant things”. Residuals from Ordinary Least Square 

(OLS) regression exhibit spatial autocorrelation, indicating that the stationary model over 

or underestimates the pattern of clusters. Non-stationary model (geographically weighted 

regression) show lower RSS (Residual Sum of Squares) and AIC (Akaike information 

criterion) values compared with OLS. However, not all variables exhibit spatial non-

stationary at a certain scale. Treating these variables as spatial non-stationary would 

cause over-fitting of the model. A mixed geographic weighted regression model is 

introduced to solve this issue. A Monte Carlo approach was used to determine whether a 

variable should be treated as a stationary variable.  

In the fourth chapter, we examined the dynamics of aquatic vegetation in a 

shallow freshwater lake in East Africa. Aquatic vegetation is a critical refugium for 
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native endangered fish species. Previous studies show that there are difficulties in 

accurately classifying certain classes of aquatic vegetation given that they have similar 

spectral signatures and are often mixed with water. We proposed a workflow that utilized 

the entire Landsat archive to automatically extract water bodies from each Landsat image 

based on various water indices, adaptive binarization, and majority voting rules. Then we 

proposed two data products: aggregated water occurrence and aggregated maximum 

extent from extracted water bodies. Finally, we added spatial and temporal metrics 

derived from two data products that can capture the characteristics of different types of 

aquatic vegetation to Landsat spectral bands in order to improve classification accuracy. 

Our results show increased overall accuracy compared with traditional methods, from 

60.2% to 86.8%.  

We explored the emerging geospatial visualization technologies in the last 

chapter. We showed that there’s complex CHANS coupling of infrastructures in urban 

scenarios. From our workshop, elected officials expressed concern with aboveground 

infrastructure, but there was a general lack of understanding and/or appreciation for how 

urban infrastructure functions as a system. We learned that we need an education and 

outreach tool to enable people to visualize the invisible. A virtual reality environment 

was built from remote sensing and GIS data; our survey shows that most users were 

excited about the VR and enjoyed the experience. About 95% of our users encouraged 

the use of VR for urban planning and thought the VR model helped them further 

understand the system dynamics of urban infrastructure. We showed that VR provides 

key stakeholders with spatial information about the system dynamics of urban 
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infrastructure. Using VR as a spatial communication tool will be beneficial in informing 

urban stakeholders about how infrastructure features work together and encourage the 

implementation of a more coordinated urban infrastructure management plan. 

My research demonstrates how geospatial analysis and spatial statistics can be 

integrated to spatialize the CHANS framework to find sustainable solutions to produce 

relevant analysis and provide decision and policy insights to the stakeholders, including 

the public. The geospatial methods presented in this dissertation facilitate translating 

data-driven geospatial analysis into policy and community action through spatial, 

temporal, and organizational coupling. 



149 
 

 

APPENDIX A 

 

Figure A1. Development finance commitment from main DFIs in Southeast Asia (2013 - 

2019). Compiled from development finance institution project databases & China’s 

Overseas Development Finance Database, Global Development Policy Center, Boston 

University. 

 

Figure A2. WWF Global 200 terrestrial ecoregions in Southeast Asia. 
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Figure A3. Spatial distribution of ecoregions in Southeast Asia. area (Sq Km) by country. 

 

Figure A4. MSPA results from 2000-2018 showing changes in forest morphology in the 8 

countries of Southeast Asia. 
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Figure A5. MSPA results from 2000-2018 showing changes in forest morphology in the 12 

ecoregions of Southeast Asia. 
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Figure A6. Differences in weighted range size rarity and number of species of mammals in 

2-kilometer buffer zones of power plants with and without Chinese Development Finance. 

 

Figure A7. Forest area four years prior to investment and deforestation area during and 

four years after the commission year of the power plants. 
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Table A1. Energy investments in Southeast Asia with and without Chinese development finance 

Countries Primary Fuel with Chinese DF without Chinese DF 

Cambodia 
Coal 0 2 

Hydro 3 2 

Indonesia 
Coal 19 59 

Hydro 1 41 

Laos 
Coal 0 1 

Hydro 13 15 

Malaysia 
Coal 0 7 

Hydro 0 9 

Myanmar 
Coal 0 2 

Hydro 2 17 

Philippines 
Coal 1 22 

Hydro 0 17 

Thailand 
Coal 0 5 

Hydro 0 10 

Vietnam 
Coal 12 15 

Hydro 0 174 

Sum 
Coal 32 113 

Hydro 19 285 

Table A2. The total weighted rarity of species at PLTU Tanjung Kasam in Indonesia 

IUCN Categories Species Count Weight 

Least Concern 24 1 

Near Threatened 4 2 

Vulnerable 7 4 

Endangered 3 6 

Critically Endangered 1 8 

Data Deficient 10 2 
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APPENDIX B 

Tables from B1 to B6: The first 3 columns refer to range of coefficients and median 

values of the intercepts and 10 independent variables. The % positive and % negative 

refer to the sign of coefficients. p-Values of the F3 and the significance refer to the 

coefficients (Signif. Codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’). 

 

Median Home Price 

Basic GWR Model (2000) 

Variables Minimum Median Max % of Positive % of Negative p-Value (F3) Sig. 

Intercept −212.70 243.24 1190.76 90.77 9.23 1.47 × 10−11 *** 

Population Density −11.92 0.68 28.78 60.71 39.29 0.5142965 - 

Unprotected Forest −217.68 68.88 388.90 84.52 15.48 0.3060173 - 

Unemployment Rate −189.08 −17.66 16.92 11.31 88.69 <2.2 × 10−16 *** 

Residential Area −756.43 −73.39 300.69 35.71 64.29 0.0004993 *** 

Vehicle ownership −1323.53 −162.52 229.86 9.82 90.18 <2.2 × 10−16 *** 

Higher Education 297.39 1110.62 1985.25 100 0 6.85 × 10−13 *** 

Senior Population −522.05 226.41 1470.80 84.82 15.18 1.04 × 10−11 *** 

Dist. to Stations −8.48 −0.18 16.72 39.88 60.12 3.59 × 10−6 *** 

Property Tax −20.63 −3.48 1.38 10.12 89.88 6.51 × 10−12 *** 

CPI −1.37 1.38 6.78 80.65 19.35 0.040276 * 

Table B1. GWR results for home prices in MA towns 2000.  

 

 

Median Home Price 

Basic GWR Model (2010) 

Variables Minimum Median Max % of Positive % of Negative p-Value (F3) Sig. 

Intercept −130.54 347.02 1501.33 97.92 2.08 3.07 × 10−2 * 

Population Density −11.22 2.30 25.15 78.27 21.73 0.531882 - 

Unprotected Forest −61.80 100.84 745.17 77.08 22.92 1.90 × 10−13 *** 

Unemployment Rate −114.97 −15.33 3.10 2.68 97.32 <2.2 × 10−16 *** 

Residential Area −781.96 −107.39 246.64 33.63 66.37 4.49 × 10−9 *** 

Vehicle ownership −872.92 −274.53 64.77 2.08 97.92 1.57 × 10−7 *** 

Higher Education −2067.55 626.96 2327.99 88.99 11.01 <2.2 × 10−16 *** 

Senior Population −409.73 660.41 2574.71 83.63 16.37 <2.2 × 10−16 *** 

Dist. to Stations −18.26 −2.00 3.39 25 75 <2.2 × 10−16 *** 

Property Tax −29.32 −7.03 2.51 4.17 95.83 3.94 × 10−3 ** 

CPI −3.72 3.59 17.98 87.5 12.5 0.043231 * 

Table B2. GWR results for home prices in MA towns 2010.  
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Median Home Price 

Basic GWR Model (2009) 

Variables Minimum Median Max % of Positive % of Negative p-Value (F3) Sig. 

Intercept −1507.61 −34.44 433.69 44.94 55.06 3.91 × 10−5 *** 

Population Density −10.47 5.07 30.88 89.88 10.12 0.2161 - 

Unprotected Forest −59.97 141.74 812.44 93.45 6.55 <2.2 × 10−16 *** 

Unemployment Rate −29.38 −3.14 17.12 21.43 78.57 7.21 × 10−8 *** 

Residential Area −842.60 −139.32 242.05 15.18 84.82 4.40 × 10−5 *** 

Vehicle ownership −1018.52 −300.08 126.04 2.98 97.02 5.52 × 10−7 *** 

Higher Education −545.12 1083.32 2578.53 97.92 2.08 <2.2 × 10−16 *** 

Senior Population −625.56 537.45 2741.07 82.14 17.86 <2.2 × 10−16 *** 

Dist. to Stations −12.16 −2.29 3.16 26.19 73.81 1.90 × 10−5 *** 

Property Tax −37.52 −7.63 8.01 7.44 92.56 7.09 × 10−8 *** 

CPI 0.09 5.47 28.54 100 0 <2.2 × 10−16 *** 

Table B3. GWR results for home prices in MA towns 2009. 

 

Median Home Price 

Basic GWR Model (2011) 

Variables Minimum Median Max % of Positive % of Negative p-Value (F3) Sig. 

Intercept −1213.56 1.45 339.49 50.6 49.4 5.81 × 10−1 - 

Population Density −7.34 6.93 31.59 92.86 7.14 0.2586052 - 

Unprotected Forest −154.56 97.60 857.46 79.76 20.24 <2.2 × 10−16 *** 

Unemployment Rate −35.99 −7.29 2.88 1.79 98.21 1.72 × 10−8 *** 

Residential Area −950.93 −169.73 147.89 9.23 90.77 1.03 × 10−3 ** 

Vehicle ownership −860.20 −253.15 99.18 2.38 97.62 1.93 × 10−3 ** 

Higher Education −1494.37 800.34 2474.53 94.94 5.06 <2.2 × 10−16 *** 

Senior Population −567.12 539.88 2330.52 87.5 12.5 <2.2 × 10−16 *** 

Dist. to Stations −9.94 −1.14 3.57 24.4 75.6 1.58 × 10−1 - 

Property Tax −25.86 −5.60 3.56 3.87 96.13 9.45 × 10−4 *** 

CPI −0.22 4.12 25.70 99.4 0.6 1.20 × 10−13 *** 

Table B4. GWR results for home prices in MA towns 2011. 

 

Median Home Price 

Basic GWR Model (2012) 

Variables Minimum Median Max % of Positive % of Negative p-Value (F3) Sig. 

Intercept −918.93 −27.37 341.96 46.13 53.87 4.86 × 10−1 - 

Population Density −8.03 7.73 40.81 92.56 7.44 0.005703 ** 

Unprotected Forest −191.22 94.72 770.02 75 25 < 2.2 × 10−16 *** 

Unemployment Rate −40.78 −7.78 4.25 4.46 95.54 2.99 × 10−16 *** 

Residential Area −1178.58 −203.18 144.67 9.23 90.77 3.64 × 10−6 *** 

Vehicle ownership −742.86 −222.69 93.19 13.39 86.61 6.33 × 10−5 *** 

Higher Education −1489.48 837.34 2527.95 94.35 5.65 < 2.2 × 10−16 *** 

Senior Population −477.13 481.55 2309.47 87.5 12.5 5.66 × 10−15 *** 

Dist. to Stations −11.23 −0.94 10.82 29.17 70.83 9.25 × 10−5 *** 

Property Tax −26.11 −5.16 5.01 3.57 96.43 8.22 × 10−9 *** 

CPI 0.76 4.62 23.77 100 0 < 2.2 × 10−16 *** 

Table B5. GWR results for home prices in MA towns 2012. 
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Median Home Price 

Basic GWR Model (2013) 

Variables Minimum Median Max % of Positive % of Negative p-Value (F3) Sig. 

Intercept −748.02 −159.96 279.56 30.95 69.05 9.71 × 10−1 - 

Population Density −7.81 7.60 41.48 93.15 6.85 1.43 × 10−6 *** 

Unprotected Forest −63.64 120.01 768.53 65.77 34.23 <2.2 × 10−16 *** 

Unemployment Rate −32.81 −6.94 2.92 6.55 93.45 3.50 × 10−12 *** 

Residential Area −937.70 −202.99 148.44 13.1 86.9 9.43 × 10−6 *** 

Vehicle ownership −796.82 −259.97 519.41 5.65 94.35 1.62 × 10−8 *** 

Higher Education −537.89 843.47 1975.59 97.62 2.38 <2.2 × 10−16 *** 

Senior Population −408.29 656.82 2340.80 91.96 8.04 <2.2 × 10−16 *** 

Dist. to Stations −10.98 −0.95 10.05 25 75 8.52 × 10−6 *** 

Property Tax −21.75 −5.72 1.91 8.33 91.67 7.10 × 10−9 *** 

CPI 1.05 6.42 20.66 100 0 2.01 × 10−5 *** 

Table B6. GWR results for home prices in MA towns 2013. 
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From table B7 to B12: The first 3 columns refer to range of coefficients and median values of the intercepts and non-stationary 

independent variables. The % positive and % negative refer to the sign of coefficients. p-Values of the Monte Carlo test and 

the significance refer to the coefficients (critical value 0.05). Global variables are stationary are shown in the lower panel of 

the table along with their coefficient estimates. (Signif. Codes: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’). 

 

Median Home Price 

Mixed GWR Model (2000) 

Local Variables 

Variables Minimum Median Max % of Positive % of Negative p-Value (MC) Sig. 

Intercept −47.18 212.41 1440.56 94.64 5.36 0.04 . 

Population Density −8.63 1.26 25.85 63.39 36.61 0.00 *** 

Unemployment Rate −244.13 −24.55 13.49 23.21 76.79 0.00 *** 

Residential Area −730.09 −98.82 279.04 34.23 65.77 0.00 *** 

Vehicle ownership −1352.88 −208.48 304.02 11.61 88.39 0.00 *** 

Senior Population −528.56 179.11 1395.85 77.38 22.62 0.00 *** 

Dist. to Stations −8.04 −0.27 14.43 34.23 65.77 0.00 *** 

Property Tax −17.89 −3.25 0.84 10.42 89.58 0.04 . 

Global Variables - - - - - - - 

Unprotected Forest - - - 72.49 - 0.48 - 

Higher Education - - - 1063.50 - 0.11 - 

CPI - - - 1.08 - 0.32 - 

Table B7. MGWR results for home prices in MA towns 2000. 
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Median Home Price 

Mixed GWR Model (2009) 

Local Variables 

Variables Minimum Median Max % of Positive % of Negative p-Value (MC) Sig. 

Population Density 1.68 6.92 14.98 100 0 0.01 . 

Unprotected Forest −18.47 136.56 877.81 97.02 2.98 0.01 . 

Unemployment Rate −32.56 −4.52 5.24 9.52 90.48 0.04 . 

Higher Education −46.09 1027.44 2162.85 99.7 0.3 0.01 . 

Senior Population −717.27 543.89 2525.48 84.82 15.18 0.00 *** 

Dist. to Stations −17.40 −2.75 4.61 26.79 73.21 0.00 *** 

Property Tax 1.29 5.19 9.59 100 0 0.01 . 

Global Variables - - - - - - - 

Intercept - - - −22.98 - 0.23 - 

Residential Area - - - −192.74 - 0.08 - 

Vehicle ownership - - - −263.5063 - 0.21 - 

Property Tax - - - −6.2983 - 0.19 - 

Table B8. MGWR results for home prices in MA towns 2009. 
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Median Home Price 

Mixed GWR Model (2010) 

Local Variables 

Variables Minimum Median Max % of Positive % of Negative p-Value (MC) Sig. 

Population Density −10.61 3.01 23.37 75.6 24.4 0.00 *** 

Unprotected Forest −117.24 81.15 1128.29 82.14 17.86 0.02 . 

Unemployment Rate −78.05 −17.19 −3.43 0 100 0.00 *** 

Residential Area −693.29 −89.47 238.38 27.38 72.62 0.01 . 

Higher Education −50.24 901.48 1603.10 99.7 0.3 0.00 *** 

Senior Population −676.64 641.03 3500.10 77.68 22.32 0.00 *** 

Dist. to Stations −20.46 −1.46 4.61 20.54 79.46 0.00 *** 

Global Variables - - - - - - - 

Intercept - - - 273.3707 - 0.45 - 

Vehicle ownership - - - −243.0027 - 0.13 - 

Property Tax - - - −4.75 - 0.51 - 

CPI - - - 273.37 - 0.53 - 

Table B9. MGWR results for home prices in MA towns 2010. 
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Median Home Price 

Mixed GWR Model (2011) 

Local Variables 

Variables Minimum Median Max % of Positive % of Negative p-Value (MC) Sig. 

Population Density −3.65 7.91 31.49 95.54 4.46 0.01 . 

Unprotected Forest −283.68 121.03 783.88 91.37 8.63 0.00 *** 

Residential Area −970.74 −192.49 132.06 6.55 93.45 0.00 *** 

Higher Education −150.67 936.71 2298.48 99.11 0.89 0.00 *** 

Senior Population −456.07 496.82 2273.67 88.1 11.9 0.00 *** 

Dist. to Stations −13.77 −1.91 3.66 18.15 81.85 0.00 *** 

CPI −1.25 4.93 9.95 97.62 2.38 0.00 *** 

Global Variables - - - - - - - 

Intercept - - - −18.07 - - - 

Unemployment Rate - - - −7.38 - - - 

Vehicle ownership - - - −183.00 - - - 

Property Tax - - - −6.56 - - - 

Table B10. MGWR results for home prices in MA towns 2011. 
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Median Home Price 

Mixed GWR Model (2012) 

Local Variables 

Variables Minimum Median Max % of Positive % of Negative p-Value (MC) Sig. 

Population Density −7.00 9.36 42.00 97.62 2.38 0.00 *** 

Unprotected Forest 0.77 85.71 712.42 100 100 0.00 *** 

Residential Area −1101.51 −262.61 198.37 5.65 94.35 0.00 *** 

Higher Education −183.99 927.83 1689.29 99.7 0.3 0.00 *** 

Senior Population −474.79 444.50 2876.72 84.23 15.77 0.00 *** 

Dist. to Stations −17.50 −1.10 4.17 20.83 79.17 0.00 *** 

Global Variables - - - - - - - 

Intercept - - - 7.78 - 0.77 - 

Unemployment Rate - - - −7.8404 - 0.06 - 

Vehicle ownership - - - −196.24 - 0.64 - 

Property Tax - - - −6.95 - 0.06 - 

CPI - - - 4.7264 - 0.05 - 

Table B11. MGWR results for home prices in MA towns 2012. 
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Median Home Price 

Mixed GWR Model (2013) 

Local Variables 

Variables Minimum Median Max % of Positive % of Negative p-Value (MC) Sig. 

Population Density −5.25 8.75 32.65 94.94 5.06 0.00 *** 

Unprotected Forest −71.06 100.28 960.42 64.58 35.42 0.00 *** 

Unemployment Rate −32.11 −7.66 0.85 2.68 97.32 0.02 . 

Residential Area −867.56 −232.16 119.82 6.25 93.75 0.02 . 

Higher Education 73.76 800.33 1532.83 100 0 0.01 . 

Senior Population −606.89 584.40 2809.65 86.9 13.1 0.00 *** 

Dist. to Stations −11.99 −1.68 8.03 17.26 82.74 0.00 *** 

Property Tax −19.62 −7.01 1.37 5.06 94.94 0.03 . 

Global Variables - - - - - - - 

Intercept - - - −105.84 - 0.90 - 

Vehicle ownership - - - −206.13 - 0.24 - 

CPI - - - 6.03 - 0.37 - 

Table B12. MGWR results for home prices in MA towns 2013. 
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Figure B1. Coefficient estimates of basic GWR for senior population: (A) 2000; (B) 2009; 

(C) 2010; (D) 2011; (E) 2012; (F) 2013. 
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Figure B2. Coefficient estimates of basic GWR for unprotected forest: (A) 2000; (B) 2009; 

(C) 2010; (D) 2011; (E) 2012; (F) 2013. 



165 
 

 

 
Figure B3. Unemployment coefficient for 2013: (A) Basic GWR; (B) MGWR. 

 
Figure B4. Senior population coefficient for 2013: (A) Basic GWR; (B) MGWR. 

 
Figure B5. Senior population coefficient for 2013: OLS (Blue); Basic GWR (Brown); 

MGWR (Gray). 
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